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Abstract 

 

SOME MULTIVARIATE PROCESS CAPABILITY INDICES 

Rachel Goodwin, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Chien-Pai Han 

Process capability indices (PCIs) play an important role in the field of Statistical 

Process Control. Prior to the last 25 years, PCIs had been formulated to assess the 

quality of a single product characteristic.  Product quality, however, is typically dependent 

on several related variables.  Therefore, there is a great need for multivariate process 

capability indices (MPCIs).  The quality of a product is almost always determined from 

sample data.   Thus, it is imperative that an MPCI has a corresponding confidence 

interval.  In that way, conclusions may be drawn regarding the capability of the process 

that makes that product.  Of the MPCIs proposed over the last 25 years, few have an 

accompanying confidence interval.  Under the assumption of multivariate normality, we 

propose four new MPCIs, each having a corresponding confidence interval, as well as a 

decision rule for determining whether a process can be declared capable or not at a 

given level of significance.  Two of the indices are based on principal component analysis 

(PCA) while the other two rely on non-PCA linear transformations.  The indices we 

propose represent multivariate extensions of the popular univariate index, Cp.  Current 

indices that extend Cp to the multivariate domain are referred to as MCps.   From this 

group we select four indices that have accompanying confidence intervals to use in a 

comparative study with our own.  The selected indices have been criticized in the past by 
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other authors for different reasons.  Upon investigation we find that our proposed indices 

do not suffer from the same limitations as the others and that they may serve as 

adequate tools for assessing multivariate capability in a manufacturing environment. 
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Chapter 1 

Introduction 

A manufacturing process, or process, is the making of goods or parts by 

machinery, typically on a large scale.  In a manufacturing setting, capability is the ability 

of a process to produce output that meets predetermined specifications laid out by 

customers and engineers.  As Kotz and Lovelace (1998) put it “the enemy of perfect 

output (and high process capability) is variation, which pervades every process and 

system known to our world.”  In other words, “no two things are alike.”   The authors 

further state that “since process variation can never be totally eliminated, the control of 

this variation is the key to product quality.”  Manufacturers attempt to control variation in 

the sense that identifiable causes of variation, once realized, are eliminated and only 

random, unidentifiable sources of variation are left to contend with.  Statistical process 

control is the science of identifying, eliminating or at least minimizing sources of variation 

whenever possible. A significant part of statistical process control is the formulation and 

implementation of process capability indices.  A capability index is typically a formula that 

uses the mean and variance of a particular product characteristic to determine whether 

the process that makes that product is capable of meeting specifications or not.  Often, 

certain parametric and distributional assumptions are made about the product 

characteristic’s population.  A suitable index will assess whether a given process is truly 

capable or not.  Ideally, it should also be easy to compute and interpret by practitioners 

who lack a solid statistical background.  Indices most commonly used in the field thus far 

have been primarily based on univariate data, thus they are computed to ascertain the 

quality of a single product characteristic, such as length, temperature, or porosity, i.e. one 

measurable attribute.  However, determining the quality of a product usually involves 

several variables.  There is a need to ascertain capability by examining multiple 

characteristics simultaneously.  In order to establish procedures that can accurately 

gauge multivariate capability, several multivariate process capability indices (MPCIs) 

have been developed that are mostly extensions of univariate counterparts.  We will 
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review some of the MPCIs that have been constructed in the last twenty-five 

years and present four new MPCIs of our own. 

1.1 The Simplest Univariate Capability Index, CP 

A univariate capability index is typically a ratio that compares the specification 

range for a particular product characteristic to a measure of spread obtained from the 

population.  The measure of spread is most often an expression involving population 

standard deviation.  When the population standard deviation is unknown, it is usually 

estimated by the sample standard deviation in the process capability index.  Consider a 

product characteristic with an acceptable upper and lower limit, for instance, the length of 

a screw.  Screws of lengths falling outside the acceptable window are considered “non-

conforming”.  A ratio such as 

size of specification interval (upper limit on screw length − lower limit on screw length)

population spread of screw length 
 

can indicate how many times the specification interval will contain the spread of the 

distribution of the screw lengths.  A ratio value of 1.0 indicates that the spread of the 

distribution is exactly equal to the length of the specification interval.  A value of 1.33 

indicates that the specification interval can “hold” or “contain” 1.33 times the distribution 

spread.  Thus, higher ratio values are better.  The example above demonstrates the 

basic idea behind the Cp index. 

After suffering crippling defeat in World War II the Japanese decided that the 

best way to rebuild their economy and compete in the world market was to produce high 

quality goods for exportation.  They spent considerable time analyzing their 

manufacturing processes, raising standards and meeting with well-known management 

consultants like J.M. Juran and E. Deming.  The Cp index is one of five “original capability 

indices” first developed in Japan during the 1970’s.  Juran is credited with bringing 
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attention to Cpoutside of Japan and in the early 1980’s Ford Motor Company was the first 

to use Cp and other PCI’s in the US.  Cp is calculated as 

Cp =
USL − LSL

6σ
,   (1.1) 

where USL and LSL are the upper and lower specification limits for a measured 

characteristic X, and σ denotes the population standard deviation of X.  It is usually 

assumed that X is a normally distributed random variable.   An estimator for Cpis given by 

Cp̂ =
USL − LSL

6s
,   (1.2) 

where s denotes the sample standard deviation of X.  The reason for six in the 

denominator is that under the assumption of normality, a 6σ spread covers 99.73% of the 

data, leaving only 0.27% in the non-conforming range. 

Larger values of Cpindicate higher capability while smaller values (less than 1.0) 

indicate lower capability.  Typical recommended minimums for Cp are 1, 1.33 and 1.5.  

New processes and processes that involve characteristics directly related to human 

safety such as the manufacture of climbing equipment, or bolts for bridge construction 

require higher recommended minimum values.  New processes directly involving human 

safety have a recommended minimum value of Cp equal to 1.67. 

The intuition behind the Cp formula is that it compares allowable process spread 

to actual process spread, but it does not bring attention to process center or closeness to 

target.  However, other “original capability indices,” Cpk, Cpm, and Cpmk, were developed 

to do just that.  We will focus our study on MCp (a generic term for any multivariate 

extension of Cp) because it is the most manageable and sufficient index for comparing 

the strengths and weaknesses of proposed MPCIs.  But, if desired, it should be fairly 

uncomplicated to extend our results for MCp to indices like MCpk, MCpm and MCpmk.   



 

4 
 

1.2 Current Work in MPCIs- Three Main Avenues 

Research into multivariate capability indices has followed three main courses of 

study, 

1. constructing a ratio of volumes, i.e. tolerance region volume to 

process region volume, 

2. computing the proportion of non-conforming items, and, 

3. employing principal component analysis (PCA), which involves 

linearly transforming the original process data. 

Our main interest is in, but not limited to, indices of the third type.  We will propose four 

new MPCIs.  The first two indices involve simple “non-PCA” linear transformations while 

the last two indices involve PCA. 

1.3 A Brief Review of PCA 

 According to Jolliffe (1986), “the central idea of principal component analysis 

(PCA) is to reduce the dimensionality of a data set which consists of a larger number of 

interrelated variables, while retaining as much as possible of the variation present in the 

data set.” Let X be a p × 1 random vector with mean μp×1 and covariance matrix, Σp×p.  

The first step in the PCA procedure is to decompose the covariance matrix, Σ, into its 

respective eigenvalue/eigenvector pairs.  The eigenvalues with their respective 

eigenvectors are put in descending order, i.e. 

(e1, λ1), (e2, λ2),  … , (ep, λp) such that λ1 > λ2 > ⋯ > λp. 

A principal component is simply the product of one of the eigenvectors above with X.  

Therefore, it is a linear transformation of the original data.  The variance of a principal 

component is its corresponding eigenvalue.  Thus, the “first” principal component will be 

a linear combination of the first eigenvector with X (Y1 = e1
′X)  and it will have the largest 

variance.  The “second” principal component will be a linear combination of the second 
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eigenvector with X (Y2 = e2
′X)  and it has the second largest variance, etc.  Hence we 

have Yi = ei
′X, i = 1,2, … . , p.  The Yi′s are uncorrelated.  When a small set of the largest 

eigenvalues (λ1, λ2, … , λk, k < p) accounts for the majority of the system’s variability the 

remaining eigenvalues (λk+1, λk+2, … , λp−1, λp) and their corresponding eigenvectors can 

be disregarded.  Transforming the original multivariate data set to a small set of principal 

components allows us to reduce the dimension of the problem, thus, simplifying future 

calculations.  Besides achieving a lower dimension for our data we also give it a simpler 

correlation structure, especially when the original data set is normally distributed.  

Consider the following- 

Suppose X is a random vector from a p variate normal distribution with covariance 

 matrix Σ, and, let (e1, λ1), (e2, λ2),  … , (ep, λp) be the corresponding eigenvalue              

eigenvector pairs.   If we let Yi = ei
′X,  then Var(Yi) = ei

′Σei = λiei
′ei = λi, 

and Cov(Yi, Yj) = ei
′Σej = λjei

′ej = 0. 

(Recall from linear algebra that ei
′ei = 1 and ei

′ej = 0 for i ≠ j).  With covariance equal to 

zero we can say that the principal components are uncorrelated as well as independent 

since they are normally distributed. 

1.4 Extensions of CP to McP with PCA 

Current indices based on PCA have been developed by Wang and Chen (1998), 

Xekalaki and Perakis (2002) and Wang (2005).  Wang’s index (2005) is primarily used for 

short run production processes. 

1.4.1  Wang and Chen (1998)  

Wang and Chen were the first to use PCA to create a new MPCI.  They 

assume that a particular process follows a multivariate normal distribution and apply PCA 

to the sample covariance matrix (assume ν variables).  As a consequence they obtain 

new variables that are mutually independent and normally distributed.  Wang and Chen 

formulate their index as follows, 
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MCp = (∏Cp;PCi

m

i=1

)

1
m⁄

,        (1.3) 

where Cp;PCirepresents the univariate index computed for the ith principal component and 

m represents the number of components selected for analysis from a set of ν principal 

components.  Recall, 

Cp̂ =
USL − LSL

6s
. 

In Cp;PCiUSL and LSL are replaced by their new values under the transformation of PCi and 

s is replaced by√λî.  (We will provide a more detailed discussion of how to calculate 

Cp;PCiin a later section).  Thus, Wang and Chen’s index is the geometric mean of multiple 

Cpindices, namely one for each principal component retained in the analysis. 

1.4.2 Wang (2005)  

Wang (2005) proposes an index similar to that of Wang and Chen but intended for 

short-run process capability assessment.  Short-run process data may not be normal so 

the formulation of the index is based on Clement’s method (1989).  Wang’s index 

employs a weighted geometric mean, where the weights are the eigenvalues selected for 

inclusion in the data analysis.  Wang’s index is given by 

MWCp = (∏Cp:PCi
λi

m

i=1

)

1
∑ λi
m
i=1

 

,   (1.4) 

 

where Cp:PCiis defined in the same way as it is in Wang and Chen’s index except that 

under Clement’s method the denominator in Cp;PCi is set to 0.9973. 
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1.4.3 Xekalaki and Perakis (2002) 

In the same vein as the previous indices, Xekalaki and Perakis transform 

multivariate data with PCA, however, they combine the univariate indices Cp;PCiwith a 

weighted arithmetic mean.  Their index is given by 

MXCp =
∑ λiCp;PCi
m
i=1

∑ λi
m
i=1

.   (1.5) 

1.5 Criticisms of the Three Previous Indices 

Shinde and Khadse (2009) claim that Wang and Chen’s index transforms the 

specification region in an inappropriate way which greatly affects the resulting index 

value.  As they explain, principal components may be independent of one another but 

specification limits transformed with PC’s are interrelated.  In other words, though the 

original specification limits may define a hyper-rectangular region, the transformed limits 

outline a much more complicated specification region (see example below).  

Unfortunately, the authors do not present a solution to the transformation of the 

specification region so that Wang and Chen’s index can be improved.  Rather, they 

propose an entirely new index based on empirical methods which becomes quite 

complicated when more than two variables are involved.  Regrettably, if Shinde and 

Khadse are correct in their criticism of Wang and Chen’s index, the indices of Xekalaki 

and Perakis and Wang suffer the same shortcoming.  Consider the following example 

from Shinde and Khadse (2009) employing process data from Sultan (1986). 

Twenty-five sample observations from a bivariate process concerning X1-brinell 

hardness and X2-tensile strength yield the following sample variance covariance matrix, 

S = [
337.8 85.3308
85.3308 33.6247

]. 

