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Abstract
THE VENOMOUS RATTLESNAKES AND NEW WORLD CORALSNAKES:
MOLECULAR SYSTEMATICS, BIOGEOGRAPHY
AND THE EVOLUTION OF

VENOM SYSTEMS

Jacobo Reyes-Velasco, PhD

The University of Texas at Arlington, 2015

Supervising Professors: Todd A. Castoe and Jonathan A. Campbell

Middle America is one of the most biologically diverse regions in the world,
however it also possessessome of the highest rates of biodiversity loss. Reptiles are
especially diverse in this region, and are a very important component of the biota, from a
biological as well as a cultural perspective. Venomous snakes are the most studied group
of reptiles in Mexico and Central America, as they are of great ecological and medical
importance. Nevertheless, our understanding of the evolutionary relationships of many
groups of venomous snakes is superficial. Understanding these relationships is no trivial
matter as it is fundamental to appropriately address broader evolutionary questions.
Herein | examine the systematic relationships of the two most diverse lineages of
venomous snakes in Middle America, the rattlesnakes (genus Crotalus) and the
coralsnakes (genus Micrurus). In particular, | studied the phylogenetic relationships of an
obscure lineage of rattlesnakes, the longtailed rattlesnakes, as well as the phylogeny and
species limits of coralsnakes in the diastema species complex of the genus Micrurus. |
used nuclear and mitochondrial genes to test if the longtailed rattlesnakes form a

monophyletic group and to estimate their closest relatives within the genus. By doing so, |



provide the most robust molecular phylogeny for the rattlesnakes to date. Relationships
among coralsnakes are known to be difficult to estimate with the use of DNA markers
obtained from traditional sequencing techniques. Therefore, | use a combination of
traditional sequencing of mitochondrial DNA and next generation sequencing (in the form
of double digest restriction associated DNA sequencing, ddradseq), to elucidate
evolutionary relationships and species limits within the diastema species complex of
coralsnakes. Lastly, | made use of the Burmese python genome as a proxy to understand
how non-venom genes became recruited into venom systems in the most recent ancestor

of both coralsnakes and rattlesnakes.
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Chapter 1
Phylogenetic relationships of the enigmatic longtailed rattlesnakes (Crotalus ericsmithi, C.

lannomi and C. stejnegeri) and insigths into the phylogeny of rattlesnakes

Introduction

Rattlesnakes are a unique and distinctive group of venomous snakes exclusive
to the Western Hemisphere that have intrigued biologists and laymen alike for centuries.
Their distinctive morphological features, potent venom, and wide geographic range have
contributed to both their medical and cultural importance (Greene 2000). Rattlesnakes
range from Canada to Argentina, and include 36 species placed within two genera,
Crotalus and Sistrurus (The Reptile Database, accessed March 2013; (Uetz and Etzold
1996). Since Linnaeus described the first rattlesnake species in 1758 they have become
among the most studied group of reptiles (e.g. >2,000 citations on PubMed). Multiple
hypotheses concerning the systematic relationships of the rattlesnakes have been
proposed based on internal and external morphology (Gloyd 1940; Klauber 1956;
Brattstrom 1964; Klauber 1972), venom properties (Githens and George 1931; Minton
1956; Foote and MacMahon 1977), immunological and electrophoretic data (Cadle 1992;
Minton 1992) and molecular data (Parkinson 1999; Murphy et al. 2002; Parkinson 2002;
Castoe and Parkinson 2006). Despite substantial attention, a cohesive and well-
supported phylogenetic hypothesis for the relationships among rattlesnake species
remains absent, particularly at deeper nodes in the rattlesnake tree. Among published
phylogenies there is much conflict between morphological and molecular-based
analyses, and even among molecular-based estimates (Murphy et al. 2002; Castoe and
Parkinson 2006).

It is notable that the majority of molecular phylogenies that include rattlesnakes
(e.g. (Castoe and Parkinson 2006; Lawing and Polly 2011; Pyron et al. 2011) have

recycled the same GenBank sequences of earlier studies, many published more than a



decade ago (Parkinson 1999; Murphy et al. 2002). Thus, despite many studies including
rattlesnake DNA sequences, there have been little new data added to refine estimates of
rattlesnake relationships. In addition to the issue of minimal additions to gene sequences
being used to resolve rattlesnake phylogeny, there are several rare rattlesnake species
that have never been included in any molecular study, and this systematic exclusion of
lineages may lead to decreased accuracy of inferred phylogenies (Rannala et al. 1998;
Zwickl and Hillis 2002).

One group of species collectively referred to as the “longtailed” rattlesnakes has
never been included in a molecular phylogenetic analysis and contains the rarest
rattlesnake species in museums worldwide. The group is composed of three species that
inhabit the coastal foothills of western Mexico (Campbell and Lamar 2004a; Campbell
and Flores-Villela 2008; Reyes-Velasco et al. 2010), from Sinaloa to Guerrero (see Fig.
1). Although at least one species of the longtailed rattlesnakes has been known to
science for more than 115 years (Boulenger 1896), they have remained particularly rare
in biological collections. The first species to be described was C. stejnegeri Dunn (1919);
this species inhabits the lower foothills of the Sierra Madre Occidental, in the Mexican
states of Durango and Sinaloa (and possibly Nayarit, Sonora and Chihuahua). It is known
from fewer than 15 specimens, and had not been collected since 1976 (Armstrong and
Murphy 1979). The second species, C. lannomi, was described from a single specimen
collected in the state of Jalisco in 1966 (Tanner 1966). For many years no additional
specimens were reported until the species was recently rediscovered in the mountains of
Colima (Reyes-Velasco et al. 2010). The third species, C. ericsmithi, was recently
described from a single specimen collected in the Sierra Madre del Sur of Guerrero
(Campbell and Flores-Villela 2008). Newly acquired material for all three species has also
shown that some characters used to distinguish these species from one another are not
consistent; for example, head scalation and coloration characters show overlap among

species (Reyes-Velasco et al. 2010).



The phylogenetic relationships among the longtailed rattlesnakes, and their
position in the rattlesnake phylogeny, have been historically difficult to establish based
solely on morphological analysis of the small number of available specimens (Gloyd
1940). Several authors have proposed close affinities between C. stejnegeri and the
Mexican lance-headed rattlesnake, C. polystictus, as well as with members of the C.
triseriatus group (Dunn 1919; Amaral 1929; Brattstrom 1964; Klauber 1972). In the
description of C. lannomi, Tanner (1966) suggested a close relationship between C.
lannomi and C. stejnegeri. Later, other authors suggested that these two species were
among the most basally-diverged rattlesnake lineage, but were not each other’s closest
relatives (Klauber 1972; Stille 1987). Most recently, Campbell and Flores-Villela (2008)
proposed that C. stejnegeri, C. lannomi and the newly described C. ericsmithi were
closely related, although no explicit inferences were made regarding their relationships
to other rattlesnake species. Recent fieldwork in Mexico has substantially increased the
number of specimens of longtailed rattlesnakes, thereby facilitating the inclusion of these
enigmatic species in molecular phylogenetic analyses and providing the first opportunity

to examine previous hypotheses about relationships of longtailed rattlesnake species.

In this study we bring new mitochondrial and nuclear gene sequence data from
all three longtailed rattlesnake species to bear on questions relating to the relationships
among these species and their placement in the phylogeny of rattlesnakes. We also add
new data to supplement existing GenBank sequences for several other rattlesnake
species, to fill in sampling for major lineages and to replace GenBank data we identify as
questionable. With this data set we evaluate the following questions: 1) Are the longtailed
rattlesnake species valid and moderately divergent from one another? 2) Do the three
longtailed rattlesnake species form a monophyletic group, and if so, how are they related
to one another? 3) Where do longtailed rattlesnakes fall within the phylogeny of all

rattlesnakes and what lineages are most closely related to them? 4) When did longtailed



rattlesnakes diverge from one another and from other rattlesnake lineages? 5) Can

estimated divergence times be plausibly linked to spatio-temporal biogeographic events?

C. stejnegeri

C. lannomi

C. ericsmithi

Figure 1 - Map of central Mexico showing topographic relief and indicating the known
ranges of each of the three species of longtailed rattlesnakes, as well as possible
biogeographic barriers. Rivers are indicated in blue, as either (A) Rio Grande de
Santiago-Rio Ameca, or (B) Rio Balsas. Icons represent the only known localities of the
longtailed rattlesnakes: circles — Crotalus stejnegeri; diamonds — C. lannomi; stars — C.

ericsmithi.



Materials and methods

Taxon sampling

We collected all three species of longtailed rattlesnakes, including two specimens
of C. ericsmithi, three specimens of C. lannomi and three specimens of C. stejnegeri,
between 2007 and 2011. These specimens represent the only individuals of two of the
species (C. ericsmithi and C. lannomi) and three of only four specimens of C. stejnegeri
known to have been collected in over 30 years (Campbell and Flores-Villela 2008; Villa
and Uriarte-Garzon 2011). Tissue samples (muscle or liver) were preserved in either 95%
ethanol or tissue lysis buffer (Burbrink and Castoe 2009). Whole preserved specimens
were fixed in formalin and deposited at the Museo de Zoologia, Faculta de Ciencias,
Universidad Nacional Auténoma de México (MZFC-UNAM) and the University of Texas
at Arlington Amphibian and Reptile Diversity Research Center (UTA-ARDRC). We
obtained tissues of additional species of rattlesnakes from the frozen tissue collection at
the UTA-ARDRC. In addition to new data generated, we retrieved DNA sequences from
GenBank from other Crotalus species and outgroup taxa. Except in the case of the
longtailed rattlesnakes, all sequences (from multiple voucher individuals in some cases)
from a particular taxon were combined to represent that taxon in phylogenetic analyses.
Data for all specimens and sequences used in this study are provided in the

Supplementary Table 1.

Laboratory techniques

Genomic DNA was extracted using the Qiagen DNeasy kit (Valencia, CA, USA).
We PCR amplified and sequenced three mitochondrial DNA fragments, including ATPase
subunits 6 and 8 (ATP6_8), cytochrome B (cyt-b), and NADH dehydrogenase subunit 4
(ND4). We also amplified and sequenced three nuclear gene fragments: oocyte
maturation factor mos (C-mos), neurotrophin-3 (NT3) and recombination activating gene-

1 (RAG-1). Gene fragments were amplified using previously published primer sets and



PCR protocols (Supplementary Table 2). Bi-directional sequencing of DNA fragments
was performed by the University of Texas Arlington Genomics Core Facility on an ABI
3130 capillary sequencer (Applied Biosystems). Raw sequence chromatographs were
trimmed for quality, assembled, and consensus sequences for gene fragments were

estimated using Sequencer 4.8 (Gen Codes Corp., Ann Arbor, MI, USA).

Screening problematic GenBank sequences

In preliminary analyses of sequences, we discovered multiple instances in which
GenBank sequences appeared to have either been labeled incorrectly upon original
deposition, or to represent anomalous or chimeric sequences. In the supplementary
material we summarize the evidence for these assumptions (Supplementary Table 3).
Many discrepancies were diagnosed by a first-pass phylogenetic screening of all Crotalus
GenBank sequences using neighbor joining; problematic sequences were identified when
the same species or lineage clustered with taxa known to be distantly related (rather than
grouping with conspecific or congeneric species) or where species known to be distantly
related had identical sequences for rapidly-evolving mitochondrial loci. Other problematic
sequences were identified by blastn searches against the NCBI nr database in which only
portions of their length aligned to other rattlesnakes, or where they aligned to non-
rattlesnake species (details in Supplementary Table 3). Many discrepancies involved
apparent mismatching of information between that listed in GenBank and that provided in
the referenced publications (i.e., in many cases the original publication results seemed
correct but the GenBank details were incorrect), but in other instances, mislabeling of
sequences or presumed contamination appear have been responsible for the errors.
Several of these problematic sequences could be the cause of erroneous phylogenies in
previous works, for example the nesting of Crotalus enyo in the C. durissus group
(Murphy et al. 2002; Castoe and Parkinson 2006), or the apparent paraphyly of Crotalus

found by (Parkinson 1999).



Based on concerns with some existing data on GenBank for several rattlesnake
species, we took multiple steps to increase our confidence in the quality of the data used
in this study. First, we filled in new data from six species that seemed particularly
phylogenetically unstable (based on preliminary analyses): C. adamanteus, C. cerastes,
C. enyo, C. horridus, C. polystictus and C. willardi. Second, we generated new data for
seven species that we identified as having questionable GenBank accessions or missing
data: C. aquilus, C. atrox, C. basiliscus, C. pricei, C. scutulatus, C. tigris and C.
triseriatus. Lastly, we excluded the following sequences from GenBank due to probable
errors: AF259175.1 (cyt-b of C. enyo), HM631837.1 (ND4 of C. horridus) and

HQ257775.1 (ND4 of C. triseriatus armstrongi).

Phylogenetic analysis

We aligned all sequences using ClustalW (Thompson et al. 1994). All protein-
coding genes where translated to their predicted amino acid sequences to check for the
presence of stop codons (none were detected). Only two individual sequences of nuclear
genes had heterozygote sites, Crotalus lannomi (JRV-BM) and C. scutulatus (JAC-
29076), both in the NT3 loci. We phased these sequences manually (based on re-
analysis of the raw chromatogram files) and included each individual allele separately in
downstream analyses. We used TOPALi version 2 (Milne et al. 2009) to test for
recombination in nuclear loci using the difference of sums of squares (DSS) method with
a sliding window of 100-bp and 10-bp step size. No significant recombination was
detected in any of the nuclear loci. Best-fit models of nucleotide evolution for each gene
(or partition) were estimated using Akaike Information Criterion (AIC) in the program
JModelTest (Posada 2008). Individual gene fragments were concatenated using
Sequence Matrix (Vaidya et al. 2011). When all genes were concatenated the total length
of aligned positions was 3,496 bases. The final data matrix was ca. 71% complete at the

level of gene loci per species, and 68% complete at the nucleotide level.



We estimated phylogenetic trees using Bayesian Metropolis-Hastings coupled
Markov chain Monte Carlo inference (Bl) and Maximum likelihood (ML) phylogenetic
approaches using all concatenated genes. Bl was used to estimate the posterior
probabilities of phylogenetic trees based on a total of 10° generations Metropolis-coupled
Markov chain Monte Carlo (MCMC) with MrBayes version 3.2.1 (Huelsenbeck and
Ronquist 2001). Bl analyses consisted of four simultaneous runs, each with four chains
(three heated and one cold), sampled every 1,000 generations. We visualized the output
from Bl in the program TRACER v. 1.5 (Drummond and Rambaut 2007) to verify that
independent runs had converged. Potential scale reduction factor (PSRF) estimates
comparing chain likelihood values indicated convergence by 10" generations. We
therefore conservatively discarded the first 25% of Bl samples as burn-in. A majority-rule
consensus phylogram was estimated from the combination of the post-burnin samples
from the four Bl runs. ML analysis was performed with raxmIGUI 1.3 (Silvestro and
Michalak 2012). Nodal support for ML analyses was assessed using the rapid bootstrap
algorithm with 10* replicates (Stamatakis et al. 2008).

We estimated Bl phylogenetic trees in MrBayes for each individual locus
separately, and also ran independent analyses for both the mitochondrial (ATP6_8, cyt-b,
ND4) and nuclear (C-mos, NT3 and RAG-1) data sets. We conducted further Bl analyses
on the concatenated set of all loci combined. For the sake of discussion, nodes with
295% Bayesian posterior probabilities were considered to be strongly supported
(Felsenstein 2004); in the ML analysis, nodes with 270% bootstrap support were
considered strongly supported (Hillis and Bull 1993).

We used comparisons of tree likelihoods for different tree topologies to evaluate
relative support for alternative trees. For this, we implemented the stepping-stone
sampling method (Xie et al. 2011) in MrBayes v3.2 to estimate the marginal likelihood for

each topological constraint. For each hypothesis, we evaluated the complete



concatenated dataset using the best-fit partitioned model based on 5x10° generations of

each of the 49 steps, sampling every 1,000 generations, for a total of 2x10’ generations.

Species tree analysis

In addition to concatenated phylogenetic inferences made using MrBayes, we
also implemented a multispecies coalescent model to estimate the ‘species tree’ based
on multi-locus data. Given the lack of substantial intraspecific sampling and the moderate
amount of missing data, our dataset is not particularly well suited for species tree
analysis. We therefore use species tree analyses as a means to further explore
phylogenetic signal in the data, but with the above caveats. We used the program
*BEAST (Heled and Drummond 2010), within the BEAST software package (Drummond
and Rambaut 2007), to estimate a species tree from the three separate nuclear loci (C-
mos, NT3 and RAG-1) plus a concatenated mitochondrial dataset (ATP6_8, cyt-b and
ND4) that was treated as a fourth locus. We used a relaxed molecular clock model for all
loci and an HKY + I' model of nucleotide substitution for each data partition, with the
exception of RAG-1, for which we used a JC model. We chose the models of nucleotide
substitution based on the Akaike Information Criterion (AIC) estimated using JModelTest
(Posada 2008). The tree prior was set to the Yule process, and other priors in *BEAST
were set to default values. Analyses were run in duplicate, each for 1x10° generations,
sampling every 20,000 generations, for a total of 5x10* sampled trees. We used
TreeAnnotator v1.7.4 (Drummond and Rambaut 2007) to discard the first 10% of the

samples as burn-in, and to map nodal support for the remaining samples on the tree.

Allele networks
Parsimony haplotype networks for the nuclear genes C-mos and NT3 data sets
of the longtailed rattlesnakes were calculated using TCS 1.21 (Clement et al. 2000). All

three species of longtailed rattlesnakes shared an identical haplotype of the Rag-1 gene,



so it was excluded from this analysis. Haplotype networks were inferred using a statistical
parsimony framework (Templeton 1998), with gaps treated as missing data and a

connection limit of 95%. Identical sequences were collapsed into a unique haplotype set.

