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Abstract 

 OPTIMAL TRACKING CONTROL OF UNCERTAIN SYSTEMS: ON-POLICY AND OFF-

POLICY REINFORCEMENT LEARNING APPROACHES 

 

HAMIDREZA MODARES, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: FRANK L. LEWIS 

Over the last few decades, strong connections between reinforcement learning 

(RL) and optimal control have prompted a major effort towards developing online and 

model-free RL algorithms to learn the solution to optimal control problems. Although RL 

algorithms have been widely used to solve the optimal regulation problems, few results 

considered solving the optimal tracking control problem (OTCP), despite the fact that 

most real-world control applications are tracking problems. On the other hand, existing 

methods for solving OTCP require complete knowledge of the system dynamics.  

This research begins with developing an adaptive optimal algorithm for linear 

quadratic tracking problem (LQT). A discounted performance function is introduced for 

the LQT problem. A discounted algebraic Riccati equation (ARE) is then derived which 

gives the solution to the LQT problem. The integral reinforcement learning (IRL) 

technique and off-policy RL technique are used to learn the solution to the discounted 

ARE online and without requiring complete knowledge of the system dynamics. The 

proposed idea is then extended to solve optimal tracking control for nonlinear systems. 

The input constraints are also taken into account for nonlinear systems. 

In the next step, the proposed method is extended to solve the CT two-player 

zero-sum game arising in the H∞ tracking control problem. An off-policy RL algorithm is 



vi 

developed which enables us to find the solution to the H∞ tracking control problem online 

in real time and without requiring the disturbance being adjustable, which is usually 

impractical for most of real systems.  

The next results show how to design dynamic OPFP controllers for CT linear 

systems with unknown dynamics. To this end, it is first shown that the system state can 

be constructed using some limited observations on the system output over a period of the 

history of the system. A Bellman equation is then developed to evaluate a control policy 

and find an improved policy simultaneously using only some limited observations on the 

system output. Then, using this Bellman equation, a model-free IRL-based OPFB 

controller is developed.  

Next, a model-free approach is developed for solving output synchronization of 

heterogeneous multi-agent systems. Both the leader’s and the follower’s dynamics is 

assumed to be unknown. First, a distributed adaptive observer is designed to estimate 

the leader’s state for each agent. A model-free off-policy RL algorithm is then developed 

to solve the optimal output synchronization problem online in real time. It is shown that 

this distributed RL approach implicitly solves the output regulation equations without 

actually doing so and without requiring knowledge of the leader or of agent’s dynamics.  

Finally, a model-free RL based method is design for the human-robot interaction 

system to help the robot adapt itself to the level of the human skills. This assists the 

human operator to perform a given task with minimum workload demands and optimize 

the overall human-robot system performance. First, a robot-specific neuro-adaptive 

controller is designed to make the unknown nonlinear robot behave like a prescribed 

robot impedance model. Then, a task-specific outer-loop controller is designed to find the 

optimal parameters of the prescribed robot impedance model, online in real time.  
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  Chapter 1

INTRODUCTION 

This introductory chapter discusses motivation, background and contribution.  

1.1. Adaptive optimal control using reinforcement learning 

Optimal control involves the design of a control policy that satisfies a tracking or 

regulation control objective while simultaneously minimizes a performance function. A 

sufficient condition to find a feedback solution to an optimal regulation problem is to solve 

the Hamilton-Jacobi-Bellman (HJB) equation. For linear systems with quadratic 

performance function, the HJB equation reduces to the algebraic Riccati equation (ARE). 

For the case of optimal tracking problem, however, traditional solutions are composed of 

two components; a feedback term obtained by solving an HJB equation and a 

feedforward term obtained a priori by either solving a differential equation [60] or applying 

inverse dynamic concept [80]. The feedback term tries to stabilize the tracking error 

dynamics and the feedforward term tries to guarantee perfect tracking. Procedures for 

computing the feedback and feedforward terms are traditionally based on offline solution 

methods which require complete knowledge of the system dynamics. 

Motivated by the desire to eliminate the requirement for exact knowledge of the 

system dynamics, reinforcement learning (RL) [9],  [15],  [40],  [61], [63],  [89], [95], [100], 

 [120], [124], [117], [125], [126], [129], [141], has been extensively used to solve optimal 

control problems. RL technique, inspired by learning mechanisms observed in mammals, 

is a computational approach to learning from interactions with the surrounding 

environment and concerned with how an agent or actor ought to take actions so as to 

optimize a cost of its long-term interactions with the environment. In the context of 

control, the environment is the dynamic system, the agent corresponds to the controller, 

and actions correspond to control signals. The RL objective is to find a strategy that 
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minimizes an expected long-term cost. Unlike traditional optimal control solutions, RL 

does not require the exact knowledge of the system dynamics. Instead, RL largely relies 

upon experience gathered from tacking actions and directly interacting with the system 

dynamics.  

During the last few years, RL methods have been successfully used to solve the 

optimal regulation problems by learning the solution to the HJB equation. RL algorithms 

for solving optimal control problems are usually based on policy iteration (PI) and value 

iteration (VI). PI algorithms have two steps, namely, policy evaluation and policy 

improvement. In the policy evaluation step, the value function related to a control policy is 

evaluated. An improved control policy is then obtained in the policy improvement step 

based on the assessment of this value function. PI algorithms must start from an 

admissible control policy, which requires that the initial control policy be stabilizing. On 

the other hand, VI algorithms do not require an initial stabilizing control policy. 

Werbos [125], [126] defined a family of VI algorithms implemented on actor-critic 

structures to solve optimal control problems online for discrete-time systems. In these 

structures, the actor learns to select an action based on evaluative feedback from the 

critic to minimize a performance index. Both PI and VI algorithms use the state value 

function (or V-function) to update their policies. V-functions only describe the quality of 

the system states. In order to obviate the need to have knowledge of the system 

dynamics, Werbos introduced action-dependent heuristic dynamic programming and 

Watkins [119] used the state-action value function (or Q-function) and presented a Q-

learning algorithm for linear discrete-time systems.  

1.2. Background and Motivation 

Reinforcment learning has been widely used to solve optimal control 

problems [2], [5], [6], [7], [16], [17], [23], [59], [62], [68], [70], [73], [74], [75], [76], [82], [97]
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, [98], [106], [107], [108], [109], [114], [116], [121], [122], [123], [130], [131], [132]. For 

continuous-time (CT) systems, which are the focus of this work, Vrabie and 

Lewis [112], [113] proposed a promising RL algorithm, called integral reinforcement 

learning (IRL), to learn the solution to the HJB equation using only partial knowledge 

about the system dynamics. They used an iterative online PI procedure to implement 

their IRL algorithm. The IRL algorithm is an on-policy algorithm. That is, the algorithm 

must follow the policy which it is learning about and so it learns only about the executing 

policy. In an off-policy RL algorithm, on the other hand, the algorithm learns about a 

policy or policies different from the one which it is executing. Off-policy RL algorithms 

were presented in [51], [52] to solve the optimal regulation problem for completely 

unknown CT systems. In these algorithms, both value function and policy are updated at 

the same time by evaluation of a Bellman equation. Moreover, these algorithms take into 

account the effect of the probing noise to avoid any bias in solving the Bellman equation. 

An off-policy RL algorithm was proposed in [78] to solve the H∞ control problem for 

partially-unknown systems. Other than the IRL and off-policy based PI algorithms, 

efficient synchronous PI algorithms with guaranteed closed-loop stability were proposed 

in [16], [106] to learn the solution to the HJB equation. Synchronous IRL algorithms were 

also presented for solving the HJI equation in [108]. The interested reader is referred 

to [63] and the references therein for details of the existing RL methods for solving 

optimal control problems. 

Although IRL and off-policy RL algorithms have been successfully used to solve 

the optimal regulation problems, few results considered solving the optimal tracking 

control problems (OTCPs) for both discrete-time [24], [43], [55], [143], [138] and CT 

systems [25], [136]. Moreover, existing methods require the exact knowledge of the 

system dynamics a priori. In order to attain the required knowledge of the system 
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dynamics, in [138], a plant model was first identified and then an RL-based optimal 

tracking controller was synthesized using the identified model. To our knowledge, there 

has been no attempt to develop RL-based techniques to solve the OTCP for CT systems 

with unknown or partially-unknown dynamics using only measured data in real time. 

While the importance of the IRL algorithm and off-policy RL algorithm are well understood 

for solving optimal regulation problems for partially or completely unknown systems, the 

requirement of the exact knowledge of the system dynamics for finding the steady-state 

part of the control input in the existing OTCP formulation does not allow extending the 

IRL algorithm or the off-policy RL algorithm for solving the OTCP.  

Another important issue which is ignored in the existing RL based solutions to the 

OTCP is the amplitude limitation on the control inputs. In fact, in the existing formulation 

for the OTCP, it is not possible to encode the input constraints into the optimization 

problem a priori, as only the cost of the feedback part of the control input is considered in 

the performance function. Therefore, the existing RL-based solutions to the OTCP offer 

no guarantee on the remaining control inputs on their permitted bounds during and after 

learning. This may result in performance degradation or even system instability. In the 

context of the constrained optimal regulation problem, however, an offline PI algorithm [3] 

was presented to find the solution to the constrained HJB equation. 

Moreover, existing model-free RL algorithms for CT systems require 

measurement of the system states. However, it is not possible to measure the full states 

of the systems in many practical situations. OPFB-based controllers are more desirable 

than state-feedback controllers in these applications. For discrete-time systems, in [62] 

an RL-based method was developed which used only measured input/output data from 

the system to learn the optimal control policy. However, developing OPFB controllers 
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using past measured data for CT is considerably more complicated and needs more 

math development and proofs and therefore has been not considered yet.  

Finally, the design of model-free optimal output syhcnronization for 

heterogeneous multi-agent systems, in which a distributed control protocol is designed to 

make all agents output follow the leader output, has not been considered in the literature. 

Existing solutions to this problem [20], [42], [41], [42], [77], [128], [134], [135], however, 

require complete knowledge of the agent and leader dynamics, which is not available in 

many real-world applications. This is because these methods require the explicit solution 

to the output regulation equations.  

This work attempts to address these mentioned issues and provide efficient RL-

based methods for optimal tracking control of uncertain systems. 

1.3. Contribution and Outline 

The key contributions of the dissertation are listed as follows. 

 Online RL algorithms are developed for learning the solution to OTCP of CT 

systems with partially-unknown or completely unknown dynamics. 

 In Chapter 2, the linear quadratic tracking (LQT) problem for uncertain 

CT systems is solved using RL algorithms. The LQT problem is first 

transformed into minimizing a discounted performance function subject 

to an augmented system, composed of the original system and the 

command generator system. An LQT ARE equation is then developed 

which gives both feedforward and feedback parts of optimal control 

solution simultaneously. Then, IRL and off-policy RL algorithms are used 

to learn the solution to the LQT ARE for systems with partially-unknown 

and completely unknown dynamics.  
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 In chapter 3, an RL-based solution for solving OTCP of uncertain 

constrained-input nonlinear systems is presented. In contrast to existing 

methods for OTCP, input constraints are taken into account into the 

optimization problem a priori. A tracking constrained HJB equation is 

developed and rigorous proofs of stability and optimality of the HJB 

solution are provided. An online IRL algorithm with guaranteed stability is 

provided to learn the solution to the tracking constrained HJB equation 

for partially-unknown systems. 

 In Chapter 4, an off-policy RL algorithm is presented to solve the H∞ 

tracking control of nonlinear CT systems with completely unknown 

dynamics. A tracking Hamilton-Jacobi-Isaac (HJI) equation is developed 

to give the solution to the optimization problem in hand. An iterative off-

policy RL algorithm is used to learn the solution to the tracking HJI 

equation without requiring any knowledge of the system dynamics. 

Convergence of the proposed algorithm to the solution to the tracking 

HJI equation is verified. 

 OPFB controllers are designed to learn the solution to both LQR and LQT 

problems for systems with partially-unknown and completely unknown dynamics.  

 In Chapter 5, a dynamic OPFB controller is designed for completely 

unknown dynamics using off-policy algorithm. A discounted performance 

function is employed such that the proposed off-policy algorithm can be 

used to solve both LQR and LQT problems. A novel Bellman equation is 

then developed to evaluate a control policy and find an improved policy 

simultaneously using only some limited observations on the system 

output over a period of the history of the system. Then, using this 
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Bellman equation, an off-policy RL algorithm is developed to find an 

optimal policy based on only measured outputs and without requiring the 

knowledge of the system state or the system dynamics. Convergence to 

the optimal solution is verified. 

 Reinforcement learning is used to solve optimal output synchronization problem 

for heterogeneous multi-agent linear systems.  

 In Chapter 6, a novel distributed model-free controller is designed to 

solve the output synchronization problem for heterogeneous multi-agent 

systems. A distributed adaptive observer is first designed to estimate the 

leader state for each agent, without requiring the knowledge of the 

leader’s dynamics. The estimated leader state along with the local state 

of each agent is then used by the agent to design a model-free optimal 

local controller. Therefoe, the optimal output synchronization problem is 

cast into a set of optimal output tracking problems for a set of decoupled 

systems. It is shown that solving a set of decoupled discounted AREs 

solves the output synchronization problem. Online model-free solution to 

these decoupled AREs is then found by using an off-policy RL algorithm. 

It is shown that this distributed reinforcement learning approach implicitly 

solves the output regulation equations without actually doing so and 

without requiring any knowledge of the leader’s dynamics or of the 

agent’s dynamics. 

 Reinforcement learning is used to design an iintelligent human-robot interaction 

(HRI) system with adjustable robot behavior.  

 In Chapter 7, an HRI system is designed to assist the human operator to 

perform a given task with minimum workload demands and optimize the 
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overall HRI system performance. First, a robot-specific neuro-adaptive 

controller is designed in the inner loop to make the unknown nonlinear 

robot behave like a prescribed robot impedance model as perceived by a 

human operator. Then, a task-specific outer-loop controller is designed 

to find the optimal parameters of the prescribed robot impedance model 

to adjust the robot’s dynamics to the operator skills and minimize the 

tracking error. IRL algorithm is used to find the optimal parameters of the 

prescribed robot impedance model without the requirement of the 

knowledge of the human model. 

1.4. Publications resulted form this work 

1- H. Modares, F. L. Lewis, and Z. P. Jiang, “H Tracking Control of Completely-

unknown Continuous-time Systems,” accepted for publication in IEEE 

Transactions on Neural Networks and Learning Systems, 2015. 

 

2- H. Modares, and F. L. Lewis, “Linear Quadratic Tracking Control of Partially-

Unknown Continuous-time Systems using Reinforcement Learning,” IEEE 

Transactions on Automatic control, vol. 59, pp.3051-3056, 2014. 

3- H. Modares, and F. L. Lewis, “Optimal Tracking Control of Nonlinear Partially-

unknown Constrained-input Systems using Integral Reinforcement Learning,” 

Automatica, Vol. 50, no. 7, pp. 1780-1792, 2014. 

4- H. Modares, F. L. Lewis, and D. Popa, “Optimized Assistive Human-robot 

Interaction using Reinforcement Learning,” accepted for publication in IEEE 

Transaction on Cybernetics. 

5- H. Modares, B. Kiumarsi, F. L. Lewis, Z. P. Jiang, “Optimal Output-feedback Control 

of Unknown Continuous-time Linear Systemsusing Reinforcement Learning,” 

Conditionally accepted for publication in IEEE Transactions on Cybernetics, 

2015. 

6- S. P. Neshrao, H. Modares, G. Lopes, R. Babuska, F. L. Lewis, “Optimal Model-

free Output Synchronization of Heterogeneous Systems Using Off-policy 

Reinforcement Learning,” Submitted to Automatica, 2015. 
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  Chapter 2

LINEAR QUDRATIC TRACKING CONTROL OF PARTIALLY-UNKNOWN AND 

COMPLETELY UNKNOWN SYSTEMS 

2.1. Introduction 

This chapter is concerned with developing online IRL and off-policy RL 

algorithms to solve the LQT problem for partially-unknown and completely unknown CT 

systems. 

Traditional solutions to the LQT problem are composed of two components; a 

feedback term obtained by solving an ARE and a feedforward term obtained by either 

solving a differential equation [60] or calculating a desired control input a priori using 

knowledge of the system dynamics [81]. The feedback term tries to stabilize the tracking 

error dynamics and the feedforward term tries to guarantee perfect tracking. Procedures 

for computing the feedback and feedforward terms are traditionally based on offline 

solution methods which must be done in a noncausal manner backwards in time and 

require complete knowledge of the system dynamics.  

RL algorithms has been mainly used to solve optimal regulator problems, and 

only few results considered solving optimal tracking problems. This is mainly because of 

the additional computational burden created by computing the feedforward control term 

that is not presented in optimal regulator problems. Existing RL solutions to the optimal 

tracking problem employ the dynamic inversion concept or solve output regulator 

equations to obtain the feedforward control term a priori and then find the optimal 

feedback control term using RL techniques. However, these methods require complete 

knowledge of the system dynamics. 

In this chapter, online adaptive controllers based on IRL and off-policy RL 

algorithms are developed which converge to the optimal solution of the LQT problem 
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without requiring complete knowledge of the system dynamics or the command generator 

dynamics. The algorithm starts with an admissible nonoptimal control policy and learns 

an optimal control policy using only measured data from the system and the command 

generator in real time. To achieve this goal, it is first shown that the value function is 

quadratic in terms of the system state and the reference trajectory and an augmented 

system is constructed from the original system and the command generator. Using the 

quadratic structure of the value function, a novel Bellman equation and an augmented 

LQT ARE equation are derived for the LQT problem. This formulation allows extending 

the IRL and off-policy RL techniques to learn the solution to the LQT ARE without 

requiring complete knowledge of the system dynamics. Convergence of the proposed 

learning algorithm to an optimal control solution is verified.  

The reminder of this chapter is organized as follows. In the next section, the LQT 

problem and its standard solution are discussed. In Section 2.3 it is shown that solving 

the LQT problem is equivalent to solving an augmented ARE. Section 2.4. presents IRL 

and off-policy RL algorithms to solve the LQT problem without the need for complete 

knowledge of the system dynamics or the command generator dynamics. Simulation 

results and conclusion are discussed in Sections 2.5 and 2.6, respectively. 

2.2. LQT problem and its standard solution  

In this section, the infinite-horizon LQT problem and its standard solution are 

presented for CT systems. It is assumed in this section that the reference trajectory is 

generated by an asymptotically stable system. That is, the reference trajectory goes to 

zero as time goes to infinity.  

Consider the linear CT system 

x Ax Bu

y C x
 (2.1) 
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where 1nx  is a measurable system state vector, 1py
 
is the system output, 

1mu  is the control input, n nA  gives the drift dynamics of the system, 
n m

B
 

is the input matrix and 
p n

C
 
is the output matrix. 

Assumption 2.1. The pair ( , )A B  is stabilizable and the pair ( , )A QC  is observable. 

The goal of the optimal tracking problem is to find the optimal control policy *u
 
so 

as to make the system (2.1) track a desired (reference) trajectory 1( ) p

d
y t  in an 

optimal manner by minimizing a predefined performance index. In the infinite-horizon 

LQT problem, the performance index is usually considered as 

1
( , ) ( ) ( )

2
T T

d d d

t

J x y Cx y Q Cx y u Ru d  (2.2) 

where  { ( ), }
d d
y y t , 0Q

  
and 

 
0R  are symmetric matrices, and 

( ) ( )T T

d d
Cx y Q Cx y u Ru  is the utility function. 

The standard solution to the LQT problem is given as [60] 

1 1T T

SS
u R B S x R B v  (2.3) 

where S is obtained by solving the ARE  

10 T T TA S SA S BR B S C QC  (2.4) 

and the limiting function 
SSv  is given by limSS Tv v , with the  auxiliary time signal v   

satisfies  

1( ) , ( ) 0T T T

d
v A BR B S v C Qy v T  (2.5) 

The first term of the control input (2.3) is a feedback control part that depends 

linearly on the system state, and the second term is a feedforward control part that 

depends on the reference trajectory. The feedforward part of the control input is time 
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varying in general and thus a theoretical difficulty arises in the solution of the infinite-

horizon LQT problem. In [10], [11], methods for real-time computation of SSv  are provided.  

Remark 2.1. Note that the performance function (2.2) is unbounded if the reference 

trajectory does not approach zero as time goes to infinity. This is because the 

feedforward part of the control input and consequently the second term under the integral 

of the performance function (2.2) depends on the reference trajectory. Therefore, 

standard methods can only be used if the reference trajectory is generated by an 

asymptotically stable system. 

2.3. Augmented ARE for causal solution of the infinite-horizon LQT problem 

In this section, a causal solution to the LQT problem is presented. It is assumed 

that the reference trajectory is generated by a linear command generator and it is then 

shown that the value function for the LQT problem is quadratic in the system state and 

the reference trajectory. An augmented LQT ARE for this system is derived to solve the 

LQT problem in a causal manner.  

Assumption 2.2. Assume that the reference trajectory ( )
d
y t  is generated by the 

command generator system 

d d
y F y  (2.6) 

where F  is a constant matrix of appropriate dimension.   

Remark 2.2. Matrix F  is not assumed stable. The command generator dynamics given 

in (2.6) can generate a large class of useful command trajectories, including unit step 

(useful, e.g., in position command), sinusoidal waveforms (useful, e.g., in hard disk drive 

control), damped sinusoids (useful, e.g., in vibration quenching in flexible beams), the 

ramp (useful in velocity tracking systems, e.g., satellite antenna pointing), and more.  
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As was discussed in Section 2.2, the use of the performance function (2.2) for 

the LQT problem requires the command generator be asymptotically stable, i.e., F  in 

(2.6) must be Hurwitz. In order to relax this restrictive assumption, a discounted 

performance function is introduced for the LQR problem as follows 

( )1
( , ) [( ) ( ) ]

2
t T T

d d d

t

J x y e Cx y Q Cx y u Ru d  (2.7) 

where 0  is the discount factor. 

Definition 2.1. Admissible control. A control policy ( )x  is said to be admissible with 

respect to (2.2), if ( )x  is continuous, (0) 0 , ( ) ( )u x x  stabilizes (2.1), and 

( ( ), )
d

J x t y  is finite ( ) and
d

x t y . 

Lemma 2.1. Quadratic form of the LQT value function. Consider the LQT problem 

with the system dynamics and the reference trajectory dynamics given as (2.1) and (2.6), 

respectively. Consider the admissible fixed control policy 

d
u K x K y  (2.8) 

Then, the value function (2.7) for control policy (2.8) can be written as the quadratic form 

1
( ( ), ) ( ( ), ( )) [ ( ) ( ) ] [ ( ) ( ) ]

2
T T T T T

d d d d
J x t y V x t y t x t y t P x t y t  (2.9) 

for some symmetric 0P .  

Proof: Putting (2.8) in the value function (2.2) and performing some manipulations yields 

0

1
( ( ), ( )) ( ) ( ) ( )

2

2 ( ) ( ) ( ) ( ) ( ) ( )

T T T

d

T T T T T

d d d

V x t y t e x t C QC K RK x t

x t C Q K RK y t y t Q K RK y t d

 

(2.10) 

Using (2.8), the solutions for the linear differential equations (2.1) and (2.6) become 
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( )( )

1 2

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
A BK FA BK

d d
x t e x t e BK e d y t L x t L y t

 

(2.11) 

3
( ) ( ) ( ) ( )

F

d d d
y t e y t L y t  

(2.12) 

Substituting (2.11) and (2.12) in (2.10) results in 

1
( ( ), ( )) ( ) ( ) ( ) ( )

2

T
T T T T

d d d
V x t y t x t y t P x t y t  (2.13) 

where 
11 12

21 22

P P
P

P P
 with  

11 1 1

0

( ) ( )T T TP e L C QC K RK L d  (2.14) 

12 1 2 1 3

0

( ) ( ) ( ) ( )T T T T T TP e L C QC K RK L L C Q K RK L d  (2.15) 

21 2 1 3 1

0

( ) ( ) ( ) ( )T T T T TP e L C QC K RK L L QC K RK L d  (2.16) 

22 3 3 2 2

0

2 3

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( )

T T T T T

T T T

P e L Q K RK L L C QC K RK L

L C Q K RK L d

 (2.17) 

This completes the proof. 

Note that equation (2.9) is valid because Assumptions 2.2 is imposed. Also, note 

that because the closed-loop system is stable for an admissible policy, 
1
L  and 

2
L  in 

(2.14)-(2.17) are bounded. The boundness of 
3
L  and consequently the existence of a 

solution to the LQT problem is discussed in the following remark.  

Remark 2.3. If the reference trajectory is bounded (i.e., if F  is stable or marginally 

stable, e.g., tracking a step or sinusoidal waveform), then 
3L  and is bounded for every 

0 . However, if the command generator dynamics F  in (2.6) is unstable, then the 
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first and last terms of 
22P  in (2.17) can be unbounded for some values of . More 

specifically, one can conclude form (2.17) that 
22P  is bounded if ( 0.5 )F I has all its 

poles in the left-hand side of the complex plane. Therefore, if F  is unstable, we need to 

know an upper bound of the real part of unstable poles of the F  to choose  large 

enough to make sure 
22P  is bounded and thus a solution to the LQT exists. 

Now define the augmented system state as  

( ) ( ) ( )
T

T T

d
X t x t y t  (2.18) 

Putting (2.1) and (2.6) together construct the augmented system as 

1

A B
X X u T X B u

F

0

0 0
 (2.19) 

The value function (2.9) in terms of the augmented system state becomes 

1
( ) ( ) ( )

2
TV X t X t P X t  (2.20) 

Using value function (2.20) for the left-hand side of (2.7) and differentiating (2.7) along 

with the trajectories of the augmented system (2.19) gives the augmented LQT Bellman 

equation  

1 1 1 1 1 1
0 ( ) ( )T T T T T TT B K PX X P T B K X PX X C QC X u Ru  (2.21) 

where   

1
[ ]C C I-  (2.22) 

Consider the fixed control input (2.8) as 

1d
u K x K y K X  (2.23) 

where 
'

1
[ ]K K K . Putting (2.20) and (2.23) into (2.21), the LQT Bellman equation 

gives the augmented LQT Lyapunov equation 
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1 1 1 1 1 1 1 1
( ) ( ) 0T T TT B K P P T B K P C QC K RK  (2.24) 

Based on (2.21), define the Hamiltonian 

1 1 1 1
( , , ) ( ) ( )T T T T T TH X u P TX B u PX X P TX B u X PX X C QC X u Ru

 

(2.25) 

Theorem 2.1. Causal solution for the LQT problem. The optimal control solution for 

the infinite-horizon LQT problem is given by 

1
u K X  (2.26) 

where  

1

1 1

TK R B P  (2.27) 

and P  satisfies the augmented LQT ARE 

1

1 1 1 1
0 T T TT P PT P PB R B P C QC  (2.28) 

Proof: A necessary condition for optimality is stationarity condition 

1
0TH

B PX Ru
u

 (2.29) 

which results in control input (2.26). Substituting (2.20) and (2.26) in the LQT Bellman 

equation (2.21) yields (2.28). This completes the proof. 

Lemma 2.2. Existence of the solution to the LQT ARE. The LQT ARE (2.28) has a 

unique positive semi-definite solution if ( , )A B  is stabilizable and the discount factor 

0  is chosen such that 0.5F I  is stable. 

Proof. Note that the LQT ARE (2.28) can be written as 

    

1

1 1 1 1
0 ( 0.5 ) ( 0.5 )T T TT I P P T I PB R B P C QC  (2.30) 

This amounts to an ARE without discount factor and with the system dynamics given by 

0.5T I  and 
1
B . Therefore, a unique solution to the LQT ARE (2.30) and consequently 
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the LQT ARE (2.28) exists if 
1

( 0.5 , )T I B  is stabilizable. This requires that 

( 0.5 , )A I B  be stabilizable and 0.5F I  be stable. However, since ( , )A B  is 

stabilizable, then ( 0.5 , )A I B  is also stabilizable for any 0 . This completes the 

proof.  

Remark 2.4. The fact that 0.5F I  should be stable to have a solution to the LQT ARE 

supports the conclusion of Remark 2.3 for the existence of a solution to the LQT problem. 

In Remark 2.3, it is further elaborated how to choose the discount factor to make sure the 

LQT problem has a solution.      

Remark 2.5. The optimal control input (2.26) can be written in form of 
d

u K x K y , as 

in (2.23). Therefore, similar to the standard solution given in Section 2.2, the proposed 

control solution (2.26) has both feedback feedforward control parts. However, in the 

proposed method, both control parts are obtained simultaneously by solving an LQT ARE 

in a causal manner. This causal formulation is a consequence of Assumption 2.2 and the 

quadratic form (2.9), (2.20).  

Now a formal proof is given to show that the LQT ARE solution makes the 

tracking error 
d d
e Cx y  bounded and it asymptotically stabilizes 

( 2)
( ) ( )

t

d d
e t e e t . 

The following key fact is instrumental. 

Lemma 2.3. For any admissible control policy ( )u X , let P  be the corresponding solution 

to the Bellman equation (2.21). Define 
* 1

1
( ) Tu X R B PX . Then 

* * *( , , ) ( , , ) ( ) ( )TH X u P H X u P u u R u u  (2.31) 

where H  is the Hamiltonian function defined in (2.25).  
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Theorem 2.2. Stability of the LQT ARE solution. Consider the LQT problem for the 

system (2.1) with performance function (2.7). Suppose that *P  is a smooth positive-

definite solution to the tracking LQT ARE (2.28) and define the control input 

* 1 *

1

Tu R B P X . Then, *u  makes 
( 2)

( ) ( )
t

d d
e t e e t  asymptotically stable. 

Proof. For any continuous value function ( ) TV X X PX , by differentiating ( )V X  along 

the augmented system trajectories, one has 

1 1

( )
( ) ( )T TdV X
TX B u PX X P TX B u

dt
 (2.32) 

so that  

1 1

( )
( , , ) ( ) T T TdV X
H X u P V X X C QC X u Ru

dt
 (2.33) 

Suppose now that *P  satisfies the LQT ARE (2.28). Then, using (2.31) and since 

* * *( , , ) 0H X u P , one has 

* *

1 1

( )
( ) ( ) ( )T T T TdV X
V X X C QC X u Ru u u R u u

dt
 (2.34) 

Selecting *

1
u u K X  gives 

1 1 1 1

( )
( ) ( ) 0T T TdV X
V X X C QC K RK X

dt
 (2.35) 

where 
1
K  is the control gain obtained by solving the LQT ARE and it is given in (2.27). 