The specification limits for each variable are given by 

112.7 ≤ X1 ≤ 241.3 and 32.7 ≤ X2 ≤ 73.3. 
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PCA analysis is performed on S to obtain the following equations, 

PC1 = 0. 967X1 + 0.253X2,  

and, 

PC2 = −0.253X1 + 0.967X2. 

Wang and Chen propose transforming the specification regions as follows, 

LSLPCi = evaluate PCi at the lower limits of X1 and X2, 

and, 

USLPCi = evaluate PCi at the upper limits of X1 and X2. 

So that 

LSLPC1 ≤ PC1 ≤ USLPC1 , 

and, 

LSLPC2 ≤ PC2 ≤ USLPC2. 

Their transformation yields the following rectangular specification region, 

117.306 ≤ PC1 ≤ 251.993,   

and, 

3.138 ≤ PC2 ≤ 9.899. 

Xekelaki and Perakis as well as Wang would obtain the exact same region when 

computing their indices.  Shinde and Khadse, however, insist that the correct 

specification region is given by 

112.7 ≤ 0.967PC1 − 0.253PC2 ≤ 241.3,  
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and, 

32.7 ≤ 0.253PC1 + 0.967PC2 ≤ 73.3. 

The inequalities above form a parallelogram rather than a rectangle.  The method in 

which Shinde and Khadse obtain this region will be explained further in section 2.1.2. 

1.6. Tano and Vannman’s Review of MPCIs 

In their paper, Tano and Vannman (2011) recognize the need for multivariate 

process capability indices as well as the need for construction of confidence intervals and 

tests that support these indices.  Under the assumption of multivariate normality, the 

authors examine four existing MPCIs that 1) either have corresponding confidence 

intervals in place already, or 2) have approximate confidence intervals that can be 

derived.  Two of the MPCIs investigated by Tano and Vannman include Wang’s index 

and the index developed by Wang and Chen. 

1.6.1 MPCI I- Taam et al. (1993) 

Assuming multivariate normality Taam et al. constructs a multivariate 

extension of Cp that compares the volume of a “modified engineering tolerance region” 

with the volume of a region containing 99.73% of the process data.  The modified 

tolerance region is simply the largest ellipsoid centered at the target falling within the 

original rectangular tolerance region.  Taam’s index is given by 

MCp =
Vol(modified tolerance region)

(π ∙ χν,0.9973
2 )

ν/2
|Σ|1/2 [Γ (

ν
2
+ 1)]

−1 ,   (1.6) 

where ν is the number of variables.  According to Pan and Lee (2010), when the process 

mean is deviated from the target, MCp is multiplied by the correcting factor 
1

D
, where 

D = (1 + (μ − T)′Σ−1(μ − T))
1/2

.  Santos-Fernandez and Scagliarini (2012) show that the 

volume of the modified tolerance region can be calculated as follows, 
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Vol(modified tolerance region) =
2πν/2∏ ai

ν
i=1

νΓ (
ν
2
)

,   (1.7) 

where ai denotes the lengths of the semi-axes for i=1, 2, …., ν.  Pan and Lee (2010) 

specify that ai is given by 

ai =
USLi − LSLi

2
  for i = 1, 2, … . , ν.   (1.8) 

When there is a random sample of size n available, MCpis estimated by 

MCp̂ =
Vol(modified tolerance region)

(π ⋅ χν,0.9973
2)
ν/2
|S|1/2 [Γ (

ν
2
+ 1)]

−1 ,   (1.9) 

where S is the sample covariance matrix. 

Pearn et al. (2007) derives a confidence interval for MCpthat is quite difficult to 

calculate for more than two variables.  Hence, Tano and Vannman derive their own 

approximate confidence interval for MCp.  The lower confidence bound is given by 

MCp̂√(1 −
λα√2ν

√n
), 

where λα denotes the 1 − α quantile of the standard Normal distribution. 

1.6.2 MPCI II- Pan and Lee (2010) 

Pan and Lee’s index is actually a revision of Taam et al.’s index given above.  

The authors claim that the previous index overestimates capability of a process when 

some or all of the characteristics are not independent.  Their suggested index follows, 

MCp = (
|A∗|

|Σ|
)

1/2

,   (1.10) 

where the elements of A* are given by 
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Aij
∗ = ρij (

USLi − LSLi

2√χ𝜈,0.9973
2
)(
USLj − LSLj

2√χ𝜈,0.9973
2
)  (1.11) 

and ρij is the correlation between the ith and jth univariate quality characteristic.  The 

index is estimated by 

MCp̂ = (
|A∗|

|S|
)

1/2

.   (1.12) 

Although it is not explicitly mentioned, in their illustrative examples, the authors estimate 

the elements of A∗ by replacing all values of  ρij with ρiĵ. 

Pan and Lee derive a lower approximate 100(1-α)% confidence bound, 

MCp̂√wα , 

where wα is the α quantile of the distribution 
∏ χn−i

2ν
i=1

(n−1)ν
. 

1.6.3 MPCI III- Wang and Chen (1998) 

Tano and Vannman investigate Wang and Chen’s index along with its 

corresponding confidence interval proposed by Wang and Du (2000).  The proposed 

lower approximate 100(1- α)% confidence bound is 

(∏Cp,PCi
̂√

χn−1,α
2

n − 1

m

i=1

)

1/m

.   (1.13) 

1.6.4 MPCI IV- Wang (2005) 

Wang does not present a confidence interval for his index.  However, Tano and 

Vannman (2011) follow the idea of Wang and Du (2000) and present their own 

approximate lower confidence bound for Wang’s index, 
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(∏(Cp,PCi
̂√

χn−1,α
2

n − 1
)

λim

i=1

)

1/Σλi

.   (1.14) 

Tano and Vannman’s derivation of (1.14) does not use Clement’s method.  Instead the 

authors assume that  Cp;PCi is defined exactly as it is in Wang and Chen’s index (see 

section 1.4 (i)). 

Tano and Vannman’s (2011) conclusions are given as follows: 

In examining the two indices based on PCA Tano and Vannman agree with 

Shinde and Khadse in their criticisms of the method in which the specification region is 

transformed.  The authors concur that a transformed region for bivariate data is in fact a 

parallelogram rather than a rectangle.  They further elucidate the drawbacks of Wang and 

Chen’s and Wang’s indices with the following hypothetical example: 

Suppose a bivariate process has the following variance covariance matrix, 

Σ = [
0.089 0.027
0.027 0.089

], 

and, the specification interval for each variable is [-1,1].  Corresponding eigenvalues and 

eigenvectors are given by  

λ1 = 0.1157 and e1
′ = [0.707 0.707], 

and, 

λ2 = 0.0623 and e2
′ = [0.707 −0.707]. 

If using both PC’s to compute the final index, one would obtain zero for the numerator in 

Cp;PC2, leading to an overall value of zero for MPCIs III and IV.  Clearly, this is a problem 

and Xekalaki and Perakis’ index will suffer the same consequence.  
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In comparing MPCI I and II Tano and Vannman find that when correlation among 

variables is low the two indices are nearly equal, however, when correlation among 

variables increases, Taam et al.’s index may grossly overestimate the capability of a 

process.  Consider Pan and Lee’s (2010) findings: 

Pan and Lee use the previously mentioned Sultan data to compute their index as well as 

Taam’s and make a comparison.  Note that there is high correlation between brinell 

hardness and tensile strength (𝜌12 = .80). 

Table 1-1 Taam’s index vs. Pan and Lee’s index 

Taam’s index Pan and Lee’s index 

MCp̂ = 1.88 MCp̂ = 1.04 

 

The estimated conforming rate for Sultan’s data is 99.91%.  A value close to 1 should 

indicate that the 99.73% process region fits inside the 99.73% modified tolerance region, 

however, Taam’s index seems to be quite high. 

Therefore, Tano and Vannman declare Pan and Lee’s index superior to the other 

three MPCIs.  However, they do discover one drawback which will be discussed in a 

future section.  We will make use of Tano and Vannman’s case study when proposing 

our own indices.   

1.7 Additional MPCIs 

The following indices by Chan, et al. (1991) and Shahriari (1995) lack confidence 

intervals but have been discussed heavily in the literature.  Tano and Vannman’s index is 

more recent and has a corresponding confidence interval, however, it currently only 

applies to the bivariate case. 

1.7.1 Chan, Cheng and Spiring (1991) 

The following index developed by Chan, et al. is one of the first attempts at a 

multivariate version of the “original” univariate index Cpm (assume X~Nν(μ, Σ)), 



 

14 
 

Cpm = √
nν

∑ (Xi − T)′Σ
−1(Xi − T)

n
i=1

,   (1.15) 

where n represents sample size and T is the target vector.   

1.7.2 Shahriari (1995)  

Shahriari developed a three dimensional vector to assess multivariate capability.  

The first component of Shahriari’s capability vector is given by the following index 

(assume X~Nν(μ, Σ)), 

CpM = [
∏ (USLi − LSLi)
ν
i=1

∏ (UPLi − LPLi)
ν
i=1

]

1/ν

.   (1.16) 

UPLi and LPLi are calculated as follows, 

UPLi = μi + √
χ(ν,α)
2 det(Σi

−1)

det(Σ−1)
,  

      (1.17) 

LPLi = μi − √
χ(ν,α)
2 det(Σi

−1)

det(Σ−1)
, 

where μi is the ith component of the vector μ  and Σi is the matrix obtained by 

deleting the ith row and ith column of Σ. 

1.7.3 Tano and Vannman (2013) 

Tano and Vannman offer their own multivariate process capability index based 

on PCA.  The authors formulate a lower confidence bound and discuss how to calculate 

recommended minimum values for their index, however, they restrict their attention to the 

two dimensional case.  Assuming X~Nν(μ, Σ),Tano and Vannman first standardize their 

data like so 
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XTV =
Xi −Mi
di

 

where, 

Mi =
USLi + LSLi

2
 and, di =

USLi − LSLi
2

. 

Thus, PCA is performed on a new covariance matrix ΣTV = DΣD, where D is a ν × ν 

diagonal matrix with 1 di
⁄ on the diagonal.  Their index is calculated as follows, 

Cp,TV =
1

max|u1i|3√λ1
 for i = 1,2, … , ν,   (1.18) 

where λ1 is the largest eigenvalue and max|u1i| denotes the largest component of the first 

eigenvector in absolute value. 
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Chapter 2 

New Proposed Multivariate Process Capability Indices 

2.1.1  Proposed MPCIS Using Linear Transformations (Non-PCA) 

Besides using principal components there are other ways to linearly transform 

multivariate data that can lead to adequate process capability indices.  For all the indices 

that follow, we assume that the process data is multivariate normal, Np(μ, Σ) .  Assume 

that each component of a random vector X has a predetermined specification interval and 

that the target value is the midpoint of that interval, i.e. 

xlo1 ≤ x1 ≤ xup1 

xlo2 ≤ x2 ≤ xup2 

⋮ 

xlop ≤ xp ≤ xupp . 

We may choose to write the vectors of upper and lower specification limits as Xup and 

Xlo, respectively. 

2.1.1.1 MC1 

MC1 involves multiplying each (p × 1) random vector X by a vector of 1’s.  The 

result is the sum of the variables that are contained in each vector. 

MC1 =
[1 1… 1] ⋅ Xup − [1 1… 1] ⋅ Xlo

6√[1 1… 1] ⋅ Σ ⋅ [1 1… 1]′
   (2.1) 

or, more simply, 

MC1 =
USLMC1 − LSLMC1

6σMC1
,   (2.2) 

where  
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σMC1
2 = [1 1… 1] ⋅ Σ ⋅ [1 1… 1]′. 

It is easily observed that the transformed specification region is a simple inequality 

LSLMC1 ≤ x1 + x2 +⋯+ xp ≤ USLMC1. 

When Σ is unknown we replace it with S to obtain MC1̂.  Because X (p × 1) is distributed 

multivariate normal we can use the following facts to derive several properties of MC1̂ as 

well as its distribution: 

1) [1 1… 1] ⋅ X = xMC1 ~ N(μMC1, σMC1
2) 

(μMC1 = [1 1… 1] ⋅ μ) 

2) 
sMC1

2(n−1)

σMC1
2 ~χ2(n−1) when x~N(μMC1, σMC1

2). 

Now, consider the rth moment of MC1̂, E(MC1̂r). 

E(MC1̂r) = E [(
USLMC1 − LSLMC1

6sMC1
)
r

] 

= (
USLMC1 − LSLMC1

6
)
r

E (
1

sMC1
r
) (
σMC1

r

σMC1
r
) 

= MC1rσMC1
rE (

1

sMC1
r
) 

If we let y =
n−1

σMC1
2 sMC1

2~χn−1
2 we have 

1

sMC1
r
= (

n − 1

σMC1
2
)
r/2

y−r/2. 