Phyllogenetic hypothesis test

To evaluate relative evidence for different hypotheses regarding the phylogenetic
placement of the longtailed rattlesnakes among Crotalus species, and the relationships
among the three longtailed species, we used Bayes Factors in MrBayes to compare the
likelihood of alternative trees based on the concatenated dataset. We used the criterion
of 2In [bf] ranging from two to six as positive evidence, six to ten as strong evidence and
>10 as very strong evidence against the alternative hypotheses (Kass and Raftery 1995;

Miller and Bergsten 2012).

Divergence dating

We performed a likelihood ratio test to test the null hypothesis that substitutions
in the genes used follow a strict molecular clock of evolution. At a significance threshold
of p < 0.05, the set of all mitochondrial genes rejected the strict molecular clock, while the
set of all nuclear genes failed to reject it. The concatenated analysis of all genes also
rejected the strict molecular clock. We estimated divergence times across the rattlesnake
phylogeny using BEAST 2 (Drummond and Rambaut 2007) instead of incorporating
divergence estimation in our *BEAST analysis of the species tree. We took this approach
because our species tree analysis had considerable missing data (>30%), which
presumably contributed to the failure of these *BEAST runs to reach convergence in >1
billion generations. Additionally, most nodes in our species tree analysis had extremely
low support values. Because preliminary analyses in BEAST 2 implementing nucleotide
models partitioned across genes and codon position showed poor convergence, our final

analysis used an unpartitioned model to estimate divergences using the entire dataset.
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The concatenated data set rejected the strict clock hypothesis, so we implemented an
uncorrelated log-normal relaxed clock model with a Yule tree prior using the HKY + T
model of sequence evolution applied to the combined data set. Two independent
analyses were run for 1x10° generations, sampling every 10,000 generations. Dates
used to constrain nodes were obtained from estimates based on the fossil record or
biogeographic divergence events published in previous studies (Holman, 2000; Castoe et
al., 2007; (Parmley and Holman 2007), and many of the priors we use here follow a
recent study that has dated a similar phylogenetic tree (Bryson et al. 2011b). We used
the program Tracer v. 1.5 (Drummond and Rambaut 2007) to confirm stationarity of the
Markov chain Monte Carlo (MCMC) analysis, adequate effective sample sizes of the
posterior (>200 for each estimated parameter), and the appropriate percent to discard as
burn-in (which we estimated conservatively to be 10%, or 1,000 trees). We used two
fossil and one geologic calibration for our divergence estimates. First, we used the oldest
Sistrurus fossil (Late Miocene, Claredonian; (Parmley and Holman 2007). We
constrained the ancestral node of Sistrurus with a zero offset of 8 million years ago
(mya), with a log-normal mean of 0.01, and a log-normal standard deviation of 0.76,
resulting on a median age of 7 my and a 95% prior credible interval (PCl) that extended
to the Late Clarendonian, ~11.5 mya (Holman, 2000). Second, we used the oldest fossil
of Agkistrodon contortrix (Late Hemphillian; (Holman 2000). This node was constrained
with a zero offset of 6 mya, a log-normal mean of 0.01, and a log-normal standard
deviation of 0.42, resulting on a median age of 7 my and a 95% PCI that extended to the
Late Hemphillian, ~8 mya (Holman, 2000). Third, we used the estimated time of
divergence between C. atrox and C. ruber as approximately 3.2 mya (Castoe et al.
2007b). This node was given an offset of 3.2, a normal mean of 0 and a normal standard
deviation of 1, resulting on a median age of 3.2 my and a 95% PCI that extended to ~4.8
mya. After discarding burn-in samples, the trees and parameter estimates from the

independent runs were combined using LogCombiner v. 1.7.4 (Drummond and Rambaut
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2007). We summarized parameter values of the samples from the posterior on the
maximum clade credibility tree using the program TreeAnnotator v. 1.7.4 (Drummond and

Rambaut 2007).

Revision of skeletal material

The absence of teeth in the palatine bone has been considered a synapomorphy
uniting Crotalus polystictus and C. stejnegeri (Klauber, 1952; Brattstrom, 1964). To re-
evaluate this supposition, we looked for the presence or absence of teeth in the palatine
bone in the skulls of specimens of ten species of the genus Crotalus, as well as one
species of each of the genera Sistrurus and Agkistrodon. All specimens are deposited at
the UTA-ARDRC. A list of the specimens examined and their locality data is given in

Supplementary Table 4.

Results

DNA sequence characteristics

The combined set of mitochondrial loci contained 1610 bp, 801 of which were
variable. The total length of ATP6_8 was 444 bp, with 245 (45%) variable sites. For cyt-b,
the total length was 564 bp, with 260 (46%) variable sites. The total length of ND4 was
602 bp, with 296 (49%) variable sites. The combined set of nuclear loci contained 1887
bp, 91 of which were variable. The C-mos fragment contained 553 bp, with 29 (5%)
variable sites. NT3 had a total length of 512 bp, 41 sites (8%) were variable. RAG-1 had

a length of 822 bp, and only 21 sites (2%) were variable.

Individual gene tree estimates
There was broad support that the three longtailed rattlesnake species formed an
exclusive clade across Bl trees estimated from individual loci, although there were

several differences in topology between individual gene trees (figures not shown).
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Nuclear genes had a low number of polymorphic sites and tended to provide lower
phylogenetic resolution and support (see above). Longtailed rattlesnakes were recovered
as monophyletic in all Bl trees based on analyses of individual genes except for that
based on the nuclear gene C-mos, which resulted in a polytomy that included the
longtailed rattlesnakes, C. horridus and C. molossus. In the case of NT3, C. ericsmithi
was nested within a cluster of C. lannomi samples, and C. stejnegeri was sister to this
clade.

The relationships among the three species of longtailed rattlesnakes differed
somewhat among Bl phylogenetic estimates based on individual loci. A clade containing
C. lannomi and C. stejnegeri, sister to C. ericsmithi, was inferred based on Bl analysis of
the mitochondrial loci ATP6_8 and ND4 (posterior probability [pp] = 1). In contrast, a
clade containing C. lannomi and C. ericsmithi as the sister lineage to C. stejnegeri was
inferred based on the mitochondrial cyt-b fragment and the nuclear fragments NT3 and
RAG-1 (pp = 0.99, 1 and 0.73, respectively).

The phylogenetic placement of the longtailed rattlesnake clade within the
phylogeny of the rattlesnakes was weakly and differentially resolved by individual gene BI
estimates. The longtailed rattlesnake clade formed a polytomy with several other
rattlesnake lineages based on ATP6_8. The ND4 Bl tree recovered the longtailed clade
as the sister-lineage to C. horridus plus C. cerastes (pp = 0.68), and cyt-b showed a
different topology in which the longtailed clade formed the sister lineage to all other

Crotalus species (pp = 0.98).
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Figure 2 - Phylogenetic estimates based on concatenated data analyses. A. Majority-rule consensus
tree from Bayesian phylogenetic tree estimates based on all genes concatenated, with bipartition
posterior probabilities indicated by numbers or a filled circle if equal to 1.0. B. Maximum likelihood
phylogenetic tree estimate based on all genes concatenated, with bipartition bootstrap values

indicated by numbers or a filled circle if equal to 100%. Outgroups are omitted from figures.
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Concatenated phylogenetic analyses

The concatenated nuclear dataset analyzed using Bl (not shown) recovered C.
stejnegeri as sister to a clade containing C. lannomi and C. ericsmithi, with a single
representative of C. ericsmithi nested within a clade of three C. lannomi samples. The

longtailed species were one of the only Crotalus clades with posterior support > 0.95 (the

other groups being C. tigris + C. oreganus and C. basiliscus + C. polystictus), although
their placement among other lineages of Crotalus was unresolved. The Bl analysis of
concatenated mitochondrial genes (not shown) also recovered the longtailed rattlesnakes
as monophyletic, but with C. ericsmithi as sister to a clade comprising C. lannomi plus C.
stejnegeri (pp = 1); this longtailed rattlesnake clade was inferred to be the sister group to
the C. durissus + C. atrox + C. viridis groups (pp = 0.96).

When all genes where combined for Bl and ML analyses, a slightly different
topology was recovered (Fig. 2). The monophyly of the longtailed group was strongly
supported in both Bl and ML analyses (pp = 1; bootstrap support [bs] = 100%), with C.
stejnegeri as the sister lineage to a clade containing C. lannomi and C. ericsmithi. In the
Bl estimate, the longtailed group was supported by 0.74 posterior probability as sister to
the C. atrox + C. viridis groups, while the ML tree placed the longtailed rattlesnakes sister
to a clade consisting of the C. atrox, C. viridis and C. durissus groups (like the Bl tree of
mitochondrial genes). Another difference between the Bl and ML inferences was the
position of C. horridus, which was the sister to the C. triseriatus group in the Bl tree, but
recovered as sister to a clade containing the C. durissus, C. atrox, C. viridis, and
longtailed rattlesnakes in ML. Both Bl and ML inferred that C. enyo and C. cerastes
formed a clade (the C. cerastes group), but they differed in their placement of C.
polystictus, which was sister to the C. triseriatus group in ML, and sister to the C.
cerastes group in Bl. In both analyses, the C. infermedius group was recovered as the

sister group to all other species of Crotalus.
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Species tree analysis

The species tree analysis of all loci using *BEAST recovered an exclusive

longtailed rattlesnake species clade, with C. stejnegeri sister to C. ericsmithi+C. lannomi,

this clade was recovered with strong support (pp = 0.99; Fig. 3). Contrary to the Bl and

ML analyses, the longtailed rattlesnakes were placed as sister to C. horridus, and this

clade was the sister group to the C. afrox plus C. viridis groups. Unlike results from

concatenated Bl and ML analyses, species tree analyses implied that the C. cerastes

group and C. polystictus formed a clade sister to the C. durissus group.
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Figure 3 - Species tree estimate for the rattlesnakes based on analysis using *BEAST

incorporating all six gene fragments (ATP6_8, C-mos, cyt-b, ND4, NT3 and RAG-1).

Posterior probability values are given adjacent to respective nodes.
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Allele Networks

We found no evidence for recombination within any of the three nuclear genes
within the longtailed rattlesnake samples. For these longtailed rattlesnake samples, the
six sequences of C-mos grouped into three distinct haplotypes, each haplotype was
unique to each of the three species. In the case of NT3, the eight individuals grouped into
4 different haplotypes. Crotalus lannomi had two distinct haplotypes, each of which were
homozygous in one individual, and heterozygous in a third individual. Samples of C.
ericsmithi and C. stejnegeri were homozygous for a single variant unique to each species
(Fig. 4). In sum, within the longtailed rattlesnake species, all nuclear variants observed

are unique to a recognized species (as are all mitochondrial variants).

Longtailed Rattlesnakes

@ Crotalusericsmithi

. Crotalus lannomi

. Crotalus ericsmithi

Number of individuals per haplotype

3

2

1

missing
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Figure 4 - Allele network for the variable nuclear genes (NT3 and C-mos) constructed for

A) NT3 B) C-mos

the longtailed rattlesnakes. All specimens of longtailed rattlesnakes shared the same

RAG-1 haplotype, so it was excluded from this analysis.

Phylogenetic hypothesis test
Because different analyses resulted in different phylogenetic estimates, we
tested two sets of hypotheses regarding the relationships of the longtailed rattlesnakes.

Set A, which represents hypotheses regarding the placement of the longtailed
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rattlesnakes among rattlesnakes: HA1) longtailed rattlesnakes sister to C. atrox + C.
viridis groups — this topology was obtained from Bl analysis of all genes; HA2) longtailed
rattlesnakes sister to the C. durissus group — this topology was obtained in some of the
BEAST runs; HA3) longtailed rattlesnakes sister to a clade containing the C. durissus, C.
atrox, and C. viridis groups — this topology was recovered by the Bl analysis of
mitochondrial genes and RaxML analysis of all genes; HA4) longtailed rattlesnakes sister
to C. horridus — recovered in the species trees analysis in *BEAST, although with very
low support. Our second set (set B) focused on the branching order of the three
longtailed rattlesnakes: HB1) C. lannomi sister to C. stejnegeri — recovered from Bl
analysis of individual ATP6_8 and ND4 genes. HB2) C. lannomi sister to C. ericsmithi —
obtained from all other analyses. In tests of these hypotheses using Bayes factors [bf]
based on the concatenated dataset, we found strong support (bf = 6.6 — 17.5) for the
longtailed rattlesnakes as sister to the C. atrox plus C. viridis groups (HA1), but we found
no notable support (bf = 1.7) for a particular branching order among the three longtailed

rattlesnakes (Fig. 5).
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Figure 5 - Topological hypotheses tested for the placement and branching order of the
longtailed rattlesnakes. HA 1-4: Hypothesis for which lineages are the sister group to the
longtailed rattlesnake clade. HB 1-2: Hypotheses for the branching order among the three
species of longtailed rattlesnakes. Arrows point towards the hypothesis that is favored by
Bayes Factors. Numbers represent relative support based on Bayes factors (2In [bf])
between topologies trees, which are considered as positive evidence for a particular
topology if they range from two to six, strong evidence from six to ten, and as very strong

evidence if > 10.

Divergence time estimates

Our divergence estimates are similar to previous studies of pitviper evolution
(e.g. (Douglas et al. 2002; Daza et al. 2010; Bryson et al. 2011b), which is expected
because many calibration points, and much sequence data are shared with these
studies. Due to the lack of substantial intra-specific sampling, missing data, and strong
support for the topology recovered in concatenated Bl analyses (Fig. 5), we base our

divergence time estimates on concatenated (non species tree) Bl analysis. Based on the
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divergence time analysis implemented in BEAST 2, we estimate that the split between
the C. intermedius group and the rest of Crotalus occurred ~9.9 mya (7.8 to 12.3 mya,
95% highest posterior densities [HPD]). Following this event, most other major lineages
of Crotalus (i.e., species groups) diverged in relatively rapid succession during the late
Miocene, from ~9 to 6 mya (Fig. 6). Our estimates of the divergence dates among most
Crotalus lineages are mostly similar to previous studies (e.g. (Douglas et al. 2006);
(Bryson et al. 2011a; Bryson et al. 2011b); (Anderson and Greenbaum 2012)), with the
exception of the divergence between C. durissus and C. molossus, as our estimate is
substantially more recent than previous estimates (Wuster et al. 2005). We estimate that
the ancestor of the longtailed rattlesnake group diverged from a common ancestor with
the C. atrox + C. viridis group clade during the late Miocene, ~6.8 mya (5.1 to 8.6 mya,
95% HPD). The extant longtailed rattlesnake lineages are estimated to have split from
one another during the Pliocene (Fig. 6), with the first division occurring when C.
stejnegeri diverged from the other two longtailed species ~3.96 mya (2.5 to 5.46 mya,
95% HPD), followed by the divergence of C. lannomi from C. ericsmithi ~2.7 mya (1.6 to

4.1 mya, 95% HPD).
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Figure 6 - Bayesian relaxed clock estimate of divergence times among rattlesnake
lineages with 95% credibility intervals shown over nodes by shaded bars. Dark arrows

represent calibration points used in the analysis.

Revision of skeletal material

Among the pitviper species examined for palatine teeth, the only species without
teeth in the palatine bone is C. polystictus, and this trait was consistent across three
specimens. Crotalus stejnegeri was reported by Klauber (1956) and Brattstrom (1964) to
lack teeth on the palatine bone, but the specimen we examined (UTAR-10499) had three

palatine teeth (Fig. 7).
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Figure 7 - Photographs of skulls of Crotalus stejnegeri (left) and C. polystictus (right). Red
arrows point to the palatine bone. Notice the presence of palatine teeth in C. stejnegeri

and their absence in C. polystictus.

Discussion

Monophyly and distinctiveness of the longtailed rattlesnakes

The importance of rattlesnakes transcends academic interests in many ways,
including their medical importance and their central role in the imagery and folklore of
North America (Greene and Cundall 2000). Furthermore, this group of 36 species is one
of the most heavily studied lineages of reptiles, particularly when their relatively low
diversity (equivalent to ~1% of all snake species) is considered. Among rattlesnake
species, the longtailed rattlesnakes have remained the most enigmatic, largely because
of the dearth of scientific material available for these species (e.g., a single specimen for
C. lannomi for almost 50 years) and the recent discovery of C. ericsmithi (Campbell and
Flores-Villela 2008). Thus, in the absence of sufficient comparative material, the origins,
distinctiveness, and relationships among longtailed rattlesnakes have been much
debated but insufficiently tested.

Our phylogenetic estimates provide unilateral evidence that the longtailed
rattlesnakes form a well-supported monophyletic clade (Figs. 2—6). Most authors have

considered the long tail of these species to be an ancestral character state (Gloyd 1940;
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Klauber 1952; Tanner 1966; Klauber 1972), and therefore not a synapomorphy
supporting the monophyly of the group (Campbell and Flores-Villela 2008). Our results
instead indicate that the long tail condition is a shared derived character uniting these
three species, as is the mediolateral compression of the hemipenial lobes (Jadin et al.
2010).