Multiplying te  to the both sides of (2.35) and using ( ) TV X X PX  gives 

1 1 1 1
( ) ( ) 0t T t T T Td
e X PX e X C QC K RK X

dt
 (2.36) 

Now define the new state 
( 2)

( ) ( )
t

X t e X t  and consider the Lyapunov function 

( ) TV X X PX . Then using (2.36) one has 
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1 1 1 1
( ) ( ) 0T T TV X X C QC K RK X  (2.37) 

Therefore ( )X t  is asymptotically stable. On the other hand, since 
1d

e C X  and 
1

0C , 

thus e  is also asymptotically stable.  

Remark 2.6. Note that a discounted performance function is used in [27], section 3.6, for 

optimal tracking control of N-player differential games. However, it does not consider 

developing a value function in terms of both the state and the desired trajectory and 

consequently obtaining both feedback and feedforward control inputs simultaneously by 

solving a LQT ARE. 

Remark 2.7. The discount factor  and the weight matrix Q  in (2.7) are design 

parameters and they can be chosen appropriately to make the system state goes to a 

very small region around zero. The larger the Q  is, the more negative the Lyapunov 

function (2.37) is and consequently the faster the tracking error decreases. Also, the 

smaller the discount factor is, the faster the tracking error decreases. 

2.4. Reinforcement learning algorithms for finding the solution to the LQT ARE 

In this section, first an offline solution to the LQT ARE is presented. Then, a CT 

Bellman equation is developed based on the IRL idea. Based on this, IRL algorithm is 

employed to solve the LQT problem online in real time and without the need for the 

knowledge of drift dynamics of the system Ax  and command generator dynamics 
d

F y . 

Finally, off-policy RL algorithm is employed to learn the solution to the LQT ARE without 

requiring any knowledge of the system dynamics and the command generator.  

The LQT Lyapunov equation (2.24), which can be solved to evaluate a fixed 

control policy, is linear in P  and is easier to solve than the LQT ARE (2.28). This is the 
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motivation for introducing an iterative technique to solve the LQT problem. An iterative 

Lyapunov method for solving the LQT problem is given as follows.  

Algorithm 2.1. Offline policy iteration for solving the LQT problem 

Initialization: Start with an admissible control input 0

1u K X   

Policy evaluation: Given a control gain 
1

iK , find iP  using the LQT Lyapunov equation 

1 1 1 1 1 1 1 1
( 0.5 ) ( 0.5 ) ( ) ( ) 0i T i i i T i T iT I B K P P T I B K C QC K R K

 

(2.38) 

Policy improvement: update the control gain using 

1 1

1 1

i T iK R B P  (2.39) 

Algorithm 2.1 is an offline algorithm which extends Kleinman’s algorithm [56] to 

the LQT problem. It is shown in [56] that if the initial control policy is stabilizing, then all 

subsequent control policies will also be stabilizing. Convergence of Kleinman’s algorithm 

to the solution of the ARE is also shown. 

To obviate the need for complete knowledge of the system dynamics, the IRL 

algorithm [112], [113] can be extended to the LQT problem. The IRL is a PI algorithm 

which uses an equivalent formulation of the Lyapunov equation that does not involve the 

system dynamics. Hence, it is central to the development of model-free RL algorithms for 

CT systems. To obtain the IRL Bellman equation for the LQT problem, note that for time 

interval 0t , the value function (2.7) satisfies 

( )

1 1

1
( ) ( ) ( ) ( )

2

t t
tt T T T

t

V X t e X t C Q C X t u Ru d e V X t t  (2.40) 

where 1C  is defined in (2.22). Using (2.20) in (2.40) yields the LQT IRL Bellman equation 

( )

1 1
( ) ( ) ( ) ( ) ( ) ( )

t t
tT t T T T T

t

X t PX t e X t C QC X t u Ru d e X t t PX t t

 

(2.41) 
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The first term of (2.41) is known as the integral reinforcement. 

Lemma 2.4. Equivalence of the Lyapunov equation (2.24) and the IRL Bellman 

equation (2.41). The LQT IRL Bellman equation (2.41) and the LQT Lyapunov equation 

(2.24) have the same positive semi-definite solution for value function. 

Proof. Dividing both sides of (2.41) by t  and taking limit yields 

0

( )

1 1

0

( ) ( ) ( ) ( )
lim

( ) ( )

lim 0

t T T

t

t t
t T T T

t

t

e X t t P X t t X t P X t

t

e X t C Q C X t u Ru d

t

 (2.42) 

By L’Hopital’s rule, then 

1 1

1 10

( ) ( )

lim ( ) ( )

t t
t T T T

T T Tt

t

e X t C Q C X t u R u d

X t C Q C X t u R u
t

 
(2.43) 

and also 

0

0

( ) ( ) ( ) ( )
lim

lim ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

tT T

t

t tT T

t

t T T T T

X t P X t e X t t P X t t

t

e X t t P X t t e X t t P X t t

e X t t P X t t X t P X t X t P X t X t P X t

 

(2.44) 

Using the system dynamics (2.19) in (2.44) and putting (2.43) and (2.44) in (2.42) gives 

the Bellman equation (2.21). On the other hand, the Bellman equation (2.21) has the 

same value function solution as the Lyapunov equation (2.24) and this completes the 

proof. 

Using (2.41) instead of (2.24) in policy evaluation step of Algorithm 2.1, the 

following IRL-based algorithm is obtained. 
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Algorithm 2.2. Online IRL algorithm for solving the LQT problem 

Initialization: Start with an admissible control input 0 0

1
u K X   

Policy evaluation: Given a control policy iu , find iP  using the Bellman equation 

1 1

1
( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( )

[ ]
t t

tT i T T i T i

t
t T i

X t P X t e X t C Q C X t u R u d

e X t t P X t t

 (2.45) 

Policy improvement: update the control input using 

1 1

1

i T iu R B P X  (2.46) 

The policy evaluation and improvement steps (2.45) and (2.46) are repeated until 

the policy improvement step no longer changes the present policy, thus convergence to 

the optimal controller is achieved. That is, until 1i iP P  is satisfied, where  is a 

small constant. Algorithm 2.2 does not require knowledge of A  and F .  

According to Lemma 2.4, the IRL Bellman equation (2.45) in Algorithm 2.2 has 

the same value function solution as the Lyapunov equation (2.38) in Algorithm 2.1. 

Therefore, iterating between (2.45) and (2.46) in Algorithm 2.2 is equivalent to iterating 

between (2.38) and (2.39) in Algorithm 2.1. Thus, similar to Algorithm 2.1, if the initial 

control policy is stabilizing in Algorithm 2.2, then all subsequent control policies will be 

stabilizing and the algorithm converges to the optimal policy, provided that the unique 

solution to the IRL Bellman equation (2.45) is obtained at each iteration. This unique 

solution can be uniquely determined using the least squares technique under some PE 

condition, as shown in [113]. 

Remark 2.8. The PE condition can be satisfied by injecting a probing noise into the 

control input. This can cause biased results. However, it was shown in [62] that 
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discounting the performance function can significantly reduce the deleterious effects of 

probing noise. Moreover, since the probing noise is known a priori, one can consider its 

effect into the IRL Bellman equation, as in [59], to avoid affecting the convergence of the 

learning process. 

Remark 2.9. The proposed IRL Algorithm 2.2 has the same structure as the IRL 

algorithm in [113] for solving the LQR problem. However, in the proposed algorithm, the 

augmented system state involves the reference trajectory in it and also a discount factor 

is used in the IRL Bellman equation of Algorithm 2.2. In fact, using Assumption 2.2 and 

developing Lemmas 2.1 and 2.4 and Theorem 2.1 allows us to extend the IRL algorithm 

to the LQT problem. 

Remark 2.10. The solution for iP  in the policy evaluation step (2.45) is generally carried 

out in a least squares (LS) sense. In fact (2.45) is a scalar equation and P  is a 

symmetric n n  matrix with ( 2) 2n n  independent elements and therefore at least 

( 2) 2n n  data sets are required before (2.45) can be solved using LS. Both batch LS 

and recursive LS methods can be used to perform policy evaluation step (2.45).  

Remark 2.11. The proposed policy iteration Algorithm 2.2. requires an initial admissible 

policy. If one knows that the system to be control is itself stable, which is true for many 

cases, then the initial policy can be chosen as 0u  and the admissibility of the initial 

policy is guaranteed without requiring any knowledge of A . Moreover, if the reference 

trajectory is bounded, which is true for most real-world applications, no knowledge of F  

is needed. Otherwise, the initial admissible policy can be obtained by using some 

knowledge of T . Suppose the system (2.1) has a nominal model 
NT  satisfying 

NT T T   , where T  is unknown part of T . In this case, one can use robust control 
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methods such as H
 control with the nominal model 

NT  to yield an admissible initial 

policy. Note that the learning process does not require any knowledge of T . Finally, 

Algorithm 2.2 is a policy iteration algorithm and IRL value iteration can be used to avoid 

the need for an initial admissible policy. 

The IRL Algorithm 2.2 requires knowledge of the input dynamics B . In the 

following, we extend this method for discounted performance function such that it can be 

used for solving LQT problem. To this end, the system dynamics is first written as 

( )i
i

x A x B K x u  (2.47) 

with i

i
A A BK . Then, one has the following Bellman equation 

( )

( )

( ) 1

( ) ( ) ( ) ( ) [ ( )

2( ) ]

2 ( )

t T
T T i T i t T T i i i

i it

t T
i T T i t T

it

t T
t i T i

t

e x t T P x t T x t P x t e x A P P A P x

u K x B P x d e x Q x d

e u K x RK x d

 

(2.48) 

where ( ) ( )T i T i

i
Q C QC K R K . For a fixed control gain iK , the Bellman equation 

(2.48) can be solved for both the value function kernel matrix iP  and the updated 

improved gain 1iK , simultaneously. The following Algorithm 2.3 uses the above Bellman 

equation to iteratively solve the ARE equation.  

 Algorithm 2.3. Online Off-policy RL algorithm for solving LQT problem 

Initialization: Start with a control policy 
0 0u K x e , where 0K  is stabilizing and e  is 

the probing noise.  

Policy evaluation and improvement: Solve the following Bellman equation for iP  and 

1iK  simultaneously 
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( )

( ) 1

( ) ( ) ( ) ( )

2 ( )

t T
T T i T i t T

it

t T
t i T i

t

e x t T P x t T x t P x t e x Q x d

e u K x RK x d
 (2.49) 

Stop if a stopping criterion is met, otherwise set 1i i  and got to 2. 

2.5. Simulation results 

In this section, an example is provided to verify the correct performance of 

Algorithm 2.2 for solving the LQT problem. 

Consider the unstable continuous-time linear system  

0.5 1.5 5
( ) ( ) ( ), ( ) 1 0 ( )

2.0 2 1
x t x t u t y t x t  (2.50) 

and suppose that the desired trajectory is generated by the command generator system 

0
d
y  (2.51) 

with the initial value (0) 3
d
y . So, the reference trajectory is a step input with amplitude 

3. The performance index is given as (2.2) with 10Q and 1R , and the discount 

factor is chosen as 0.1 . 

The solution obtained by directly solving the LQT ARE (2.28) using known 

dynamics 
1

( , )T B  is given by 

*

0.6465 0.0524 0.6221

0.0524 0.0191 0.0244

0.6221 0.0244 1.7360

P  
(2.52) 

and hence using (2.27) the optimal control gain becomes 

*

1
3.2851 0.2813 3.1347K  (2.53) 

It is now assumed that the system drift dynamics and the command generator 

dynamics are unknown and Algorithm 2.2 is implemented online to solve the LQT 
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problem for the system. The simulation was conducted using data obtained from the 

augmented system at every 0.05 s. A batch least squares problem is solved after 6 data 

samples and thus the controller is updated every 0.3s. The initial control policy is chosen 

as 1 [ 5.0 1.0 0.5]K     . Fig. 2.1 shows how the norm of the difference between the 

optimal P  matrix and the P  matrix obtained by the online learning algorithm converges 

to zero. Also, Fig 2.2 depicts the norm of the difference between the optimal control gain 

and the control gain obtained by the learning algorithm. From Figs. 2.1 and 2.2, it is clear 

that the value function and control gain parameters converge to their optimal values in 

(2.52) and (2.53) after four iterations. Thus, the solution of the LQT ARE is obtained at 

time t=1.2s. Fig. 2.3 shows the output and the desired trajectory during simulation. It can 

be seen that the output tracks the desired trajectory after the optimal control is found.  

 

 
Fig. 2.1. Convergence of the P matrix parameters to their optimal values 
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Fig. 2.2. Convergence of the control gain parameters to their optimal values 

 
Fig. 2.3. System output versus reference trajectory 

2.6. Conclusion 

Online learning algorithms based on reinforcement learning were presented to 

find the solution to the LQT problem without requiring the knowledge of the system 

dynamics as well as the command generator dynamics. No preceding identification 

procedure was used to identify the unknown dynamics and only measured data using the 

system and the command generator were used to learn the optimal policy. It was shown 

that the proposed algorithm converges to the optimal solution of the LQT problem. A 

simulation example was provided to justify our claim. 
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  Chapter 3

OPTIMAL TRACKING CONTROL OF PARTIALLY-UNKNOWN NONLINEAR 

CONSTRAINED-INPUT SYSTEMS 

3.1. Introduction 

This chapter extends the results of the previous chapter to nonlinear systems. In 

this case the theoretical development becomes a bit more complicated since finding the 

optimal solution requires the solution to a tracking HJB equation, a nonlinear partial 

differential equation which is in general impossible to be solved analytically. Moreover, 

the amplitude limitation on the control inputs is taken into account. In fact, in the existing 

formulation for the optimal tracking control problem (OTCP), it is not possible to encode 

the input constraints into the optimization problem a priori, as only the cost of the 

feedback part of the control input is considered in the performance function. Therefore, 

the existing RL-based solutions to the OTCP offer no guarantee on the remaining control 

inputs on their permitted bounds during and after learning. This may result in 

performance degradation or even system instability.  

In this chapter, an online adaptive controller is developed based on the IRL 

technique to learn the OTCP solution for nonlinear continuous-time systems without 

knowing the system drift dynamics or the command generator dynamics. The input 

constraints are encoded into the optimization problem a priori by employing a suitable 

nonquadratic performance function. A tracking HJB equation related to this nonquadratic 

performance function is derived which gives both feedforward and feedback parts of the 

control input simultaneously. An IRL algorithm, implemented on an actor-critic structure, 

is used to find the solution to the tracking HJB equation online using only partial 

knowledge about the system dynamics. In contrast to the existing work, a preceding 

identification procedure is not needed and the optimal policy is learned using only 
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measured data from the system. Convergence of the proposed learning algorithm to a 

near-optimal control solution and the boundness of the tracking error and the actor and 

critic NNs weights during learning are also shown. 

The remainder of this chaper is organized as follows. The next section formulates 

the optimal tracking problem and provides the standard solution to it. A new formulation 

for the OTCP is presented in Section 3.3 and the traking Bellman and HJB equations 

corresponding to this formulation are found in Section 3.4.Section 3.5 shows how to find 

the solution to the tracking HJB equation online in real time and using only partial 

knowledge about the system dynamics. Sections 3.6 and 3.7 provide the simulation 

results and conclusion, respectively. 

3.2. Optimal tracking control for nonlinear systems 

In this section, a review of the OTCP for continuous-time nonlinear systems is 

given. It is pointed out that the standard solution to the given problem requires complete 

knowledge of the system dynamics. It is also pointed out that the input constraints 

caused by the actuator saturation cannot be encoded into the standard performance 

function a priori. A new formulation of the OTCP problem is given in the next section to 

overcome these shortcomings. 

3.2.1. Problem Formulation 

Consider the affine CT dynamical system describe by 

( ) ( ( )) ( ( )) ( )x t f x t g x t u t  (3.1) 

where nx   is the measurable system state vector, ( ) nf x  is the drift dynamics of 

the system, ( ) n mg x  is the input dynamics of the system, and ( ) mu t  is the control 

input. The elements of ( )u t are defined by ( ), 1,...,
i
u t i m . 
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Assumption 3.1. It is assumed that (0) 0f  and ( )f x  and ( )g x are lipschitz, and that 

the system (3.1) is controllable in the sense that there exists a continuous control on a 

set  n  which stabilizes the system. 

Assumption 3.2 . The following assumptions are considered on the system dynamics 

a)  ( )
f

f x b x  for some constant 
f
b . 

b)  ( )g x  is bounded by a constant 
g
b , i.e. ( )

g
g x b .  

Note that Assumption 3.2(a) requires ( )f x  be lipschitz and (0) 0f  (see 

Assumption 3.1) which is a standard assumption to make sure the solution ( )x t  of the 

system (3.1) is unique for any finite initial condition. On the other hand, although 

Assumption 3.2(b) restricts the considered class of nonlinear systems, many physical 

systems, such as robotic systems [96] and aircraft systems fulfill such a property.  

The goal of the optimal tracking problem is to find the optimal control policy *( )u t  

so as to make the system (3.1) track a desired (reference) trajectory 1( ) n

d
x t  in an 

optimal manner by minimizing a predefined performance function. Moreover, the input 

must be constrained to remain within predefined limits ( ) , 1,...,
i
u t i m . 

Define the tracking error as 

( ) ( ) ( )
d d
e t x t x t  (3.2) 

A general performance function leading to the optimal tracking controller can be 

expressed as 

( )( ( ), ( )) [ ( ( )) ( ( ))]t

d d d

t

V e t x t e E e U u d  (3.3) 
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where ( )
d

E e  is a positive-definite function, ( )U u  is a positive-definite integrand function, 

and  is the discount factor.  

Note that the performance function (3.3) contains both the tracking error cost and 

the whole control input energy cost. The following assumption is made in accordance to 

other work in the literature.  

Assumption 3.3. The desired reference trajectory ( )
d
x t  is bounded and there exists a 

Lipschitz continuous command generator function ( ( )) n

d d
h x t  such that  

( ) ( ( ))
d d d
x t h x t  (3.4) 

and (0) 0
d
h . 

Note that the reference dynamics need only be stable in the sense of Lyapunov, 

not necessarily asymptotically stable. 

3.2.2. Standard formulation and solution to the OTCP 

In this section, the standard solution to the OTCP and its shortcomings are 

discussed. In the existing standard solution to the OTCP, the desired or the steady-state 

part of the control input ( )
d
u t  is obtained by assuming that the desired reference 

trajectory satisfies 

( ) ( ( )) ( ( )) ( )
d d d d
x t f x t g x t u t  (3.5) 

If the dynamics of the system is known and the inverse of the input dynamics
1( ( ))
d

g x t

exists, the steady-state control input which guarantees perfect tracking is given by 

1( ) ( ( ))( ( ) ( ( ))
d d d d
u t g x t x t f x t  (3.6) 

On the other hand, the feedback part of the control is designed to stabilize the tracking 

error dynamics in an optimal manner by minimizing the following performance function  
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( ( )) [ ( ) ( ) ]T T

d d d e et
V e t e Q e u Ru d  (3.7) 

where ( ) ( ) ( )
e d
u t u t u t  is the feedback control input. The optimal feedback control 

solution *( )
e
u t  which minimizes (3.7) can be obtained by solving the HJB equation related 

to this performance function. 

The standard optimal solution to the OTCP is then constituted by the optimal 

feedback control *( )
e
u t  obtained.  

Remark 3.1. The optimal feedback part of the control input *( )
e
u t  can be learned using 

the integral reinforcement learning method to obviate knowledge of the system drift 

dynamics. However, the exact knowledge of the system dynamics is required to find the 

steady-state part of the control input given by (3.6), which cancels the usefulness of the 

IRL technique.  

Remark 3.2. Because only the feedback part of the control input is obtained by 

minimizing the performance function (3.7), it is not possible to encode the input 

constraints into the optimization problem by using a nonquadratic performance function, 

as has been performed in the optimal regulation problem [3].  

3.3. A new formulation for OTCP of CT constrained-input systems 

In this section, a new formulation for the OTCP is presented. In this formulation, 

both the steady-state and feedback parts of the control input are obtained simultaneously 

by minimizing a new discounted performance function in the form of (3.3). The input 

constraints are also encoded into the optimization problem a priori. A tracking HJB 

equation for the constrained OTCP is derived and an iterative offline IRL algorithm is 
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presented to find its solution. This algorithm provides a basis to develop an online IRL 

algorithm for learning the optimal solution to the OTCP for partially-unknown systems, 

which is discussed in the next section.  

In the following, first an augmented system composed of the tracking error 

dynamics and the command generator dynamics is constructed. Then, based on this 

augmented system, a new discounted performance function for the OTCP is presented. It 

is shown that this performance function is identical to the performance function (3.3). 

The tracking error dynamics can be obtained by using (3.1) and (3.2), and one 

has 

( ) ( ( )) ( ( )) ( ( )) ( )
d d d
e t f x t h x t g x t u t  (3.8) 

Define the augmented system state  

2( ) ( ) ( )
T

T n
d d

X t e t x t  (3.9) 

Then, putting (3.4) and (3.8) together yields the augmented system 

( ) ( ( )) ( ( )) ( )X t F X t G X t u t  (3.10) 

where ( ) ( ( ))u t u X t  and 

( ( ) ( )) ( ( ))
( ( ))

( ( ))
d d d d

d d

f e t x t h x t
F X t

h x t
 (3.11) 

( ( ) ( ))
( ( ))

0
d d

g e t x t
G X t  (3.12) 

Based on the augmented system (3.10), the following discounted performance function is 

introduced for the OTCP. 

( )( ( )) [ ( ) ( ) ( ( ))]t T

T

t

V X t e X Q X U u d  (3.13) 
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where 0  is the discount factor,  

, 0
T

Q
Q Q

0

0 0
 (3.14) 

and ( )U u  is a positive-definite integrand function defined as 

1

0
( ) 2 ( ( ))

u
TU u v Rdv  (3.15) 

where mv , (.) tanh(.) ,  is the saturating bound for the actuators and 

( ,..., )1 0mR diag r r   is assumed to be diagonal for simplicity of analysis. This 

nonquadratic performance function is used in the optimal regulation problem of 

constrained-input systems to deal with the input constraints [3], [79]. Denote 

1

1 1
( ) ( ( )) ( ) ( )T

m m
v v R v v . Then the integral in (3.15) is defined as 

                              
0 0

1

( ) 2 ( ) 2 ( )
i

mu u

i i i
i

U u v dv v dv                             (3.16) 

It is clear that ( )U u  in (3.16) is a scalar for mu . In fact, using this nonquadratic 

performance function, the following constraints are always satisfied. 

( ) 1,...,
i
u t i m  (3.17) 

Note that from (3.10)-(3.12) it is clear that, as expected, the command generator 

dynamics are not under our control. Since they are assumed be bounded, the 

admissibility of the control input implies the boundness of the states of the augmented 

system.  

Remark 3.3. Note that for the first term under the integral we have T T

T d d
X Q X e Qe . 

Therefore, this performance function is identical to the performance function (3.3) with 

( ( )) T

d d d
E e e Qe  and ( )U u  given in (3.15).  
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Remark 3.4. The use of the discount factor in the performance function (3.13) is 

essential. This is because the control input contains a steady-state part which in general 

makes (3.13) unbounded without using a discount factor, and therefore the meaning of 

minimality is lost.  

Remark 3.5. Note that both steady-state and feedback parts of the control input are 

obtained simultaneously by minimizing the discounted performance function (3.13) along 

the trajectories of the augmented system (3.10). As is shown in the subsequent sections, 

this formulation enables us to extend the IRL technique to find the solution to the OTCP 

without requiring the augmented system dynamics F . That is, both the system drift 

dynamics f  and the command generator dynamics 
d
h  are not required. 

3.4. Tracking Bellman and Tacking HJB Equations 

In this section, the optimal tracking Bellman equation and the optimal tracking 

HJB equation related to the defined performance function (3.13) are given.  

Using Leibniz’s rule to differentiate V  along the augmented system trajectories 

(3.10), the following tracking Bellman equation is obtained  

( )( ) ( ) ( )( )t T T

T T

t

V X e X Q X U u d X Q X U u
t

 (3.18) 

Using (3.15) in (3.18) and noting that the first term in the right hand side of (3.18) is equal 

to ( )V X , gives 

1

0
2 ( tanh ( )) ( ) ( ) 0

u
T T

T
X Q X v Rdv V X V X  (3.19) 

or, by defining the Hamiltonian function 

1

0
( , , ) 2 ( tanh ( )) ( )

( ) ( ( ) ( ) ( )) 0

u
T T

T

T

H X u V X Q X v Rdv V X

V X F X G X u X
 (3.20) 

http://en.wikipedia.org/wiki/Leibniz_integral_rule
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where 2( ) ( ) nV X V X X . Let ( )V X  be the optimal cost function defined as 

( )

( )
( ( )) min [ ( )]t T

Tu t
V X t e X Q X U u d  (3.21) 

Then, based on (3.20), ( )V X  satisfies the tracking HJB equation 

*

* 1 *

0

* *

( , , ) 2 ( tanh ( )) ( )

( ) ( ( ) ( ) ( )) 0

u
T T

T

T

H X u V X Q X v Rdv V X

V X F X G X u X
 (3.22) 

The optimal control input for the given problem is obtained by employing the stationarity 

condition on the Hamiltonian (3.20). The result is 

1

( )
( ) argmin [ ( , , )] tanh((1 2 ) ( ) ( ))T

u
u X H X u V R G X V X  (3.23) 

This control is within its permitted bounds . The nonquadratic cost (3.15) for u  is  

1 1 2 2

0
( ) 2 ( tanh ( )) 2 (tanh ( )) ln( -( ) )

u
T TU u v Rdv u R u R u1

 

(3.24) 

where 1  is a column vector having all of its elements equal to one, and 

1

1
[ ,..., ] m

m
R r r . Putting (3.23) in (3.24) results in 

2 2( ) ( ) ( )tanh( ) ln( tanh ( ))TU u V X G x D R D1  (3.25) 

where 
1(1 2 ) ( ) ( )TD R G X V X . Substituting u (3.23) back into (3.22) and using 

(3.25), the tracking HJB equation (3.22) becomes  

* * 2 2( , , ) ( ) ( ) ( ) ln( tanh ( )) 0T T

T
H X u V X Q X V X V X F X R D1

 

(3.26) 

To solve the OTCP, one solves the HJB equation (3.26) for the optimal value V , 

then the optimal control is given as a feedback 
*( )uV  in terms of the HJB solution using 

(3.23). 
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Now a formal proof is given that the solution to the tracking HJB equation for 

constrained-input systems provides the optimal tracking control solution and when the 

discount factor is zero it locally asymptotically stabilizes the error dynamics (3.8). The 

following key fact is instrumental. 

Lemma 3.1. For any admissible control policy ( )u X , let ( ) 0V X  be the corresponding 

solution to the Bellman equation (3.20). Define 
*( ) ( ( ))u X uV X  by (3.23) in terms of 

( )V X . Then 

*

* * 1( , , ) ( , , ) ( ) ( )( ) 2 ( tanh ( ))
u

T T

u
H X u V H X u V V X G X u u v Rdv  (3.27) 

Proof. The Hamiltonian function is 

1

0
( , , ) 2 ( tanh ( )) ( )

( ) ( ( ) ( ) ( ))

u
T T

T

T

H X u V X Q X v Rdv V X

V X F X G X u X
 (3.28) 

Adding and subtracting the terms 
*

1

0
2 ( tanh ( ))

u
Tv Rdv  and 

*( ) ( ) ( )TV X G X u X to 

(3.28) yields 

*

*

1

0

* *

1

( , , ) 2 ( tanh ( )) ( )

( )( ( ) ( ) ( )) ( ) ( )( ( ) ( ))

2 ( tanh ( ))

u
T T

T

T T

u
T

u

H X u V X Q X v Rdv V X

V X F X G X u X V X G X u X u X

v Rdv

 (3.29) 

which gives (3.31) and completes the proof.  

Theorem 3.1. Consider the optimal tracking control problem for the augmented system 

(3.10) with performance function (3.13). Suppose that 
*V is a smooth positive definite 

solution to the tracking HJB equation (3.26). Define control 
* *( ( ))u uV X  as given by 

(3.23). Then, 
*u  minimizes the performance index (3.13) over all admissible controls 

constrained to , 1,...,
i
u i m , and the optimal value on [0, )  is given by 

*( (0))V X . 
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Moreover, when the discount factor is zero, the control input 
*u  makes the error 

dynamics (3.8) asymptotically stable. 

Proof: The optimally of the HJB solution is first shown. Note that for any continuous 

value function ( )V X , one can write the performance function (3.13) as 

0 0

0 0

0

( (0), ) [ ( )] ( ( )) ( (0))

[ ( )] [ ( ) ( ) ( )]

( (0)) ( , , ) ( (0))

T

T

T T

T

d
V X u e X Q X U u d e V X d V X

dt

e X Q X U u d e V X F Gu V X d

V X e H X u V d V X

 (3.30) 

Now, suppose ( )V X  satisfies the HJB equation (3.26). Then 
* * *( , , ) 0H X u V  and  

(3.31) yields 

*

1 * *

0
*

( (0), ) (2 ( tanh ( )) ( ) ( ) ( ))

( (0))

u
T T

u
V X u e v Rdv V X G X u u d

V X

 (3.31) 

To prove that 
*u  is the optimal control solution and the optimal value is 

*( (0))V X , it 

remains to show that  the integral term in the right-hand side of the above equation is 

bigger than zero for all 
*u u and attains it minimum value, i.e., zero, at 

*u u . That is, 

to show that 

*

1 * *2 ( tanh ( )) ( ) ( )( )
u

T T

u
H v Rdv V X G X u u  (3.32) 

is bigger than or equal to zero. To show this, note that using (3.23) one has 

* 1( ) ( ) 2( tanh ( ))T TV X G X v R  (3.33) 

Substituting (3.33) in (3.32) and noting φ 1 1(.) ( tanh (. ))T  yields 
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φ φ
*

1 * * 12 ( ) ( ) 2 ( )
u

u
H u R u u v Rdv  (3.34) 

As R  is symmetric positive definite, one can rewrite it as R , where  is a 

triangular matrix with its values being the singular values of R  and  is an orthogonal 

symmetric matrix. 