E (
1

sMC1
r
) = (

n − 1

σMC1
2
)
r/2

E(y−r/2) 

Recall, y~χn−1
2 so that 
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E(y−r/2) = ∫ y−r/2
y
n−1
2
−1e−y/2

2
n−1
2
Γ(
n−1
2
)

∞

0

dy 

=
2
n−r−1
2 Γ (

n − r − 1
2

)

2
n−1
2 Γ (

n − 1
2
)

∫
y
n−r−1
2

−1e−y/2

2
n−r−1
2

Γ(
n−r−1
2

)

∞

0

dy 

=
Γ (
n − r − 1

2
)

2r/2Γ (
n − 1
2
)
. 

Thus, 

E(
1

sMC1
r
) = (

n − 1

σMC1
2
)
r/2 Γ (

n − r − 1
2

)

2r/2Γ (
n − 1
2
)
  

and, 

E(MC1̂r) = MC1r
σMC1

r

σMC1
r
(
n − 1

2
)
r/2 Γ (

n − r − 1
2

)

Γ (
n − 1
2
)
. 

If we let r=1, 

E(MC1̂) = MC1√
n − 1

2

Γ (
n − 2
2
)

Γ (
n − 1
2
)
. 

Thus, the bias of MC1̂is given by 

MC1 [√
n − 1

2

Γ (
n − 2
2
)

Γ (
n − 1
2
)
− 1].      

To get the variance of MC1̂ we let r=2 in the expression E(MC1̂r). 

E(MC1̂2) = MC12 (
n − 1

2
)
Γ (
n − 3
2
)

Γ (
n − 1
2
)
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= MC12 (
n − 1

n − 3
)  

Thus, 

var(MC1̂) = MC12 [(
n − 1

n − 3
) − (

n − 1

2
)(
Γ (
n − 3
2
)

Γ (
n − 1
2
)
)

2

]  

and, 

MSE = var(MC1̂) + (bias(MC1̂))
2

. 

Again, under the assumption that X~Np(μ, Σ) which implies that 

[1 1… 1] ⋅ X = xMC1 ~ N(μMC1, σMC1
2), 

we may use the following fact to derive the distribution of MC1̂, 

y =
(n − 1)sMC1

2

σMC1
2

~χn−1
2. 

Start by letting w = MC1̂. 

w = MC1̂ =
USLMC1 − LSLMC1

6sMC1
 

=
USLMC1 − LSLMC1

6σMC1
√
n − 1

y
 

= MC1√
n − 1

y
  

So that 

y =
MC12(n − 1)

w2
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and, 

|
∂y

∂w
| =

2MC12(n − 1)

w3
. 

Using transformation methods and the fact that y~χn−1
2 we derive the distribution of w as 

follows, 

gW(w) = f (
MC12(n − 1)

w2
) |
∂y

∂w
| 

=
1

2
n−1
2 Γ (

n − 1
2
)
(
MC12(n − 1)

w2
)

n−1
2
−1

e
−MC12(n−1)

2w2 ∙
2MC12(n − 1)

w3
 for w > 0. 

So that 

fMC1̂(c) =
(n − 1)

n−1
2

MC1Γ (
n − 1
2
) 2

n−3
2

(
MC1

c
)
n

e(−
n−1
2
)(
MC1
c
)
2

 for c > 0. 

We can derive a confidence interval for MC1 using the following inequality, 

χn−1,α 2⁄
2 <

(n − 1)sMC1
2

σMC1
2

< χn−1,1−α 2⁄
2. 

Thus, 

√χn−1,α 2⁄
2(USLMC1 − LSLMC1)

√(n − 1)6sMC1
<
(USLMC1 − LSLMC1)

6σMC1
<
√χn−1,1−α 2⁄

2(USLMC1 − LSLMC1)

√(n − 1)6sMC1
.  

√χn−1,α 2⁄
2

√(n − 1)
MC1̂ < MC1 <

√χn−1,1−α 2⁄
2

√(n − 1)
MC1̂  

Hence a 100(1-α)% confidence interval for MC1 is given by 
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(

 
√χn−1,α 2⁄

2

√(n − 1)
MC1̂,

√χn−1,1−α 2⁄
2

√(n − 1)
MC1̂

)

 .      

A lower confidence bound for MC1 is given by 

√χn−1,α
2

√(n − 1)
MC1̂. 

2.1.1.2 MC2 

MC2 computes a weighted arithmetic mean of the variables.  Each (p × 1) 

random vector is multiplied by a vector of weights, the weights being the variances of the 

corresponding variables. 

MC2 =
w′Xup −w

′Xlo

6√w′Σw
   (2.3) 

with 

w′ = [w1 =
σ1
2

∑ σi
23

i=1
⁄ w2 =

σ2
2

∑ σi
23

i=1
⁄  … wp =

σp
2

∑ σi
2p

i=1

⁄ ].  (2.4)    

More simply, 

MC2 =
USLMC2 − LSLMC2

6σMC2
,   (2.5) 

where   

σMC2
2 = [w1 w2… wp] ⋅ Σ ⋅ [w1 w2… wp]′. 

When Σ is unknown, Σ and σi
2 are replaced with S and si

2, and we obtain MC2̂.  As with 

MC1, the transformation of the specification region produces a simple inequality 

regardless of the number of variables. 

LSLMC2 ≤ w1x1 + w2x2 +⋯+wpxp ≤ USLMC2 , 
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and when Σ is unknown, we use 

LSLMC2̂ ≤w1̂x1 + w2̂x2 +⋯+wp̂xp ≤ USLMC2̂ . 

Because MC2̂ relies so heavily on estimators in the numerator and denominator 

we cannot easily derive a closed expression for its distribution and properties.  Nor can 

we easily obtain the confidence interval for MC2.  We can, however, investigate these 

characteristics with simulation. 

2.1.2  Proposed MPCIS Using PCA 

For our indices that employ PCA we use the same set of assumptions as before.  

Namely, we assume X~Np(μ, Σ) and that we may write the vectors of upper and lower 

specification limits as Xup and Xlo, respectively. 

2.1.2.1 MC3 

MC3 is similar to the index developed by Xekalaki and Perakis in that we 

transform multivariate data with PCA and use a weighted arithmetic mean.  However, 

rather than compute separate values of Cp:PCi and combine them with a weighted 

arithmetic mean, we weight the principal components first and then calculate a Cp-type 

index with the newly transformed data.  Like Xekelaki and Perakis we use the 

eigenvalues of Σ for our weights. 

For a (p × 1) random vector X the weighted transformation by the first k (𝑘 ≤ 𝑝) 

principal components is given by 

U = |w1e1
′X| + |w2e2

′X| + ⋯+ |wkek
′X|,   (2.6) 

with wi =
λi

∑ λi
k
i=1

   i = 1, 2, … , k and ei denoting the corresponding eigenvectors i =

1, 2, … , k.  The mean and variance of U are given by 

μU = |w1e1′|μ + |w2e2′|μ + ⋯+ |wkek
′|μ 
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and 

σU
2 = var(U) = (w1e1

′ +w2e2
′ +⋯+wkek

′ ) ⋅ Σ ⋅ (w1e1′ + w2e2′ + ⋯+ wkek
′ )′. 

Under the weighted transformation above, 

USLU = |w1e1′Xup| + |w2e2′Xup| + ⋯+ |wkek
′Xup|, 

and, 

LSLU = |w1e1′Xlo| + |w2e2′Xlo| + ⋯+ |wkek
′Xlo|. 

Thus,  

MC3 =
USLU − LSLU

6σU
.   (2.7) 

When Σ is unknown MC3 can be estimated by 

MC3̂

=
[|w1̂e1̂′Xup| + |w2̂e2̂′Xup| + ⋯+ |wk̂ek̂

′Xup|] − [|w1̂e1̂′Xlo| + |w2̂e2̂′Xlo| + ⋯+ |wk̂ek̂
′Xlo|]

6√(ŵ1e1̂′ + ŵ2e2̂′ + ⋯+ ŵkek̂′) ⋅ S ⋅ (ŵ1e1̂′ + ŵ2e2̂′ + ⋯+ ŵkek̂′)
′

.   (2.8) 

ŵi and eî represent the sample weights and sample eigenvectors derived from S, the 

sample covariance matrix of X.  More simply, 

MC3̂ =
USLÛ − LSLÛ

6sU
.   (2.9) 

Here, it is pertinent that we demonstrate how the transformation of our 

specification region differs from those of the aforementioned authors who also used PCA.  

We will use a bivariate example for brevity.  Suppose E′ is a matrix of eigenvectors 

derived from the sample variance covariance matrix S.  Let, X represent the normally 

distributed bivariate random vector and, w, represent the vector of weights. 

E′ = [
e11 e12
e21 e22

]   w′ = [w1 w2]   X = [
x1
x2
]   Y = [

PC1
PC2

] 
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Wang and Chen, Xekelaki and Perakis and Wang transform their specification region as 

follows, 

E′X = Y. 

So that 

E′Xlo = [
ylo1
ylo2

]  or [
LSLPC1
LSLPC2

].  

Similarly, 

E′Xup = [
yup1
yup2

]  or [
USLPC1
USLPC2

]. 

They obtain the following rectangular region, 

LSLPC1 ≤ PC1 ≤ USLPC1,  

and, 

LSLPC2 ≤ PC2 ≤ USLPC2. 

According to Shinde and Khadse they should use the fact that E and E′are orthonormal 

matrices and multiply to get 

EE′X = EY. 

X = EY  

or, more explicitly, 

[
x1
x2
] = [

e11PC1 + e21PC2
e12PC1 + e22PC2

]. 

This yields the non-rectangular region 

xlo1 ≤ e11PC1 + e21PC2 ≤ xup1 , 
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and, 

xlo2 ≤ e12PC1 + e22PC2 ≤ xup2 . 

Our transformation, however, does not suffer the same repercussions as those of Wang 

and Chen and the others.  We transform the process data as follows, 

w′E′X = w′Y. 

Notice that both sides of the equation are equal to a scalar.  Upon substitution of Xlo for 

X, we get w1LSLPC1 + w2LSLPC2, which is equal to our LSLU.  A similar result holds for 

substitution of Xup.  This means that LSLU ≤ U ≤ USLU (and LSLÛ ≤ Û ≤ USLÛ)- a simple 

inequality.  Higher dimensioned data will still produce a simple inequality for our index but 

an even more complex region for the other authors’ indices. 

Like MC2̂, MC3̂ relies heavily on estimation in the numerator and denominator 

making it difficult to derive certain attributes of interests.  We will investigate 

characteristics of MC2̂ and MC3̂ in a later section using simulation and bootstrapping 

techniques. 

2.1.2.2 Cpv 

Authors Kirmani and Polansky (2008) have developed a method for testing 

multivariate capability which involves assuming (based on prior experience) that a given 

multivariate process has a particular covariance matrix, Σ0. For our proposed index, 

Cpv we will use a similar idea.  As noted above, when we calculate MC3̂ we use sample 

principal components and sample eigenvalues for the weights.  Instead, suppose that 

from prior experience we know that the given multivariate normal process has a particular 

covariance matrix, Σ0 (Σ0 is p ×  p).    The eigenvalue-eigenvector pairs are 

(e10 , λ10), (e20 , λ20),  … , (ep0 , λp0) such that λ10 > λ20 > ⋯ > λp0 . 
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So, from this known matrix we compute the principal components and their respective 

weights (assume X~Np(μ, Σ)). 

Yi0 = ei0
′ X, i = 1,2, … . , p 

                         (2.10) 

wi0 =
λi0

∑ λi0
k
i=1

 for i = 1, 2, … , k  k ≤ p 

For a (p × 1) random vector X the weighted transformation by the first k (k ≤ p) principal 

components is given by 

V = |w10e10
′X| + |w20e20

′X| + ⋯+ |wk0ek0
′X|,   (2.11)   

and, 

Cpv =
USLV − LSLV

6σV
,   (2.12) 

with 

USLV = |w10e10
′Xup| + |w20e20

′Xup| + ⋯+ |wk0ek0
′Xup|,  

and, 

LSLV = |w10e10
′Xlo| + |w20e20

′Xlo| + ⋯+ |wk0ek0
′Xlo|. 

The mean and variance of V are given by 

μV = |w10e10
′μ| + |w20e20

′μ| + ⋯+ |wk0ek0
′μ| 

and, 

σV
2 = (w10e10

′ + w20e20
′ +⋯+wk0ek0

′)Σ(w10e10
′ + w20e20

′ +⋯+wk0ek0
′)
′
. 
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In Cpv̂ the only change is that Σ is replaced by S, the sample covariance matrix, 

i.e. 