Although each of the three longtailed rattlesnake species share characteristics of
their internal and external morphology (Jadin et al. 2010); (Reyes-Velasco et al. 2010);
Reyes-Velasco, unpublished), we find each to constitute reciprocally monophyletic
groups based on all mitochondrial gene analyses, analysis of the nuclear gene C-mos,
and the species tree analysis of the combined data (Figs. 2-3). Furthermore, for nuclear
genes that show variation in these three species (NT3 and C-mos), each species
contains species-specific alleles and no alleles are shared among species (Fig. 4). We
estimate that the three species have most likely diverged from one another during the
Mid-Late Pliocene (Fig. 6). Based on our analyses, together with previous evidence for
their morphological distinctiveness, there is broad agreement that these three species are
indeed distinct.
Phylogenetic placement of the longtailed rattlesnakes

The long, attenuated tails and minute rattles characteristic of species of the
longtailed rattlesnakes have led most researchers to conclude that these species where
the sister group to all other Crotalus (Gloyd 1940; Klauber 1952; Tanner 1966; Klauber
1972). Based on morphological similarities, including high ventral counts, high number of
dorsal scale rows, and a tendency toward subdivided head scales, Klauber (Klauber
1952) noted that C. stejnegeri more closely resembled C. viridis and C. atrox than other
rattlesnakes. Longtailed rattlesnake species also, however, possess high numbers of
spines on each hemipenial lobe, a trait that they shared with C. polystictus (Jadin et al.
2010). Further linking C. polystictus and C. stejnegeri, the absence of teeth on the

palatine bone was considered a synapomorphy uniting these two species (Klauber 1956;
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Brattstrom 1964; Klauber 1972), although LaDuc (2003) reported palatine teeth from a
specimen of C. stejnegeri (UTA R-10499). We reexamined this specimen as well as
various other rattlesnake species (including Sistrurus catenatus, Crotalus aquilus, C.
atrox, C. lepidus, C. molossus, C. pricei, C. stejnegeri, C. willardi, and several C.
polystictus; see Supplementary Table 4), and the lack of palatine teeth was found to be
unique to C. polystictus, and the presence of palatine teeth in C. stejnegeri was
confirmed (Fig. 7). Due to the lack of comparative skeletal material, we were not able to
assess the presence of palatine teeth in C. lannomi and C. ericsmithi. The absence of
teeth in the palatine bone is therefore an autapomorphy of C. polystictus and not a
synapomorphy linking C. polystictus and C. stejnegeri.

The ML analysis of all genes placed the longtailed rattlesnakes as sister to a
clade consisting of the C. durissus + (C. atrox and C. viridis) groups, but with little support
(bs = 35%). Concatenated Bl analysis estimated a sister relationship between the
longtailed rattlesnakes and the C. atrox + C. viridis groups, but with relatively weak
support (pp = 0.74). Our species tree inference from *BEAST resulted in the longtailed
rattlesnakes placed as the sister to C. horridus, but with extremely low support (pp =
0.42), as was recovered at most other nodes of this tree (Fig. 3). Because we inferred
multiple competing hypotheses for relationships of longtailed rattlesnakes across different
phylogenetic methods, we tested these hypotheses using Bayes Factors implemented in
MrBayes based on the concatenated data set. Our results strongly favored the sister
relationship between the longtailed rattlesnakes and the C. atrox + C. viridis groups (Fig.
5), as was inferred by the Bl concatenated analysis. The close relationship between the
longtailed rattlesnakes and the C. atrox and viridis groups has never been explicitly
inferred by phylogenetic analyses, although there are several similarities between these
groups of rattlesnakes that others have noted (Klauber 1952). We find strong evidence
countering previous hypotheses that the longtailed rattlesnakes are sister to all other

Crotalus, and also against the hypothesis that they are close relatives of C. polystictus,
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as previously suggested based on hemipenial characters (Jadin et al., 2010) and the
presumed synapomorphy of the absence of palatine teeth that we confirm to have been

incorrect (Fig. 7).

Insights into rattlesnake phylogeny

Estimating the phylogenetic placement of the longtailed rattlesnake clade within
the context of rattlesnake phylogeny requires at least partial resolution of the phylogeny
of rattlesnakes, which has historically been difficult. Although our sampling of Crotalus
species was not exhaustive, we included multiple taxa from all major rattlesnake species
groups, together with new data for other lineages, and recovered several well-supported
clades within Crotalus (Fig. 2). Our phylogenetic results are largely congruent with many
previous hypotheses (Castoe and Parkinson 2006; Bryson et al. 2011a; Bryson et al.
2011b), although there are some notable differences. Because our data and species
coverage allow us to make inferences that were previously untenable, we briefly discuss
salient findings below.

In contrast to other molecular studies (Murphy et al. 2002; Castoe and Parkinson
2006), our data provided support for the C. infermedius group as sister to all other
species of Crotalus (combined data: pp = 0.95, bs = 70%; Fig. 2). We inferred that the
next lineage to diverge from the remaining species of Crotalus is a clade containing C.
polystictus, C. enyo, and C. cerastes, with these last two forming a clade. A close
relationship between C. enyo and C. cerastes is not novel, and has been previously
suggested by analyses of venom electrophoresis, skull morphology and molecular data
(Minton 1956; Brattstrom 1964; Douglas et al. 2006). While support for the sister
relationship between C. enyo and C. cerastes was consistently high in Bl and ML
concatenated analyses (pp = 0.95, bs = 0.90), the sister relationship between C.
polystictus and the C. cerastes group was not supported by the ML analysis, which

instead placed C. polystictus as sister to the C. triseriatus group with extremely low

25



support (bs = 23%). The instability of support values and topology suggests that the
inclusion of C. polystictus within this clade is tentative, and may be an artifact of long-
branch attraction (Bergsten 2005). Crotalus enyo had previously been assumed to be the
northernmost member of the neotropical rattlesnake (C. durissus) group (Murphy et al.
2002; Castoe and Parkinson 2006), but our results strongly support the exclusion of C.
enyo from this group. The inclusion of C. enyo in the C. durissus group seems to be
based on previous use of a single sequence of cyt-b, which our analysis suggests
represents a chimeric sequence (see Supplementary Table 3). Instead of a close
relationship between C. enyo and C. durissus, our results find weak to moderate support
for C. willardi as a basally-diverging member of the C. durissus group (Figs. 2-3).

Our results support an expanded definition of the C. viridis group that includes
species of the former C. mitchellii group as well as C. adamanteus; this conclusion
parallels that of previous studies (Castoe and Parkinson 2006). Although this clade is
strongly supported in all of our analyses, the precise order of basal divergences within
this clade remains poorly resolved (Figs. 2-3). The close phylogenetic affinity of C.
mitchellii and C. tigris with the C. viridis group has been previously suggested on the
basis of morphological data (Gloyd 1940; Klauber 1956). Although it has been assumed
that the two “diamondback rattlesnakes” C. adamanteus and C. atrox, might be sister
taxa, the accumulation of molecular data from this and other studies (Castoe and
Parkinson 2006; Pyron et al. 2011) provide evidence against this.

Early morphological studies considered C. horridus to be closely related to C.
molossus (Gloyd 1940; Klauber 1956; Brattstrom 1964). More recently, (Murphy et al.
2002) recovered C. horridus as sister to C. viridis plus C. scutulatus, and (Castoe and
Parkinson 2006) placed C. horridus as a lineage roughly in the center of the Crotalus
radiation. Our Bl analysis of mtDNA sequences and ML analysis of all genes supported
C. horridus as sister to a clade of “derived” rattlesnake species groups (C. atrox, C.

durissus, C. stejnegeri, and C. viridis groups). This node, however, was not strongly
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supported in our ML results (bs = 23%), similar to other previous studies (Castoe and
Parkinson 2006). In contrast, the Bl analysis of combined data placed C. horridus as the
earliest diverging lineage within the C. triseriatus group with moderate support (pp = 0.77;
Fig. 2), while the species tree analysis in “BEAST placed this species as sister to the
longtailed rattlesnakes, but with almost no support (pp = 0.42; Fig. 3). Despite substantial
progress, including contributions of this study, the phylogeny of the rattlesnakes is far
from resolved, and the phylogenetic relationships of several rattlesnake taxa should be
re-evaluated with additional loci and perhaps even additional sampling. Lineages that are
particularly in question with regard to their placement on the rattlesnake tree include C.
horridus, C. polystictus and C. willardi, as well as the C. cerastes group (C. cerastes and

C. enyo).

Divergence and biogeography of the longtailed rattlesnakes

During the Pliocene, major volcanism occurred in what is now the boundary
between the Mexican states of Jalisco and Nayarit, between the Rio Grande de Santiago
and Ameca rivers (Frey et al. 2007). This period of volcanic activity extended from 5 to 3
mya, which coincides with our estimates of the time that C. stejnegeri diverged form the
ancestor of the two southern species of longtailed rattlesnakes. Regional changes in
habitat distributions associated with these periods of volcanism may have split the
putative ancestor of C. stejnegeri from the ancestor of C. lannomi + C. ericsmithi (Figs. 1,
6). On the other end, the Balsas Basin has been implicated as an important
biogeographic barrier for other vertebrate groups, including snakes (Devitt 2006; Bryson
et al. 2008), mammals (Amman and Bradley 2004) and birds (Navarro-Siguenza et al.
2008). At the heart of the Balsas Basin, the Rio Balsas is currently located at the border
between the states of Michoacan and Guerrero and is a likely candidate for causing the

divergence between ancestral lineages of C. ericsmithi and C. lannomi (Figs. 1, 6).
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Longtailed rattlesnake species tend to occur at middle elevations in tropical
deciduous and tropical oak forests (Campbell and Lamar 2004a; Campbell and Flores-
Villela 2008; Reyes-Velasco et al. 2010). One of the most intriguing regions not yet
thoroughly examined for the presence of these enigmatic snakes is the Sierra de
Coalcoman, which is a small coastal mountain range in the state of Michoacan, West of
the Rio Balsas. Although no longtailed rattlesnake species have been recorded from this
locality, convincing reports from local residents indicate that a population of longtailed
rattlesnake is likely to exist there. As additional collections are made in the region, it is
therefore possible that yet another population of longtailed rattlesnakes will be discovered
that may represent a new species, or possibly a population allocable to either C. lannomi
(which is known from ca. 150 km away), or to C. ericsmithi, found farther to the

southeast.

Conclusions

Our results provide new conclusive evidence for the distinctiveness, monophyly
and phylogenetic placement of the longtailed rattlesnakes. A well-resolved phylogeny for
the rattlesnakes has been elusive despite a substantial number of studies that have
addressed this conspicuous group (e.g. (Parkinson 1999; Murphy et al. 2002; Castoe and
Parkinson 2006; Pyron et al. 2011). By adding new data from the three most rare and
enigmatic species of Crotalus, this study contributes important sampling for resolving
Crotalus phylogeny. We also identified multiple instances where errors in GenBank
submissions might have contributed to poor and conflicting resolution in previous studies.
The fact remains, however, that although many studies have inferred rattlesnake
phylogenies, most have essentially used a common set of data from a few mitochondrial
and nuclear gene loci that (in some cases) have existed for more than a decade. We

expect that definitive resolution of the phylogeny of rattlesnakes will ultimately require a
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new influx of molecular data to resolve remaining questions about the relationships

among major Crotalus lineages and species groups.
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Chapter 2

Molecular systematics of coralsnakes of the Micrurus diastema species complex

Introduction

The highly venomous coralsnakes of the family Elapidae comprise a diverse
radiation of more than 170 taxa distributed in Southeast Asia and the New World
(McDiarmid et al. 1999; Campbell and Lamar 2004b; Castoe et al. 2007a). Coralsnakes
are thought to have invaded the New World from Asia via a Beringian land bridge
connecting Asia and North America during the late Oligocene (Kelly et al. 2009), similar
to other major lineages of New World snakes (Holman 2000; Castoe et al. 2007a; Guo et
al. 2012). Since their colonization of the New World, coralsnakes have diversified
extensively across the Americas into three genera (Micruroides, Micrurus and
Leptomicrurus) and approximately 80 species, and are currently distributed from Florida
to Argentina (Campbell and Lamar 2004b). The genus Micruroides is composed of a
single species (M. euryxanthus) and three subspecies, that occur in western North
America (Campbell and Lamar 2004b), while the genus Leptomicrurus (sometimes
considered a synonym of Micrurus (Slowinski 1995; Uetz and Jiri 2015) consists of four
South American species. The genus Micrurus contains the majority of New World
coralsnakes, with ~80 recognized species, many of which contain several recognized
subspecies (Uetz and Jiri 2015). Despite the species diversity and broad distribution the
genus Micrurus, the external morphology across species is highly conservative. This lack
of external morphological variation has led to a taxonomy for species of Micrurus being
highly dependent on color and color pattern variation (Roze 1967).

Although the relationships between the major lineages of coralsnakes and other
elapids snakes has been relatively well-studied (Keogh 1998; Slowinski and Keogh 2000;
Castoe et al. 2007a; Kelly et al. 2009), our understanding of the evolutionary

relationships among members of the genus Micrurus are poorly known. The majority of
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phylogenetic studies that have focused on Micrurus species have been based on external
or internal morphological characters (e.g. color, scalation, immunological assays,
hemipene morphology, etc.), and only a small number of limited studies have used
molecular data to infer relationships (e.g. (Slowinski and Keogh 2000; Castoe et al.
2007a; Fry et al. 2010). Recent systematic accounts of the genus Micrurus have divided
species into three main groups that are defined based on their color patterns: the
monadal and bicolor group, the Central American triadal group, and the South American
triadal group (Campbell and Lamar 2004b). Monadal coralsnakes are defined by a
pattern of banding consisting of a single black ring followed by a yellow and a red ring.
The bicolor group is composed of a few species that show a bicolor pattern of dark and
pale rings, while the color pattern of both triadal groups consist of two black rings
interspaced with pale colored rings, followed by a red ring. These major banding-pattern-
based groups are often subdivided into smaller groups thought to represent clades of
related species, for example, the M. diastema, M. fulvius and M. nigrocinctus species
groups within the monadal coralsnakes (Lavin-Murcio and Dixon 2004; Castoe et al.
2012).

The Micrurus diastema species group of coralsnakes is composed of 13 species
and multiple subspecies that range from the southern USA to Honduras, but the majority
of the species and subspecies occur in southern Mexico and northern Central America
(Campbell and Lamar 2004b). This species group currently lacks any formal taxonomic
classification, however many of its members at one time were considered as conspecific
or synonyms of M. diastema (Zweifel 1959; Roze 1967). There is considerable color
variation among the members of this group, both among and within species. Some
species show substantial variation in color and color pattern across their range, and
sometimes within a population, while other species that are allopatric and presumably

distantly related may possess very similar color patterns (see Figure 8). This variation in
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color pattern is especially problematic when delimiting species because distinctions
among species are based heavily on color pattern in Micrurus.

Color patterns are not only an important characteristic in delimiting currently
recognized coralsnake species, it is also important in multiple types of mimicry systems
and is likely under complex patterns of selection (Pfennig et al. 2001; Harper and Pfennig
2008). Coralsnakes are highly venomous and brightly colored, which has led to the
conclusion that their coloration is aposematic (Brodie Il 1993). An interesting aspect of

coralsnake biology is the existence of
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Figure 8 —4Cotlor variation in members of the M. distema species complex fom Mexico.
Left, M. distans oliveri: top, Maruata, Michoacan; middle, Paticajo, Colima; bottom,
Ixtlahuacan, Colima (C.I. Grinwald). Right: Top, M. proximans, Montitlan, Colima;
middle, M. sp. Queseria, Colima; bottom, M. browni, Agua Fria, Colima (J.M. Jones). All

specimens were found <150 km from one another.
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distantly-related co-distributed snake species of non-venomous snakes that
mimic coralsnake color patters, and thus presumably ward off predators that mistakenly
avoid them because they misidentify them as venomous coralsnakes (Greene and
McDiarmid 2005). Although some of the earliest references to mimicry involve
coralsnakes (Wallace 1871), mimicry systems in snakes are still not well understood
(Greene and McDiarmid 1981). Many studies of coralsnake mimicry systems focus on the
intensity of predation to particular colors and patterns in clay models; these studies have
shown that different colorations in snake clay models can greatly affect the rate of attacks
by avian predators (Brodie Il 1993; Brodie Ill and Janzen 1995), and that several avian
species are innately predisposed to avoid certain patterns and colors on their prey, while
others are not (Smith 1975, 1977; Brodie Il 1993; Hinman et al. 1997; Sherbrooke et al.
2006). Historically, mimicry in coralsnakes was divided into two types: (l) Batesian
mimicry, in which non-venomous or slightly venomous snakes mimic a highly venomous
snake model (Bates 1862); and (IlI) Millerian mimicry, were two allopatric venomous
species resemble each other (Miller 1879). These two types of mimicry are now seen as
the ends of a continuum, and not as two distinct types of mimicry (Greene and McDiarmid
2005). One of the greatest limitations preventing a thorough analysis of hypotheses
related to the evolution of coral snake mimicry systems is the lack of a robust phylogeny
and a stable taxonomy for the group. Among such hypotheses is the question of whether
inter- and intra-specific color variation in coralsnakes might be driven by species
interactions.

Here we use mitochondrial gene sequences and genome-wide SNPs to infer
phylogenetic relationships, patterns of gene flow, and species boundaries within the M.
diastema species complex. We use these data to address the following questions: 1) Is
the M. diastema species complex a monophyletic group? 2) Does the current taxonomy

reflect evolutionary relationships, and how many species should be recognized within this
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species complex?, and 3) Does variation in color pattern reflect phylogenetic divergence

and indicate species boundaries?

Materials and methods

Taxon sampling and DNA extraction

We obtained tissues from a total of 117 Micrurus coralsnakes from all species
and subspecies of the diastema species complex (Fig. 9), as well as multiple taxa used
as outgroups obtained from Genbank (Supplementary table 1). Tissues included samples
of blood, liver, skin or shed skin preserved by snap freezing, lysis buffer or RNALater.
Genomic DNA was isolated by one of four methods: using a Qiagen DNeasy extraction
kit (Qiagen, Inc., Valencia, CA, USA), Zymo Research Genomic DNA Tissue MiniPrep kit
(Zymo Research Corporation, Irvine, CA, USA), by standard phenol-choroform-isoamyl
alcohol extraction, or with the use of AgenCourt Ampure XP DNA beads (Beckman

Coulter, Inc., Irving, TX, USA).