Substituting for R  in (3.34) and applying the coordinate change 
1u u , one 

has 

β β

φ φ
*

*

1 1 * * 1 1

* *

2 ( ) ( ) 2 ( )

2 ( ) ( ) 2 ( )

u

u

u

u

H u u u d

u u u d
 (3.35) 

where β φ 1 1( ) ( )u u . Note that β  is monotone odd because 
1tanh  is monotonic 

odd. Since  is a triangular matrix, one can decouple the transformed input vector as 

*

* *

1

2 ( )( ) ( )
k

k

m u

kk k k k k ku
k

H u u u dβ β  (3.36) 

where 0, 1,..,
kk

k m , since 0R . To complete the proof it remains to show that 

the term 

*

* *( )( ) ( )
k

k

u

k k k k k ku
u u u dL =β β  (3.37) 

is bigger than zero for 
*u u  and is zero for 

*u u . To show this, first assume for 

simplicity that 
k
u  is a scalar. The extension to the vector case is straightforward. Now 

assume that *

k k
u u . Then using mean value theorem for the integrals, there exists a 

*( , )
k k k
u u u such that 

*

* * *( ) ( )( ) ( )( )
k

k

u

k k k k k k k ku
d u u u u u uβ β β  (3.38) 
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where the inequality is obtained by the fact that β  is monotone odd, and hence 

*( ) ( )
k k
u uβ β . Therefore, 0

k
L  for *

k k
u u . Now suppose that *

k k
u u . Then, using 

mean value theorem for the integrals, there exists a *( , )
k k k
u u u such that  

*

*

* * *

* *

( ) ( ) ( )( ) ( )( )

( )( )

k k

k k

u u

k k k k k k k k k ku u

k k k

d d u u u u u u

u u u

β β β < -β

β

 (3.39) 

where the inequality is obtained by the fact that β  is monotone odd, and hence 

*( ) ( )
k k
u uβ β . Therefore 0

k
L  also for *

k k
u u . This completes the proof of the 

optimality. 

Now the stability of the error dynamics is shown. Note that for any continuous 

value function ( )V X , by differentiating ( )V X  along the augmented system trajectories, 

one has 

( ) ( ) ( ) ( )
( ( ) ( ) )

T TdV X V X V X V X
X F X G X u

dt t X X
 (3.40) 

so that  

1

0

( )
( , , ) ( ) 2 ( tanh ( ))

u
T T

T

dV X
H X u V V X X Q X v Rdv

dt
 (3.41) 

Suppose now that ( )V X  satisfies the HJB equation  
* * *( , , ) 0H X u V  and is positive 

definite. Then, substituting  
*u u  gives 

1

0

( )
( ) 2 ( tanh ( )) 0

u
T T

T

dV X
V X X Q X v Rdv

dt
 (3.42) 

or equivalently, 

1

0

( )
( ) 2 ( tanh ( ))

u
T T

T

dV X
V X X Q X v Rdv

dt
 (3.43) 

Multiplying 
te  to both sides of (3.43) gives 
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1

0
( ( )) ( 2 ( tanh ( )) ) 0

u
t t T T

T

d
e V X e X Q X v Rdv

dt
 (3.44) 

Equation (3.36) shows that that the tracking error is bounded for the optimal 

solution, but its asymptotic stability cannot be concluded. However, if 0  (which can 

be chosen only if the reference input goes to zero), LaSalle’s extension can be used to 

show that the tracking error is locally asymptotically stable. In fact, based on LaSalle’s 

extension, the augmented state [ , ]
d d

X e x  goes to a region of  
2n

 wherein 0V . 

Considering that 
T T

T d d
X Q X e Qe  with 0Q , 0V  only if 0

d
e  and 0u . Since 

0u  also requires that 0
d
e , therefore, for 0  the tracking error is locally 

asymptotically stable with Lyapunov function ( ) 0V X . This confirms that in the limit as 

the discount factor goes to zero, the control input 
*u  makes the error dynamics (3.8) 

asymptotically stable.  

Note that although for 0  (which is essential to be considered if the reference 

trajectory does not go to zero) only boundness of the tracking error is guaranteed for the 

optimal solution, one can make the tracking error as small as desired by choosing a small 

discount factor and/or large Q . To demonstrate this, assume that the tracking error is 

nonzero. Then, considering that 
T T

T d d
X Q X e Qe  with 0Q , the derivative of the 

Lyapunov function in (3.36) becomes negative and therefore the tracking error decreases 

until the exponential term 
te  becomes zero and makes the derivative of the Lyapunov 

function zero. After that, we can only conclude that the tracking error does not increase 

anymore. The larger the Q  is the more the speed of decreasing the tracking error is and 

the smaller tracking error can be achieved. Moreover, the smaller the discount factor is 

the less the speed of decreasing the derivative of the Lyapunov function to zero is and 

the smaller tracking error can be achieved. Consequently, by choosing a smaller discount 
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factor and/or larger Q  one can make the tracking error as small as desired before the 

value of 
te  becomes very small.  

Remark 3.6. The use of discounted cost functions is common in optimal regulation 

control problems and the same conclusion can be drawn for asymptotic stability of the 

system state in the optimal regulator problem, as is drawn here for asymptotic stability of 

the tracking error in the OTCP. However, the discount factor is a design parameter and 

as is shown in optimal regulation control problems in the literature, it can be chosen small 

enough to make sure the system state goes to a very small region around zero. 

Simulation results in confirm this conclusion for the OTCP. 

The tracking HJB equation (3.26) is a nonlinear partial differential equation which 

is extremely difficult to solve. In this section, two iterative offline policy iteration (PI) 

algorithms are presented for solving this equation. An IRL based offline PI algorithm is 

given which is a basis for our online IRL algorithm presented in the next section. 

Note that the tracking HJB equation (3.26) is nonlinear in the value function 

derivative V , while the tracking Bellman equation (2.19) is linear in the cost function 

derivative V . Therefore, finding the value of a fixed control policy by solving (3.19) is 

easier than finding the optimal value function by solving (3.26). This is the motivation of 

introducing an iterative policy iteration (PI) algorithm for approximating the tracking HJB 

solution. The PI algorithm performs the following sequence of two-step iterations as 

follows to find the optimal control policy. 
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Algorithm 3. 1. Offline PI algorithm 

Policy evaluation: Given a control input ( )iu X , find ( )iV X  using the following Bellman 

equation 

1

0
2 ( tanh ( )) ( ) ( )( ( ) ( ) ) 0

iu
T T i iT i

T
X Q X v Rdv V X V X F X G X u

 

(3.45) 

Policy improvement: Update the control policy using 

1 11
( ) tanh( ( ) ( ))

2
i T iu X R G X V X  (3.46) 

Algorithm 3.1 is an extension of the offline PI algorithm in [3] to the optimal 

tracking problem. The following theorem shows that this algorithm converges to the 

optimal solution of the HJB equation (3.26). 

Theorem 3.2. If 0 ( )u , then ( ), 1iu i . Moreover, 
iu  converges to 

*u  and 

iV  converges to 
*V  uniformly on . 

Proof: See [3], [75] for the same proof.  

The tracking Bellman equation (3.45) requires complete knowledge of the 

systems dynamics. In order to find an equivalent formulation of the tracking Bellman 

equation that does not involve the dynamics, we use the IRL idea for optimal regulation 

problem. Note that for any integral reinforcement interval 0T , the value function (3.13) 

satisfies 

( )( ( )) ( ) ( ) ( ( )) ( ( ))
t

t T T T

T

t T

V X t T e X Q X U u d e V X t  (3.47) 

This IRL form of the tracking Bellman equation does not involve the system dynamics.  
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Lemma 3.2. The IRL tracking Bellman equation (3.47) and the tracking Bellman equation 

(3.19) are equivalent and have the same positive semi-definite solution for the value 

function. 

Proof.  See [75] and [112] for the same proof.  

Using the IRL tracking Bellman equation (3.47), the following IRL-based PI 

algorithm can be used to solve the tracking HJB equation (3.26) using only partial 

knowledge about the system dynamics. 

Algorithm 3.2. Offline IRL algorithm 

Policy evaluation: Given a control input ( )iu X , find ( )iV X  using the tracking Bellman 

equation 

( )( ( )) ( ) ( ) ( ( )) ( ( ))
t

i t T T T i

T

t T

V X t T e X Q X U u d e V X t

 

(3.48) 

Policy improvement: Update the control policy using 

1 11
( ) tanh( ( ) ( ))

2
i T iu X R G X V X  (3.49) 

 

3.5. Online Actor-Critic for Solving the Tracking HJB Equation Using the IRL Technique 

In this section, an online solution to the tracking HJB equation (3.26) is presented 

which only requires partial knowledge about the system dynamics. The learning structure 

uses the value function approximation [29] with two NNs, namely an actor and a critic. 

Instead of sequentially updating the critic and actor NNs, as in Algorithm 3.2, both are 

updated simultaneously in real time. This is called synchronous online PI.  
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3.5.1. Critic NN and Value Function Approximation 

Assuming the value function is a smooth function, according to the Weierstrass high-

order approximation theorem [29], there exists a single-layer neural network (NN) such 

that the solution ( )V X  and its gradient ( )V X  can be uniformly approximated as  

                                              
1

( ) ( ) ( )T

v
V X W X X                                             (3.50) 

                                       
1

( ) ( ) ( )T

v
V X X W X                                       (3.51) 

where ( ) lX  provides a suitable basis function vector, ( )
v
X  is the approximation 

error, 
1

lW  is a constant parameter vector and l  is the number of neurons. Equation 

(3.50) defines a critic NN with weights 
1
W . It is know that the NN approximation error and 

its  gradient  are  bounded  over  the  compact  set  ,  i.e. ( )
v
X b  and 

( )
v x
X b  . 

Assumption 3.4 . The critic NN activation functions and their gradients are bounded, i.e. 

( )X b and ( )
x

X b . 

The critic NN (3.50) is used to approximate the value function related to the IRL 

tracking Bellman equation (3.47). Using the value approximation (3.50) in the tracking 

IRL, the Bellman equation (3.47) yields 

( ) 1

10
( ) ( ) ( ) 2 ( tanh ( )) ( ( ))

t
u

t T T T T

B T

t T

t e X Q X v Rdv d W X t

 

(3.52) 

where 

     ( ( )) ( ( )) ( ( ))TX t e X t X t T  (3.53) 



 

46 

 

 

and 
B

 is the tracking Bellman equation error due to the NN approximation error. Under 

Assumption 3.4, this approximation error is bounded on the compact set . That is, there 

exists a constant bound 
max

 for 
B

 such that 
max

sup
B

t
.  

The tuning and convergence of the critic NN weights for a fixed control policy are 

now presented. As the ideal critic NN weights vector 
1
W  which provides the best 

approximate solution to the tracking Bellman (3.52) is unknown, it is approximated in real 

time as 

1
ˆ ˆ( ) ( )TV X W X  (3.54) 

where 
1
Ŵ  is the current estimation of  

1
W . Therefore, the approximate IRL tracking 

Bellman equation becomes 

( ) 1

10

ˆ( ) ( ) ( ) 2 ( tanh ( )) ( ( ))
t

u
t T T T T

B T

t T

e t e X Q X v Rdv d W X t

 

(3.55) 

Equation (3.55) can be written as 

1
ˆ( ) ( ) ( ( )) ( )T

B
e t W t X t p t  (3.56) 

where  

 ( ) 1

0
( ) ( ) ( ) 2 ( tanh ( ))

t
u

t T T T

T

t T

p t e X Q X v Rdv d  (3.57) 

is the integral reinforcement reward. The tracking Bellman error B
e  in equations (3.55) 

and (3.56) is the continuous-time counterpart of the temporal difference (TD). The 

problem of finding the value function is now converted to adjusting the critic NN weights 

such that the TD error 
B
e  is minimized. Consider the objective function 

21

2B B
E e  (3.58) 
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From (3.55) and using the chain rule, the gradient descent algorithm for 
B
E  is given by 

1 1
1 2 2

1

ˆ
ˆ(1 ) (1 )
B

BT T

E
W e

W
 (3.59) 

where 
1

0  is the learning rate and 2(1 )T is used for normalization. Note that 

the square of the denominator, i.e., 2(1 )T , is used in (3.59) for normalization to 

assure the stability of the critic weights error 
1
W . Define 

(1 )T
 (3.60) 

The proof of the convergence of the critic NN weights is shown in the following theorem. 

Theorem 3.3. Let u  be any admissible bounded control policy and consider the adaptive 

law (3.59) for tuning the critic NN weights. If  in (3.60) is PE [45], i.e. if there exist 

1
0  and 

2
0  such that 0t  

1

1 2
( ) ( ) ,

t T
T

t
I d I  (3.61) 

then, 

(a): For ( ) 0
B
t  (no reconstruction error), the critic weight estimation error converges to 

zero exponentially fast. 

(b): For bounded reconstruction error, i.e., 
max

( )
B
t , the critic weight estimation error 

converges exponentially fast to a residual set. 

Proof: Using the IRL tracking Bellman equation (3.52) one has 

( ) 1

10
2 ( tanh ( )) ( ) ( ) ( ( )) ( )

t
u

t T T T

T B

t T

e v Rdv X Q X d W X t t

 

(3.62) 

Substituting (3.62) in (3.55), the tracking Bellman equation error becomes 
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1
( ) ( ) ( ) ( )T

B B
e t W t t t  (3.63) 

where 
1 1 1

ˆW W W  is the critic weights estimation error. 

Using (3.63) in (3.59) and denoting 1 Tm , the critic weights 

estimation error dynamics becomes 

1 1 1 1

( )
( ) ( ) ( ) ( ) ( )

( )
T

B

t
W t t t W t t

m t
 (3.64) 

This estimation error is the same as the critic weight estimation error obtained in [106] 

and the reminder of the proof is identical to the proof of Theorem 3.1 in [106].  

Remark 3.7. The critic estimation error equation (3.64) implies that 
1

TW  is bounded. 

However, in general the boundness of 
1

TW  does not imply the boundness of 
1
W . 

Theorem 3.3 shows that if the PE condition (3.61) is satisfied, then the boundness of 

1

TW  implies the boundness of the state 
1
W . We shall use this property in the proof of 

Theorem 3.4. 

3.5.2. Synchronous Actor-Critic based IRL Algorithm to learn the solution to the OTCP 

In this section, an online IRL algorithm is given which involves simultaneous or 

synchronous tuning of the actor and critic NNs to find the optimal value function and 

control policy related to the OTCP, adaptively. 

Assume that the optimal value function solution to the tracking HJB equation is 

approximated by the critic NN in (3.50). Then, using (3.51) in (3.23), the optimal policy is 

obtained by 

1

1

1
tanh ( )

2
T T T

v
u R G W  (3.65) 
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To see the effect of the error 
v
 on the tracking HJB equation, note that using 

integration by parts we have 

( ) ( ) ( )( ) ( ) ( )
t t t

t T t T t T

t T t T t T

e d e F Gu d X e X d

 

(3.66) 

or equivalently 

( ) ( )( ) ( )( ) ( )
t t

t T t T

t T t T

X e X F Gu d e X d  (3.67) 

Also, note that ( )U u  in (3.24) for the optimal control input given by (3.65) becomes 

1

10

2 2 1

( ) 2 ( tanh ( ))

ln( tanh ( 0.5 )

u
T T

T

v

U u v Rdv W F u

R D R G1
 (3.68) 

Using (3.67) and (3.68) for the third and second terms of (3.52), respectively, the 

following tracking HJB equation is given 

( ) 2 2

1 1
( ln( tanh ( )) ) 0

t
t T T T T

T HJB

t T

e X Q X W W F R D d1

 

(3.69) 

where 
1

1
(1 2 ) T TD R G W  and 

HJB
, i.e., the HJB approximation error due to the 

function approximation error, is  

( ) 2 2 1

2 2

( ln(1 tanh ( 0.5 )

ln( tanh ( )) )

t
t T T T

HJB v vt T

v

e F R D R G

R D d1
 (3.70) 

Since the NN approximation error is bounded, there exists a constant error bound 
h

, so 

that sup HJB h  . We should note that the choice of the NN structure to make the error 

bound 
h

 arbitrary small is commonly carried out by computer simulation in the literature. 

We assume here that the NN structure is specified by the designer, and the only 

unknowns are the NN weights. 
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To approximate the solution to the tracking HJB equation (3.69), the critic and 

actor NNs are employed. The critic NN given by (3.54) is used to approximate the 

unknown approximate optimal value function. Assuming that 
1
Ŵ  is the current estimation 

for the optimal critic NN weights 
1
W , then using (3.55) the policy update law can be 

obtained by 

1

1 1
ˆtanh((1 2 ) )T Tu R G W  (3.71) 

However, this policy update law does not guarantee the stability of the closed-loop 

system. It is necessary to use a second neural network 
2
ˆTW for the actor because the 

control input must not only solve the stationarity condition (3.23), but also guarantee 

system stability while converging to the optimal solution. This is seen in the Lyapunov 

proof of Theorem 3.4. Hence, to assure stability in a Lyapunov sense, the following actor 

NN is employed. 

1

1 2
ˆˆ tanh((1 2 ) )T Tu R G W  (3.72) 

where 
2
Ŵ  is the actor NN weights vector and it is considered as the current estimated 

value of 
1
W . Define the actor NN estimation error as 

2 1 2
ˆW W W  (3.73) 

Note that using the actor 
1̂
u  in (3.72), the IRL Bellman equation error is now 

given by 

( )

1
ˆ ˆ ˆ( ) ( ) ( ( )) ( )

t
t T T T

T B

t T

e X Q X U d W X t e t  (3.74) 

where   

1̂ 1

0

ˆ 2 ( tanh ( ))
u

TU v Rdv  (3.75) 
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Then, the critic update law (3.59) becomes 

1
1 2
ˆ ˆ

(1 ) BT
W e  (3.76) 

Define the error 
u
e  as the difference between the control input 

1̂
u  (3.72) applied to the 

system and the control input û  (3.71) as an approximation of the optimal control input 

given by ( with V  approximated by (3.54). That is, 

1 1

1 1 2 1

1 1ˆ ˆˆ tanh( ) tanh( )
2 2

( )T T T T

u
e u u R G W R G W  (3.77) 

The objective function to be minimized by the action NN is now defined as 

T

u u u
E e Re  (3.78) 

Then, the gradient-descent update law for the actor NN weights becomes 

2

2 2 2
ˆ ˆ ˆ( tanh ( ) )

u u
W Ge G D e YW  (3.79)  

where 

1

2

1ˆ ˆ ,
2

T TD R G W  (3.80) 

0Y  is a design parameter and the last term of (3.79) is added to assure stability.  

Before presenting our main theorem, note that based on Assumption 3.2 and the 

boundness of the command generator dynamics 
d
h , for the drift dynamics of the 

augment system F  one has  

1 2
( )

F d F
F X b e b  (3.81) 

for some 
1F
b  and 

1F
b .  
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Theorem 3.4. Given the dynamical system (3.1) and the command generator (3.4), let 

the tracking control law be given by the actor NN (3.72). Let the update laws for tuning 

the critic and actor NNs be provided by (3.76) and (3.79), respectively. Let Assumptions 

3.1-3.4 hold and  in (3.60) be persistently exciting. Then there exists a 
0
T  defined by 

(A.25) such that for the integral reinforcement interval 
0

T T  the tracking error 
d
e  in 

(3.2), the critic NN error 
1
W , and the actor NN error 

2
W  in (3.73) are UUB [54]. 

Proof. See Appendix. 

Remark 3.8. The stability analysis in the proof of Theorem 3.4 differs from the stability 

proof presented in [108] from at least two different perspectives. First, the actor update 

law in the mentioned papers is derived entirely by the stability analysis whereas our 

proposed actor update law is based on the minimization of the error between the actor 

neural network and the approximate optimal control input. Moreover, in this chapter the 

optimal tracking problem is considered, not the optimal regulation problem, and the 

tracking HJB equation has an additional term depending on the discount factor 

comparing to the regulation HJB equation considered in the mentioned papers. 

Remark 3.9. The proof of Theorem 3.4 shows that the integral reinforcement learning 

time interval T  cannot be too big. Moreover, based on the proof, one can conclude that 

the bigger the reinforcement interval T  is, the bigger the parameter Y in learning rule 

(3.79) should be chosen to assure stability. 

3.6. Simulation results 

In this section, a simulation example is given to show the effectiveness of the 

proposed method. Fig 3.1 shows a spring, mass, damper system. 
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Fig. 3.1. Mass, spring and damper system. 

 

The simulation results constitute of two parts. In the first part, the spring and 

damper are considered to be linear and the actuator bound is chosen large enough to 

make sure the input control does not exceed this bound, and it is shown that how the 

proposed algorithm converges to the optimal solution for a linear system in the absence 

of the input constraints. Note that there are no known solutions to optimal control 

problems for linear systems with input constraints to compare our results to. In the 

second part, the spring is considered to be nonlinear and the actuator saturation is also 

considered to show the effectiveness of the proposed method for control of nonlinear 

systems in the presence of the input constraints. 

3.6.1. Linear system without actuator saturation 

In this subsection, the results of the proposed method are compared to the 

results of the standard solution given in Section 3.2, and also it is shown that the 

proposed method converges to the optimal solution in the absence of the control bounds. 

To this end, the actuator bounds are chosen large enough to make sure the input control 

does not exceed these bounds. 

Assuming that both spring and damper are linear, the spring-mass-damper 

system is described by the following dynamics 
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1 2

2 1 2

1
( )

x x

k c
x x x u t

m m m

 (3.82) 

where 
1

y x , 
1
x  and 

2
x are the position and velocity, m  is the mass of the object, k  is the 

stiffness constant of the spring and c  is the damping. The true parameters are set as 1m kg , 

0.5 .c N s m and 5k N m . Note that in our control design, only the input dynamics is 

needed to be known, which is given by m .  

The desired trajectories for 
1
x  and 

2
x  are considered as 

1
( ) 0.5sin( 5 )

d
x t t  (3.83) 

and 

2
( ) 0.5 5 cos( 5 )

d
x t t  (3.84) 

which are given by using the following command generator dynamics 

0 1

5 0d d
x x  (3.85) 

with initial condition (0) [0.5,0.5]
d
x . Therefore, the augmented system (3.10) becomes 

1

0 1 0 0 0

5 0.5 3 1 1

0 0 0 1 0

0 0 5 0 0

X X u TX B u  (3.86) 

where 
1 2 3 4 1 2 1 2

[ , , , ] [ , , , ]
d d d d

X X X X X e e x x . 

The input saturation limit is considered as 5N, i.e., | | 5u . The nonquadratic 

performance index is chosen as (3.13) with 1R , 10 IQ  and 0.1. 
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As actuator saturation does not occur, the optimal value function should be close 

to the value function of the linear quadratic tracking (LQT) problem. By the LQT problem, 

we mean the optimal tracking problem for linear systems with quadratic performance 

functions. In fact, for the augmented system (3.86) with a quadratic performance function 

( ) TU u u Ru  in (3.13), the value function is in the quadratic form of ( ) TV X X PX  and 

therefore the HJB equation (3.22) converts to the following ARE 

1

1 1
0 T T

T
T P PT P PB R B P Q  (3.87) 

Efficient numerical methods exist to find the solution to this ARE which we can compare 

our results to.  

We now simulate our proposed method as in Theorem 3.4. As we expect that 

optimal critic is quadratic in the system in the absence of the control bounds, the critic NN 

is chosen as 

( ) ( )TV x W x  (3.88) 

where 

2 2 2 2

1 10 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4 4
[ ,..., ] , ( ) [ , , , , , , , , , ]T TW W W X X X X X X X X X X X X X X X X X

 

(3.89) 

The reinforcement interval T  is selected as 0.1. A small probing noise is added to the 

control input to excite the system states. Fig. 3.2 shows the convergence of the critic 

parameters which converges to 

[17.94, 0.77, -2.01, -0.29, 2.86, 0.07, -0.59, 9.86,-0.08, 1.84]W  

The optimal control solution (3.23) then becomes 

1 2 1 2
5tanh(0.155    0.577  0.014   0.112 )

d d d d
u e e x x  

Note that the optimal critic weights obtained by solving the ARE is 
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*=[18.05, 0.77, -1.98, -0.34, 2.88, 0.08, -0.56, 9.77,-0.08, 1.87]W  

which are the components of the ARE solution matrix P  in (3.87) and confirms the 

convergence of our algorithm close to the optimal control solution.  

For the standard solution, the steady-state part of control input using (3.6) and 

the system and command generator dynamics becomes 

[0.25,0.25] ( )
d d
u x t   

The optimal feedback part of the control input is 

[-0.50, -0.25] ( )
e d
u e t   

Thus, the optimal control is given by 

1 2 1 2
0.50   0.25  0.25   0.25

d d d d
u e e x x   

Figs 3.3-3.8 show the system state and the control input for both the proposed 

and the standard methods, starting the system from a specific initial condition. From 

these figures, it can be concluded that although in contrast to the standard method, the 

proposed method does not require the system drift dynamics, its transient response is 

better than the standard method. 

 

Fig. 3.2. Convergence of the critic NN weights.  
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Fig. 3.3. Control input for the standard method. 

 

Fig. 3.4. First system state and desired trajectory for the standard method.  

 
Fig. 3.5. Second system state and desired trajectory for the standard method.  
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Fig. 3.6. Control input for the proposed method. 

 
Fig. 3.7. First system state and desired trajectory for the proposed method. 

 
Fig. 3.8. Second system state and desired trajectory for the proposed method. 
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Remark 3.10. According to Theorem 3.4, the error bounds for optimal control solution 

depend on the NN approximation errors, the HJB residual, and the unknown critic NN 

weights. If the number of NN hidden layers is chosen appropriately, which is fulfilled for 

the linear system provided here, all of these go to zero except for the unknown critic NN 

weights. However, these bounds are in fact conservative and the simulation results show 

that the value function and the optimal control solution are closely identified. 

3.6.2. Nonlinear system and considering the actuator bound 

In this subsection, it is considered that the spring is nonlinear with the 

nonlinearity 
3( )k x x  and therefore the system dynamics becomes 

1 2
3

2 1 2
0.5 ( )

x x

x x x u t
 (3.90) 

Now suppose that the control bound is | | 0.25u .  

To find the optimal solution using the proposed method, the critic NN is chosen 

as a power series neural network with 45 activation functions containing powers of the 

state variable of the augmented system up to order four. That is, the critic is chosen as 

(3.88) with weights and activation functions as 

2 2 2

1 45 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4

2 4 3 3 3 2 2 2 2 2 2 2 2 2 3

4 1 1 2 1 3 1 4 1 2 1 2 3 1 2 4 1 3 1 3 4 1 4 1 2

2 2 2 2 3 2

1 2 3 1 2 4 1 2 3 1 2 3 4 1 2 4 1 3 1 3 4 1 3

[ ,..., ] , ( ) [ , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , ,

TW W W X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X 2 3

4 1 4

4 3 3 2 2 2 2 2 3 2 2 3 4 3

2 2 3 2 4 2 3 2 3 4 2 4 2 3 2 3 4 2 3 4 2 4 3 3 4

2 2 3 4

3 4 3 4 4

, ,

, , , , , , , , , , , ,

, , ]T

X X X

X X X X X X X X X X X X X X X X X X X X X X X X X

X X X X X

 

(3.91) 

The reinforcement interval T  is selected as 0.1. As no verifiable method exists to ensure 

PE in nonlinear systems, a small exploratory signal consisting of sinusoids of varying 

frequencies, i.e., 
20.3 (8( )) (2 )sin t cosn t t 40.3 (20 ) (7 )sin t cos t , is added to the control 
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input to excite the system states and ensure the PE qualitatively. The critic weights 

vector finally converges to 

W [9.04, 3.95, -1.20, -1.64, 2.41, 0.71, -1.06, 14.28, 0.38, 2.93, -2.97, -0.75, 4.60, -

2.40, -3.33, 1.79, 2.18, 3.11, 0.69,  -2.45, -2.23, 1.70, 2.02, 0.94, 0.43, 1.21, -0.47, -0.75, 

0.54, 1.31, 0.03, 1.70, 0.81, 0.88, -0.02, -0.76, 0.84, -0.15, -3.14, -0.83, 4.11, 0.29, 0.86, -

0.88, 0.07].  Figs 3.9-3.11 show the performance of the proposed method.  

 

Fig. 3.9. Control input while considering the actuator saturation. 

Fig. 3.10. The system state 
1
x  versus 

1d
x  while considering the actuator saturation. 

 



 

61 

 

 

 

Fig. 3.11. The system state 
2
x  versus 

2d
x  while considering the actuator saturation 

 

3.7. Conclusion 

A new formulation of the optimal tracking control problem was presented in this 

chapter. A tracking constrained HJB equation was derived where both feedback and 

feedforward parts of the bounded optimal control input were obtained simultaneously by 

solving this HJB equation. An online integral reinforcement learning algorithm was 

presented to find the solution to the tracking HJB equation for partially-unknown 

constrained-input systems. The proposed method did not require any preceding 

identification procedure. The stability of the whole system and convergence to a near-

optimal control solution were shown. 
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  Chapter 4

OPTIMAL H TRACKING CONTROL OF UNKNOWN SYSTEMS 

4.1. Introduction 

This chapter concerns with solving the problem of H  tracking control of 

nonlinear continuous-time systems with completely unknown dynamics.  

The H  optimal control has been extensively used in the effort to design 

feedback controllers to reduce the effect of disturbances on the system performance. The 

study and design of H  optimal controllers, [4], [13], [26], [46], [47], [111], [136] were 

considered after the H  optimal control framework was initiated by Zames [1]. 

Significant insight into the design of H  control problems has been provided, after it was 

formulated as a min-max two-player zero-sum game problem [14]. The optimal control in 

such a scenario is equivalent to finding the Nash equilibrium of the corresponding two-

player zero-sum game [4], [21], which results in solving the so-called Hamilton-Jacobi-

Isaacs (HJI) equation. For linear systems with quadratic performance function, the HJI 

equation reduces to the game ARE.  