Cpv̂ =
USLV − LSLV

6sV
.  (2.13) 

sV
2 = (w10e10

′ +w20e20
′ +⋯+wk0ek0

′)S(w10e10
′ + w20e20

′ +⋯+wk0ek0
′)
′
 

Transformation of the specification region occurs in the same fashion as with MC3. 

Holding the eigenvalues and eigenvectors constant makes it possible to derive 

the distribution and other properties of Cpv̂.  Just like in our derivations for MC1̂ we make 

use of similar facts, 

1) |w10e10
′X| + |w20e20

′X| + ⋯+ |wk0ek0
′X| = V ~ N(μV, σV

2) 

(Assuming X~Np(μ, Σ) and μV = |w10e10
′μ| + |w20e20

′μ| + ⋯+ |wk0ek0
′μ|) 

2) 
sV
2(n−1)

σV
2 ~χ2(n−1) when V~N(μV, σV

2). 

The steps for each derivation below are complementary to those of MC1̂ and will not be 

shown. The distribution of Cpv̂ is given by 

fCpv̂(c) =
(n − 1)(n−1)/2

CpvΓ (
n − 1
2
) 2(n−3)/2

(
Cpv

c
)
n

e(−(n−1)/2)(Cpv/c)
2

 for c > 0. 

The properties of Cpv̂ follow 

1) E(Cpv̂) = Cpv√
n−1

2

Γ(
n−r−1

2
)

Γ(
n−1

2
)

 

2) Bias(Cpv) = Cpv [√
n−1

2

Γ(
n−r−1

2
)

Γ(
n−1

2
)
− 1]   

3) var(Cpv̂) = Cpv
2 [(

n−1

𝐧−𝟑
) − (

𝐧−𝟏

𝟐
) (

𝚪(
𝐧−𝟑

𝟐
)

𝚪(
𝐧−𝟏

𝟐
)
)

𝟐

]   
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4) MSE = var(Cpv̂) + (bias(Cpv̂))
2

. 

A 100(1-α) % confidence interval for Cpv is given by 

(√
χ2n−1,α 2⁄

n − 1
Cpv̂,

√
χ2n−1,1−α 2⁄

n − 1
Cpv̂),      

and, a lower confidence bound for Cpv is 

√
χ2n−1,α
n − 1

Cpv̂. 

2.2 Designating a Recommended Minimum Value for the New Indices 

When Cp was first introduced outside of Japan in the 1970’s the value of Cp= 1.0 

was designated the recommended minimum value because it specifically corresponds to 

a probability of non-conformance {P(NC)} equal to 0.0027 when the process data is 

normal.  Thus, a process with Cp> 1 is considered capable.  When a smaller P(NC) is 

desired the value of Cp must increase.  For example, to obtain P(NC)=0.00006334, the Cp 

index for a given (normal) process must surpass 1.33.  This particular relationship 

between an index value and the probability of non-conformance leads Tano and 

Vannman (2013) to point out what they consider to be a flaw in Pan and Lee’s (2010) 

index.  Namely this- for Pan and Lee’s index, MCp = 1.0 does not guarantee that 

P(NC)=0.00027.  In fact, Pan and Lee give no indication of how to compute the 

probability of non-conformance with respect to their index.  They simply recommend 1.0 

as the desired value of their index because it indicates that “the manufacturing process 

region falls completely within an engineering tolerance region.”  In Tano and Vannman 

(2013) the authors propose their own multivariate capability index, Cp,TV but limit their 

investigation of recommended minimums to bivariate data.  They use several bivariate 

data sets in which MCp = 1.0 to calculate probability of non-conformance with respect to 
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their own index.  They show that probability of non-conformance is not constant for Pan 

and Lee’s index even though MCp may be fixed.  The authors identify several instances 

where P(NC) is much larger than 0.00027 although MCp equals 1.0.    Tano and 

Vannman also give examples of bivariate data sets where MCp = 1.20 and P(NC) 

becomes as large as 0.03 according to their own index, Cp,TV .  The authors insist that a 

“threshold” value for a particular index should corroborate a specific level of P(NC). 

Following the recommendation of Tano and Vannman (2011) we will establish 

the recommended minimums for our proposed indices by confirming that they correspond 

to a desired level of P(NC).  We will use MC3 as an illustration.  Assume, X~Np(μ, Σ) and 

that the components of μ are equal to the midpoints of the specification intervals for each 

quality characteristic.  For MC3 

P(NC) = 1 − P(LSLU < U < USLU).      

Recall, 

U = |w1e1
′X| + |w2e2

′X| + ⋯+ |wkek
′X|, 

so that 

U~N(|w1e1
′μ| + |w2e2

′μ| + ⋯+ |wkek
′μ|, (w1e1

′ + w2e2
′ +⋯+wkek

′)Σ(w1e1
′ + w2e2

′ +⋯+

wkek
′)′), 

or, more simply, 

U ~ N(μU, σU
2). 

Thus, 

P(NC) = 1 − P (
LSLU − μU

σU
<
U − μU
σU

<
USLU − μU

σU
) 

= 1 − Φ(
USLU − μU

σU
) + Φ(

LSLU − μU
σU

). 
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We make the following substitution 

μU =
LSLU + USLU

2
, 

so that 

P(NC) = 1 −Φ(
USLU
σU

−
LSLU + USLU

2σU
) + Φ(

LSLU
σU

−
LSLU + USLU

2σU
) 

= 1 −Φ(
USLU − LSLU

2σU
) + Φ(

LSLU − USLU
2σU

) 

= 1 − Φ(
USLU − LSLU

2σU
) + [1 − Φ(

USLU − LSLU
2σU

)] 

= 2 − 2Φ(
USLU − LSLU

2σU
) 

= 2[1 − Φ(3MC3)]. 

MC3 =
1

3
Φ−1 (1 −

P(NC)

2
) 

Thus, we can select any value of P(NC) that we desire and obtain a 

corresponding value for MC3.  For example, when P(NC) is equal to 0.0027, MC3 is equal 

to 1.0.  When P(NC) is equal to 0.00006334, MC3 is equal to 1.33.  The recommended 

minimums for our other indices are calculated in a similar fashion.  The normality 

assumption gives us the same values of P(NC) for the other three indices, i.e. for 

P(NC)=0.0027, MC1, MC2, and, Cpv are equal to 1.0 and for P(NC)=0.00006334, MC1, 

MC2, and, Cpv are equal to 1.33. 

  



 

31 
 

Chapter 3 

Comparative Study 

3.1 Hypothesis Tests and Power 

To test the performance of our proposed indices we will conduct hypothesis tests 

and compute power under different scenarios.   We will repeat the same calculations for 

the indices of previously mentioned authors if they have a corresponding lower 

confidence bound.   Thus, we will be comparing our indices with those of Taam, Pan and 

Lee, Wang and Chen and Wang.  Though Wang and Chen and Wang may be 

transforming the specification limits incorrectly, the list of MPCIs with confidence intervals 

that we can compare with is brief.  By studying their power we may lend further support to 

Shinde and Khadse’s claim.  To illustrate this study we will take advantage of a relevant 

example from industry.  Consider the following trivariate normal process data (the data 

below actually come from a plastics manufacturer in Taiwan and give the specifications 

for a rectangular-shaped container, see Wang and Chen (1998)), 

μ = [
2.16
304.72
304.77

] , and, Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

]. 

Assume specifications are the following (units are unknown but assumed to be the same 

for each variable), 

depth, Dϵ(2.1, 2.3), 

length, Lϵ(304.5, 305.1), 

width,Wϵ(304.5, 305.1). 

3.1.1  MC1, MC2, MC3 and Cpv 

Consider the hypotheses 
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H0: MC1 = c (process is not capable) vs. 

Ha:  MC1 > c (process is capable) 

(Similar hypotheses can be constructed for MC2, MC3 and Cpv).  We will use the following 

decision rules for each index, reject the null hypothesis when the appropriate inequality 

below holds, 

  MC1̂ >
√(n−1)

√χn−1,α
2
c,   MC2̂ >

√(n−1)

√χn−1,α
2
c,   MC3̂ >

√(n−1)

√χn−1,α
2
c, or  Cpv̂ >

√(n−1)

√χn−1,α
2
c.  

When we compute the power of the hypothesis test we are computing the 

probability of rejecting the null hypothesis when a particular value of the index is known to 

be true.  In other words we are computing the probability that we declare a process 

capable when a particular value of the capability index is true.  To say that an index 

performs well means that its power indicates one of two things:  

1.  we are very likely to declare a process capable when it is in fact capable 

(according to that particular index) – or –  

2. we are not likely to declare a process capable when in fact it is not capable 

(according to that particular index). 

Because MC1 and Cpv have properties that can be derived analytically (assuming 

normality of the data) we will discuss them first.  MC2 and MC3 will be examined with 

simulation.   

Using the first decision rule above, we may compute the power for any particular 

value of MC1, like so 

π(MC1) = P{MC1̂ > c√
n − 1

χn−1,α
2
|MC1}   (3.1) 

=P {(
USL1−LSL1

6s
)
2

> c2
n−1

χn−1,α
2|MC1} 
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= P {
(n − 1)s2

σ2
< (

USL1 − LSL1
6σ

)
2 χn−1,α

2

c2
|MC1} 

= P{χn−1
2 < MC12

χn−1,α
2

c2
}. 

For Cpv we use the fourth decision rule above and find that the expression for power is 

nearly identical to that of MC1. 

π(Cpv) = P {χn−1
2 < Cpv

2 χn−1,α
2

c2
}   (3.2)       

We will obtain the power for MC2 and MC3 using simulation and the second and third 

decision rules above. 

Example 1: 

For the first example, consider the original data taken from the plastic’s 

manufacturer in Taiwan 

μ = [
2.16
304.72
304.77

]   Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

] , (3.3) 

with specification limits, 

Dϵ(2.1, 2.3) 

Lϵ(304.5, 305.1) 

Wϵ(304.5, 305.1), 

i.e. 

Xlo = [
2.1
304.5
304.5

]  and Xup = [
2.3
305.1
305.1

]. 

Recall equations 2.1 and 2.11, 
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MC1 =
[1 1… 1] ⋅ Xup − [1 1… 1] ⋅ Xlo

6√[1 1… 1] ⋅ Σ ⋅ [1 1… 1]′
, 

and, 

Cpv =
USLV − LSLV

6σV
,   

i.e. 

Cpv

=
(|w10e10

′Xup| + |w20e20
′Xup| + ⋯+ |wk0ek0

′Xup|)  − (|w10e10
′Xlo| + |w20e20

′Xlo| + ⋯+ |wk0ek0
′Xlo|)

6√(w10e10
′ + w20e20

′ +⋯+wk0ek0
′)Σ(w10e10

′ + w20e20
′ +⋯+wk0ek0

′)
′

,   

where wi0 and ei0are obtained by performing PCA on Σ0 (see(2.10)) and we let Σ0 = Σ.  

For the matrix above and all subsequent examples the sum of the first two eigenvalues is 

close to 90%, thus, k equals 2 for all examples.   

To calculate the population index values we plug the example data (including 

eigenvectors and eigenvalues) into the equations above.  For MC1 we obtain 2.20 and for 

Cpv we obtain 2.46.  We use formulas (3.1) and (3.2) above to obtain the power.  The 

table below gives the hypothesized values of c along with the population values and 

power associated with MC1 and Cpv.  Assume a sample size of n=50 and α=0.05. 

Table 3-1 Example 1 MC1 and Cpv 

H0:  process is not 
capable 

α=0.05, n=50 

Population 

MC1=2.20 
 
 

Power 

Population 
Cpv=2.46 

Σ0 = Σ 
 

Power 

c=1.0 100% 100% 

c=1.33 100% 100% 

c=1.50 99% 99% 

c=1.67 84% 99% 
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For Cpv the power remains high for all values of c, which is what we would expect 

since this is a highly capable process according to the population index value of 2.46.  

The power remains high for MC1 until we get to c=1.67.  The power should perhaps be a 

bit higher here (over 90%) since the population index value is 2.20.  Overall, both indices 

perform well in that we are highly likely (in all but one case) to declare the process 

capable when the population index values indicate that it is a highly capable process. 