Mitochondrial and nuclear locus amplification and sequencing

We used PCR to amplify a fragment of the mitochondrially-encoded NADH
dehydrogenase subunit 4 (ND4), with the use of the primers ND4 and Leu (Arevalo et al.
1994). We also amplified and sequenced the nuclear recombination-activating gene
(RAG-1) for a subset of the data (n = 9) in two overlapping fragments using the following
primer sets: RAG-1-tc0225F (GCA GCT GTA ATG TCA CAA GTG C) and RAG-1-
tc2000R (TTA CAA CAC AAC TCT GAA TTG GG), and RAG-1-tc1430F (TCA TCC AGC
TGT TTG TTT GGC) and RAG-1-tc2700R (AAA GGT CCATTA ATT CTC TGA GGG ).
PCR products were purified using AgenCourt AMPure XP beads (Beckman Coulter, Inc.,

Irving, TX, USA). We quantified the purified PCR products and later sequenced them in
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both directions with the use of amplification primers and BigDye on an ABI 3730 capillary

sequencer (Life Technologies, Grand Island, NY, USA).
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Figure 9 — Map showing localities of DNA samples used in this study.

ddRADseq library generation and sequencing

A subset of the DNA samples used for ND4 PCR were also used to generate
double digest restriction associated DNA (ddRAD) libraries (n = 56; Supplementary Table
1) generally following the protocol of Peterson et al. (2012). We chose samples based on
their placement on the mtDNA phylogeny in order to include representative samples of all
putative species and as many mitochondrial clades as possible. We digested genomic
DNA using a combination of rare and common cutting restriction enzymes: Sbfl (8 bp
recognition site) and Sau3Al (4 bp recognition site), respectively. We then ligated double-
stranded indexed DNA adapters to the ends of digested fragments that also contained
unique molecular identifiers (UMIs; eight consecutive N’s upstream of the ligation site)
using a mixture of digested DNA, adapters, T4 Ligase enzyme, and T4 Ligase Buffer
(New England Biolabs, Ipswich, MA, USA). Ligations were performed on a thermalcycler
at 16°C for one hour followed by a 65°C enzyme heat kill step for 10 mins. After adapter

ligation, individual samples were pooled into pools of eight. We selected for a 440-540 bp
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fragment size range using a Blue Pippin Prep (Sage Science, Beverly, MA, USA), and
amplified size selected pools using PCR with primers including flow-cell binding
sequences and an index specific to each sub-pool. A final sequencing library was
constructed by re-pooling sub-pools in equimolar ratios based on molarity calculations
from analysis on a Bioanalyzer DNA 7500 chip (Agilent, Santa Clara, CA, USA), and was

sequenced using 100 bp paired-end reads on an lllumina HiSeq 2500.

mtDNA and RAG-1 sequence analysis

We edited the raw ND4 and RAG-1 gene sequence chromatograms using the
program Geneious v6.1.6 (Biomatters Ltd., Auckland, NZ), and aligned the edited
sequences with MUSCLE (Edgar 2004), with minimal manual adjustments to improve the
alignment and to trim the 5’ and 3’ ends of all sequences in order to reduce columns with
high levels of missing data. We decided to run all mitochondrial analyses with two
different sets of data; one with all samples (127, including outgroups) but no complete
coverage for all samples and a reduced dataset with less taxa (113, including outgroups)
but with no missing data. The final RAG-1 alignment included nine samples for a total
length of 2468 bases (See Supplementary Table 1 for reference numbers).

We estimated phylogenetic relationships among unique Micrurus haplotypes and
outgroups using Bayesian phylogenetic inference in MrBayes v3.2.1. (Huelsenbeck and
Ronquist 2001). For outgroups, we used a single representative of the Guerrero
Longtailed rattlesnake, Crotalus ericsmithi, the Japanese coral snake, Sinomicrurus
japonicus, the Sonoran coralsnake, Micruroides euryxanthus as well as 13 species of
other Micrurus coralsnakes obtained from Genbank. We used the Bayesian Information
Criterion (BIC) implemented in PartitionFinder v1.1.1 (Lanfear et al. 2012a) to select best-
fit models: for ND4 we used K80 + I for 1° codon positions, F81 + I for 2" codon
positions, and GTR + I for 3" codon positions. In the case of RAG-1, we used HKY for

1st and 2nd codon positions, and HKY + Invariant sites for 3rd codon positions. We used
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these partitioned models for analyses of the individual genes in MrBayes, which
consisted of four runs, each run for 10’ generations with four chains (one cold and three
heated), sampled every 1,000 generations. We confirmed that independent runs had
converged based on overlap in likelihood and parameter estimates among runs, as well
as effective sample size (ESS) and potential scale reduction factor value estimates
(PSRF) values, which we evaluated in Tracer v1.5 (Drummond and Rambaut 2007).
PSRF indicated that individual runs had converged by 10° generations, and thus we
discarded the first 10° samples as burn-in. We generated a 50% majority rule consensus
phylogram for each gene using combined estimates from post burn-in samples from the
independent runs (Figs. 10 & 11). We also used the program Network v4.5.1.6 (Bandelt
et al. 1999) to constructed a median-joining haplotype network to visualize relationships
among unique haplotypes, with transitions weighted 2:1 over transversions (as
recommended in the Network manual) and using the maximum parsimony option to

reduce excess links among haplotypes from the resulting network.

Analysis of ddRADseq data

We processed the raw ddRADseq lllumina sequencing reads using the Stacks
pipeline (Catchen et al. 2011; Catchen et al. 2013). Prior to running the pipeline, PCR
clones were removed using the Stacks clone_filter program, which uses adapter UMIs to
identify clones that are trimmed away using the FASTX-Toolkit trimmer (Hannon 2015).
We then used the process_radtags function of Stacks to demultiplex samples by their
unique barcodes, confirm the presence of restriction digest cut sites, and subsequently
trim and discard reads with poor quality scores. Processed reads were aligned to the
King Cobra (Ophiophagus hannah) genome (Vonk et al. 2013b) using the BWA mem
algorithm (Li and Durbin 2009) with a mismatch penalty of 2, indel penalty of 3, and a
minimum alignment score of 20. We used these mapping alignments in the reference-

guided pipeline implemented within Stacks (Catchen et al. 2011; Catchen et al. 2013),
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which includes

Pstacks, Cstacks, and Sstacks, to generate and summarize SNP

information for downstream analyses.

M distans zweifeli - MX NAY JRV 179
M distans oliveri - MX JAL M284

M distans oliveri - MX COL M632

M distans oliveri - MX MICH M812
M distans oliveri - MX COL M599

v N

M. distans A

- MX JAL M293
M distans michoacanensis - MX MICH M331
M distans distans - MX SIN M760

M distans zweifeli - MX NAY M301

M elegans - MX OAX M48

M limbatus - MX VER M129

M elegans - GT Huehuetenango M14

M elegans - GT Huehuetenango M22

I M. distans B

M. elegans &
M. limbatus

SA. monadal

08
0.1

0.09
0.04.
0.1

0.75

0.99

1z
0.08
0.14

0.32

0.03
0.03

0.78

0.06

°
3

M R
M latitasciatus nuchalis - MX OAX CIG 109

M latifasciatus nuchalis - MX OAX M328

M mosquitensis - CR M12

M ni -cr Mm120
M nigrocinctus melanocephalus - GT San Marcos M124
M browni importunus - GT M513

1% - HN ¢

M nigrocinctus melanocephalus - GT Zacapa M119
M sp - MX COL JRV 204

M proximans - MX NAY JAL 1

M proximans - MX NAY VLC 2

M proximans - MX NAY VLC 3

M fulvius - USA Florida UF92555

M tener - MX HGO M431

M tener - MX PUE M332

M tener - MX NL M203

M tener fitzingeri - MX GTO M432

M tener - MX HGO M449

M bogerti - MX OAX ANMO 2264

M browni x bogerti - MX OAX M333

M browni x bogerti - MX OAX M336

M tener - MX QR M51

M tener fitzingeri - MX GTO M516

M bernadi - MX PUE M236

M tener - MX HGO M448

M tener microgalbineus - MX TAMPS M326
M bernadi - MX PUE JAC22468

M tener - MX NL M208

M diastema alienus - MX YUC JO 2

M diastema apiatus - GT Huehuetenango ENS8854
M hippocrepis - HN Cortez M2

M diastema alienus - MX YUC JAC24446

M browni - MX OAX M338

M browni - GT Huehuetenango M287

M browni - GT Huehuetenango M15

M browni - MX CHIS M471

M browni - MX CHIS M29

M diastema alienus - MX QROO JO 3

M diastema alienus - MX YUC JO 1

M diastema aglaeope - HN M272

M diastema aglacope - GT Izabal JAC 20839

M diastema sapperi X hippocrepis - BZ M308

M diastema aglacope - GT Merendon M118

M diastema aglaeope - HN Copan ENS10679

M diastema - MX QROO M50

M diastema apiatus - GT Huehuetenango ENS8906

group

M. r +

igroci
latifasciatus

m249

M. tener
species complex

East M. diastema

M hippocrepis - GT Izabal M116
M diastema aglacope - GT Merendon M117.
M diastema sapperi - BZ 307

M browni - MX OAX M296

M distans oliveri - MX MICH M805

M browni - MX OAX M337

H M ephippiter - Mx OAX M286

browni - MX OAX M339
M diastema - Mx OAX M800
M browni - MX GRO M434
I%brcwn/ -MX GRO M271
M browni - MX GRO Mé633
M diastema macdougalii - MX VER M299
M diastema macdougalii - MX VER M469
M browni - MX GRO M335
M diastema - MX OAX M1
M diastema - MX OAX M801
M nebularis - MX OAX M195
M nebularis - MX OAX M341
M diastema - MX VER M799
M ephippifer - MX OAX M237
M pachecogili - MX PUE M300
M diastema - MX VER M580
M browni - MX MICH M600
M browni - MX MICH M52
M distans oliveri - MX COL M74
M distans oliveri - MX COL M629
M sp - MX COL JRV 132
M browni taylori - MX GRO M223
M browni - MX GRO Mé631
M browni - MX GRO M260
M browni - MX GRO M463
M browni - MX GRO JRV 258
M tener fitzingeri - MX MOR M32

West M. diastema

M. browni

Figure 10 — Bayesian inference tree of the mitochondrial gene ND4. Samples are

assigned to a taxon based on morphology and collector assignation. Black circles
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represent nodes with PP >95%. Names on the right represent mtDNA clade assignations

used in the rest of this study. Outgroups are not show.

East

M. diastema M. distans

Figure 11 — Phylogenetic inference of the nuclear gene RAG-1. Names next to color
circles represent the mtDNA clade were those samples belong to. From top right: red, M.
distans clade; turquoise, M. limbatus + M. elegans; green, M. nigrocinctus clade; purple,
M. fulvius; blue, east M. diastema clade; orange, west M. diastema clade; black, M.

browni clade.
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We used the populations program in Stacks to estimate a number of population
genetic parameters and summarize genotypic information for further downstream
analyses. For all analyses, we set populations thresholds for missing data (40%) and a
minimum read depth per stack of 5x. Populations analyses of all 56 samples yielded no
shared sites among all samples, thus we purged the RADseq data to include only
samples with more than 100K reads (n=16).

We used the program Structure (Pritchard et al. 2000) to infer population
structure and levels of admixture using the 20,416 SNPS obtained through our Stacks
analyses. We estimated the allele frequency distribution parameter (A) across a range of
K values (1-4) under mixed ancestry and single population models (Fig. 12).

We applied principle component analysis (PCA) to identify the degree of
genotypic clustering among all 16 individuals using the results generated from the
populations analyses. Each individual was assigned a genotype for all loci (0 or 2 for
homozygotes, 1 for heterozygotes), and PCA analysis was conducted in R using singular
value decomposition for numerical accuracy.

We ran our RADseq data through the pyRAD v.3.0.1 pipeline (Eaton 2014) in
order to obtain aligned loci to infer phylogenetic relationships among the diastema
species complex. We choose the pyRAD pipeline over Stacks as pyRAD is specially
designed to assemble data for phylogenomic studies that contain divergent taxa (Leaché
et al. 2015). Sites with Phred quality scores <33 were changed into “N”s and if more than
four sites per read had quality scores below this threshold they were discarded. We only
used reads with coverage of >4 reads and a minimum sample of 50% of individuals for a
final locus. We clustered the filtered reads in VSEARCH (Rogones) with a clustering
threshold of 88% and aligned the final reads in Muscle (Edgar 2004). We estimated
phylogenetic relationships for the contatenated RADseq data using a maximum likelihood
approach implemented in RAXML (Stamatakis et al. 2008) with the GTRGAMMA model

and 100 bootstraps (Fig. 13).
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Figure 12 — Results of cluster analysis for M. diastema species complex samples from
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1,113 unlinked loci. The topology recovered in by ML phylogenetic inference of the
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Figure 13 — Maximum likelihood Phylogenetic inference of the ddRADseq data. Names
on the right represent mtDNA clade for each individual. Black circles represent a

bootstrap support (BS) of >95, while gray circles are BS >50.
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Non-molecular character analyses

In order to understand inter and intra-specific color variation in this group of
coralsnakes we measured several coloration parameters in preserved specimens at the
Amphibian and Reptile Diversity Research Center (ARDRC) at the University of Texas at
Arlington. For each specimen we measured total length, tail length, number of black
bands in body and tail, as well as size of the black yellow and red bands behind the head,
at midbody and before the cloaca. We measured a total of 197 specimens that
encompass all species of the M. diastema species complex. We gathered additional
coloration data from specimens deposited in other museum collections in the US and
Mexico. In this case, we only measured the body and tail length, as recorded the number
of body bands in the body and tail. We obtained numerous additional records from the
personal notes of Karl P. Schmidt and Janis A. Roze. Our final dataset included band
counts and measurements for 491 specimens with species allocation and locality data
(Fig. 14; Supplementary table 2). In order to assess for potential correlation between
color pattern and climatic variables, we generated linear regression models in Rstudio
(Racine 2012) for five bioclimatic variables (longitude, latitude, temperature, elevation,
and precipitation) and banding patterns (Fig. 15). These bioclimatic variables were

obtained from the WorldClim database (Hijmans et al. 2005).
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Results

mtDNA and nucDNA sequence characteristics and gene tree estimate

After cleanup, sequences of the mitochondrial gene ND4 measured between 196
and 709 base pairs. Our dataset that included all samples consisted of 629 aligned bases
and ~15% missing data, while the dataset with no missing data was 269 bases long. In
this dataset variable sites accounted for 30% of the sites (82 sites). Bayesian
phylogenetic estimates for both datasets result in almost identical topologies. Figure 10
shows the topology obtained from the dataset with no missing data. Except for a few
cases, the majority of the deeper nodes in our phylogeny showed high posterior
probability (pp) support (>95%pp). We recover an early split of South American triadal
coralsnakes (Fig. 1), sister to all other Micrurus. Not a single species of the diastema
complex was recovered as monophyletic, with members of all species clustering into
different clades (Figs. 10 &11). The second split in our phylogeny involved some
members of Micrurus distans, which diverged early from the rest of coralsnakes .
Micrurus corallinus, a member of the South and Central American monadal group was
the next split in our phylogeny. We recovered the Middle American species M. elegans
and M. limbatus to be sister taxa and the closest lineage to all remaining species. The
rest of coralsnakes clustered into five main clades: Members of M. nigrocinctus, M.
mosquitensis, M. latifasciatus and M. browni importunus formed a well supported clade;
this group was sister to the M. tener/fulvius species complex, which included M. fulvius,
M. tener, M. bogerti, M. bernadi, and M. proximans. Specimens of Micrurus diastema
diastema formed a well-supported group along with individuals of M. bogerti, M. browni
and M. ephippifer. The majority of M. browni formed a separate clade, which also
included M. pachecogili, M. nebularis and several individuals of M. ephippifer, M. bogerti,
M. diastema, and M. distans. The remaining clade consisted of all samples east of the

Isthmus of Tehuantepec, including all the remaining M. diastema subspecies, along with
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M. hippocrepis and samples of M. browni from Chiapas and Guatemala, to the exclussion
of M. browni importunus (Figs. 10 &11).

Our RAG-1 tree contained only 15 samples, despite the low sampling, the six
clades that where recovered are congruent with the mtDNA clades (Fig. 12), the only
exception is that in the RAG-1 analysis, the three M. diastema individuals are recovered

as monophyletic (vs. paraphyletic in the mtDNA topology).

ddRADseq results

A total of ~34 million raw reads were obtained across the 16 individuals used in
the nuclear SNP analyses. Mapping reads to the King Cobra genome generated a total of
~20 million sequence alignments that were used in the Stacks pipeline to assemble 7,911
near loci and 20,416 SNPs under our RADseq filtering thresholds of 40% missing data
and 5x read depth per locus.

Structure analyses — We estimated a K = 2 as the optimal model of population
clustering using the Evanno method, implemented in Structure Harvester (Evanno et al.
2005; Earl and Vonholdt 2012). A comparison of population assignments of K from 2 to 4
are given in figure 12 for comparison. All these different models show some level of
admixture between all species included the analyses, from low admixture in K =2 to
intermediate in K = 4. None of the currently recognized species in the diastema complex
were completely distinguishable based on the structure plots alone, however, they seem
to partially correspond to the clades obtained from the ddRADseq ML analysis.

Phylogenetic estimates — Our final alignment for the RADseq data was 450,251
base pairs long for a total of 16 individuals, with ~40% of missing data (Fig. 13). Despite
the small sample size and large amount of missing data, the RADseq ML tree recovered
a well-supported topology that largely congruent with the mtDNA phylogeny. We
recovered an east diastema clade, a west diastema clade and a browni clade, all of

which are consistent with the mtDNA topology. Micrurus browni importunus (M513) was
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sister to all other samples in the analyses. The only topological discrepancy between the
RADseq and mtDNA topologies is that an individual of M. distans from Michoacan, MX
(M331) and a M. browni from Chiapas, MX (M15) are recovered as sister to one another,

while in the mtDNA analysis they are distantly related.