Existing work on H  optimal control has mostly concentrated on designing 

regulator control systems. The objective in the regulator problem is to drive the states of 

the system to zero. In practice, however, it is often required to force the states or outputs 

of the system to track a reference (desired) trajectory. Despite its important, few results 

considered the H  optimal tracking control problem. Existing solutions to the H  

optimal tracking are composed of two steps. In the first step, a feedforward control input 

is design by either dynamic inversion method [8], [103] or by solving Francis–Byrnes–

Isidori (FBI) equations [46] to guarantee perfect tracking. In the second step, a feedback 

control input is designed by solving an HJI equation to stabilize the tracking error 
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dynamics and satisfy a bounded 
2
L -gain condition. These methods are suboptimal as 

they ignore the cost of the feedforward control input in the performance function. This 

may result in a large control effort, especially if the initial tracking error is large. Moreover, 

in these methods, procedures for computing the feedback and feedforward terms are 

based on offline solution methods which must be done in a noncausal manner and 

require complete knowledge of the system dynamics.  

During the last few years, strong connections between reinforcement learning 

(RL) and optimal control have prompted a major effort towards developing RL algorithms 

to learn the solution to the HJI equation arising in the H  optimal regulation problem. 

Most of the available RL algorithms for learning the HJI solution are based on the policy 

iteration (PI) method. In this method, the HJI equation, which is a nonlinear partial 

differential equation (PDE), is solved successively by breaking it into a sequence of linear 

PDEs that are considerably easier to handle. Abu-Khalaf et al. [2] used an offline PI 

algorithm along with NN approximators to approximate solution to the HIJ equation. 

Online synchronous PI algorithms were proposed in [107], [108], [107][142] to find an 

approximate solution to the HJI equation. Computationally efficient simultaneous policy 

update algorithm for both linear and nonlinear systems were presented in [130], [131]. All 

of these mentioned methods require complete knowledge of the system dynamics. 

Moreover, in these methods, the disturbance needs to be adjusted which is not practical 

in most systems as the disturbance is not under our control. In [114], the authors used 

the integral reinforcement learning (IRL) [112], to learn the solution to the HJI equation 

using only partial knowledge about the system dynamics. However, this method still 

requires partial knowledge of the system dynamics and an adjustable disturbance input. 
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In [70], the authors proposed a PI algorithm for solving the game ARE equation without 

requiring knowledge of the system dynamics. However, their method is limited to linear 

systems and requires the disturbance be adjustable. In [78], the authors proposed an off-

policy PI algorithm to learn the solution to the HJI equation. In the off-policy RL algorithm, 

the system data, which is used to learn the HJI solution, can be generated with arbitrary 

policies rather than the evaluating policy. Their method does not require an adjustable 

disturbance input. However, it requires partial knowledge of the system dynamics.  

Existing above mentioned PI methods for solving the H  optimal regulation of 

nonlinear systems either require at least partial knowledge of the system dynamics, or 

require the disturbance input be adjustable, or both. Moreover, while significant progress 

has been achieved in the use of PI algorithms for the design of the H  optimal 

controllers, these algorithms are limited to the case of regulation problem. In practice, 

however, it is desired to make the system to follow a reference trajectory. Therefore, the 

H  optimal tracking controllers are required. To our knowledge, only in [76] the authors 

proposed an RL solution to the H  optimal tracking problem. However, their solution is 

suboptimal and requires complete knowledge of the system dynamics. This is because 

the dynamic inversion method is used to find the feedforward control input without 

considering any optimality criterion and it is done in a noncausal manner and require 

complete knowledge of the system dynamics.  

In this chapter, an online off-policy RL algorithm is developed to find the solution 

to the H∞ optimal tracking problem of nonlinear completely unknown systems. An 

augmented system is constructed from the tracking error dynamics and the command 

generator dynamics and a new discounted performance function is introduced for the 
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H  optimal tracking problem. This enables us to develop a more general version of the 

2
L -gain where the whole control input and the tracking error energies are weighted by an 

exponential discount factor in the performance function. This is in contrast to the existing 

methods that include only the cost of the feedback part of the control input in the 

performance function. The H  tracing control problem is then transformed to a min-max 

optimization problem with a discounted performance function. A tracking HJI equation 

related to the formulated min-max problem is derived which gives both feedforward and 

feedback parts of the control input simultaneously. Stability and 
2
L -gain boundness of 

the solution to the tracking HJI equation is discussed. An off-policy RL algorithm is then 

developed to find the solution to the tracking HJB equation online using only measured 

data and without any knowledge about the system dynamics.  

The remainder of this chapter is orgainized as follows. The H  tracing control 

problem is formulated in Section 4.2. A tracking HJI equation is developed in Section 4.3 

which gives the solution to the H  tracing control problem. Section 4.4 presents an off-

policy RL algorithm for solving the HJI equation online in real time. Sections 4.5 and 4.6 

provide the simulation results and conclusion, respectively. 

4.2. Problem formulation 

In this section, a new formulation for the H optimal tracking of nonlinear continuous-

time system is presented. A general 
2
L -gain or disturbance attenuation condition is 

defined. In this new 
2
L -gain condition, a discounted performance function is used which 

penalizes both the tracking error and the control effort. A solution to this problem is 

presented in the next section. 

Consider the affine nonlinear continuous-time system defined as 
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                                              ( ) ( ) ( )x f x g x u k x d  (4.1) 

where nx  is the state, 
1

[ ,..., ] m

m
u u u  is the control input, 1

[ ,..., ] q

q
d d d  

denotes the external disturbance, ( ) nf x  is the drift dynamics, ( ) n mg x  is the input 

dynamics, and ( ) n qk x  is the disturbance dynamics. It is assumed that the functions 

( )f x , ( )g x  and ( )k x  are Lipchitz with (0) 0f , and that the system (4.1) is controllable 

in the sense that there exists a continuous control on a set  n
 which stabilizes the 

system in the absence of the disturbance. Moreover, it is assumed that the functions 

( )f x , ( )g x  and ( )k x  are unknown.  

Let ( )r t  be the bounded reference trajectory and assume that there exists a 

Lipschitz continuous command generator function (.) n

d
h  such that  

                                                          ( )
d

r h r  (4.2) 

and (0) 0
d
h . Define the tracking error 

          ( ) ( ) ( )
d
e t x t r t  (4.3) 

Using (4.1)- (4.3), the tracking error dynamics is 

      ( ) ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( )
d d d
e t f x t h x t g x t u t k x t d t  (4.4) 

The fictitious performance output to be controlled is defined such that it satisfies  

       
2

( ) T T

d d
z t e Qe u Ru  

(4.5) 

Fig. 4.1. shows the system dynamics (4.1) and its inputs and outputs. The goal 

of the H  tracking is to attenuate the effect of the disturbance input d  on the 

performance output z .  Before defining the H tracking control problem, we define the 

following general 
2
L -gain or disturbance attenuation condition.  
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Fig. 4.1. State-feedback H tracking control problem configuration 

Definition 4.1 (Bounded 
2
L gain or disturbance attenuation). The nonlinear system 

(4.1) is said to have 
2
L gain less than or equal to  if the following disturbance 

attenuation condition is satisfied for all 2
[0, )d L . 

       

2( )

2

2( )

( )

( )

t

t

t

t

e z d

e d d
 (4.6) 

where   is the discount factor , and   is the attenuation level.  

Remark 4.1. The disturbance attenuation condition (4.6) implies that the effect of the 

disturbance input to the desired performance output is attenuated by a degree at least 

equal to . The minimum value of  for which the disturbance attenuation condition 

(4.6) is satisfied gives the so-called optimal robust control solution. However, there exists 

no way to find the smallest amount of the disturbance attenuation for general nonlinear 

systems and a large enough value is usually predetermined for .  

d

u

z

x

( , )u x r

( ) ( ) ( )x f x g x u k x d

r
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Definition 4.2 (H  optimal tracking ). TheH  optimal tracking control problem is to find 

a control policy ( , )u e r  for some smooth function  depending on the tracking error 

e  and the desired trajectory r , such that  

i) the closed-loop system ( ) ( ) ( , )  ( )x f x g x x r k x d  satisfies the attenuation condition 

(4.6). 

ii) the tracking error dynamics (4.4)  with 0d  is locally asymptotically stable. 

Remark 4.2. Previous work on the H  optimal tracking divided the control input into two 

parts. More specifically, the control input was considered as 
e d

u u u , where 
e
u  is the 

feedback part which depends only on the tracking error e , and 
d
u  is the feedforward 

control input which depends only on the reference trajectory. In these methods, 
d
u  was 

first obtained separately using the dynamic inversion method or the FBI equations without 

considering any optimality criterion. Then, the problem of optimal design of 
e
u was 

reduced to an H  optimal regulation problem. However, ignoring the feedforward control 

input in the performance may result in a large control effort. Moreover, these methods 

lead to suboptimal solution as only part of the control input is penalized in the 

performance function.  

Remark 4.3. Note that the performance function (4.6) represents a meaningful cost in 

the sense that it includes a positive penalty on the tracking error and a positive penalty 

on the control effort. The use of the discount factor is essential. This is because the 

feedforward part of the control input does not converge to zero in general and thus 

penalizing the control input in the performance function without a discount factor makes 

the performance function unbounded and therefore the meaning of the minimality is lost. 

Note that in contrast to existing methods, in the proposed method, both feedback and 
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feedback parts of the control input are obtained simultaneously because of the general 

version of the 
2
L -gain defined in (4.6) where the whole control input and the tracking 

error energies are weighted by an exponential discount factor in the performance 

criterion. In fact, in this way the design of feedforward control input is not separated from 

the design of the feedback control input.   

The control solution to the H tracking problem with the proposed attenuation 

condition (4.6) is provided in the subsequent sections. We shall see in the subsequent 

sections that this general disturbance attenuation condition enables us to find both 

feedback and feedforward parts of control input simultaneously and therefore extends the 

method of off-policy RL for solving the problem in hand without requiring any knowledge 

of the system dynamics. 

4.3. Tracking HJI equation and the stability of its solution  

In this section, a new formulation for solving the H tracking control problem is 

presented. The problem of solving theH tracking control problem is transformed into a 

min-max optimization problem subject to an augmented system composed of the 

tracking error dynamics and the command generator dynamics. A tracking HJI equation 

is developed which gives the solution to the min-max optimization problem. The stability 

and 
2
L -gain bound of the control solution obtained by solving the tracking HJI equation 

are discussed. 

4.3.1. Tracking HJI equation 

In the subsection, an augmented system composed of the tracking error system and the 

command dynamics is constructed. A discounted performance function in terms of the 

state of the augmented system is defined and it is shown that solving the H  optimal 
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tracking is equivalent to solving a min-max optimization problem with the defined 

discounted performance function. A tracking HJI equation is then developed to give the 

solution to the optimization problem in hand. 

Define the augmented system state   

        2( ) [ ( ) ( ) ]T T T n
d

X t e t r t  (4.7) 

where ( )
d
e t  is the tracking error defined in (4.3)  and ( )r t  is the reference trajectory.  

Putting (4.2)  and (4.4)  together yields the augmented system 

        ( ) ( ( )) ( ( )) ( ) ( ( )) ( )X t F X t G X t u t K X t d t  (4.8) 

where ( ) ( ( ))u t u X t  and 

                               
( ) ( )

( )
( )

d d

d

f e r h r
F X

h r
,  

( )
( )

0
d

g e r
G X , 

                                                    
( )

( )
0
d

k e r
K X  

 

(4.9) 

Using the augmented system (4.8), the disturbance attenuation condition (4.6)  becomes 

       
( ) 2 ( )( )( )t T T t T

Tt t
e X Q X u Ru d e d d d  (4.10) 

where   

       
0

0 0T

Q
Q  (4.11) 

Based on (4.10), define the performance function  

       
( ) 2( , ) ( )t T T T

Tt
J u d e X Q X u Ru d d d  (4.12) 
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Remark 4.4. Note that the problem of finding a control policy that satisfies bounded 2
L -

gain condition for the optimal tracking problem is equivalent to minimizing the discounted 

performance function (4.12)  subject to the augmented system (4.8). 

It is well-known that the H  control problem is closely related to the two-player 

zero-sum differential game theory [28], [13]. In fact, solvability of the H  control problem 

is equivalent to solvability of the following zero-sum game [13] 

            
* *( ( )) ( , ) minmax ( , )

u d
V X t J u d J u d  (4.13) 

whereJ  is defined in (4.12) and *( ( ))V X t  is defined as the optimal value function. This 

two-player zero-sum game control problem has a unique solution if a game theoretic 

saddle point exist, i.e., if the following Nash condition holds  

        ( ( )) minmax ( , ) maxmin ( , )
u d d u

V X t J u d J u d  (4.14) 

Note that differentiating (4.12) and noting that ( ( )) ( ( ), ( ))V X t J u t d t  gives the 

following Bellman equation 

       2( , , ) 0( )T T T T

T X
H V u d X Q X u Ru d d V V F G u Kd  (4.15) 

where ( )F X F , ( )G G X , ( )K K X , and 
X
V V X . Applying stationarity 

conditions ( , , ) 0, ( , , ) 0H V u d u H V u d d  gives the optimal control and 

disturbance inputs as 

           11

2
T

X
u R G V  (4.16) 

          
2

1

2
T

X
d K V  (4.17) 
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where V  is the optimal value function defined in (4.13). Substituting the control input u  

(4.16) and the disturbance d  (4.17) into (4.15), the following tracking HJI equation is 

obtained 

* * * 1

2

1 1
( , , ) 0

4 4
T T T T T T

T X X X X X X
H V u d X Q X V F V V G R GV V KK V     (4.18) 

In the following, it is shown that the control solution (4.16), which is found by solving the 

HJI equation (4.18), solves the H  tracking problem formulated in Definition 4.2. 

4.3.2. Disturbance attenuation and stability of the solution to the HJI equation 

In this subsection, it is first shown that the control solution (4.16) satisfies the disturbance 

attenuation condition (4.10) (part (i) of Definition 4.2). Then, the stability of the tracking 

error dynamics (4.4) without the disturbance is discussed (part (ii) of Definition 4.2). It is 

shown that there exists an upper bound *  such that if the discount factor is less than *

, the control solution (4.16)  make the system locally asymptotically stable.  

Theorem 4.1 (Saddle point solution). Consider the H  tracking control problem as a 

two-player zero-sum game problem with the performance function (4.12). Then, the pair 

of strategies ( , )u d  defined in (4.16)-(4.17) provides a saddle point solution to the game. 

Proof. See [2] for the same proof.  

Theorem 4.2 ( 2
L gain of system for the solution to the HJI equation). Assume that 

there exists a continuous positive-semidefinite solution ( )V X  to the tracking HJI 

equation (4.18). Then u  in (4.16) makes the closed-loop system (4.18) to have 2
L -gain 

less than or equal to .     

Proof. The Hamiltonian (4.15) for the optimal value function V  and any control policy u  

and disturbance policy w  becomes 
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* 2 * *( , , ) ( )T T T T

T X
H V u d X Q X u Ru d d V V F G u Kd  (4.19) 

On the other hand, using (4.16)-(4.18) one has 

        
* * * * * * 2 * *( , , ) ( , , ) ( ) ( ) ( ) ( )T TH V u d H V u d u u R u u d d d d  (4.20) 

Based on the HJI equation (4.18), we have * * *( , , ) 0H V u d . Therefore, (4.19) and (4.20) 

give 

     

2 * *

* * 2 * *( ) ( ) ( ) ( )

( )T T T T
T X

T T

X Q X u Ru d d V V F Gu Kd

u u R u u d d d d
 (4.21) 

Substituting the optimal control policy u u  in the above equation yields 

   * * 2 * * * 2 * *( ) ( ) 0( )T T T T T
T X

X Q X u Ru d d V V F Gu Kd d d d d  (4.22) 

Multiplying both sides of this equation by te  and defining * * *( )T

X
V V F G u Kd  as 

the derivative of *V  along the trajectories of the closed-loop system, it gives 

         * * * 2( ( )) ( )t t T T T

T

d
e V X e X Q X u Ru d d

dt
 (4.23) 

Integrating from both sides of this equation yields 

        
* * * * 2

0
( ( )) ( (0)) ( )

T
T T T T

T
e V X T V X e X Q X u Ru d d d  (4.24) 

for every 0T  and every 2
[0, )d L . Since *(.) 0V  the above equation yields 

       * * 2 *

0 0
( ) ( ) ( (0))

T T
T T T

T
e X Q X u Ru d e d d d V X  (4.25) 

This completes the proof. 

Theorem 4.2 solves part (i) of the state-feedback H  tracking control problem 

given in Definition 4.2. In the following, we consider the problem of stability of the closed-

loop system without disturbance, which is part (ii) of Definition 4.2.  
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Theorem 4.3 (Stability of the optimal solution for 0 ). Suppose that ( )V X is a 

smooth positive-semidefinite and locally quadratic solution to the tracking HJI equation . 

Then the control input given by (4.16) makes the error dynamics (4.4) with 0d  

asymptotically stable in the limit as the discount factor goes to zero.  

Proof. Differentiating V  along the trajectories of the closed-loop system with 0d  and 

using the tracking HJI equation gives 

          * * * * * 2( )T T T T

X T
V F G u V X Q X u Ru d d  (4.26) 

Or equivalently, 

           * * * 2( ( )) ( ) 0t t T T T
T

d
e V X e X Q X u Ru d d

dt
 (4.27) 

If the discount factor goes to zero, then LaSalle’s extension can be used to show that the 

tracking error is locally asymptotically stable.  More specifically, if 0 , based on 

LaSalle’s extension, ( ) [ ( ) ( ) ]T T T
d

X t e t r t  goes to a region  wherein 0V . Since 

( ) ( )T T
T d d

X Q X e t Qe t  where Q  is positive definite, 0V only if ( ) 0
d
e t and 0u  

when 0d . On the other hand, 0u also requires that ( ) 0
d
e t , therefore, for 0  

the tracking error is locally asymptotically stable. 

Theorem 4.3 shows that if the discount factor goes to zero, then optimal control 

solution found by solving the tracking HJI equation makes the system locally 

asymptotically stable. However, if the discount factor is nonzero, local asymptotic stability 

of the optimal control solution cannot be guaranteed by Theorem 4.3. In the following 

Theorem 4.4, it is shown that local asymptotic stability of the optimal solution is 

guaranteed as long as the discount factor is smaller than an upper bound. Before 

presenting the proof of local asymptotic stability, the following example shows that if the 
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discount factor is not small, the control solution obtained by solving the tracking HJI 

equation can make the system unstable.  

Example 4.1. Consider the scalar dynamical system 

             X X u d  (4.28) 

Assume that in the HJI equation (4.18) we have 1
T
Q R  and the attenuation level is 

1 . For this linear system with quadratic performance, the value function is quadratic. 

That is, 2( )V X pX  and therefore the HJI equation reduces to  

           23
(2 ) 1 0

4
p p  (4.29) 

and the optimal control solution becomes 

          u pX  (4.30) 

Solving this equation gives the optimal solution as 

              
24 2 4

(1 0.5 ) (1 0.5 ) 1
3 33

( )u X  (4.31) 

However, this optimal solution does not make the system stable for all values of the 

discount factor  . If fact, if * 27 12 , then the system is unstable. The next 

theorem shows how to find an upper bound 
*
 for the discount factor to assure the 

stability of the system without disturbance.  

Before presenting the stability theorem, note that the augmented system 

dynamics (4.8) can be written as 

                         ( ) ( ) ( ) ( )X F X G X u K X d AX Bu Dd F X                     (4.32) 

where AX Bu Kd  is the linearized model with 
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                           1 1 2

2
0
l l l

l

A A A
A

A
[ 0 ]T T T
l

B B , [ 0 ]T T T
l

D D                        (4.33) 

where 
1l
A  and 

2l
A  are  the linearized models of the drift system dynamics f  and the 

command generator dynamics 
d
h , respectively, and ( )F X  is the remaining nonlinear 

terms. 

Theorem 4.4 (Stability of the optimal solution and upper bound for ). Consider the 

system (4.8). Define 

            1

2

1T T

l l l l l
L B R B DD  (4.34) 

where  
l
B  and 

l
D  are defined in (4.33). Then, the control solution (4.16) makes the error 

system (4.4) with 0d  locally asymptotically stable if 

                                                    
1 2* 2 ( )

l
L Q                                                (4.35) 

Proof. Given the augmented dynamics (4.8) and the performance function (4.12), the 

Hamiltonian function in terms of the optimal control and disturbance is defined as 

     
* * * * 2 * * * *( , , ) ( ) ( )t T T T T

T
H u d e X Q X u Ru d d F Gu Kd  (4.36) 

where  is known as the costate variable. Using Pontryagin’s maximum principle, the 

optimal solutions *u   and *d  satisfy the following state and costate equations. 

           ( , )X H X  (4.37) 

            ( , )
X
H X  (4.38) 

Define the new variable  

            te  (4.39) 

Based on (4.39), define the modified Hamiltonian function as 

        
* * 2 * * * *( ) ( )m t T T T T

T
H e H X Q X u Ru d d F Gu Kd  (4.40) 
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Then, conditions (4.37) and (4.38) become 

          ( , )mX H X  (4.41) 

            ( , )m
X

H X  (4.42) 

Equation (4.41) gives the augmented system dynamics (4.8) and equation (4.42) is 

equivalent to the HJI equation (4.18) with *
X

V . In order to prove the local stability of 

the closed-loop system, the stability of the closed-loop linearized system is investigated. 

Using (4.32) for the system dynamics, equation (4.40) becomes 

       
* * 2 * * * *( ) ( )( )m T T T T

T
H X Q X u Ru d d AX Bu Dd F X  (4.43) 

Then, the costate can be written as sum of a linear and a nonlinear term as  

                                       0 1 0
2 ( ) ( )PX X X                                           (4.44) 

Using 0, 0m mH u H d  and (4.44) one has 

                                            
* 1

1
( )Tu R B PX X                                               (4.45) 

                                              *
22

1
( )Td D PX X                                               (4.46) 

for some 
1
( )X  and 

2
( )X  depending on 

0
( )X , ( )F X   and P . Using (4.36)- (4.46), 

conditions (4.41) and (4.42) becomes 

       

1
1 12

1 1 2 1 2

1
( ) ( ) ( )

( ) ( )

T T

T
T

A BR B DDX X F X X F X
W

F X F X
Q A I

 
(4.47) 

for some nonlinear functions 
1
( )F X  and 

1
( )F X . The linear part of costate is a stable 

manifold of W  and thus based on the linear part of (4.47), it satisfies the following GARE  

                     1

2

1
0T T T

T
Q A P PA P PBR B P PDD P                            (4.48) 

Define 
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11 12

12 22

P P
P

P P
 

Then, based on (4.11) and (4.33), the upper left-hand side of the LQT GARE (4.48) 

becomes 

                  1

1 11 11 1 11 11 11 11 112

1
0T T T

l l l l l l
Q A P P A P P BR B P P DD P                (4.49) 

The closed-loop system dynamics for the control input (4.45) and without the disturbance 

is 

                                             1( ) ( )T
f

X A BR B P X F X                                      (4.50) 

for some nonlinear function ( )
f
F X  with 

1 2
[ , ]T T T

f f f
F F F , which gives the following 

tracking error dynamics 

                                 
1

1 11 1 1
( )T

d l l l d f c d f
e A BR B P e F A e F                              (4.51) 

Based on the closed-loop error dynamics 
c
A  , the GARE becomes 

                 1

11 11 11 11 11 11 112

1
0T T T

c c l l l l
Q A P P A P P BR B P P DD P                 (4.52) 

To find a condition on the discount factor to assure stability of the linearized error 

dynamics, assume that  is an eigenvalue of the closed-loop error dynamics 
c
A . That is 

c
Ax x  with x  the eigenvector corresponding to .  Then, multiplying the left- and 

right- hand sides of the GARE (4.52) by Tx  and x , respectively, one has 

                 
1

11 11 11
2 Re( ) 0.5 ( ))( T T T T T

l l
x P x x Qx x P BR B DD P x                  (4.53) 

Using the inequality 2 2 2a b ab  and since 
11

0P , (4.53) becomes 

       
1 2 1 21

11 11
Re( ) 0.5 ( ) ( ))(

l
QP LP  (4.54) 

or equivalently, 

        
1 2 1 21

11 11
Re( ) ( ) ( ) 0.5

l
QP LP  (4.55) 
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where 
l
L  is defined in (4.34). Using the fact that A B AB  gives 

         
1 2

Re( ) ( ) 0.5
l
LQ  (4.56) 

Therefore, the linear error dynamics in (4.51) is stable if condition (4.35) is satisfied and 

this completes the proof. 

Remark 4.5. Note that the GARE (4.49) can be written as 

1

2

1
( 0.5 ) ( 0.5 ) 0T T T

T
Q A I P P A I PBR B P PDD P  

This amounts to a GARE without discount factor and with the system dynamics given by 

0.5A I , B  and D . Therefore, existence of a unique solution to the GARE requires 

( 0.5 , )A I B  be stabilizable. Based on definition of A  andB  in (4.33), this requires that 

1
( 0.5 , )
l l
A I B  be stabilizable and 

2
( 0.5 )
l
A I  be stable. However, since 

1
( , )
l l
A B  is 

stabilizable, as the system dynamics in (4.1) is assumed robustly stabilizing, then 

1
( 0.5 , )
l l
A I B  is also stabilizable for any 0 . Moreover, since the reference 

trajectory is assumed bounded, the linearized model of the command generator 

dynamics, i.e. 
2l
A , is marginally stable and thus  

2
( 0.5 )
l
A I  is stable. Therefore, the 

discount factor does not affect the existence of the solution to the GARE.  

Remark 4.6. Theorem 4.4 shows that the asymptotic stability of only the first n  variables 

of X is guaranteed, which are the error dynamic states. This is reasonable as the last n  

variables of X  are the reference command generator variables which are not under our 

control. 

Remark 4.7. For Example 4.1, condition (4.34) gives the bound 80 12  to assure the 

stability. This bound is very close to the actual bound obtained in Example 4.1. However, 
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it is obvious that condition (4.34) gives a conservative bound for the discount factor to 

assure the stability.  

Remark 4.8. Theorem 4.4 confirms the existence of an upper bound for the discount 

factor to assure stability of the solution to the HJI tracking equation and relates this 

bound to the input and disturbance dynamics, and the weighting matrices in the 

performance function. Condition (4.35) is not a restrictive condition even if the system 

dynamics are unknown. In fact, one can always pick a very small discount factor, and/or 

large weighting matrix Q  (which is a design matrix) to assure that condition (4.35) is 

satisfied. 

4.4. Off-policy RL for solving the tracking HJI equation 

In this section, an offline RL algorithm is first given to solve the problem of H  optimal 

tracking by learning the solution to the tracking HJI equation. An off-policy IRL algorithm 

is then developed to learn the solution to the HJI equation online and without requiring 

any knowledge of the system dynamics. Three neural networks on an actor-critic-

disturbance structure are used to implement the proposed off-policy IRL algorithm. 

4.4.1. Off-policy RL algorithm 

The Bellman equation (4.15) is linear in the cost function
 
V , while the HJI equation 

(4.18) is nonlinear in the value functionV . Therefore, solving the Bellman equation for 

V  is easier than solving the HJI for V . Instead of directly solving for V , policy iteration 

(PI) algorithm iterates on both control and disturbance players to break the HJI equation 

into a sequence of differential equations linear in the cost. An offline PI algorithm for 

solving the H  optimal tracking problem is given as follows: 
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Algorithm 4.1. Offline RL algorithm  

Initialization: Start with an admissible stabilizing control policy 
0
u  

1. For a control input 
i
u  and disturbance policy 

i
d , find 

i
V  using the following Bellman 

equation 

2( , , ) ( ) 0T T T T
i i i T Xi i i i i i i iH V u d X Q X V F Gu Kd V u Ru d d  (4.57) 

2. Update the disturbance using 

              1 2

1
arg max ( , , )

2
T

i i i Xi
d

d H V u d K V  (4.58) 

and the control policy using 

          
1

1

1
argmin ( , , )

2
T

i i Xi
u

u H V u d R G V  (4.59) 

3. Go to 1. 

Algorithm 4.1 extends the results of the simultaneous RL algorithm in [130] to the 

tracking problem. The convergence of this algorithm to the minimal nonnegative solution 

of the HJI equation was shown in [130]. In fact, similar to [130], the convergence of 

Algorithm 4.1 can be established by proving that iteration on (4.58) is essentially a 

Newtons iterative sequence which converges to the unique solution of the HJI equation 

(4.18).   

Algorithm 4.1 requires complete knowledge of the system dynamics. In the 

following, an off-policy IRL algorithm is developed solve the H optimal tracking for 

systems with completely unknown dynamics. To this end, the system dynamics (4.8) is 

first written as 
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       ( ) ( )
i i i i

X F Gu Kd G u u K d d  (4.60)  

where 
,1 ,

[ ,..., ] m

i i i m
u u u  and 

,1 ,
[ ,..., ] q

i i i q
d d d  are policies to be updated. 

Differentiating ( )
i
V X  along with the system dynamics (4.60) and using (4.57)- (4.59) 

gives 

  2 2

1 1

( ) ( ) ( )

2 ( ) 2 ( )

T T T T

i Xi i i Xi i Xi i i T
T T T T

i i i i i i i i

V V F Gu Kd V G u u V K d d V X Q X

u Ru d d u R u u d d d
 (4.61) 

Multiplying both sides of (4.61) by 
( )te and integrating from both sides yields the 

following off-policy IRL Bellman equation 

   

( ) 2

( ) 2

1 1

( ( )) ( ( )) ( )

( 2 ( ) 2 ( ))

t T
T t T T T

i i T i i i it
t T

t T T

i i i it

e V X t T V X t e X Q X u Ru d d d

e u R u u d d d d
 (4.62) 

Note that for a fixed control policy u  (the policy which is applied to the system), 

and a given disturbance d  (the actual disturbance which is applied to the system), 

equation (4.62) can be solved for both value function 
i
V  and updated policies 

1i
u  and 

1i
d , simultaneously.  