For MC2 and MC3 we will conduct a simulation study of power using the same 

data, specifications and hypotheses.  We obtain population index values by plugging the 

example data into equations (2.3) and (2.7).   Recall, 

MC2 =
w′Xup − w′Xlo

6√w′Σw
,      

with, 

w′ = [w1 =
σ1
2

∑ σi
23

i=1
⁄ w2 =

σ2
2

∑ σi
23

i=1
⁄  … wp =

σp
2

∑ σi
2p

i=1

⁄ ], 

and, 

MC3 =
USLU − LSLU

6σU
, 

i.e. 

MC3

=
(|w1e1′Xup| + |w2e2′Xup| + ⋯+ |wkek

′Xup|) − (|w1e1′Xlo| + |w2e2′Xlo| + ⋯+ |wkek
′Xlo|)

6√(w1e1
′ + w2e2

′ +⋯+wkek
′ ) ⋅ Σ ⋅ (w1e1′ + w2e2′ + ⋯+ wkek

′ )′
, 

where wi and ei are obtained by performing PCA on Σ, see equations (2.3) and (2.7).  

Note, we have already obtained the eigenvectors and eigenvalues corresponding to Σ in 

our computation of Cpv.  As with Cpv, k equals 2 for all examples since the first two 

principal components account for nearly 90% of the total variance in every example. 
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For MC2 we obtain the population value 2.15 and for MC3 we obtain 2.46.  For 

the simulation study we use SAS to generate 10,000 samples of size n=50 with α=0.05 

from a trivariate normal distribution with the parameters from (3.3).  The estimates for 

each index and decision rules are programmed in proc iml.  Along with power we 

compute the variance of the estimates for both indices.  Results follow. 

Table 3-2 Example 1 MC2 and MC3 

H0:  process is not 
capable 

α=0.05, n=50 

Population 

MC2=2.15 

var(MC2̂) = 0.05 

 
Power 

Population 

MC3=2.46 

var(MC3̂) = 0.06 

 
Power 

c=1.0 100% 100% 

c=1.33 100% 100% 

c=1.50 94% 100% 

c=1.67 71% 97% 

 

When computing population index values, Cpv and MC3 will be equal because 

their expressions are identical and Σ0 = Σ.  For this example MC3 performs just as well as 

Cpv.  MC2 also performs well for this example, but comes up a bit low in the case c=1.67.  

The power remains relatively high overall, as we would expect with an index value of 

2.15. 

Example 2: 

Now, suppose we adjust the covariance matrix above by doubling the variance of 

the first quality characteristic, D, keeping μ and the specification intervals the same. 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

] 

We calculate the population values of MC1, MC2, MC3 and Cpv in the same manner as in 

the example above.  We derive the power for MC1 and Cpv analytically and use simulation 

for MC2 and MC3.  For the simulation portion we generate 10,000 samples of size n=50 



 

37 
 

with α=0.05 from a trivariate normal distribution with the parameters from (3.3) but with 

the adjustments to the covariance matrix given above.  (We will follow this same 

procedure for the remaining examples.)  Results are given by 

Table 3-3 Example 2 MC1 and Cpv 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MC1=2.02 

 
 

Power 

Population 
Cpv=2.07 

Σ0 = Σ 
 

Power 

c=1.0 100% 100% 

c=1.33 100% 100% 

c=1.50 89% 93% 

c=1.67 55% 65% 

 

Table 3-4 Example 2 MC2 and MC3 

H0:  process is not 
capable 

α=0.05, n=50 

Population 

MC2=1.48 

var(MC2̂) = 0.07 

 
Power 

Population 

MC3=2.07 

var(MC3̂) = 0.09 

 
Power 

c=1.0 88% 99% 

c=1.33 34% 90% 

c=1.50 13% 74% 

c=1.67 4% 48% 

 

Here, MC1 and Cpv perform well.  MC3’s power does not mirror Cpv in this 

example.  As it should, the power for MC3 decreases as the values of c increase, but it is 

a bit low for the last two c values.  The power for Cpv is more in line with what we expect 

for a population value of 2.07.   Cpv’s superior performance is likely due to the fact that 

Σ0 = Σ.  Cpv’s performance when Σ0 ≠ Σ is something to investigate in the future and may 

involve developing a test for Σ′s “closeness” to Σ0.    The power for MC2 is not as close to 

5% at c=1.50 as it should be.  This could be due to the fact that the weights in MC2 are 

estimated.  Hence, the test statistic has a large variance. 
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Example 3: 

Suppose once again that we adjust the original covariance matrix, this time 

doubling the variance of the first and second quality characteristics, D and L. We re-

compute the population index values with the new Σ, assuming μ and the specification 

intervals have not changed. 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

] 

New results follow. 

Table 3-5 Example 3 MC1 and Cpv 

H0:  process is not 
capable 

α=0.05, n=50 

Population 

MC1=1.91 
 
 

Power 

Population 
Cpv=2.06 

Σ0 = Σ 
 

Power 

c=1.0 100% 100% 

c=1.33 97% 100% 

c=1.50 74% 93% 

c=1.67 34% 63% 

 

Table 3-6 Example 3 MC2 and MC3 

H0:  process is not 
capable 

α=0.05, n=50 

Population 

MC2=1.64 
var(MC2̂) = 0.05 

 
Power 

Population 

MC3=2.06 
var(MC3̂) = 0.06 

 
Power 

c=1.0 98% 99% 

c=1.33 55% 92% 

c=1.50 22% 71% 

c=1.67 5% 33% 

 

For this example the power levels are appropriate for MC1 and Cpv.  Again, MC3 

does not perform as well as Cpv. The power levels are a bit low for the last two values of c 
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for a process that is highly capable according to MC3/Cpv.  MC2 performs well since the 

power is appropriate for each value of c. 

Example 4: 

For the last study we adjust the covariance matrix by tripling the variance of the 

first quality characteristic and doubling the variance of the third quality characteristic, μ 

and the specifications remain the same. 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

] 

Results follow. 

Table 3-7 Example 4 MC1 and Cpv 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MC1=1.77 

 
 

Power 

Population 
Cpv=1.65 

Σ0 = Σ 
 

Power 

c=1.0 100% 100% 

c=1.33 87% 65% 

c=1.50 46% 22% 

c=1.67 13% 4% 

 

Table 3-8 Example 4 MC2 and MC3 

H0:  process is not 
capable 

α=0.05, n=50 

Population 

MC2=1.25 

var(MC2̂) = 0.05 

 
Power 

Population 

MC3=1.65 

var(MC3̂) = 0.09 

 
Power 

c=1.0 60% 87% 

c=1.33 7% 40% 

c=1.50 1% 13% 

c=1.67 0.1% 2% 

 



 

40 
 

In this last example all three indices, MC1, Cpv and MC2 perform well.  The power 

is in line with what we would expect for the population values of each index.  As in 

previous examples, MC3 does not perform as well as Cpv, the first two powers being 

lower than what’s expected for an index value of 1.65, and at c=1.67 the power should be 

closer to 5%.  This could be attributed to the fact that the weights are only estimates as is 

the case with MC2.  For MC1 and Cpv the index values indicate a capable process and the 

power steadily decreases to reasonable levels as the value of c increases.  For MC2 the 

index value indicates a marginally capable process for which the powers are 

appropriately low and steadily decreasing as c values increase.  We are highly unlikely to 

declare this process capable except when c is equal to 1.0. 

In comparing the population index values of our indices to one another we see 

that values for MC1 and MC3/Cpv are similar for each example. MC2 is consistently lower 

than the other three indices in each example.  MC1 and MC3/Cpv steadily decrease for 

each example as the total variance increases.  However, there is an unexpected shift in 

values for MC2 between examples 2 and 3.  The population index value is lower in 

example 2 than it is in example 3 which does not fall in line with the other three indices.  

The reason for this shift is the way in which the weighting occurs within the index 

computation.  We examine the calculations of MC2 for examples 2 and 3 below.  We only 

need to look at the numerators since the denominators for both examples are nearly 

equal. 

Example 2- 

weight vector=[0.5316 0.2152 0.2532]  difference of specification limits 

vector=[
0.2
0.6
0.6
] 

[0.5316 0.2152 0.2532] ∙ [
0.2
0.6
0.6
] = 0.3873 
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Example 3- 

weight vector=[0.4375 0.3542 0.2083]  difference of specification limits 

vector=[
0.2
0.6
0.6
] 

[0.4375 0.3542 0.2083] ∙ [
0.2
0.6
0.6
] = 0.4250 

In example 3 the variance of the second variable is double what it is in example 2.    This 

gives the second variable a greater weight in example 3 than what it has in example 2.  

The greater weight causes the second component of the specification vector to contribute 

more to the numerator in example 3 than it does in example 2.  The result is a larger 

allowable spread for example 3.  With nearly equal denominators, a larger allowable 

spread means a larger MC2 value.  var(MC2̂) is consistently lower than var(MC3̂) for 

each example.  Both variances are never larger than 0.10. 

3.1.2 Taam’s Index 

Tano and Vannman (2011) derive the following lower confidence bound for 

Taam’s index, 

c < MCp̂√(1 −
λα√2ν

√n
). 

Consider the same examples from above and a similar set of hypotheses, 

H0:  MCp = c (process is not capable) vs. 

Ha:  MCp > c (process is capable). 

We reject H0when the following inequality holds, 

c√
√n

√n − λα√2ν
< MCp̂, 
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where λα denotes the 1 − α quantile of the standard Normal distribution. 

The following expression gives the power of the test, 

π(MCp) = P {MCp̂ > c√
√n

√n−λα√2ν
|MCp}.   (3.4)       

To study Taam’s index we use simulation.  For each example, 10,000 samples of 

size n=50 are generated in SAS from a trivariate normal distribution with the parameters 

from (3.3).  Estimates for each index and power are computed with proc iml.   

Example 1: 

Consider the original matrix and specification intervals, 

μ = [
2.16
304.72
304.77

] Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

] 

Dϵ(2.1, 2.3) 

Lϵ(304.5, 305.1) 

Wϵ(304.5, 305.1). 

To obtain the population values of Taam’s index we apply equation (1.5) to the data 

above. 

MCp =
Vol(modified tolerance region)

(π ∙ χν,0.9973
2 )

ν/2
|Σ|1/2 [Γ (

𝜈
2
+ 1)]

−1      

where, 

Vol(modified tolerance region) =
2πν/2∏ ai

ν
i=1

νΓ (
ν
2
)

, 

and, 
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ai =
USLi − LSLi

2
  for i = 1, 2, … . , ν. 

For the data above we get a population value of MCp equal to 2.92.  Simulation results 

are given by 

Table 3-9 Example 1 Taam 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=2.92 

 
Power 

c=1.0 100% 

c=1.33 99% 

c=1.50 96% 

c=1.67 87% 

 

For this example Taam’s index performs well except at c=1.67 where the power 

seems a bit low for a population index value as high as 2.92. 

Example 2: 

With the new matrix (other parameters unchanged) 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

we find the population value of MCp in the same manner as example 1.  Specification 

intervals remain the same.  Simulation results and the population value of MCp are given 

by 
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Table 3-10 Example 2 Taam 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.96 

 
Power 

c=1.0 96% 

c=1.33 55% 

c=1.50 30% 

c=1.67 13% 

 

For this example the power should be higher for each value of c given a 

population index value of 1.96.  We use the procedure outlined above for the next two 

examples. 

Example 3: 

For the following matrix, 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

], 

simulation results and the population value of MCp appear below. 

Table 3-11 Example 3 Taam 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.17 

 
Power 

c=1.0 13% 

c=1.33 0.5% 

c=1.50 0.05% 

c=1.67 0.01% 

 

For this example the population index value indicates a marginally capable 

process.  The power is appropriately low for all c values.  We are unlikely to declare the 

process capable at any value of c. 
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Example 4: 

For the final matrix 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

], 

simulation results and the population value of MCp are given by 

Table 3-12 Example 4 Taam 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=0.95 

 
Power 

c=1.0 1.5% 

c=1.33 0.01% 

c=1.50 0.01% 

c=1.67 0% 

 

In this example the population index value indicates that the process is not 

capable and the power is appropriately low for all values of c.  We are highly unlike to 

deem the process capable at any c value. 

Taam’s index for the last example indicates that the process is not capable.  All 

four of our indices, however, indicate that the process is capable. 

3.1.3 Pan and Lee’s Index 

Pan and Lee (2010) give the following lower confidence bound for their index 

MCp, 

MCp̂√wα, 

where MCp̂ is given in (1.11) and wα is the α quantile of the distribution ∏ χn−i
2/ν

i=1

(n − 1)ν. 
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Tano and Vannman (2013) note that wα is the same as FY
−1(α)/(n − 1)ν where Y 

is defined as a product of independent Chi-square random variables with n-1, n-2,….,n-ν 

degrees of freedom, respectively.  The quantile FY
−1(α) is difficult to calculate for ν>2, 

thus, Tano and Vannman show that a good approximation to √FY
−1(α)/(n − 1)ν is given 

by 

√(1 − λα√2ν/√n). 

