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teered’ me into doing my MS thesis thereby kick starting my research career. It is

conceivable that I would have stopped with MS and missed all the fun if not for these

wonderful mentors. I have very fond memories of the time spent in the lab discussing

all the topics under the sun. Dr.Chengkai Li’s courses on Data Mining and Web Min-

ing were two of the earliest courses I took on data mining. His (extremely) detailed

analysis and positive feedback for both my course projects gave me lot of confidence

for doing research in data mining. Taking Dr.Vassilis Athitsos’ gruelling AI-I course

in the first semester of my MS gave me a template that I have regularly used for

mastering other courses both in my MS and PhD. I had some wonderful internships

at Microsoft Research, QCRI and Yahoo! Labs and I am grateful to my mentors for

the research experiences.

I would also like to extend my gratitude to the department of CSE at UTA and

Dr. Das for providing me with financial supports during my entire graduate studies.

I was also fortunate to teach two graduate courses and learned a lot from student

feedback. I also like to thank my lab mates Azade, Habib, Farhad and Abol. I would

especially cherish the long, funny and technical discussions with Azade. Many thanks

to my friends Mahashweta, Rasool, Nandish, Kruthi, Naffi, Afroza, Shrikant, Weimo

and Sofiane for making my PhD memorable.

Finally, I would like to convey my heartfelt gratitude to my parents, brother

and my vast extended family. Their constant encouragement and support have been

critical to my success.

July 28, 2015

v



ABSTRACT

ENABLING EXPLORATORY MINING OVER HIDDEN DATABASES

SARAVANAN THIRUMURUGANATHAN, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Gautam Das

Almost all popular websites (such as Amazon, EBay, microblogs such as Twit-

ter, Instagram, collaborative content sites such as IMDB, Yelp etc) are powered in-

ternally by large data repositories. We designate them as hidden databases as their

underlying data is accessible only through proprietary form-like interfaces that require

users to query the system by entering desired values for a few attributes. Further,

these web databases also impose a number of restrictions. For example, the top-k

output constraint ensures that when there are a large number of tuples matching the

query, only a few of them (top-k) are preferentially selected and returned by the

website, often according to a proprietary ranking function. The rate limit constraint

restricts the number of queries/API calls that could be issued per day. The rank

information of low ranked tuples not in top-k are often not provided due to rank con-

straint. Most microblogging platforms such as Twitter also enforce recency constraint

that limits the results of their APIs to recent data. This stymies the efforts to perform

analytics over historic data. Finally, most collaborative content sites provide only ag-

gregate information over items such as number of likes, average rating etc instead

of granular information needed for mining. These restrictions prevent scientists with
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limited resources from performing novel analytics tasks. Similarly, it also prevents

third parties from building innovative services over these data.

Most prior work on exploratory analysis and mining are not applicable for hid-

den databases due to the aforementioned restrictions. In this dissertation, we present

efficient techniques for enabling exploratory mining over hidden databases. This is

achieved by developing novel algorithms that allows a third party (such as an analyst

or a scientist) to retrieve relevant data from hidden databases for exploratory min-

ing by issuing a small number of carefully constructed queries that enables them to

work around the restrictions. We design algorithms that sidestep the top-k output

constraint so that it is possible to retrieve the top- h tuples where h > k. In order

to work around rank constraint, we designed statistical estimators that can estimate

the rank of a given tuple which works well for both high and lowly ranked tuples. For

microblog platforms, we design algorithms that allows users to perform aggregate es-

timation over historic content thereby circumventing the recency constraint. Finally,

we propose a novel featureset uncertainty model and algorithms that can enable ex-

ploratory mining over coarse aggregate user feedback data. For all the problems, we

provide rigorous theoretical analysis and extensive experiments over real-world data

and online experiments over popular hidden web databases.
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CHAPTER 1

Introduction

1.1 Hidden Databases

The vast majority of data available in the internet is part of the so called “deep

web” that is hundreds or thousands of times larger than the surface web that is

crawled by search engines[1]. Almost all popular websites (such as Amazon, EBay,

American Airlines, microblogs such as Twitter, Instagram, collaborative content sites

such as IMDB, Yelp etc) are powered internally by large data repositories. Often,

their content is not available to search engines. Most of these websites treat the

data as proprietary and a key competitive advantage for ensuring customer retention.

Hence negotiations with data owners to establish data-access channels often end up

failing. We designate these data repositories as hidden databases.

Unlike traditional databases, they do not allow a user to issue arbitrary queries

using SQL or other query languages. Instead, they allow external users to browse the

databases in a controlled manner. In other words, many web databases are “hidden”

behind (i.e., only accessible via) a restrictive interface that allows a user to form a

search query by specifying the desired values for a few attributes. These interfaces can

be form-based, keyword based, API based or in the case of microblogs, neighborhood

based. Users often issue a query by entering desired values for a few attributes and

the system responds by returning a small number of tuples matching the search query.

In addition, the hidden databases enforce a number of constraints to prevent

users from gleaning more data than needed. We now describe some of the constraints

most commonly enforced.
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Top-k Output Constraint: Almost all such interfaces enforce the top-k out-

put constraint - i.e., when more than k tuples (where k is typically a predetermined

small constant) match the user-specified query, only k of them are preferentially se-

lected according to a (often proprietary) ranking function and returned to the user.

For example, American Airline’s (AA) flight search-by-schedule 1 has a default value

of k = 10. Similarly, Amazon’s best sellers list 2 for any category only displays the

top-100 products.

Rate Limit Constraint: Most of the web databases also enforce strict rate

limit constraints by imposing a per user/IP limit on number of queries one can issue

over a given time frame For e.g., Google Search API allows only 100 free queries per

user per day. Twitter allows only 180 queries per 15 minutes. Reddit allows no more

than one request every two seconds and so on.

Rank Constraint: Another popular restriction is the rank constraint whereby

most web databases do not explicitly disclose a tuple’s rank beyond the top-k tuples.

For example, Amazon advertises top-100 products in a given category3. However,

if a product has a rank higher than 100 then its rank is not revealed. A similar

phenomenon occurs in a number of other data sources such as Apple AppStore, Google

Play etc.

Recency Constraint: This constraint is often enforced in microblogs and col-

laborative content sites. The search interface over these databases provide preferential

treatment to recent items. For example, Twitter search API limits its result to tweets

from the last few weeks. This constraint stymies the efforts to perform analytics over

historic data.

1http://www.aa.com/reservation/searchFlightsSubmit.do. By default k = 10. A user may config-

ure k to be as large as 50. No page down is allowed.
2http://www.amazon.com/Best-Sellers/zgbs
3http://www.amazon.com/Best-Sellers/zgbs
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Data Access Constraint: A number of collaborative content sites (where

users voluntarily provide feedback over items) only provide access to coarse aggregate

data. For example, IMDB might only provide information such as average rating for

a movie. Instagram might only provide the number of views for an image. Facebook

might provide only the total number of likes received by an item. However, granular

data that provides additional context is often much more useful for analytics purpose.

1.2 Motivation and Challenges

While hidden web databases and microblogs contain very interesting informa-

tion, the various data access barriers imposed prevent novel applications from being

built. For example, while the restrictive form interfaces of hidden databases might

suffice for the simplest use-cases, i.e., that of a normal user searching for some items

in these databases, they often cannot satisfy users with specific needs and also prevent

many interesting third-party services from being developed over web databases.

Consider the top-k output constraint. There exist legitimate reasons for setting

a small value for k such as speeding up query processing and thwarting web scraping.

However, in order to accommodate the needs of website users, the value of k should

not be too small. Given these two conflicting goals, in practice k is often set to the

minimum necessary value, according to the database owner’s belief, which provides

the user with “enough” choices within the returned tuples. However, this strategy

is misguided and is often insufficient for all but the simplest use cases. It often

cannot satisfy users with specific needs and also prevents many interesting third-

party services from being developed.

Consider a third-party service which enables a user to filter query results ac-

cording to attributes that cannot be specified in the original form-like interface. For
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example, American Airline’s (AA) flight search-by-schedule4, a top-10 interface, does

not allow a user to specify filtering conditions such as finding the top-10 flights with

in-flight wifi. If a third-party service wants to provide such a feature, it must some-

how “bypass” the top-k constraint because otherwise one might not be able to find

enough (or any) wifi-equipped flights from the top-10 results.

Circumventing the rank constraint also has a number of applications. For ex-

ample, the author of a book on sale at Amazon would be keen to track and monitor

the ranking of her book within a set of similar competitors (e.g., how does it rank in

sales, or customer reviews, etc., compared to other similar books on science fiction?).

Likewise, competitors to an app available at Apple’s iOS and Mac App Stores would

be interested in monitoring the app’s grossing rank and measure the market response

to determine if it is time to start competing with the app. Investors may be keen

to do simultaneous monitoring of numerous products newly released by competing

companies, in order to determine which one is likely to be a hit and which company

to invest in.

Microblogging platforms provide free (but limited) public access to their data

in the form of restricted APIs, which offer great opportunities for non-commercial

applications, such as the type of studies that would be most useful to a social scien-

tist. However, many of them require access to historic data. For example, a social

researcher may wish to analyze publicly available microblog conversations and post-

ings to determine the change in general public’s attitudes on individual privacy before

and after the news of Edward Snowden’s leakage of NSA surveillance became pub-

lic. Other examples can include studies of the spread of obesity-promoting attitudes,

4http://www.aa.com/reservation/searchFlightsSubmit.do By default k = 10. A user may configure

k to be as large as 50. No page down is allowed.
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the mechanisms of bullying in colleges or schools, and the early detection of suicidal

discourse.

1.3 Dissertation Overview and Impact

All of these interesting applications and other exploratory mining techniques is

often not feasible due to the data access barriers constructed by the owners of the

hidden databases. In this dissertation, we present efficient techniques for enabling

exploratory mining over hidden databases. This is achieved by developing novel

algorithms that allows a third party (such as an analyst or a scientist) to retrieve

relevant data from hidden databases for exploratory mining by issuing a small number

of carefully constructed queries that enables them to work around the restrictions. We

would like to note that our objective is to use the existing hidden database interface

and operate under the restrictions they impose (such as top-k output constraint)

while seeking to retrieve relevant data that is needed for exploratory mining. In

other words, we do not, in any way, seek to modify the input interfaces or break

the restrictions by other nefarious means. We also face additional challenges such as

minimizing the number of queries issued (due to the rate limit constraint).

There has been several recent works on developing techniques to enable addi-

tional functionality over such databases that operate via the restrictive interface, such

as sampling and aggregate estimation (see [2, 3, 4] and references therein). These tech-

niques try to obtain a big-picture view of the hidden database from a small sample by

using sophisticated statistical estimators. Sampling over microblogs such as Twitter,

was an open problem, that required non-trivial adaptation of sampling techniques for

social networks. At the other end of the spectrum is crawling where the objective

is to retrieve all tuples from hidden database locally. Lower-bound results derived

in [5] show that crawling requires a prohibitively high cost of at least Ω(m · n2/k2)
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queries for certain categorical databases with a top-k interface - where m and n are

the number of attributes and tuples, respectively.

However, none of these techniques are appropriate for the applications that we

described previously. Circumventing the data access barriers to enable exploratory

mining require development of novel techniques many of which occupy a niche space in

the spectrum between sampling and crawling. We now provide a high level overview

of our contributions:

1. Ranked Retrieval: Given a hidden database that enforces top-k output con-

straint, our first contribution is a GetNext operator that could retrieve the

top ranked tuples from a hidden database in an ordered manner. Specifically,

given the top-h tuples (where h > k), the GetNext operator could efficiently

retrieve the tuple ranked h+ 1. By calling GetNext iteratively, it is possible

to retrieve as many top-ranked tuples as necessary for a user-specified query -

thereby enabling both sample applications discussed above without the need of

crawling all tuples from the database. Because of the query-number limitations

enforced by web databases, an important objective in the design of GetNext

is to maintain a small query cost - a goal shared by most existing studies on

exploring hidden web databases (e.g., [3, 6, 7]).

2. Rank Discovery: The rank is a fundamental property of an item since it

determines the item’s visibility. We circumvent the rank constraint of hidden

database by designing statistical estimators that, given a query q and a tuple

t that satisfies q, estimates rank(t, q), the rank of t among all tuples in the

database that satisfy q. Our estimators work well for both high and lowly

ranked tuples.

Although the rank discovery problem, as stated above, appears deceptively com-

pact and simple, it is challenging because most web databases do not explicitly
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disclose a tuple’s rank beyond the top-k tuples. The rank has to be discovered

indirectly, by carefully issuing multiple related queries to the website’s query

interface and recovering/inferring the tuple rank by piecing together the in-

formation returned from these queries. Moreover, our investigations revealed

that different websites have widely varying characteristics, resulting in a myr-

iad of interesting facets and variants of the rank discovery problem that require

fundamentally different approaches in their solutions.

3. Aggregate Estimation over Historic Microblog Data: Given a microblog

platform that does not provide direct access to historic data, we seek to design

an algorithm to obtain samples that can be used to answer interesting statis-

tical investigations over the historic data. We also seek to design an estimator

for performing aggregate analytics over historic data. A core functionality to

facilitate such analytics is to answer aggregate queries over publicly available

microblog data, which is the focus of this paper. An example of aggregate

query is “How many Twitter users used the keyword privacy in 2013?”. We

shall consider SUM, COUNT, AVG queries on various attributes of microblog

users or posts (e.g., users’ age or posts’ length), with selection conditions on

keywords and other attributes like time. This would also require the design of a

subgraph of the underlying social network that is more conducive to sampling.

4. Exploratory Mining over Coarse User-Item Interactions: Recently, it

has become easy for businesses to put Facebook “Like” buttons5 or “+1” but-

tons6 from Google over their item webpages which can be clicked by users to

demonstrate they like an item. While the various user-item interactions such

5http://developers.facebook.com/docs/reference/plugins/like/
6https://developers.google.com/+/web/+1button/
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as visits, likes, +1s and ratings provide a rich window into what users like,

answering the question of why a user likes the items is much trickier.

If each user had provided elaborate comments or reviews detailing why she

liked the item, then identifying the most important features can be solved by

extracting semantic information using text mining and information extraction

[8, 9]. However, online users are prone to be laconic - the fraction of users

that provide detailed comments is minuscule [10]. Hence, the vast majority

of user-item interaction information is in its most rudimentary form - where

we only know whether users visited or liked an item or not. This makes the

problem of mining user-item interactions with rudimentary information to be

very important.

Given a database with structured items and user-item interactions, we seek to

provide additional probabilistic context about the interactions. Specifically, we

propose a novel featureset uncertainty model and algorithms that can enable

exploratory mining over coarse aggregate user feedback data.

1.4 Dissertation Organization

In Section 2, we consider the novel problem of “ranked retrieval” over hidden

web databases. Our key contribution is the meta-algorithm GetNext that can retrieve

the next ranked tuple from the hidden web database using only the restrictive interface

of a web database without any prior knowledge of its ranking function. This algorithm

can then be called iteratively to retrieve as many top ranked tuples as necessary.

We develop principled and efficient algorithms that are based on generating and

executing multiple reformulated queries and inferring the next ranked tuple from

their returned results. We provide theoretical analysis of our algorithms, as well as
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extensive experimental results over synthetic and real-world databases that illustrate

the effectiveness of our techniques.

In Section 3, we investigate the problem of “rank discovery” over hidden databases.

To address the problem, we introduce a taxonomy of ranking functions, and show

that different types of ranking functions require fundamentally different approaches

for rank discovery. Our technical contributions include principled and efficient ran-

domized algorithms for estimating the rank of a given tuple, as well as negative results

which demonstrate the inefficiency of any deterministic algorithm. We show exten-

sive experimental results over real-world databases, including an online experiment

at Amazon.com, which illustrates the effectiveness of our proposed techniques.

Microblogging platforms such as Twitter have experienced a phenomenal growth

of popularity in recent years, making them attractive platforms for research in diverse

fields from computer science to sociology. Twitter, for example has more than 200

million active users who generate over 400 million tweets every day, In Section 4, we

consider a novel problem of estimating aggregate queries over microblogs, e.g., “how

many users mentioned the word ‘privacy’ in 2013?”. We propose novel solutions ex-

ploiting the user-timeline information that is publicly available in most microblogging

platforms. Theoretical analysis and extensive real-world experiments over Twitter,

Google+ and Tumblr confirm the effectiveness of our proposed techniques.

Finally, in Section 5 we consider the problem of hidden featureset mining. Given

user-item transactions over a database with structured items, our objective is to iden-

tify the frequent featuresets (set of features) by mining item transactions. We propose

a featureset uncertainty model where each item transaction could have been generated

by various featuresets with different probabilities. We describe a novel approach to

transform item transactions into uncertain transaction over featuresets and estimate

their probabilities and propose diverse algorithms to mine frequent featuresets. Our
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experimental evaluation provides a comparative analysis of the different approaches

proposed.
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CHAPTER 2

Ranked Retrieval over Hidden Databases

2.1 Introduction

Many web databases are “hidden” behind (i.e., only accessible via) a restrictive

form-like interface which allows a user to form a search query by specifying the desired

values for a few attributes; and the system responds by returning a small number

of tuples matching the search query. Almost all such interfaces enforce the top-k

constraint - i.e., when more than k tuples (where k is typically a predetermined small

constant) match the user-specified query, only k of them are preferentially selected

according to a (often proprietary) ranking function and returned to the user. For

example, American Airline’s (AA) flight search-by-schedule1 has a default value of

k = 10. Similarly, Amazon’s best sellers list 2 for any category only displays the

top-100 products.

How to properly set the value of k is an interesting design challenge for a web

database owner. On one hand, the owner may prefer a small k to (1) speed up query

processing and shorten the returned webpage, and/or (2) thwart web/tuple scraping.

However, in order to accommodate the needs of website users, the value of k should

not be too small. Given these two conflicting goals, in practice k is often set to the

minimum necessary value, according to the database owner’s belief, which provides

the user with “enough” choices within the returned tuples. While such a strategy

might suffice the simplest use-cases, it often cannot satisfy users with specific needs

1http://www.aa.com/reservation/searchFlightsSubmit.do By default k = 10. A user may configure

k to be as large as 50. No page down is allowed.
2http://www.amazon.com/Best-Sellers/zgbs
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and also prevents many interesting third-party services from being developed over

web databases - e.g.,

• Consider a third-party service which enables a user to filter query results ac-

cording to attributes that cannot be specified in the original form-like interface.

For example, American Airline’s (AA) flight search-by-schedule1, a top-10 in-

terface, does not allow a user to specify filtering conditions such as finding the

top-10 flights with in-flight wifi. If a third-party service wants to provide such a

feature, it must somehow “bypass” the top-k constraint because otherwise one

might not be able to find enough (or any) wifi-equipped flights from the top-10

results.

• Consider a web aggregator or a web mashup which joins tuples from multiple

hidden web databases and returns the joined results - e.g., a mashup joining

Orbitz.com (a hotel booking website) with Tripadvisor.com (a hotel review web-

site) to return the top-k cheapest hotels that have an average review of at least

4 stars. Once again, such a mashup must somehow break the top-k constraint

because not enough matching tuples may be discovered from the mere k tuples

returned by each web database.

To enable these third-party services and many other interesting applications

(e.g., data analytics) that are currently disabled/handicapped by the top-k constraint,

a trivial solution is for the third-party service provider to negotiate a private agree-

ment with each web database owner in order to establish data-access channels beyond

the top-k web interface. Nonetheless, such negotiations are difficult even between

large organizations3 due to revenue sharing, security and myriad of other thorny is-

sues - thus making the solution not scalable to a large number of web databases.

As such, our focus is to develop automated third-party algorithms that only use the

3http://online.wsj.com/article/SB121755825030403467.html
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public interfaces of web databases without requiring any additional cooperation from

the database owners.

Another seemingly straightforward solution to the above problems is crawling

- i.e., the retrieval of all tuples in a hidden web database by issuing multiple queries

through its web interface [11, 12]. Once all tuples are downloaded, they can be treated

as a local database to support all of the above applications. Nonetheless, a key pitfall

of this solution is its prohibitively high query cost (i.e., the numerous search queries

one needs to crawl all tuples from a web database) - which can be simply infeasible

for real-world web databases which often impose a per user/IP limit on number of

queries one can issue over a given time frame (e.g., Google Search API allows only

100 free queries per user per day).

2.1.1 Breaking the Top-k Barrier

Given the pitfalls of crawling, we propose to study a novel problem of digging

deeper into a web database to retrieve (more than k) top-ranked tuples which satisfy

a user-specified search query - and thereby “breaking” the top-k barrier. Specifically,

we consider the following fundamental operator:

GetNext: Given the top-h tuples (h ≥ k) satisfying a user-specified query,

retrieve the next-highest-ranked (i.e., No.(h+ 1)) tuple from the hidden web

database by issuing search queries through its public interface, without any

knowledge of its ranking function.

One can see that, by calling GetNext iteratively, it is possible to retrieve

as many top-ranked tuples as necessary for a user-specified query - thereby enabling

both sample applications discussed above without the need of crawling all tuples from

the database. Because of the query-number limitations enforced by web databases,

an important objective in the design of GetNext is to maintain a small query cost
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- a goal shared by most existing studies on exploring hidden web databases (e.g.,

[3, 6, 7]).

It is important to understand that the most critical efficiency measure here

is the number of queries the algorithm requires to issue through the web interface

of the hidden database, not the actual processing time of issued queries and/or the

local processing overhead. To understand why, note that our objective is to build

a scalable third-party service that breaks the top-k barrier for a large number of

users. A key obstacle for building such a service, as mentioned earlier, is the query

allowance enforced by the hidden database owner - which completely shuts down

our access to the database if we issue more queries than a pre-determined threshold.

Compared with this hard cutoff, the variance of local processing overhead and/or

query processing time is relatively negligible - especially given the fact that most

well-designed hidden databases return query answers within a short period of time.

In summary, we have the following problem definition

Breaking the top-k barrier: For a hidden web database with a top-k interface,

given a search query q that can be specified through the input interface, design an

automated procedure GetNext that can be iteratively called to retrieve as many top

ranked tuples that satisfy q as possible (according to the ranking function used by the

hidden web database).

To the best of our knowledge, this novel problem has not been considered in

prior research.

The parameter h also offers its own challenges. For what values of h is it actually

feasible to retrieve the top-h tuples? In the extreme case, can one retrieve the entire

global order of all tuples in the database, if such an order exists? In this work we

determine necessary and sufficient conditions that will enable solutions for our central
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problem, and the implications of these conditions on the different problem variants.

For example, for certain cases it is simply not possible for any client-side algorithm

to determine a total order of the top-h tuples - in this case we develop algorithms

that return the most informative partial order.

2.1.2 Outline of Technical Results

To design GetNext, the technical challenge may have subtle differences across

various web databases, mainly because of the different ranking functions being used.

At one extreme, some websites allow users to choose their own ranking function (from

a predetermined set) - e.g., airlines websites allow users to sort by attributes such

as by price, departure time, etc. At the other extreme, a website might feature a

complex and proprietary query-specific ranking function (e.g., “relevance” of a tuple

to a query) that may never be deterministically inferred from other query answers.

Other possible ranking functions include a global order that is nevertheless hidden

from the input interface - e.g., Amazon uses popularity as the default ranking function

but does not allow it to be specified in a search query. For most of this work, we

focus on the case where the ranking function is a query-independent global order of

all tuples. The implications of other ranking-function variations on our solutions are

discussed separately.

There are two key components of our proposed solution to GetNext: candidate

generation and candidate testing.

Candidate Generation: Given the top-h tuples, the candidate generation step aims

to identify a complete yet small set of tuples that can potentially have the rank h+1.

A key observation here is that the problem is equivalent to finding a small set of

queries, each of which matches fewer than k tuples in the top-h, while together cover

the rest of the database. One can see that, since each query in the set returns at least
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one non-top-h tuples, the No.(h+ 1) tuple must be returned by at least one query in

the set. Based on this key observation, we propose a tuple-chain-construction based

technique which further reduces the query cost required for candidate generation

significantly.

Candidate Testing: Since the task is now reduced to testing which candidate is

the No.(h + 1) tuple, the key enabling question becomes how to perform pairwise

rank-comparison between two tuples. Interestingly, for certain pairs of tuples, the

comparison may be done with a single query to the hidden database. Specifically,

consider issuing the most specific query that matches both tuples. If both are re-

turned, then the result reveals their order. If only one is returned, then it must have

a higher rank. The challenge, however, is in the worst-case scenario where neither is

returned. We start by resolving this scenario with a baseline approach that requires

2m queries, where m is the number of attributes. Then, we propose two ideas - one

connects with the well-studied problem of minimal infrequent itemsets mining [13],

and the other is a heuristic of query-result inference - which significantly reduce the

query cost for candidate testing.

In summary, the main contributions of this work are as follows. We introduce

the novel problem of breaking the top-k barrier of a hidden web database to retrieve

top ranked tuples that match a user query. We consider several variants of the prob-

lem, and study necessary and sufficient conditions under which this problem can be

solved. We propose BEYOND-h-GETNEXT and ORDERED-GETNEXT, two al-

gorithms that iteratively uses the two fundamental operations, candidate generation

and candidate testing, to retrieve the next-highest-ranked tuple. While BEYOND-

h-GETNEXT guarantees the correct retrieval of next ranked tuple4, ORDERED-

GETNEXT further uses an effective heuristic of query-result inference to significantly

4if such an order can be uniquely determined from the top-k interface.
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reduce the query cost in practice without sacrificing correctness. Our main idea for

candidate generation hinges upon the fact that the returned results of a query gives

ordering information for k tuples, which allows us to retrieve multiple consecutive

ranked tuples in a single invocation. Our main ideas for candidate testing avoids

the need to perform a complete crawl of the database. We develop the procedure

BEYOND-h-TEST whose performance is related to the problem of generating and

counting the number of infrequent minimal infrequent itemsets in a database. We

also develop the procedure ORDERED-TEST, based on heuristics that order the

execution of the generated queries in such a way that early terminating of the pro-

cedure can be achieved. Our contributions also include a careful theoretical analysis

of BEYOND-h-GETNEXT and ORDERED-GETNEXT, as well as a through exper-

imental evaluation over both synthetic datasets and real-world websites.

2.2 Preliminaries

In this section, we introduce a model for hidden databases and describe the

different types of ranking functions used commonly in hidden databases.

2.2.1 Model of Hidden Databases

Consider a hidden databaseD with n tuples andm input attributesA1, A2, . . . , Am.

Given a tuple t and attribute Ai, let t[Ai] be the value of Ai in t. Let Dom(Ai) be

the domain of Ai. For the purpose of this paper, we restrict our attention to categor-

ical attributes and assume the appropriate discretization of numeric ones. We also

consider all tuples distinct and without null values. Let f(.) be the ranking function

which takes a tuple and a query as input and outputs an integer between 1 and n.

Without loss of generality, we assume the output of f(.) to be unique for each tuple.
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A user can query the system by specifying the desired values for a subset of

A1, . . . , Am. Thus, a user query q is of the form SELECT * FROM D WHERE Ai1 =

vi1& . . .&Ais = vis , where {i1, . . . , is} ⊆ [1,m]. and vij ∈ Dom(Aij). The set of

tuples matching query q is denoted as Sel(q). If |Sel(q)| > k, an overflow occurs

and only the top-k results are returned, along an overflow flag indicating that more

tuples matching the query cannot be returned. If |Sel(q)| = 0, then an underflow

occurs as no tuples match the query. Otherwise, i.e., when |Sel(q)| ∈ [1, k], we say

that q is valid. For the purpose of this paper, we make the realistic assumption that

k > 1.

For the purpose of our paper, we assume that the interface only displays the top-

k results and does not allow users to extract additional results by scrolling through

the results. The only way to get additional results is to reformulate the input query.

This is a reasonable assumption as many real world hidden web databases such as

Yahoo! Autos limit the maximum number of page turns a user can perform.

2.2.2 Model of Ranking Function

There are two broad categories of ranking functions: static and query-dependent.