Lemma 4.1. The off-policy IRL equation (4.62) gives the same solution for the value 

function as the Bellman equation (4.57) and the same updated control and disturbance 

policies as (4.58) and (4.59). 

Proof. Dividing both sides of the off-policy IRL Bellman equation (4.62) by T  and taking 

limit results in 
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( ) 2

0 0

( ) 2

1 1

0

( )
( ( )) ( ( ))

lim lim

(2 ( ) 2 ( ))
lim 0

t T
t T T T

T T i i i i

i i t

T T

t T
t T T

i i i it

T

e X Q X u Ru d d d
e V X t T V X t

T T

e u R u u d d d d

T

     (4.63) 

    
By L’Hopital’s rule, the first term in (4.42) becomes 

    00
lim[ ( ( )) ( ( ))]

( ) ( )

( ( )) ( ( ))
lim

( )

T T

i iT

i Xi i i i i

T

i i

T
e V X t T e V X t T

V V F Gu Kd G u u K d d

e V X t T V X t

T          (4.64) 

where the last term in the right-hand side is obtained by using 
X

V V X . Similarly, for 

the second and third terms of (4.42) one has 

         

( ) 2

2

0

( )

lim

t T
t T T T

T i i i i
T T Tt
T i i i iT

e X Q X u Ru d d d

X Q X u Ru d d
T

         

(4.65) 

                        

( ) 2

1 1

0

2

1 1

(2 ( ) 2 ( ))
lim

2 ( ) 2 ( )

t T
t T T

i i i it

T

T T

i i i i

e u R u u d d d d

T

u R u u d d d

                      (4.66) 

Substituting (4.64)- (4.66) in (4.42) yields 

        
2 2

1 1

( ) ( )

2 ( ) 2 ( ) 0

( ) T T

i Xi i i i i T i i

T T T

i i i i i i

V V F Gu K d G u u K d d X Q X u Ru

d d u R u u d d d
         (4.67) 

Substituting the updated policies 
1i

u  and 
1i

d  from (4.58) and (4.59) into (4.67), gives 

the Bellman equation (4.57). This completes the proof.  
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Remark 4.9. In the off-policy IRL Bellman equation (4.62), the control input u  which is 

applied to the system can be different from the control policy 
i
u  which is evaluated and 

updated. The fixed control policy u  should be a stable and exploring control policy. 

Moreover, in this off-policy IRL Bellman equation, the disturbance input d  is the actual 

external disturbance that comes from a disturbance source and is not under our control. 

However, the disturbance 
i
d  is the disturbance which is evaluated and updated. One 

advantage of this off-policy IRL Bellman equation is that, in contrast to on-policy RL-

based methods, the disturbance input which is applied to the system does not require to 

be adjustable.  

The following algorithm uses the off-policy tracking Bellman equation (4.62) to 

iteratively solve the HJI equation (4.18) without requiring any knowledge of the system 

dynamics. The implementation of this algorithm is discussed in the next subsection. It is 

shown how the data collected from a fixed control policy u  is reused to evaluate many 

updated control policies 
i
u  sequentially until convergence to the optimal solution is 

achieved.  

Algorithm 4.2. Online Off-policy RL algorithm for solving tracking HJI equation 

Phase 1 (data collection using a fixed control policy): Apply a fixed control policy u  to the 

system and collect required system information about the state, control input and 

disturbance at N different sampling interval T . 

Phase 2 (reuse of collected data sequentially to find an optimal policy iteratively): Given 

i
u  and 

i
d , use collected information in phase 1 to Solve the following Bellman equation 

for 
i
V  , 

1i
u  and  

1i
d simultaneously 
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( ) 2

( ) 2

1 1

( ( )) ( ( )) ( )

( 2 ( ) 2 ( ))

t T
T t T T T

i i T i i i it
t T

t T T

i i i it

e V X t T V X t e X Q X u Ru d d d

e u R u u d d d d
 (4.68) 

Stop if a stopping criterion is met, otherwise set 1i i  and got to 2. 

Remark 4.10. Algorithm 4.2 has two separate phases. First, a fixed initial exploratory 

control policy u  is applied and the system information is recorded over the time interval 

T . Second, without requiring any knowledge of the system dynamics, the information 

collected in phase 1 are repeatedly used to find a sequence of updated policies 
i
u  and 

i
d  

converging to 
*u  and 

*d . Note that equation (4.68) is a scalar equation and can be 

solved in a least square sense after collecting enough number of data samples from the 

system.  It is shown in the following section how to collect required information in phase 1 

and reuse them in phase 2 in a least-square sense to solve (4.68) for 
i
V  , 

1i
u  and  

1i
d  

simultaneously. After the learning is done and the optimal control policy 
*u   is found, it 

can then be applied to the system. 

Theorem 4.5 (Convergence of Algorithm 4.2). The off-policy Algorithm 4.2 converges 

to the optimal control and disturbance solutions given by (4.16) and (4.17) where the 

value function satisfies the tracking HJI equation (4.18). 

Proof. It was shown in Lemma 1 that the off-policy tracking Bellman equation (4.68) 

gives the same value function as the Bellman equation (4.57) and the same updated 

policies as (4.58) and (4.59). Therefore both Algorithms 4.1 and 4.2 have the same 

convergence properties. Convergence of Algorithm 4.1 is proven in [130]. This confirms 

that Algorithm 4.2 converges to the optimal solution.   
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Remark 4.11. Although both Algorithms 4.1 and 4.2 have the same convergence 

properties, Algorithm 4.2 is a model-free algorithm which finds an optimal control policy 

without requiring any knowledge of the system dynamics. This is in contrast to Algorithm 

4.1 which requires full knowledge of the system dynamics. Moreover, Algorithm 4.1 is an 

on-policy RL algorithm which requires the disturbance input be specified and adjustable. 

On the other hand, Algorithm 4.2 is an off-policy RL algorithm which obviates this 

requirement. 

4.4.2. Implementing the proposed off-policy RL algorithm 

In order to implement the off-policy RL Algorithm 4.2, it is required to reuse the collected 

information found by applying a fixed control policy u  to the system to solve equation 

(4.68) for  
i
V ,  

1i
u

 
and 

1i
d iteratively. Three neural networks (NNs), i.e. the actor NN, 

the critic NN, and the disturber NN are used here to approximate the value function and 

the updated control and disturbance policies in the Bellman equation (4.68). That is, the 

solution 
i
V ,  

1i
u

 
and 

1i
d  of the Bellman equation (4.68) is approximated by three NNs 

as  

       
1

ˆ ˆ( ) ( )T

i
V X W X  (4.69) 

        
1 2

ˆˆ ( ) ( )T

i
u X W X  (4.70) 

         
1 3

ˆ ˆ( ) ( )T

i
d X W X  (4.71) 

where 1

11
[ ,..., ] l

l
, 2

21
[ ,..., ] l

l  
and 3

31
[ ,..., ] l

l
 provide suitable 

basis function vectors,  1

1
ˆ lW , 2

2
ˆ m lW , and 3

3
ˆ q lW

 
 are constant weight 

vectors, and 1
l  , 2

l  and 2
l  are the number of neurons. Define 1 1

1 1
[ ,..., ]m T

i
v v v u u  ,

2 2 2
1

[ ,..., ]T
q i

v v v d d and assume ( ,..., )
m

R diag r r . Then, substituting (4.69)-(4.71) in 

(4.68) yields 
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( ) 2

1

( ) 1 2 ( ) 2

2, 3,
1 1

ˆ( ) ( ( )) ( ( ))

ˆ ˆ2 ( ( )) 2 ( ( ))

( ) ( )
t T

T T t T T T

T i i i it
qm t T t T

t T t T

l l l k kt t
l k

e t W e X t T X t e X Q X u Ru d d d

r e W X t v d e W X t v d

 

(4.72) 

where ( )e t  is the Bellman approximation error, 
2,
ˆ
l

W  is the l -th column of 
2
Ŵ  , and 

3,
ˆ
k

W  is 

the k -th column of 
3
Ŵ . The Bellman approximation error is the continuous-time 

counterpart of the temporal difference (TD). In order to bring the TD error to its minimum 

value, least squares method is used. To this end, rewrite equation (4.72) as 

           ˆ( ) ( ) ( )Ty t e t W h t  (4.73) 

where  

             1 2 3

1 2, 2, 3,1 3,
ˆ ˆ ˆ ˆ ˆ ˆ[ , ,..., , ,..., ] l m l q lT T T T T T

l m q
W W W W W W  (4.74) 

     

( ) 1

1 1

( ) 1

2 ( ) 2

1

2 ( ) 2

( ( )) ( ( ))

2 ( ( ))

2 ( ( ))( )

2 ( ( ))

2 ( ( ))

)T

t T
t

t

t T
t

m mt
t T

t

t

t T
t

qt

e X t T X t

r e X t v d

r e X t v dh t

e X t v d

e X t v d

 
(4.75) 

          
( ) 2( ) ( )

t T
t T T T

T i i i it
y t e X Q X u Ru d d d   (4.76) 

The parameter vector Ŵ , which gives the approximated value function, actor and 

disturbance (4.76)-(4.71), is found by minimizing, in the least-squares sense, the Bellman 

error (4.74). Assume that the systems state, input and disturbance information are 

collected at 
1 2 3

N l m l q l  (the number of independent elements in Ŵ ) points 
1
t  
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to 
N
t  in the state space, over the same time interval T  in phase 1. Then, for a given 

i
u  

and 
i
d , one can use this information to evaluate (4.75) and (4.76) at N  points to form 

         
1

[ ( ),...., ( )]
N

H h t h t  (4.77) 

            
1

[ ( ),...., ( )]T
N

Y y t y t  (4.78) 

The least-squares solution to (4.73) is then equal to 

                   1ˆ ( )TW HH HY  (4.79) 

which gives 
i
V , 

1i
u  and 

1i
d .  

Remark 4.12. Note that although ( )X t T  appears in equation (4.72), this equation is 

solved in a least square sense after observing N  samples ( )X t , ( )X t T , …,

( )X t NT . Therefore, the knowledge of the system is not required to predict the future 

state ( )X t T at time  t  to solve (4.72). 

4.5. Simulation Results 

In this section, the proposed off-policy IRL method is first applied to a linear system to 

show that it converges to the optimal solution. Then, it is tested on a nonlinear system. 

4.5.1. Linear system 

Consider the F-16 aircraft system described by x Ax Bu Dd  with the following 

dynamics 

                         

-1.01887 0.90506 -0.00215

0.82225 -1.07741 -0.17555

0 0 -1

A , 

0

0

5

B ,

1

0

0

D                        (4.80) 

The system state vector is 
1 2 3

[ ] [ ]
e

x x x x q ,  where  denotes the angle of 

attack, q  is the pitch rate, and e  is the elevator deflection angle. The control input is the 
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elevator actuator voltage, and the disturbance is wind gusts on angle of attack. It is 

assumed that the output is y and the desired value is constant. Thus the command 

generator dynamics become 0r . Therefore, the augmented dynamics (4.8) becomes 

equal to equation (4.81). Since only 1 1 1
e x r  is concerned as the tracking error, the 

first element of the matrix 
T
Q  in (4.11) is  consider to be 20  and all other elements are 

zero. It is also assumed here that 1R , and 10 . The offline solution to the game 

ARE (4.48) and consequently the optimal control policy are given as 

  

-1.01887 0.90506 -0.00215 -1.01887 0.90506 -0.00215 0 1

0.82225 -1.07741 -0.17555 0.82225 -1.07741 -0.17555 0 0

0 0 -1 0 0 -1 5 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X X u d (4.81) 

                        

*

12.677  5.420 -0.432 -7.474 5.420 -0.432

 5.420 3.405 -0.332 -4.980 3.405 -0.332

-0.432 -0.332 0.040 0.544 -0.332 0.040

 -7.474 -4.980 0.544 201.451 -4.980 0.544

 5.420 3.405 -0.332 -4.980 3.405 -0.332

 -0.432 -0.332 -0.205 0.040 -

P

*

,

0.332 0.040

[-2.1620,-1.6623,0.2005,2.7198,-1.6623,0.2005]u X

               (4.82) 

We now implement the off-policy IRL Algorithm 4.2. The reinforcement interval is 

chosen as 0.05T . The initial control gain is chosen as zero. Figs. 4.2 and 4.3 show 

convergence of the kernel matrix P  and the control gain to their optimal values. In fact, 

P  converges to 
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12.675  5.418 -0.432 -7.481 5.424 -0.439

 5.420 3.412 -0.330 -4.985 3.404 -0.329

-0.427 -0.323 0.042 0.546 -0.333 0.046

 -7.495 -4.973 0.545 201.408 -4.985 0.527

 5.419 3.406 -0.328 -4.968 3.405 -0.339

 -0.421 -0.347 -0.201 0.036 -0

P

.333 0.046

 

which is very close to its optimal value. These results and Figs. 4.2 and 4.3 confirm that 

the proposed method converses to the optimal tracking solution without requiring the 

knowledge of the system dynamics. The optimal control solution found by the proposed 

method is now applied to the system to test its performance. To this end, it is assumed 

that the desired value for the output is 
1

2r  for time zero to 30sec and changes to 

1
3r  at time 30sec. The disturbance is assumed to be 0.10.1 sin(0.1 )td e t . Fig. 4.4. 

shows how the output converges to its desired values after the optimal control solution is 

applied to the system and confirms that the proposed optimal control solution achieves 

suitable results. 

 
Fig. 4.2. Convergence of the kernel matrix P  to its optimal value for F-16 example 
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Fig. 4.3. Convergence of the control gain to its optimal value for F-16 example 

 

Fig. 4.4. Reference trajectory versus output for F-16 systems using the proposed 

control method 

4.5.2. Nonlinear system 

In this subsection, the proposed off-policy IRL algorithm is applied to a two-link 

manipulator [64], which is modeled using 

                                          ( )
m d

Mq V q F q G q u d                         (4.83) 

where 
1 2

[ ]Tq q q  is the vector of  joint angles and 
1 2

[ ]Tq q q  is the vector of  joint 

angular velocities, and 

1 3 2 2 3 2

2 3 2 2

2p p c p p c
M

p p c p
 , 3 2 2 3 2 1 2

3 2 1

( )

0m

p s q p s q q
V

p s q
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are the inertia and Coriolis-centripetal matrices, respectively, with 
2 2

cos( )c q , 

2 2
sin( )s q , 

2

1
3.473p kgm , 

2

2
0.196p kgm  and 

2

3
0.242p kgm . Moreover, 

[5.3, 1.1]
d
F diag , 

1 2
( ) [8.45 tanh( ), 2.35 tanh( )]TG q q q  , u  and 

d
 are the static 

friction, the dynamic friction, the control torque, and the disturbance, respectively. 

Defining the state vector as 
1 2 1 2

[ ]Tx q q q q , the state-space equations for (4.83) 

becomes (4.1) with  

31

3 4
4

( ) ( ) ( )( )
T

T

m d

x
f x x x M V F G q

x
 

1( ) ( ) [0 0] [0 0] [0 0] ( )
T

T T T Tg x k x M  

The objective is to find the control input u  to make the state follow the desired trajectory 

given as 

0.5cos(2 ) 0.33cos(3 ) sin(2 ) sin(3 )
T

r t t t t  

which is generated by the command generator (4.2) with  

3 4 1 2
( ) 4 9

T

d
h r r r r r  

It is assumed in the disturbance attenuation condition (4.7) that 10Q I  1R , and 

20 . The augmented state becomes 1 2 3 4 1 2 3 4
[ ]TX e e e e r r r r  with 

, 1,2,3,4
i i i
e x r i . A power series neural network containing even powers of the 

state variables of the system up to order four is used for the critic. The activation 

functions for the control and disturbance policies are chosen as polynomials of all powers 

of the states up to order three. We now implement Algorithm 4.2 to find the optimal 

control solution online. The reinforcement interval is chosen as 0.05T . The proposed 
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algorithm starts the learning process from the beginning of the simulation and finishes it 

after 25 second, when the control policy is updated. The plots of state trajectories of the 

closed-loop system and the reference trajectory are shown in Figs. 4.5-4.8. The 

disturbance is assumed to be 0.10.1 sin(0.1 )td e t  after the learning is done. From these 

figs, it is obvious that the system tracks the reference trajectory after the learning is 

finished and the optimal controller is found.  

 
Fig. 4.5. Reference trajectory versus the first state of the robot manipulator systems  

 
Fig. 4.6. Reference trajectory versus the second state of the robot manipulator systems  
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Fig. 4.7. Reference trajectory versus the third state of the robot manipulator systems  

 
Fig. 4.8. Reference trajectory versus the fourth state of the robot manipulator systems  
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2
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includes both feedback and feedforward control inputs. This enables us to extend RL 
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analyzed and an upper bound for the discount factor was found to assure the stability of 

the control solution found by solving the tracking HJI equation. An online off-policy RL 

algorithm was proposed to learn the solution to the tracking HJI equation without 

requiring any knowledge of the system dynamics. It is shown that using off-policy RL, the 

disturbance input does not required being specified and adjusted. Simulation results 

confirmed the suitability of the proposed method. 
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  Chapter 5

OPTIMAL DYNAMIC OUTPUT-FEEDBACK CONTROL DESIGN FOR UNKNON LINEAR 

SYSTEMS 

5.1. Introduction 

While significant progress has been achieved in the use of RL algorithms for the 

design of optimal controllers, these algorithms are limited to the case when full state of 

the controlled plant is available for measurement. In practice, however, all the states of 

the system are not always available for measurement. Therefore, the design of output-

feedback (OPFB) controllers is required. Static OPFB has been studied in considerable 

details in the literature. However, guaranteed closed-loop stability cannot be achieved by 

using static OPFB. Nevertheless, information about the system is included in a long-

enough set of input/output data and it would be desirable to design a state estimator by 

using input/output data without any system knowledge.  

In this chapter, an online RL algorithm is developed to learn the optimal OPFB 

controller for linear CT systems. A discounted performance function is considered to 

make the proposed method applicable for solving both LQR and LQT problems. It is first 

shown that one can construct the system states form a limited number of measured 

system outputs over the past history of the trajectory. Then, a new Bellman equation is 

developed which gives both the value function and the updated policy corresponding to a 

control policy simultaneously using only measured system outputs over a period of the 

history of the system. An online RL algorithm is then developed using this Bellman 

equation which does not require the knowledge of neither the system dynamics nor the 

system state. Finally, convergence to the optimal control solution is shown.  

This chapter is organized as follows. The next section provides background on 

optimal control problem of linear continuous time systems and the RL algorithm for 
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solving this problem. Section 5.3 shows how to reconstruct the state using measured 

output. The proposed RL-based optimal OFPB control design method is presented in 

Section 5.4. It is shown that how the value function can be constructed based on 

measured output systems and how this value function can be used to develop an OFPB 

based RL algorithm. Sections 5.5 and 5.6 present the simulation results and conclusion, 

respectively. 

5.2. Background 

In this section, the optimal control of CT linear systems is formulated. A 

discounted performance function is used to make the proposed method applicable for 

solving both LQR and LQT problems. An offline PI algorithm and an online off-policy RL 

algorithm are presented to solve the problem. 

Consider the linear CT system 

x Ax Bu

y C x
 (5.1) 

where n nx  is the system state vector, 1py  is the system output, 1mu  is the 

control input, n nA  gives the drift dynamics of the system, and 
n m

B  is the input 

matrix. It is assumed that the pair ( , )A B  is controllable and the pair ( , )AC  is observable. 

The goal of the LQR problem is to find a control policy that makes the system 

(5.1) stable and minimizes a predefined performance function. Define the discounted 

performance function as 

( )( ( )) ( )t T T

t
V x t e y Qy u Ru d  (5.2) 
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where the state weight matrix Q  is symmetric positive semi-definite and control input 

weight matrix R  is symmetric positive definite. It is assumed that ( , )AC Q  is 

observable.  

Remark 5.1. The reason for using the general quadratic performance function with 

discount factor defined in (5.2) is that as is shown in Chapter 2, the LQT problem can be 

formalized as minimizing a discounted performance function subject to an augmented 

system in form of (5.1). Therefore, the results of this chapter can be used to solve both 

LQR and LQT problems online and without requiring any knowledge of the system 

dynamics or the system state.  

Consider a fixed admissible state-feedback control policy as 

u K x  (5.3) 

It was shown in Chapter 2 that the value function for a control policy in form of (5.3) can 

be written as the quadratic form 

       
( )( ( )) ( ) ( ) ( )t T T T T

t
V x t e x C QC K RK xd x t P x t  (5.4) 

and the optimal control input is given by *u K x  with 

* 1 TK R B P  (5.5) 

where P   is the solution to the ARE 

1 0T T TA P PA P C QC PBR B P  (5.6) 

In order to find the optimal state-feedback control solution, the ARE (5.6) is first 

needed to be solved for P , and then the optimal control gain is obtained by substituting 

the ARE solution to (5.5).  
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Using the same procedure as in Chapter 2, one has the following off-policy 

Bellman equation. 

( ) ( ) 1

( ) ( ) ( ) ( )

2 ( )

T T i T i

t T t T
t T t i T i

it t

e x t T P x t T x t P x t

e x Q x d e u K x RK x d
 

(5.7) 

where ( ) ( )T i T i

i
Q C QC K R K . For a fixed control gain iK , the above Bellman 

equation can be solved for both the value function kernel matrix iP  and the updated 

improved gain 1iK , simultaneously. The following Algorithm 5.1 uses the above Bellman 

equation to iteratively solve the ARE equation (5.6).  

Algorithm 5.1. Online Off-policy RL State-feedback algorithm  

Initialization: Start with a control policy 
0 0u K x e , where 0K  is stabilizing and e  is 

the probing noise.  

Policy evaluation and improvement: Solve the following Bellman equation for iP  and 

1iK  simultaneously 

  

( )

( ) 1

( ) ( ) ( ) ( )

2 ( )

t T
T T i T i t T

it

t T
t i T i

t

e x t T P x t T x t P x t e x Q x d

e u K x RK x d
 (5.8) 

Stop if a stopping criterion is met, otherwise set 1i i  and go to 2. 

5.3. State reconstruction using measured data 

In this section, it is first shown that the system states can be observed using only 

a limited number of measured system outputs over the past history of the system 

trajectory for a fixed control policy. Then, using these observed system outputs, an online 

OPFB controller based on measured data is presented.     
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In this subsection, it is shown that for an observable linear CT system, the 

system states and consequently the value function can be expressed in terms of a limited 

number of measured system outputs over the past history of the system. 

Suppose that at time t, we have a set of N output values from the history of the 

system and consider that they are stored in a history stack 
N

y . That is, 

{ ( ), 0,..., 1}
N i

y t h i Ny  (5.9) 

where ,
i
h  0,..., 1i N  are the delayed values of the output and are assumed fixed. 

Consider that these N output samples are sampled from the system (5.1) at N  time 

instances stored at vector τ
N

 as 

τ { 0, 0,1,..., 1}
N i

t h i N  (5.10) 

Definition 5.1 [118]. System (5.1) is said to be τ
N

 observable if (0)x  can be uniquely 

determined from an observations 
N

y on τ
N

. 

Definition 5.2 [118]. For a given time interval [0, ]T  and an integer 
T
N , the system is 

said to be 
T
N -sample observable if the system is τ

TN
 observable for any τ

TN
 with 

0 , 1,...,
i T

t h T i N .                

The following theorem shows that for the system dynamic (5.1), if ( , )AC  is 

observable, one can always find an integer N such that if 
T

N N  the system is 
T
N -

sample observable.    

Theorem 5.1. Suppose the matrix A  in (5.1) has eigenvalues , 1,...,
j
j n . Denote  

1 ,
max{im( )}

i ji j n
, where im(Z)  is the imaginary part of Z . For a given interval  

[0, ]T  , define 



 

101 

 

 

2( 1)
2T

T
n  (5.11) 

Given ( , )AC  is observable, if  
T T
N  , then the system is 

T
N -sample observable.  

Proof. See [118].     

If the condition of Theorem 5.1 is satisfied, then the system state at each time 

can be calculated from the knowledge of the system output at N points in its history. The 

next Lemma shows that if the interval T  is small enough, one can construct the system 

state using n previous values of the output, for an n-dimensional system. 

Lemma 5.1 [118]. For any given n-dimensional observable system, there exists a 

sufficiently small time interval [0, ]T  such that if n sampling times 

0 , 1,...,
i

t h T i n , then the system is n-sample observable.               

Note that in the state-feedback off-policy RL Algorithm 5.1, during the evaluation 

of a control policy, the control policy is considered to be fixed and the knowledge of the 

system state is used to evaluate the policy. In the following, using Theorem 5.1, a formula 

is given by which the knowledge of the state needed to evaluate a fixed control policy in 

Algorithm 5.1 is obtained by the knowledge of the system output at N points in its history 

of using the control policy under evaluation. These N points are collected and stored in 

the history stack at reinforcement interval times , 1,...,t iT i N . That is, in (5.10) we 

have 
i
h iT  and hence 

τ { 0, 0,1,..., 1}
N

t iT i N  (5.12) 
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Now, assume that the control policy which is applied to the system and is under 

evaluation is given by (5.3). Then, using (5.3) in (5.1), the closed-loop system dynamic 

becomes 

( ) ( ) ( )x t A BK x t  (5.13) 

It is now shown that the state needed for solving the off-policy Bellman equation 

(5.8) can be expressed in terms of N measurements of the output in the history of using 

the control gain K . To this end, first the system state for every time instance stored in 

the vector τ
N

 is expressed in terms of the system state at current time t. In fact, since the 

control policy is considered to be fixed (which occurs during policy evaluation step of the 

off-policy RL algorithm), using the solution of (5.13), the state for an arbitrary time t iT  

with respect to the state for the current time t  can be written as 

( )
( ) ( )

iT A BK
x t iT e x t  (5.14) 

The output ( )y t iT  can then be expressed as 

( )
( ) ( )

iT A BK
y t iT C e x t  (5.15) 

Suppose that at the current time t , a set of N  output values 

{ ( ), 0,..., 1}
N i

y t h i Ny  are sampled at N  time instances 

τ { 0, 0,1,..., 1}
N i

t h i N  and stored in a history stack while the fixed control 

gain K  is being evaluated. Then, using the output dynamics, one has 

     

( )

( 1) ( )

( )

( )
( )

( ( 1) )

T A BK

N T A BK

Cy t

y t T Ce
x t

y t N T Ce

 (5.16) 

Define  
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( ) ( ) ( ( 1) )
T

T T T

t
y y t y t T y t N T  (5.17) 

( ) ( )T T T
T A BK NT A BKT T TG C e C e C  (5.18) 

where 1pN

t
y  and pN nG  with p  the dimension of the output. Then, (5.16) 

becomes 

( )
t
y G x t  (5.19) 

If the system (5.1) is observable and the number of samples N is larger than 
T

defined 

in (5.11), then based on Theorem 5.1 the system is N -sample observable. Therefore, G  

is full rank. Thus, from (5.16), the system state vector is given by 

1
1

( ) [ ,..., ] ( )
N

N t N t i
i

x t G y L L y L y t iT  (5.20) 

where  

1( )T T n pN

N
G G G G  

 and  

(1 : ,( 1) 1 : )
i N
L G n i p ip . 

Equation (5.20) shows that if the system is observable, one can construct the system 

state needed to evaluate the Bellman equation uniquely using a limited number of the 

measured system outputs in the history of using the given control policy.  

Note that the system dynamics information A , B , and C  must be known to 

construct the system state form the measurement system outputs. In fact, G  depends on 

A , B , and C . In the next step, it is shown how to use the structural dependence in 

(5.20) yet avoid knowledge of the system dynamics. We first show that the value function 
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(5.17) can be expressed as a quadratic form in terms of a limited number of measured 

system outputs in the history of the system. Using (5.20) in (5.4) gives 

( ) ( ) ( ) ( ) ( )T T T T

N t N t t N N t
V t x t P x t G y P G y y G PG y  (5.21) 

where the last equality is obtained using 1( )T T

N
G G G G . This equation is equation can 

be written as 

( ) T

t t
V t y P y  (5.22) 

where 

T pN pN

N N
P G PG  

and is constant. Using (5.22), (5.17) becomes 

( )( )T t T T

t t t
y P y e y Qy u Ru d  (5.23) 

Note that the matrix P  depends on the system dynamics A, B, and C. In the next 

section, it is shown how to use RL methods to learn this matrix without knowing the 

system drift dynamics A. 

5.4. Model-free RL algorithm using measured data 

In this subsection, a model-free OPFB IRL algorithm is developed. First, an IRL 

Bellman equation is developed using measured system outputs that is equivalent to 

Algorithm 5.1, which requires full state measurement.  

Algorithm 5.1 is a model-free IRL algorithm in which the policy u  which is applied 

to the system can be different that the policy 
i iu K x  which is updated and evaluated. 

In this chapter, we assume that u  is the updated policy plus a probing noise. That is  

                                                        iu K x w                                                       (5.24) 
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where w  is the probing noise. Based on (5.20), the relation between the state-feedback 

and output-feedback control gains is obtained by 

                                            
i i i i i

N t t
u K x K G y K y                                        (5.25) 

with 
1(( ) ) ( )i i T i i T n pN

N
G G G G  and 

                                   
( ) ( )i T i T T
t A BK N t A BKi T T TG C e C e C                          (5.26) 

Note that 
i i i

N
K K G  is a nonlinear function of the state-feedback gain iK  and the 

system dynamics. The key equation (5.7) in Algorithm 5.1, which uses the state 

information to evaluate both value function and control policy, can be written in terms of 

the measured outputs as 

                           

( )

( ) 12

t tt T i T i t T

t t t t t t t i tt

t t
t T i

tt

e y P y y P y e y Q y d

e w RK y d
                    (5.27) 

where [1 ] [1 ]
T

Q Q0 0 0 0 . 

We now use this OPFB Bellman equation to present an optimal model-free 

OPFB control design method as follows.  