This is the same approximation that they developed when finding a simpler confidence 

bound for Taam’s index.  Again, λα denotes the (1 − α) quantile of the N(0,1) distribution.   

In their paper the authors include a brief list of calculations comparing their approximation 

to the actual quantile (which they find numerically) for ν=3, α=0.05 and a handful of 

sample sizes.  The computed values appear in the table below. 

Table 3-13Tano and Vannman’s approximation of wα 

n 
√FY

−1(α)/(n − 1)ν √(1 − λα√2ν/√n) 

 

50 0.696 0.656 

70 0.745 0.720 

100 0.788 0.772 

200 0.852 0.845 

500 0.907 0.905 

1000 0.935 0.934 

 

Since Tano and Vannman (2011) have supplied the actual quantile values for 

ν=3 and α=0.05 for us, we will make use of these in our power study of Pan and Lee’s 

index.  Again, consider the same set of hypotheses from the previous studies 

H0:  MCp = c (process is not capable) vs. 

Ha:  MCp > c (process is capable). 

We reject the null when the following inequality holds, 
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c

√wα
< MCp̂. 

Hence, the expression for power is given by 

π(MCp) = P {MCp̂ >
c

√wα
| MCp}.   (3.5) 

For the simulation study of MCpwe will use the same hypotheses (c values), 

mean vector, covariance matrices, and specification intervals from the studies above.   

For each example we simulate 10,000 samples of size n=50 with α=0.05 from a trivariate 

normal distribution with the parameters from (3.3) but with the adjustments to the 

covariance matrix given in each example.   

Example 1: 

For the following matrix and specification intervals, 

Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

Dϵ(2.1, 2.3) 

Lϵ(304.5, 305.1) 

Wϵ(304.5, 305.1), 

we obtain the population value of MCp by applying equation (1.9), 

MCp = (
|A∗|

|Σ|
)

1/2

,      

where the elements of A* are given by 

Aij
∗ = ρij (

USLi − LSLi

2√χ𝜈,0.9973
2
)(
USLj − LSLj

2√χ𝜈,0.9973
2
)    i and j = 1,2, or 3,  
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and ρij is computed from Σ.  We obtain MCp equal to 2.0.  Simulation results appear 

below. 

Table 3-14 Example 1 Pan and Lee 

H0:  process is not 
capable 

α = 0.05, n = 50 

Population 
MCp = 2.0 

 
Power 

c=1.0 96% 

c=1.33 64% 

c=1.50 41% 

c=1.67 24% 

 

For this example the power should be higher for all values of c given a population 

index value of 2.0. 

Example 2: 

For the next covariance matrix, 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

MCp is calculate as 1.41 (using the same method as in the previous example), and we 

obtain the following simulation results: 

Table 3-15 Example 2 Pan and Lee 

H0:  process is not 
capable 

α = 0.05, n = 50 

Population 
MCp = 1.41 

 
Power 

c=1.0 52% 

c=1.33 10% 

c=1.50 3% 

c=1.67 1% 
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In this example the power is in line with what we expect for an index value of 

1.41.  We repeat the procedure outlined above for the next two examples. 

Example 3: 

For the following matrix, 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

], 

MCp is calculated as 1.0 and simulation results are the following: 

Table 3-16 Example 3 Pan and Lee 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.0 

 
Power 

c=1.0 5% 

c=1.33 0.15% 

c=1.50 0.03% 

c=1.67 0% 

 

For this example the population index value indicates a “barely” capable process.  

The index performs well since we are unlikely to declare the process capable at any 

value of c.  Furthermore, the power is 5% at c=1.0. 

Example 4: 

For the last variance covariance matrix, 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

], 

MCp is calculated as 0.82 and simulation results are the following: 
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Table 3-17 Example 4 Pan and Lee 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=0.82 

 
Power 

c=1.0 0.46% 

c=1.33 0% 

c=1.50 0% 

c=1.67 0% 

 

For this example the population index value indicates an incapable process.  The 

index performs well since we are unlikely to declare the process capable at any value of 

c. 

Like Taam’s index, Pan and Lee’s index for example 4 indicates that the process 

is not capable which contradicts the results for our proposed indices.  Pan and Lee’s 

index is lower than Taam’s for every example. This supports Pan and Lee’s claim that 

Taam’s index may overestimate capability when the variables are not all independent. 

3.1.4 Wang and Chen’s Index 

Wang and Du (2000) propose the following lower confidence bound for Wang 

and Chen’s index MCp, 

(∏Cp,PCi
̂√

χn−1,α
2

n − 1

m

i=1

)

1/m

. 

Again, consider the familiar set of hypotheses, 

H0:  MCp = c (process is not capable) vs. 

Ha:  MCp > c (process is capable). 

We reject the null hypothesis when the following inequality holds, 
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c√
n − 1

χn−1,α
2
< MCp̂. 

Hence, the expression for power is given by 

π(MCp) = P{MCp̂ > c√
n − 1

χn−1,α
2
|MCp}.   (3.6) 

Again, we use the same hypotheses (c values), covariance matrices, μ and 

specification intervals from the previous studies to do a power study of MCp.  For each 

example we simulate 10,000 samples of size n=50 with α=0.05 from a trivariate normal 

distribution with the parameters from (3.3) but with the adjustments to the covariance 

matrix given in each example. 

Example 1: 

Consider the original data, 

Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

Dϵ(2.1, 2.3) 

Lϵ(304.5, 305.1) 

Wϵ(304.5, 305.1), 

i.e. 

Xlo = [
2.1
304.5
304.5

]  and Xup = [
2.3
305.1
305.1

]. 

To obtain the population value of MCpwe perform PCA on the matrix above and apply 

equation (1.12), 
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MCp = (∏Cp;PCi

m

i=1

)

1
m⁄

, 

where 

Cp;PCi =
USLPCi − LSLPCi

6√λi
  for i = 1, 2, … ,m  (1 ≤ m ≤ ν), 

with 

USLPCi = ei′Xup,   

and, 

LSLPCi = ei′Xlo . 

Recall, m represents the number of principal components retained for analysis from a 

matrix of ν dimensions.  For this example and subsequent examples m equals two since 

the first two principal components account for nearly 90% of the total variance in each 

matrix. 

For the matrix above we obtain MCpequal to 1.67.  Simulation results are the 

following: 

Table 3-18 Example 1 Wang and Chen 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.67 

 
Power 

c=1.0 87% 

c=1.33 55% 

c=1.50 31% 

c=1.67 11% 

 

For this example the power is reasonable for the first three c values given an 

index of 1.67.  However, when c equals 1.67 the probability of declaring the process  
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capable should perhaps be lower than 5% given that the population value of the index 

itself is equal to 1.67.  This could be attributed to the incorrect transformation of the 

specification limits.  We repeat the procedure described above for examples 2-4. 

Example 2: 

For the next variance covariance matrix, 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

MCp is calculated as 1.75.  Simulation results are the following: 

Table 3-19 Example 2 Wang and Chen 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.75 

 
Power 

c=1.0 97% 

c=1.33 74% 

c=1.50 23% 

c=1.67 2% 

 

In this example the power is reasonable for the first two values of c but somewhat 

low for the last two values of c given an index value of 1.75. 

Example 3: 

For the following matrix, 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

], 

MCp is calculated as 1.48 and simulation results are the following: 
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Table 3-20 Example 3 Wang and Chen 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.48 

 
Power 

c=1.0 77% 

c=1.33 15% 

c=1.50 1.4% 

c=1.67 0% 

 

In this example the power is in line with what we would expect for all values of c, 

except at c=1.50 where the power should be close to 5%. 

Example 4: 

For the last variance covariance matrix, 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

], 

MCp is calculated as 1.31 and simulation results are the following: 

Table 3-21 Example 4 Wang and Chen 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MCp=1.31 

 
Power 

c=1.0 58% 

c=1.33 0.4% 

c=1.50 0% 

c=1.67 0% 

 

For this example the power is in line with what we would expect for all values of 

c, except at c=1.33 where the power should be close to 5%. 
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Note the inconsistency in index values between examples 1 and 2.  Only the first 

two eigenvectors are used to compute MCp in each example, however, using all three 

eigenvectors does not remedy this problem.  In fact, when using all three eigenvectors 

the index for example 4 is larger than it is for example 3, and, they are both larger than 

the index values for examples 1 and 2 (see below).  Using two eigenvectors for some 

examples and three for others is also not a solution.  It seems that we cannot attribute the 

problem to the number of eigenvectors selected for analysis. 

Table 3-22 Two vs. Three Eigenvectors 

Example MCpw/ two 

eigenvectors 

MCpw/ three 

eigenvectors 

1 1.67 1.11 

2 1.75 1.07 

3 1.48 1.32 

4 1.31 1.39 

 

3.1.5 Wang’s Index 

Tano and Vannman (2011) propose the following lower confidence bound for 

Wang’s index MWCp, 

(∏(Cp,PCi
̂√

χn−1,α
2

n − 1
)

λim

i=1

)

1/Σλi

. 

Under the following set of hypotheses, 

H0:  MWCp = c (process is not capable) vs. 

Ha:  MWCp > c (process is capable), 

we reject H0 when the following inequality holds, 
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c√
n − 1

χn−1,α
2
< MWCp̂ . 

Thus, the expression for power for any particular value of MWCp is given 

 by the following, 

π(MWCp) = P{MWCp̂ > c√
n − 1

χn−1,α
2
| MWCp}.   (3.7) 

We will use the same data from the previous studies to investigate power for 

MWCp.  For each example we will simulate 10,000 samples of size n=50 with α=0.05 

from a trivariate normal distribution with the parameters from (3.3) but with the 

adjustments to the covariance matrix given in each example. 

Example 1: 

For the following matrix and specification intervals, 

Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

Dϵ(2.1, 2.3) 

Lϵ(304.5, 305.1) 

Wϵ(304.5, 305.1), 

we calculate the population value of MWCp by performing PCA on Σ (the PCA 

calculations have already been made while computing Wang and Chen’s index) and 

applying equation (1.13), 

MWCp = (∏Cp:PCi
λi

m

i=1

)

1
∑ λi
m
i=1

 

.      
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Because our data is multivariate normal we do not use Clement’s method for the 

denominator of Cp;PCi.  As with Wang and Chen’s index, 

Cp;PCi =
USLPCi − LSLPCi

6√λi
, 

with 

USLPCi = ei′Xup,  

and, 

LSLPCi = ei′Xlo . 

Note, we have already obtained the values of Cp;PCiby calculating Wang and Chen’s 

index. 

For this example we obtain MWCp equal to 1.90.  Simulation results are the 

following: 

Table 3-23 Example 1 Wang 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MWCp=1.90 

 
Power 

c=1.0 97% 

c=1.33 85% 

c=1.50 61% 

c=1.67 21% 

 

For this example the power seems to be in line with what we expect for a 

population index value of 1.90.  We repeat the procedure above for examples 2-4. 

Example 2: 

For the next covariance matrix, 
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Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

], 

MWCp is calculated as 1.65.  Simulation results are the following: 

Table 3-24 Example 2 Wang 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MWCp=1.65 

 
Power 

c=1.0 94% 

c=1.33 46% 

c=1.50 9% 

c=1.67 0.49% 

 

For this example power is a bit small for the second and third value of c 

considering the population index value. For c=1.67 the power is not as close to 5% as it 

should be.  As in the previous index, this could be attributed to the incorrect 

transformation of the specification limits or the fact that the weights are estimated. 

Example 3: 

For the following matrix, 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

], 

MWCpis calculated as 1.52 and simulation results are the following: 
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Table 3-25 Example 3 Wang 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MWCp=1.52 

 
Power 

c=1.0 83% 

c=1.33 12% 

c=1.50 0.7% 

c=1.67 0% 

 

In this example the power is appropriately low for the last value of c but should be 

larger for the first two values of c.  For c=1.50 the power should be closer to 5%. 

Example 4: 

For the last variance covariance matrix, 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

], 

MWCp is calculated as 1.24 and simulation results are the following: 

Table 3-26 Example 4 Wang 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MWCp=1.24 

 
Power 

c=1.0 41% 

c=1.33 0.10% 

c=1.50 0% 

c=1.67 0% 

 

For this last example the power is in line with what we expect for an index value 

of 1.24. 
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3.2 Additional Index Computations 

Though not all previously mentioned indices are included in the power study 

above, we may still calculate their population index values and compare them with the 

values of our own proposed MPCIs.  Using the data from examples 1-4 above, we 

determine the values for the indices by Xekelaki and Perakis, Chan et al., Shahriari and 

Tano and Vannman (see equations (1.5) and (1.15)-(1.17)).  The population value of 

these indices, along with all indices previously discussed, appear in the table below. 