Principal Component Analyses — We conducted two separate PCA analyses, one
that included all samples of M. diastema (Fig 16; n =17), and another analysis that
excluded an individual of M. diastema (M669) that was highly divergent from the rest (Fig.
17; n = 16). Principal component analyses indicate concordance with both of our
population structure analyses and phylogenetic clustering (Figs 16 & 17), with the
exception of two cases: M331 (M. distans) and M15 (M. browni), which are sister in the
RADseq ML analysis do not cluster together in the PCA, while M463 (M. browni) and
M469 (M. diastema) cluster near each other in the PCA, but are not closely related in any

other analyses.

Non-molecular character analyses

Our analysis of non-molecular characters shows that there is a great amount of
variation in color patterns across all species, and members of the same species did not
cluster together in the PCA analysis of coloration (figure not show). There seems to be an
important correspondence between geography and banding pattern, despite evolutionary
relationships (Figs. 14 & 15). Some of the individuals with the highest number of body
bands are found in areas with very high precipitation, for example, on the easter versant
of the Sierra Madre Oriental and in the Atlantic highlands of Chiapas and Guatemala,
while some of the individuals with the least number of bands are found in the dry areas of
the northern Yucatan Peninsula, the Balsas Basin and the northwestern coast of Mexico.
Phyllogenentically Independet Contrast identified significant relationships between in

three of the four environmental and geographic variables (longitude, latitude, and
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precipitation, all p-values < .001; Fig. 15). Multiple R-squared values indicate that these
three variables explain a considerable proportion of the variation in coloration, even after

corrected for phylogeny.
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Figure 16 — PCA plot of 1115 loci shared across 17 individuals of the M. diastema
species complex of Micrurus. Names next to dots represent reference number for each
individual. Names next to dotted circles indicate mtDNA clade that the samples belong to.

Circles are colored according to mtDNA clade
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Discussion

New World coralsnakes represent a highly diverse, widely distributed and highly
venomous group of snakes that also represent an important model for studying mimicry
systems. Despite these characteristics, there is remarkably little known about their
phylogenetic relationships and molecular data has only been applied to study limited sets
of species or higher-level relationships among lineages (Slowinski and Keogh 2000;
Castoe et al. 2007a). Micrurus is the most speciose genus of New World coralsnakes,
with 84 described species distributed from the southern USA to southern South America
(McDiarmid et al. 1999; Campbell and Lamar 2004b; Uetz and Jiri 2015). High
morphological conservatism within this genus has led to a taxonomy that relies heavily on
diagnostic color patterns, although it is well known that these color patterns are central to
various types of mimicry systems (Greene and McDiarmid 1981; Brodie 11l 1993; Pfennig
et al. 2001), which may lead to convergence in color patterns among lineages.

Our phylogenetic inferences from mitochondrial and nuclear gene sequences, as
well as nuclear SNPs, are largely in agreement regarding relationships among diastema
group lineages. All datasets inferred that a group of M. distans from northeastern Mexico
are distantly related to all other Central American monadal coralsnakes (Figs. 9-11), and
PCA analysis of nuclear SNPs (Figs 16 &17) indicates that such M. distans samples are
highly divergent from all other diastema group samples. Mitochondrial gene-based
inferences identified two ladderized clades of M. distans (labeled as “distans A” and
“distans B”; Fig. 10) that diverged early from remaining monadal coralsnakes. Nuclear
gene sequence and SNP datasets, however, were not able to test the hypothesis of there
being two clades versus a single clade because of insufficient taxon sampling (all nuclear
sampling included individuals from the “distans B” clade). Regardless, all datasets,

including all nuclear data, strongly agree that M. distans from northeastern Mexico are
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very distantly related to other members of the diastema species complex and thus should
no longer be included within the diastema species group.

All of our phylogenetic analyses agree in identifying multiple distinct phylogenetic
lineages within the diastema species complex. Phylogenies inferred from the nuclear
gene RAG-1 indicated major clades: 1) a M. diastema clade, and 2) a M. browni clade
(Fig. 11). Mitochondrial gene analyses indicated three main clades, which differ from the
nuclear gene inference by splitting up the M. diastema clade into an East diastema and a
West diastema clade (Fig. 2). The phylogeny based on nuclear SNPs agrees well with
both of these inferences, and supports each of the three mitochondrial clades. The SNP-
based phylogeny also shows evidence for a fourth, rather enigmatic and unexpected
clade that includes samples of M. diastema and M. distans from widely separated
localitites of the Pacific coast of Mexico (Chiapas and Michocan, respectively). Cluster-
based analysis of SNPs across the diastema group using Structure (Fig. 12) shows these
two individuals as being comprised of substantially different allelic content. Similarly, PCA
analysis results of nuclear SNPs also place these individuals very far apart from each
other (Figs. 16 &17), collectively raising substantial doubt about the findings in the SNP-
based ML phylogenetic tree (Fig. 13). In conclusion, we interpret the results as showing
evidence for three major lineages within the M. diastema species complex.

Our cluster analyses of SNP data suggest the existence of a considerable
degree of gene flow between all species studied, and these patterns of apparent
introgression are consistent with the geographical proximity of lineages and populations
(Fig. 12). Members of M. browni from Colima, Jalisco, Michoacan and Guerrero cluster
together and share a small number of loci with other species. The degree of loci that are
shared is partially concordant with a northwest-southeast pattern, as the southeastern
most individual of this clade (M266, from Oaxaca) shares the most loci with members of
M. diastema from south-central Mexico. Many loci are shared between the eastern and

western mtDNA clades of diastema, however, at higher K values, a more clear patter
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shows population differentiation between these two clades, which is also in agreement
with geographic location.

Considering that the current taxonomy of New World coralsnakes is largely
based on coloration and color patterns, our finding of extensive disagreement between
the current taxonomy and the phylogeny indicates that color pattern is not a reliable
character for systematics of coralsnakes. In particular, there are reasons to expect that
color pattern in coralsnakes may be particularly plastic, and under complex patterns of
selection due to its central role in complex Batesian and Muellerian mimicry systems
(Greene and McDiarmid 1981; Brodie 11l 1993; Pfennig et al. 2001). Thus, color pattern
characters, such as the numbers of bands per snake, may instead more strongly covary
with features that correlate with predation pressures, rather than phylogeny. To explore
this further we conducted analyses of the numbers of bands in relation to geography (Fig.
14) and to particular bioclimatic variables (Fig. 15). These analyses show longitude and
precipitation covarying most tightly with band number, with individuals inhabiting more
eastern and more humid environments having a higher number of body bands (Figs. 14
&15).

It is currently unknown if other environmental conditions that might be correlated
with precipitation (for example, the diversity of snake predators in a given area) might be
responsible for the variation in color patterns. One of the most significant examples of
color pattern vs. habitat differences occurs in members of E M. diastema. Despite the low
genetic diversity between populations, members of this clade vary from no bands or very
few bands in the dry Yucatan Peninsula, to more than 60 bands in the humid highlands of
Chiapas and Guatemala (Fraser 1973). There is also considerable variation between
individuals at the same locality, however, at any given place the majority of individuals do
not deviate more than a few bands from one another, perhaps indicating strong selection
for that particular color pattern (see supplementary table 2).

Taxonomic implications
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Our molecular phylogenetic inferences show an extensive degree of discordance
with taxonomy, indicating that the current taxonomy is inadequate for these highly
venomous coralsnake species. We estimate that the M. diastema species complex is not
monophyletic, and is comprised of several lineages, some of which are only distantly
related to M. diastema. Based on our mtDNA and nuclear SNPs datasets, we believe that
seven species of coralsnakes in the diastema species complex are recognizable in
Mexico and Central America. Micrurus distans appears be composed of two distinct taxa
(distans A and distans B in out mtDNA phylogeny, fig. 9), Unfortunately it not possible
with the data at hand to adequately diagnose these two taxa because they are not
concordant with subspecific designations and their ranges appear to overlap in western
Mexico. Several species that occur in northeastern and southern Mexico, including M.
bernadi, M. tamaulipensis, and M. bogerti are conspecific with M. tener. At the same
time, none of the currently recognized subspecies of M. tener form monophyletic groups,
so they should be synonymized with M. tener. Despite being closely related to M. tener,
M. proximans from Jalisco, Colima and Nayarit form a monophyletic clade that is the
sister lineage to all other tener-fulvius group lineages, and thus seems to warrant unique
specific recognition. In the case of M. diastema, there is strong evidence to suggest that
this species is not monophyletic, and is instead composed of two taxa that are not very
closely related to one another. Individuals of M. diastema that occur mostly east of the
isthmus of Tehuantepec form a monophyletic group, which is composed of the
subspecies M. diastema alienus, M.d. sapperi, M. d. apiatus, M. aglaeope and some
individuals of M. d. affinis that occur west of the isthmus. Micrurus hippocrepis and M.
browni from Chiapas and Guatemala also belong to this group. The name M. diastema
apiatus Jan (1858) has priority for this group, so we suggest the use of the new
combination M. apiatus Jan. Individuals of Micrurus diastema that occur west of the
isthmus of Tehuantepec represent a distinct taxon which includes the subspecies M.

diastema diastema, M. d. macdougalli, M. d. affinis, as well as some members of M.
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ephippifer from Oaxaca and M. browni that range as far west as Guerrero (Figs. 9 & 10).
The name M. diastema Duméril, Bibron & Duméril (1854) is applicable to this group. We
found that the endemic Micrurus nebularis and M. pachecogili are nested within M.
browni, as well as members of M. ephippifer from the highlands of Oaxaca and some M.
distans oliveri from Jalisco, Colima and Michoacan, while the subspecies M. b.
importunus is a junior synonym of M. nigrocinctus.

Our study points out the difficulty in delimiting species in this group of
morphologically conserved and chromatically diverse group of snakes. Based on our
results, we would expect that other coralsnake lineages are equally chaotic in terms of
mismatches between phylogeny and taxonomy. Previous studies have shown that venom
content, antivenom efficacy, and envenomation symptoms are all tightly correlated with
phylogeny (de Roodt et al. 2004). Thus, in addition to clarifying the taxonomy of these
intriguing and brightly colored model species for studying mimicry systems, an improved
understanding of coralsnake phylogeny and systematics will also be important for
treatment of coralsnake envenomation and for understanding patterns of variation in

coralsnake venom.
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Chapter 3

Using the burmese python genome to understand the evolution of snake venom systems

Introduction

Snake venoms and their evolutionary origins have received substantial attention
over the past several decades (Vidal 2002; Fry et al. 2006; Casewell et al. 2014),
including the evolutionary processes that have led to the toxic effects of these proteins
(Casewell et al. 2013). A dominant hypothesis for the evolutionary origins of most venom
toxin families involves the duplication of non-toxic genes, with subsequent
neofunctionalization of gene copies to adaptively modify the structure and function of
these proteins (Ivanov and Ivanov 1979; Ivanov 1981; Fujimi et al. 2003; Fry 2005; Fry et
al. 2006; Tamiya and Fujimi 2006; Fry et al. 2009; Kini and Chinnasamy 2010; Casewell
et al. 2012). Recent genome-scale resolution of this phenomenon has confirmed many of
these assertions, indicating that in some cases the process of toxin gene duplication can
result in expansive multi-locus venom gene families, as observed in the king cobra
genome (Vonk et al. 2013a). Such duplication, neofunctionalization and recruitment
events appear to have occurred multiple times throughout the evolution of snakes,
including multiple parallel expansion events of particular gene families in different snake
lineages (Casewell et al. 2012).

There are more than twenty gene families that are traditionally considered to be
“venom toxins” in squamate reptiles due primarily to their detection in venom gland
secretions, and in some species, evidence for the toxicity of some of these venom
components (Mackessy 2002; Mackessy et al. 2006; Mackessy 2010b). The detection of
expression of genes related to these “venom toxins” in venom glands or other oral glands
in squamate reptiles has further become an accepted proxy for labeling such genes as
“venom toxins” and the labeling of such species as “venomous” (Fry et al. 2009; Fry et al.

2010; Fry et al. 2013). Several studies, however, have shown evidence that venom
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genes or their homologs are expressed in tissues other than the venom or accessory
venom gland of snakes and other venomous vertebrates (Radis-Baptista et al. 2003;
Whittington et al. 2008; Hargreaves et al. 2014), which calls this practice into question.
Despite these inferences, there have been no comprehensive expression analyses of
such “venom toxin” gene families across a broad diversity of snake organs and tissues.
Thus, the degree to which venom genes or venom homolog expression in oral glands
may be either a physiological default or an adaptive feature indicative of their functional
role in oral secretions remains an important yet insufficiently studied question.

While most previous studies have focused on either gene duplication or patterns
of molecular evolution of snake venoms (Fry 2005; Fox and Serrano 2008; Casewell et
al. 2013), no previous studies have focused on the role that gene expression might play
specifically in this venom gene recruitment process. The genes that have been targeted
for recruitment into venoms appear to share certain common attributes, which support the
hypothesis that successful recruitment may be linked to functional constraints of the
recruited proteins (Alape-Girdn et al. 1999; Fry et al. 2009). Successful recruitment of
genes as venom toxins hypothetically requires a transition in which nascent venom
proteins must be targeted for gene expression in specific tissues (i.e., the venom glands).
Therefore understanding the evolution of expression of such genes is an essential but
largely absent component for understanding their functionality, origins, and the
constraints that have shaped venom repertoires. Gene expression in the venom glands of
snakes has been evaluated in a number of studies (Junqueira-de-Azevedo and Ho 2002;
Pahari et al. 2007; Doley et al. 2008; Fry et al. 2013; Margres et al. 2013), but due to the
relative scarcity of comparative expression data for other snake tissues, venom gland
gene expression is rarely viewed in the broader context of expression across diverse
tissues (e.g. (Hargreaves et al. 2014)). It therefore remains unknown whether certain
protein expression characteristics might favor their recruitment as venom toxins, or if their

expression profiles are not a relevant factor influencing recruitment.
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There is uncertainty and debate over the origins of venom systems in squamate
reptiles, with a common view being that a core venom system evolved a single time in the
common ancestor of snakes and a clade of lizards, referred to collectively as the
Toxicofera (Fry et al. 2006). This hypothesis remains controversial largely due to
disagreement about what, indeed, constitutes a “venom toxin” (Terrat and Ducancel
2013) as well as a lack of apparent venom homolog expression and function in multiple
large clades of Toxicoferan lizards (Fry et al. 2010; Fry et al. 2013). A functional definition
for venom would be that it is a specialized glandular secretion which causes deleterious
effects to a recipient organism when injected; this secretion is typically protein-rich and
may consist of many different molecules or toxins, often representing a specialized
trophic adaptation which facilitates prey handling (Mackessy 2002). However, there is
continued debate of details of this definition (Nelsen et al. 2014). Current evidence
indicates that a massive radiation of snakes with highly toxic venoms probably evolved
after the divergence between the python and caenophidian snakes, which include,
elapids, colubrids, lamprophiids and viperids (Vidal 2002; Fry and Wister 2004).
Accordingly, recent genomic evidence from the king cobra demonstrates that many toxic
venom gene families have experienced substantial duplication and divergence in the
cobra relative to the python (Vonk et al. 2013a). Collectively, these data indicate that the
Burmese python (Python molurus bivittatus) may provide a system in which to estimate
patterns of gene expression prior to the expansion of highly toxic venom genes in
caenophidian snakes, particularly in the highly venomous colubroid snakes (Fig. 18). The
genome and genomic resources of the non-venomous Burmese python (Castoe et al.
2013), thereby offer a unique opportunity to study patterns of expression for genes
recruited into the snake venom system within the context of a complete set of snake

genes and a large set of gene expression data from diverse python tissues and organs.
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In this study we use the python genome and tissue-specific expression data to
investigate the origins of venom genes in highly venomous caenophidian snakes and to
assess the validity of defining genes as ‘venom toxins’ based solely on evidence of gene
expression detected in the oral glands of squamates. As a first step toward addressing
these goals, we conducted thorough analyses to identify the relationships between
python genes and known venom genes from caenophidian snakes and other squamate
reptiles, and we provide new evidence for the orthology and patterns of gene expansion
in snake venom gene families. We used these estimates of gene orthology together with
python gene expression data to address two related questions: 1) Are there inherent
characteristics of gene expression for venom gene homologs that may have predisposed
them for recruitment as venoms? 2) Are venom gene homologs uniquely expressed or

particularly abundant in python oral glands, such as the rictal gland?

Materials and methods
BLAST analyses to identify python gene homologs of known venom genes.

We studied a total of 24 venom gene families (Mackessy 2002, 2010b, a), which
we obtained examples of from GenBank (Tables 1 and S2). These 24 venom gene
families represent the vast majority of known squamate venoms, and the only ones with
available DNA sequences. To identify homologous genes in other lineages, we blasted
each venom gene to the complete protein coding sequences (CDSs) of the human, anole
lizard, Burmese python and king cobra using tblastx. CDS files were obtained from
Ensembl (Flicek et al. 2014) and from recently published snake genomes (Castoe et al.
2013; Vonk et al. 2013a). From each blast search, we retained the top three hits for each
taxon based on its E-value (E-value < 1e-05), and the top three hits based on bit scores
(bit score > 70). If neither criterion was met, we retained the highest E-value hit and the

gene with the highest bit score for each queried species. To increase phylogenetic
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resolution, we included additional sequences from several other vertebrate species from

GenBank, and sampling used previously (Vonk et al. 2013a).

Phylogenetic analysis to identify gene homologs.

We conducted first-pass alignments of translated amino acid sequences using
Muscle (Edgar 2004). Once aligned, sequences were converted to nucleotides, and
nucleotide-level alignments were used for all subsequent analyses. We estimated best-fit
models of nucleotide evolution using PartitionFinder (Lanfear et al. 2012b). We inferred
phylogenies in MrBayes version 3.2.1 (Ronquist et al. 2012). For each gene we ran two
simultaneous analyses of 10’ generations, and sampled the chain every 10° generations.
We confirmed mixing and convergence using Tracer V.1.5 (Rambaut and Drummond
2007), and discarded the first 10% of all runs as burn-in. After first-pass analysis, we
identified non-homologous sequences as those with extremely long branches and very
low posterior support (<50%), and these sequences were removed from alignments,
alignments were re-optimized, and we estimated new phylogenetic trees based on these

revised alignments.