Algorithm 5.2. Model-free RL based OPFB Control design algorithm  

1.  Initialization: Start with a stabilizing control policy 
0 0

t
u K y ,  

2.  Solve the following Bellman equation for 
iP  and 

1iK  simultaneously 

                              

( )

( ) 12

t tt T i T i t T

t t t t t t t i tt

t t
t T i

tt

e y P y y P y e y Q y d

e w RK y d
                   (5.28) 

3. Stop if a stopping criterion is met, otherwise set 1i i  and go to 2. 
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Algorithm 5.2 does not require any knowledge of the system dynamics or the 

system states. In fact the requirement of the system dynamics and system states are 

replaced by the input and output information measured online. The solution 
iP  and 

1iK  

to (5.28) can be found using the least square methods. 

Theorem 5.2. Algorithm 5.2 converges to the optimal OPFB control gain 
*K and value 

function kernel matrix 
*P . Moreover, if condition of Theorem 5.1 is satisfied, one has 

* * *

t
u K y K x where 

*K is given in (5.5) and satisfies the state-feedback ARE (5.6). 

That is, the optimal OPFB solution gives the optimal state-feedback solution.  

Proof. Using (5.25), one has 

                                           
1 1 1i i i T i i

N N
K K G R B PG                                    (5.29) 

Dividing both sides of (5.28) by t and taking limit yields 

                  

( )

0 0

( ) 1

0

lim lim

2 ( )
lim 0

t t
t Tt T i T i
t i ttt t t t t t

t t

t t
t i T i

t tt

t

e y Q y de y P y y P y

t t

e u K y RK y d

t

                (5.30) 

By L’Hopital’s rule, this equation becomes  

            
12( ) 0T i T i T i T i T i

t t t t t t t i t t t
y P y y P y y P y y Q y u K y RK y              (5.31) 

On the other hand, by differentiating (5.19), one has 

                          ( ) ( ( ) ( )) ( )
t N t
y G x t G Ax t Bu t GAG y GBu t                  (5.32) 

Using the system dynamics(5.32) and the updated law (5.25) in (5.32) gives 

          [( ) ( ) ( ) ( )] 0T i T i i i i T i T i

N N
G A BK P P A BK P C QC K R K G      (5.33) 



 

107 

 

 

Since 
N
G  is full rank, the state-feedback Lyapunov equation is satisfied. That is, 

evaluating a fixed OPFB control policy 
i

t
u K y  using the Bellman equation (5.28) gives 

the same value function as evaluating the fixed state-feedback control policy ( )iu K x t , 

with 
i i i

N
K K G , using the state-feedback Lyapunov equation.  Moreover, the policy 

improvement 
1iK  in terms of 

1iK  becomes 
1 1i T iK R B P . Therefore, Algorithm 

5.2 give the same results for policy evaluation and improvement steps as the state-

feedback RL-based algorithmpresented in Chapter 2, and thus have the same 

convergence properties. This confirms that the proposed OPFB design method 

converges to an optimal solution and gives a state-feedback control.                                            

Remark 5.2. The proposed control input is more powerful than the static OPFB in form of 

( )u K y t . In fact, as shown in proof of Theorem 5.2, the proposed control input is 

equivalent to a state-feedback control input as a result of using the delayed outputs. 

Therefore, in contrast to the static OPFB, using the proposed controller one can stabilize 

a system which is state-feedback stabilizable but are not static OPFB stabilizable. 

Simulation results confirm this statement. 

Remark 5.3. It is interesting to compare the form of the proposed control input with the 

control obtained using the fast output sampling technique [50], [127]. In this technique, 

similar to the proposed control law, the control input is a linear combination of 

observation of the last N output samples. The problem is to find a fast output sampling 

feedback gain that realizes this state feedback gain matrix. Unlike static output feedback, 

fast output sampling technique guarantees the stability of the closed-loop system, as long 

as the system is controllable. 
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5.5. Simulation results 

In this section, two simulation examples are provided to show the suitability of the 

proposed method. The first example is a LQR problem for a system which is not static 

OPFB stabilizable, yet is stabled by our proposed method. The second system is a LQT 

problem for F-16 aircraft system.  

5.5.1. OPFB regulator for a system which is not OPFB stabilizable 

Consider the dynamical systems as 

  

0 1 0

1 0 1

[1 0]

x x u

y x

             (5.34) 

where 
1 2

[ , ]Tx x x . The system (5.34) is both controllable and observable. However, it is 

not static OPFB stabilizable. That is, there is no gain k  such that the control input 

u k y  make the system asymptotically stable. In the following, we show that although 

this system is not static OPFB stabilizable, we can stabilize it using the proposed OPFB 

design method. In order to show the suitability of the proposed OPFB controller, its 

results are compared to the results of the optimal state-feedback controller. The discount 

factor is considred as 0 . The weighting matrices in the performance function are 

chosen as 1Q R . The optimal state-feedback control is given by  

1 2
0.414 ( ) 0.910 ( )u x t x t                                           (5.35) 

 We now use Algorithm 5.2 to find the optimal OPFB gain. The reinforcement 

interval time is considered as 0.2t  and the number of stored data in the history stack 

is 4. That is, the control input ( )u t  is constructed form the current output ( )y t and the past 

outputs ( 0.2 )y t t , ( 0.4 )y t t  and ( 0.6 )y t t . A probing noise is  added to the 

control input to persistently excite the system output. Define 
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[ ( ) ( 0.2) ( 0.4) ( 0.6)]
t
y y t y t y t y t  and assume ( )

t
u t K y  . Fig. 5.1 shows 

convergence of the control gain K . In fact the OFFB gain converges to 

1 4
[ ,..., ] [4.8950, 11.3513,8.4717, 1.7177 ]K k k . The optimal OPFB policy is then 

given by 

     4.8950 ( ) 11.3513 ( 0.2) 8.4717 ( 0.4) 1.7177 ( 0.6)u y t y t y t y t    (5.36) 

 
Fig. 5.1. Convergence of OPFB control gains for the LQR problem 

 

Fig. 5.2. Comparing the performance of the state-feedback and OPFB controllers 

for the LQR problem 
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Fig. 5.2 shows the system output for the OPFB control policy and the 

optimal state-feedback control, starting from the system the initial condition 

[3, 3]Tx . From this Fig, it is obvious that the performance of the OPFB controller 

and the optimal state-feedback controller are close to each other.  

5.5.2. OPFB for F-16 aircraft system 

Consider the F-16 aircraft system described by 

                    

-1.01887 0.90506 -0.00215 0

0.82225 -1.07741 -0.17555 0

0 0 -1 1
a a
x x u                            (5.37) 

The system state vector is 
1 2 3

[ ] [ ]
a e
x x x x q ,  where  denotes the 

angle of attack, q  is the pitch rate, and e  is the elevator deflection angle. It is assumed 

that the output is y and the desired value is constant. Thus, the command generator 

dynamics become 0r  and thus the augmented system becomes 

                       

-1.01887 0.90506 -0.00215 0 0

0.82225 -1.07741 -0.17555 0 0

0 0 -1 0 1

0 0 0 0 0

x x u                          (5.38)  

where the augmented state is [ , ]
a

x x r . The performance function is considered as 

                       
( )( ) (( ) ( ) )t T T

t
V t e y r Q y r u Ru d                         (5.39) 

with 1Q , 0.1R  and 0.01 . This performance function in terms of the augmented 

state becomes  

( )( ) ( )t T T

Tt
V t e x Q x u Ru d                              (5.40) 

with [1 0 0 1] [1 0 0 1]T

T
Q Q .  
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The optimal state-feedback control input is given by  

1 2 3
14.7060 ( ) 10.8294 ( ) 1.2055 ( ) 31.5253 ( )u x t x t x t r t                  (5.41) 

We now use Algorithm 5.2 to find the optimal OPFB gain. The reinforcement 

interval time is considered as 0.2t  and the number of stored data in the history stack 

for constructing the state is 3. That is, the control input ( )u t  is constructed form 

[ ( ) ( 0.1) ( 0.2)]
t
y y t y t y t , and the reference signal ( )r t . The performance function 

is then quadratic in terms of [ , ]
t

x y r  and it is assumed that ( )u t K x . Fig. 5.3 

shows the convergence of K . In fact, this gain converges to 

1 4
[ ,..., ] [ 9.075,1.637,0.185,10.165]K k k . The optimal OPFB policy is then given by 

  9.0754 ( ) 1.6371 ( 0.2) 0.1849 ( 0.2) 9.9965 ( )u y t y t y t r t                   (5.42) 

Fig 5.4 shows the system output for the OPFB control policy and the optimal 

state-feedback control, assuming that the desired value is ( ) 1r t . These results confirm 

that the proposed model-free optimal OPFB controller has a performance close to the 

optimal state-feedback controller. 

 
Fig. 5.3. Convergence of OPFB control gains for F-16 system 
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Fig. 5.4. Comparing the performance of the state-feedback and OPFB controllers 

for F-16 system 

5.6. Conclusion 
 

An off-policy RL based method was presented to learning the optimal control law 

for linear continuous-time systems using only measured outputs. The proposed method 

did not require the knowledge of the system dynamics or the system state. An off-policy 

Bellman equation was developed to evaluate a control policy and find an improved policy 

simultaneously using only measured outputs. An off-policy RL algorithm was then 

developed which converged to the optimal control solution using only measured output 

data. The proposed method was tested on a simulation example. 

  

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

Time (sec)

 

 

State-feedback response

OPFB response



 

113 

 

 

  Chapter 6

OPTIMAL MODEL-FREE SOLUTION TO OUTPUT SYNCHRONIZATION OF 

HETEROGENEOUS MULTI-AGENT SYSTEMS 

6.1. Introduction 

Cooperative control of multi-agent systems has undergone a paradigm shift from 

centralized to distributed, due to reliability, flexibility, scalability and computational 

efficiency of distributed control systems. In distributed control, unlike centralized control, 

there is no central authority with the ability to control the network of agents as a whole. 

Instead, each agent designs a controller based on limited information about itself and its 

neighbors to assure all agents reach agreement on certain quantities of interests. If the 

common value that agents agree on is not prescribed, the problem is called leaderless 

consensus, and if all agents follow trajectories of a leader node, the problem is known as 

cooperative tracking (leader-follower) control. A rich body of literature has been 

developed on distributed control of multi-agent systems. See for 

example [48], [69], [85][92], [93] to name a few.  

Most of the existing work on distributed control focuses on state synchronization 

of homogeneous multiagent systems, where individual agents have identical dynamics. In 

many real-world applications of multi-agent systems, however, individual systems do not 

have identical dynamics. This has led to the emergence of new challenges in the design 

of distributed controllers for heterogeneous systems, in which the dynamics and 

dimension of agents can be different. Since state synchronization is not practical for 

general heterogeneous systems (as individual systems may have different states and 

state dimensions), distributed output synchronization of heterogeneous systems has 

attracted compelling attention in the literature [39][42][39][41]. Existing mentioned 
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methods, however, require complete knowledge of the agents and the leader dynamics 

which is not available in many real-world applications. In practical applications, it is often 

desirable to design model-free distributed controllers conducive to real time 

implementation and able to handle modeling uncertainties in dynamics of agents. 

Moreover, solutions found by these methods are generally far from optimal.  

Adaptive and robust distributed controllers have been developed in the literature 

to adapt online to modeling uncertainties in the dynamics of the agents. However, 

classical adaptive and robust distributed controllers do not converge to an optimal 

distributed solution. Optimal distributed control refers to a class of methods that can be 

used to synthesize a distributed control policy which results in best possible team 

behavior with respect to prescribed criteria (i.e. local control policies which leads to 

minimization of local performances for each agent). A suboptimal distributed controller is 

designed in [140] for linear homogenous systems using linear quadratic regulator. The 

distributed games on graphs are presented in [110] in which each agent only minimizes 

its own performance index. The distributed inverse optimal control is also considered 

in [139]. All mentioned optimal distributed controllers are limited to state synchronization 

of homogeneous systems and they require complete knowledge of the agents and the 

leader. To our knowledge distributed adaptive optimal output synchronization is not 

considered in the literature.  

In this chapter, a novel RL algorithm is developed to solve the output 

synchronization problem of heterogeneous multi-agent systems. It is shown that the 

explicit solution to the output regulator equation is not necessary, hence the agents do 

not need to know the leader’s dynamics. The key components of the given method are 
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 A distributed adaptive observer is designed to estimate the leader’s state. This 

observer does not require the knowledge of the leader dynamics. 

 A novel off-policy RL algorithm is developed to solve the output 

synchronization problem without requiring any knowledge of the agent’s 

dynamics or the leader’s dynamics. 

 It is shown that this distributed RL approach implicitly satisfies the output 

regulation equations without actually solving them. 

The proposed approach is detaled as follows. The estimated leader state 

obtained from the presented distributed observer is used along with the local state of 

each agent to design a model-free optimal output synchronization controller for each 

agent so as to track the output of an exo-system i.e., the leader in an optimal manner. To 

this end, the optimal output synchronization problem is cast into a set of optimal output 

tracking problems for each agent. A local discounted performance function is defined for 

each agent in which its minimization gives both feedback and feedforward gains. Online 

solution to the tracking problem is then found by using an off-policy RL algorithm. This 

algorithm does not require any knowledge of the dynamics of the agents and uses only 

the measured data along the system and the reference trajectories to find the optimal 

distributed solution to the output synchronization problem.  

The rest of this chapter is organized as follows. In Section 6.2, the essential 

theoretical background is provided. A distributed adaptive observer is designed in Section 

6.3. The off-policy RL algorithm is employed in Section 6.4 to solve the output 

synchronization problem. It is shown in Section 6.5 that the well-known separation 

principle is satisfied and thus the observer and the controller design problem can be 
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treated separately. In Section 6.6, the simulation results for output tracking of multi-agent 

heterogeneous systems are given. Section 6.7 concludes this chapter. 

6.2. Thechnical background 

In this section, the essential theoretical background on graph theory is provided. The 

problem of output synchronization for heterogeneous multi-agent systems is also defined. 

The standard solution to this problem is presented and its shortcoming is emphasized. 

Consider a weighted directed graph or digraph 𝒢 = (𝒱,ℇ,𝒜) consisting of a 

nonempty finite set of N nodes 𝒱 = (𝓋1, 𝓋2, ...., 𝓋N), a set of edges or arcs ℇ ⊂ 𝒱 × 𝒱 and 

the associated adjacency matrix 𝒜 = [aij] ∈ ℝN×N
 . Here the diagraph is assumed to be 

time-invariant or alternatively we assume   to be constant. An edge from a node 𝓋j to 𝓋i is 

indicated by an arrow with head at node i and tail at node j, this implies that the 

information flow is from node j to node i. The neigh bor set of node i is depicted by Ni = {j 

| (𝓋j, 𝓋i) ∈ ℇ}.  For each node the entry aij of the adjacency matrix 𝒜 is nonzero (i.e., aij > 

0) if and only if there is an edge (𝓋j, 𝓋i) ∈ ℇ else aij = 0, also aij indicates the weight 

associated with the graph edge. We consider simple graphs without self-loop, this means 

aii = 0. The in-degree of a node i is defined as di = 
1

N

ij
j

a and in-degree matrix as 

diag N N

i
D d , then the graph Laplacian matrix is defined as L D . For 

1,1, ,1 N

N
1 , then 0

N
L1 . The out-degree of a node i is defined as 

1

N
o

i ji
j

d a , 

a graph is said to be balanced if its in-degree is same as the out-degree, this implies 

0T

N
L 1 . For a given digraph 𝒢 a sequence of successive edges in the form 

( , ),( , ), ( , )
i k k l m j
v v v v v v  is a directed path from node i to node j. A diagraph is said to 

have a spanning tree if there exist a root node ir, such that there is a directed path from ir 

to every other node in the graph. 



 

117 

 

 

Assumption 6.1: The digraph 𝒢 has a spanning tree and the leader is pinned to the root 

node ir , with a pinning gain gi > 0. 

Note that the leader can be pinned to multiple nodes in graph or the leader can 

itself be a root node. This results in a diagonal pinning matrix diag N N

i
G g  with 

the pinning gain 
i
g  > 0  if the node has access to the leader else otherwise zero. Under 

the above assumption, the eigenvalues of L G  have positive real parts. 

The output synchronization problem is now reviewed. Consider the dynamics of 

leader or trajectory generator to be followed is 

                                      
0 0
S                                                           (6.1) 

where 
0

p  is the reference trajectory, and p pS  is the leader dynamic matrix. The 

leader output can be defined as 

                                                          
0 0
y R                                                               (6.2) 

where 
0

qy .   

Assumption 6.2: The leader dynamic matrix is marginally stable. 

The dynamics of N linear heterogeneous agents is given by 

                                                    
i i i i i

i i i

x A x B u

y C x
                                                        (6.3) 

where in

i
x  is the system state, im

i
u  is the input and q

i
y  is the output for 

1, ,i N . The multi-agent system is called heterogeneous because agents dynamics 

( , , )
i i i
A B C  and the dimension of their states are generally not the same. 

Assumption 6.3. ( , )
i i
A B  is stabilizable and ( ),

i i
A C  is observable. 
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Problem 6.1 (Output Synchronization): Design local control protocols 
i
u  such that the 

outputs of all heterogeneous agents synchronize to the output of the leader node. That is,

0
( ) ( ) 0,
i
y t y t i .  

To solve this problem, standard methods in the literature requires solving the 

output regulation equations given by 

                                                    
i i i i i

i i

A B S

C R
                                                     (6.4) 

where in p

i
 and im p

i
for 1, ,i N  are the solution of the output regulator 

equation (6.4). Based on these solutions, the following standard controller guarantees 

output tracking among heterogeneous agents [7], [10]. 

                                              
1 0 0
( )

i i i i i
u K x                                                  (6.5) 

where 
1

i im n

i
K  is the state-feedback gain which stabilizes  

1i i i
A BK . The tracking 

control law (6.5) depends on the agent state and the leader state. However, the leader 

state 
0
 is not available to all agents in a distributed multi-agent network. This issue is 

circumvented in the literature by designing the following local observer called 

synchronizer in order to obtain an estimate of the leader trajectory in all the agents 

                                   
0

1

( ) ( )
N

i i ij j i i i
j

S c a g                                      (6.6) 

resulting in the modified tracking law  

                                                 
1
( )

i i i i i i i
u K x                                               (6.7) 

where 
i
 is the estimation of 

0
 for agent i and constant c  is  the coupling gain. The 

output synchronization is guaranteed when the control protocol (6.7) is applied to the 

multi-agent system.  
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Remark 6.1. Note that the solution to the output regulator equation (6.4) for each agent 

requires the complete knowledge of the leader dynamics, i.e., S , which is overly 

conservative. Moreover, all agents need to be aware of their own dynamics, i.e.( ), ,
i i i
A B C

, to solve the output regulator equation (6.4) and to obtain feedforward component 
1i
K . 

This knowledge, however, is not available in many applications.  

6.3. Distributed adaptive observer 

In the previous section, a standard solution to output regulation for heterogeneous multi-

agent systems was given. The standard approach requires the solution of the output 

regulator equations (6.4). This needs full knowledge of the leaders dynamics (S,R), and 

the agent’s dynamics ( ), ,
i i i
A B C .  

In this section, a novel distributed adaptive observer is designed to estimate the 

leader state for all the agents. In contrast to standard observer (6.6), the proposed 

method does not require the knowledge of the leader dynamic matrix S . In the next 

section, it is shown how to use this adaptive observer along with reinforcement learning 

to solve problem 6.1 without solving the regulator equations (6.4) and without knowing 

the agent’s dynamics. 

To estimate the leader state, the following distributed observer is used. 

                               
0

1

ˆ ( ) ( )
N

i i i ij j i i i
j

S c a g                         (6.8)                      

where ˆ p p

i
S  is the estimation of the leader dynamic matrix S  for node i .  

  Tthe local neighborhood observation error for node i  is defined as  

                                       
0

1

( ) ( )
N

i ij j i i i
j

e a g                                 (6.9) 
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 Based on the observer (6.8) and the local estimation error (6.9), the following theorem 

provides a tuning law for ˆ
i
S  and shows the convergence of 

i
 to 

0
. This proves the  

convergence of global estimation error ( )
i
t , defined as follows, to zero.  

                                               
0

( ) ( ) ( )
i i
t t t                                                  (6.10) 

Assumption 6.4. The communication graph for the multi-agent heterogeneous systems 

is balanced. 

Theorem 6.1. Let Assumption 6.1, 6.2 and 6.4 be satisfied. Consider the distributed 

observer given in (6.8). Design the tuning law for ˆ
i
S  as follows. 

                              
vec 0

1

ˆ ( ) ( ) ( )
N

i Si q i ij j i i i
j

S I a g                             (6.11) 

where 
vec
ˆ

i
S  is the vector representation of ˆ

i
S , and 

Si
is diagonal positive update rate 

matrix. Then, the observer estimation error (6.10) converges to zero asymptotically fast, 

provided the constant c in (6.8) is chosen large enough.  

Proof. Differentiating (6.8) gives the error dynamics 

                                 
0 0

1

ˆ ( ) ( )
N

i i i ij j i i i
j

S c a g S                            (6.12) 

which can be rewritten as 

                               
0 0

1

ˆ( ) ( ) ( )
N

i i ij j i i i i i
j

S c a g S S S                          (6.13) 

The global error dynamics then becomes  

                                   ( ) diag( )
N p i
I S c L G I S                                  (6.14) 

or equivalently, 

                                 
vec

( ) diag( )
p

T

N q i
I S c L G I I S                                (6.15) 
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where 
vec
S  is the vector representation of the error in leader dynamics estimation. 

Equation (6.15) in compact form is 

                                                      
vecS M

A S              (6.16) 

where  

( )
s pN
A I S c L G I                                             (6.17) 

                 diag( )T
M q i

I                                                    (6.18) 

The error dynamics matrix 
s
A  defined in (6.17) can be made Hurwitz for an 

appropriate choice of the constant c, because L G  is nonsingular and has eigenvalues 

with positive real part.  

Now consider the Lyapunov function 

1 1
vec vec vec vec

[( ) ( ) ]T T T T T
q q S S

V L G I L G I S S P S S                  (6.19) 

where P  is positive definite, and 
S

is a diagonal positive definite scaling matrix. The 

derivative of the Lyapunov function is 

1 1

vec vec vec vec vec

1 1

vec vec vec vec vec

( )T T T T T T T T

S S S S M

T T T

M S S

V P P S S S S PA A P S P

P S S S S S
          (6.20) 

By choosing  

vec vec
ˆ T

S M
S S P   (6.21) 

the Lyapunov derivative becomes  

  ( )T T

S S
V PA A P                                    (6.22) 
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In order to demonstrate the negative semi-definiteness of V , we need to show 

0T

S S
PA A P . Let us redefine 

N
I S M  and ( )

q
L G I N , where M has no 

eigenvalues with positive real parts, and N  is non-singular. The Lyapunov equation in 

compact form is   

    
( )( ) ( )( )

( ) ( ) ( ) ( )

T T T T T
S S

T T T T T T T T

PA A P N N M cN M cN N N

NM M N c NN N N N M M N c N N N N
       (6.23) 

It is well known that for any given Hermitian matrices E , F , and some constant 

c, the eigenvalue of the matrix sum is  

1
( ) ( ) ( )

i j i j
E cF E c F                                     (6.24) 

for 1, ,i j N i N j N . Thus, if  c is greater than a certain bound, one can ensure 

that the eigenvalues of matrix sum E cF  have negative real part.  

Note that the two terms in (6.23) are of form (6.24), hence the eigenvalues of the 

terms  

( ) ( )T T T TNM M N c NN N N  

and  

( ) ( )T T T TN M M N c N N N N  

have negative real parts provided that  c is large enough. Additionally, the overall matrix 

T

S S
PA A P  is symmetric, as it is obtained by addition/subtraction of the symmetric 

matrices. This confirms that the eigenvalues of T

S S
PA A P  are negative real and thus 

proves negative definiteness of T

S S
PA A P and hence negative semi-definiteness of the 

Lyapunov derivative (6.23). That is, 

                                                         0TV Q    (6.25) 
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for some 0Q . This shows the convergence of the local synchronizer, i.e., 0
i

. 

On the other hand, since the scaling matrix was chosen to be block diagonal, 

also using the well-known equality 1 1 0T

N N
L L for the balanced graph, the update 

rule (6.22) gives (6.12) which completes the proof.      

   

Remark 6.2. Theorem 6.1 provides the proof of convergence for the local synchronizer 

i.e., *ˆ( , ) (0, )
i i
S S . Note that the convergence of the parameter ˆ

i
S  to true leader 

dynamics S cannot be guaranteed. In fact, the convergence of the ˆ
i
S  to true dynamics is 

not required. As the reinforcement learning based optimal tracking control law presented 

in Section 6.4 doesn’t need the knowledge of S . 

6.4. Optimal model-free output regulation 

In this section an off-policy RL algorithm is proposed to make the agents track 

the leader’s output. Based on the adaptive observer of Section 6.2, it is assumed that 

every agent has a local estimate of the leader’s trajectory. In Section 6.5, this RL-based 

optimal control is combined with the distributed adaptive synchronizer of Section 6.2. Due 

to this combination the design of the output synchronizing controller doesn’t require either 

the leader’s dynamics S  or the agent’s dynamics ( , , )
i i i
A B C , because solution to (6.4) is 

not explicitly needed. 

Consider a linear continuous-time system with the following dynamics 

i i i i i

i i i

x A x B u

y C x
 (6.26) 

where in

i
x  is the system state, q

i
y  is the system output, im

i
u  is the control 

input, i in n

i
A  gives the drift dynamics of the system, and i in m

i
B  is the input 



 

124 

 

 

matrix. It is assumed that the pair ( , )
i i
A B  is stabilizable and the pair ( , )

i i
A C  is 

observable.  

Assume that the reference trajectory 
0

q  is bounded and it is generated by the 

command generator system given by (6.1) and  (6.2).    

In optimal output regulation problem, the goal is to find a control policy to make 

the system output 
i
y  in  (6.26) follow the reference trajectory output 

o
y  generated by 

(6.1), (6.2), while minimizing a predefined performance function. Define the discounted 

performance function for the system (6.27) as 

( )

0 0
( ( ), ( )) (( ) ( ) )i t T T

i i i i i i i it
V x t u t e y y Q y y u W u d                    (6.27) 

where the state weight matrix 
i
Q  and the control input weight matrix 

i
W  are symmetric 

positive definite, and 0
i

 is the discount factor.  

Remark 6.3. As stated in Chapter 2, the discount factor 0
i

in (6.27) is used to ensure 

that the performance function is bounded for a given control policy which assures the 

output regulation. This is because the steady state part of the control input does not go to 

zero unless the command generator dynamics is stable. 

Consider a fixed state-feedback control policy linear in the system state and the 

command generator state as 

1 2 0i i i i
u K x K  (6.28) 

and define an augmented state as 

    
0

( ) ( ) i
T

n pT T

i
X t x t  (6.29) 

where 
0
 is the leader state. The control input (6.28) in terms of the augmented state 

(6.29) becomes 
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1 2 0i i i i i i

u K x K K X  (6.30) 

where 
1 2

[ ]
i i i
K K K . Moreover, the augmented dynamics becomes (see Chapter 2 for 

more details) 

              
1i i i i i

X T X B u   (6.31) 

with 

                                      
0

0
i

i

A
T

S
, 1 0

i

i

B
B                                              (6.32)  

Finally, the value function for a control policy in form of (6.30) can be written as the 

quadratic form 

( )

1 1
( ( )) ( )

( ) ( )

i t T T T

i i i i i i i it i
T

i i i

V X t e X C Q C K W K X d

X t P X t
                   (6.33) 

where 

                    
1

[ ]
i i
C C R-  (6.34) 

with R as in (6.2). The optimal control input is then given by 
i i i
u K X  [36] with 

1

1 2 1
[ , ] T

i i i i i i
K K K W B P  (6.35) 

where 
i
P   is the solution to the discounted algebraic Riccati equation (ARE) 

1

1 1 1 1
0T T T

i i i i i i i i i i i i i i
T P TP P C QC P B W B P                  (6.36) 

The ARE (6.36) is first solved for 
i
P , and then the optimal gain is obtained by 

substituting the ARE solution to (6.35).  

An upper bound is now found for the discount factor in the performance function 

(6.27) to assure that the tracking error 
0ri i

e y  goes to zero asymptotically, when the 
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optimal control gain (6.35) found by solving the ARE (6.36) is applied to the system. In 

Chapter 4, we showed that the control gain given in (6.35) makes it

ri
e e  converge to 

zero asymptotically. However, the tracking error may diverge if the discount factor is not 

chosen appropriately. The following theorem shows that perfect output regulation 

achieves if (6.35) is applied to the system and the discount factor is chosen small 

enough. 