• A ranking function f(.) is static if for a given tuple t, f(q, t) is constant for all

queries q - i.e., the rank of a tuple is independent of the query being issued. An

example in practice is the “sort by price” used by Yahoo! Autos. Note that the

input tuple may feature not only A1, . . . , Am but also the non-input-specifiable

attributes (e.g., “popularity” as discussed before).

• A ranking function is query-dependent if, for a given t, f(q, t) varies for different

queries q. An example of such a ranking function occurs in a fuzzy-matching sce-

nario where all tuples are ordered according to the number of attribute matches

between the query and each tuple.
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We focus on static ranking functions in this paper. The reason for doing so is

simple - if the ranking function is query dependent, no mechanism can be used to

fetch the next ranked tuple. To understand why, note that in order to get tuples

beyond top-k, it is necessary to reformulate the query. But this has the side effect of

arbitrarily changing the ranking of tuples. Hence, with a query-dependent ranking

function, no mechanism can guarantee the discovery of tuples with rank greater than

k for a given query.

We focus on static ranking functions in this paper. The reason for doing so is

simple. We assume that there exists a global order between the top ranked tuples.

Consider an arbitrary query-dependent ranking function f(q, t). To correctly retrieve

the top ranked tuples, the function f(q, t) must return the tuples in the same global

order for any query q. In other words, if for any two tuples u and v and two arbitrary

queries q and q′, if f(q, u) > f(q, v) and f(q′, u) < f(q′, v), then no such global

order can exist. However, if there exist a global order of tuples, then the order holds

irrespective of the query q which makes the ranking function f(q, t) to be static.

For the purpose of this paper, we conservatively assume that the ranking func-

tion is unbeknown to our algorithm. If the ranking function is known and is based

on the attributes returned by the hidden web interface (such as sort by price), it is

possible to leverage this information to design algorithms with significantly less query

cost. We further discuss this variant in Section 2.5. In addition, we assume that it is

possible to infer a unique global order of the top-ranked tuples to be extracted from

the web interface. If such an order cannot be inferred from the interface, one of the

possible partial orders would be returned, as we shall explain in Section 2.6.
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Table 2.1. GetNext: Database D used in Running Example

A1 A2 A3 A4 A5

t1 0 0 0 0 1
t2 0 0 0 1 1
t3 0 0 1 0 1
t4 0 1 1 1 1
t5 1 1 1 0 1
t6 1 1 1 1 1
t7 0 0 0 0 0

Running Example: Table I shows a simple table which we shall use as

running example throughout this paper. There are m = 5 Boolean attributes

and n = 7 tuples which are ranked in the order given in the table. i.e., t1 is

the highest ranked tuple.

2.3 Overview of GetNext

In this section, we first discuss the technical challenges of GetNext, and then

outline the structure of our proposed two-step solution - the details of each step shall

then be developed in the next two sections, respectively.

2.3.1 Problem Definition

Recall from Section 2.2 that our aim to design GetNext operator that enables

the retrieval of h + 1-th tuple for any h > k from a hidden web database D which

only exposes the top-k ranked tuples in the query answers it returns through the

restrictive web interface. The hidden database does not disclose the ranking function

it uses. The GetNext operator issues (a carefully selected set of) multiple queries

and then infers the h + 1-th tuple based on the ordering of returned tuples exposed

by multiple query answers. Formally, the problem can be stated as follows.
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Problem Statement : Given a hidden web database with a form based input inter-

face that restricts user access to top-k tuples ordered by an unknown static ranking

function, discover the h + 1 ranked tuple for any h > k while minimizing the query

cost.

2.3.2 Technical Challenges

To illustrate the main technical challenges, we consider a fundamental question:

Given two tuples t and t′, how can we determine which one ranks higher? We start

with a straightforward comparison - i.e., when t and t′ match the same query q which

returns at least one of the two tuples:

• if q returns t but not t′, then t is ranked higher,

• if q returns t′ but not t, then t′ is ranked higher, or

• if q returns both, then we can make the comparison based on the returned order.

In this case, we call two tuples directly comparable, with the higher-ranked tuple

directly dominating the other one - i.e.,

Definition 1. [Domination] A tuple t is said to directly dominate another tuple

t′, i.e., t � t′, if and only if t and t′ are directly comparable and t ranks higher than

t′.

A tuple can dominate another tuple directly or indirectly. Suppose tuple t � u

and u � v. Even if t and v are not directly comparable, we can infer that t indirectly

dominates v. By default, we use the term domination to refer to direct domination.

For example, consider the running example with a top-2 interface. We can

observe that t1 and t3 are directly comparable using the query q1: SELECT * FROM

D WHERE A1 = 0 AND A2 = 0 AND A4 = 0 AND A5 = 1 with t1 ranked higher than

t3. Similarly, tuples t2 and t3 are directly comparable using the query q2: SELECT
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* FROM D WHERE A1 = 0 AND A2 = 0 AND A5 = 1. The result includes t2 but not t3

- i.e., t2 ranks higher.

A key observation here is that if two tuples are directly comparable, then we

need only one query to determine their domination relationship: the most specific

query which matches both tuples - i.e., the query which contains one predicate for

each attribute on which both tuples share the same value. To understand why, note

that if this query cannot return at least one of the two tuples, then no other query

can - i.e., the two tuples are not directly comparable. For the running example, both

q1 and q2 shown above are the most specific queries matching the two corresponding

tuples.

While the possibility of direct comparison shows promises for ranking tuples in

the database, it also illustrates the key technical challenge for GetNext: not every

pair of tuples are directly comparable with each other - e.g., neither t6 nor t7 in the

running example can be returned by the most specific query that matches both of

them (i.e., SELECT *).

In this case, the comparison of the two tuples requires one to identify a “bridge”

of tuples between them - e.g., t � tx � t′ for comparing t with t′. The problem,

however, is it is unclear how one can find the bridging tuples without actually crawling

all tuples from the database and incurring a prohibitively high query cost. In the next

subsection, we outline the structure of our proposed solution to address this challenge.

A graphical way to represent the comparability of tuples is by using a directed

acyclic graph (DAG). The nodes correspond to tuples and a directed edge exists

between two nodes u and v if the respective tuples are directly comparable and u has

a higher rank than v. Even if two tuples are directly comparable, their relative rank

can still be inferred if a directed path exists between the corresponding nodes in the

graph. In this case, the tuple corresponding to the start node has a higher rank than
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the one for end node. The DAG can be filled by performing pairwise comparison

between the respective tuples. If the tuples are not directly comparable, then no

edges exist between them. The simplest DAG that can be constructed is that of a

chain where each element is atleast directly comparable to its neighbors.

2.3.3 Outline of Our Proposed Solution

Our proposed solution for GetNext is a two-step process:

• Candidate Generation: In this step, we identify a small set of candidate tuples

which are guaranteed to contain the No. h+1 tuple. If the output set has a size

of 1, then we can directly output the No. h + 1 tuple. Otherwise, we call the

following candidate testing step. Section 2.4 describes our design for candidate

generation.

• Candidate Testing: In this step, we take the set of candidate tuples as input

and compare between them to determine which tuple is indeed the No. h + 1.

Section 2.5 describes our design for candidate testing.

2.4 Candidate Generation

Given the current set of top ranked tuples, the candidate generation step is

supposed to produce a set of candidate tuples, one of which is guaranteed to be

the next ranked tuple in the database. In subsection 2.6.3, we discuss finding the

next ranked tuple matching a selectivity constraint. The determination of the exact

next-ranked tuple from the candidate set is done using the candidate testing oracle

described in Section 2.5. In this section, we first describe a baseline approach for

candidate generation, and then introduce a more efficient algorithm using a notion of

directed acyclic graphs (DAG) of tuples. The DAG based algorithm exploits the

ordering information provided by query answers to potentially complete multiple
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rounds of candidate generation in a single iteration (i.e., it may answer multiple

consecutive GetNext calls without additional query cost). Recall that we make the

realistic assumption of k > 1.

2.4.1 Baseline Approach

The essence of candidate generation can be stated as follows. Given the top-h

tuples, candidate generation needs to identify a set of queries that is guaranteed to

“cover” (i.e., return) the next-ranked (i.e., No.(h + 1)) tuple. One can see that such

a set of queries must together match all possible tuples in the database - in order

to ensure that no other tuple has a higher rank than the next-ranked tuple being

covered.

We start by considering a simple baseline approach as follows: First, find a

set of attributes A such that if we partition the top-h tuples based on their value

combinations for attributes in A, then each partition contains fewer than k elements.

Since each tuple is unique, such an A already exists. After finding A = {Ai1 , . . . , Aij},

we construct queries of the form qi: SELECT * FROM D WHERE Ai1 = vi1 AND · · ·

AND Aij = vij for all possible value combinations of vi1 ∈ Dom(Ai1), . . . , vij ∈

Dom(Aij), and execute all such queries. One can see that these queries completely

cover the database domain and thus return a candidate set for the No.(h+ 1) tuple.

To understand why, note that the No.(h + 1) tuple must be returned by one of the

queries issued, because otherwise the query which matches the No.(h+ 1) tuple must

return a tuple that directly dominates the No.(h+ 1) tuple.

Example 1: Given the top-3 tuples in the running example, suppose we want to

retrieve the next ranked tuple. We identify an attribute, say A3 (or A4), such that

the number of tuples having the values 0 and 1 are less than k = 3. We execute two

queries by augmenting q - specifically, q1: SELECT * FROM D WHERE A3 = 0 returns
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Figure 2.1. GetNext: Representing Tuple Domination as a DAG.

new tuples {t7} and q2: SELECT * FROM D WHERE A3 = 1 returns new tuples {t4, t5}.

The candidate set for 4-th ranked tuple is the set {t4, t5, t7}. If we want to retrieve

the 5-th ranked tuple, we can choose any of the attributes A2, A3 or A4 to partition

the top-4 tuples.

Analysis: The number of queries executed to identify the candidate set depends on

the domain of the attribute(s) selected. Given an attribute set A, the number of

queries executed is
∏

A∈A |Dom(A)|.

2.4.2 DAG based Approach

In this subsection, we develop a DAG-based algorithm which leverages the order

information provided in the query results to further reduce the number of returned

candidate tuples, and to identify the candidate sets for multiple next-ranked tuples at

a single iteration. In other words, our DAG based approach retrieves the candidate

sets for as many next ranked tuples as possible so that subsequent GetNext do not

incur any additional query cost.
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The data structure used in our approach is a directed acyclic graph (DAG)

called the dominance directed graph. Each node in the DAG correspond to a tuple

and a directed edge exist from node u to node v if u dominates v. Given the result

of any query q, we can form an DAG from it results. If the query returned |q| tuples,

then the DAG would have at most
(|q|

2

)
edges and an linear chain of |q| tuples as a

subgraph. An example of the DAG formed from queries q1 and q2 from Example 1 is

in Figure 2.1. Given a set of queries qi, we can form a set of linear chains from their

results. Let Si denote the i-th linear chain and S be the set of all linear chains. The

notation head(Si) returns the tuple with highest rank in Si while head(S) returns the

set of highest ranked tuples in each chain.

The primary aim of this approach is to identify a linear of chain of consecutively

ranked tuples, if any. If such a chain exists, then the tuples from the chain can be

returned for the subsequent GetNext calls without additional query cost. We use

two observations to extract this chain. First, the only tuples that can dominate the

candidates for th+1 are the ones in the top-h. Second, since the database has a fixed

(but hidden) global order of all tuples, there always exists a dominance relationship

(i.e., direct comparison) between the tuples with rank h and h+ 1. If not, the ranks

of these two tuples can be flipped without violating any other relative rankings.

To see how these observations are useful, consider the augmented queries from

the baseline approach. Each such query qi results in a linear chain Si. We can see

that head(Si) dominates other tuples from Si. Hence, head(Si) is the only tuple from

Si that needs to be added to candidate set. Since tuples th and th+1 must be directly

comparable, we need to consider only the head of each linear chain and compare it

with tuple th.

The overview of the algorithm is as follows. We have a list of linear chains (from

augmented queries of prior GetNext invocations) and the linear chain, say Si, from
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which tuple th was extracted. We perform pairwise comparison between tuples from

different linear chains. An edge is added from node u to node v, if they are directly

comparable and u ranks higher than v. Then we compare the tuple th with the head

of each chain except Si. If none of the heads are directly comparable with th, then we

can assign head(Si) to be the next ranked tuple without even performing candidate

testing. This is possible due to the fact that consecutively ranked tuples are always

comparable. If some of them are comparable with th, only these form the candidate

set for th+1. The candidate tuples are then compared pairwise with each other to

identify non dominated tuples. The domination can be either direct or indirect. It is

easy to see that tuple th+1 is guaranteed to be among the non dominated tuples that

are also comparable to tuple th.

If there are multiple candidate tuples for th+1, then the candidate testing oracle

must be invoked. If not, we are guaranteed that the only candidate tuple must have

rank h+1. The candidate tuple is then removed from its linear chain and the process

is continued till the number of candidates for the next ranked tuple is more than 1.

This can potentially result in multiple consecutive next ranked tuples to be retrieved.

Example 2: Consider the same setting as Example 1. We wish to extract 4-th ranked

tuple from a top-3 interface. Using attribute A3, we construct two augmented queries

q1 and q2 resulting in two linear chains S1 and S2. The last tuple t3 belonged to linear

chain S2. The resulting DAG can be seen from Figure 2.1. Both the tuples t7 and

t4 are comparable with t3 and do not dominate each other. However, t7 is indirectly

dominated by t4 through t5. Hence we can immediately declare t4 as the 4-th ranked

tuple. Since t5 also dominates t7, it is identified as the 5-th ranked tuple. Note that

in both the cases, no calls were made to the candidate testing section. Additionally,

we identified two consecutively ranked tuples in a single invocation of GetNext.
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Analysis : At each iteration, let the number of linear chains be l. The query

cost for pairwise comparison of tuples between chains is
∏l

i=1 |Si|. We also require an

addition l queries to compare tuple th with the heads of each chain. Thus, the algo-

rithm requires at most l+
∏l

i=1 |Si| in any iteration. Note that subsequent iterations

do need any additional queries till one of the chains is completely consumed as the

comparison information between tuples has already been identified.

2.5 Candidate Testing

In this section, we consider the candidate testing problem - i.e., based on prior

knowledge of the top-h ranked tuples t1, . . . , th, what queries does one need to issue

to the hidden database in order to test whether a given tuple t has rank h + 1 ?

We start with two baseline approaches which can require prohibitively high query

costs in practice, and then present our two ideas for improving their efficiency: (1) a

reduction to beyond-h minimal queries - which significantly reduces both worst- and

average-case query costs, and (2) a heuristic query ordering - which further reduces

the query cost in practice. It must be noted that if the ranking function is known and

based on the attributes returned by the hidden database (e.g. sort by price), then

the next ranked tuple can be directly identified from the candidate tuples without an

explicit candidate testing phase or querying the hidden database for comparison.

2.5.1 Baseline Approaches

We start by discussing the requirement of rank testing. Like in the previous

section, we focus on the case where all attributes are Boolean - with extensions to

generic cases discussed in Section 2.6. To prove that t indeed has rank h + 1, we

have to ensure that no tuple in the database, other than the top-h ones, dominates t.

A seemingly straightforward baseline approach is then to first crawl all other tuples
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from the database, and then compare each of them with t to identify any dominance

relationship. The problem with this approach, however, is that the crawling step

requires at least n/k queries - where n is the number of tuples in the database and

k is as in the top-k interface - because each query returns at most k tuples. Most

common hidden web databases routinely have hundreds of thousands of tuples with a

relatively small value of k, resulting in a prohibitive query cost to test a single tuple.

We now consider another baseline which is enabled by the following observation:

according to the definition of dominance relationship shown in Section 2.3, the only

queries which may “reveal” a tuple dominating t are those that actually match t -

i.e., queries of the form

q : SELECT * FROM D WHERE Ai1 = t[Ai1 ] AND · · ·

AND Air = t[Air ] (2.1)

where {i1, . . . , ir} ⊆ {1, . . . ,m} (recall that m is the number of attributes). Specifi-

cally, t has rank h+ 1 if and only if every query of the form (2.1) either returns t as

the highest-ranked non-top-h tuple, or returns only tuples in the top-h.

Thus, our second baseline is to issue all queries matching t. One can see that the

query cost for the second baseline is (m
0

)+ · · ·+(m
m

) = 2m. While this number is often

much smaller than n/k for a practical hidden database (because there are usually

only a few, e.g., 5 or 10, attributes that can be specified on the input web interface),

issuing 2m queries for each candidate tuple may still lead to an extremely high query

cost. In the following two subsections, we develop our two ideas for reducing query

cost respectively.
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2.5.2 Beyond-h Minimal Queries

Our first idea is to reduce the space of queries required for rank testing from all

queries which match t (i.e., of the form in (2.1)) to a much smaller subset which we

refer to as the beyond-h minimal queries. In the following, we first define beyond-h

minimal queries and show the completeness of such queries - i.e., issuing them suffices

for rank testing. Then, we describe a (somewhat surprising) mapping of beyond-h

minimal queries to finding minimal infrequent itemsets - a problem that has been

extensively studied in the database and data mining communities (e.g., see survey

in [14]). Finally, we leverage the existing results on minimal infrequent itemsets to

derive an upper bound on the number of beyond-h queries.

Definition and Completeness: For any query q which matches t, we use S(q) to

represent the companion attribute set of the query - i.e., the set of attributes involved

in the query. For example, S(q) = {Ai1 , . . . , Air} for q in (2.1). Then, we call q a

beyond-h minimal query if and only if it satisfies both of the following two conditions:

• q must return at least one non-top-h tuples - i.e., q must match fewer than k

tuples in t1, . . . , th

• any query q′ which matches t and has S(q′) ⊂ S(q) must only return top-h

tuples - i.e., q′ must match at least k tuples in t1, . . . , th.

One can see from the definition that, as the name suggests, q is a “minimal”

query which returns any tuple beyond the top-h. We now explain why issuing only

beyond-h minimal queries suffices for rank testing. Consider the testing of whether

t is the tuple with rank h + 1. A key observation here is that any query q0 which

matches t but is not a beyond-h minimal query must satisfy one of the following two

conditions:
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• If q0 matches at least k tuples in t1, . . . , th, then one can already infer the answer

to q0 from the knowledge of t1, . . . , th - i.e., q0 is useless for rank testing.

• If q0 matches fewer than k tuples in t1, . . . , th but is not a beyond-h minimal

query, then there must exist a beyond-h minimal query q′0 such that S(q′0) ⊂

S(q0). If q′0 returns t as the top-ranked tuple besides top-h, then we are already

certain that no non-top-h tuple matching q0 can outrank t. Otherwise, we are

already certain that t cannot have rank h + 1 - i.e., in either case, we do not

need to issue q0.

Example : Considering the running example from Table I, we can see that

A3 = 1 and A4 = 1 are two examples of beyond-h queries for t4.

Mapping: We now show that the problem of finding all beyond-h minimal queries

is equivalent to finding all minimal infrequent itemsets over a transactional database.

To understand why, consider the following procedure which maps the top-h tuples to

h transactions. We first map each attribute Aj (j ∈ [1,m]) to an item sj. Then, for

each tuple ti (i ∈ [1, h]), we map it to a transaction ri by including in ri all items

corresponding to the attributes on which ti and the testing tuple t share the same

value - i.e.,

ri = {sj|ti[Aj] = t[Aj]}. (2.2)

We can see that, with this mapping, the companion attribute set of each beyond-

h minimal query q, i.e., S(q), becomes a minimal infrequent itemset over the h trans-

actions, with the frequency threshold being k/h. This observation can be readily

made from the definition of beyond-h minimal queries: Since such a query must

match fewer than k tuples in t1, . . . , th, S(q) is infrequent given the threshold of k/h.

Since no subset of S(q) can match fewer than k tuples in top-h, S(q) must be min-
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imally infrequent. One can see that the inverse also holds - i.e., there is a one-one

mapping between S(q) and a minimal infrequent itemset.

Example : Suppose we have extracted the top three tuples and want to determine if

tuple t4 is indeed the 4-th ranked tuple. We first map tuples t1, t2, t3 to transactions

as r1 = {A1 = 0, A5 = 1}, r2 = {A1 = 0, A4 = 1, A5 = 1} and r3 = {A1 = 0, A3 =

1, A5 = 1}. The threshold is 3
3

= 1. The infrequent itemsets are A3 = 1 and A4 = 1

which correspond to beyond-h queries for t4. Also, the number of beyond-h queries

is dramatically smaller than the 25 queries needed in the previous approach.

While (as we shall show below) the mapping enables us to derive an upper

bound on the number of beyond-h minimal queries, we would like to remark here

two major differences between our problem and the traditional problem of finding

minimal infrequent itemsets.

First, even though finding all minimal infrequent itemsets is known to be #P-

complete, the time complexity is not really a concern for our problem because our

input size m - i.e., the number of attributes - is usually much smaller than the num-

ber of items in a transactional database. As such, we could simply enumerate all

2m possible itemsets (and find the minimal infrequent ones) without causing signifi-

cant overhead. What is a major concern for us, however, is the number of minimal

infrequent itemsets because it translates to the number of queries we have to issue

through the web interface - a costly and time-consuming process.

Second, our frequency threshold, i.e., k/h, is generally much larger than the

threshold traditionally considered for minimal infrequent itemsets. Note that even

an h = 2k may bear significant interest as third-party analyzers are most likely

interested in those highly ranked, albeit outside top-k, tuples. As we shall show

below, this unusually high threshold enables us to improve the upper bound on the

number of beyond-h minimal queries when h is small.
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Upper Bound: First, according to the existing results on the number of minimal

infrequent itemsets, that the number of beyond-h minimal queries can be bounded by(
m
m/2

)
. We now show that when h is small, specifically h ≤ m/2 + k− 1, the number

of beyond-h minimal query q has another upper bound of
(

m
h−k+1

)
.

An important observation here is that the number of predicates in a beyond-h

minimal query, say q, is at most h − k + 1. To understand why, consider a query-

construction process in which we start with the SELECT * query, and then gradually

add into it one conjunctive predicate in q (i.e., one attribute in S(q)) at a time,

until the query matches fewer than k tuples in the top-h. One can see that each

predicate being added, say Ai = t[Ai], must remove at least one top-h tuple from the

set of tuples matching the previous query, because otherwise one can always remove

Ai = t[Ai] from q without changing the answer to q - contradicting the fact that q is

beyond-h minimal. As such, once h − k + 1 predicates are added to the query, the

number of top-h tuples matching the query must drop to below k - i.e., S(q) contains

at most h−k+1 attributes. Again, since all beyond-h minimal queries forms an anti-

chain, the number of them is at most
(

m
h−k+1

)
when each beyond-h minimal query

contains at most h− k + 1 predicates and h− k + 1 ≤ m/2.

In summary, we have the following theorem:

Theorem 1. Given the top-h tuples, the maximum number of queries one needs to

issue for testing whether a tuple has rank h + 1 over a database of m attributes and

n tuples, c(n,m, h+ 1), satisfies

c(n,m, h+ 1) ≤
(

m

min(h− k + 1,m/2)

)
. (2.3)
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2.5.3 Query Ordering

Our next idea to reduce query cost that works very well in practical hidden

databases is a heuristic - query ordering. Recall that beyond-h query is a minimal

query that returns at least one non-top-h tuple. Given a candidate tuple t, if all its

corresponding beyond-h minimal queries returns t as the highest ranked non-top-h

tuple, then we can conclude that no other tuple dominates t and hence t has rank

h+ 1. Note that to make this conclusion, it is mandatory to execute all the beyond-h

queries.

The key idea in query ordering is that of elimination. If we can eliminate all but

one tuple from the candidate set, then the remaining tuple has to be the next ranked

tuple and we can make that conclusion even without executing any of the beyond-h

queries for it. This is due to the fact that the candidate generation step produces a

set of tuples one of which is guaranteed to be in the next ranked tuple. The query

ordering heuristic takes the idea a little further.

Given a candidate tuple t and one of its beyond-h queries q, there are two

possible results : (1) t is the top ranked non-top-h tuple (2) t is not the top ranked

non-top-h tuple. In the first case, the query q did not give any contradicting evidence

for t and the next beyond-h query needs to be executed. On the other hand, the

second outcome provides an evidence that disqualifies t from being the next ranked

tuple. i.e. the procedure for testing t can be terminated early. The heuristic tries

to reorder the execution of beyond-h queries so that if t is not the No. h+ 1 ranked

tuple, it is detected earlier.

While reordering the queries of a single candidate tuple is useful by itself, the

maximum advantage is obtained when the set of beyond-h queries of all the tuples in

candidate set are reordered. By ordering queries based on the chance that it eliminates

atleast one candidate tuple and executing them in that order, we eliminate as many
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candidates as possible in the least number of queries. Furthermore, while executing

the queries, any candidate tuple dominate by others can be immediately rejected.

The heuristic relies on two factors that make a beyond-h query q useful. Note

that both the factors implicitly favor shorter queries over longer ones.

• The number of tuples in candidate set matched by q. If q matches l tuples in

candidate set, we can immediately eliminate the l − 1 dominated candidates

after executing q as they cannot have rank h+ 1.

• The expected number of tuples in the database that is matched by q. If q

matches a large fraction of database, then there is a high likelihood that one of

such tuples will be ranked higher than candidate tuple t. Of course, since the

entire database is not available to us, we estimate the fraction by assuming a

random database where the attribute values are uniformly distributed. While

this assumption does not always hold, it serves as a useful approximation and

heuristic. Given a boolean database with 5 attributes and any query with two

attributes can be expected to match 25% of the tuples.

In summary, the query ordering heuristic pools the beyond-h queries of all

candidate tuples and reorders them based on a weighted combination of the two

factors described above. The weights can be determined using domain knowledge of

the hidden database. The queries are executed in the order so as to eliminate the

candidate tuples as early as possible. Any candidate tuple dominated by a non top-h

tuple or other candidate tuple are eliminated. The process is continued till only one

candidate remains.

Example : Suppose we wanted to determine if t3 or t4 is the third ranked tuple.

A3 = 1 and A4 = 1 are two of the beyond-h queries for t4 while the corresponding

ones for t3 are A3 = 1 and A4 = 0. Since the query A3 = 1 matches both t3 and t4, it
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is executed before either of A4 = 1 or A4 = 0. After executing A3 = 1, we note that

t3 is ranked higher than t4 in the result and hence declare it as the 3-rd ranked tuple.

Analysis : The query cost of heuristic is bounded by the upper bound for

the number of beyond-h queries for the tuples in candidate set. In the worst case,

this procedure degenerates to executing all the beyond-h queries for all but one of the

candidate tuples.

2.6 Algorithm Design and Extensions

In this section, we integrate the candidate generation and testing techniques

discussed in previous two sections to develop our final algorithms for GetNext. In

addition, we shall describe different extensions of our algorithms such as retrieving

the top ranked tuples when no unique total order exists among them or retrieving

top ranked tuples that satisfy additional user specified filters.

2.6.1 Algorithm Design

We start by integrating our DAG-based candidate generation algorithm with

the beyond-h queries based candidate testing algorithm to develop the BEYOND-h-

GETNEXT algorithm. To be the next ranked tuple, any candidate tuple must be the

top ranked non top-h tuple for each of its beyond-h queries. Algorithm 1 depicts the

pseudocode of BEYOND-h-GETNEXT.

We also integrate our candidate generation algorithm with the heuristic candi-

date testing algorithm to develop the ORDERED-GETNEXT algorithm. The only

difference between ORDERED-GETNEXT and BEYOND-h-GETNEXT is in the

rank testing phase. In ORDERED-GETNEXT, we first identify the beyond-h queries

for all candidate tuples and order them based on their likelihood of rejecting a can-

didate tuple. The queries are executed until all but one candidate tuples have been
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Algorithm 1 BEYOND-h-GETNEXT

1: Input parameters : topH, the set of top ranked tuples

2: Get candidates for th+1 using candidate generation

3: for each candidate tuple t do

4: Generate and execute beyond-h-queries for t

5: If any tuple other than top-h tuples dominate t, reject t

6: end for

7: return unrejected tuple as th+1

rejected. The remaining tuple is declared as No. h + 1 tuple. Algorithm 2 depicts

the pseudocode of ORDERED-GETNEXT.