Analysis of gene expression data from the python.

We used all gene expression data available for the Burmese python (Castoe et
al. 2013). Where available, expression data from multiple individuals were combined per
tissue for all analyses. We normalized read counts using TMM normalization in edgeR
(Robinson et al. 2010), and converted read counts to counts per million (CPM). We used
our phylogenetic estimates for each of the 24 venom gene families to identify venom
gene homologs in the python (Table 1), and we use the term homolog to refer to multiple
situations, including evidence of orthology (including 1:1 orthology) and other instances
where our best estimate is based on a blast-based hit. We categorized patterns of gene

expression in several ways and compared these patterns between python venom
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homologs and the complete python gene set. We assigned all python genes to one of
seven different log-scale categories based on their normalized expression levels in a
given tissue: (1) CPM = 0; (2) CPM = 0-1; (3) CPM = 1-10; (4) CPM = 10-100; (5) CPM =
100-1,000; (6) CPM = 1,000-10,000; and (7) CPM = >10,000. We compared the pattern
of expression levels between venom gene homologs and all other python genes using a
Fisher's exact test. For each gene we also calculated the mean and variance in
expression level across all tissues combined and tested for differences between venom
homologs and all genes using Fisher’s exact tests (Table S5). Because it is unclear what
level of gene expression might be biologically relevant, we used multiple thresholds of
CPM read counts for “presence” of a gene in a given tissue: (1) CPM >1; (2) CPM >10;
(3) CPM >100; (4) CPM >1,000; and (5) CPM > 10,000 (Fig. 11). Significant differences

between venom homologs and all other genes were tested using Fisher’'s exact tests.

Results
Estimates of python gene homology to known venom genes.

We were able to confidently identify the homologous gene (or genes) in the
python for 20 out of the 24 venom gene families analyzed (Table 1 and S1). We identified
a single orthologous gene in the python for 15 of the venom gene families, while two
homologs were found for cystatin, metalloproteinase, phospholipase A, (PLA), serine
proteinase and veficolin. In the case of PLA,, however, we found two separate clades of
venom genes, each with a single ortholog in the python. Our analyses resulted in the
identification of a total of 25 homologs for 20 gene families (Figs. S1-S20). Phylogenetic
inferences of orthology of python venom homologs in relation to known venom genes
were strongly supported for 19 gene families (>95% posterior probability; Figs. S1-S20).
Only the python orthologs for exendin had posterior support below this threshold, with
92% posterior support. In bradykinin potentiating peptide/natriuretic peptide (BPP) and

sarafotoxin, orthologous sequences could not be confidently identified by phylogenetic
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analyses; these genes appear to have many domain insertions and deletions yielding
poor alignments and it is known that sarafotoxin presents a unique structure which is very
distinct from its putative ancestral endothelin protein (Takasaki et al. 1992; Ducancel et
al. 1993). The other genes for which a python homolog could not be inferred with
confidence from phylogenetic analyses were crotamine and waprin. Several studies have
found homologous sequences for these genes in non-venomous reptiles with either low
posterior support or when no reptilian outgroups were included, which we believe may
result in a biased inference of gene relationships (Fry 2005; Fry et al. 2006; Vonk et al.
2013a). Given an absence of quality alignments for these four gene families, we instead
used protein similarity (based on the best tblastx hit) to estimate the probable homolog in
the python for subsequent analyses. In total, further analyses therefore included 29 gene
homologs for 24 gene families. Due to the controversy surrounding resolution of what
qualities define a protein as a venom toxin, we also repeated all analyses including only
venom protein families known to have well-defined toxic and/or cytotoxic properties
(Table S2). In this case only four gene families were included: 3FTs, metalloproteinase,

serine proteinase and PLA2.
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Table 1 - Venom gene families used in this study and the number of orthologs estimated
in the python and other snake genomes. Orthologs in the python with an asterisk
represent venom genes where homology could not be inferred by gene trees. Gene
numbers are based on the following citations: python (this study), cobra (Vonk et al.
2013a), vipers (Casewell et al. 2009; Casewell et al. 2014), rattlesnake (Pahari et al.
2007). Gene numbers for the Cobra are based on the complete genome sequence;
estimates for vipers and the rattlesnake are based on venom gland transcriptome data

and may represent a lower bound.
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Comparison of expression profiles of python venom homologs across tissues.

Twenty of the 29 venom homologs identified in the python show at least some
level of gene expression in the python rictal gland (Fig. 19A-B). Four venom homologs
(3FTs, C-type lectin, veficolin |, and vespryn) show their highest levels of expression in
the rictal gland. Of these, C-type lectin is expressed at levels that are orders of
magnitude higher in the rictal gland than in any other tissues surveyed (1,000-10,000
CPM), while 3FTs, vespryn and veficolin orthologs are expressed at intermediate to high
levels (100-1,000 CPM). All of the venom homologs that show expression in the rictal
gland, however, show some level of expression in other python tissues. Two venom
homologs, 5’ nucleotidase and cobra venom factor, show very high levels of expression
in the liver (1,000-10,000 CPM) and phosphodiesterase is found expressed at similar
levels in the small intestine. Five venom homologs are expressed at intermediate to high
levels across all of the sampled tissues (Fig. 19): 5’ nucleotidase, exonuclease,
metalloproteinase A, phosphodiesterase and PLA; |. Eighteen of the 29 homologs are
expressed in at least half of all tissues samples, but only four of them are expressed at
medium to high levels (100-1,000 CPM) in most tissues (Fig. 19). In contrast, 10 python
venom orthologs are expressed in only seven tissues or less and at low levels (<100
CPM). Thus, although the majority of venom homologs are expressed in the rictal gland,
other tissues demonstrate similar or higher levels of expression of these same genes,
and the brain, small intestine and kidney had more venom homologs being expressed

than the rictal gland (Fig. 19).
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Figure 19 - Expression profiles for python venom gene homologs across tissues. A)

Heatmap of gene expression profiles shown as counts per million (CPM) on a logso-scale.
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Statistical enrichment analysis of python venom gene homolog expression.

Comparison of expression patterns between all other python genes versus
python venom homologs indicates that python venom homolog expression is statistically
different from the patterns observed for all other genes. Venom homologs tend to be
expressed at lower levels (0-1 CPM) more frequently than expected, and are less
commonly expressed at intermediate levels (10-100 CPM; Fig. 20A). Very similar
patterns of deviation from the complete set of genes are observed when only genes with
known cytotoxic activity are compared to all other python genes (Fig. 20B).

To address the question of whether venom homologs tend to be expressed in
more or in fewer tissues compared to all python genes, we used multiple expression
levels as cutoff values for “presence” in a tissue because it is unclear what level of
expression might be physiologically relevant. At the lowest threshold for presence (>1
CPM), venom homologs were enriched for higher frequencies of presence in a single
tissue, and their presence was substantially under-represented in many tissues (Fig.
21A). The trend of venom homologs to be present at greater than expected frequencies
in a single tissue was also found at higher thresholds of >10 CPM, >100 CPM (Figs. 21B-
C), and >1,000 CPM (data not shown). Last we asked if the variation in venom homolog
expression across tissues was significantly different than that of all python genes, and
found that python venom homologs tended to show greater variation in expression levels
across tissues, based on the standard error in expression levels across tissues (Fig.

21D).
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calculated across all tissues. Results are shown for (A) all venom gene homologs, and
(B) venom gene homologs that are known to be cytotoxic only. Asterisks represent
expression-level bins where the difference between venom homologs and all genes is

statistically significant (Fisher’'s exact test, p-value <0.05).
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exact test, p-value <0.05)
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Discussion

Our findings provide broad evidence that there are one or two venom gene
orthologs present per venom gene family in the python genome. These gene families
appear to have undergone varying degrees of duplication and diversification in highly
venomous caenophidian snake lineages (including elapids, viperids, and others) and in
several cases, result in large multi-locus gene families that encode many related toxins.
The python belongs to a lineage that is the sister group to the caenophidian snakes,
which appears to have diverged from caenophidian snakes prior to the expansion and
diversification of major venom gene families (Table 1; Fig. 18). These findings have two
important ramifications. First, they suggest that regardless of when venom systems may
have initially evolved in squamate reptiles, either a single time in the ancestor of the
Toxicofera (Fry et al. 2006) or independently in caenophidian snakes and lizards (Kochva
1978), substantial venom gene family expansion and diversification is unlikely to have
occurred in snakes prior to the caenophidian lineage (Casewell et al. 2012; Vonk et al.
2013a). The availability of additional genomes from basally-diverging snake lineages
(e.g., blindsnakes) would be valuable to test this hypothesis further, as it is possible that
instead the python secondarily lost many copies of venom genes that were duplicated
early in snake or toxicoferan evolution. However, this alternative hypothesis seems
unlikely, as it would require that the python would have independently lost
numerouscopies of at least 7 different venom gene families (see table 1). Second, our
results indicate that the python provides a reasonable and valuable approximation of
ancestral gene expression patterns prior to major venom gene recruitment in
caenophidian snakes. Thus, patterns of venom gene homolog expression in the python
may provide evidence for biases in the processes of venom gene recruitment in
caenophidian snakes related to patterns of expression of ancestral venom gene

homologs.
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With the increasing availability of transcriptome sequencing, it has become
common for researchers to sequence the transcriptome of venom glands or other oral
glands of squamate reptiles and other venomous taxa (Casewell et al. 2009; Whittington
et al. 2010; Fry et al. 2013; Vonk et al. 2013a). Based on such data, it has also become
common to identify transcripts of genes with sequence similarity to known venom toxins,
to define these as “venom toxin” transcripts, and in some cases even classify a particular
species as ‘venomous’ (Fry et al. 2009; Fry et al. 2010; Fry et al. 2013). Here we
compared gene expression of python venom homologs in the rictal gland, an oral gland,
to that of other python tissues. We find that although the rictal gland does indeed show
expression of many venom homologs, these homologs are also expressed at comparable
levels in many other tissues. In some limited cases, such venom homologs are
expressed at remarkably high levels in particular organs or tissues (Fig. 19). For
example, brain, liver and intestinal tissue all show moderate to high levels for several
venom homologs.

Our results, including multiple examples of venom homolog expression across
many tissues, argue against the adaptive and functional relevance of simply observing
such transcripts in a given tissue, as has also been argued recently by Hargreaves et al.
(2014). Expression patterns in the rictal gland (Fig. 19) are intriguing, particularly with
regards to 3FTx and C-type lectin orthologs, which at first glance appear to be consistent
with previous reports of venom production in some Australian pythons (Fry et al., 2013).
Interpreting this data under the Toxicofera hypothesis would suggest that the high
amplification of such genes in the rictal gland might be an artifact of the shared
evolutionary history of the venom system with other toxicoferans, with the python ‘venom
system’ presumably atrophying following a switch to using constriction for prey capture
(Fry et al. 2013). However, it is important to note that even these levels observed in the
python rectal gland are not particularly unusual compared to expression patterns of other

toxin orthologs in various non-gland tissues (Fig. 19). Additionally, in the absence of
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functional activity data, caution is required when attempting to extrapolate from protein
toxin family (e.g., 3FTx) identification to biological activity, as many toxin family members
have diverse actions, which are difficult to correlate with structure. For example, proteins
with the canonical 3FTx fold and highly conserved disulfides have pharmacological
activities as diverse as neurotoxins and anticoagulants (Heyborne and Mackessy 2013)
to salamander pheromones (Palmer et al. 2007) and regulators of limb regeneration
(Garza-Garcia et al. 2009). Thus, using such data singularly from an oral gland and
reaching the conclusion that venom homolog expression represents evidence of “venom
toxin” production, or “venomousness” of a species, would be base-less without additional
evidence for a functional role of such gene products.

Our results indicate that the probability of successful recruitment of a particular
gene for use in caenophidian venom systems may have been biased by the ancestral
expression pattern of that gene. Compared to all other python gene expression profiles,
python venom homologs tend to be expressed at lower levels overall, expressed at
moderate-high levels in fewer tissues, and show among the highest variation in
expression level across tissues. These python venom homologs also tend to have higher
expression in a single tissue and tend not be expressed in all tissues.

In highly venomous caenophidian snakes, recent studies have shown that highly
toxic venom proteins are expressed at moderate to high levels in the venom gland and
low-moderate levels in the accessory venom glands (Vonk et al. 2013a), but there is only
limited data on their expression levels in other tissues. What is known about their
expression in diverse tissues pertains only to their presence/absence (Hargreaves et al.
2014), which substantially limits insight into their relative biological activity in those
tissues, particularly since we find here that python venom homologs may be expressed at
levels that span more than four orders of magnitude across tissues. Many caenophidian
venom toxins are known to be cytotoxic (Lee 1972), to the extent that they are difficult to

study in expression vectors (Brenes et al. 2010); within the caenophidian venom gland,
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redundant mechanisms maintain these venom toxins in a competent but inactive state
(Mackessy and Baxter 2006). The expression of such genes at high (biologically active)
levels in other non-venom-related tissues would thus likely be deleterious. These data
collectively indicate that during the evolutionary recruitment of such venom toxins in
caenophidian snakes, the evolution of venom protein toxicity and higher levels of “venom
toxin” expression in the venom system must have been coordinated with an increase in
the degree to which such a toxin’s expression is confined to venom system tissues. For
most venom gene families in caenophidian snakes, this process also appears to be
coupled with gene duplication and neofunctionalization via accelerated point mutation
(Nakashima et al. 1995; Deshimaru et al. 1996; Kordi§ and Gubensek 2000), accelerated
segment switch in exons (Doley et al. 2008; Doley et al. 2009) and other mechanisms,
resulting in a diversity of functionalities housed within a conserved protein scaffold. This
functional diversification has been well documented for most of the potent functional
toxins of caenophidian snake venoms, including 3FTs, PLA;s, serine proteinases and
metalloproteinases (Lynch 2007; Vaiyapuri et al. 2011; Brust et al. 2013; Sunagar et al.
2013).

Based on biases in the regulatory characteristics we have identified in venom
homologs in the python, we propose a step-wise model for how proto-venom genes with
such regulatory characteristics might have originally been recruited into snake venom
systems. We refer to this model as the step-wise intermediate nearly neutral evolutionary
recruitment (SINNER) model. This model has three main steps which may or may not
involve gene duplication: 1) expression of proto-venom genes in oral secretory glands at
low levels, which is favored as a default by regulatory architecture favoring low near
constitutive expression, 2) switching of tissue-specific higher expression levels to target
oral/venom glands and 3) reduction in expression levels in non-venom-related tissues
that is driven by the degree of toxicity to the tissue itself. In this model, the evolution of

toxicity (i.e., neofunctionalization) would be constrained by two factors: the functional
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requirements and expression levels of the protein in non-venom tissues. Gene
duplication would release the first of these two constraints, allowing the evolution of
reduced expression in non-venom tissues, and thus allowing the evolution of greater
toxicity to prey. This SINNER model therefore implies the existence of a nearly neutral
intermediate phase during which the pace of evolution of the toxicity of a venom gene
product is balanced by the tissue-specificity and magnitude of its expression, and it
accounts for variation in the evolution of toxicity of such venom homologs in various
lineages due to differential patterns of drift and selection. The SINNER model thus
successfully predicts that a large number of different gene families may exist in venom
systems and possess members with different toxicity and expression levels in different
lineages, as the expression of those gene families in the venom gland (or any tissue) is a
physiological default to some extent. Also, different genes may occupy one of an infinite
number of steps along the continuum of the recruitment model’s nearly neutral
intermediate landscape due to both selection and drift. For example, even though three-
finger toxins do not constitute the main components of viperid venom, they are still
expressed in viperid venom glands (Pahari et al. 2007); on the other hand,
metalloproteinases and serine proteinases, both important components of viper venom,
but not of elapid venom, are still expressed but at low levels in elapid venom glands
(Correa-Netto et al. 2011; Jiang et al. 2011; Margres et al. 2013).

Some venom genes are also known to produce multiple splice variants
(Ducancel et al. 1993; Cousin et al. 1998; Siigur et al. 2001), and it is relevant to consider
how these alternative transcripts may contribute to evolution under the SINNER model. If
alternative splicing were capable of producing toxic and non-toxic peptides from the same
gene, this would decrease the relative role of gene duplication, and would also increase
the number of evolutionarily labile features that could act to shift venom toxin expression
towards venom gland specificity. Specifically in the case of alternative splice variants,

evolution could act on siRNAs and spliceosomal components, in addition to
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promoter/enhancer/repressor regulatory elements, to accomplish venom gland targeting
of toxic peptides; thus, alternative splicing may act to increase the evolvability and rate of
progression of genes across the continuum of the SINNER model.

While we have developed the SINNER model of gene functional recruitment
based on snake venom genes, many aspects of this model may apply equally well to
other instances of evolutionary co-option of genes that involve duplication and sub-/neo-
functionalization. Particularly when there is selection for novel tissue function (e.g.,
salivary-to-venom gland function), genes that are essentially constitutively expressed in
many tissues at low levels and at higher levels in a small number of tissues may be
important ‘raw material’ for shifting tissue function via co-option of these genes in a
variety of biological circumstances. It is likely that the SINNER model of gene co-option
and recruitment may also fit the evolution of venom systems in other animals, and
comparative analysis of gene expression across diverse tissues and venomous and non-
venomous sister lineages will be important for evaluating the explanatory power of this
model in these systems. One prediction of the SINNER model is that a venom repertoire
should contain a diverse collection of gene families, some of which are expressed as a
physiological default, and some will be intermediate on the spectrum between high
secretion level, venom system specificity, and toxicity, and thus will not be particularly
toxic. For example, even though three-finger toxins do not constitute the main toxic
components of viperid venom, they are still expressed in viperid venom glands (Pahari et
al. 2007). Similarly, metalloproteinases and serine proteinases, both important functional
components of viper venom, but not of elapid venom, are expressed at low levels in
elapid venom glands (Correa-Netto et al. 2011; Jiang et al. 2011; Margres et al. 2013).
Some of the most common venom components include CRISp, waprin/kunitz,
hyaluronidases, serine proteases and PLA;, among many others (Fry et al. 2009), and
even thought the same venom protein families can be found across venoms of several

animal phyla, their unique patterns of expression, functionality and toxicity can vary
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considerably among species (e.g. (Kreil 1995; Ma et al. 2010; Whittington et al. 2010;
Ruder et al. 2013; Undheim et al. 2014), which is consistent with predictions from the
SINNER model.