Theorem 6.2. Let Assumptions 2 and 3 be satisfied. Let the control input (6.30) with gain 

given by (6.35), (6.36) be applied to the system. Then, 
1i i i

A BK  is Hurwitz and the 

tracking error 
0ri i

e y y  goes to zero asymptotically fast if the discount factor satisfies 

the following condition 

1 2* 12 ( ) .T

i i i i i i
BW B Q                                         (6.37) 

Proof. We first show that 
1i i i

A BK  is Hurwitz. To this end, define 

   
11 12

21 22

i i

i ii

P P
P

P P
                                                  (6.38) 

Then, using (6.32), for the upper left-hand side of the discounted ARE (6.36) one has 

                       
1

11 11 11 1 1 11 1 1 11
0T i i i T i T i

i i i i i i i i i
A P P A P C QC P B W B P               (6.39) 

and the control gain 
1i
K  becomes 

1

1 11

T i

i i
K W B P  (6.40) 

Since 0
i
Q  and ( , )

i i
A C  is observable, then 

1 2
( , )
i i i
A Q C  is observable and thus there 

exists and unique positive definite solution 
11

iP  to (6.39). It is shown in Chapter 4 that if 

condition (6.37) is satisfied, then the eigenvalues of the closed-loop system 

1

11 1

T i

i i i i i i i
A BW B P A BK  have negative definite parts and thus 

1i i i
A BK  is 
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Hurwitz. On the other hand, it is shown in Chater 2 that there exists a positive semi-

definite solution to ARE (6.36) if ( , )
i i
A B is stabilizable and 0.5S I  is stable. Since 

( , )
i i
A B  is assumed stabilizable and S  is assumed marginally stable, existence of a 

positive semi-definite solution to the ARE (6.36) is guaranteed. Multiplying the left- and 

right- hand sides of the ARE (6.36) by  T

i
X  and 

i
X , respectively, one has 

         
1

1 1 1 1
2 ( ) ( ) 0T T T T T T T

i i i i i i i i i i i i i i i i i i i i
X T PX X PX X C QC X PX B W B PX          (6.41) 

From this equation one can see that if 0
i i
P X  then 

1 1
0T T

i i i i i
X C Q C X . That is, the 

null space of 
i
P  is a subspace of the null space of 

1 1

T

i i i
C Q C . This indicates that if 

0T

i i i
X PX  then 

1 1
0T T

i i i i i
X C Q C X  and thus 

0 0
( ) ( ) 0T

i i i
y y Q y y  which yields 

0
0

ri i
e y y .  Therefore, the null space of 

i
P  is in fact a subspace of the space in 

which the tracking error is zero. Now, consider the following Lyapunov function 

( ) 0T

i i i i i
V X X P X                                                  (6.42) 

To complete the proof, it remains to show that ( ) 0
i i
V X  if 0T

i i i
X P X  and (6.37) is 

satisfied. This is because since 0
i
P , if ( ) 0

i i
V X , then ( ) 0T

i i i i i
V X X PX  and 

consequently 0
i i
PX  which conclude the tracking error is zero. On the other hand, if 

( ) 0
i i
V X , then, starting from any initial trajectory, it converges to the null space of 

i
P  

which is a subspace of the space of the solutions in which the tracking error is zero. To 

show that ( ) 0
i i
V X  if (6.37) is satisfied for all 

i
X  such that 0

i i
PX ,  taking the 

derivative of ( )
i i
V X  gives 

( ) ( )T T

i i i i ci ci i i
V X X PA A P X                                          (6.43)  

where  
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1 2

0
i i i i i

ci

A BK BK
A

S
                                                (6.44) 

 is the closed-loop dynamics. Assume now that 
k

 is an eigenvalue of  
ci
A  and  

k
X  is its 

corresponding eigenvector. That is,  

, 1,...,
ci k k k i
A X X k n p                                     (6.45) 

Assuming for simplicity that 
ci
A is diagonalizable, then for any arbitrary vector X  one has 

  
1

in p

i k k
k

X X                                                      (6.46) 

for some 
k
. Using (6.44) and (6.45) in (6.43) yields 

2

1

( ) 2 Re( )
in p

T

i i k k k i k
k

V X X PX                                      (6.47) 

If condition (6.37) is satisfied, then 
1i i i

A BK  is Hurwitz and since S  is assumed 

marginally stable, one has Re( ) 0 1 :
k i

k n  and  Re( ) 0 1 :
k i i

k n n p  for 

the eigenvalues of 
ci
A  in (6.44) . Therefore, if 0

i i
PX  and (6.37) is satisfied, then

( ) 0
i i
V X  and this completes  the proof. 

A state-feedback off-policy IRL algorithm is nowgiven to learn the solution to the 

discounted optimal output regulation problem. This algorithm does not require any 

knowledge of the system dynamics or the leader’s dynamics S .  

In order to obviate the requirement of the knowledge of the system dynamics, an 

off-policy IRL algorithm was proposed in Chapter 2 for solving the optimal regulation 

problem with discounted performance functions. The system dynamics (6.31) is first 

written as 

1
( )

i i i i i i i
X T X B K X u      (6.48) 

With the abuse of notation 
1i i i i

T T B K . Then, the Bellman equation becomes 
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( )

( )

1

( ) ( ) 1

( ) ( ) ( ) ( ) ( )

[ ( ) 2( ) ]

2 ( )

i i

i

i i

t tt tT T T

i i i i i i i i it

t t
t T T T T

i i i i i i i i i i i i it

t t t
t tT T

i i i i i i i i it t

d
e X t t P X t t X t P X t e X P X d

d

e X T P P T P x u K X B P X d

e X Q X d e u K X W K X
t

d

 (6.49) 

where 
1 1

( ) ( )T T

i i i i i i i
Q C Q C K W K . For a fixed control gain 

i
K , (6.49) can be solved 

for both the kernel matrix  
i
P  and the improved gain 1

i
K , simultaneously. The following 

Algorithm 1 uses the above Bellman equation to iteratively solve the ARE equation 

(6.36).  

 Algorithm 6.1. Online Off-policy IRL State-feedback algorithm  

1. Initialization: Start with a control policy 
0

i i i
u K X e , where 

i
K  is stabilizing and 

e  is the probing noise.  

2.  Solve the following Bellman equation for 
i
P  and 1

i
K  simultaneously. 

 

    

( )

( ) 1

( ) ( ) ( ) ( )

2 ( )

i i

i

t t
t tT T T

i i i i i i i i it

t t
t T

i i i i i it

e X t t P X t t X t P X t e X Q X d

e u K X W K X d
 (6.50) 

3. Stop if  convergence is achieved, otherwise set 1  and got to 2. 

4. On convergence set 
i i
K K . 

In Algorithm 6.1, the control policy which is applied to the systems, i.e. 
i
u , can be 

a fixed stablizing policy. The data which is gather by applying this fixed policy to the 

system is then used in (6.50) to find the value function  kernel matrix 
i
P  and the 

improved policy 
1 1

i i i
u K X  corresponds to an updated policy 

i i i
u K X . 
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6.5. Optimal model-free output regulation for a multi-aget heterogeneous systems 

In this section the distributed observer and the optimal tracking control from 

previous two sections are combined, to solve Problem 6.1. The developed approach, 

unlike the standard method does not require the explicit solution of the output regulator 

equation (6.4). However, it is shown that this distributed reinforcement learning approach 

implicitly solves the output regulation equations without actually doing so. The optimal 

control law (6.30) for a single-agent system (6.26) depends on the leader’s state 
0
. But, 

in a distributed multi-agent network, only few agents will be aware of the leader’s 

trajectory. Hence, the control law (6.30) cannot be used for all the agents. However, as 

explained in Section 6.3, by using the local adaptive synchronizer (6.8) and the 

corresponding update law (6.11), every agent can get a local estimation of the leader’s 

state 
0
 denoted by 

i
. By using the local estimate 

i
in (6.30), the modified optimal 

tracking controller for each agent is 

   
1 2i i i i i i i

u K x K KX       (6.51)  

where 
i
K  is obtained using the online Algorithm 6.1. Note that the tracking control (6.51) 

is optimal and does not depend on either the agent’s system matrices ( ), ,
i i i
A B C  or the 

leader dynamics S .  

The proof of the asymptotic convergence of the distributed observer and the 

optimal tracker are given in Sections 6.3 and 6.4, respectively. In the following theorem 

this results are combined to achieve output-synchronization of multi-agent heterogeneous 

systems. 

Theorem 6.3. Consider the distributed adaptive synchronizer (6.8) and the optimal 

tracking controller (6.51) obtained using Algorithm 6.1 for each agent i . Then the output 
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synchronization problem is solved for 1, ,i N as t , i.e., 
0

( ) ( 0 - )
i
y t y t i , 

provided that c in (6.8) is sufficiently large and the discount factor γ is less than the bound 

(6.37). 

Proof: Using the control law (6.51), consider the augmented dynamics for a single agent 

.

1 2

^

0
 + 

0

i i i i i

i i

i
i

i i
eS

x A BK BK x
                                    (6.52) 

along with the adaptive law given by (6.11) 

vec
ˆ ( )

i Si q i i
S I e                                                 (6.53) 

where 
i
e is defined in (6.9). Due to the block-triangular structure, the observer dynamics 

is independent of the agent state 
i
x , thus based on the separation principle the observer 

and the tracking control can be designed independent of each other. In Theorem 6.1 it is 

shown, 
0

( ) ( ) 0,
i
t t t , 1, ,i N . For any full rank matrix R, 

0
( ) ( ) 0,
i

R t R t t , i.e., 
0

( ) ( ) 0,
i

R t y t t . Now based on Theorem 6.2, 

( ) ( ) 0,
i i
y t R t t , this proves 

0
( ) ( ) 0, ,
i
y t y t t i .      

Remark 6.4. This theorem illustrates the separation principle for output regulation of 

heterogeneous multi-agent systems. It also shows that the explicit solution for the output 

regulator equation (6.4) is not necessary since tracking is achieved by controller (6.51), 

which is learned online using Algorithm 6.1 for each agent.  

In the previous theorem, it was shown that the explicit solution of the output 

regulator equation (6.4) is not required to achieve output synchronization. However, the 
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following lemma demonstrates that the output regulator equations (6.4) are solved 

intrinsically for the optimal tracking control (6.51). 

Lemma 6.1. Consider a network of heterogeneous multi-agent systems (6.3), and the 

leader (6.1). The control law (6.51) obtained using Algorithm 1 implicitly solves the output 

regulation equations 

i i i i i

i i

A B S

C R
                                                    (6.54)  

where in p

i
 and im p

i
 are unique nontrivial matrices. Moreover, if the gain 

1i
K  

in (6.51) and (6.5) are same then 
2 1i i i i
K K . 

Proof:  From Theorem 6.2, the control law (6.51) obtained using Algorithm 6.1, 

                                                       
1 2i i i i

u K x K    (6.55) 

stabilizes the system (6.3), i.e., 
1

( )
i i i
A BK is made Hurwitz, and guarantees output 

synchronization i.e., 
0

lim ( ) ( ) 0
it
y t y t . 

Now based on Assumption 2, there exists unique nontrivial matrix in p

i
 that satisfies 

                
1 2

( )
i i i i i i i
A BK BK S     (6.56) 

This is a Sylvester equation and the existence of the solution  
i
is guaranteed since 

1
( ) ( )

i i i
S A BK .  

Also, based on Theorem 6.2, the output regulation for control law (6.51) achieves output 

synchronization, i.e.,  

                                   0 0
lim ( ) ( ) lim ( ) ( ) 0

i i it t
y t y t C x t R t     (6.57) 
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This is based on Theorem 6.1 where 
0i
 is shown. Consider the state transformation 

0i i i
x x . The dynamics of the new state 

i
x  under (6.55) and (6.56) is 

1 10 2 0 0
( )

i i i i i i i i i ii i i ii
Ax BKx x BK S A B Kx x   (6.58) 

Thus lim 0
t i
x . From Theorem 6.2, 

0 0
lim ( ) ( ) lim ( ) lim( ) ( ) 0

i i i i it t ti
C x t R t C t C R tx                     (6.59) 

since 
0
( )t  is obtained from a marginally stable system (Assumption 6.2) this implies 

0
i i
C R . Using the transformation 

2 1i i i i
K K in (6.56) along with (6.59) gives 

(6.54), this completes the proof.   

6.6. Simulation results 

In this section, we provide a detailed simulation analysis of the proposed adaptive optimal 

output synchronization approach. We choose the leader to be sinusoidal trajectory 

generator and its dynamics is given by 

                      

0

.

0 0

0

0 2

2 0

1 0y

     (6.60) 

The heterogeneous followers are given by (6.4) for 1 4i  and their dynamics is 

1 1

2 2 2

3 3 3

4 4 4

1
0, 10, 1

0 1 0
, , 1 0

0 0 5

0 1 0
, , 1 0

1 0 2

0 0 0 5

0 0 1 , 0 , 1 1 0

0 1 0 10

B C

A B C

A B C

B C

A

A

    (6.61)  

The underlying communication network of heterogeneous systems is given in Fig. 6.1 
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Fig. 6.1. Communication graph for the heterogeneous systems. 

The distributed observer (6.8), (6.11) is implemented for 1 4i , The observer and 

adaptive gains are chosen as 25, 15
si

c . For the initial leader’s state 
0
(0) (1 1)T

, the error between observer and leader’s state along with the Frobenius norm ˆ
i F

S S‖ ‖  

is given in Fig.6.2 and Fig.6.3 and Fig.6.4, respectively. It can be seen from these figures 

that the introduced distributed observer converges to the leader’s state.    

The solution of the output regulator equation (6.4) for the given heterogeneous 

systems (6.61) is 

1

2 2

3 3

4 4

1
0 1 , 0 0.2

1 0
, 0.8 0

0 2

1 0
, 1.5 0

0 2

0.36 0.48

0.64 0.48 , 0.192 0.144

0.96 1.28

                           (6.62) 

For the following choice of the weight matrices Q,R the resulting optimal state feedback 

gain using LQR method for (6.61) is 
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1 11

2 2 12

3 1

14

1

3 3

4 4

100, 1, 10

100 0
, 1, 10 10.19

0 100

100 0
, 1, 9.51 10.46

0 100

1 0 0
100 0 1 0 , 1, 10 12.66 6.29

0 0 1

R K

Q R K

Q R K

Q

Q R K

                     (6.63) 

Using (6.62) and (6.63) the local optimal output regulator control can be solved. 

Instead, the tracking control is obtained online by using the Algorithm 6.2. The 

convergence of the learning controller to their optimal values given by (6.62) and (6.63) 

for all the agents is given in Fig. 6.5.  The evaluation of learned optimal tracking control 

along with the adaptive observer for the given multi-agent heterogeneous network is in 

Fig. 6.6. 

 

Fig. 6.2. Error between adaptive observer and leader’s trajectory for state 1. 
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Fig. 6.3. Error between adaptive observer and leader’s trajectory for state 2. 

 

Fig. 6.4. Frobenius norm ˆ
i F
S‖ S- ‖  for the adaptive observers. 
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Fig. 6.5. Convergence of the learning controller to their optimal values. 

 

Fig. 6.6. Evaluation of the learned controller along with adaptive observer for all 4 

heterogeneous agents given in (6.61). 

It can be seen from these results that the introduced approach implicitly solves 

the output regulator equations (6.4) and solves problem 6.1 without requiring any 

knowledge of either agent’s or leader’s dynamics.  
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A novel approach is provided to design a model-free distributed controller to 

synchronize outputs of heterogeneous systems to the output of the leader. A local 

discounted performance function is defined for each agent which penalizes its own 

control effort and its tracking error. It is shown that minimizing these performance 

functions leads to solving AREs. It is also shown that the solutions found by solving AREs 

guaranteed synchronization provided that the discount factor is small enough. An 

adaptive distributed observer is designed to estimate the leader state and reinforcement 

learning is used to solve the AREs without requiring any knowledge of the dynamics of 

the agents. A simulation example is provided to show that the proposed approach in fact 

solves implicitly the output regulator equation for each agent (which is a necessary and 

sufficient condition to achieve output synchronization).  
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  Chapter 7

OPTIMAL ASSISTIVE HUMAN-ROBOT INTERACTION USING REINFORCEMENT 

LEARNING 

7.1. Introduction 

Human robot interaction (HRI) is an area of increasing interest in robotic 

research. Its potential applications in industry, entertainment, teleoperation, household 

and healthcare, to name just a few, have led to increased studies to develop more 

flexible and efficient HRI systems. Unlike ordinary industrial robotics where the 

environment is structured and known, in HRI systems, the robots interact with humans 

who may potentially have very different skills and capabilities. Therefore, it is desired to 

develop human-robot systems that are capable of adapting themselves to the level of the 

skill of the human operator to assist the operator to accomplish a given task with 

minimum workload demands, and to achieve a good closed-loop behavior of the human-

robot system. 

 Industrial robots are usually programmed to follow desired trajectories. Adaptive 

robot controllers using neural networks (NNs) have been widely used in the literature to 

provide highly effective controllers in yielding guaranteed trajectory following control for 

robot manipulators with unknown nonlinear dynamics, modeling inaccuracies, and 

disturbances. The use of NNs in feedback control systems was first proposed by 

Narendra [83]. Since then, NN control has been studied by many researchers. Recently, 

NN have entered the mainstream of control theory as a natural extension of adaptive 

control to systems that are nonlinear in the tunable parameters. The state of NN control is 

well illustrated by papers in the Automatica Special issue on NN control [84].  Overviews 

of the initial work in NN control are provided 
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by [86], [87], [88], [90], [94], [18], [38], [49], [64], [65], [66], [67], [137], [32], [33] which 

highlighted a host of difficulties addressed for closed-loop control applications.  

When the robot manipulator is in contact with an object or a human, it must be 

able to control not only positions, but also forces. Impedance control [37] provides an 

effective method for control of both position and force simultaneously in trajectory-

following tasks. The objective of the impedance controller is to assign a prescribed 

dynamic behavior between the end effector position and end effector environment 

contact force. This method is inspired by how humans learn to adapt their arm 

impedance parameters to enable them to successfully perform contact tasks even in 

uncertain environments. Various impedance control methodologies have been developed 

in the literature to make a robot follow a desired trajectory while operating in physical 

contact with objects. The important feature in trajectory following is the tracking error 

dynamics. Therefore, impedance control generally has focused on making the tracking 

error dynamics behave like a prescribed robot impedance model. Adaptive impedance 

control techniques using NNs have been developed to tune the impedance model to be 

followed by the tracking error dynamics based on various 

considerations [19], [34], [133], [44], [35], [53].  

All these mentioned adaptive NN based control methods and impedance control 

methods are based on tracking error dynamics, and/or making the error dynamics have a 

prescribed impedance characteristic. The objective of trajectory following with an error 

dynamics having prescribed impedance properties often restricts the applications of 

these approaches in HRI systems. For modern interactive HRI systems to be capable of 

performing a wide range of tasks successfully, it is required to include the effects of both 

the robot dynamics and the human dynamics. Human performance neuropsychological 

and human factors studies have shown that in coordinated motion with a robot, human 
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learning has two components [12], [30], [101]. The operator learns a robot-specific 

inverse dynamics model to compensate for the nonlinearities of the robot [99][104], and 

simultaneously he learns a feedback control component that is specific to the successful 

performance of the task. These foundations can be incorporated in the design of the 

human-robot control system to include the effects of both the robot dynamics and the 

human dynamics, and their interactions in a task-specific outer control loop. 

Recently, impedance control methods for HRI systems have been developed by 

some researchers, motivated by these human factor studies. One approach, namely 

human adaptive mechatronics, is presented in [31], [57], [58], [102]. That is, it has an 

inner-loop controller to make the robot behave like a virtual model and an outer-loop 

controller to make the HRI system stable based on the task. This method takes into 

account the skill differences of the operators by adjusting the impedance of the robot 

according to the identified operator’s model dynamics. Human modeling has been 

studied in the literature [105], [91]. Moreover, the impedance parameters in [31], [57], [58] 

are tuned based on a Lyapunov function to assure stability. But, stability is a bare 

minimum requirement for a controlled system, and it is also desired to tune the 

impedance parameters to optimize the long-term performance of the system. Sam Ge 

et.al [71], [115] developed an adaptive impedance method for HRI systems to find the 

optimal parameters of the robot impedance model.  

In this chapter, a novel approach is presented to develop an intelligent HRI 

system with adjustable robot behavior that assists the human operator to perform a given 

task using the minimum effort and achieves an optimal performance for the human-in-

the-loop system. The proposed method does not require the knowledge of the human 

model and does not need to estimate or to identify the human impedance characteristics. 

This makes it a biologically plausible learning algorithm. In accordance with human 
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factors studies, the proposed method has two control loops. A robot-specific inner-loop is 

designed to make the robot with unknown dynamics behave like a simple prescribed 

robot impedance model as perceived by a human operator. This means the human does 

not need to learn an inverse dynamics model to compensate for robot nonlinearities. In 

contrast to most previous work, this is not a trajectory following objective and no 

information of the task performance is used in the inner loop. Next, a task-specific outer-

loop is developed, taking into account the human transfer characteristics, to find the 

optimal parameters of the prescribed robot impedance model depending on the task. In 

the outer loop, the problem of finding the optimal parameters of the prescribed robot 

impedance model is formulated as a LQR problem such that both the tracking errors and 

the human operator effort are minimized. RL is used to solve the given LQR problem to 

obviate the requirement of the knowledge of the human model.  

The contributions of this chapter are as follows. 

1. An inner-loop controller is designed to make the nonlinear unknown robot 

dynamics behave like a prescribed robot impedance model. This is more 

general than standard trajectory following. The proposed inner-loop controller 

does not require either task information or the specific prescribed robot 

impedance model parameters. This enables us to decouple the design of the 

robot-specific inner loop from the design of the task-specific outer-loop 

controller.  

2. The problem of designing the optimal parameters of the prescribed robot 

impedance model is transformed into an LQR problem in a task-specific 

outer-loop control design. These parameters are determined by minimizing a 

performance function in terms of the human control effort and the tracking 

error.  
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3. A reinforcement learning technique is employed to solve the task-specific 

LQR problem online in real time and without knowing the knowledge of the 

human model.  

4. The proposed approach does not restrict the robot to a trajectory following 

task, because it leaves the task-specific details to the design of the outer-

loop which incorporate the human operator. 

The rest of the chapter is organized as follows. The next section presents the 

overall structure of the proposed control design method for the HRI systems. Both the 

inner-loop control design and the outer-loop control design are briefly discussed. 

Sections 8.3 and 8.4 discuss the inner-loop design and the outer-loop design, 

respectively, in details. Finally, Sections 8.5 and 8.6 present the simulation results and 

conclusion, respectively. 

7.2. HRI control structure overview 

In this section, the structure of the HRI control system developed in this chapter 

is overviewed. The proposed control structure is motivated by the human factors, which 

states that the human learns a robot-specific inverse dynamics model to compensate for 

the nonlinearities of the robot, and simultaneously a feedback control component that is 

specific to the successful performance of the task. Therefore, the HRI design here has 

two objectives. First, a robot torque controller is provided to avoid the need for the 

operator to learn a robot-specific model. Second, assistive inputs are provided to 

augment the operator’s control effort so that the operator performs a given task with 

minimum workload demands and maximum performance.  

To achieve these goals, the proposed method has two control loops. The first 

loop is a robot-specific inner loop which does not require any information of the task. See 
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Fig. 7.1. The second loop is a task-specific outer loop which includes the human operator 

dynamics, the robot and the task performance details. See Fig. 7.2. 

The robot-specific inner-loop controller is shown in Fig. 7.1. The objective is to 

make the unknown robot manipulator dynamics behave like a prescribed robot 

impedance model as perceived by a human operator. This avoids the need for the 

operator to learn a model of the specific robot system. The human only needs to interact 

with the simplified impedance model. To compensate for the unknown robot 

nonlinearities, an adaptive NN controller is employed. This is not the same as the bulk of 

the work in robot impedance control and NN control, which is directed towards making a 

robot follow a prescribed trajectory, and/or causing the trajectory error dynamics to follow 

a prescribed impedance model. No trajectory information is needed for the inner-loop 

design. This leaves the freedom to incorporate task information in an outer-loop design. 

The robot-specific inner-loop controller shown in Fig. 7.1 called model reference neuro-

adaptive control. This is because an adaptive NN controller is developed to make the 

robot dynamics, from the human force to the robot motion, behave like the prescribed 

reference impedance model.  

The task-specific outer-loop controller is shown in Fig. 7.2. Given the robot-

specific inner-loop design, the optimal parameters of the prescribed robot impedance 

model are determined in this task-specific outer loop to guarantee motion tracking and 

also assist the human to perform the task with minimum effort. To this end, the problem 

of determining the optimal parameters of the prescribed robot impedance model is 

transformed into a LQR problem. This design must take into account the unknown human 

dynamics as well as the desired overall performance of the human-robot system, which 

depends on the task. Reinforcement learning is used to solve the LQR problem without 

any knowledge of the human operator dynamics.  
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Fig. 7.3 shows the overall schematic of the proposed two-loop control design 

method for the HRI system. The details of the inner-loop design and the outer-loop 

design are given in Sections 7.3 and 7.4, respectively. 

7.3. Robot-specific inner-loop: A model reference neuro-adaptive controller 

In this section, the design of the inner-loop controller in Fig. 7.1 is given. The aim 

of the inner-loop controller is to make the robot manipulator behave like a prescribed 

robot impedance model. The proposed inner-loop control method has two main 

differences from the existing adaptive impedance control methods. First, in contrast to 

trajectory following based methods, the proposed method is a robot-specific method that 

does not require a reference motion trajectory. That is, the proposed method minimizes 

the model-following error between the output of the prescribed robot impedance model 

and the motion of the robot without needing task information. Second, in the proposed 

method, the designed control torque does not require any knowledge of the prescribed 

robot impedance model. This enables us to decouple the design of the robot-specific 

inner-loop controller from the design of the task-specific outer-loop control design.  

Consider the dynamical model of robot manipulator in Cartesian space [64] 

( ) ( , ) ( ) ( )
c d h h

M q x C q q x F q G q K f  (7.1) 

with 
1TM J M J , 

1 1( )TC J C M J J J , 
1TM J M J , 

T

c
F J F , 

TG J G , TJ , where nq is the vector of generalized joint coordinates, n is 

the number of joints, nx is the end-effector Cartesian position, the control input force 

is TJ  with  is the vector of generalized torques acting at the joints,  n nM R  

is the symmetric positive definite mass (inertia) matrix, 
1( , ) nC q q q  is the vector of 

Coriolis and centripetal forces, 1( ) n

c
F q  is the Coulomb friction term, 1( ) nG q  is 
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the vector of gravitational torques, 
d

 is a general nonlinear disturbance , 
h
f  is the 

human control effort, 
h
K  is a gain and J is the Jacobian matrix. 

Remark 7.1. Note that in the above dynamics, it is assumed that the human force is 

sensed by a force sensor and is amplified by a gain 
h
K  before applying to the robot. For 

example, for the x-y table example in [101], the force generated by the hand to the grip is 

measured by a force sensor and is magnified before it is applied to the stage. As shown 

in Section 7.5, this gain is employed to help the human to minimize the tracking error and 

maximize the performance. It is shown in Remark 7.5 that if the amplification of the 

human force is not possible for a specific application, the proposed method can still be 

used. It is assumed that the robot manipulator dynamics are unknown. 

 
Fig. 7.1. The robot-specific inner-loop model-following control design 

 
Fig. 7.2. The task-specific outer-loop control design 
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Fig. 7.3. The overall two-loop control design method for the adaptive HRI system 
 

Consider the prescribed robot impedance model 

( ) ( , )
m m m h h d h d

M x Bx K x K f l x l f x  (7.2) 

in Cartesian space, where 
m
x  is the output of the prescribed robot impedance model, M

, B , and K  are the desired inertia, damping, and stiffness parameter matrices, 

respectively. These parameters are specified in the task-specific outer control loop 

design in Section 7.4. The auxiliary input ( )
d

l x  is a trajectory dependent input and is also 

designed in Section 7.4. No trajectory information is needed in this section. 

Design Objective: The aim is to design the force  in (7.1) to make the unknown robot 

dynamics (7.1) from the human force 
h
f  to the Cartesian coordinates x  behave like the 

prescribed robot impedance model (7.2). That is, it is desired to make the following 

model-following error go to zero.  

m
e x x  (7.3) 

Note this is not a trajectory-following error. Therefore, this is a model-following 

design, and not a trajectory-following design, in contrast to most work on robot torque 
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control. No task information is required in this section. All task-specific details are taken 

into account in the next section. 

Write the control torque as 

1
( )
d

l x  (7.4) 

where the feedforward term ( )
d

l x  is designed in the next section. Then, the robot 

dynamics (7.1) becomes 

1
( ) ( , ) ( ) ( ) ( , )

c d h d
M q x C q q x F q G q l f x  (7.5) 

It is now required to design a control torque 
1
 to make the robot behave like the 

prescribed robot impedance model (7.2). Consider the control torque 

1
ˆ ˆ( ) (t) ( , )T T

v h d
W V z K r v l f x  (7.6) 

where  (t)v  is a robustifying signal to be specified , 
v
K  is the control gain, and 

1 2
r e e  (7.7) 

is the sliding mode error with 

0

( )
t

e d  (7.8) 

Finally,  

ˆ ˆ ˆ( ) ( )T Th z W V z  (7.9) 

is a neural network (NN) with [ , , , , , , ]T
m m

z q q x x e e  the input to the NN, Ŵ  and V̂  the 

NN weights and ( )z  the vector of activation functions. As is shown in the proof of 

Theorem 7.1, the NN controller in (7.6) is used to compensate for the unknown robot 

function h  defined as  

1 2 1 2
( ) ( )( ) ( , )( ) ( ) ( )

m m c
h z M q x e e C q q x e F q G q             (7.10) 
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The neural network universal approximation property specifies that any unknown 

continuous function can be approximated on a compact set using a two-layer NN to any 

arbitrary precision. That is, for the continuous function ( )h z  on a compact set z , one 

has 

( ) ( ) ( )T Th z W V z z  (7.11) 

where V  is a matrix of first-layer weights, W  is a matrix of second-layer weights, and  

is the NN functional approximation error. The ideal weight vectors W  and V  are 

unknown and is approximated online. Therefore, ( )h z  is approximated as (7.9) with Ŵ  

and V̂  the estimations of W  and V , respectively.  Define 

0

0

W
Z

V
 (7.12) 

and Ẑ  equivalently. 

Assumption 7.1. The ideal NN weights are bounded by a constant scalar so that 

B
Z Z  (7.13) 

The following theorem shows that the proposed control input (7.4) with 
1
 given 

by (7.6) guarantees the boundness of the model-following error e  and the NN weights.  

Theorem 7.1. Consider the robot manipulator dynamics (7.1) and the prescribed robot 

impedance model (7.2). Let the control input be chosen as (7.4) and (7.6). Let 

Assumption 7.1 hold. Let the update rule for the NN weights be given by 

ˆ ˆ ˆ ˆ ˆT T TW F r F V z r k F r W  (7.14) 

ˆ ˆ ˆ ˆ( )T TV G z Wr r kG r V  (7.15) 
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where ˆ ˆ( )TV z , ˆ
ˆ ( )/ | Ty V z
d y dy , 0TF F , 0TG G  and 0k  is a small 

design parameter. Let the robustifying term be 

ˆ( ) ( )
z B

v t K Z Z  (7.16) 

where 0
z
K . Then, ( )e t  in  (7.3) and the NN estimated weights are uniformly ultimately 

bounded (UUB).   