Algorithm 2 ORDERED-GETNEXT

1: Input parameters : topH, the set of top ranked tuples

2: Get candidates for th+1 using candidate generation

3: Collect the beyond-h queries of all candidates and order them based on likelihood

to reject candidates

4: for each query do

5: Execute query

6: Reject any candidate tuple dominated by other candidates or a non top-h tuple

7: If only one candidate left, break

8: end for

9: return remaining tuple as th+1

37



2.6.2 Absence of Total Order within Top Ranked Tuples

One of the assumptions that was made by the algorithms was that the set of top

ranked tuples that we wish to retrieve are totally ordered and the order is inferable

from the hidden database interface. Specifically, we assumed that tuples th and th+1

was directly comparable. In this subsection, we discuss how to handle the different

scenarios when the assumption does not hold.

Two tuples can be compared with each other either directly or indirectly and

similarly the dominance relationship can be established directly or indirectly through

other intermediate tuples. For example, we might have two tuples t and v that are not

directly comparable. However, if t � u and u � v, then we can indirectly infer their

dominance relationship. If two tuples are not comparable at all, even indirectly, then

their dominance relationship cannot be established. Choosing either of the tuples to

be the next ranked tuple results in a potentially valid total ordering from the limited

information available. The possibility of two tuples not comparable affects both the

candidate generation and testing steps.

Candidate Generation: In candidate generation, if the head tuple of every

linear chain was not comparable to th, then we cannot assign the head tuple from

the linear chain from which th was extracted to be the next ranked tuple (as it is

not comparable to th). All the non dominated candidate tuples are sent to candidate

testing for identifying the next ranked tuple.

Candidate Testing: If multiple tuples from candidate set are not dominated

by any other tuple other than the ones in top-h (including other tuples in candidate

set), then each of them can potentially be considered as the next ranked tuple. Hence,

one of the non dominated candidate tuples is selected uniformly at random as the

next ranked tuple and the process is continued. This random selection creates one

of the valid partial order of the top ranked tuples. Since the output total order is
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no longer accurate, a metric must be chosen to measure the distance between the

actual total order and the partial order. The accuracy measure used is the expected

distance between a randomly generated total order and the actual total order. The

distance between two ranked list can be computed using Kendall τ or the Spearman’s

footrule.

2.6.3 Top Ranked Tuples with Selectivity Constraints

The discussions in the previous sections described techniques to retrieve the

top ranked tuples from the entire database. An equally important and practical

scenario is one where the user is interested in the top ranked tuples over a subset

of the database. For example, the user might be interested in the cheapest flights

with in-flight wifi. An alternate perspective is to view the problem as retrieving top

ranked tuples where some of the attribute values are already preset by the user, for

e.g. wifi. The specified attributes then partition the entire hidden database into

two partitions - one which matches the specified attributes and another which does

not match the specified attributes. In this subsection, we discuss how to extend the

techniques discussed so far to solve this problem.

An initial approach one might come up with is to keep retrieving top tuples from

the entire database incrementally till we have adequate number of tuples satisfying

the user selectivity constraints. This might be the only possible approach if the user

selectivity constraint cannot be filtered through the interface of hidden database.

For e.g. if the user is interested in top-10 flights with in-flight wifi. However if the

constraint cannot be entered via the airline interface, we can keep retrieving top

ranked tuples till we have accumulated 10 flights with in-flight wifi. If the filters are

too selective, then the number of tuples to be fetched before we return the user results

could be very high.
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However, if the user’s constraints can be entered via the hidden database inter-

face (but user still needs more that k results), then an alternate approach is possible.

As an example, the user might be interested in top-20 flights with wifi on a top-10

interface where the wifi availability is an input attribute. We can directly apply the

techniques for extracting top ranked tuples over the subset of database that satisfies

the selectivity constraints instead of applying it on the original database. This cor-

responds to prefixing the selectivity constraints to each of the queries executed by

the algorithms. The candidate generation phase produces only tuples that satisfy the

constraints.

The algorithms that work only on the database subset might seem to be a more

efficient approach to solve the problem and in most scenarios it is. However, there

are few factors that influence the output. First, if the selectivity constraints are

coarse or not too selective, then a large section of database would be covered. This

in turn, increases the chances of finding a correct set of top ranked tuples satisfying

the constraints. If the number of tuples that match are small, then there is a high

likelihood that the tuples are not comparable. In this case, we are left with a partial

order of tuples instead of a total order.

Secondly, even if a total order exist among the top ranked tuples in the subset,

it might not be possible to order them by only looking at the candidate tuples match-

ing the constraints. This is because, the tuple(s) that helped to indirectly compare

and order the candidate tuples, say tx and ty could itself not satisfy the selectivity

constraint. In this case, the two tuples are incomparable, even though a global order

exist between them. In both the scenarios, we are potentially left with a partial order.

The techniques used in linearizing the partial order can be used to solve this issue.
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Figure 2.2. GetNext: Query cost vs h
on Boolean dataset.
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2.7 Experimental Results

In this section we describe our experimental setup, compare the performance

of algorithms for candidate generation and candidate testing and show the efficiency

and accuracy of our methods.
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Figure 2.9. GetNext: Rank distance
versus query selectivity.

2.7.1 Experimental Setup

Hardware and Platform: All our experiments were performed on a quad-core 2

GHz AMD Phenom machine with 8 GB of RAM. The algorithms were implemented

in Python.

Datasets: We used both synthetic and real-world data sets in the experiments. The

synthetic dataset we used is a boolean one with 200,000 tuples and 80 attributes.

The tuples are generated as i.i.d. data with each attribute having probability of p

= 0.5 to be 1 (except for one experiment where we created different datasets with

different values of p). We refer to this dataset as the BOOL-IID dataset. The real-
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world dataset we used consists of data crawled from the Yahoo! Autos website 5, a

real-world hidden database. It contains 200,000 used cars for sale in the Dallas-Fort

Worth metropolitan area. There are 32 Boolean attributes such as A/C, Power Locks,

etc, and 6 categorical attributes, such as Make, Model, Color, etc. The domain size

of categorical attributes ranges from 5 to 16.

Real-World Online Experiment: In addition to the offline experiments described

above, we also directly applied our techniques online over Amazon.com (specifically

Amazon’s Product Advertising API6) to discover the top-250 (according to sales rank)

Amazon DVD titles from a top-100 interface7 provided by the API. Since the indi-

vidual item description provided by Amazon.com reveals the sales rank of the item,

we were able to verify the correctness of all results discovered by our algorithm. For

this online experiment, (top-k) search query can be constructed using 15 categorical

attributes such as Actor, Artist, Publisher, etc., with their domain sizes ranging from

5 to over 1,000. Amazon.com has a limit of 2,000 queries per IP address per hour.

Algorithms: We tested two algorithms BEYOND-h-GETNEXT and ORDERED-

GETNEXT. However, since both these algorithms use the same candidate generation

technique, we highlight the behavior of the candidate generation and testing phase

separately. In other words, we plot the performance of algorithm GETNEXT for

different parameters and then compare the performance of different candidate testing

algorithms. This choice of presentation accentuates the improvements provided by

the beyond-h-queries and the heuristic query ordering that gets masked when directly

comparing BEYOND-h-GETNEXT and ORDERED-GETNEXT.

5http://autos.yahoo.com/
6https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
7By default Amazon’s Product Advertising API provides a top-10 interface, while allowing a user

to “Page Down” for up to 9 times, essentially leading to a top-100 interface.
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Performance Measures: We use query cost, the number of queries executed on

the hidden database as the performance measure. This includes the queries used to

retrieve candidate tuples, queries to compare candidates and the beyond-h queries for

each candidate. When the total order cannot be inferred, we use expected distance

between randomly generated total order and the actual total order. The distance

between two ranked lists is computed using Kendall-τ metric.

2.7.2 Experimental Results

In the following discussion we denote the number of top ranked tuples retrieved

from the hidden database as h. In other words, it denotes the maximum number of

invocations of GETNEXT by the third party service.

Query cost versus h: In our first experiment, we evaluated the performance of

our algorithms BEYOND-h-GETNEXT and ORDERED-GETNEXT on the boolean

dataset by investigating the query cost as a function of h for various different val-

ues of k. As Figure 2.2 shows, the query cost increases with increasing h, as is

expected. Moreover, significant savings are achieved by using the ordering heuristic

in ORDERED-GETNEXT. We also notice that k plays an important role in the effi-

ciency of the algorithms: larger k results in more efficient performance. To consider

a specific performance point, when k = 75 and h = 200, ORDERED-GETNEXT

requires less than 300 additional queries to retrieve the extra 125 tuples.

We also performed similar experiments on the Autos dataset and observed

similar trends, with ORDERED-GETNEXT outperforming BEYOND-h-GETNEXT

(Figure 2.3). Additionally, we also investigated the effect the specific ranking func-

tion used has on the performance of our algorithms. As Figure 2.3 shows, we used

three different ranking attributes: TxnID (a unique ID for each tuple), as well as

attributes such as Price and Miles. We note that the performance of our algorithms

44



vary for different ranking functions, but nevertheless are still very efficient in all cases

(and as noted earlier, our algorithms do not try to take advantage of any knowledge

of these ranking functions).

Query cost versus k: In our next experiment, we investigated the effect of k on

the query cost for fixed values of h, for both the boolean dataset as well as the Autos

dataset. As Figure 2.4 shows, the positive effect of larger values of k on the query

cost is dramatic, with larger values of k being very effective in reducing the query

cost of our algorithms. This is to be expected, as our earlier arguments in the paper

have shown that large k significantly reduces the number of queries needed in the

candidate generation and testing procedures (since the number of minimal infrequent

itemsets in a database rapidly reduces with increasing support threshold).

Query cost versus database size: Since our algorithms are designed to retrieve

only the top-h tuples from the database, the actual size of the database should not

have a significant impact on the performance of our algorithms. This is verified in

Figure 2.5, which shows that the query cost remained practically unchanged for

ORDERED-GETNEXT, even though we try our experiments on various fractional

sizes of the original databases (the slight dip in query cost is attributable to the

uncertainty of the sampling process). In this experiment, k = 100 and h = 200.

Query cost versus skew: We experimented with ORDERED-GETNEXT (k =

100, h = 200) on several boolean databases created with different values of skew

parameter p. As Figure 2.5 shows, the algorithm is most efficient when the database

has equiprobable 1s and 0s, but the cost increases when the proportion becomes

unbalanced. This is attributable to the fact that when the database contains more 1s

(or more 0s), the algorithm has to “dig deeper” - i.e., issue a larger number of (and

more specific) queries in order to generate all candidates.
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Effect of large h: Our earlier experiments were focused on values of h that were at

most a small factor larger than k. Such values are meaningful in actual applications

where an user is interested in seeing a few more tuples than what has been returned to

her by the original query. But we were also interested in stress-testing our algorithms

on much large values of h to see how they performed. Figure 2.7 shows the results

of such an experiment using ORDERED-GETNEXT on the Autos dataset, where k

was set at 100. As can be seen, the query cost increases quite significantly for much

larger values of h, which leads to the conclusion that beyond a certain point, it is

actually preferable to crawl the database and extract the top-h queries rather than

use ORDERED-GETNEXT. The figure also profiles the separate query costs of the

candidate generation and testing procedures.
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Comparing generation versus testing procedures: In Figure 2.8, we compare

the query costs of the two main procedures: candidate generation and candidate

testing. We ran ORDERED-GETNEXT over the Autos dataset for h = 200 and

varied k. As can be seen, the query cost is almost equally divided between the

generation and test procedures for almost all points of the curve, with testing being

slightly more expensive.

Effect of query selectivity: In Figures 2.9 and 2.10, we investigate the impact of

selectivity. If a query is extremely selective, then it is clear that no algorithm can

extract a total order of the top-h tuples. In such situations, our algorithms return

a partial order of the top-h tuples. As discussed in 2.6.2, we compare a random

total order that conforms to the returned partial order against the true top-h tuples

for that query using Kendall-τ measure. As the query becomes less selective, the

rank distance increases and its query cost becomes less, which is to be expected as

the candidate testing procedure gets opportunities to terminate early as one needs

a smaller number of queries to exclude a tuple from consideration. Similarly, as

the query selectivity drops, our algorithm can retrieve the actual total order. Our

experiments uses ORDERED-GETNEXT for both datasets, with k = 100 and h =

200.

Experiment against Amazon DVD Titles : To show the practicality of our

algorithms, we retrieved the top-250 Amazon DVD titles in terms of their sales rank.

Note that by default, Amazon only displays the top-100 items in any category. The

correctness of our algorithm is verified by the checking the individual item description

pages of the items discovered by GETNEXT (which reveals the actual sales ranking

of the items). The queries were made using the Amazon Product Advertising API

and the maximum value of k is 100. A sample query to get the top-10 PG rated
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DVDs ordered by their salesrank is shown in footnote8.Figure 2.11 shows that when

k = 100, the top-250 titles can be retrieved using fewer that 500 queries, well below the

2000 queries-per-hour-per-IP-address limit imposed by Amazon.com. The figure also

shows the behavior of both BEYOND-h-GETNEXT and ORDERED-GETNEXT for

different values of k and h.

2.8 Related Work

Information Integration and Extraction for Hidden databases: A significant

body of research has been done on information integration and extraction over hidden

databases - see tutorials [15, 16]. Due to space limit, we only list a few closely-

related work: [17] proposes a crawling solution. Parsing and understanding web query

interfaces has been extensively studied (e.g., [18, 19]). The mapping of attributes

across different web interfaces has also been addressed (e.g., [20]). Also related is the

work on integrating query interfaces for multiple web databases in the same topic-area

(e.g., [21, 22]). Our paper provides results orthogonal to these existing techniques

as it represents the first formal study on retrieving top-h (h > k) tuples matching a

user-specified query by reformulating the query through a top-k interface.

Data Analytics over Hidden Databases: There has been prior work on crawling,

sampling, and aggregate estimation over the hidden web, specifically over text [23, 24]

and structured [17] hidden databases and search engines [25, 26, 27]. Specifically,

sampling-based methods were used for generating content summaries [28, 29, 30],

8http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService

&AWSAccessKeyId=[fill]&Operation=ItemSearch&SearchIndex=DVD

&ResponseGroup=Large,SalesRank&Sort=salesrank&AudienceRating=PG

&Timestamp=[fill]&Signature=[fill]
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processing top-k queries [31], etc. Prior work (see [3] and references therein) consid-

ered sampling and aggregate estimation over structured hidden databases.

Top-k Query Processing: There have been extensive studies on retrieving the top-

k tuples over a traditional database - see [32] for a survey. Our approach differs by

allowing the retrieval of top-h tuples through a restricted top-k web interface.

Frequent Itemset Mining: We map the discovery of beyond-h queries to the prob-

lem of infrequent-minimal-itemset mining - a problem well studied in data mining

[14]. [13] provides additional details about algorithms and properties for infrequent

itemset mining.

2.9 Conclusion

In this paper we have initiated study on the problem of retrieving the top-h

(h > k) tuples from a hidden web database that only provides a top-k search interface.

To address the fundamental operator GetNext, we proposed a two-step process,

candidate generation and candidate testing, and developed efficient algorithms for

both steps. We conducted comprehensive set of experiments over synthetic datasets

and real-world hidden databases which demonstrate the effectiveness of our proposed

techniques. There are multiple exciting directions for future research. We intend to

investigate the possibility of retrieving the top ranked tuples approximately - for e.g.,

retrieve as many top ranked tuples under budget cost or in a rank agnostic fashion.

Further, we plan to build attractive demonstrations of mashup applications against

real-world hidden web databases.
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CHAPTER 3

Rank Discovery From Hidden Web Databases

Many web databases are only accessible through a proprietary search interface

which allows users to form a query by entering the desired values for a few attributes.

After receiving a query, the system selects the top-k matching tuples according to a

pre-determined ranking function, and then return them to the user. Since the rank

of a tuple largely determines the attention it receives from website users, ranking in-

formation for any tuple - not just the top-ranked ones - is often of significant interest

to third parties such as sellers, customers, market researchers and investors. In this

paper, we define a novel problem of rank discovery over hidden web databases. To

address the problem, we introduce a taxonomy of ranking functions, and show that

different types of ranking functions require fundamentally different approaches for

rank discovery. Our technical contributions include principled and efficient random-

ized algorithms for estimating the rank of a given tuple, as well as negative results

which demonstrate the inefficiency of any deterministic algorithm. We show exten-

sive experimental results over real-world databases, including an online experiment

at Amazon.com, which illustrates the effectiveness of our proposed techniques.

3.1 Introduction

3.1.1 The Rank Discovery Problem

Many web databases, e.g., Yahoo! Autos, Amazon.com, are “hidden” behind

(i.e., only accessible via) a restrictive form-like interface which allows a user to form

a search query by specifying the desired values for a few attributes; and the system
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responds by returning a small number of tuples matching the search query. Almost

all such interfaces enforce the top-k constraint - i.e., when more than k tuples (where

k is typically a predetermined small constant) match the user-specified query, only k

of them are preferentially selected according to a ranking function and returned to

the user. While such restrictive form interfaces of hidden databases might suffice for

the simplest use-cases, i.e., that of a normal user searching for some items in these

databases, they often cannot satisfy users with specific needs and also prevent many

interesting third-party services from being developed over web databases. There has

been several recent works on developing techniques to enable additional functionality

over such databases that operate via the restrictive interface, such as sampling and

aggregate estimation (see [3, 4, 2] and references therein).

In this paper, we consider a novel problem, that of discovering rank-related

information from a hidden web database:

Rank Discovery Problem: Given a query q, and a tuple t that satisfies

the selection conditions of q, compute the rank of t among all tuples in the

web database that satisfy q.

In a general sense, the rank discovery problem is a fundamental data analytics

task, because it seeks to determine the rank/position of an item as compared to sim-

ilar competing items along multiple attributes/facets. In the case of web databases,

since the rank of a tuple largely determines the attention it receives from website

users, ranking information for any tuple - not just the top-k ranked ones - is often of

significant interest to third parties such as sellers, customers, market researchers and

investors. Solutions to the rank discovery problem has the potential of enabling new

third-party application scenarios that have not been considered in earlier work. For

example, the author of a book on sale at Amazon would be keen to track and monitor

the ranking of her book within a set of similar competitors (e.g., how does it rank in
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sales, or customer reviews, etc., compared to other similar books on science fiction?).

Likewise, competitors to an app available at Apple’s iOS and Mac App Stores would

be interested in monitoring the app’s grossing rank and measure the market response

to determine if it is time to start competing with the app. Investors may be keen

to do simultaneous monitoring of numerous products newly released by competing

companies, in order to determine which one is likely to be a hit and which company

to invest in.

Although the rank discovery problem, as stated above, appears deceptively

compact and simple, it is challenging because most web databases do not explicitly

disclose a tuple’s rank beyond the top-k tuples. The rank has to be discovered in-

directly, by carefully issuing multiple related queries to the website’s query interface

and recovering/inferring the tuple rank by piecing together the information returned

from these queries. Moreover, our investigations revealed that different websites have

widely varying characteristics, resulting in a myriad of interesting facets and vari-

ants of the rank discovery problem that require fundamentally different approaches

in their solutions. In the rest of this introductory section, we provide an overview

of this spectrum of problem variants, highlight their difficulties and challenges, and

summarize our technical contributions - both algorithmic as well as negative results.

3.1.2 Problem Variants and Challenges

Web databases use a broad variety of ranking functions. These functions typi-

cally compute a score for each tuple matching the query conditions, and return the k

tuples with the highest scores. These ranking functions can be classified along several

different dimensions/categories. One dimension is whether the function is static or

query dependent. A static ranking function assigns tuple scores independent of the

query - i.e., all tuples are globally ordered in the database. For example, Amazon
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allows users to search for books by specifying a few desired attributes (e.g., Language,

Format, Genre, Release date, Title, etc.), and the system returns up to k matching

books, ranked by price, average customer review, popularity (i.e., sales amount), re-

cency, etc. One can see that all these ranking functions are static. Other examples

are the “sort by bestsellers” or “sort by grossing” static ranking functions used by

Apple’s iOS and Mac App Stores. A ranking function is query-dependent if the score

of a tuple varies for different queries - e.g., where all tuples are ordered according

to the number of attribute matches between the query and each tuple, or by a more

sophisticated notion of “relevance”.

Within static ranking functions, a second dimension for categorization is whether

the function is observable or proprietary (i.e., unobservable). Observable ranking func-

tions are those where the end-user can determine the score of a tuple from the tuple

values alone - e.g., in the aforementioned Amazon example, if the ordering is by price,

the score of a tuple is obvious. Observable ranking functions may be further catego-

rized into whether the scoring attribute can be queried or not. For example, users can

query for products in Amazon by specifying desired price ranges, but cannot specify

desired recency, although both scores are observable in returned products. A propri-

etary ranking function is one where the tuple’s score is hidden from the public’s view

- e.g., the actual values of popularity (i.e., sales amount) and/or gross sales for Ama-

zon and App Stores are never revealed to the end user. In fact, it is an open secret

that many websites often use proprietary ranking functions to promote high-profit or

slow-selling products to customers.

We note that no matter what variant of web database we encounter, trivial

solutions to the rank discovery problem are possible if (1) all input tuples are very

highly ranked so as to enter the top-k results returned by the hidden database, and/or

(2) the third-party analyzer can negotiate a private agreement with the web database
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owner in order to retrieve the ranking of the entire query results beyond the top-k

limitation. Nonetheless, note that the information most useful to an investor and/or

competitor occurs before a book/app enters the top-seller list and becomes more or

less known to the general public anyway. On the other hand, private negotiations are

often very difficult due to revenue sharing, legal requirements, security and myriad

of other thorny issues. As such, our focus in this paper is to develop automated

third-party algorithms that only use the public interfaces of web databases without

requiring any additional cooperation from the database owners.

Another seemingly straightforward solution to issue all possible queries through

the web interface so as to crawl all rank-related information one could possibly infer

from the hidden database - and then analyze the query answers locally to address the

above problems. Nonetheless, a key pitfall of this solution is its prohibitively high

query cost (note that just crawling all tuples can be extremely expensive [5]) - which

is simply infeasible for real-world web databases which often impose a per user/IP

limit on the number of queries one can issue over a given time frame (e.g., Google

Search API allows only 100 free queries per user per day).

Given the pitfalls of the above mentioned approaches, in this paper we develop

algorithms to solve the rank discovery problem only using the public interfaces of web

databases, with the important design objective of maintaining a small query cost - a

goal shared by most existing studies on exploring hidden web databases because of

the query-number limitations enforced by web databases (e.g., [3]). Our algorithms

produce approximate answers, and thus another important design objective is to

produce answers with small relative error.
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3.1.3 Outline of Technical Results

As mentioned above, different types of ranking functions require fundamentally

different approaches for rank discovery. We first study the two extreme cases: For

ranking functions that are static, observable, and can be queried through the search

interface, we show that a simple solution exists for rank discovery: use the existing

aggregate estimation algorithms [3] to estimate the COUNT of tuples with a higher

rank. On the other extreme - i.e., when the ranking function is query dependent - we

show that it is impossible for any algorithm to discover the rank of t among tuples

matching q - unless q can be queries through the search interface, and t is returned

among the top-k results.

For the remaining cases - i.e., when the ranking function is (i) static and pro-

prietary, or (ii) static, observable but cannot be queried - we develop RANK-EST, a

rank estimation algorithm that interleaves the following two methods:

• RANK-EST-S, a sampling-based process which first draws uniform random sam-

ples from the hidden databases, and then perform rank companions between the

input tuple and the samples to enable rank estimation.

• RANK-EST-H, a randomized process which randomly constructs and issues

queries that return tuples ranked higher than the input tuple, and use the

query answers to directly produce a rank estimation.

While RANK-EST-S works well for most tuples in the database, it cannot effectively

handle highly ranked tuples, because a very large sample is required to accurately

estimate their ranks. RANK-EST-H, on the other hand, is designed specifically for

these tuples. As such, by interleaving the two processes, RANK-EST achieves efficient

and accurate rank estimation over all tuples in the database.

Interestingly, while RANK-EST works for both proprietary and observable

ranking functions, the technical challenges facing the design of RANK-EST-S (and
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consequently, the query cost required by it) differs drastically between the two. Specif-

ically, while comparing rank between the input and a sample tuple is straightforward

for observable ranking functions, it can be extremely difficult for proprietary ones.

Indeed, we prove in the paper that guaranteeing the correctness of rank comparison

can be downright impossible in the worst-case scenario. While doing so is possible for

the vast majority of real-world databases, we prove a hardness result showing that

no deterministic algorithm can do so without issuing an extremely large number of

queries. To address this problem, we devise LV-RANK-COMPARE, a randomized

rank comparison algorithm, inside RANK-EST-S. LV-RANK-COMPARE is a Las-

Vegas algorithm - i.e., it always produces the correct answer, but with varying query

costs across different executions.

In summary, the major contributions of this work are as follows. We introduce

and motivate the novel problem of rank discovery over hidden web databases. We

define a comprehensive spectrum of ranking functions according to various dimensions

such as query-dependent vs. static, observable vs. proprietary, and whether the scoring

attribute can be queried or not. We discuss the feasibility of rank discovery for

each type of ranking function, and show that different types of ranking functions

require fundamentally different approaches for rank discovery. For proprietary and

observable ranking functions, we develop RANK-EST which interleaves two separate

procedures for handling high and low ranked tuples, respectively. We present careful

theoretical analysis including negative results that preclude efficient deterministic

solutions. We present a thorough experimental evaluation of our algorithms over real-

world hidden web databases. We also describe online experiments over Amazon.com

which demonstrates the effectiveness of our proposed algorithms.
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3.2 Rank Discovery Problem

In this section, we introduce a taxonomy of ranking functions commonly used

and, for each type of ranking functions, discuss the feasibility of rank discovery. Then,

we define the technical problem addressed in the paper.

3.2.1 Model of Hidden Databases

Consider a hidden databaseD with n tuples andm input attributesA1, A2, . . . , Am.

Given a tuple t and an attribute Ai, let t[Ai] be the value of Ai in t. Let Dom(Ai)

be the domain of Ai. For the purpose of this paper, we restrict our attention to

categorical attributes and assume the appropriate discretization of numeric ones. We

also consider all tuples distinct and without null values.

A user can query the system by specifying the desired values for a subset of

A1, . . . , Am. Thus, a user query q is of the form SELECT * FROM D WHERE Ai1 =

vi1& . . .&Ais = vis , where i1, . . . , is ∈ [1,m] and vij ∈ Dom(Aij). Real-world hidden

databases generally restrict users’ access to top-k tuples - which may be presented

on one page or over multiple pages (accessed by page turns or clicking next at the

bottom of the results page)1.

Formally, let the set of tuples matching q be Sel(q). If |Sel(q)| > k, an overflow

occurs and only the top-k results are returned, along with an overflow flag indicating

that more tuples matching the query cannot be returned. If |Sel(q)| = 0, then an

underflow is said to occur. Otherwise, i.e., when |Sel(q)| ∈ [1, k], we say that q is

valid - i.e., the user retrieves all tuples matching the issued query.

1For example, Google limits the number of page turns to 10 if 100 results are displayed per page,

and 100 if 10 results per page - effectively resulting in a top-1000 interface.
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3.2.2 Taxonomy of Ranking Functions

Ranking function is what the hidden database uses to determine which k tuples

to return when a query overflows. Consider a ranking function f(·) which takes a

tuple and a query as input and outputs a score. There are two broad categories of

ranking functions: static and query-dependent. A ranking function f(·) is static if

∀q1, q2, f(q1, t) = f(q2, t). Otherwise, it is query-dependent.