Similar to our study, a recent study also found evidence for the presence of
venom homologs and known venom genes in diverse tissues of non-venomous and
venomous snakes, respectively (Hargreaves et al. 2014). Based on these data, the
authors argue for a shift in the otherwise broadly-accepted model of venom gene
duplication and recruitment, and suggesting instead that this processed be viewed as
“restriction” rather than recruitment because venom genes do not appear to be targeted
de novo to venom glands but instead are “restricted” to venom systems over evolutionary
time. Their conclusions do share some aspects of our SINNER model in that venom
genes are not likely de novo targeted to the venom gland, but instead undergo a spectral
evolutionary transition towards venom gland-specific targeting. Analysis of next-
generation RNAseq data to measure expression is so highly sensitive to extremely rarely
expressed transcripts, however, that their use of a “presence-absence” detection of
venom-related transcrips is potentially misleading and is capable of detecting transcripts
far below the levels at which they will produce physiologically relevant biologically active
proteins. Thus future work examining organism-wide patterns of venom gene expression
should carefully consider the relative frequencies of venom homologs in the context of
estimating patterns of expression across tissues to differentiate between biologically
relevant expression levels and extremely rare transcripts due, for example, to slightly
‘leaky’ promoters.

As additional genomic and transcriptomic information becomes available for
snakes, particularly different lineages of highly venomous caenophidian snakes as well
as in more basally-diverging lineages of snakes (e.g., Scolecophidian blindsnakes) and
toxicoferan lizards, it will be interesting to further test the SINNER model for snake

venom gene recruitment, and the hypothesis that venom gene expansion occurred “late”,
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in the caenophidian lineage. Such diverse sampling across the toxicoferan tree is
ultimately required to more definitively determine how evolution has shaped tissue
expression patterns of venom homologs in the development of squamate venom
systems. The SINNER model, our data from the python, other evidence for venom
homolog expression in multiple non-venom gland tissues in other venomous and non-
venomous snakes (Radis-Baptista et al. 2003; Whittington et al. 2008; Hargreaves et al.
2014), and the lack of evidence for toxicity or function of multiple venom components
relevant for prey capture (Lavin MF 2010; Ahmed et al. 2012; Fry et al. 2012), collectively
suggest that a strict and static definition of a gene family as representing “venom toxins”
is inaccurate. Instead, these data indicate that a set of venom gland (or other oral gland)
secretions may represent a collection of proteins that span the full continuum of stages in
the evolution of toxicity and functionality as venoms, some of which may be present
largely due to random processes rather than selection for function as venom. Thus, the
definition of proteins as “venom toxins” based solely on homology in the absence of
functional evidence of toxic effects on prey (or other functional advantages for prey
handling) may be misleading. Accordingly, our results indicate the need for a critical re-
evaluation of the criteria required to consider a protein a “venom toxin” across the tree of
life, not only in snakes. We suggest that such criteria should incorporate more direct

evidence for the toxicity or function of such proteins in prey handlin
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Appendix A

Supplementary Material for Chapter 1
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Supplementary Table 1. Specimen voucher information, locality information, GenBank

accession number and references for sequences used in this study. Dash line indicated

missing loci for that particular specimen. Except for the species Crotalus lannomi, C.

stejnegeri, and C. ericsmithi, sequences from different voucher specimens were

combined for each taxon.
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Supplementary Table 2. Primer names and sequences used for the amplification and

sequencing of gene fragments in this study. Sequence length and number of variable

sites at each loci are also given.

Locus Primer Reference Primer sequence (5' -3")
ATP6,8 CmitchF Meik et al. 2012 CCGGTCTGAACTCAGATCACGT
CMR2 Meik et al. 2012 CCGGTCTGAACTCAGATCACGT
Cyt-b ATRCB3 Parkinson et al. 2002 TGAGAAGTTTTCYGGGTCRTT
GLUDG Palumbi, 1996 TGACTTGAARAACCAYCGTTG
ND4 ND4 Arévalo et al. 1994 CACCTATGACTACCAAAAGCTCATGTAGAAGC
Leu Arévalo et al. 1994 CATTACTTTTACTTGGATTTGCACCA
C-mos S77 Cox et al. 2012 CATGGACTGGGATCAGTTATG
S78 Cox et al. 2012 CCTTGGGTGTGATTTTCTCACCT
NT3 NT3-F3 Noonan & Chippindale, 2006 ATATTTCTGGCTTTTCTCTGTGGC
NT3-R4 Noonan & Chippindale, 2006 GCGTTTCATAAAAATATTGTTTGACCGG
RAG-1 RAG1_F This study CAGCTGYAGCCARTACCATAAAAT
RAG1_R This study CTTTCTAGCAAAATTTCCATTCAT
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Supplementary table 3. Descriptions of evidence for putative errors identified in existing

GenBank submissions of Crotalus species.

Geneb Ge
ank # Species ne Source of error
AF057 16  Equal to AF057271, a Crotalus molossus. BLASTn
2721 C. atrox S places it as Porthidium
AF057 C. 16 Equal to AF057272, a Crotalus atrox. BLASTn
2711 molossus S places it as Porthidium
AF259 Cy Possible chimeric sequence. BLASTn of half the
175.1 C. enyo t-b  sequence places it as C. durissus
HM631 N Sequence with many amino acid changes not
837.1 C. horridus D4 shared with any other C. horridus or Crotalus
Locality listed as “USA: California, Imperial Co.” in
AF259 C. 12 GenBank, but listed as “Mexico: Veracruz” in
243.1 molossus S original publication
AF259 C. 16  Field number for the specimen, ROM-FC 263, is
129.1 polystictus S used twice, for this specimen and for a C. pricei.
AF259 12
237.1 C. pricei s Same as above
HQ257 C. N
775.1 armstrongi D4  Sequence identical to HQ257880.1, a C. pusillus
Locality in GenBank given as “Mexico: Sonora”, but
AF259 Cy listed as “Cochise Co., Arizona” in original
172.1 C. willardi t-b  publication
Feld number given in GenBank for this specimen,
AF259 C. 16 ROM 18178, is assigned to C. mitchelli in original
135.1 molossus S publication
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Supplementary Table 4. Collection number and locality data for skeletal preparations

examined in this study.

Catalogue Teeth in the Palatine
Species Locality number bone

Agkistrodon Oklahoma,

piscivorus USA UTAR-34945 Present

Crotalus atrox Texas, USA UTAR-40712 Present

Crotalus durissus No data UTAR-45028 Present

Crotalus horridus USA UTAR-40474 Present

Crotalus lepidus No data UTAR-40483 Present
Oaxaca,

Crotalus molossus México UTAR-14512 Present
Jalisco,

Crotalus polystictus México UTAR-8270 Absent
Jalisco,

Crotalus polystictus México UTAR-12583 Absent
Jalisco,

Crotalus polystictus México UTAR-40482 Absent

Crotalus pricei No data UTAR-7432 Present
Sinaloa,

Crotalus stejnegeri México UTAR-10499 Present
Jalisco,

Crotalus triseriatus México UTAR-6257 Present

Crotalus willardi No data UTAR-40529 Present

Sistrurus catenatus Texas, USA UTAR-8730 Present
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Supplementary Table 1. Collection number and locality data for skeletal preparations

examined in this study.

Genus
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Micrurus
Micrurus

Micrurus

Micrurus
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M463

M434
M335

M271
M260

94

Country

Mexico

Mexico
Mexico

Mexico

Guatemal
a
Guatemal
a

Mexico

Mexico
Mexico
Mexico

Mexico

Mexico
Guatemal
a

Mexico

Mexico
Mexico

Mexico

Mexico

Mexico

Mexico

State/Provinc

e

Guerrero

Puebla
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Micrurus
Micrurus
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distans oliveri
distans oliveri
distans oliveri
distans oliveri
distans oliveri
distans oliveri
distans oliveri
distans oliveri
distans oliveri

distans oliveri
distans
zweifeli
distans
zweifeli

elegans

elegans
elegans
ephippifer
ephippifer

M580

M469

M299

M307

M308
M760
M240

M331

M74

M632
M629
M599
M599
M599
M284
M812
M812
M812
M805
M52
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0
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Supplementary Table 2. Color pattern, morphological measurements and locality data for

specimens revised in chapter 2.

Genu
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Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus
Micru
rus
Micru
rus

Species

bernadi

bernadi

browni

browni

browni

browni

browni

browni

browni

browni

browni

browni
browni
browni

browni

Lat

20.9561
16

21.3472
24

15.4239
12

15.5174
84

15.8103
91

16.0869
49

16.5833
35

17.0091

19.3012
33

19.4103
39

19.4120
08

19.5088
77
19.6768
39
16.5544
95

17.1596

Long

97.4063
36

97.6833
33

89.0798
97

89.3633
92

86.5027
63

93.7613
12

98.8166
7

100.087
812

104.067
077

103.643
941

103.604
103

101.083
676
19.6768
39
16.5544
95

99.5307

99

bod

y
ban

ds

21

26

22

24

30

11

14

17

16

23

28

20

17

12

tail
ban
ds

T.
lengt

371.5
31

215.9
59

589.5
41

Tail_le
ngth

57.963

32.781

83.618

Museu
m

Other

Other

UTACV

UTACV

UTACV

Other

Other

Other

Other

MZFC

Other

INIREN

A

INIREN
A

MZFC

MZFC



Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus
Micru
rus
Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus
Micru
rus

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

15.1795
54

15.2528
44

15.2619
40

15.2891
85

15.2984
24

15.2991
63

15.345

15.360

15.360

15.4128
15

15.4239
12

15.4239
12

15.4239
12

15.4239
12

15.5146
61

15.5553
25
15.5862
7
15.6170
34

72

90.2042
34

89.6698
80

89.6716
11

89.6657
12

89.6806
38

89.6655
74

-88.678
-88.723
-88.723

89.2164
51

89.0798
97

89.0798
97

89.0798
97

89.0798
97

91.8696
4

88.6747
96

-88.3366

89.4811

100

40

36

29

41

29

46

32

33

23

20

20

21

17

21

26

34

23

11

11

11

680.9
32

528.4
31

391.9
28

650.8
57

581.1

551.9
21

561.4
89

511.9
11

438.9
99

492.7
91

537.4

665.9
57

825.6
34
678.5
99
579.6
34

76.43

95.135

40.384

69.794

71.151

60.896

91.477

101.96

51.072

91.895

104.284

66.629

96.439

78.444

82.592

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV



Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema
diastema

15.6199
37

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86
15.6237

50

89.4479
24

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

101

35

31

39

32

27

30

36

34

40

35

29

24

33

32

36

30
28

11

11

10

11

362.7
21

455.9
96

464.3
12

602.2

410.4

23

346.3
35

543.9
25

509.3
78

514.3
11

406.0

442.2

05

491.6
58

465.3

534.5

32

589.9
02

519.0
96
493.3

51.968

55.503

54.592

57.409

48.431

57.867

63.573

96.88

58.265

48.861

76.03

86.458

58.549

105.407

64.439

87.871
87.236

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV
UTACV



rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86
15.6750
97

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

88.6875

102

39

35

28

35

26

30

26

32

39

31

31

33

37

32

26

11

12

10

11

13

10

527.5
77

456.4
61

450.1
42

603.0
35

465.4
63

488.3

329.8

67

402.2
81

524.9
47

483.1
33

352.3
72

754.9

609.6

23

529.8
86

4454
83
576.3

83.254

73.466

73.993

67.497

85.978

63.883

38.131

65.63

63.039

83.394

55.058

87.697

68.743

99.501

69.99

121.184

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV



Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus

Micru
rus
Micru

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema
diastema

15.6852
99

15.6929
89

15.7038
47

15.8346
7

15.8728
30

15.8728
30

15.8851
2

15.8851
2

17.3823
73

17.4876
37

19.9330
42

20.6180
81

20.7476
01

15.1694
72

15.360
15.3735

36
15.377

92

88.6451
60

88.5785
59

88.9329
91

91.8163
3

91.2321
70

91.2321
70

91.2406
7

91.2406
7

92.7487
61

92.0175
18

96.8513
36

87.0943
07

86.9795
48

92.8347
35

-88.723
89.8290

31
-88.702

103

14

15

24

24

51

67

53

56

19

25

13

12

31

35
29

11

11

10

11

620.1

274.0

11

537.8

655.2

57

505.5
12

594.8
15

614.9
42

462.6
43

910.4
96

549.2
83

64.609

42.345

97.905

75.759

65.373

65.836

71.809

75.248

108.822

72.692

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

Other

Other

Other

Other

Other

JAC

UTACV

UTACV
UTACV



rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

diastema

distans

distans

distans

distans

distans

distans

distans

15.5618
18

15.6166
67

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.6237
86

15.8012
84

15.8103
91

18.2725
83

18.3075
02

18.6268
28

19.0128
51

19.4210
42

19.4835
28

19.4835
29

90.1048
77

89.4500
00

89.4121
69

89.4121
69

89.4121
69

89.4121
69

89.4121
69

91.3146
81

86.5027
63

103.326
993

103.353
42

103.671
882

103.764
992

103.678
921

104.642
999

104.643
009

104

45

31

27

30

24

23

34

38

36

12

12

10

20

11

13

14

10

10

358.9
75

666.5
97

554 .1
01

665.1
23

337.7
96

570.8
52

711.6
06

580.5
75

544 .2
25

61.255

78.759

67.267

83.339

59.339

57.171

80.043

106.121

70.101

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

JRV

JRV

INIREN

A

Other

JRV

INIREN

A

Other



Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru

distans

distans

distans

distans

hippocrepi
S

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s
hippocrepi

19.5238
13

21.0825
41

21.6420
88

23.2880
44

15.5478
28

15.6279
29

15.6750
97

15.6750
97

15.6758
69

15.6759
67

15.6785
32

15.6796
16

15.6852
99

15.6852
99

15.6852
99

15.6852
99
15.6852

105.036
951

102.544
55

104.276
526

106.067
219

91.8503
23

89.4305
80

88.6875
92

88.6875
92

88.9877
06

88.6860
73

88.6820
89

88.6829
60

88.6451
60

88.6451
60

88.6451
60

88.6451
60

105

11

15

17

11

24

27

18

12

20

16

15

15

15

10

-~

10

417.7
64

563.1
59

477.6

443.9

68

304.2

352.4

76

547.5
05

509.6

2111

46

285.8
79

476.5
23

629.0
19
405.4

64.28

104.47

52.527

79.661

48.244

35.946

88.635

84.921

19.888

46.655

59.923

72.837
71.63

Other

Other

Other

Other

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV

UTACV
UTACV



rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus
Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru

hippocrepi
s

hippocrepi
s

hippocrepi
s

hippocrepi
s

latifasciatu
s
latifasciatu

s var
nuchalis

limbatus

limbatus

limbatus

limbatus
limbatus

limbatus

limbatus

nigrocinctu
S

nigrocinctu
S

nigrocinctu
S
nigrocinctu

99

15.6852
99

15.6852
99

15.6852
99

15.6857
5

16.4515
78

14.5998
55

18.3743
98

18.3743
98

18.3900
1

18.4385
54

18.52

18.52

18.5851
86

14.9748
7

15.2624
88

15.3554
52
15.38

88.6451
60

88.6451
60

88.6451
60

88.6451
60

88.6443
91

94.2736
62

90.4957
65

95.0150
85

95.0150
85

95.0113
9

95.0229
62

-95.2

-95.2

95.0744
98

92.1781
5

92.6162
6

92.5950

4
-92.63

106

13

13

14

15

30

15

12

15

12

41

37

18

19

12

12
12

68

4414

490.4

85

488.0
52

711.4
03

734.6

17

523

513

470

165

175

585

310

207

207
629

75.943

71.3

43.022

74.257

76.615

73

68

44

20

10

50

20

20
93

UTACV

UTACV

UTACV

UTACV

Other

UTACV

TA&M

TA&M

TA&M

UMMZ

UMMZ

UMMZ

IBUNA

AMNH

UIMNH

USNM
USNM



rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru

proximans

proximans

proximans

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener
tener

19.6828
42

20.5112
77

22.0283
03

19.4103
39

20.5437
22

20.9075
94

21.0607
83

21.7944
94

21.8042
19

22.4027
7

22.4027
7

22.6583
32

22.7176
49

23.0378
22

23.0378
22

23.0378
22
23.0378

104.418
866

105.313
22

104.879
1

103.643
941

99.6149
25

100.742
055

98.8801
96

98.9502
51

99.1970
56

97.9242
1

97.9242
1

98.2530
57

98.9709
44

99.1506
2

99.1506
2

99.1506
2

107

21

20

21

16

19

16

25

24

17

14

13

15

16

14

19

16
12

342

618

578

703
435

35

98

51

67
58

BYU

LACM

UAZ

MZFC

MZFC

Other

TCWC

UMMZ

Other

USNM

Other

MCz

TCWC

UM

UMMZ

UMMZ
UMMZ



rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus

Micru
rus

Micru
rus
Micru

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener

tener
tener

22

23.0378
22

23.0378
22

23.0378
22

23.0672
07

23.0672
07
23.0997
22

23.1759
25

23.2017
77

23.2221
85

23.9829
51

24.6011
31

24.6011
31

24.6011
31
2477

26.7870
83

23.0672
07
20.3305

99.1506
2

99.1506
2

99.1506
2

99.1506
2

99.1248
12

99.1248
12

-99.1925

99.3035
52

98.4373
27

98.3859
14

98.8352
85

99.0134
4

99.0134
4

99.0134
4

-98

102.000
722

99.1248
12

108

12

13

18

14

15

14

13

16

17

20

18

16

13

20

14

14
15

[$F N

604

695

713

604

493

240

364

754

63.5

63.6

46.6

703

551

87

103

114

55

51

33

52

79

5.3

8.8

5.8

95

79

UMMZ

UMMZ

UMMZ

UMMZ

UMMZ

UMMZ

Other

UMMZ

UMMZ

MCz

TCWC

TCWC

TCWC

Cumv

MZFC

UMMZ
MSU



rus

Micru
rus
Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

fitzingeri

tener
fitzingeri
tener
fitzingeri

tener
fitzingeri

tener
fitzingeri

tener
fitzingeri

tener
fitzingeri

tener
fitzingeri
tener
microgalbi
neus
tener
microgalbi
neus
tener
microgalbi
neus

36

20.5305

56

20.54

20.6068
11

20.6068
11

21.0190
14

21.0190
14

21.4205
5556

21.3841
73

22.15

22.4904

55

15.8863
30

16.2401
3

16.2401
3

16.3759
76

16.4833
3

16.4899
77

99.5531
79

100.354
722

-100.44

100.368
41

100.368
41

101.257
359

101.257
359

99.6008
3333

98.9921
7

98.5333
3

99.0837
91

91.2455
00

97.2831
2

97.2831
2

95.2599
38

94.3630
34

94.1106
1

109

19

20

16

19

24

20

22

24

20

19

59

20

19

15

14

11

850

767

538

630

645.6
72

5221
51

357.0
98

937.8
08

632.8
48

410.9
73

74

65

25

60

79.826

69.362

60.007

112.269

127.848

70.925

Minton(
?)