Table 3-27 Additional Index Computations 

 

*Chan, Cheng and Spiring’s index requires data to compute so we simulate a single data 

set of size 50 with the given parameters (μ and Σ) for each example. 

The values for Chan et al.’s index standout from the rest for two reasons.  For 

one, they follow no apparent trend while the other indices decrease consistently from one 

example to another, except in two cases. Second, unlike the other index values, Chan et 

al.’s index values are equal to one another when rounded to the nearest hundredth.  This 

suggests that Chan et al.’s index is not sensitive to changes in parameter.  Shahriari’s 

index values follow a trend similar to that of our own as well as Wang and Chen and 

Wang.  In other words, at each example we would draw similar conclusions from 

examining our indices, Shahriari’s index, Wang and Chen’s index or Wang’s index.  

Finally, Tano and Vannman’s index values appear to follow a trend, however, the authors 

have given us no guidelines for interpreting the results. 

 

Example Xekelaki 
and Perakis 

Chan, 
Cheng and 

Spiring* 

Shahriari Tano and 
Vannman 

MC1 MC2 MC3 Cpv Taam Pan 
and 
Lee 

Wang 
and 

Chen 

Wang 

1 1.96 1.0447 2.14 0.73 2.20 2.15 2.46 2.46 2.92 2.00 1.67 1.90 

2 1.67 1.0436 1.86 0.51 2.02 1.48 2.07 2.07 1.96 1.41 1.75 1.65 

3 1.53 1.0441 1.49 0.51 1.91 1.64 2.06 2.06 1.17 1.00 1.48 1.52 

4 1.27 1.0447 1.39 0.42 1.77 1.25 1.65 1.65 0.95 0.82 1.31 1.24 
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3.3  Bootstrap Confidence Intervals 

When the theoretical distribution of a statistic is complicated one may use what 

are known as “bootstrap techniques” to derive confidence intervals and other properties 

of interest.  The bootstrap method is free from distributional assumptions and will allow us 

to compute approximate 95% confidence intervals for MC2 and MC3.  Bootstrapping 

methods involve using sample data to approximate populations and were first introduced 

by Bradley Efron in the 1970’s.  Since then many different versions of the bootstrap have 

been developed.  The first step in a bootstrap method is to resample an original sample 

with replacement many times.  For each resample a statistic of interest is computed.   For 

our study the statistics of interest are MC2 and MC3 and we will use the same covariance 

matrices, μ and specification intervals that we did in the previous chapter to obtain 95% 

bootstrap confidence intervals.  Again, we are simulating from a trivariate distribution with 

the parameters specified in (3.3) but for adjustments to the covariance matrix made in 

each example. 

Formulation of the confidence intervals depends on the particular bootstrap 

method that we choose.  We intend to use the standard bootstrap method and the bias 

corrected percentile bootstrap (BCPB) method.  The standard bootstrap confidence 

interval is calculated as follows: 

1. Collect an original sample and calculate MC2̂ (or MC3̂). 

2. Resample the original sample with replacement many times, computing MC2̂ 

(or MC3̂) for each resample, these estimates are denoted MC2̂∗ (or MC3̂∗). 

3. Compute the standard deviation of the MC2̂∗′s (or MC3̂∗′s). 

A single 100(1-α)% standard bootstrap confidence interval for MC2 is given by 

MC2̂ ± zα/2 ∙ (standard deviation of  MC2̂
∗′s)   (3.8) 

where zα/2  is the (1 − α/2) percentile of the N(0,1) distribution. 
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The formula for the confidence interval for MC3 is similar to equation (3.7).  Simply 

replace MC2̂ and MC2̂∗ with MC3̂ and  MC3̂∗. 

We calculate a BCPB confidence interval as follows:   

(note steps 1 and 2 are the same as in the standard bootstrap method) 

1. Collect an original sample and calculate MC2̂ (or MC3̂). 

2. Resample the original sample with replacement many times, computing MC2̂ 

(or MC3̂) for each resample, these estimates are denoted MC2̂∗ (or MC3̂∗). 

3. Determine what percent (p) of estimates MC2̂∗ (or MC3̂∗) are less than MC2̂ 

(or MC3̂), respectively. 

4. Compute Φ−1(p), where Φ−1is the inverse of the standard normal cumulative 

distribution function. 

5. Calculate 2Φ−1(p) ± zα/2 and then determine the values of Φ(2Φ−1(p) ±

zα/2), 

where Φ is the standard normal cumulative distribution function.  Denote 

these values z1and z2. 

6. Multiply z1and z2 by the number of estimates of MC2̂∗ (or MC3̂∗) and then 

locate these positions in the ordered list (ascending) of values of MC2̂∗ (or 

MC3̂∗).  The values at each location are denoted PL and PU, for lower and 

upper, respectively. 

A single 100(1-α)% BCPB bootstrap confidence interval for MC2 or MC3 is given by 

(PL , PU).   (3.9) 

Under the standard method we will draw 1000 “original” samples of size 50 from 

each population and resample each “original” sample 2000 times.  Under the BCPB 

method we will draw 1000 samples of size 50 from each population and resample each 

sample 1000 times.    The population index values for each example have already been 
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computed in chapter 3.  We will determine the percent of 95% bootstrap confidence 

intervals that cover the population value of the index.  We will also determine the average 

width and standard deviation of the widths of the 1000 estimated intervals.  The bias, 

variance and MSE for 1,000,000 bootstrap estimates of both indices are included.  

Results follow. 

Example 1: 

Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

] 

Table 3-28 Bootstrap Example 1 

α = 95%, n = 50, 1000 bootstrap confidence intervals 

Example 2: 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

] 

Table 3-29 Bootstrap Example 2 

α = 95%, n = 50, 1000 bootstrap confidence intervals 

Example 3: 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

] 

Index Pop 
value 

Percent 
coverage 

 
 
 

Standard 

Percent 
coverage 

 
 
 

BCPB 

Average width 
of confidence 

intervals 
 
 

Standard 

Average width 
of confidence 

intervals 
 
 

BCPB 

Standard 
deviation of 
the widths 

 
 

Standard 

Standard 
deviation of 
the widths 

 
 

BCPB 

Bias Var MSE 

MC2 2.15 94% 93% 0.93 0.93 0.20 0.20 0.00 0.11 0.11 

MC3 2.46 93% 93% 1.00 1.01 0.20 0.19 -0.05 0.12 0.12 

Index Pop 
value 

Percent 
coverage 

 
 
 

Standard 

Percent 
coverage 

 
 
 

BCPB 

Average 
width of 

confidence 
intervals 

 
Standard 

Average 
width of 

confidence 
intervals 

 
BCPB 

Standard 
deviation of 
the widths 

 
 

Standard 

Standard 
deviation of 
the widths 

 
 

BCPB 

Bias Var MSE 

MC2 1.48 93% 93% 0.99 0.96 0.21 0.19 0.04 0.13 0.13 

MC3 2.07 93% 91% 1.26 1.17 0.39 0.34 -0.17 0.18 0.21 
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Table 3-30 Bootstrap Example 3 

α = 95%, n = 50, 1000 bootstrap confidence intervals 

Example 4: 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

] 

Table 3-31 Bootstrap Example 4 

α = 95%, n = 50, 1000 bootstrap confidence intervals 

For MC2 the coverage percentage for bootstrap confidence intervals of both 

types (standard and BCPB) are close to 95% for all examples.  For MC3 the coverage 

percentage for standard bootstrap confidence intervals is close to 95%, 91% coverage 

being the smallest.  The coverage percentage for MC3 under the BCPB method is not as 

high as it is with the standard method, with 88% being the smallest coverage percent.  

Overall, for both indices, the coverage percentage is close to 95% using the standard 

bootstrap confidence interval.  The BCPB confidence interval performs almost as well as 

the standard interval for MC2, but it does not perform as well as the standard interval for 

MC3.  MSE for MC2 is consistently smaller than it is for MC3, however, MSE of both 

indices is never larger than 0.20. 

 

 

 
Index. 

 

Pop 
value 

Percent 
coverage 

 
 
 

Standard 

Percent 
coverage 

 
 
 

BCPB 

Average width 
of confidence 

intervals 
 
 

Standard 

Average width 
of confidence 

intervals 
 
 

BCPB 

Standard 
deviation of 
the widths 

 
 

Standard 

Standard 
deviation of 
the widths 

 
 

BCPB 

Bias Var MSE 

MC2 1.64 94% 93% 0.87 0.87 0.19 0.18 0.16 0.10 0.13 

MC3 2.06 91% 89% 1.06 0.97 0.35 0.29 -0.24 0.12 0.17 

Index Pop 
value 

Percent 
coverage 

 
 
 

Standard 

Percent 
coverage 

 
 
 

BCPB 

Average width 
of confidence 

intervals 
 
 

Standard 

Average width 
of confidence 

intervals 
 
 

BCPB 

Standard 
deviation of 
the widths 

 
 

Standard 

Standard 
deviation of 
the widths 

 
 

BCPB 

Bias Var MSE 

MC2 1.25 94% 93% 0.82 0.81 0.17 0.16 0.03 0.09 0.09 

MC3 1.65 93% 88% 1.55 1.03 0.36 0.33 -0.23 0.15 0.20 
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Chapter 4 

Extension to Cpk 

The predominant shortcoming of Cp is that it does not take process mean into 

consideration.  In an effort to overcome this deficiency the capability index Cpk was 

developed.  When used together Cp and Cpk can give a good indication of process 

capability with regard to process center and spread.  Consider the following expressions, 

Cpu =
USL − μ

3σ
 and Cpl =

μ − LSL

3σ
.   (4.1) 

The expressions above represent the ratio of the distance between the mean of the 

process and the upper (or lower) specification limit to three times the process standard 

deviation.  In simpler terms, the expressions above give the ratio of the “allowable” upper 

spread to the “actual” upper spread as well as the “allowable” lower spread to the “actual” 

lower spread. 

Cpk is defined as the minimum of these two quantities, i.e. 

Cpk = min{Cpu, Cpl}.   (4.2) 

“From observing the definition of Cpk, it is apparent that Cpk quantifies capability for the 

worst half of the data,” Kotz and Lovelace (1998).  Gunter (1989) describes Cpk as “a way 

to measure the ratio of the amount of room needed to the amount of room available to 

produce product within specifications.” 

Extending our proposed indices to calculate a multivariate version of Cpk is a 

fairly simple task.  As before assume that all process data follow the multivariate normal 

distribution, that is, X~Np(μ, Σ) .  The Cpk counterparts of our indices are as follows: 

For MC1 we calculate 
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min {
USLMC1 − μMC1

3σMC1
,
μMC1 − LSLMC1

3σMC1
},   (4.3) 

where 

μMC1 = [1 1… 1] ⋅ μ. 

For MC2 we calculate 

min {
USLMC2 − μMC2

3σMC2
,
μMC2 − LSLMC2

3σMC2
},   (4.4) 

where 

μMC2 = w′ ⋅ μ. 

For MC3 we calculate 

min {
USLU − μU
3σU

,
μU − LSLU
3σU

} ,   (4.5) 

where 

μU = |w1e1
′ μ| + |w2e2

′ μ| + ⋯+ |wkek
′ μ|. 

And, for Cpv we calculate 

min {
USLV − μV
3σV

,
μV − LSLV
3σV

},   (4.6) 

where 

μV = |w10e10
′μ| + |w20e20

′μ| + ⋯+ |wk0ek0
′μ|. 

For their estimators we make the necessary substitutions described in chapter 2 

and we naturally replace all μ′s with X̅.  We can also feasibly derive properties and 

develop confidence intervals by looking to their univariate counterparts. 
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As far as recommended minimum values of Cpk are concerned the same 

benchmarks for Cp apply. That is, 1.33 is still the standard minimal index value and critical 

processes typically require a value of 1.67 or higher.  It is likely that these same values 

would apply to the multivariate extension of Cpk. 

We will demonstrate an extension to Cpk using MC1.  As stated above, the 

extension of MC1 to Cpk (we may call it MC1k) will look like the following, 

MC1k = min {
USLMC1 − μMC1

3σMC1
,
μMC1 − LSLMC1

3σMC1
},   (4.7) 

where  

μMC1 = [1 1… 1] ⋅ μ. 