Proof. By differentiating (7.3) with respect to time one has 
m

e x x , or equivalently 

m
x x e . Differentiating x  gives 

m
x x e . Considering the sliding mode tracking 

error r  defined in (7.7), one has 
1 2

e r e . Differentiating  e  gives  

1 2
e r e e . Using these expressions in (7.1) yields 

1 2 1 2
( )( ( )) ( , )( ( ))

( ) ( )

m m

c d h h

M q x r e e C q q x r e

F q G q K f
 (7.17) 

This gives the sliding mode error dynamics 

( ) ( , ) ( , , , , , , )
m m d h h

M q r C q q r h q q x x e e K f  (7.18) 

with h  defined in (7.10). The robot manipulator dynamics (7.1) is assumed to be 

unknown and therefore h  in (7.18) is unknown and approximated online by (7.9). Then, 

the closed-loop filtered error dynamics (7.18) becomes 

ˆ ˆ( ) ( , ) ( )T T

d h h
M q r C q q r W V z K f h  (7.19) 

where ˆh h h  is the estimation error for approximating the function h . Substituting  

form (7.4) and (7.6) in (7.19) gives 

( ) ( , ) ( )
v d

M q r C q q r K r h v t  (7.20) 

The remainder of the proof is the same as [66] and thus is only outlined here. A 

Lyapunov function is defined as 
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1 11
( ) ( ) ( )

2
T T TL r M q r tr W F W tr V F V  (7.21) 

where the weight estimation errors are ˆW W W , ˆV V V , and it is shown using 

(7.14)-(7.16) and (7.19) that the Lyapunov function derivative is negative outside a 

compact set. This guarantees the boundedness of the filtered tracking error r  as well as 

the NN weights. Specific bounds on r  and the NN weights are given in [66].  

Note that the proposed controller (7.4), (7.6) is composed of four parts. The first 

part is a nonlinear compensator consisting of a NN controller to compensate for unknown 

function h  defined in (7.10). The second part of the controller is a stabilizing PID 

controller that stabilizes the model-following error e . The third part is a robust term that is 

designed to achieve robustness against uncertainties. Finally, the last part is used to 

compensate for the input ( , )
h d
l f x  of the prescribed robot impedance model.   

Fig. 7.4 shows the detailed schematic of the proposed inner-loop controller. We 

call this model reference neuro-adaptive control because the neural network adaptive 

controller causes the robot dynamics to behave like the prescribed impedance model 

(7.2). This is in contrast to NN torque control work, which seek to make the robot motion 

( )x t follow a prescribed trajectory.  

Remark 7.2. Function ( )h z  in (7.10) does not contain the parameters M , D  and K  of  

the prescribed robot impedance model (7.2). This means that the NN does not need to 

estimate the impedance model. This is in contrast to methods that design the torque  in 

(7.1) to guarantee following a desired trajectory, and demand that the trajectory tracking 

error dynamics follow a prescribed impedance model. Our design of the robot-specific 
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inner-loop controller is independent from any task objectives. All task-specific information 

is considered in the outer-loop design in Section 7.4. 

7.4. task-specific outer-loop adaptive impedance control 

In this section the design of the outer task loop controller shown in Fig. 7.2 is 

detailed. It was shown in Section 7.3 that the robot-specific controller of Theorem 7.1 

makes the nonlinear unknown robot behave like the simple prescribed robot impedance 

model (7.2) as perceived by the human operator. In this section, the parameters of the 

prescribed robot impedance model given in (7.2) are optimized to assist the human to 

perform a given task with minimum effort and to minimize a tracking error. To this end, 

the problem of optimizing the parameters of the prescribed robot impedance model is 

transformed into an LQR problem and then reinforcement learning is used to solve the 

given problem without requiring the human dynamics model.  

 
Fig 7.4. Model reference neuro-adaptive inner-loop controller 
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Design Objective: The aim of the task-specific outer-loop controller is to find the optimal 

values of the prescribed impedance parameters B , K  and  the human gain
h
K and the 

auxiliary input ( )
d

l x  in (7.2) to minimize the human control effort 
h
f and optimize the 

tracking performance depending  on the task. 

Note that there are many types of tasks. We focus on tasks that require the 

human-robot system to follow a desired trajectory. This includes point-to-point motion 

control [22].  

The dynamics of the human model and the interaction of the robot and the 

human are considered in this outer-loop control design. The human dynamics change 

during the task learning process. After learning, an expert human operator is 

characterized by a simple linear transfer characteristic. Therefore, the human impedance 

model is assumed to be 

( )
d p h d
K s K f e  (7.22) 

where 
d
K  and 

p
K  are unknown matrix gains. These parameters vary from one individual 

to another and depend on the specific task. 

7.4.1 Task-specific outer-loop control method: An LQR approach 

The block diagram of the outer loop task controller is sketched in Fig. 7.2 and 

shown in detail in Fig. 7.5. As shown in this figure, in addition to the adaptive impedance 

loop that specifies the optimal impedance parameters, an assistive feedforward input and 

a human force gain are employed to help the human to minimize the tracking error. The 

feedforward term ( )
d

l x in (7.2) is designed to make the steady-state tracking error go to 

zero. The human gain 
h
K  and the optimal values of the prescribed impedance 
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parameters K  and B  in (7.2) are determined to minimize the human effort and the 

tracking error for a given task. 

In the following it is shown how the problem of finding optimal values of B , K  

and 
h
K  is transformed into an LQR problem, and how these parameters are obtained by 

solving an ARE. 

 
Fig. 7.5. Human-robot interface in the task-specific outer loop 

 

Define the tracking error 

n

d m d
e x x  (7.23) 

and 

2[ ]T T T n

d d d m d
e e e x x  (7.24) 

with  

2[ ]T T T n

m m
x x x  (7.25) 

and  

2[ ]T T T n

d d d
x x x  (7.26) 

Based on this tracking error, define the performance index 

( )T T T

d d d h h h e e

t

J e Q e f Q f u Ru d  (7.27) 

- 2 1( )Ms Bs Kh
K

(.)l

d
x

m
xh

f
d
e 1( )

p d
K s K s

Prescribed ImpedanceModelHuman
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where  0T

d d
Q Q , 0T

h h
Q Q  , 0TR R , and 

e
u  is the feedback control input 

which depends linearly on the tracking error 
d
e  and the human effort 

h
f . Then,  

1 2e d h
u K e K f  (7.28) 

It is shown in Theorem 7.2 that the control input (7.28) has two components. The 

first component, i.e. 
1
K , tunes the prescribed impedance parameters B , K  and the 

second component, i.e. 
2
K , tunes the human control gain 

h
K . 

Remark 7.3. Note that by minimizing the performance index (7.27), both the tracking 

error 
d
e  and the human effort 

h
f  are minimized.  

By defining the augmented state 

3d n

h

e
X

f
 (7.29) 

the performance index (7.27) can be written as  

( )T T

e e

t

J X QX u Ru d  (7.30) 

where diag( , )
d h

Q Q Q , and 
e
u K X  with 

1 2
[ ]K K K . 

The dynamics of the system with augmented state (7.29) are now given. Using 

(7.2) one has 

0 0

0 0
n n

q q
n n

I
x x u A x B u

I
 (7.31) 

where  x  is defined in (7.25), and  

1 1( ) ( )
q h h d

u M K x K f M l x  (7.32) 

with 
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[ ]
q
K K B  (7.33) 

On the other hand, based on the human model we have 

( )
d p d
K s K f he  (7.34) 

which can be written in time domain as  

d h p h d
K f K f he  (7.35) 

or equivalently 

1

h d p h d d
f K K f hK e  (7.36) 

where 
1

,0
[ 0]

d d
K K  and 

d
e  is defined in (7.24).  

The following theorem shows how the problem of finding the optimal parameters 

of the prescribed impedance model and the human gain are obtained by solving an LQR 

problem. 

Theorem 7.2. Consider the prescribed robot impedance model (7.2). Based on dynamics 

in (7.31) and (7.36), define augmented matrices A  and B  by 

1

,0

0
q

d d p

A
A

K hK K
, 

0
q
B

B  (7.37) 

Define 

[ ]
q h

K K K  (7.38) 

as the matrix of the impedance parameters and the human gain. Then, the optimal value 

of K  which minimizes the performance index (7.27) is given by 

1 TK MR B P  (7.39) 

where P  is the solution to the ARE 

10 T TA P PA PBR B P Q  (7.40) 
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Then, the optimal feedback control is given by 

1 1 1

e d d h h
u M Ke M Be M K f  (7.41) 

Proof.  Manipulating (7.32) gives 

1 1( ) ( ( ) )
q d h h d q d e d

u M K e K f M l x K x u u  (7.42) 

where 
d
e  and  

d
x  are  defined in (7.24) and (7.26), and 

1( )
e q d h h
u M K e K f  (7.43) 

is a feedback control input, and  

1 ( ( ) )
d d q d
u M l x K x  (7.44) 

is a feedforward control input. The steady state or feedforward term is used to guarantee 

perfect tracking. That is, in the steady state one has 

d q d q d
x Ax B u  (7.45) 

where 
d
x  is defined in (7.26). Therefore,  

1( ) ( )
d d q d q d q q q d

l q M u K x MB x Ax K x  (7.46) 

Taking derivative of 
d
e  and using (7.31) and (7.45), and some manipulations gives 

d q d q e
e Ae B u  (7.47) 

Using the augmented state (7.29), and using (7.47) and (7.36) one has 

1

,0

0

0
qd d q

e e
h hd d p

Ae e B
X u AX Bu

f fK hK K
 (7.48) 

The control input 
e
u  in terms of the augmented state can be written as  

1 1( )
e q d h h
u M K e K f M K X  (7.49) 
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Finding the optimal feedback control (7.49) to minimize the performance index 

(7.27) subject to the augmented system (7.48) is an LQR problem and its solution is 

given by 

1 T

e
u R B PX  (7.50) 

where P  is the solution to the Riccati equation (7.40). Equating the right-hand sides of  

(7.49) and (7.50) yields 

                                 
1[ ] T

q h
K K K MR B P  (7.51) 

This completes the proof.  

Remark 7.4. The K  vector defined in (7.38) includes both the parameters (7.33) of the 

robot impedance model and the gain 
h
K of the human force. Therefore, the solution to 

the formulated LQR problem gives the optimal values of the prescribed impedance model 

parameters and the gain of the human operator force.  

Remark 7.5. The outer-loop control design consists of two components: An adaptive 

impedance component which finds the optimal values of the parameters (7.33) of the 

prescribed impedance model, and an assistive component including the human force 

gain 
h
K  and the feedformard term ( )

d
l q  to help the human to minimize the tracking 

error.  

Remark 7.6. The K  vector defined in the above equation includes both the parameters 

of the robot impedance model and the gain 
h
K of the human force. Therefore, the 

solution to the formulated LQR problem gives the optimal values of the prescribed 

impedance model parameters and the gain of the human operator force. If the human 

gain cannot be magnified for a specific HRI application, i.e. if 1
h
K , then, one can set 
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the coefficient of  
h
f  in the control input as 1M  and then find M  instead of  

h
K . That is, 

if 1
h
K  and M  is unknown, then one has 

1 1 1[ ] T

q
K M K M R B P , which gives 

unknown parameters of the impedance model. 

7.4.2. Learning optimal parameters of the prescribed impedance model  

Solving (7.40) requires the knowledge of the matrix A  in (7.37) and 

consequently the knowledge of the human model. In order to obviate the requirement of 

knowledge of the human model, the IRL algorithm is used to solve the given LQR 

problem. To obtain the IRL Bellman equation for the given LQR problem, note that for 

time interval 0t , the value function (7.27) satisfies 

( ( )) ( ) ( ( ))
t T

T T

e e

t

V X t X QX u Ru d V X t T  (7.52) 

It is well known that the value function for the LQR problem is quadratic in terms 

of the state of the system state. That is, ( ) TV X X PX . Using this quadratic form in 

(7.52) yields the IRL Bellman equation 

( ) ( ) ( ) ( ) ( ) ( )
t t

T T T T

e e

t

X t P X t X t Q X t u R u d X t t P X t t  (7.53) 

Using (7.53) for policy evaluation step and an update law in form of (7.50) to find an 

improved policy, the following IRL-based algorithm is obtained for solving (7.40). 

Algorithm 7.1. Online IRL algorithm for the outer-loop control design 

Initialization: Start with an admissible control input 0 0

1
u K X   

Policy evaluation: Given a control policy iu , find iP  using the Bellman equation 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
[ ]

t t
T i T i T i T i

e e

t

X t P X t X t Q X t u R u d X t t P X t t

 

(7.54) 
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Policy improvement: update the control input using 

1 1

1

i T i

e
u R B P X  (7.55) 

The policy evaluation and improvement steps (7.54) and (7.55) are repeated until 

the policy improvement step no longer changes the present policy, thus convergence to 

the optimal controller is achieved. That is, until 1|| ||i iP P  is satisfied, where   is a 

small constant. The solution for iP  in the policy evaluation step (7.55) is generally carried 

out in a least squares (LS) sense. In fact (7.55) is a scalar equation and P is a symmetric 

n×n matrix with n(n + 1)/2 independent elements and therefore at least n(n + 1)/2 data 

sets are required before (7.55) can be solved using LS.   

Note that Algorithm 7.1 solves ARE (7.40) and does not require knowledge of the 

A  matrix which contains knowledge of the human dynamics. In fact, the information of A  

is embedded in the online measurement of system data.  

7.5. Simulation results 

In this section, the proposed reinforcement learning based optimized assistive 

control is applied to a two-link planar robot arm. The length of the links are 
1

1L m  and 

2
1L m . The masses of the rigid links are 

1
.8m o kg  and 

2
2.3m kg . The 

gravitational acceleration is 9.8g 2/m s .   

In the following, it is shown in the first part how the proposed inner-loop control 

design method make the robot behave like a prescribed impedance model regardless of 

its impedance parameters. Then, in the second part, it is shown how to find optimal 

parameters of the prescribed impedance parameters to make the tracking error in an 

optimal manner. 
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7.5.2. Inner Loop 

In this subsection it is shown how a robot two-link planar robot arm behaves like 

a given impedance model using the inner-loop control design method presented in 

Section 7.3. The human force is assumed sinusoidal in both directions in this section. 

The simulations are performed for two different sets of impedance gains to show that the 

robot behaves like the impedance model regardless of the impedance model parameters.  

Case 1) The first matrix gains for the impedance model are chosen as 

1   0

0   1
M , 

5   0

0   5
B , 

 2   0

 0   2
K . 

Fig. 7.7 show that the trajectories of the prescribed impedance model are very close to 

the trajectories of the robot arm. 

Case 2) The second matrix gains for the impedance model  are chosen as 

2   0

0   2
M , 

15   0

0   15
B , 

 20   0

 0   20
K . 

Figs. 7.8-7.10 show that the trajectories of the prescribed impedance model are the same 

as the trajectories of the robot arm. Figs 7.5-7-10 confirm that the robot behaves like the 

impedance model regardless of the impedance parameters. This enables us to tune the 

impedance parameters in the outer loop to minimize the tracking error and the human 

workload. 

7.5.2. Outer Loop 

In this subsection, the results of the proposed outer-loop controller method are 

presented. The mass matrix for the prescribed impedance model is set to identity of 

appropriate dimension and it is assumed that desired trajectory to be followed by the 
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robot is [sin( ),cos( )]
d
x t t . It is assumed also that the human admittance parameters are 

10
d
K  and 20

p
K  and 1h  . The matrices A and B  then become 

                                 

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0.1 0 0 0 -2 0

0 0.1 0 0 0 -2

A , 

0 0

0 0

1 0

0 1

0 0

0 0

B                                 (7.56)                             

Then, the offline solution toof the ARE is given as 

 

*

 507.364    0.000    7.076   -0.000    3.378   -0.000

    0.000  507.364    0.000    7.076   -0.000    3.378

    7.075    0.000    7.170   -0.000    0.046    0.000

   -0.000    7.076   -0.000    7.170
P

   -0.000    0.046

    3.378   -0.000    0.046   -0.000   99.995   -0.000

   -0.000    3.378    0.000    0.046   -0.000   99.995

 

and 

                  *
 -70.758    0.000  -71.704   0.000    0.458    0.000

   0.000   -70.758   0.000  -71.704   -0.000    0.458
K            (7.57) 

and consequently, the optimal gain matrices for the prescribed impedance model and the 

human force gain becomes 

71.704   -0.000

-0.000   71.704
B , 

 70.758    0.000

 -0.000   70.758
K , 

 0.458   0.000

 0.000   0.458h
K  

Figs. 7.11 and 7.12 show the results of implementing the proposed method using 

the obtained optimal gains for the prescribed impedance model. It can be seen that the 

system states follow the desired trajectories very fast because of the proper gains chosen 
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for the prescribed impedance model. To compare these results to the results of another 

set of arbitrary gains, Figs. 7.13 and 7.14 show the results obtained if the gains of Case 1 

in previous subsection are used. Comparing figures 7.11 and 7.12 to 7.13 and 7.14 

confirms that the performance of the overall system for the set of optimal gains is by far 

better than those of Case 1. 

It is now shown the proposed online IRL Algorithm 7.1 gives the same solution as 

the offline solution, but without requiring the knowledge of the human dynamics. To 

initialize the value function in Algorithm 7.1, we assume that 
d d d
K K K  and 

p p p
K K K , where 

d
K  and 

p
K  are nominal parameters for an expert human and 

d
K  and 

p
K changes from one human to another. Note that matrix 

q
A in A  is known 

and so we can solve the ARE with matrix A  containing only nominal values of the human 

dynamics. This gives us a very appropriate initial value for the value function kernel 

matrix P . 

Figs. 7.13 and 7.14 show the convergence of the control gain and the value 

function kernel matrix to their optimal values using online Algorithm 7.1. Note that 

Algorithm 7.1 converges fast after only two iterations because we initialized the value 

function kernel matrix in an appropriate way. The final gain and kernel matrix found after 

16 iterations by Algorithm 7.1 are  

16

 507.364    0.000    7.076   -0.000    3.378   -0.003

    0.000  507.364    0.000    7.076   -0.003    3.378

    7.075    0.000    7.170   -0.000    0.046    0.000

   -0.000    7.076   -0.000    7.17
P

0   -0.000    0.046

    3.378   -0.000    0.046   -0.000   99.984   -0.000

   -0.000    3.378    0.000    0.046   -0.000   99.984
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16

 -70.758    0.000  -71.704   0.000    0.461    0.000

   0.000   -70.758   0.000  -71.704   -0.000    0.461
K               (7.58) 

By comparing (7.58)  to (7.57), it is obvious that the solution found by Algorithm 

7.1 is the same as one found using offline algorithm by solving the ARE. 

 

Fig. 7.5. The trajectory of the robot arm and the prescribed impedance model in x  

direction for Case 1. 

 

 

Fig. 7.6. The trajectory of the robot arm and the prescribed impedance model in y  

direction for Case 1. 
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Fig. 7.7. The error between the trajectories of the robot arm and the prescribed 

impedance model for Case 1. 

 

 

Fig. 7.8. The trajectory of the robot arm and the prescribed impedance model in x  

direction for Case 2. 
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Fig. 7.9. The trajectory of the robot arm and the prescribed impedance model in y  

direction for Case 2. 

   

Fig. 7.10. The error between the trajectories of the robot arm and the prescribed 

impedance model for Case 2. 
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Fig. 7.11. The trajectory of the robot arm and the desired trajectory in x  direction. 

 

 

Fig. 7.12. The trajectory of the robot arm and the desired trajectory in y  direction. 
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Fig. 7.13. Convergence of the prescribed impedance gains to their optimal values using 

online Algorithm 7.1. 

 

Fig. 7.14. Convergence of the kernel matrix parameters to their optimal values 

using online Algorithm 7.1. 

 
An practical experiment is now conducted on a PR2 robot at the University of 

Texas at Arlington Research Institute. Fig.7.15 shows the PR2 robot and the 

experimental setup. In this experiment, the human operator holds the gripper of the PR2 

to perform point-to-point motion between red and blue points along the y axis, as can be 
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seen in Fig. 7.15. Human force is measured using an ATI Mini40 FT sensor attached 

between the gripper and forearm of the PR2. The controller is implemented using the 

real-time controller manager framework of the PR2 in ROS Groovy. The real-time loop on 

the PR2 runs at 1000Hz and communicates with the sensors and actuators on an 

EtherCAT network.  

 

Fig. 7.15. PR2 robot and the experimental setup 

 
The proposed controller is now implemented to this HRI system. Figs. 7.16-7.18 

show the results of this experiment. Fig. 7.16 shows that the trajectory of the robot tracks 

the trajectory of the prescribed impedance model in the inner loop. Fig. 7.17 shows the 

outer-loop controller performance. At the beginning, the prescribed impedance model is 

initialized with a set of non-optimal parameters and thus the performance of the overall 

systems is not satisfactory. However, after a short time of interaction between the human 

and the robot, the outer-loop controller learns the optimal parameters for the prescribed 

impedance model and therefore the HRI system tracks the desired trajectory 

successfully. Fig. 7.18 shows how the human force is reduced after the learning is 
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performed and the optimal set of the prescribed impedance model is found by the outer-

loop controller. 

 
Fig. 7.16. The inner loop results: the trajectory of the prescribed impedance control (red) 

versus the robot trajectory (black). 

 
Fig. 7.17. The outer-loop results: the trajectory of the robot (red) versus the desired 

trajectory (blue). 
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Fig. 7.18. The human force 

 

7.6. Conclusion 

A novel human-robot interaction control design method is presented inspired by 

the human factors studies. The proposed control structure has two control loops. The first 

loop is an inner control loop which makes the unknown nonlinear robot look like a 

prescribed robot impedance model. In contrast to the previous trajectory tracking based 

methods, the proposed inner loop does not require the knowledge of the task or the 

prescribed impedance parameters. This decomposes the robot-specific control design 

from the task specific design. The second loop is a task-specific loop which includes the 

human, the robot and their interaction and finds the optimal parameters of the prescribed 

impedance parameters to assist the human to perform the task with less effort and 

optimal performance. 
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  Chapter 8

CONCLUSION AND FUTURE WORK 

Reinforcement learning (RL) algorithms have been developed in this dissertation 

to solve the optimal tracking control problem (OTCP) for unknown continuous-time 

dynamical systems. This is in contrast to the existing model-free RL-based method 

methods which are limited to optimal regulation problems. Both on-policy and off-policy 

RL algorithms are employed. The proposed approach is extended to the design of a 

model-free RL-based solution to the optimal output synchronization of heterogenous 

muti-agent systems. This method does not require to explicity solve the output regulation 

equation and thus does not require any knowledge of the system dynamics. Moreover, in 

contrast to existing oprimal tracking solutions, the proposed approach can guarantee on 

the remaining control inputs on their permitted bounds during and after learning. An RL-

bsed model-free output-feedback controller is also designed for the first time to solve 

both oprimal regulation and optimal tracking problems. Finally, a model-free RL based 

method is design for the human-robot interaction system to help the robot adapts itself to 

the level of the human skills. This assists the human operator to perform a given task with 

minimum workload demands and optimizes the overall human-robot system 

performance. 

The following are some of the directions for continuation of this work.  

1- Many practical systems such as advanced military robotic systems will be 

required to operate and co-operate in highly dynamic and challenging 

environments and make fast skilled decisions. The future goal is to design 

new classes of fast satisficing systems that deliver prescribed aspiration 

levels of satisfactory results. These new controllers will have a structure that 

consists of basic fast feedback loops that operate in normal situations, with 
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additional control and decision loops that are recruited when risky decisions 

are detected. The proposed control structure will be used for control of 

military autonomous dynamic agents in highly constrained, data-overload, 

uncertain, and risky environments. 

2- Engineering applications of multi-agent systems such as power and energy 

systems and robotic networks are prone to cyber-physical attacks. A cyber-

physical attacker attempts to prevent the multi-agent system from 

accomplishing a desired functionally by injecting nonzero signals into the 

actuator input or sensor output signals of misbehaving/compromised agents. 

This has led to the emergence of new challenges in the design of RL-based 

secure distributed controllers for systems with uncertainties to sustain some 

notion of acceptable behavior of multi-agent systems under attack.  

3- The design of model-free RL-based controllers for solving optimal OTCP for 

non-affine systems will be considered. 

4- The design of model-free RL-based controllers for heterogeneous nonlinear 

multi-agent systems will be considered.  
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Appendix A 

Proof of Theorem 3.4 
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Consider the following Lyapunov function 

1 1
1 1 1 2 2 2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2
T TJ t V t W t W t W t W t    (A.1) 

where ( )V t  is the optimal value function. The derivative of the Lyapunov function is given 

by 

1 1
1 21 1 2 2

T TJ V W W W W  (A.2) 

Before evaluating (A.2), note that putting (3.67) and the tracking HJB (3.69) in the IRL 

tracking Bellman equation (3.74) gives 

 

( )

1 1

( )

1 1 1

1

ˆ ˆ ˆ ˆˆ ( ) ( ( ) ( ) ( tanh( ))

ˆ ˆ ˆ ˆ( ( ) ( ) ( tanh( )) ( )

ˆ( tanh( )) )

t
t T T T T

B T

t T

t
t T T T T

t T

T

HJB

e t e X Q X U W t W t F G D d

e U U W t W t F G D W t

W F G D d

      (A.3) 

where Û  is defined in (3.75) and is given by 

2 2
2

ˆ ˆ ˆ ˆtanh( ) ln( tanh ( ))TU W G D R D1  (A.4) 

and  

2 2
1

tanh( ) ln( tanh ( ))TU W G D R D1  (A.5) 

is the cost (3.15) for the optimal control input 
1

1
tanh((1 2 ) )T Tu R G W .  Using 

(3.67) and some manipulations, (A.3) becomes 

 

( )

1 1 1
ˆ ˆˆ ( ) ( ) ( ( tanh( ))

( tanh( )) )

t
T t T T T

B

t T

HJB

e t W t e U U W F G D W

F G D d

        (A.6) 

Using (A.4) and (A.5) and some manipulations, Û U  can be written as  
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2 2 1 1

2
ˆ

ˆ ˆ ˆ ˆtanh( ) sgn( ) tanh( )

ˆsgn( ) sgn( ) ( )

T T T T

DD

U U W G D W G D W G D W

G D D R

 

(A.7) 

where 
D̂

 and 
D

 are some bounded approximation errors. Substituting (A.7) in (A.6) 

gives 

( )

1 2
ˆ ( ) ( )

t
T t T T

B

t T

e t W t e W Md E  (A.8) 

where  

ˆ ˆ(tanh( ) sgn( ))M G D D  (A.9) 

and 

( ) 2
ˆ1

ˆ(sgn( ) sgn( )) ( )
t

t T T
D HJBD

t T

E e W G D D R d  (A.10) 

Note that M  and E  are bounded.  

We now evaluate the derivative of the Lyapunov function (A.2). For the first term 

of (A.2),  one has  

1 0
ˆ( tanh( ))TV W F G D  (A.11) 

where  

0
ˆ( ) ( tanh( ))Tx F G D  (A.12) 

According to Assumption 3.2 and the definition of G  in (3.12), one has 

G
G b  (A.13) 

Using Assumption 3.4, (3.81) and (A.13), and taking norm of  
0
 in (A.12) yields 

0 1 2
( )

x F d x G F
x b b e b b b  (A.14) 

Using the tracking HJB equation (3.69), the first term of (A.11) becomes 
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1 1 1
tanh( )T T T T

d d HJB
W F e Q e U W W G D  (A.15) 

where 0U  and it is defined in (A.5).  Also, using 
1 2 2

ˆW W W , and the fact 

tanh( ) 0Tx x x , for the second term of (A.11) one has 

1 2
ˆ ˆtanh( ) tanh( )T TW G D W G D  (A.16) 

Using (A.14)- (A.16) and Assumption 3.4, (A.11) becomes 

2

min 1 2 2
ˆ( ) tanh( )TV Q e k e k W G D  (A.17) 

where 
1 1x F
k b b  and 

2 1 1 2
2

G x x G F h
k b b W W b b b , and 

h
 is the bound 

for 
HJB

. 

For the second term of (A.2), using (A.8) in (3.59), 
1
( )W t  becomes 

( )

1 1 1 1 2 1
( ) ( ) ( )

t
T t T T

t T

W t W t e W Md E
m m

 (A.18) 

and therefore 

1 ( )

1 1 1 1 1 1 1 2

1

( ) ( ) ( ) ( ) ( ) ( )
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T T T T t T T

t T

T

J W t W t W t W t W t e W Md
m

W t E
m

 

(A.19) 

For small enough reinforcement interval, the integral term of (A.19) can be approximated 

by the right-hand rectangle method (with only one rectangle) as 

( )

2 2
( ) ( )

t
t T T T T

t T

e W Md Te M W t  (A.20) 

Using (A.20) in (A.19) gives 

1 1 1 1 1 2
( ) ( ) ( ) ( ) ( )T T T T T TT

J W t W t W t E e W t M W t
m m

 (A.21) 

http://en.wikipedia.org/wiki/Rectangle_method
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By applying the Young inequality to the last term of (A.21), one has 

2 2

1 2 1 1 2 22
( ) ( ) ( ) ( ) ( ) ( )

2 2

T
T T T T T T TT T e

e W t M W t W t W t W t MM W t
m m

 (A.22) 

for every 0 . Using (A.22) in (A.21) yields 

 
1 1 1 1 2 22

( ) ( ) ( ) ( ) ( )
2

T T T T TJ dW t W t W t E W t MM W t
m m

 (A.23) 

where 

2 2

1
2

TT e
d  (A.24) 

Define 
0
T  as a constant that satisfies 

022

0
2TT e  (A.25) 

Then 0d  if 
0

T T .  

Finally, for the last term of (A.2), using (3.79), and definitions 
1 1 1
ˆ ( ) ( )W t W W t  

and 
2 1 2
ˆ ( ) ( )W t W W t , one has 

1
22 2 2 2 2 2 2 3
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where 
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3 1 1
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u
G D e . Based on 

definitions of 
u
e , G in (3.77) and Assumptions 3.3 and 3.4, 

3
k  is bounded.  

Using (A.17), (A.23) and (A.26) into (A.2), J  becomes 

2
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2 2 2 3
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where 
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22
TN Y MM

m
 (A.28) 

If we choose T  and Y such that d  in (A.24) and N  in (A.28) are bigger than zero,  then 

J  becomes negative, provided that 

2

1 1 2

2
min minmin

2 ( ) ( )4 ( )

k k k
e

Q QQ
 

(A.29) 
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T E
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