UMMZ

TCWC(
?)
"Hardy"

UMMZ
USNM
USNM
TCWC
LSUMZ
KU
TAY-
SM
UTACV
JAC
JAC
JAC

JAC

UTACV



Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus

Micru
rus
Micru
rus
Micru
rus
Micru
rus
Micru
rus

Micru
rus

Micru
rus
Micru
rus

16.5539
95

16.5539
95

16.5539
95

16.5550
83

16.5550
83

16.5550
83

16.5550
83

16.5550
83

16.5550
83

16.5550
83

16.5550
83

16.6589
16.7340
34

16.8636

16.8636

16.9026
91

16.9177
79
16.9811
12

94.1833
26

94.1833
26

94.1833
26

94.1838
26

94.1838
26

94.1838
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5’-nucleotidase
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Supplementary Figure 1. Bayesian phylogenetic tree of 5’-nucleotidase. Red lines indicate toxin
genes from venomous species; black arrow indicates position of python ortholog to venom
toxins. “Cobra” refers to the king cobra (Ophiophagus Hannah). Numbers at nodes represent

posterior support values. Black circles indicate posterior support = 1.0.
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Acetylcholinesterase
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Supplementary Figure 2. Bayesian phylogenetic tree of Acetylcholinesterase. Red arrow
indicate toxin genes from venomous species; black arrow indicates position of python ortholog
to venom toxins. “Cobra” refers to the king cobra (Ophiophagus hannah). Numbers at nodes

represent posterior support values. Black circles indicate posterior support = 1.0.
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AVIToxin
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Supplementary Figure 3. Bayesian phylogenetic tree of AVIToxin. Red lines indicate toxin

genes from venomous species; black arrow indicates position of python ortholog to venom

toxins. “Cobra” refers to the king cobra (Ophiophagus Hannah). Numbers at nodes represent

posterior support values. Black circles indicate posterior support = 1.0.
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C-type lectin

Xenopus tropicalis XM 002934562

Xenopus topicalis X 002934563

Xenopus tropicalis XM 004915988

Anolis carolinensis XM003223809

Anolis carolinensis XM003223810

Python maker Contig3669 snap gene 043 mRNA 1
Python maker Contig3669 snap gene 0 44 mANA
Cobra2

Aol carol

Cobra 3

Python maker Contig3669 augustus gene 0 41 mRNA 1
Aligator sinensis XM00B039260

Pelodiscus sinensis XM006121255

Pelodiscus sinensis XM 006121,

Chrysemys picta XMO05313236

Chrysemys picta XM005313235

Anols 3

Anolis 2

Anolis 1

Python i ked Contig7560, d gene 0 3 mANA
Python genemark Contig12811 processed gene 0 1 mRNA
Echis ocellatus FM177948

Trimeresurus stejnegeri AF354923

Crotalus oreganus JF895761

Liophis poecilogyrus EU029698

Liophis poecilogyrus EU029697

Leioheterodon madagascariensis EU029699
Lapemis hardwickii EF405673

Morelia spiota JX467163

Cobra 1

Cobra§

Cerberus rynchops GU0G5322

Enhyafis polylepis EU091713

Enhydris polylepis EU029694

Enhycs polyepis EU029695

Enhyafis polylepis EU029693

Enhycs polyepis EU029692

Enhycrs polyiepis EU029691

Enhyaris polylepis EU029690

Demansia vestigiata EF194753

Thrasops jacksoni EU029696

Pseudechis australis EF194726

Oxyuranus microlgpidotus EF194733
Rhinoplocephalus nigrescens EU445364
Tropidechis carinatus EF194743
Austrelaps superbus EU445363
Pseudechis australis EF194725
Macrovipera lebetina AY339163
Echis pyramidum AY254340
Philodryas offersii DQ912660
Trimeresurus stejnegeri AF354924
Echis multisquamatus AB096253
Bitis arietans AY254327
Gloydus halys AF125309
Sistrurus catenatus DQ464258
Trimeresurus flavoviridis AB046491
Trimeresurus stejnegeri AF354911
Deinagkistrodon acutus AB036860
Bothrops jararaca AB794990
Bothrops jararaca AY962524
Calloselasma thodostoma AF244900
Protobothrops mucrosquamatus AY099321
Trimeresurus jerdonii GU136389
Trimeresurus flavoviridis AY149341
Crotalus durissus AF541882
Ovophis okinavensis AB848278
0.97 Macrovipera lebetina EU085452
D‘ 79 Daboia russelli AY734997

- Macrovipera lebetina EU085454
084 Wacrovperaebetna EL0G5449
Bitis gabonica HE800429
— Crotalus adamanteus HQ41409%
078 Protobothrops flavoviridis AB848121

N Crotalus oreganus JF895763
064 009“ Aghisodon bomhof ABO1O615
Trimeresurus jerdonii GU146049
Cryptelytrops albolabris EF690367
Trimeresurus stejnegeri AF354918

0.88

09 089

0.99

0.4

Supplementary Figure 4. Bayesian phylogenetic tree of C-type lectin. Black arrow indicates
position of the python, while red dash indicates the venomous species. Numbers at nodes

represent posterior support values. Black circles indicate posterior support = 1.0.
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Cobra Venom
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Supplementary Figure 5. Bayesian phylogenetic tree of Cobra Venom Factor. Black arrow

indicates position of the python, while red dash indicates the venomous species. Numbers at

nodes represent posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 6. Bayesian phylogenetic tree of CRISp. Black arrow indicates position of
the python, while red dash indicates the venomous species. Numbers at nodes represent

posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 7. Bayesian phylogenetic tree of Cystatin. Black arrow indicates position
of the python, while red dash indicates the venomous species. Numbers at nodes represent

posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 8. Bayesian phylogenetic tree of Exendin. Black arrow indicates position
of the python, while red dash indicates the venomous species. Numbers at nodes represent

posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 9. Bayesian phylogenetic tree of Exonuclease. Black arrow indicates
position of the python, while red dash indicates the venomous species. Numbers at nodes

represent posterior support values. Black circles indicate posterior support = 1.0.
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Figure 10. Bayesian
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venomous species. Numbers at nodes represent posterior support values. Black circles

indicate posterior support = 1.0.
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L-Amino Acid Oxidase
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Supplementary Figure 11. Bayesian phylogenetic tree of L-Amino Acid Oxidase. Black arrow
indicates position of the python, while red dash indicates the venomous species. Numbers at

nodes represent posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 12. Bayesian phylogenetic tree of Metalloproteinase. Black arrow
indicates position of the python, while red dash indicates the venomous species. Numbers at

nodes represent posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 13. Bayesian phylogenetic tree of Nerve Growth Factor. Black arrow
indicates position of the python, while red dash indicates the venomous species. Numbers at

nodes represent posterior support values. Black circles indicate posterior support = 1.0.
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Phosphodiesterase

Latimeria chalumnae XM006012724
Contig1451 02 Python maker
047 Lepisosteus oculatus XM008636072
Oreochromis niloticus XM005472366
Takifugu rubripes XM003965885
maksr Contig1729 Py
Myotis brandtn XMOC 585850
fyotis branctii XM005885861
Xenopus laevis FJ603317
Xenopus tropicalis FJ603320
Xenopus tropicalis CR848337
Xenopus tropicalis XM002936313
Anolis carolinensis XM%3215713 -
n

Crotalus adamanteus HQ414102
Ovophis okinavensis AB851990
Ovaphis okinavensis AB851989
Protobothrops flavoviridis AB848153
Protobothrops flavoviridis AB848150
Protobothrops flavoviridis AB848152
Protobothrops flavoviridis AB848151
Aligator sinensis XM

A//r&ajlor mississippiensis XM006264740
Pelodiscus sinensis

Chelonia mydas

picta bellii Chrysemys
picta belli XM005280281 Chrysemys
picta belli XM005280282 Chrysemys
‘Anas platyrhynchos XM005009575
Anas platyrhynchos XM005009574
Meleagris Iga//opa vo XM003204213
Gallus gallus XM003641039

Gallus gallus XM004940219
Melopsittacus undulatus XM005154817
Columba livia X1 0938

Falco peregnnus XM005230127

Falco cherrug XM005432840
Taeniopygia guttata XM002189942
Zonotrichia albicollis XM005493584
Geospiza fortis
Ficedula albicollis

wmilis
Ormnithorhynchus anatinus XM001505917
Sarcophilus harrisii XM003769442
Monodelphis domestica XM001380361
Jaculus jaculus XM004651200
i bairdii
Microtus ochrogaster XM005360913
Callthrix jacchus XM002746965
boliviensis boliviensis XM003932436 Saimiri
Papio anubis XM003898162
Papio anubis XM003898181
Macaca fascicularis XM005551847
Macaca mulatta XM001103528
Macaca fascicularis XM005551848
Nomascus leucogenys XM003255716
Nomascus leucogenys XM003255717
Pan troglodytes XM518741
Pongo abelii NM001133260
Pan paniscus XM003827659
Homo sapiens AK226107
Homo sapiens AK024899
Homo sapiens NM005021
Synthetic construct AB587329
Homo sapiens AK292903
Synthetic construct BC141434
mﬁc construct BC146579
sapiens EF560735
Homo sapiens gi 4432589 gb AF005632 2 AF005632 2104 2475
Tupaia chinensis. XM006144301
tona princeps XM00458;
Heterocephalus glaber XM004907555
He!srooephalus glaber XM004907554
Cavia porcellus
Chinchilla lanigera
Chinchillalanigera
Chinchilla lanigera XM005389207
Loxodonta africana XM003404020
Trichechus manatus
Chrysochloris asiatica XM006834724
Leptonychotes weddelli XM006739661
putorius furo XM004740207 Mustela
putorius furo XM004740206 Mustela
Sorex araneus XM004609092
Condylura cristata XM0046741 15
MA/ons brandii XR31.
Myuns davidii XMO ”“778514
jotis Fra;vdm Xﬁ %g&gg 117
fyotis lucifugus 6084511
Sus scmla)ﬁﬂoa? 61314
Sus scrofa XR 300676
Camelus ferus XM006180731
Vicugna pacos XM006200056
Orcinus orca XM004263823
Tursiops truncatus XM004313332
Bos mutus XM005907294
Bos taurus NM001075923
Bos taurus BC122742
Pantholops jsonii XM005967524
Qvis aries XM004011325
Capra hircus XM005684756

047

Supplementary Figure 14. Bayesian phylogenetic tree of Phosphodiesterase. Black arrow
indicates position of the python, while red dash indicates the venomous species. Numbers at

nodes represent posterior support values. Black circles indicate posterior support = 1.0.
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Serine Proteinase (=Kallikrein)
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Supplementary Figure 15. Bayesian phylogenetic tree of PLA; . Black arrow indicates position

of the python, while red dash indicates the venomous species. Numbers at nodes represent

posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 16. Bayesian phylogenetic tree of Serine Proteinase (=Kallikrein). Black
arrow indicates position of the python, while red dash indicates the venomous species.
Numbers at nodes represent posterior support values. Black circles indicate posterior support =

1.0.
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Supplementary Figure 17. Bayesian phylogenetic tree of Three Finger Toxin. Black arrow
indicates position of the python, while red dash indicates the venomous species. Numbers at

nodes represent posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 18. Bayesian phylogenetic tree of Veficolin. Black arrow indicates
position of the python, while red dash indicates the venomous species. Numbers at nodes

represent posterior support values. Black circles indicate posterior support = 1.0.
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Supplementary Figure 19. Bayesian phylogenetic tree of VEGF. Black arrow indicates position

of the python, while red dash indicates the venomous species. Numbers at nodes represent
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Supplementary Figure 20. Ba'yesian phylogenetic tree of Vespryn. Black arrow indicates
position of the python, while red dash indicates the venomous species. Numbers at nodes

represent posterior support values. Black circles indicate posterior support = 1.0.
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Supplemental Table 3. Partitioning strategy and models of nucleotide evolution used in this

study.
2nd
Gene Partitions 1st codon codon
Three Finger Toxin 1,2,3 GTR+G HKY+G
GTR+I+
5’-nucleotidase 1+2; 3 GTR+I+G G
Acetyloniesterase 1+2; 3 GTR+G GTR+G
AVIToxin 1+2; 3 HKY+G HKY+G
BPP/Natriuretic
Peptide 1+2; 3 GTR+G GTR+G
C-type lectin 1+2; 3 SYM+G SYM+G
Cobra Venom Factor 1+2; 3 HKY+G HKY+G
GTR+I+
CRISp 1,2,3 GTR+I+G G
Crotamine/Crotasine 1+2; 3 HKY+G HKY+G
Cystatin 1+2; 3 HKY+G HKY+G
Exendin 1+2; 3 JK JK
Exonuclease 1,2,3 JK GTR
Hyaluronidase 1+2; 3 JK+G JK+G
L-Amino Acid GTR+I+
Oxidase 1+2; 3 GTR+I+G G
Metalloproteinase 1,2,3 HKY+I+G HKY+G
GTR+I+
Nerve Growth Factor 1+2; 3 GTR+I+G G
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Phosphodiesterase 1+2; 3 JK+G JK+G

SYM+I+
PLA2 1,2,3 SYM+I+G G
Sarafotoxin 1+2; 3 K80+G K80+G
GTR+I+
Serine proteinase 1,2,3 GTR+I+G G
Veficolin 1+2; 3 GTR+G GTR+G
VEGF 1+2; 3 SYM+G SYM+G
GTR+I+
Vespryn 1+2; 3 GTR+I+G G
Waprin 1+2; 3 JK+G JK+G
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used for gene expression analysis.

Supplementary Table 4. Summary of raw RNAseq reads and mapped reads for each tissue

Tissue Raw Reads* Mapped Reads*
Blood 25,959,588 7,906,944
Ovary 20,820,092 11,642,601
Stomach 19,264,312 9,372,517
Muscle 20,062,380 13,427,461
Brain 51,687,904 20,314,823
Heart 17,692,718 4,883,094
Spleen 26,700,204 12,849,006
Kidney 42,635,186 13,241,991
Rictal Gland 32,268,332 17,060,542
Liver 11,327,681 2,564,670
Testes 11,520,424 4,901,337
Small Intestine 55,930,617 18,978,054

*paired-end reads counted as two separate reads.
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Supplementary Table 5. Fisher’s exact test for each expression level bin for all genes and all

venom homologs inferred. Bolded P-values indicate significant test (p<0.05).

Venom
Bin All genes P-value
homologs
Bin 0 111,833 137 0.3170
Bin0 -1 39,263 59 0.0300
Bin1-10 66,843 81 0.5600
Bin 10 -100 68,738 50 0.0002
Bin 100 -
16,542 17 0.8120
1,000
Bin 1,000 -
1,288 4 0.0620
10,000
Bin >10,000 89 0 1.0000
TOTAL 304,596 348
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Supplementary Table 6. Fisher’'s exact test for each expression level bin for all genes and

venom homologs inferred using gene phylogenies. Bold P-values indicate significant tests

(p<0.05).
Venom
Bin All genes P-value
homologs
Bin 0 111,833 119 0.3080
Bin0 -1 39,263 47 0.1670
Bin1-10 66,843 67 0.8890
Bin 10 -100 68,738 46 0.0023
Bin 100 -
16,542 17 0.7790
1,000
Bin 1,000 -
1,288 4 0.0400
10,000
Bin >10,000 89 0 1.0000
TOTAL 304,596 300
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Supplementary Table 7. Fisher’'s exact test for each expression level bin for all genes and

venom homologs with known cytotoxic activity. Bolded P-values indicate significant tests

(p<0.05).
Venom
Bin All genes P-value
homologs
Bin 0 111,833 39 0.0070
Bin0 -1 39,263 19 0.0130
Bin1-10 66,843 21 0.5100
Bin 10 -100 68,738 3 2.471E-06
Bin 100 -
16,542 2 0.3310
1,000
Bin 1,000 -
1,288 0 1.0000
10,000
Bin >10,000 89 0 1.0000
TOTAL 304,596 84
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