Within static ranking functions, we can further partition them into two types,

observable or proprietary. A ranking function is observable if f(t) is displayed along

with (or can be inferred from) other attributes when a tuple is returned in a query an-

swer. Otherwise, it is proprietary. Examples of observable ranking functions include

Price, Listed Date, etc., used by many e-commerce websites. Proprietary ranking

functions include “Popularity” in numerous websites such as Amazon.com, Priceline,

Kickstarter, etc., “sort by gross sales” used by Apple’s and Android’s App Stores, as

well as many proprietary scoring functions such as Moviemeter in IMDB and “Rank

by value” in Seatguru.

Finally, within observable (static) ranking functions, we can further partition

them into two categories according to whether the scoring attribute can be queried

through the search interface. Specifically, a ranking function can be queried if it

is possible to issue SELECT * FROM D WHERE f(t) = c through the interface. An

example is the Recency ranking function used by Amazon.com.

Figure 3.1 depicts the above taxonomy of ranking functions.

3.2.3 Feasibility of Rank Discovery

In this subsection, we consider the feasibility of rank discovery over four types of

ranking functions: (i) query-dependent, (ii) static, observable can be queried through
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the interface, (iii) static, observable but cannot be queried, and (iv) static and pro-

prietary, respectively. Figure 3.1 summarizes the following feasibility results:

Query-Dependent Ranking Functions: Note that rank discovery is infeasible for

query-dependent ranking functions, unless the input tuple is returned in the top-k

results. Intuitively, this is because, in order to get tuples beyond top-k, it is necessary

to reformulate the query. But this has the side effect of arbitrarily changing tuple

ranks. Hence, with a query-dependent ranking function, no mechanism can achieve

rank discovery.

Observable and Queriable Ranking Functions: At the other extreme - when a

ranking function is static, observable, and can be queried through the search interface

- rank discovery can be reduced to the problem of aggregate query processing, which

has been addressed in existing work [3]. The reason is simple - since SELECT * FROM

D WHERE f(t) = c is supported by the interface, the aggregate estimation algorithms

in [3, 4, 2] can be readily applied to estimate SELECT * FROM D WHERE f(t) > f(t0),

which is exactly the rank of input tuple t0.

Observable and Non-Queriable Ranking Functions: When an observable rank-

ing function is nevertheless not queriable through the interface, the simple solution

described above no longer applies. Nonetheless, it is easy to see that rank discovery is

always feasible - specifically, a naive approach is to crawl all tuples from the database,

and then rank them locally according to observations of the scoring attribute.

Running Example: Table 1 shows a simple table which we use as running

example throughout this paper. There are m = 5 Boolean attributes and n =

8 tuples which are ranked in the order of their indices. i.e., t1 is top-ranked.

Proprietary Ranking Functions: For proprietary ranking functions, a key concept

for understanding the feasibility of rank discovery is the direct domination relation-

ship between two tuples. To understand the concept, consider what rank-related
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Figure 3.1. Rank Discovery: Taxonomy.

A1 A2 A3 A4 A5

t1 0 0 0 0 1
t2 0 0 0 1 1
t3 0 0 1 0 1
t4 0 1 1 1 1
t5 1 1 1 0 1
t6 1 1 1 1 1
t7 1 0 0 0 0
t8 0 0 0 0 0

Table 3.1. Rank Discovery: Database used in Running Example

information a query answer q reveals. It is easy to see that for the (at most) k tuples

returned by q, their ranks can be compared according to the query answer. In addi-

tion, it is also possible to infer from q rank-related information for tuples that are not

returned by it. Specifically, for two tuples t and t′ which match q, we can determine

which has a higher rank if (at least) one of them is returned by q:

• if q returns t but not t′, then t is ranked higher,

• if q returns t′ but not t, then t′ is ranked higher, or

• if q returns both, then we can make the comparison based on the returned order.

For two given tuples, if there exists a query such that any of the three cases occurs,

we say the two tuples are directly comparable with each other, with the higher-ranked

tuple directly dominating the other one - i.e.,
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Definition 2. [Direct Domination] A tuple t is said to directly dominate

another tuple t′, i.e., t � t′, if and only if t and t′ are directly comparable and t ranks

higher than t′.

For example, consider the running example shown in Table 1 with a top-2

interface. We can observe that t1 and t3 are directly comparable using the query

q1: SELECT * FROM D WHERE A1 = 0 AND A2 = 0 AND A4 = 0 AND A5 = 1 with

t1 ranked higher than t3. Similarly, tuples t2 and t3 are directly comparable using the

query q2: SELECT * FROM D WHERE A1 = 0 AND A2 = 0 AND A5 = 1. The result

includes t2 but not t3 - i.e., t2 ranks higher.

Given the direct domination relationships, the feasibility of rank discovery for

a tuple t boils down to whether, for all other tuples t′ in the database, it is possible

to find a sequence of tuples t1, . . . , th, such that t � t1 � · · · � th � t′ or vice versa.

If the chain can be found for all other tuples, then the rank of t can be precisely

discovered. Otherwise, the fewer chains we can find, the wider a range we have to

settle on estimating the rank. We call this problem the potential discrepancy between

real and revealed ranks.

Fortunately, as we shall show in Section 3.6.2 and Section 3.7, while the dis-

crepancy problem does exist in theory, the probability for it to occur in practice is

extremely low - i.e., in almost all cases, the real rank is exactly disclosed by the top-k

interface. Thus, rank discovery is indeed feasible for proprietary ranking functions.

Before concluding this subsection, we make an important observation that, if

two tuples are directly comparable, then we need only one query to determine their

domination relationship: the most specific query which matches both tuples - i.e.,

the query which contains one predicate for each attribute on which both tuples share

the same value. To understand why, note that if this query cannot return at least

one of the two tuples, then no other query can - i.e., the two tuples are not directly
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comparable. For the running example, q1 shown above is the most specific query

matching t1 and t3, while q2 is the one matching t2 and t3.

3.2.4 Formal Problem Definition

Discussions in the above subsection leave us with two types of ranking func-

tions for which the rank discovery problem is feasible and unsolved - those that are

proprietary, and those that are observable but cannot be queried. As discussed in

Section 3.1, both types are widely prevalent in practice. Thus, we focus on solving

the rank discovery problem for these two types in the paper.

Objective of Rank Discovery: Intuitively, the objective of rank discovery is to

find the rank of a given tuple, i.e., the number of tuples with a higher rank than the

given tuple, within a user-defined subset of the hidden database - which we model

using a filtering query qF. For example, a user may be interested in the rank of a

car within all Honda Accords, in which case qF is SELECT * FROM D WHERE Make =

Honda AND Model = Accord. If a user is interested in the global rank within the

entire database, then qF is SELECT * FROM D. In this paper, we support any filtering

query qF as long as whether t ∈ Sel(qF) can be determined solely upon knowledge of

qF and t (and not other tuples in the database2).

Given the closeness of real and revealed ranks as discussed in Section 3.2.3,

we define the problem of rank discovery as the extraction of a tuple’s rank revealed

through the top-k interface. Specifically,

Definition 3. [Problem Definition] Given a hidden database D and a filtering

condition qF, The objective of rank discovery is to compute r(t, qF) = |Ω(t, qF)|, where

Ω(t, qF) ⊆ Sel(qF) satisfies that ∀t′ ∈ Ω(t, qF), either t′ � t or there exists tuples

2e.g., queries such as SELECT * FROM D WHERE Price > (SELECT AVG(Price) FROM D) are not

supported.
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t1, . . . , th ∈ D, such that t′ � t1 � · · · � th � t, where � is the direct domination

relationship defined in Definition 2.

Performance Measures: A key performance measure for rank discovery is query

cost - i.e., the number of queries one has to issue through the web search interface

of the hidden database. Accuracy-wise, we consider the relative error measure for an

estimated rank r̃(t, qF) as

δ =
|r(t, qF)− r̃(t, qF)|

r(t, qF)
. (3.1)

Note that, compared with the absolute error measure (i.e., |r(t, qF)− r̃(t, qF)|),

relative error is more meaningful in practice. To see why, consider an example where

an algorithm produces r̃(t1, qF) = 200 for a 100-th ranked tuple and r̃(t2, qF) = 98761

for a tuple with rank 98661. One can see that, while the error on t1 represents a

significant misconception of t1’s status in the database, the error on t2 is hardly no-

ticeable - yet both have the same absolute error of 100. According to this observation,

we focus on the relative error measure in our theoretical analysis, while measuring

both relative and absolute errors in the experiments section.

3.3 Overview of Technical Approach

In this section, we start by describing three baseline techniques and their re-

spective problems. Then, we provide an overview of our technical approach to address

these problems - with details discussed in Section 3.4 and 3.5. Note that, in this sec-

tion and for most part of the paper, we focus on discovering the global rank of a tuple

within the entire database (i.e., when qF in Definition 3 is SELECT * FROM D). Then,

we shall discuss in Section 3.6.1 a simple extension to support other qF. To simplify

the notations, we denote the global rank of t by r(t) = r(t, SELECT * FROM D).
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3.3.1 Baseline Techniques

We start by describing three baseline ideas for solving the rank discovery prob-

lem, and point out their respective problems and/or unsolved technical challenges

which motivate our proposed design of RANK-EST in this paper.

Crawling: The first baseline idea is to crawl all tuples and the associated rank in-

formation from a hidden database, and then rank all tuples locally (as in traditional

databases) to derive the rank of the input tuple. The main problem of this approach

is the extremely high query cost incurred by crawling, especially for large hidden

databases. Lower-bound results derived in [5] show that crawling requires a pro-

hibitively high cost of at least Ω(m · n2/k2) queries for certain categorical databases

with a top-k interface - where m and n are the number of attributes and tuples,

respectively.

Sampling: The second baseline approach is to first draw a uniform random sample

of the hidden database [33, 34, 35], and then compare the rank of the input tuple

with all sample tuples to extrapolate its rank in the database. This approach has two

main problems:

First, it is unclear how to effectively compare the ranks of two given tuples

when the ranking function is proprietary. Note that while doing so for two directly

comparable tuples (as defined in Definition 2) are easy, many pairs of tuples cannot

be directly compared. For example, t6 and t8 in the running example do not have

a direct domination relationship, because the only query which matches both tuples

is SELECT * FROM D which returns neither. But one can still compare t6 with t8 by

using t7 as a “bridge”, because t6 is returned by A1 = 1, while both t7 and t8 are

returned by A5 = 0. How to find such bridges, however, is a challenge for applying

the sampling idea to proprietary ranking functions.
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The second problem with this sampling-based approach is that the estimated

rank may not be accurate enough for highly ranked tuples, unless one incurs a very

high query cost to draw a large sample. To understand why, note that according

to the accuracy measure in (3.1), to achieve the same accuracy level, the absolute

error of rank estimation has to be much smaller for highly ranked tuples than lower

ranked ones. On the other hand, it is easy to see that the sample size is inversely

proportional to the square of absolute error - i.e., one needs a much larger sample

for highly ranked tuples. For example, for a 1-million tuple database with k = 50,

just to estimate a 100-th ranked tuple’s rank within a relative error of 50%, the

sampling-based approach needs at least an expected number of 1,000,000 / 100 =

10,000 samples - which could mean hundreds of thousands of queries even with the

state-of-the-art sampler [35].

Ordered Crawling: The third baseline we consider is ordered crawling. It provides

a remedy for the high-rank problem of the sampling-based approach without incurring

as high a query cost as crawling all tuples. The key idea here is to crawl tuples in

the descending order of their ranks - an operation enabled by the getNext primitive

recently proposed for hidden databases with any static ranking function [36]. One

can see that this method is capable of obtaining the rank of a highly ranked tuple

without incurring the query cost for a complete crawl of the database.

The problem of ordered crawling is, still, its high query cost. Not only is

it apparently unsuitable for lowly ranked tuples3, even for highly ranked tuples the

query cost can be very high. For example, when k = 100, calling the getNext primitive

for a 2,000-th ranked tuple in a 200,000-tuple database requires nearly 60,000 queries

[36] - prohibitively expensive in practice.

3Note that if the input tuple happens to be last-ranked, then this method is reduced to crawling

the entire database.
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3.3.2 Overview of Our Approach

Technical Challenges: Given the pitfalls of these three baseline approaches, we

identify two key technical challenges for supporting efficient rank estimation:

• Effective Rank Comparison: To address the problem of applying sampling-based

estimation to proprietary ranking functions, a key challenge is to efficiently com-

pare the ranks of two tuples that do not have a direct domination relationship.

• Efficient Rank Estimation for Highly Ranked Tuples: Since the sampling-based

approach is not effective for highly ranked tuples, a further challenge is to

efficiently position a highly ranked tuple without crawling all higher-ranked

ones.

Roadmap of Our Approach: In the remaining part of the paper, we shall address

the two challenges respectively, before combining the techniques to form a compre-

hensive solution to rank discovery.

Specifically, we start by addressing the rank comparison problem for proprietary

ranking functions in Section 3.4. We first describe a deterministic algorithm and its

problem with high query cost - which motivates us to propose a efficient probabilistic

solution. An interesting feature of this probabilistic solution is that it is a Las Vegas

algorithm - i.e., it always produces the correct result4. In most cases, the algorithm

terminates much sooner (i.e., requires much fewer queries) than the deterministic

algorithm - only in the worst-case scenario will it be reduced to the deterministic

algorithm itself.

Then, in Section 3.5, we address the rank-estimation problem for highly ranked

tuples. Our key idea here is to first identify all queries which might reveal tuples with

higher rank than the input tuple. Then, we select a small subset of these queries in

4as long as such a result is revealed by the top-k interface - which, according to Theorem 3, is

highly likely.
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a random yet judicious manner, and issue them to form a COUNT estimation for all

higher-ranked tuples - without actually crawling the tuples.

Finally, in Section 3.6, we combine the techniques proposed in Section 3.4 and

Section 3.5 to form our final rank estimation algorithm RANK-EST, which can effi-

ciently yet accurately estimate ranks for both highly and lowly ranked tuples. Also

in this section, we explain why we aim for rank “estimation” instead of precise “com-

putation” in the paper by proving hardness results. The results show that it is not

only impossible to precisely compute the rank of a given tuple in an efficient manner,

even approximating the rank within a (small) fixed ratio mandates an extremely high

query cost in the worst-case scenario.

3.4 Challenge 1: Rank Comparison

In this section, we address the first challenge - rank comparison for proprietary

ranking functions. The key task here is to find a sequence of “bridge” tuples connect-

ing the two inputs through direct domination relationships. We start by describing

RANK-COMPARE, a deterministic yet inefficient algorithm to solve the problem.

Then, we identify the fundamental problem underlying RANK-COMPARE’s exces-

sive query cost, and address it with LV-RANK-COMPARE, our randomized solution

to the problem.

3.4.1 RANK-COMPARE

Description: The deterministic algorithm starts by testing if t and t′ are directly

comparable with each other. If not, it finds all tuples which directly dominate t,

denoted by D(t), by issuing all 2m queries which match t. Then, for each tuple ti

in D(t), RANK-COMPARE tests if t′ directly dominates ti - if so, then a bridge

t′ � ti � t is found. It does the same for t′ - i.e., find D(t′) and test if t dominates
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Figure 3.2. Rank Discovery: Iteratively build a bridge from t4 to t8.

any tuple within5. If no bridge is found, RANK-COMPARE identifies all tuples

directly dominating (at least) one tuple in D(t) and D(t′), respectively, and uses it to

attempt building a two-hop bridge, and (if failed) repeats this process until finding

a sequence of bridge-tuples tb1, . . . , tbh, such that either t � tb1 � · · · � tbh � t′ or

t′ � tb1 � · · · � tbh � t. If no such a sequence can be found, then the top-k interface

does not reveal enough information for comparing the ranks of t and t′.

In essence, this iterative process is a classic breadth-first-search-based graph

reachability algorithm, if we consider all tuples in the hidden database as vertices

and the direct domination relationships as edges. Figure 3.2 demonstrates such a

correspondence and an example of building a bridge from t4 to t8 in the running

example.

Pitfalls of RANK-COMPARE: An obvious problem of RANK-COMPARE is

its query cost: in order to find a bridge connecting t with t′, the iterative process

of RANK-COMPARE repeatedly computes D(·) which requires numerous queries

when m, the number of attributes, is large. The key reason underlying this problem

5One might wonder why we do not pursue the other direction - i.e., instead of finding D(t), find

the set of tuples which are dominated by t. The reason is that finding this set may require crawling

the entire database - e.g., note that the tuples returned by SELECT * FROM D directly dominate

all other tuples.
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is the way RANK-COMPARE attempts to build the bridge. Specifically, RANK-

COMPARE tends to waste a large number of queries testing tuples that are very

unlikely to be on the bridge, as we shall show in the following example.

Consider the rank comparison between t8 and t4 in the running example, which

is also illustrated in Figure 3.2. A key observation here is that D(t8) includes not

only the tuple that will eventually serve on the bridge (i.e., t7), but a large number

of other tuples (i.e., t1, t2, t3). These tuples tend to be highly ranked - indeed, note

that tuples returned by SELECT * FROM D directly dominate any other tuple in

the database. As a result, they are highly unlikely to appear on the bridge, especially

when t and t′ have close yet low ranks, because any tuple which resides on a bridge

between t and t′ must be ranked between them. Unfortunately, RANK-COMPARE

still wastes queries testing these tuples - wasting queries building a bridge-to-nowhere

that has surpassed the rank of t′.

In the next subsection, we shall introduce our idea to significantly speed up

the bridge-construction process by finding tuples that are most likely to serve on

the bridge. Nonetheless, it is important to note that the uncertainty of bridge-

construction, i.e., the lack of knowledge on which tuple to select next for building

the bridge, is an inherent obstacle for any deterministic rank comparison algorithm.

Indeed, we shall prove in Section 3.6.3 a negative results which shows that no deter-

ministic algorithm can achieve a realistic worst-case query cost for rank comparison

- a motivation for our proposal of a randomized algorithm.

3.4.2 LV-RANK-COMPARE

In this subsection, we start by describing the overarching scheme of LV-RANK-

COMPARE, a rank-based random walk with restart on the domination-relationship

graph (depicted in Figure 3.2). Then, we discuss two key design issues for random
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walk, the selection of the next step and the decision of when to restart the random

walk, before presenting the LV-RANK-COMPARE algorithm.

Random Walk For Bridge Construction: To compare the ranks of t and t′,

we perform the random walk both ways - i.e., we simultaneously start two random

walks from t and t′, respectively, until one walk reaches the other tuple. Without

loss of generality, we consider the walk from t to t′. At each step, we choose a tuple

from D(t), the set of tuples directly dominating t, by issuing a query matching t and

finding a higher-ranked tuple from its answer6. We repeat this step to form a random

walk t ≺ tb1 ≺ · · · ≺ tbh. For each new tuple tbi encounter in the walk, we issue one

extra query (according to the method in Section 3.2.3) to determine if t′ � tbi - which

indicates the successful construction of a bridge. Otherwise, we either continue or

restart the random walk.

One can see that this vanilla algorithm does (partially) address the problem

of RANK-COMPARE, as it now quickly “rejects” many tuples that overshoot t′.

For example, if we apply this vanilla algorithm to the comparison of t8 and t4 in

the running example, then the random walk from t8 can quickly reject t1, t2, and

t3 if they are chosen as tbi, because these tuples directly dominate our target tuple

t4. Nonetheless, this vanilla approach still has the following two problems which

adversely affect its query cost in practice:

• Ineffective selection of tbi: While the vanilla approach rejects many ineffective

selections of tbi, it fails to carefully select the most favorable tbi for building

the bridge. Specifically, it does not consider the likelihood for a selection to be

directly comparable with t′. It also fails to evaluate the chance for a selection

to overshoot t′ (before incurring query cost to test it).

6We shall discuss next how to choose which query to issue and which tuple to select.
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• Late Restart: The vanilla method only restarts the random walk after reach-

ing a tuple directly dominating t′ - a strategy that could still lead to a long

(yet wasteful) random walk consisting of tuples that far outrank yet are not

directly comparable with t′. On the other hand, we found through real-world

experiments two important observations about bridge construction: (1) a cor-

rect bridge very rarely involves more than a few (e.g., 2) tuples, and (2) there

are a large number of such “short bridges”. Thus, a more effective approach is

to proactively restart a random walk (and hopefully hit one of the many other

short bridges) instead of continuing on to a long path that is likely to have

already outranked t′.

There are two key design issues one must address in this framework: (1) how

to choose the next stop of random walk, tbi, from D(t), and (2) whether to restart

or continue a random walk if a bridge is not (yet) found. We address the two issues

respectively as follows.

Selection of tbi: For the first problem, we argue that an ideal selection of tbi should

satisfy the following two conditions:

α. The rank of tbi should be as close to tbi−1 as possible, so as to ensure that the

bridge does not overpass t′.

β. tbi should share as many common attribute values with t′ as possible, so as to

increase the possibility for tbi to be directly comparable with t′.

One might find Condition α counter-intuitive - rather than trying to make as

much “progress” (i.e., rank-increase) as possible towards t′, we are seemingly making

the “progress” as little as possible. To understand the rationale behind Condition α,

we make an important observation on what “progress” really means in the bridge-

building process: Note that our objective is to find tbi which is directly dominated by
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t′. A key observation here is that, as long as tbi does not “overshoot” t′ (i.e., tbi has a

lower rank), whether tbi is directly dominated by t′ has nothing to do with the rank of

tbi, but (instead) is only determined by two factors: (1) the common attribute values

shared between tbi and t′, and (2) given the most-specific query matching both tbi

and t′, whether t′ has a sufficiently high rank to be returned by the query. Since the

rank of t′ is solely input-dependent, Conditions α and β capture the two objectives

under our control: Condition α aims to ensure that tbi does not overshoot t′, while

Condition β aims to maximize the probability for tbi and t′ to be directly comparable.

In order to efficiently select tbi according to the above two conditions, we start

by finding queries matching t which are most likely to return tuples with close ranks

to t. Specifically, we start with q : SELECT * FROM D, choose predicates matching

t (i.e., A1 = t[A1], . . . , Am = t[Am]) uniformly at random and add one at a time to q

until reaching a query q′ which returns t. For example, consider the rank comparison

between t4 and t7 in the running example when k = 3. Suppose that, for the random

walk from t7, we happen to choose predicates A4 = 0 and A1 = 1 in order. We will

stop at query q′: SELECT * FROM D WHERE A4 = 0 AND A1 = 1, because t7 is

not returned by SELECT * FROM D or SELECT * FROM D WHERE A4 = 0.

Then, from the tuples returned by q′ which are ranked higher than t, we choose

the one which has the most common attribute values with t′, and use it as the next

stop in the random walk. Note that a special case arises when t is the highest-ranked

tuple returned by q′. In this case, we use the parent of q′ (by removing the last-added

predicate) to find the next stop.

Restart of Random Walks: We now consider the case where the random walk

reaches a node tbi that is not directly dominated by t′. An obvious condition for

restarting the random walk is when tbi indeed directly dominates t′ - a clear evidence
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of overshooting the target. However, if we only restart the random walk in this

case, it is still possible for a long (yet wasteful) random walk to continue despite of

reaching tuples that far outrank yet are not directly comparable with t′. To address

this problem, we make two important observations from real-world experiments: (1) a

correct bridge very rarely involves more than a few (e.g., 2) tuples, and (2) there are a

large number of such “short bridges”. Thus, a more effective approach is to proactively

restart a random walk (and hopefully hit one of the many other short bridges) instead

of continuing on to a long path that is likely to have already outranked t′.

According to these two observations, we introduce our strategy of proactively

restarting a random walk. A key idea here is that, instead of directly limiting the

length of a random walk, we instead place a upper bound cN on the number of new

tuples involved in a random walk (i.e., which have never been included in previous

random walks). The purpose for doing so is to ensure the correct discovery of a bridge

in the worst-case scenario where even the shortest bridge has a long length. As we

shall show in Section 3.7, we found through real-world experiments that cN = 3 is

often the optimal setting for hidden databases in practice.

3.4.3 Algorithm RANK-EST-S

Algorithms 3 and 4 depict the pseudocode of Algorithm LV-RANK-COMPARE

and its usage in Algorithm RANK-EST-S, our sampling-based rank estimation algo-

rithm, respectively. Note that in LV-RANK-COMPARE, we simultaneously build

bridges from t and t′, respectively, in order to enable rank comparison no matter

which tuple is ranked higher.

Before concluding the section, we would like to note how LV-RANK-COMPARE

compares against RANK-COMPARE. Note that, with the breadth-first scheme, RANK-

COMPARE always identifies the shortest bridge from t to t′. Such an exhaustive
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search is unnecessary when any valid bridge would suffice. The randomized algo-

rithm LV-RANK-COMPARE instead aims to quickly identify the most likely path

from t to t′ which can serve as a bridge, thereby significantly reducing the query cost.

Algorithm 3 LV-RANK-COMPARE

1: Input : t and t′, the tuples to be compared

2: loop

3: Set tb0 = t , tc0 = t′ , l = 1

4: repeat

5: Choose tbl randomly from D(tbl−1)

6: Choose tcl randomly from D(tcl−1)

7: return t if t � tcl, or t′ if t′ � tbl

8: until bridges tb0 . . . tbl and tc0 . . . tcl has c unseen tuples

9: end loop

Algorithm 4 RANK-EST-S
1: Input : t , qF

2: Take a random sample S from Sel(qF )

3: n = Estimate of size of D from S

4: c = number of tuples in S that outrank t

5: return c
|S| ∗ n

3.4.4 Bi-Directional Random Walk

In this subsection, we develop a novel idea of bi-directional random walk which

further reduces the query cost of rank comparison. Recall from the previous sub-
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section that, in order to verify t ≺ t′, we always initiate the random walk from t,

and then keep finding tuples directly dominating the previous ones before reaching

t′. With bi-directional random walk, the path-finding effort works both ways: i.e.,

simultaneous with the random walk from t, we also initiate another random walk

from t′ which works backwards by choosing a tuple t′b1 from D′(t′).

Before describing the details of our algorithmic design, we first explain why

bi-directional random walks can significantly outperform their uni-directional coun-

terparts. There are two main reasons: (1) query sharing between the two random

walks, and (2) a significantly higher probability of finding a bridge.

First, note from the design of LV-RANK-COMPARE-UNI that, in order to

handle both cases of t ≺ t′ and t � t′, there are indeed two uni-directional random

walks which start with the algorithm: one from t to a tuple in D(t) and the other from

t′ to a tuple in D(t′). A key observation here is that, with the drill-down based method

for selecting a tuple in D(t′), it often takes no additional query to select a tuple from

D′(t′) as well. This can be seen from the following example. Consider again the drill-

down path 4 in Figure 3.4. Once we reach the end of drill-down, we also get a tuple

that is directly dominated by t5: t6 which is returned by A1 = A3 = 1. Note that t6

naturally satisfies Condition α for building the bridge - as it is returned immediately

after t5. As such, to support a bi-directional random walk and sample D′(t′), we

only need to augment the drill-down process for sampling D(t′) by continuing the

drill-down until collecting k tuples that are dominated by t (or reaching a valid node,

whichever comes first). From these k tuples, we choose the one that shares the most

common attribute values with t - the same way as in the uni-directional version.

One can see that this new process adds minimal additional query cost to the original

uni-directional random walk.
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Second, the bi-directional random walk significantly increases the success proba-

bility for bridge construction. To understand why, note that a uni-directional random

walk from t only terminates (successfully) when the newly added tuple tbi is directly

dominated by t′. With a bi-directional random walk, however, successful termina-

tion can be triggered by tbi being dominated by any of the tuples at the opposite

direction - i.e., t′, t′b1, . . . , t
′
bi. In other words, a bi-directional random walk succeeds

as long as any pair of tuples {tbu, t′bv} (u, v ∈ [0, i])7 are directly comparable with

each other. One can see that the probability for constructing a bridge now increases

roughly quadratically with the length of the random walk, rather than linearly as in

the uni-directional version (barring the random walk overshooting the destination -

i.e., t′bi ≺ t or tbi � t′). As such, the idea of bi-direction random walk significantly

increases the probability of bridge construction while issuing only a small number of

new queries.