The estimator will be 

MC1k̂ = min {
USLMC1 − X̅MC1

3sMC1
,
X̅MC1 − LSLMC1

3sMC1
},   (4.8) 

where 

X̅MC1 = [1 1… 1] ⋅ X̅. 

Another way to write MC1k̂ is the following, 

MC1k̂ =
dMC1 − |X̅MC1 −MMC1|

3sMC1
,   (4.9) 

where 

dMC1 =
USLMC1 − LSLMC1

2
 and,MMC1 =

USLMC1 + LSLMC1
2

. 

We set |X̅MC1 −MMC1| =
σMC1

√n
|Z + δMC1|  with Z~N(0,1)and δMC1 =

μMC1−MMC1

σMC1/√n
 , (Kotz and 

Johnson (1993)).  Assuming multivariate normal data we can derive the moments of 
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MC1k̂ using the fact that 
(n−1)sMC1

2

σMC1
2 ~χn−1

2 and that |Z + δMC1| follows the folded normal 

distribution (see Kotz and Johnson (1993)). The expected value of MC1k̂ is given by 

E(MC1k̂ ) =
1

3
√
n − 1

2σMC1
2

Γ (
n − 2
2
)

Γ (
n − 1
2
)
[dMC1 −

σMC1

√n
(2ϕ(−δMC1) + δMC1 − 2δMC1Φ(−δMC1))]. 

bias (MC1k) = E(MC1k̂ ) − MC1k   (4.10) 

The variance of MC1k̂ is given by 

var(MC1k̂ ) = E (MC1k̂
2
) − [E(MC1k̂)]

2
,   (4.11) 

with 

E (MC1k̂
2
) =

n − 1

9(n − 3)σMC1
2

× {dMC1
2 − 2dMC1

σMC1

√n
[2ϕ(−δMC1) + δMC1 − 2δMC1Φ(−δMC1)]

+
σMC1

2

n
(1 + δMC1

2)}. 

MSE(MC1k̂ ) = var(MC1k̂ ) + (bias (MC1k))
2
   (4.12) 

Using the normal approximation, Bissell (1990) derives a confidence interval for Cpk 

which we may extend to MC1k.  It is given by the following 

MC1k̂ ± zα 2⁄ √
1

9n
+

1

2(n − 1)
MC1k̂

2
.   (4.13) 

We can use the confidence interval above to form a decision rule and tests 

hypotheses for MC1k.  For instance, consider the hypotheses 

H0:  MC1k = c (process is not capable) vs. 
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Ha:  MC1k > c (process is capable). 

We reject the null when the following inequality holds 

c + zα√
1

9n
+

1

2(n − 1)
MC1k̂

2
< MC1k̂.   (4.14) 

Using the decision rule and hypotheses above we can conduct another 

simulation study of power.  We will use the same examples from chapter 3 and conduct 

10,000 runs for each value of c (n=50).  Bias, variance and MSE can be calculated using 

equations (4.11), (4.10) and (4.12), respectively.  Recall, the specification intervals and μ 

remain the same for each example and are given by 

μ = [
2.16
304.72
304.77

], 

and, 

Dϵ(2.1, 2.3), 

Lϵ(304.5, 305.1), 

Wϵ(304.5, 305.1), 

with centers 

D:  2.20, 

L:  304.80, 

W:  308.80. 

The distances of the mean from the centers are given by 

D:  0.04, 

L:  0.08, 
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W:  0.03. 

Note that for all examples the process mean will be 0.08 away from the actual center of 

each specification interval at most. 

Example 1: 

We have 

Σ = [
0.0021 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

]. 

Table 4-1 Example 1 Cpk 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MC1k=1.73 

 
Power 

c=1.0 100% 

c=1.33 79% 

c=1.50 37% 

c=1.67 10% 

 

Example 2: 

We have 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

]. 

Table 4-2 Example 2 Cpk 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MC1k=1.61 

 
Power 

c=1.0 100% 

c=1.33 49% 

c=1.50 13% 

c=1.67 2% 
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Example 3: 

We have 

Σ = [
0.0042 0.0008 0.0007
0.0008 0.0034 0.0012
0.0007 0.0012 0.0020

]. 

Table 4-3 Example 3 Cpk 

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MC1k=1.50 

 
Power 

c=1.0 99% 

c=1.33 28% 

c=1.50 5% 

c=1.67 1% 

 

Example 4: 

We have 

Σ = [
0.0063 0.0008 0.0007
0.0008 0.0017 0.0012
0.0007 0.0012 0.0040

]. 

 Table 4-4 Example 4 Cpk  

H0:  process is not 
capable 

α=0.05, n=50 

Population 
MC1k=1.48 

 
Power 

c=1.0 92% 

c=1.33 11% 

c=1.50 1% 

c=1.67 0% 

 

For examples 1-4 the power is reasonably in line with what we expect for each 

population index value.  The index tends to perform best at c equals 1.0 and 1.67. In 

example 4, for c=1.50 the power should be closer to 5%.  We note that Bissell’s 
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confidence interval for Cpk is an approximation (construction of an exact confidence 

interval for Cpk is very complicated so most confidence intervals for Cpk are approximate).  

In each example the population index value indicates a capable process (beyond 

marginally capable) and at each case of c=1.0 we are highly likely to declare the process 

capable.  In the case of c=1.67 the power is appropriately low.  For each example the 

process is capable but not “highly capable” and we are unlikely to reject the null 

hypothesis, which is the correct decision. 
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Chapter 5 

Conclusion 

When a product possesses multiple quality characteristics that are not 

independent multivariate techniques are required.  The need for indices that assess 

multivariate capability is obvious.  Many multivariate process capability indices have been 

proposed over the last 25 years but few have accompanying confidence intervals.  As 

Tano and Vannman (2011) assert, “In practice, a random sample is used to estimate the 

process capability index.  Hence, conclusions about process capability must be based on 

a confidence interval or a test for the MPCI.”  In their paper, Tano and Vannman (2011) 

review four MPCIs that have corresponding confidence intervals.  They find that the index 

formulated by Pan and Lee is superior to the others, but that it has limitations.  In a later 

paper Tano and Vannman (2013) propose their own index but restrict its application to a 

bivariate setting. 

We propose four new indices that can translate the multivariate situation into the 

routine univariate capability index. Under the assumption of multivariate normality this 

simplifies our derivation of properties and confidence intervals, as well as hypothesis 

tests.  Furthermore, we have formulated our indices in such a way that a specific index 

value can be associated with a particular probability of non-conformance, an attribute 

which Pan and Lee’s index lacks. 

We investigate the feasibility of our indices by conducting hypothesis tests and 

computing power.  We include in this study indices from other authors which have 

accompanying confidence intervals so that we may compare with our own.  Results are 

summarized in the table below. 
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Table 5-1 Summary of Results 

Example 1 

H0:  process is 
not capable 
α=0.05, n=50 

Population 
MC1=2.20 

 
 
 

Power 

Population 
MC2=2.15 

 
 
 

Power 

Population 
MC3=2.46 

 
 
 

Power 

Population 
Cpv=2.46 

 
 
 

Power 

Taam 
Population 
MCp=2.92 

 
 

Power 

Pan and Lee 
Population 
MCp=2.0 

 
 

Power 

Wang and 
Chen 

Population 
MCp=1.67 

 
Power 

Wang 
Population 
MWCp=1.90 

 
 

Power 

c=1.0 100% 100% 100% 100% 100% 96% 87% 97% 

c=1.33 100% 100% 99% 97% 99% 64% 55% 85% 

c=1.50 99% 94% 90% 72% 96% 41% 31% 61% 

c=1.67 84% 71% 64% 32% 87% 24% 11% 21% 

Example 2 

H0:  process is 
not capable 

α=0.05, n=50 

Population 
MC1=2.02 

 
 
 

Power 

Population 
MC2=1.48 

 
 
 

Power 

Population 
MC3=2.07 

 
 
 

Power 

Population 
Cpv=2.07 

 
 
 

Power 

Taam 
Population 

MCp=1.96 

 
 

Power 

Pan and Lee 
Population 

MCp=1.41 

 
 

Power 

Wang and 
Chen 

Population 
MCp=1.75 

 
Power 

Wang 
Population 

MWCp=1.65 

 
 

Power 

c=1.0 100% 88% 100% 100% 96% 52% 97% 94% 

c=1.33 100% 34% 89% 100% 55% 10% 74% 46% 

c=1.50 89% 13% 72% 94% 30% 3% 23% 9% 

c=1.67 55% 4% 46% 66% 13% 1% 2% 0.49% 

Example 3 

H0:  process is 
not capable 
α=0.05, n=50 

Population 
MC1=1.91 

 
 
 

Power 

Population 
MC2=1.64 

 
 
 

Power 

Population 
MC3=2.06 

 
 
 

Power 

Population 
Cpv=2.06 

 
 
 

Power 

Taam 
Population 
MCp=1.17 

 
 

Power 

Pan and Lee 
Population 
MCp=1.0 

 
 

Power 

Wang and 
Chen 

Population 
MCp=1.48 

 
Power 

Wang 
Population 
MWCp=1.52 

 
 

Power 

c=1.0 100% 98% 97% 100% 13% 5% 77% 83% 

c=1.33 97% 55% 75% 100% 0.5% 0.15% 15% 12% 

c=1.50 74% 22% 55% 93% 0.05% 0.03% 1.4% 0.7% 

c=1.67 34% 5% 27% 63% 0.01% 0% 0% 0% 

Example 4 

H0:  process is 
not capable 
α=0.05, 

n=50 

Population 
MC1=1.77 

 
 
 

Power 

Population 
MC2=1.25 

 
 
 

Power 

Population 
MC3=1.65 

 
 
 

Power 

Population 
Cpv=1.65 

 
 
 

Power 

Taam 
Population 
MCp=0.92 

 
 

Power 

Pan and Lee 
Population 
MCp=0.82 

 
 

Power 

Wang and 
Chen 

Population 
MCp=1.31 

 
Power 

Wang 
Population 
MWCp=1.24 

 
 

Power 

c=1.0 100% 60% 85% 100% 1.5% 0.46% 58% 41% 

c=1.33 87% 7% 37% 63% 0.01% 0% 0.4% 0.10% 

c=1.50 46% 1% 12% 20% 0.01% 0% 0% 0% 

c=1.67 13% 0.1% 2% 4% 0% 0% 0% 0% 

 

In the power study of our indices, MC1 and Cpv outperform MC2 and MC3.  Recall, 

performance is based on how likely we are to declare a process capable when the 

population index takes a particular value.  For a large index value we wish for this power 

to be high and for a small index value we wish for it to be low.   Besides outperforming 
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MC3 in power, Cpv is also simpler to calculate than MC3.  In order to use Cpv we must 

utilize a covariance matrix that we have obtained from prior experience, however, in the 

absence of a prior covariance matrix, MC3 should make a satisfactory alternative.  In our 

study of Cpv we have assumed that Σ = Σ0, but the case of Σ ≠ Σ0 may be something to 

investigate in the future.   All of our indices are conservative at c=1.67, meaning that the 

probability of declaring a process capable is low, even though the population index value 

is high.  This is not necessarily a drawback since the value 1.67 is typically reserved for 

new processes involving human safety, i.e. processes in which it is better to err on the 

side of caution.  MC2 performs reasonably well in the power study, although the 

population index value for example 2 is smaller than it is for example 3.  This runs 

somewhat contrary to what one might expect since the overall variance is higher in 

example 3 than it is in example 2.  However, we are able to explain how this occurs in 

calculation.    A similar situation arises between examples 3 and 4 with Wang and Chen’s 

index, but the reason is not known.  The places where MC2 and MC3 come up short in 

power may be attributed to the fact that the weights are estimated for both of these 

indices. 

With our proposed MPCIs we have overcome some of the disadvantages of the 

other authors’ indices.  Namely, the following: 

1. the incorrect transformation of specification limits found in Wang and Chen’s 

and Wang’s indices, 

2. the absence of a threshold index value that pertains to a particular probability 

of non-conformance (Pan and Lee’s index), and, 

3. the lack of an accompanying confidence interval/bound ( indices by Chan et 

al., Shahriari and Tano and Vannman). 

Our indices can be interpreted in the same fashion as the familiar univariate 

indices, Cp, Cpk, Cpm, etc.  We have also maintained the same intuition behind our indices 

that is found in the index Cp.  Each one is basically a ratio of “allowable” process spread 
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to “actual” process spread.  Hence, our indices can be easily understood by those who 

lack a strong statistical background.  Furthermore, we have demonstrated that all of our 

indices can be extended to a multivariate counterpart of Cpk with little to no difficulty if the 

need arises. 
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