Algorithm 5 depicts our final LV-RANK-COMPARE algorithm which features

bi-directional random walks. In the experimental evaluations in Section 3.7, we shall

show that LV-RANK-COMPARE significantly outperforms LV-RANK-COMPARE-

UNI (and RANK-COMPARE) in terms of query cost over real-world hidden databases.

3.5 Challenge 2: Handling Highly Ranked Tuples

We now consider how to enable rank discovery for highly ranked tuples (when

the ranking function is either proprietary or observable). We start by describing a de-

terministic solution RANK-COMPUTE, before introducing a randomized algorithm

RANK-EST-H with a significantly lower query cost. As we show in §3.7, RANK-

EST-H is the algorithm of choice for as much as top 25% of the database (after which

RANK-EST-S becomes competitive).

7Let t and t′ be tb0 and t′b0, respectively.
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Algorithm 5 LV-RANK-COMPARE

1: Input parameters: t and t′ : input tuples to compare

2: loop

3: // Case t � t′

4: Start forward random walk r1 from t to t′.

5: Start reverse random walk r2 from t′ to t.

6: return t if r1 ∩ r2 6= ∅

7: // Case t′ � t

8: Start forward random walk r1 from t′ to t.

9: Start reverse random walk r2 from t to t′.

10: return t′ if r1 ∩ r2 6= ∅

11: end loop

3.5.1 RANK-COMPUTE

Before introducing RANK-COMPUTE, we would like to first note that, while

the concept of direct domination relationship was introduced in §3.2 for proprietary

ranking functions, it readily applies to observable ones as well. Even though direct

domination relationships (or chains of them) are no longer needed for comparing

observable ranks, the concept is still important for understanding how to retrieve

tuples that outrank the input, as we show below.

To count the rank of t, we have to consider two types of tuples: those in D(t) -

i.e., directly dominating t - and those that outrank t but are not directly comparable

with t, which we denote to as Di(t). RANK-COMPUTE crawls all tuples in D(t) and

Di(t) in an iterative fashion - i.e., it starts by computing D(t), followed by computing

D(·) for each tuple in D(t), and does so iteratively until no new tuple is found. One
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can see that the key challenge here is to efficiently compute D(·) - which we address

next.

Computing D(t): As mentioned in Section 3.2.3, a baseline method for computing

D(t) is to issue all (m
0

) + · · ·+ (m
m

) = 2m queries which match t. To reduce the large

query cost of 2m, we consider a query-issuing strategy described as follows: First,

we organize these 2m queries into a lattice structure - an example of which (when

t = t7 in the running example) is shown in Figure 3.3. One can see that the root of

the lattice is SELECT * FROM D, while the bottom is the fully specified, m-predicate,

query. Each node on Level-i represents a query with i conjunctive predicates (all

matching t).

SELECT *

A3=0

A3=A4=0

A3=A4=A5=0

A5=0

A4=A5=0

Running example when projected
to attributes A3, A4, A5 (k = 2)

query that returns t7

query saved by early termination

query saved by history inference

Figure 3.3. Rank Discovery: Illustration of Lattice and Two Ideas.

Instead of issuing all 2m queries in the lattice, as in the baseline, we reduce the

query cost according to two key ideas. One is early termination - i.e., if a query q

in the lattice returns t, then we do not need to issue any (lower-level) successors of

q because any tuple returned by these queries which ranks higher than t must also

be returned by q. In the running example depicted in Figure 3.3, no descendants of

A5 = 0 needs to be issued according to early termination, because A5 = 0 already

returns t7.

The next cost-saving strategy is history inference. Note that this includes not

only the simple leverage of historic queries - i.e., do not issue a query if it has been
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issued before - but also the non-trivial inference of a query answer from a collection

of historic queries. Specifically, consider the case where, before issuing a query q, we

have already obtained answers to all predecessors of q in the lattice (i.e., queries on

the path between the root and q) and, among the returned tuples, at least k of them

match q. In this case, we do not need to issue q because it is impossible for it to

return any tuple we have not yet seen. For example, in Figure 3.3 we do not need to

issue A3 = 0 due to history inference, because the root SELECT * FROM D returns t1

and t2 which have A3 = 0.

Algorithm 6 RANK-COMPUTE

1: Input: t; Output: r(t)

2: H(t) = { D(t) } (set of tuples ranked higher than t)

3: repeat H(t) = H(t) ∪ D(t′) ∀t′ ∈ H(t)

4: until no new tuples added to H(t)

5: return |H(t)|+ 1

Leveraging both ideas, RANK-COMPUTE collectsD(t) by performing a breadth-

first search (BFS) of the lattice. In the design of lattice-BFS, we skip any query that

can be inferred from history, and invoke early termination if reaching a node that

returns t.

Theoretical Analysis: Algorithm 6 depicts the pseudocode of RANK-COMPUTE.

The following theorem provides an upper bound on the query cost of RANK-COMPUTE.

Theorem 2. The worst-case query cost for RANK-COMPUTE to compute r(t), i.e.,

the rank of a tuple t, is r(t) ·
(

m
bm/2c

)
.
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We do not include the proof of this theorem due to space limitations. Note

that, for computing D(t), RANK-COMPUTE requires at most ( m
m/2

) = O(2
√
m·logm/2)

queries - a significant reduction from the 2m queries required by the baseline method.

For example, when m = 12, the query-cost is reduced from 4,096 to 924.

3.5.2 RANK-EST-H: A Randomized Algorithm

Even though RANK-COMPUTE requires much fewer queries than the baseline

method, it can still generate excessive query cost when either m or r(t) is large. For

example, the upper bound derived in Theorem 2 exceeds 25,200 queries for a 100-th

ranked tuple in a 10-attribute database. This can be attributed to : (1) the iterative

process for computing Di(t) (tuples that outrank but are not directly comparable

with t), as many tuples are repeatedly retrieved in this iterative process, and (2) the

actual crawl of all tuples in D(t) and Di(t), when only COUNT is required by rank

estimation. We address these two problems respectively as follows.

For the computation of Di(t), a key observation here is that the higher ranked

t is, the smaller |Di(t)| is likely to be. To understand why, recall from Section 3.2

that in order for two tuples t and t′ to be not directly comparable with each other,

the most concrete query q which matches both tuples must not return either of them.

One can see that clearly, the higher ranked t and t′ are, the less likely it is for q to

return neither of them. Thus, |Di(t)| is likely to be small for a highly ranked input

tuple t. This can be observed from the running example - for the highest ranked 6

tuples t1, . . . , t6, Di(·) are all zero. On the other hand, the 8-th ranked tuple t8 has 3

tuples (i.e., t4, t5, t6) in Di(t8).

This key observation leads us to a simple yet (somewhat) crude way of esti-

mating r(t): crawl the lattice structure to retrieve all tuples in D(t), and then use

|D(t)| as an estimation for r(t). Nonetheless, the second problem (i.e., crawling D(t)
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Algorithm 7 RANK-EST-H
1: Input : t , qF

2: Randomly drill down on query lattice augmented with qF for t until some query

node Nq returns t

3: D(t) = set of tuples returned by ancestors(Nq) and dominate t

4: return
∑

ti∈D(t)
1

p(ti)

when only COUNT is required) remains. To address this problem, our main idea is

to enable an efficient estimation of |D(t)| by performing a random drill-down from

the top of the lattice as depicted in Figure 3.4 - i.e., starting from the root, we choose

a branch uniformly at random, and then repeat this process to “drill down” deeper

into the lattice in order to sample each tuple dominating t with a positive probability.

Figure 3.4 depicts examples of drill downs for the lattice of t5 in the running example

when projected to attributes A1, A2, A3.

SELECT *

A1=1

A1=A2=1

A1=A2=A3=1

A3=1

A2=A3=1

Running example when projected
to attributes A1, A2, A3 (k = 2)

query that returns t5A2=1

drill-down path 1

query that does not return t5

drill-down path 2
drill-down path 3
drill-down path 4

Figure 3.4. Examples of Drill Downs.

Let t1, . . . , tw be the tuples retrieved during this drill down which directly dom-

inate t. One can see that, by applying the Horvitz-Thompson estimator [37], an

unbiased estimate for |D(t)| is
∑w

i=1 1/p(ti), where p(ti) is the probability for ti to be

picked up by such a random drill-down process, because its expected value

E

[
w∑
i=1

1

p(ti)

]
=
∑
t′∈D(t)

(
p(ti) ·

1

p(ti)

)
= |D(t)|. (3.2)
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Unfortunately, computing p(ti) proves to be challenging because a tuple directly dom-

inating t may be returned by multiple drill-down paths. For example, in Figure 3.4,

t4 in the running example may be returned by drill down paths 2, 3 and 4. In addi-

tion, note that different drill-down paths are taken with different probability - e.g.,

while path 2 in Figure 3.4 is taken with probability 1/3, path 3 is take with only 1/6

probability. As such, one may not be able to precisely compute p(ti) without issuing

additional queries after the drill-down process.

To address this challenge, we consider the following heuristics: if, during the

current drill down, tuple ti is first returned at Level-h of the lattice8, then we assume

that all other nodes at Level-h which match ti also return ti - and no node above

Level-h returns it. With this heuristics, we now compute an estimation of p(ti) as

follows. Note that the probability for the random drill-down process to reach an

h-th level node is 1/(m
h

). Thus, for a tuple ti which shares the same value as t on c

attributes (note that c ≥ h due to the lattice definition), we have p(ti) ≈
(
c
h

)
/
(
m
h

)
.

For example, in Figure 3.4, when we retrieve t4 at the Level-1 node A2 = 1,

the estimate9 of p(t4) ≈ (2
1
)/(3

1
) = 2/3. One can see that we can now estimate |D(t)|

accordingly. For example, if we happen to take drill down path 2 in Figure 3.4, our

estimation for D(t5) is D(t) ≈ 2/1 + 1/(2/3) = 3.5, leading to a rank estimation of

4.5 for r(t5). Note that we may repeat the random drill down for multiple times (and

take the average of estimations) to improve the estimation accuracy for |D(t)|.
8Let the root level be Level 0.
9where c = 2, m = 3, and h = 1. Note that m = 3 because the lattice represents a projection to

A1, A2, A3. c = 2 because t4 and the input t5 have two attributes in common among A1, A2, A3.
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3.6 Algorithm RANK-EST

In this section, we start by describing our final RANK-EST algorithm. Then, we

tackle two theoretical issues, (1) the possible discrepancy between real and revealed

ranks, and (2) the hardness of exact rank computation, respectively.

3.6.1 Description of RANK-EST

Interleaving: From the previous discussions, one can see that the RANK-EST-S and

RANK-EST-H have complementary behavior - i.e., RANK-EST-S works poorly for

highly ranked tuples, which RANK-EST-H specifically address. We now consider the

integration of these two algorithms to produce RANK-EST which work universally

for all tuples in the database. Our main idea is to interleave the two algorithms. In

particular, we first take a pilot sample of the hidden database and use RANK-EST-S

to produce a (roughly) estimated rank. If the confidence interval of the estimation

falls below a threshold10, then t likely has a high rank - thus we switch to RANK-

EST-H. Otherwise, we continue with the sampling process in RANK-EST-S to reduce

the estimation error.

Extension to other qF: So far, we focused on the case where the user-specified

filtering query qF in Definition 3 is SELECT * FROM D. We now consider the extension

to other qF for RANK-EST-S and RANK-EST-H, respectively. Note that, for RANK-

EST-S, there is indeed no revision required for handling other qF, as long as the

sampling algorithm we call as a subroutine only generates samples that satisfy qF.

Then, by calling on existing aggregate estimation algorithms (e.g., [3]) to estimate

the COUNT of tuples satisfying qF, we can readily generate the rank of a tuple within

qF.

10e.g., for a 95% confidence interval r(t) ∈ [u, v], if v < ` where ` is the pre-determined threshold
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For RANK-EST-H, a simple revision is required - in Algorithm 7, when com-

puting D(t), i.e., the set of tuples returned during drill-down which dominate t, we

only include those tuples in D(t) that satisfy qF. With the revision, the estimation

we generate is for the number of tuples in D(t) matching qF. Note that, if qF happens

to be a conjunctive query that can be specified through the top-k interface, then it is

possible to further improve the efficiency of RANK-EST-H by appending the predi-

cates in qF to every query in the lattice (on which we perform the random drill-downs,

as shown in Figure 3.4). This way, all queries issued by RANK-EST-H are focused

on tuples matching qF, leading to a reduced query cost. Algorithm 8 depicts the

interleaved RANK-EST generic to qF.

Algorithm 8 RANK-EST

1: Input : t , qF Output : r̃(t)

2: Fetch pilot sample S from Sel(qF )

3: r̃c(t) = Approximate rank estimated by RANK-EST-S(t, qF )

4: if confidence interval of r̃c(t) < threshold then Estimate r̃(t) through RANK-

EST-H(t, qF )

5: else Continue estimation of r̃(t) through RANK-EST-S(t, qF )

3.6.2 Closeness of Real and Revealed Ranks

In the following discussion, we first describe why this problem exists in theory,

and then show that it is extremely unlikely to occur in practice. To understand why

the a tuple’s true rank might differ from what is revealed through the top-k interface,

consider a database of two Boolean attributes and three tuples: t1 : 〈0, 1〉, t2 :

〈0, 0〉, and t3 : 〈1, 1〉, with t1 and t3 having the highest and lowest rank, respectively,
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according to a hidden ranking function. One can see that, if the database has a top-1

interface, then it is impossible to determine which of t2 and t3 ranks higher, because

the only query that matches both tuples, i.e., SELECT * FROM D, returns neither. This

example illustrates that, while the true rank of t3 should be 2 (because two tuples

rank higher than it), the best estimation one can make from the top-k interface is 1

- leading to a significant difference between the two values.

Fortunately, we found through theoretical analysis and experimental studies

that such a difference is usually extremely small to non-existent in real-world hidden

databases, mainly because of two reasons. First, real-world databases often feature a

much larger k (than 1), revealing a lot more information about the rank comparison

between different tuples. Second, there are often many more attributes, making

it unlikely for two highly ranked tuples to be incomparable with each other. The

following theorem uses a special case to illustrate the extremely small value of the

difference. We shall further evaluate such a difference value with real-world datasets

in the experiments section.

Theorem 3. Consider a database with m attributes, each of which is generated

i.i.d. with uniform distribution over a domain size of c. For a tuple t with real rank

r and top-k-interface-revealed-rank r′, there is Pr{|r − r′| > ε} < p · (2p)ε−1, where p

is upper-bounded by: (note that erf(·) is the error function)

m∑
i=0

[(m
i

)
· (c− 1)m−i

cm
·

(
1−

k−1∑
j=0

(
r

j

)
· (ci − 1)r−j

ci·r

)]

≤
m∑
i=0

[(
m
i

)
· (c− 1)m−i

2cm
·

(
1− erf

(
(k − 1) · ci/2 − r
ci
√

2r(ci − 1))

))]

One can see from the theorem that, the larger k is or the smaller m and r are,

the smaller the probability for |r− r′| > ε will be - irrelevant of how many tuples the

database contains. Specifically, for a 15-attribute database with k = 100, the largest
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(i.e., worst-case) probability for any tuple (with arbitrary r) to have a relative rank

difference of 2% (i.e., |r − r′| > 0.02 · r) is lower than 0.00058 - indicating that the

top-k interface likely reveals a very accurate rank for each tuple in the database.

3.6.3 Hardness Results

We now consider the hardness of random comparison and computation for a

hidden web database. Before constructing the detailed proof, we first briefly describe

the intuitive idea behind the hardness results.

Recall the query lattice defined in Section 3.4. One can see that, when there

is a large number of attributes in the database, the query cost of rank compari-

son/computation can be very high if it requires the enumeration of queries at the

middle level (i.e., bm/2c-th level) of the lattice - because this middle level contains

the most queries (i.e., [ m
m/2

]). To understand how rank comparison/computation may

require issuing such middle-level queries, consider an example where one needs to

compute the rank of a given tuple t which has such a low rank that it is not returned

by any query above the bm/2c-th level in the lattice. Note that, unfortunately, this

scenario can happen even when the database is very small - with as few as m/2 + 1

tuples, as we shall show in the proof. In this case, to determine if there is a tuple

t′ which (1) shares the values of A1, . . . , Am/2 with t and (2) directly dominates (or

is directly dominated by) t, one has no choice but to issue SELECT * FROM D WHERE

A1 = t[A1] AND · · · AND Am/2 = t[Am/2] because:

• any query with fewer predicates would not help to determine if t � t′, because

t is not returned by such a query

• any query with more predicates would not help because it does not match t′.

Intuitively, one can see that such a scenario may force the issuing of all queries in the

middle level of the lattice.
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According to the intuition, we establish the hardness of rank comparison, (ex-

act) rank computation, and approximate rank computation, respectively as follows.

Theorem 4. (Hardness of Rank Comparison) Given two comparable tuples t

and t′, no algorithm can guarantee correct comparison with o(m
√
m/2) queries.

Proof. We construct the worst-case scenario for the proof as follows. We start by

considering a top-1 interface. Without loss of generality, suppose that t is all-zero

while t′ is all 1 (i.e., ∀i ∈ [1,m], t[Ai] = 0, t′[Ai] = 1). Let h = b
√
mc. For the sake

of simplicity, we assume h exactly divides m. Consider the following h tuples to be

the highest-ranked tuples in the database. Note that ti = A1, A2 means that ti has

A1 = 0 and A2 = 0, and value 211 for the other attributes.

t1: A2, . . . , Ah, Ah+2, , Am−1, Am

t2: A1, A3, , Ah, Ah+1, Ah+3, , Am−1, Am

t3: A1, A2, A4, , Ah, Ah+1, Ah+2, Ah+4, , Am−1, Am

...

th: A1, , Ah−1, Ah+1, , A2h−1, A2h+1, , Am−1

The construction follows the following rule: for any i (i ∈ [1, h]), ti has value 0

on all attributes except Ai, Ah+i, , - i.e., all Aj where j ≡ i mod h. A key implication

of this rule is that, for any query q of the form

q : Ai1 = 0 AND · · · AND Aih = 0 (3.3)

where ∀j ∈ [1, h], ij ≡ j mod h, q satisfies two properties:

• q does not match any of t1, . . . , th, and

• once we remove any single predicate from q, the new query matches at least

(indeed exactly) one tuple in t1, . . . , th.

11Note that this can be any arbitrary value that except t’s value (i.e., 0) and t′’s value (i.e., 1).
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Let Q = {q1, . . . , q(m
h

)} be the set of all queries of the form (3.3). Note that the size of

Q, i.e., (m
h

) = O(m
√
m/2). For each query qi ∈ Q, we construct a tuple tqi which has

value 0 on all attributes specified in qi, and 1 otherwise. An important property of

tqi, according to the two above-described properties of q, is that the rank comparison

between t and tqi is only inferable from one query - i.e., qi - because qi is the most-

predicate query which matches both t and tqi, and any shorter query returns neither

of them (as it has to return one of the highest ranked tuples t1, . . . , th).

Consider a hidden database of 2 + h + (m
h

) tuples - i.e., t, t′, t1, . . . , th, and

tq1, . . . , tq(m
h

). We first consider the following high-to-low rank assignment: t1, . . ., th,

an arbitrary order of tq1, . . . , tq(m
h

), and at last t, t′. Note that the correct output here

for a rank-comparison algorithm is ”CANNOT COMPARE”, because it is impossible

for one to infer the rank comparison between t and t′ from queries returned by the

web interface. Specifically, note that the only query which matches both t and t′ is

SELECT * FROM D which returns neither of them. In addition, no other tuple can

serve as a “bridge” between the two tuples as they rank immediately next to each

other in the assignment.

Suppose a rank-comparison algorithm were able to generate the correct output

with o(m
√
m/2) queries. One can see that there is at least one query in Q which

the rank-comparison algorithm did not issue. Let such a query be qi. Consider

the following rank assignment. t1, . . ., th, an arbitrary order of tq1, . . ., tq(i−1), . . .,

tq(i+1), . . ., tq(m
h

), and at last t, tqi, t
′. Note that the correct output of a rank-

comparison algorithm is now “t-outranking-t′”, because (1) qi returns t, indicating

that t dominates tqi, and (2) tqi and t′ are always directly comparable, as the most

specific query which matches both tuples only indeed matches these two tuples. One

can see that this leads to a contradiction, as the new rank assignment does not change

any query answer but qi, which was not issued by the rank-comparison algorithm.
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Thus, no rank-comparison algorithm can guarantee correct output with o(m
√
m/2)

queries.

Note that while the proof assumes k = 1, when k > 1 we can simply extend

the proof by duplicating each of t1, . . . , th for k times (which still reveals all tuples

through the top-k interface).

One can see that the theorem precludes the existence of efficient deterministic

algorithms for rank comparison when there is a large number of attributes (e.g.,

when m
√
m/2 � n). The following corollaries further eliminate the possibility of

having a worst-case-efficient algorithm for computing the exact rank of a given tuple,

or even approximating the rank with a deterministic error bound, when there is a

large number of attributes in the database and/or the attribute domain sizes are

unbounded. On the other hand, we shall show in Section 3.7 that our randomized

algorithms LV-RANK-COMPARE and RANK-EST usually requires far fewer queries

for real-world datasets.

Corollary 1. (Hardness of Obtaining the Exact Rank) For a given tuple t, no

algorithm can guarantee the computation of the rank of t with o(m
√
m/2) queries. If

the domain sizes of attributes are sufficiently large, no algorithm can guarantee rank

computation with o(m
√
m/2 + nn) queries.

Proof. The first part of the corollary follows directly from Theorem 4, because if

one were able to compute the rank of a tuple with o(m
√
m/2) queries, then simply

computing the ranks of both t and t′ would solve the rank-comparison problem with

o(m
√
m/2) queries. We now focus on proving the second part of the corollary.

Recall h = b
√
mc and Q being the set of queries with form (3.3). We now

construct a case which shows that, when the domain of each attribute is sufficiently

large (specifically, ¿ 2m), then even for a hidden database with as few as h+ 1 tuples,
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one needs to issue at least |Q| queries in order to guarantee the rank computation

for t in the worst-case scenario. Since n = h+ 1 in this case, the construction proves

that no algorithm can exactly compute the rank of a tuple with o(nn) queries, thus

completing the proof.

The construction is simply a top-1 interface over a database with an all-zero t as

well as t1, . . . , th as defined in the proof of Theorem 4. The reason why |Q| queries are

needed for the rank computation of t can be seen from the following three observations:

(1) If, after finishing the rank computation algorithm, one cannot determine whether

a query q ∈ Q matches any tuple other than the given t, then we can always insert

such a tuple to the database, rank it directly above t, without changing any query

answer one has seen so far. Note that the assumption of sufficiently large domain sizes

is used here, as the newly insert tuple needs to avoid all non-zero values included in

the issued queries. (2) No query “shorter” than q discloses any information about

the answer to q because it always overflows (matching the given tuple t and at least

one tuple in t1, . . . , th). (3) No query “longer” than q discloses any information about

the answer to q, because it does not match the tuple we propose to insert in the first

observation. As such, no algorithm can correctly compute rank without issuing all

queries in Q.

Corollary 2. (Hardness of Rank Approximation) For a given tuple t, no algo-

rithm can generate a value v such that the rank of t is guaranteed to be in [v, v ·r] with

o(m
√
m/2−

√
m · r) queries. If the domain sizes of attributes are sufficiently large, no

algorithm can do so with O(m
√
m/2 + nn −

√
m · r) queries.
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Figure 3.5. Rank Discovery: Evalu-
ating Rank Discrepancy.
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Figure 3.6. Rank Discovery: Evalu-
ating Comparability of Tuples.
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Figure 3.8. Rank Discovery: Varying
k (RC).

3.7 Experimental Results

3.7.1 Experimental Setup

Hardware and Platform: All our experiments were performed on a quad-core 2

GHz AMD Phenom machine with 8 GB of RAM. The algorithms were implemented

in Python.

Datasets: Our primary dataset consists of data crawled from the Yahoo! Autos

(YA)12, a real-world hidden database. It contains 200,000 used cars for sale in the

Dallas-Fort Worth metropolitan area. There are 32 Boolean attributes such as A/C,

Power Locks, etc, and 6 categorical attributes, such as Make, Model, Color, etc.

The domain size of categorical attributes ranges from 5 to 16. We also tested our

algorithms over a synthetic boolean dataset (Bool-IID or BI) of 10 million tuples

and 100 attributes, primarily for scalability purposes. The tuples are generated as

i.i.d. data with each attribute having probability of p = 0.5 to be 1. For both

12http://auto.yahoo.com
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Figure 3.9. Rank Discovery: Varying
Input Rank (RC).
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Figure 3.10. Rank Discovery: Vary-
ing n (RC).
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Figure 3.11. Rank Discovery: Vary-
ing cN (RC).
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Figure 3.12. Rank Discovery: Vary-
ing k (RE).

datasets, the tuples were reordered using a random permutation - with the order then

being used as a static ranking function for all experiments. We set k = 100 unless

otherwise specified. Our charts primarily report the results over for Yahoo! Autos

(unless otherwise specified) as the results on the synthetic dataset were similar.

Real-World Online Experiment: We also tested our algorithms online via Ama-

zon.com’s Product Advertising API13. The API reveals a top-100 interface with sales

rank being the ranking function, yet does not reveal the actual rank (by default). To

uncover the ground truth, we found that the individual item description provided by

Amazon.com reveals the sales rank of certain items14. As such, we chose all testing

tuples from those that have its real rank disclosed in the description. Specifically, we

focused on Amazon’s DVD and book items, and constructed search queries using 15

categorical attributes such as Actor, Artist, etc. Amazon.com has a limit of 2,000

queries per IP address per hour.

13https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
14Many others, e.g., item No. B009B0JR2C, do not reveal the rank at all.
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Figure 3.13. Rank Discovery: Vary-
ing n (RE).
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Figure 3.14. Rank Discovery: Vary-
ing m (RE).
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Figure 3.15. Rank Discovery: Trade-
off (RE).
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Figure 3.16. Rank Discovery: Vary-
ing Selectivity of qF .

Algorithms: We tested 4 algorithms for rank estimation considered in the paper:

RANK-COMPUTE, RANK-EST-S, RANK-EST-H and RANK-EST. Since, RANK-

EST-S uses algorithm LV-RANK-COMPARE for rank comparison, we also perform

a rigorous set of experiments to evaluate it. For RANK-EST-S and RANK-EST, we

used the existing HIDDEN-DB-SAMPLER [33] for the sampling primitive. We also

tested as baseline the direct usage of an existing algorithm GetNext [36] for rank

computation. Since GetNext is only capable of obtaining the (h + 1)-th ranked

tuple based on the top-h tuples, to use it for rank computation we ran the algorithm

repeatedly until reaching the input tuple.

Performance Measures: For all algorithms, we measure efficiency through query

cost. In addition, we measure the accuracy of rank estimation through the relative

error measure defined in Section 3.2.4.
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3.7.2 Experimental Results

In this subsection, we first empirically evaluate the discrepancy between real

and revealed ranks. Then we describe the results of our offline experiments over

Yahoo! Auto dataset and online experiments at Amazon.com for the rank estimation

problem.

Empirical Evaluation of Rank Discrepancy and Tuple Comparability : Re-

call that our aim is to estimate the revealed rank of a given tuple. We observed that

problem of discrepancy between real and revealed is exceedingly unlikely in prac-

tice. For each tuple in both datasets, we computed its revealed rank using RANK-

COMPUTE algorithm and compared the relative error between the real and revealed

ranks. Figure 3.5 shows the fraction of tuples that had a rank discrepancy of 0.1%

and 1% (or above) for different values of k. For k = 100 (a fairly common value), less

than 400 tuples out of 200,000 tuples had a rank discrepancy of 1%. This justifies

our problem definition in terms of revealed rank and that rank discrepancy is not a

big issue in real-world databases.

Figure 3.6 shows the feasibility of rank comparison problem over Yahoo! Autos

dataset. The results for Bool-IID dataset was similar. Notice that the probability

of finding a pair of tuples that are not comparable is exceedingly low (on the order

of 10−7 for k = 100). We observe that the fraction of tuple pairs that are directly

comparable varies between 10-20% and increases with larger values of k. It shows

that while almost all pair of tuples are comparable only a fraction of them are di-

rectly necessitating practical algorithms. Finally, we identify the fraction of pairs

of tuples that have a relative rank difference of 1% (e.g. when tuples ranked 990th

to 1010th were compared with the 1000th-ranked tuple). Intuitively, these are the

hardest pairs to test as with larger rank difference, the chance of identifying a bridge
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dramatically increases. We observed that even for this restrictive scenario, only a

minuscule fraction of tuples remain incomparable.

Comparison of Rank Estimation Algorithms: We start by comparing our algo-

rithms with the direct usage of GetNext [36] while varying the rank of the input

tuple between 1 and 180,000. Figure 3.7 depicts the (average) query cost required

to achieve a relative error of 10% on rank estimation. The query cost of GetNext

is only plotted for input rank [1, 10000], because it exceeds all of our algorithms

by orders of magnitude in all other categories. We also evaluated our deterministic

algorithm RANK-COMPUTE. While this algorithm is much more efficient that Get-

Next, its query cost rapidly increases with the tuple’s rank and becomes prohibitive.

One can also observe from the figure that, as discussed in Section 3.5, RANK-EST-S

works better for lowly ranked tuples, while RANK-EST-H works better for highly

ranked ones. By interleaving the two, RANK-EST works effectively for tuples of all

ranks. Given the excessive query cost of RANK-COMPUTE, we only focus on the

practical algorithms RANK-EST, RANK-EST-S and RANK-EST-H for comparative

analysis.

Before thoroughly evaluating different facets of the rank estimation algorithms,

we first evaluate the sub problem of rank comparison as its solution is used by both

RANK-EST-S and RANK-EST.

Rank Comparison: We start by evaluating the efficacy of of our Las Vegas al-

gorithm, LV-RANK-COMPARE. Specifically, we randomly selected two tuples with

rank between 42,000 and 44,000, and measured the query cost of comparing them

while varying k between 10 and 100. One can see from Figure 3.8 that, LV-RANK-

COMPARE is extremely practical and identifies the correct comparison rapidly. No-
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tice that the query cost decreases rapidly as k increases as more and more tuples

becomes directly comparable.

We tested the performance of LV-RANK-COMPARE while varying the ranks of

input tuples. Figure 3.9 depicts the results when the rank difference between the two

input tuples varies from 10,000 to 50,000, while the higher-ranked tuple is randomly

selected from one of the five rank-buckets ranging from [1, 10000] to [40001, 50000].

One can see from the figure that, consistent with intuition, our algorithm requires

fewer queries when the ranks of input tuples are further apart. In addition, the

performance of our algorithm is not significantly affected by the absolute rank of the

input tuples.

We also tested the scalability of LV-RANK-COMPARE by varying n, the num-

ber of tuples, and m, the number of attributes. To do so, we sample tuples and

attributes uniformly at random (without replacement) from the Yahoo! Auto and

Bool-IID datasets. One can see from Figure 3.10 that our query cost increases slowly

with n. Note that the jump at the right side of the figure is because we include at the

end of x axis the results for Bool-IID when the dataset contains 5 or 10 million tuples

- demonstrating the scalability of LV-RANK-COMPARE. In addition, our query cost

actually decreases with a large m. The reason for the latter is that, when m is larger,

the number of tuples directly comparable with t also increases - leading to a higher

probability of bridge construction by LV-RANK-COMPARE.

Finally, we tested our parameter setting for cN - i.e., the upper bound on the

length of a random walk before triggering proactive restart. One can observe from

Figure 3.11 the justification for our heuristics of cN = 3 for both datasets. We ob-

served similar result in our online experiments also. As discussed in Section 3.5,

further increasing cN leads to a higher query cost because, when the random walk
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“overshoots” the destination, it takes longer to restart before finding one of the many

short bridges.

Rank Estimation: Similar to Figures 3.8 and 3.10 for rank comparison, we tested

the performance of our rank estimation algorithms against varying k, n and m, respec-

tively, with results depicted in Figures 3.12, 3.13 and 3.14. All these figures depict the

number of queries required for reaching a relative error of 10% for rank estimation.

For Figures 3.13 and 3.14, we randomly chose the input tuples for RANK-EST-H

and RANK-EST-S from rank-bucket [10K, 20K] and [50K, 100K], respectively. For

RANK-EST, we randomly chose the input from the entire database. One can see

from Figures 3.12 and 3.14 that, as expected, our algorithms require fewer queries

when k or m is larger. Figure 3.13, on the other hand, demonstrates the scalabil-

ity of our algorithms to larger databases. Figure 3.15 further depicts the tradeoff

between query cost and the relative error of rank estimation. We also tested the

impact of selectivity of different queries qF . We constructed the filtering queries by

first randomly deciding the total number of attributes in qF which (along with their

values) are then chosen randomly. We then chose an arbitrary tuple from Sel(qF )

and estimated its rank within it. The results for different queries with varying level

of selectivity are provided in Figure 3.16. As expected, when queries become highly

selective, the query cost to estimate its rank drops.

Online Experiments at Amazon.com: Before presenting the results of our online

experiments, we would like to note that Amazon’s interface provides no efficient way

to crawl a large number of lowly ranked tuples without exceeding the query allowance.

As such, for the purpose of our experiments, we focused on tuples with rank between 1

and 15,000. Figure 3.17 shows the results. We first tested our LV-RANK-COMPARE

algorithm by randomly selecting two tuples with rank difference varying between 1,000
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Figure 3.17. Rank Discovery: Rank Comparison and Estimation at Amazon.com.

and 5,000. We can see that our algorithms require fewer than 100 queries for rank

comparison. For rank estimation, we can observe that our RANK-EST algorithm

requires fewer than 400 queries - far below the hourly limit of 2,000 queries imposed

by Amazon - to reach an estimation error of 10%. In addition, the pattern of query-

cost change with input rank is consistent with the offline case. Interestingly, RANK-

EST-H consistently outperforms RANK-EST-S in our online experiments - indicating

that the rank-bucket [1, 15000] we were able to use is still (relatively) highly ranked

in the large Amazon database. It is also important to note that our final RANK-

EST algorithm only has a slightly higher query cost than RANK-EST-H, indicating

our algorithm’s ability to quickly switch from RANK-EST-S when the input tuple is

highly ranked.

3.8 Related Work

Data Analytics over Hidden Databases: There has been prior work on crawling,

sampling, and aggregate estimation over the hidden web, specifically over text [23, 24]

and structured [17] hidden databases and search engines [25, 26, 27]. Specifically,

sampling-based methods were used for generating content summaries [28, 29, 30],

processing top-k queries [31], etc. Prior work (see [3] and references therein) consid-

ered sampling and aggregate estimation over attribute values explicitly returned by

the web interface of the structured hidden database. Our work, on the other hand,
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considers rank information of tuples which is not explicitly returned, thereby preclud-

ing the applicability of prior work. Our paper differs from top-k processing (see [32]

for a survey) as our paper aims to discover rank-related information from the top-k

answers, instead of studying how th e top-k answers can be retrieved.

Retrieving Rank Information from Hidden Databases: GetNext operator

[36] allows an ordered crawling of top ranked tuples for any static ranking function.

Specifically, given all tuples ranked in top-(h-1) as input, GetNext operator retrieves

the No. h ranked tuple. While [36] solves the problem of retrieving top-h tuples over a

top-k interface (where h > k), our paper initiates the first formal study on efficiently

estimating the rank of any given tuple in a hidden web database. Admittedly, it is

possible to use GetNext in a brute-force way to solve the rank computation problem

- i.e., by retrieving all tuples ranked higher than the input tuple in an iterative fashion.

However, such an approach is prohibitively expensive for all but the highly ranked

tuples. Further, it produces an exact rank whereas for a number of scenarios as

outlined in Section 3.1, approximate rank with low query cost is preferable. Suggestion

sampling [23] estimates the frequency of search queries from ranked lists returned by

a search engine’s prefix-matching auto-complete interface. Unlike [23], we consider

the retrieval of rank information from a structured hidden database with a form-like

interface.

Information Integration and Extraction for Hidden databases: A significant

body of research has been done on information integration and extraction over hidden

databases - see tutorials [15, 16]. Due to space limit, we only list a few closely-

related work: [17] proposes a crawling solution. Parsing and understanding web query

interfaces has been extensively studied (e.g., [18, 19]). The mapping of attributes

across different web interfaces has been addressed in (e.g., [20]). For integrating

query interfaces for multiple web databases in the same topic-area see [21, 22]. Our
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paper differs from top-k processing (see [32] for a survey) as our paper aims to discover

rank-related information from the top-k answers, instead of studying how the top-k

answers can be retrieved.

3.9 Final Remarks

In this paper, we defined a novel problem of rank discovery from hidden web

databases with restrictive top-k search interfaces. We first introduced a taxonomy of

ranking functions according to multiple dimensions, discussed the feasibility of rank

discovery for each type of ranking function, and described solutions for all the feasible

types. We proposed RANK-EST, a randomized algorithm for efficient rank discovery

for proprietary and observable ranking functions. We proved hardness results that

preclude the existence of efficient deterministic algorithms. We demonstrated the

effectiveness of our proposed algorithms using real-world datasets and also through

an online experiment conducted over Amazon.com.
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CHAPTER 4

Aggregate Estimation Over a Microblog Platform

4.1 Introduction

The Microblogs Query Aggregation Problem: Online microblogging platforms

have experienced a phenomenal growth of popularity in recent years, because they

offer easy and compelling ways for millions of users to post content and interact with

each other. In addition to providing attractive mediums for person-person interac-

tions, microblogging platforms also offer unprecedented opportunities for microblog

data analytics, i.e., big-picture views of what people are saying, because they contain

a deluge of opinions, viewpoints, and conversations by millions of users, at a scale

that would be otherwise impossible to gather using more traditional methods such

as controlled surveys. In fact, microblog service providers such as Twitter and their

partners are already attempting to analyze their data, ranging from public opinion

to spatiotemporal popularity of topics, and using the results to build advertising

campaigns or monitor the reputation of companies.

Although these are important applications for companies, microblogging plat-

forms also provide free (but limited) public access to their data in the form of re-

stricted APIs, which offer great opportunities for other, often non-commercial appli-

cations, such as the type of studies that would be most useful to a social scientist.

For example, a social researcher may wish to analyze publicly available microblog

conversations and postings to determine the change in general public’s attitudes on

individual privacy before and after the news of Edward Snowden’s leakage of NSA

surveillance became public. Other examples can include studies of the spread of
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obesity-promoting attitudes, the mechanisms of bullying in colleges or schools, and

the early detection of suicidal discourse.

A core functionality to facilitate such analytics is to answer aggregate queries

over publicly available microblog data, which is the focus of this paper. An example of

aggregate query is “How many Twitter users used the keyword privacy in 2013?”. We

shall consider SUM, COUNT, AVG queries on various attributes of microblog users

or posts (e.g., users’ age or posts’ length), with selection conditions on keywords and

other attributes like time.

We emphasize that our techniques will necessarily generate approximate an-

swers; exact answers are infeasible since they require access to the complete data

(and are also often unnecessary in many applications, since approximate aggregates

are usually sufficient for obtaining “big-picture” views of the data). Our methods

should be efficient in the following sense - the number of API calls made to the

microblogging service provider should be as few as possible in generating the approx-

imate aggregate.

Limitations of Existing Microblog APIs: Many of the popular microblog sites

like Twitter, Tumblr, Instagram, Yammer, Weibo, Identi.ca (and some other social

networking sites like Google+ and Facebook that also offer microblogging features)

offer search API calls, which allow retrieving posts containing query keywords, but

the results are limited, e.g., past week in Twitter Search API [38]. Other microblogs

limit the maximum number of search results one could retrieve to at most a few

thousands.

A notable exception to such search APIs is Twitter’s Streaming API, which

allows retrieving large numbers of posts given keyword and other conditions1. Unfor-

1If no condition is specified, the streaming API returns a ∼1% sample of all tweets - a ratio too

small to reliably compute many aggregates (e.g., those that are conditioned on a keyword).
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tunately, the streaming interface only allows retrieving Twitter postings in the future,

and there is no way to obtain historical tweets. Thus, a a sociologist will never be able

to study the origin of a trending keyword unless he/she is somehow (magically) able

to predict such a keyword ahead of time. Note that there are companies like GNIP

[39] and Datasift [40] that sell historic microblog data; however the subscription fee

is often rather high (e.g., $3,000 per month for Twitter alone at Datasift.com [40])

for a non-commercial setting such as social science research.

Limitations of Previous Research on Estimation of Aggregates on Social

Networks: There has been work on estimating aggregate functions on social net-

works [41, 42, 43, 44]. These works generally use random walk-based sampling on the

social graph, or adaptations of it like Metropolis-Hastings [45]. However, they are

inefficient for the type of aggregate queries that we study for the following reasons:

They only consider broad aggregates, that is, aggregates on the whole social network,

and not constrained by keywords. Most of these techniques enable aggregate estima-

tion by drawing a random sample of all microblog users, and extrapolating from the

sample. For our purpose, however, aggregate queries have keyword selection condi-

tions that match only an extremely small fraction of these users - e.g., the number

of Twitter users who have used the keyword privacy in their postings is only 0.4%

of all active users. A straighforward solution would be to only consider users who

satisfy the selection condition during the sampling random walk. However, we found

that this leads to a social subgraph with tightly connected communities that that

significantly increase its convergence time (its burn-in period). Further details of the

limitations of these techniques are discussed in Section 4.4 and Section 4.7.

Outline of Our Results: We develop MICROBLOG-ANALYZER, an efficient

platform to enable the accurate estimation of aggregate queries over an online mi-
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croblogging service. Its design is based on a central and novel idea: to leverage

the user-timeline interface (offered by most microblogging platforms) to bypass the

above-described limitations on the search API. The user-timeline API inputs a user-id

and returns all (for all practical purposes as discussed in Section 4.2) public posts

generated by the user.

MICROBLOG-ANALYZER operates as follows: we start from a user who re-

cently generated a post satisfying the aggregate query keyword condition (e.g., who

is returned by the search API), and then traverse a carefully constructed subgraph

of the social graph, where users are nodes and user connections are edges, according

to the aggregate query, in order to sample (and retrieve through the user-timeline

interface) a small number of user timelines based on which we generate our aggregate

estimation. There are two main technical issues facing this design: (1) how to design

the aggregate-dependent subgraph, and (2) how to traverse such a subgraph, in order

to enable efficient and accurate aggregate estimations. We propose two novel ideas

to address these challenges:

First, we propose a level-by-level subgraph to address the issue of subgraph de-

sign. Specifically, we introduce a novel taxonomy of user connections (i.e., edges)

based on the aggregate being estimated and user timelines. A critical feature of this

taxonomy is our finding that, while certain types of edges are beneficial to efficient

sampling, others are detrimental to it and should be removed from the graph. We

adjust the original social graph according to this taxonomy to produce the level-

by-level subgraph and, by performing simple random walks [46] over it, develop

MICROBLOG-ANALYZER-Simple Random Walk (MA-SRW), our first algorithm

for aggregate estimations over a microblog platform. We present theoretical analysis

and real-world experiments to demonstrate the superiority of MA-SRW over several

baseline graph designs.
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Then, to address the graph traversal issue, we develop a topology aware random

walk over the level-by-level subgraph. Previous random walk techniques (e.g., as used

in MA-SRW) are oblivious and therefore generic to the topology of the underlying

graph. This often requires a large query cost for the so-called burn-in period [45] in or-

der for the sampling probability of each node to converge to a stationary distribution,

so that the sampled nodes can be used for aggregate estimations. We show that, by

leveraging knowledge of the underlying graph topology - specifically, the level-by-level

structure - our traversal algorithm removes the need of this burn-in period (and the

associated query cost) - enabling a significantly more efficient and accurate aggregate

estimation process. The execution of topology-aware random walk over the level-by-

level graph forms our final algorithm, MICROBLOG-ANALYZER-Topology-Aware

Random Walk (MA-TARW).

Summary of Contributions:

• We define the novel problem of aggregate estimation over historic microblog

data (Section 4.2). We develop a novel idea leveraging the user-timeline ac-

cess provided by online microblogs to bypass the limitations they place on the

search API, and present a platform to tackle the aggregate estimation problem

(Section 4.3).

• To effectively sample the social graph according to an aggregate query, we de-

velop a level-by-level subgraph topology and demonstrate through theoretical

analysis and experimental results its superiority over a number of baseline graph

designs (Section 4.4).

• To efficiently sample a level-by-level graph, we develop a topology aware random

walk which leverages the special properties of a level-by-level graph topology
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to significantly outperform baseline solutions such as traditional random walks

(Section 4.5).

• We present comprehensive experiments on Twitter, Google+ and Tumblr that

show the significant improvement our methods offer compared with the state-

of-the-art (Section 4.6).

4.2 Problem Definition

In this section, we start with describing a data-access model that abstracts the

API interfaces provided by most popular microblogs, and then define the problem of

aggregate estimation.

Model of Microblog Data Access: In general, a microblogging platform offers

three functionalities: (1) share concise updates in text (e.g., Twitter, Google+, Tum-

blr), image (e.g., Instagram), or video (e.g., Vine); (2) form social connections with

each other (e.g., follower/followee in Twitter, Circles in Google+, Likes in Tumblr);

and (3) search, subscribe to, and consume the updates posted by users. Correspond-

ingly to these three functionalities, most microblogging platforms - e.g., Twitter,

Tumblr, Instagram, Google+, Weibo, Yammer etc. allow the following three types of

queries:

1. SEARCH: Given a keyword (or keywords) w, return recent micro-posts that con-

tain w. Most microblog sites only return posts in recent weeks – e.g., the last

weeks posts in Twitter API [38]. Other microblogs restrict search to top-k re-

sults where k could be in the low thousands. They do so for two main reasons:

recent data are generally more interesting to users, and many microblog service

providers consider selling access to historic data an important monetization

channel [40, 39].
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2. USER CONNECTIONS: Given a user u, return all other users “connected” with u.

Note that “connections” here are loosely defined - they can be follower/followee

relationships (as in Twitter), friendships (as in Friendfeed), etc. Almost all

real-world microblogs, e.g., Twitter, Instagram, Tumblr, allow complete access

to all user connections (unless a user sets it to private).

3. USER TIMELINE: Given a user u, return all posts published by u. To simplify the

taxonomy, we assume that a user timeline query also returns the user’s profile

information (e.g., name, demographics). Like user connection queries, real-

world microblogs seldomly limit the returned user timelines, with one notable

exception of Twitter which only publishes the most recent 3200 tweets published

by a user. Nonetheless, according to recent studies, only a very small fraction

of extremely prolific users - 5%[47] - have posted more that 3,200 tweets and

even for these users only very old tweets are missing, in contrast to the search

API that only goes back one week [38] (e.g., even Justin Bieber only posted

2,500 tweets between Apr and Dec 2013). Given that in this paper we focus on

aggregate estimations, it is safe to assume that this small number of incomplete

user timelines has little effect on the estimated aggregates.

Note that the above interfaces could alternatively be implemented through web

crawling of the microblog site if an API is not available. However, web search inter-

faces often have unknown selection and ranking criteria that make them less desirable

for aggregate estimations - e.g., in Twitter, posts may be missing from the web search

but not from the search API results [38]; similarly Tumblr and other sites often per-

form unpredictable query expansion at their Web search interface. Further, many sites

do not allow web-page scraping, e.g., as specified in Twitter (https://twitter.com/tos).

Another important interface limitation imposed by microblogging APIs is an

upper bound on the number of queries a user can issue in a time period. For example,
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Twitter’s search API [38] allows only 180 queries over a 15 minute window, and Reddit

API allows no more than one request every two seconds.

Problem Definition: In this paper, we address the problem of aggregate estimations

over microblogs by issuing queries through the above-described limited microblog in-

terface. Specifically, we consider aggregate queries of the form SELECT AGGR(f(u))

FROM U WHERE CONDITION where U is the set of all users, f(u) is any function that

returns a numeric measure for each user u (e.g., age or #connections), AGGR is an ag-

gregate function such as COUNT, SUM or AVG, and CONDITION determines whether

a useru should be considered for (i.e., included in) the aggregate.

It is important to note that the above-described form covers not only aggregates

over users, but also aggregates over posts as well. For example, the COUNT of posts

containing keyword privacy can be specified as follows: CONDITION returns TRUE

if a user has privacy appearing in its timeline, and FALSE otherwise; f(u) returns

the number of posts containing privacy in the user’s timeline; and AGGR is SUM.

While many different predicates can be specified in CONDITION, we highlight two

specific types: (a) keyword predicates - i.e., a user is included iff its timeline contains

a pre-determined keyword (e.g., privacy in the above example); (b) time window -

e.g., users who mentioned privacy from Jul to Dec 2013. Keyword predicates are

prevalent in aggregates required by social science studies because most of these studies

focus on one or a few topics specifiable as keywords. For this reason, in this paper

we focus on aggregate queries with at least one keyword predicate, optionally a time

window, as well as other other predicates on a user’s profile attributes (e.g., gender,

age, number of connections).

Performance Measures: The performance of an aggregate estimation algorithm is

measured in terms of efficiency and accuracy. Given the query-rate limit enforced by
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most microblogging platforms, the efficiency is the query cost - i.e., the number of

queries and/or API calls (on SEARCH, USER CONNECTIONS, and USER TIMELINE) the

algorithm issues to the microblog.

For accuracy, given estimation θ̃ of an aggregate θ, we apply the standard

measure of relative error |θ̃− θ|/θ. Note that the error is determined by two factors2:

bias, i.e. E(θ̃ − θ), and variance of θ̃.

Hence, given an aggregate query with keyword and other predicates, the objec-

tive of the microblog aggregate estimation problem studied in this paper is to produce

an estimation while minimizing both query cost and relative error.

4.3 Overview of MICROBLOG-ANALYZER

This section overviews MICROBLOG-ANALYZER, our system for enabling

analytics over a microblog by issuing queries through its limited access interface.

We start by presenting a key idea of MICROBLOG-ANALYZER: estimating aggre-

gates by sampling user timelines. Then, we outline the design issues associated with

two main components of MICROBLOG-ANALYZER: (1) GRAPH-BUILDER, i.e.,

the generation of a conceptual graph that connects user timelines together, and (2)

GRAPH-WALKER, i.e., the design of an efficient sampling algorithm over such a

graph. While Section4.4 and Section4.5 describe these two components in detail, we

discuss at the end of this section how we prototyped MICROBLOG-ANALYZER over

Twitter and collected ground-truth for its evaluation.

4.3.1 System Architecture

Figure 4.1 depicts the architecture for MICROBLOG-ANALYZER which has

two main components: (1) GRAPH-BUILDER that builds a graph connecting users

2Specifically, the mean squared error MSE = bias2 + variance.
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Figure 4.1. Microblog Analyzer: System Architecture.

and (2) GRAPH-WALKER that performs a random walk over such a graph. The

system works as follows:

• It receives as input an aggregate query to be estimated (as defined in Sec-

tion4.2), a query budget (i.e., the maximum number of queries MICROBLOG-

ANALYZER can issue to the microblog), as well as one or a few “seed users”

which have posted microblogs satisfying the selection condition of the aggre-

gate. Note that such seed users can be easily identified through the limited

search API (e.g., for Twitter, users who posted a keyword in the past week).

• Given a seed user, MICROBLOG-ANALYZER uses the GRAPH-BUILDER to

determine which other users are its neighbors. As we shall show later, the design

of GRAPH-BUILDER can range from simply using all social connections of the

user to a carefully designed algorithm that takes into account the aggregate

being estimated and certain user timeline information to select a subset of such

social connections. We shall discuss the design of this component in the next

subsection and then in detail in Section4.4.

• Given the neighbors, GRAPH-WALKER determines the probability for MICROBLOG-

ANALYZER to “transit to” and sample each neighbor for aggregate estimation.

Once again, the design ranges from simply choosing each neighbor uniformly at

random (i.e., simple random walk) to a carefully designed algorithm that takes
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into account certain topological properties of the graph produced by GRAPH-

BUILDER. We shall discuss the design of this component in the next subsection

and then in detail in Section4.5.

• The above process can be repeated multiple times until exhausting the query

budget, so as to produce a more accurate aggregate estimation as the final

output of MICROBLOG-ANALYZER.

Algorithm 9 MICROBLOG-ANALYZER

1: Retrieve seed users

2: while Remaining query budget > 0 do

3: Invoke GRAPH-BUILDER to retrieve user neighborhood

4: Invoke GRAPH-WALKER and transition to new user

5: Perform aggregate estimation if possible

6: end while

4.3.2 Key Idea: User-Timeline Based Analytics

Feasibility of User-Timeline Based Analytics: To address the often stringent

limit on search query interfaces, a key data source MICROBLOG-ANALYZER lever-

ages is the user timeline - i.e., all historic posts published by a user - which, as

discussed in Section4.2, is readily accessible through the access interface of many

microblogs.

To understand why user-timeline information can be used to answer aggregate

queries (especially those with keyword predicates) defined in Section4.2, we start by

considering an extremely inefficient technique which nevertheless demonstrates the

feasibility of this idea. Note that, as shown by many previous studies [41, 43, 48],
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the vast majority of users in a microblogging service are linked in a connected graph

through social relationships revealed by the service - e.g., follower/followee in Twitter,

Circles in Google+, blog followers in Tumblr, comments on same post in Reddit, etc.

For the purpose of this paper, we consider such a social graph to be undirected. For

directed relationships such as follower/followee on Twitter, one can easily convert

them to undirected edges by considering two users to be connected if either follows

the other.

Given the social graph, one can simply start with one user and recursively follow

edges (using user connections API) to reach and crawl the timeline of most users -

making it possible to answer aggregates based on the locally crawled data. While this

brute-force method demonstrates the feasibility of acquiring sufficient information

(for aggregate estimation) through user-timeline queries, it unfortunately requires a

prohibitively high query cost given the access-rate limit discussed in Section4.2. In

addition, most crawled data would be completely useless for aggregate estimation

- e.g., even for a broad query like the count of users who have tweeted privacy

in 2013, the vast majority of user timelines would be irrelevant because only a very

small percentage (≈ 0.4% of its active users) of all Twitter users satisfies the selection

condition - leading to a significant waste of resources.

To address this problem, MICROBLOG-ANALYZER only samples users who

satisfy the keyword predicate specified in the aggregate query, and then produce

aggregate estimations according to the collected sample. Corresponding to the two

components GRAPH-BUILDER and GRAPH-WALKER in the system, there are two

design issues that are critical for enabling the sampling-based method:

Design Issue 1 (Subgraph Generation): A straightforward method to sample

user timelines is to perform a random walk over the social graph - e.g., a simple random
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Table 4.1. Microblog Analyzer: Components employed by proposed algorithms

GRAPH-BUILDER GRAPH-WALKER
MA-SRW Level-by-Level (Section 4.4) Level-by-Level (Section 4.4)
MA-TARW Simple RW [46] Topology-Aware RW (Section 4.5)

walk [46] recursively jumps from one user to one of its neighbors chosen uniformly at

random - so timelines of sample users (taken after a sufficient number of “burn-in”

transitions [45]) can be used for aggregate estimations. A problem with this method,

however, is that topology of the social graph is very “unfriendly” for sampling and

requires a high query cost for random walks to “burn-in”. While we shall discuss this

finding in detail in Section4.4, an intuitive explanation here is that the social graph

contains many “redundant” edges which may “trap” 3 a random walk inside a tightly

connected component - i.e., preventing the walk from efficiently sampling all nodes

in the graph.

More importantly, it was recently found [49] that the burn-in period required

for many social-relationship-induced graphs is much longer than anticipated - again

leading to problems with the rate limit of microblogging services. Estimating ag-

gregates which cover only a small portion (albeit still a large absolute amount) of

microblog users requires an extremely large number of samples. The reason is simple:

Consider an AVG query such as the average age of users who mentioned Privacy in

2013. Since the standard error of estimation is inversely proportional to
√
s · r, where

s is the sample size and r is the fraction of users who satisfy the selection condition,

a small r (e.g., ≈ 0.4% for users who mentioned Privacy in Twitter in 2013) man-

dates a very large sample size s to reach a reasonable level of accuracy. Indeed, this

3Note that unlike a spider trap for random walks over a directed graph, here a random walk can

still exit the component - albeit with a small probability.
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problem occurs for most aggregates concerning one or a few keywords, because rarely

any garners the attention of more than 1% of all microblog users [48].

As such, to enable efficient sampling, the first design issue we must address is

how to “on-the-fly” remove the redundant edges and find a subgraph that satisfies

two conditions: (1) high recall: it still includes most if not all users who satisfy the

selection condition of the aggregate to be estimated, and (2) sampling-friendly: the

subgraph should have a “well-knit” [46, 50] topology and therefore facilitate an effi-

cient random walk process. One can see that the high-recall requirement ensures the

closeness of estimations generated from the subgraph to the ground truth, while the

friendliness requirement ensures an efficient random walk process. We shall develop

a novel technique for subgraph construction in Section4.4.

Design Issue 2: Sampling Design: In the above discussions, we considered a direct

application of traditional random walk techniques (e.g., simple random walk [46] or

Metropolis-Hastings random walk [45]) over the user-timeline graph (or subgraph,

once the above design issue is addressed). While there has been a large body of work

on using these random walks for aggregate estimation over large graphs [46, 42, 51, 43,

44] a key deficiency of it is the significant query cost required by answering COUNT

and SUM queries.

While samples collected by random walks can be directly used to estimate AVG

queries (as a weighted average of all sample tuples), if one does not know the total

number of nodes in the graph (which is often the case in practice), generating es-

timations for COUNT and SUM often needs to use a significantly more expensive

mark-and-recapture [52] based technique (e.g., [44]). However, in this method Ω(
√
n)

samples are needed to produce just one collision over an n-node graph - an extremely

high query cost even for a perfectly built subgraph containing only users satisfying the
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selection condition. For example, to estimate the COUNT of all users who tweeted

privacy in 2013 (about 894,000), this means at least thousands of samples must be

collected, incurring a very high query cost. To address this deficiency, the second

design issue is how to efficiently traverse the graph to estimate AVG, COUNT and

SUM aggregates. We shall develop a novel sampling algorithm to achieve these objec-

tives in Section4.5. Table 4.1 shows which subgraph generation (GRAPH-BUILDER)

and graph sampling (GRAPH-WALKER) components are employed by the two key

proposed algorithms of this paper.

Prototype Design for Twitter Experiments: Before presenting out detailed

design of MICROBLOG-ANALYZER in Section4.4 and Section 4.5, we would like

to briefly discuss how we prototyped over Twitter, the preeminent micro-blogging

platform. Note that while we focus the rest of the paper on this Twitter prototype,

the adaption to other micro-blogging platforms is straightforward - e.g., we present

experiments in Section 4.6 over Google+ and Tumblr.

Twitter’s REST API [53] naturally fits into the data access model detailed in

Section4.2. The search API retrieves tweets matching the given keywords which were

posted during the past week [38]. The user timeline API provides access to a user’s

historic tweets (up to the last 3200). Since Twitter allows asymmetric relationship

between users, we have to use two APIs to retrieve all the users who follow user u

and all users who are followed by u, in order to collect all user connections as defined

in the undirected social graph. Each API call returns up to 5000 connections while

the vast majority (upwards of 95% [47]) of users have fewer than 100.

We now briefly describe how we collected the ground truth for evaluating our

prototype’s effectiveness on estimating aggregates such as “COUNT of all users who

tweeted about privacy in 2013”. We used the streaming API to collect all public
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Figure 4.2. Microblog Analyzer:
AVG(followers): Users who tweeted
privacy.
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Figure 4.3. Microblog Analyzer:
COUNT: Users who tweeted privacy.

tweets mentioning a diverse set of keywords (such as cities, celebrities, organizations,

etc.) between Jan 1, 2013 to Oct 31, 2013. Twitter ensures that the stream returns

all relevant tweets as long as their frequency is less than about 1% of the entire

Twitter Firehose (total volume) [54]. Our specified keywords were selective and did

not receive any rate limit exception, which means that this is an accurate ground

truth to evaluate aggregate estimation algorithms.

Given a keyword w, we use Twitter’s search API to retrieve the set of “seed”

users who have used the keyword recently in their tweets. Once the list of seed

user ids are obtained, the SUBGRAPH-BUILDER uses the timeline API to get their

historic tweets. Specifically, for a given seed user u, it uses the Twitter’s connection

API to get the list of other users who were followed by u. This allows us to go

back in time towards the time frame of interest (2013 in this case). Among the

users who were followed by u, SUBGRAPH-BUILDER identifies a subset of them

(thereby constructing a virtual subgraph). Some of the users are then pursued by

TA-WALKER to perform the level-by-level walk over relevant user timelines.
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4.4 Level-by-Level Subgraph

Recall that GRAPH-BUILDER aims to construct a subgraph (of the social

graph defined in Section 4.3) with two properties: (1) a high recall of (timelines of)

users who satisfy the selection condition of the aggregate query to be estimated, and

(2) a topology that enables efficient sampling of such users. In this section, we start

by describing a baseline method that achieves (1) but fails (2). The deficiencies of

this baseline motivate us to propose a novel level-by-level subgraph to satisfy both.

At the end of this section, we present Algorithm MA-SRW which enables aggregate

estimation by performing simple random walks over the level-by-level graph.

Running example: Throughout this section and the next, we consider as running

example the estimation of the following aggregate query over our Twitter prototype:

AVG(number of followers) of users who tweeted the keyword privacy in 2013.

4.4.1 Baseline Subgraphs and Their Deficiencies

We start with discussing term-induced subgraph, a straightforward subgraph

construction which serves as a baseline for our study. Simply put, unlike the original

graph which includes all user timelines, the term-induced graph consists of only users

who satisfy the keyword selection condition of the aggregate query. In the running
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example, this leads to a subgraph consisting of all users who have tweeted privacy

before. From a practical standpoint, this means that, during the random walk process,

we always start with a user who has privacy in his/her timeline and only transit to

users who satisfy the same criteria.

The rationale for this baseline approach is simple: Since nodes in the term-

induced subgraph form a superset of those covered by the aggregate, the subgraph

has a high recall as long as it remains connected or has a large connected component.

On the other hand, the sampling efficiency is likely to be improved because of the

reduced graph size. The design of the subgraph balances between the two objectives

by filtering nodes only with keyword predicates (defined in Section 4.2) - which, as

shown below, vastly reduces the subgraph size while keeping it connected - but not

other conditions in the aggregate query - e.g., a time-interval condition which, when

overly short, can result in a low recall.

Our experiments on Twitter confirmed the validity for the high-recall assump-

tion - for all keywords and hashtags we tested (from popular ones such as Fiscalcliff,

New York, Superbowl to more obscure ones such as Tunisia, Simvastatin), the

largest connected component of the subgraph contains almost all (on average 94% -

see Table 4.2 for details) nodes in the subgraph - demonstrating the high-recall of a

term-induced subgraph. Intuitively, this is because of the strong correlation between

social relationships and co-mentioning of keywords - i.e., not only are terms/hashtags

likely propagated between followers and followees, but users who have similar interests

tend to be connected and use the same keywords - leading to the high recall.

For sampling efficiency, our findings were mixed. While the query cost is indeed

much lower than the original social graph, it is still very expensive. For the running

example (average number of followers for users who tweeted privacy), this subgraph

required close to 49,000 queries to obtain an estimate with less than 5% relative error.
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Table 4.2. Microblog Analyzer: Statistics for Subgraphs

Keyword Recall Avg#common
neighbors

% of intra & cross-level

FiscalCliff 97% 16, 2 27%, 1%
New York 91% 49, 3 32%, 2%

Super Bowl 93% 34, 1 29%, 2%
Obamacare 96% 21, 5 22%, 1%
Tunisia 86% 11, 4 28%, 1%

Simvastatin 81% 19, 2 24%, 2%
Oprah Winfrey 91% 22, 4 29%, 3%

While this value is significantly less than than the 144,000 queries required for the

original graph, it is still high considering Twitter’s rate limit. Figures 4.2 and 4.3

how the term-induced subgraph performs on estimating AVG(number of followers)

and COUNT for users who tweeted privacy, respectively.

To understand why the efficiency problem remains with the term-induced sub-

graph, we note that even though users who tweeted privacy only represent a small

percentage of all Twitter users, the number of edges connecting them in the term

induced graph is still very large (e.g., close to 1 million edges connecting approxi-

mately 142 thousand nodes for the running example). With such a large and dense

graph, the efficiency of sampling critically depends on whether the graph topology is

carefully designed to enable efficient random walks.

Unfortunately, we found a special topological property of the term induced

subgraph that is indeed very “unfriendly” for efficient sampling: Note that, exactly

because of the same reason why the term-induced graph likely has a high recall,

keywords are often propagated among users that form tightly connected communities

(e.g., measured according to graph modularity [50]). This actually requires a random

walk to have a long burn-in period because it is likely “trapped” inside a tightly
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connected community before having a sufficient probability to propagate to other

parts of the graph. Our experiments on Twitter confirmed this finding. The burn-in

period (with Geweke threshold [55] Z <= 0.1) for the entire Twitter graph and the

term induced subgraph (for privacy) were approximately 700 and 610 respectively.

Similar behavior was observed for other keywords also (see Figure 4.4 for details).

One can see from the above discussion that the straightforward design of a

term-induced subgraph cannot adequately address the sampling-efficiency problem

of the original social graph, mainly because of the long burn-in dictated by travers-

ing between tightly connected communities. In the next subsection, we describe

our proposed methods for constructing a “sampling-friendlier” subgraph topology -

specifically, by exploiting time dimension of the term-induced subgraph - i.e., the

time order with which users posted a specified term like privacy.

4.4.2 Level-by-Level Subgraph

4.4.2.1 Key Idea and Rationale

To develop our idea of a level-by-level subgraph, we start with introducing a

taxonomy of edges in the term-induced subgraph and discuss how each type of edges

affect the efficiency of random walks. Consider a simple organization of all nodes

(users) into multiple levels according to the time when a user first qualified for the

keyword predicate (i.e., tweeted privacy in the running example). Consider an ar-

bitrary time interval, say 1 day. We partition all users in the term-induced subgraph

into multiple segments according to the interval (e.g., users published privacy be-

tween Jan 1, 13 and Oct 31, 13 will be partitioned into 303 segments).

If we draw each segment as a “virtual level” as in Figure 4.6, and place these

levels from top to bottom in chronological order, then we can classify all edges in the
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Figure 4.6. Microblog Analyzer: Level-by-Level View of term-induced Subgraph.

subgraph into three categories: (a) Adjacent-level edges connect two users in adjacent

levels - e.g., Edge a in Figure 4.6 connects User 1 who first tweeted privacy on Jan 3

and User 2 who did so on Jan 4. (b) Cross-level Edges connect two users in unequal

and non-adjacent levels - e.g., Edge b in Figure 4.6. (c) Intra-level Edges connect two

users in the same level - e.g., Edge c in Figure 4.6.

The reason why we introduce such a ternary classification is because, interest-

ingly, these three types of edges serve different roles in facilitating or deterring the

random walk process. Specifically, we found that, for a “reasonable” time interval

(>1 hour), (more) intra-level edges are detrimental to the efficiency of random walks,

while (more) adjacent-level edges are beneficial to it. Cross-level edges, on the other

hand, contribute to more efficient random walks but are relatively rare in practice

(e.g., less than 1% for privacy. See Table 4.2 for other keywords).

While we shall verify this finding both theoretically and experimentally in Sec-

tion 4.4.2.2, we would like to start here with an intuitive explanation for the varying

effects different types of edges have on sampling efficiency. Intuitively, intra-level

edges usually exist between users in a tightly connected component (as described in

Section 4.4.1), while adjacent- and cross-level edges are most often not. This has

been observed before - e.g., it was found in [56] that 92% retweets produced by fol-

lowers of a user occur within 1-hour of the original tweet, demonstrating that most
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followers “respond” within very short time, leading to intra-level edges between users

in a tightly connected component. Our experiments confirmed this observation - e.g.,

Table 4.2 (column 2) contrasts, for various keywords, the average number of common

neighbors shared by two users connected by an intra-level edge and those who are

not. We can observe that, on average, one in four edges in the term induced sub-

graph is an intra-level edge. Further, the users connected by an intra level edges have

significantly more common neighbors.

One can see from this explanation that, to “burn-in” to a stationary distribu-

tion, a random walk needs to cross adjacent- and/or cross-level edges and cannot get

“stuck” inside a small group of users tightly connected by intra-level edges. Combine

this with the fact that a substantial percentage of edges in a real-world term-induced

graph are intra-level ones (e.g., even for a short interval of 1 hour, more than 28% of

edges for keyword privacy are intra-level ones), a key idea for our subgraph design

subgraph is to remove all intra-level edges from the term-induced graph. We refer to

this subgraph as the level-by-level subgraph because it only contains edges between

different levels. From a practical standpoint, this means that the random walk needs

to follow a simple rule: transit from a user to its neighbor if and only if they did not

first tweet privacy in the same day.

One can see that, to properly design a level-by-level subgraph, one needs to

address two key issues. One is, of course, to verify that removing intra-level edges

indeed improves the efficiency of random walks. We shall discuss this verification in

Section 4.4.2.2. The other has to deal with the time interval used in defining intra-

level edges. Note that an intra-level edge could be classified as adjacent- or even

cross-level edge with a different time interval. We shall develop the proper setup of

time interval for an aggregate in Section 4.4.2.3.
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4.4.2.2 Effect of Intra-Level Edges

We now analyze the effect of intra-level edges on the efficiency of random walks

in two steps. First, we present theoretical analysis on a simple example of level-by-

level graph to illustrate how the removal of intra-level edges makes the graph more

“well-knit” and more efficient for random walks. Then, we present experimental find-

ings from our Twitter prototype to demonstrate the efficiency improvements achieved

by removing intra-level edges.

For theoretical analysis, we consider the change of graph conductance [46] af-

ter the removal of intra-level edges. The conductance ϕ(G) of a graph G measures

how “well-knit” G is - i.e., how fast a random walk can converge to its stationary

distribution. Specifically, we have

ϕ(G) = min
S⊆V

∑
vi∈S,vj∈S aij

min
(
a(S), a(S)

) (4.1)

where V is the set of vertices in G, S and S = V \S form a partition of V into two

disjoint subsets, aij = 1 if there is an edge connecting vi and vj in G and 0 otherwise,

and a(S) =
∑

vi∈S
∑

vj∈V aij. In general, a simple random walk burns-in faster on

graphs with higher conductance [57].

Given the complexity of analyzing the conductance of an arbitrary graph, for

the purpose of this paper, we consider a simple example of a level-by-level subgraph

G as follows. Let there be n nodes in the graph which are distributed evenly across

h levels (so each level contains n/h nodes). The adjacent-level edges in the graph

are constructed such that each node at Level i (i ∈ [1, h − 1]) is connected with

d nodes chosen uniformly at random from those at Level i + 1. The intra-level

edges, on the other hand, connect each node at Level i with d′ other nodes chosen

uniformly at random from Level i. While this simple model does not match real-world
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graph topologies, it nevertheless gives us an indication of how intra-level edges affect

conductance, as demonstrated in the following theorem.

Theorem 5. The conductance for G is

ϕ(G) =



h
(k+d)(h−1)n

if d ≤ n
2h

, k ≤ n
2h

min
(

2kh−n
kh+dn

, 2d
2d(h−1)+hk

)
if d ≤ n

2h
, n

2h
< k < n

h

min
(

2dh−n
kh+dn

, 2d
2d(h−1)+hk

)
if n

2h
< d < n

h
, k ≤ n

2h

min
(

(k − n
2h

) 2dh−n
kh+dn

, 2d
2d(h−1)+hk

)
if n

2h
< d < n

h
, n

2h
< k < n

h

(4.2)

After removing all intra-level edges, the conductance of G′ is

ϕ(G′) =


h

nd(h−1)
if d ≤ n

2h

min
(

2hd−n
nd

, 1
h−1

)
if n

2h
< d < n

h

(4.3)

Proof. We give a proof sketch due to space limitations by showing adding intra level

edges to a level by level graph actually decreases conductance. For simplicity, we

consider a level-by-level graph (G′) with h levels where each level has exactly n/h

nodes. Each node is connected with d(d� n/h) randomly chosen nodes in adjacent

levels. In order to compute the conductance of this graph, we have to identify the

cut that has the lowest conductance. There are two possible cuts - horizontal (where

the cut disconnected two adjacent levels) or vertical (where the cut disconnects the

graph into subgraphs, each with h levels).

After some algebraic manipulations, we can notice that the conductance of the

horizontal cut is ϕ(G′)Sh
= 1

h−1
. Similarly, the conductance of vertical cut is:
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ϕ(G′)Sv =


h

nd(h−1)
if d ≤ n

2h

min
(

2hd−n
nd

, 1
h−1

)
if n

2h
< d < n

h
.

(4.4)

The conductance of the graph is min(ϕ(G′)Sh
, ϕ(G′)Sv). In order to analyze

the impact of intra level edges, we assume a simple model where each node has k

randomly chosen intra-layer edges. We can see that the horizontal cut for this graph:

φ(G)Sh
= 1/(h− 1 + hk/(2d)). i.e. the horizontal cut with intra level edges decrease

the conductance. There are four possible cases for vertical cut depending on the

value of d and h. The second argument for min in Equation 4.2 provides the value

for φ(G)Sv . Comparing the equations, we can notice that the additional factor of k

(introduced due to intra level edges) actually reduces conductance.

One can see from the theorem, specifically the comparison between (4.2) and

(4.3) that the removal of intra-level edges significantly increases the graph conduc-

tance and thereby make the random walk process more efficient. Our experiments on

the Twitter prototype verified this finding. Figure 4.4 shows, for various keywords ,

how the removal of 10% to 100% randomly chosen intra-level edges affect the query

cost of simple random walks to achieve a relative error of ≤ 5% on estimating the

average number of followers for all users who tweeted the keyword in 2013. One can

observe from the figure that as the query cost decreases dramatically when intra level

edges are removed. Even removal of subset of such edges is actually helpful. We ob-

served that this modification, on average, reduces the query cost for most keywords

by at least 20%.

Without intra-level edges: There are two possible cuts in this lattice struc-

ture (level-by-level subgraph) that may lead to a balanced cut: a horizontal and a
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vertical cut. When having a horizontal cut (Sh) in the middle of the lattice, the

conductance of the lattice would be:

ϕ(G)Sh
=

dn
h

2h−2
2
dn
h

+ dn
h

=
1

h− 1

(4.5)

For a vertical cut (Sv), there are two cases based on the degree of the nodes.

• d ≤ n
2h

:

ϕ(G)Sv =
1

2d n
2h

+ 2d(h− 2) n
2h

=
1

d(h− 1)n
h

(4.6)

It is clear that 1
d(h−1)n

h
< 1

h−1
and vertical cut results in lower conductance than

the horizontal cut.

• n
2h
< d < n

h
:

ϕ(G)Sv =
2(h− 1)(d− n

2h
)

d(h− 1)n
h

=
2hd− n
nd

(4.7)

Thus

ϕ(G) =


h

nd(h−1)
if d ≤ n

2h

min
(

2hd−n
nd

, 1
h−1

)
if n

2h
< d < n

h
.

(4.8)

Note that

n

2h
< d <

n

h
⇒ 0 <

2hd− n
nd

≤ h

n
(4.9)

• If 1 < h < (1+
√

1+4n)
2

or 0 < n < h2 − h:

⇒ 0 <
2hd− n
nd

≤ h

n
<

1

h− 1

⇒ min

(
2hd− n
nd

,
1

h− 1

)
=

2hd− n
nd

(4.10)

In other words, vertical cut is better.
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• But if h > (1+
√

1+4n)
2

or n > h2 − h horizontal cut is better and:

min

(
2hd− n
nd

,
1

h− 1

)
=

1

h− 1
(4.11)

With intra-level edges: Now let’s assume there are k intra-level edges for

every node in the lattice structure, where k >> d. Then Equations 4.5 to 4.8 will

change as fallows: By the horizontal cut the conductance would be:

ϕ(G)Sh
=

dn
h

h−2
2

(2d+ k)n
h

+ (d+ k)n
h

=
1

h− 1 + hk
2d

(4.12)

and it is clear that since the hk
2d
> 0, the conductance of the horizontal cut in lattice

with intra-edges is decreasing.

In vertical cut (Sv) there are four cases based on the degree of the nodes.

• d ≤ n
2h

, k ≤ n
2h

:

ϕ(G)Sv =
1

2(d+ k) n
2h

+ 2(d+ k)(h− 2) n
2h

=
1

(k + d)(h− 1)n
h

(4.13)

And it is clear that 1
(k+d)(h−1)n

h
< 1

h−1+hk
2d

and vertical cut results in lower con-

ductance than the horizontal cut.

• d ≤ n
2h

, n
2h
< k < n

h
:

ϕ(G)Sv =
2(h− 1)(k − n

2h
)

(k + d)(h− 1)n
h

=
2kh− n
kh+ dn

(4.14)

• n
2h
< d < n

h
, k ≤ n

2h
:

ϕ(G)Sv =
2(h− 1)(d− n

2h
)

(k + d)(h− 1)n
h

=
2dh− n
kh+ dn

(4.15)
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• n
2h
< d < n

h
, n

2h
< k < n

h
:

ϕ(G)Sv =
2(h− 1)(d− n

2h
)(k − n

2h
)

(k + d)(h− 1)n
h

= (k − n

2h
)
2dh− n
kh+ dn

(4.16)

Thus the conductance of the lattice structure with intra-level edges woud be:

ϕ(G) =



1
(k+d)(h−1)n

h
if d ≤ n

2h
, k ≤ n

2h

min
(

2kh−n
kh+dn

, 1
h−1+hk

2d

)
if d ≤ n

2h
, n

2h
< k < n

h

min
(

2dh−n
kh+dn

, 1
h−1+hk

2d

)
if n

2h
< d < n

h
, k ≤ n

2h

min
(

(k − n
2h

) 2dh−n
kh+dn

, 1
h−1+hk

2d

)
if n

2h
< d < n

h
, n

2h
< k < n

h
.

(4.17)

4.4.2.3 Time Interval in Level-by-Level Subgraph

We now address the second issue - how to properly set the time interval T

which directly affects edge classification. Once again, we start with theoretical anal-

ysis on optimal T based on the simple example of level-by-level graph described in

Section 4.4.2.2. Then, we verify the analysis with experimental findings over Twitter.

Theoretical Analysis: Note that the setting of T affects two parameters in this

simple model: (1) the number of levels h - the longer T is, the smaller h, and (2)

d, the number of (randomly chosen) Level i + 1 nodes a Level i node is connected

with. Here the relationship between T and d is not as clear: While a longer T will in

general lead to more nodes on Level i+ 1, it might actually reduce d if most followers

of the Level i node already responded within the time interval corresponding to Level

i. The following corollary to Theorem 5 illustrates the relationship between h and d

in order to maximize conductance of the level-by-level subgraph.

Corollary 3. To maximize the conductance of G′, there is

d =
(2h− 1)(2h− 2)

h(2h− 9)
(4.18)
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The conductance of such a lattice structure is

ϕ(S) = min

(
d · n/h

n
2
· h−1

h
· 2d+ n

2
· 1
h
· d
,

n
2h
· d−1

d
· d

2
· (h− 1)

n
2
· h−2

h
· 2d+ n

2
· 2
h
· d

)
(4.19)

= min

(
2

2h− 1
,
d− 1

4d

)
. (4.20)

Roughly speaking, the larger h is, the smaller d will be. Thus, the optimal

setting should satisfy

d =
2h− 1

2h− 9
. (4.21)

Note that the average degree of a node, δ, satisfies

δ =
2d · (h− 1)

h
(4.22)

Thus, the average degree δ and the number of levels h should satisfy

δ =
(2h− 1)(2h− 2)

h(2h− 9)
(4.23)

The proof follows directly from Theorem 5. Intuitively, this means that instead

of setting the T to a fixed value, we should adjust it according to the propagation

pattern of the query term or hashtag. Specifically, the average number of followers

who “pick up” the hashtag after the current time interval should be close to its optimal

value d as shown in (4.18). For example, if the average degree is around d = 14, then

there should be around h ≈ 5 levels in the lattice structure. Of course, the real-world

scenario is more complex. For example, the average number of “pick ups” tends to

decline over time - indicating that the time interval should be dynamically changed

throughout the duration of propagation [56, 48].

Another interesting observation from the corollary is that the optimal value of

d becomes very close to 2 (i.e., its limit when h → ∞) when h is reasonably large.

For example, we have d = 2.13 and 2.06 when h = 50 and 100, respectively. This
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means that when the keyword of interest has been propagated for a long time (e.g.,

privacy), we can set T according to a simple rule of d = 2.

Practical Design: Recall that GRAPH-BUILDER constructs the best subgraph

on-the-fly during aggregate estimation. First, we discuss a simpler problem where

we are given a set of candidate values for T and aim is to identify which is best for

estimating an aggregate. Constructing the term-induced subgraph for each value and

comparing them is not ideal as it would require a prohibitive query cost. Instead,

we perform a pilot random walk using each of the time intervals. Each of the pilot

random walks uses a smaller budget (e.g., 50 samples) and terminates quickly. Using

the partial topology revealed by each walk, we compute h and d and estimate the

value of conductance using (4.3). The time interval with the highest conductance is

selected and used for the rest of the process.

We evaluated the effectiveness of this over Twitter. Specifically, we identified a

set of diverse time intervals varying from 1-hour to 1-month. For each time interval, we

estimated its efficacy in sampling as against the theoretical value of the conductance.

In other words, we ordered the time intervals in the horizontal x axis based on their

conductance. We then performed random walk for each of these time intervals and

compared the query cost to achieve a relative error of less than 5%. Figure 4.5 shows

the results for three keywords. One can see that the orders based on theoretical

conductance and experimental performance are consistent.

Algorithm MA-SRW: Recall from Section 4.3 the two key components of MICROBLOG-

ANALYZER: GRAPH-BUILDER and GRAPH-WALKER. In this section, we de-

veloped a level-by-level subgraph for GRAPH-BUILDER. We now combine it with

simple random walk in GRAPH-BUILDER to produce Algorithm MICROBLOG-

ANALYZER-Simple Random Walker (MA-SRW). The samples obtained are then
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used for aggregate estimation in the same way as simple random walk [46]. Algo-

rithm 10 depicts the pseudocode for MA-SRW.

Algorithm 10 MA-SRW

1: Retrieve seed users

2: while Remaining query budget > 0 do

3: Retrieve samples using simple random walk. At each transition, only select

from edges that belong to the level-by-level graph according to time interval T .

4: end while

5: Perform aggregate estimation as in simple random walk [46].

4.5 Topology-Aware Random Walks

To understand the key ideas of our Topology-Aware random walk algorithm,

we start by briefly discussing the deficiencies of existing techniques, specifically the

direct application of simple random walk or Metropolis-Hastings random walk to the

level-by-level subgraph we constructed in Section 4.4. Then, we develop the key ideas

for a novel topology-aware, level-by-level, random walk and present our MA-TARW

algorithm.

4.5.1 Deficiencies of Traditional Random Walks

As mentioned in the introduction, the existing techniques have two main prob-

lems: (1) although they produce asymptotically unbiased (according to their respec-

tive stationary distributions) samples after a burn-in period, the number of transitions

required for the burn-in is usually high [49]; and (2) while they can be combined with
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mark-and-recapture [52] to estimate SUM and COUNT queries based on the samples,

the query cost often rises to a prohibitively high level for practical purposes.

We note here that the fundamental reason underlying these problems is the

inability of traditional random walk techniques to estimate the probability for a node

u to be chosen as a sample. Note that while simple random walk is known to have a

stationary distribution that assigns probability proportional to a node’s degree d(u),

it is still impossible to compute the exact probability for a node to be accessed (i.e.,

d(u)/(2|E|) where E is the set of all edges) unless one knows the total number of

edges in the graph. Similarly, to know the exact probability for a node to be accessed

by Metropolis-Hastings random walk (i.e., 1/|V | where V is the set of all vertices),

one has to know the total number of nodes in the graph. Clearly, neither piece of

knowledge is available a priori in our case - and estimating them (e.g., by using

mark-and-recapture) requires a very high query cost.

To understand the importance of knowing the exact probability for a node to be

accessed, note that such knowledge indeed addresses both deficiencies outlined above.

First, with knowledge of p(u), the probability for a node to be taken as a sample,

one can simply apply the Hansen-Hurwitz estimator [58] to generate an unbiased

estimation for any SUM or COUNT query defined in Section 4.2 as f(u)/p(u), where

f(u) is the result of applying the SUM or COUNT query over u itself4. This avoids

the usage of mark-and-recapture and, as a result, significantly reduces the query cost

required for answering SUM and COUNT queries5.

Similarly, the efficiency problem - i.e., the long burn-in period required - is also

(at least partially) caused by the lack of knowledge on the probability for a node to

4e.g., if the aggregate is the number of posts containing privacy, then f(u) is the number of u’s

posts containing privacy.
5Note that AVG queries can be simply estimated as SUM/COUNT.
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be sampled at a certain step of the random walk. Specifically, the lack of knowledge

mandates a long burn-in period for the sampling probability to converge to its target

stationary distribution. If one can compute p(u) during each step of the random walk

process, then an unbiased aggregate estimation can be generated as long as p(u) > 0

for all u in the graph6 - potentially saving significant query cost for the sampling

process.

Admittedly, if one has no knowledge of the global graph topology, it is impos-

sible to compute or make any meaningful estimation7 of p(u) without incurring as

high a query cost as mark-and-recapture [44, 52]. The reason is simple - without

“recapturing” at least some nodes accessed before, it is impossible to determine the

scale of the graph as, theoretically speaking, it is entirely possible that the access cost

we have incurred so far is still smaller than the average pairwise distance between

nodes in the graph (one can always construct such an extreme-case scenario), making

it impossible to guarantee or even estimate the error of aggregate estimations.

Fortunately, the subgraph construction technique described in Section 4.4 af-

fords us substantial knowledge of the graph topology - not the entire node/edge sets

- but knowledge of the level-by-level structure all nodes and edges are organized by,

and which level a node falls into. As we shall show in the following subsection, such

knowledge gives us the ability to efficiently compute an unbiased estimation of p(u),

which in turns enables a significantly more efficient (topology-aware) sampling process

than the traditional random walk techniques.

6Note that the requirement p(u) > 0 is here to ensure that the sampling process can reach all

nodes covered by the aggregate.
7Here we use “meaningful” to refer to estimations with statistical guarantees on bias and/or

variance.
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4.5.2 Key Idea: Level-by-Level Random Walk

In this section, we first develop a novel level-by-level random walk process by

leveraging knowledge of the subgraph topology we constructed in Section 4.4. We

also explain why this process requires far fewer queries than traditional (simple or

Metropolis-Hastings) random walks. Then, we discuss how to estimate p(u) in a

level-by-level random walk - which in turn enables accurate aggregate estimations.

Description of Level-by-Level Random Walk: To understand the level-by-level

random walk process, we start by considering a simple example where a level-by-level

subgraph constructed for a given keyword has h levels and only edges between nodes of

adjacent levels. As shown in Figure 4.6, the top level consists of users who mentioned

the keyword earliest, while users at the bottom one or few levels are guaranteed to

be returned by Twitter’s search API (which has a time limit of about 1 week [38]) -

i.e., our random walk process starts from these bottom levels. Note that every edge

in the graph is directed from top to bottom.

Our topology-aware, level-by-level, random walk follows a bottom-top-bottom

flow on the subgraph - i.e., a random walk instance starts from the bottom level

and moves up one level at a time, by following the inverse direction of edges, until

reaching a node with no incoming edge. Then, it reverses traversal direction and

starts following the original edge directions to transit down, again one level at a time,

until it reaches a node with no outgoing edge - at which time (this instance of) the

random walk terminates. At each transition during the random walk, a branch is

chosen uniformly at random. Note that all nodes we pass through during a random

walk will be used to generate one aggregate estimation - and one can execute multiple

instances of the random walk and average out the results to produce more accurate

estimations - the details of these issues shall be described in the next subsection.
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Before discussing the probability for each node to be chosen by such a level-

by-level random walk, we first note that the query cost required by each instance of

the random walk is much smaller than that for traditional topology-oblivious random

walks. Specifically, our walk instance requires at most 2(h − 1) transitions, orders

of magnitude fewer than simple and Metropolis-Hastings random walks, according to

the results in Section 4.6.2.

There is a simple reason behind this advantage: by leveraging knowledge of

the level-by-level topology, our random walk process is capable of transiting between

different “clusters” of nodes much faster than traditional topology-oblivious random

walks. Specifically, for a 2(h − 1)-step level-by-level random walk instance over the

above-described h-level graph, each of the first (or last) h − 1 steps is guaranteed

to draw from mutually exclusive subsets of nodes. This makes the random walk

process reach (with a positive probability) all nodes in the graph much faster than

traditional random walks which, despite improved subgraph designs, still have a fairly

high probability to return to their origin point after a small number of transition

steps[59].

Unbiased Estimation of p(u): We now consider the estimation of p(u) - the prob-

ability for a level-by-level random walk instance to reach a node u in the subgraph.

To do so, we first define some notation. We use ṕ(u) and p̀(u) to represent the prob-

ability for a random walk to reach u during the bottom-top and top-bottom phases,

respectively. Also, we use ∇(u) and ∆(u) to denote the set of neighbors of u on the

levels above and below u, respectively. The key observation for estimating ṕ(u) and

p̀(u) is

ṕ(u) =
∑

v∈∆(u)

ṕ(v)

|∇(v)|
, p̀(u) =

∑
v∈∇(u)

p̀(v)

|∆(v)|
, (4.24)
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which holds for all but two exceptions: (1) for a node u with no incoming edges -

i.e., when ∇(u) = ∅ - we have p̀(u) = ṕ(u), and (2) for a node u with no outgoing

edges - i.e., when ∆(u) = ∅ - it is either ṕ(u) = 1/s - where s is the number of seed

nodes8 the random walk might start from - if u is one of the seed nodes, or ṕ(u) = 0

otherwise.

Equation 4.24 illustrates a simple recursive process for producing an unbiased

estimation of p(u): Note that if we choose a node v uniformly at random from ∆(u),

then

ω(ṕ(u)) =
|∆(u)| · ṕ(v)

|∇(v)|
(4.25)

is an unbiased estimation for ṕ(u) (same9 applies to p̀(u)). In addition, if we re-

place ṕ(v) in (4.25) with an unbiased estimation of it, say ω(ṕ(v)), then |∆(U)| ·

ω(ṕ(v))/|∇(v)| remains an unbiased estimation of ṕ(u) as long as the random selec-

tion of v from ∇(u) is independent of the estimation of ω(ṕ(v)).

As such, the recursive process works as follows: After each instance of the level-

by-level random walk terminates, we take Ú and Ù , the sets of nodes the instance

passes through during the bottom-top and top-bottom phases, respectively. Then, for

each node u ∈ Ù , we start a bottom-top, level-by-level random walk starting from u,

this time for the sole purpose of recursively estimating p̀(u). On the other hand, for

each node u ∈ Ú , we start a top-bottom level-by-level random walk to estimate ṕ(u)

in a recursive fashion. Algorithm 11 depicts the pseudocode for estimating ṕ(u) (the

algorithm for p̀(u) is similar). One can see that this process can produce unbiased

8Recall from Section 4.3 that seed nodes consist of users returned by the limited search interface

- e.g., for Twitter, those who tweeted the keyword within the last week and thus returned by the

Search API.
9i.e., if we choose a node v uniformly at random from ∇(u), then |∇(u)| · p̀(v)/|∆(v)| is an

unbiased estimation for p̀(u).
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Algorithm 11 ESTIMATE-ṕ
1: Input: u

2: if ∆(u) == ∅ then

3: //u is a bottom level node

4: ṕ(u) =


1/s If u is one of the s seeds

0 Otherwise

5: else if ∇(u) == ∅ then

6: //u is a top level node

7: ṕ(u) = p̀(u)

8: else

9: Pick a node v randomly from ∆(u)

10: ṕ(v) = ESTIMATE-ṕ (v)

11: ṕ(u) = |∆(U)|·ṕ(v)
|∇(v)|

12: end if

estimations of p̀(u) or ṕ(u) for every node that the random walk instance passes

through - i.e., every node that will be used in the aggregate estimation process, as

explained in the next subsection.

Since the above discussions have established the unbiasedness of f(u)/p̀(u) on

SUM and COUNT estimations as well as the unbiasedness of ω(p̀(u)) on estimating

p̀(u), we now consider the other important factor affecting the error of aggregate

estimation: variance. Specifically, the following theorem illustrates the estimation

variance produced by topology aware random walk for SUM aggregates. Note that

since COUNT can be considered as a special case of SUM (when f(u) = 1), esti-

mation errors of COUNT and AVG (i.e., SUM/COUNT) aggregates can be derived

accordingly.

137



Theorem 6. For aggregate QA: SELECT SUM(f(u)) FROM U WHERE cond, after r

random walk instances, topology aware random walk generates an estimation variance

σ2 =

( ∑
u∈cond

(V + 1) · f(u)2

r · p̀(u)

)
− Q2

A

r
, where (4.26)

V =
∑
u∈cond

∑
ρ∈P(u)

p̀(u) · p(ρ) ·
(
p̀(u)

ω(ρ)
− 1

)2

(4.27)

when r is sufficiently large, where QA is the real aggregate value, P(u) is the set of

all bottom-top-bottom paths from u to one of the seed nodes, ω(ρ) is the estimation of

p̀(u) produced by Algorithm 11 when path ρ is taken for estimating p̀(u), and p(ρ) is

the probability for ρ to be taken.

Proof. For each node u passed through by a random walk instance, we can generate

an estimation of QA from u as

εu =
f(u)

ω(p̀(u))
=
f(u)

p(u)
· p̀(u)

ω(p̀(u))
. (4.28)

We denote f(u)/p̀(u) and p̀(u)/ω(p̀(u)) as αu and βu, respectively. As we discussed

above, ω(p̀(u)) is an unbiased estimation of p̀(u). Thus, 1/ω(p̀(u)) is an asymptotically

unbiased estimator for 1/p̀(u) (when r → ∞ leads to a more accurate estimation of

ω(p̀(u))). Since the bottom-top-bottom random walks used for estimating p̀(u) are

independent of those used for reaching u from the seed nodes, one can see that the

covariance of αu and βu tend to 0 when r →∞.

As such, the variance of εu is

σ2
u = var(αu) · var(βu) + var(αu) · E(βu)

2 + var(βu) · E(αu)
2 (4.29)

= var(αu) · (var(βu) + 1) + var(βu) ·Q2
A (4.30)
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The derivation is because of the fact that f(u)/p̀(u) is an unbiased estimation for QA.

According to Theorem 2 in [3], we have

var(αu) =

( ∑
u∈cond

f(u)2

p̀(u)

)
−Q2

A. (4.31)

The variance of βu can be directly derived from the definition of variance, i.e.,

var(βu) =
∑
u∈cond

∑
ρ∈P(u)

p̀(u) · p(ρ) ·
(
p̀(u)

ω(ρ)
− 1

)2

. (4.32)

The combination of (4.30), (4.31) and (4.32) proves the theorem.

Note that an intuitive explanation for V in the theorem is the variance of

p̀(u)/ω(p̀(u)), where ω(p̀(u)) is the estimation of p̀(u) produced by our algorithm,

taken over the randomness of ω(p̀(u)). One can observe from the theorem that a

key factor determining the estimation variance is the values of p̀(u) for nodes in

the subgraph. To understand why, note from (4.26) that, given V , σ2 is in general

inversely proportional to p̀(u). Thus, if the subgraph happens to be highly skewed so

as to have a node u with an extremely small p̀(u), then the estimation variance σ2

(and thereby the aggregate estimation error) can be very large. Fortunately, as we

shall show in Section 4.6, the variance is indeed fairly small in practice for the wide

variety of keywords we tested.

Before concluding this subsection, we would like to briefly discuss the additional

query cost introduced by the probability estimation process. One can see that, in

order to estimate p̀(·) or ṕ(·) for the (at most) 2h− 1 nodes the random walk passes

through, this process requires at most (2h− 1) · (h− 1) additional transitions. While

such O(h2) query cost surpasses that required by the level-by-level random walk itself,

it is unlikely to cause any efficiency concern in practice because of the following two

reasons.
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First, as one can see from the results in Section 4.6.2, even a query cost of

O(h2) is still an order of magnitude lower than topology-oblivious random walks, and

second, the real-world query cost for estimating p̀(·) or ṕ(·) is often lower than the

worst-case scenario. To understand why, consider a common scenario where the level-

by-level subgraph has one or a small number of roots at the top. Let there be one

root vr. Note that once we produce an estimation of p̀(vr) (which is equal to ṕ(vr)),

we can reuse it for estimating p̀(·) for all nodes in the top-bottom phase of all random

walk instances - i.e., for these nodes, the probability estimation process only needs to

walk bottom-up and not top-bottom anymore - saving about half of the query cost

because of a single cache.

4.5.3 Algorithm MA-TARW

In this subsection, we put together the previous discussions of level-by-level

subgraph, topology aware random walk and the unbiased estimation of selection prob-

ability p̀(u) to develop Algorithm MA-TARW, which can be used to estimate SUM,

COUNT and AVG aggregates with or without selection conditions.

Algorithm 12 depicts the pseudocode for MA-TARW. First, it uses a small

number of bootstrapping transitions to identify the best time interval T for the level-

by-level subgraph (see Section 4.4.2.3 for details). It randomly picks a bottom level

node (a user who has recently tweeted about the hashtag) and performs a bottom-

top-bottom random walk instance Ri as described in previous subsection. For each

node u in the walk Ri, it computes the selection probability (ṕ(u) or p̀(u)). All nodes

in Ri are used in computing a single estimate of the aggregate query. This random

walk process is then repeated for multiple times - with the average estimate being

outputted as the final aggregate estimation.
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Algorithm 12 MA-TARW

1: Estimate best value of T using bootstrapping transitions

2: while Remaining query budget > 0 do

3: Perform a bottom-top-bottom random walk Ri

4: ṕ(u) = ESTIMATE-ṕ (u) ∀ u ∈ Ú of Ri

5: p̀(u) = ESTIMATE-p̀ (u) ∀ u ∈ Ù of Ri

6: // Remove nodes from Ú , Ù that does not match input query

7: f̃(Ri) = 1
|Ri|

(∑
u∈Ú

f(u)
ṕ(u)

+
∑

u∈Ù
f(u)
p̀(u)

)
8: end while

9: Return average of all previous estimates f̃(Ri)
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4.6 Experimental Evaluation

In this section we evaluate the efficiency and accuracy of Algorithms MA-SRW

and MA-TARW proposed in the paper, and compare them against a state-of-the-art

baseline method.

4.6.1 Experimental Setup

Hardware and Platform: All our experiments were conducted on a computer

with Intel Core(TM) i5 2.50 GHz CPU with 8 GB of RAM. The algorithms were

implemented in Python 2.7.
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Figure 4.10. Microblog Analyzer:
Twitter: Count(users).
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Figure 4.11. Microblog Analyzer:
Twitter: AVG(Display Name).
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Figure 4.12. Microblog Analyzer:
Google+: AVG(Display Name).

Datasets: We tested our algorithms on three real-world microblogging platforms

- Twitter, Google+ and Tumblr. These were chosen due to their popularity and

accessibility of their developer API. While the majority of our experiments were

conducted over Twitter, we observed similar behavior on the other microblogs also.

All our experiments were conducted by running it over the microblog in real-time.

Detailed discussion on how MICROBLOG-ANALYZER is instantiated for Twit-

ter is found in Section 4.3.2. We now briefly describe how Google+ and Tumblr are

instantiated. Google+ is an microblogging platform from Google that has more than

500 million users. It provides both API and web based interfaces. Google+ has

an Activity API (equivalent to the Twitter search API) that allows us to search for

posts that specify a particular keyword. It also has an API to retrieve user profile

information, as allowed by the privacy setting of the user. However, some basic infor-

mation such as display name are always available. Similar to Twitter, connections in
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Figure 4.14. Microblog Analyzer:
Tumblr: AVG(Likes).

Google+ are asymmetric. Connections are grouped into various groups, called Cir-

cles. Google+ has a courtesy rate limit of 10,000 queries per day and 5 per second.

Due to the difficulty in retrieving connections (the API only provides the connections

of an authenticated user), we define two users to be connected if they performed

some activity together in last year, i.e., they liked, shared or commented the same

post. Tumblr is another popular microblogging platform where users host multiple

blogs and can follow blogs of other users. The posts in blogs correspond to tweets in

Twitter which can then be liked or reblogged by other users. Tumblr has extensive

API to retrieve various information about blogs. Requests are rate-limited to one

every 10 seconds.

Aggregate Queries and Ground Truth: In our experiments, we focused on ag-

gregate queries AVG, COUNT and SUM. We evaluated aggregate measures such as

the number of followers, display name length, number of likes in the blog etc. For

Twitter, we used the streaming API to collect all public tweets mentioning a diverse

set of keywords (such as cities, celebrities, organizations etc) between Jan 1 - Nov

1, 2013. Since Twitter ensures that the stream returns all relevant tweets as long as

their frequency is less than 1% of the Twitter Firehose and our keywords are not too

frequent, this provides a reasonable ground truth over which aggregate estimation

algorithms can be evaluated. Figure 4.7 shows the frequency of three keywords used
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in the evaluation over time - privacy (a relatively low frequency term with occasional

spikes), New York (a perpetually popular and high frequency keyword) and Boston

(keyword that has medium frequency but had a singular spike on Apr 15, 2013 when

the Marathon Bombing occurred). For Google+ and Tumblr, no convenient way to

collect ground truth exists. To get a reasonable approximation, we instantiated multi-

ple samplers that performed simultaneous random walks until they converged to their

stationary distribution (with Geweke threshold Z ≤ 0.05). The average estimate from

all the walks serves as ground truth.

Performance Measures: Our aggregate estimation algorithms were evaluated ac-

cording to two measures. Efficiency was measured as the number of API interface

calls. Notice that multiple API calls could be required to obtain the result of a single

query. For example, Twitter’s followers API returns 5000 users per call and hence

multiple calls are required to retrieve all followers of a celebrity. To measure accuracy,

we use the relative error (see Section 4.2).

Algorithms Evaluated: We evaluated MA-SRW, MA-TARW and the state-of-art

baseline M&R described next. Recall from Section 4.4 that MA-SRW outperformed

SRW on the original or the term-induced social graph. Hence, to keep the presen-

tation clear, we do not present any experiments on the original or the term-induced

social graph. To the best our knowledge, we have not found any research that per-

forms general aggregate estimation over microblogs. The closest is [44] that performs

size (COUNT) estimation for (entire) social networks and does not directly support

keyword-specific size estimation. We adapted [44] to only consider nodes that match

the query and used it to measure the size of the term induced subgraph and refer this

algorithm as M&R (for mark and recapture); we only include it for COUNT (as the

algorithm was designed for).
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4.6.2 Experimental Results

Efficacy of MA-TARW (Twitter): We conducted an extensive set of experi-

ments to validate the efficacy of MA-TARW. Recall that experiments from Section 4.4

showed that performing random walk over level by level graph is more efficient than

performing over original social graph or the term-induced subgraph. Hence, in this

section, we do not compare MA-TARW over such graphs. Further, the level-by-level

nature of the graph leveraged by MA-TARW is not available for the original social

graph. We start with Twitter. Table 4.3 shows the average percentage improve-

ment in Twitter query cost achieved by MA-TARW over MA-SRW and M&R for

AVG(followers) and COUNT(users) queries (from Jan 1, 2013 to Oct 31, 2013) in-

volving diverse keyword conditions to achieve a relative accuracy error of 5%. The

results show that MA-TARW outperforms both competing algorithms and confirm

our theoretical analysis.

Next, we study in more detail specific aggregate queries. We use MA-TARW to

estimate the average number of followers of all users who tweeted privacy. Figure 4.8

shows that MA-TARW significantly outperforms MA-SRW. Figure 4.9 also validates

this conclusion by showing that MA-TARW converges to the true estimate and has

a lower variance in its estimate within few thousand queries.

We then perform a COUNT estimate of all users who tweeted privacy. Fig-

ure 4.10 shows that MA-TARW outperforms both MA-SRW and baseline M&R. Re-

call from Figure 4.3 that M&R requires lower query cost when evaluated on the level-

by-level subgraph than on term induced subgraph; this is why we execute M&R on the

level-by-level subgraph to better evaluate our topology-aware navigation algorithm.

We next consider an aggregate query to estimate the average display name length of

Twitter users who tweeted privacy. In contrast to AVG(#followers) shown above,

this requires substantially smaller number of queries as this measure has a lower vari-
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Table 4.3. Microblog Analyzer: Average Percent Improvement of MA-TARW

Keyword MA-SRW
(AVG)

MA-SRW
(COUNT)

M&R
(COUNT)

Boston 39 44 72
Oprah 27 37 67
Simvastatin 29 41 74
$WMT 33 51 78
Lipitor 24 47 76
Tunisia 33 31 53
Tahrir 41 55 61

ability than that of number of followers. Figure 4.11 shows that MA-TARW seems

to leverage this aspect by essentially “skipping” such edges (which would have often

been intra-level edges).

Next we evaluate our algorithms on Google+. Figures 4.12 and 4.13 show the

performance of estimating the average display name length and count of male users

(gender is generally missing from Twitter profiles, and hence we did not use it as a

condition above) who posted privacy during the time period. We notice that MA-

TARW outperforms the competing algorithms. It must be noted that the absolute

query cost is much higher than in Twitter. This is to a large extent due to the

fact that APIs of Google+ (such as Activity search) returns at most 20 results per

invocation compared to 200 in Twitter’s timeline API.

Finally, we evaluate our algorithms on Tumblr. Here, we evaluated the aver-

age number of likes obtained by posts with textual content containing the keyword

privacy. Figure 4.14 shows that MA-TARW has the best performance.
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4.7 Related Work

Graph Sampling Through Random Walks: A number of existing papers have

studied the problem on sampling large graphs [46, 60, 42, 51] while [43, 44, 49] specif-

ically focus on online social networks. Sampling techniques and the ground truth

definition vary depending on whether the global topology is known [51, 43] or un-

known. For the latter, [43, 51] compared the efficiency of various sampling techniques

such as simple random walk (SRW), Metropolis-Hastings (MHRW), BFS and DFS.

[43] also studied the problem of running multiple, parallel random walks. We used

SRW as the basis of MA-SRW as [43] reported that SRW is typically 1.5-8 times

faster than MHRW, which was observation as well.

Analytics of Twitter and Other Microblogs: While there has been plethora

of work on using social media data from Twitter and other microblogs on specific

analytics tasks (typically over current and future data), our paper is the first to

study the problem of aggregate estimation over historic data. [61] provides an high

level overview of possible analytics tasks over Twitter. Other analytics tasks include

monitoring trends[62], predicting stock prices [63], topical expertise [64], measure in-

formation propagation in Twitter [65], such as in the context of natural disasters.

There has been a set of paid and free third party services such as Sysomos, Topsy,

Trendsmap etc that allow you to perform simple analytics tasks (such as monitor

popular trends, analyze your tweeting/retweeting behavior, visualize your social net-

work etc). However, none of the free ones allow analytics over historic data and even

the paid ones offer simple, canned analytic options.

Search Engine Analytics: Another category of related research is analytics over

a search engine’s corpus (e.g., [66]) - simply because a microblog service can be

considered as a search engine (collecting, indexing and publishing documents posted
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by all users). However, search-engine-analytics techniques cannot be directly applied

because of the limitation of search interface provided by microblogging services. Note

that a key assumption made by all existing search-engine-analytics techniques is that

the search interface can reveal all documents in the corpus (through answers to a very

large set of search queries). This, unfortunately, is not the case for microblogging

services. For example, Twitter search API is limited to tweets published in the last

week[38]. These limitations prevent existing search-engine-analytics techniques from

being applied.

4.8 Conclusions

We proposed novel solutions to perform aggregate query estimation on mi-

croblogging data that exploit the provided user timeline API calls. We showed how

to define a conceptual level-by-level subgraph of the social graph that allows dra-

matically more efficient random walk-based sampling. Then, we further improved

our solution by proposing a novel topology-aware navigation strategy on the level-by-

level subgraph that significantly outperforms existing random walk sampling methods.

Theoretical analysis and experiments over microblogs confirm the effectiveness of our

solutions.
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CHAPTER 5

Mining Frequent Featuresets over Structured Items

5.1 Introduction

5.1.1 Frequent Featureset Mining Problem

Technological progress has now enabled businesses to collect fine-grained in-

formation about how users interact with their websites and applications. Such in-

formation can include the articles read, movies watched, items purchased etc. We

consider a database of structured items where each item can be described through a

set of features. Intuitively, we can represent each feature as a boolean attribute whose

presence or absence in an item can be observed. By interacting with such items, users

generate item transactions (transactions over items.) For example, the set of articles

read by the user on any given day forms a transaction.

Frequent itemset mining is an important first step in data analysis for a broad

class of applications. It returns a collection of itemsets (set of items) that are most

commonly consumed together. A huge body of research literature studies this problem

under various scenarios. In contrast to prior work that tries to identify itemsets

from item transactions (under various conditions), we consider a novel problem of

discovering frequent featuresets (set of features) from item transactions.

Frequent Featuresets Mining (FFM) problem: Given an database

containing transactions over structured items, identify the set of frequent

featuresets.
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The frequent featureset mining problem has variety of applications and is gen-

eral enough to handle any scenario where transactions over structured items are per-

formed.

• Consider a music website such as last.fm. Here the items correspond to songs

and the features are the artists associated with the song. The set of songs

listened in a session can be treated as item transaction. FFM tries to identify

the artists whose songs are listened together (without user mentioning why she

listens to a specific song).

• Consider a news website such as New York Times. Here the items correspond

to news articles, the features are the named entities (such as Obama or Egypt)

in the article, while a transaction could be the set of articles read by a user in

a session. Instead of identifying the most commonly read articles (as done in

traditional itemset mining), FFM tries to identify the features that are consumed

together.

• Consider a movie website such as IMDB. The movies correspond to items while

the features could be actors, directors, genre etc. The set of movies watched

(or rated) by a user in a given period time could be considered as a transaction.

FFM tries to identify the set of features (such as an actor, director combination)

that are consumed together.

Problem Novelty: In contrast to traditional itemset mining, we consider

items that are structured with rich features. Further, while the user interaction

with the item could be observed, the corresponding user interaction with features

is typically hidden. For example, while New York Times knows which articles the

user read, it does not know why (what features in the article led the user to read

them). Our objective in this paper is to identify frequent patterns over these “hidden”

interactions. Notice that identifying the set of articles most frequently read belong to
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the traditional itemset mining problem. However, using the entire article transaction

log to identify the user’s favorite topic is a featureset mining problem. This problem

is quite challenging as we have to identify the most important feature without any

explicit feedback from the user.

Figure 5.1. Hierarchical Representation of Transactions over Structured Items.

Consider Figure 1 that represents a small dataset of 2 item transactions {T1, T2}.

For simplicity, we assume that each transaction contains only one item and that the

user consumes an item due to a single feature. The frequency of the transaction

is specified above it. T1 has been observed 100,000 times while T2 was observed

1000 times. The dataset has two items {i1, i2} and three features {f1, f2, f3}. The

set of items in a transaction and the set of features present in an item are both

observable. The blue arrows connect the transactions to the set of items while black

arrows connect structured items to their features. The red dotted arrows highlight

the feature which caused the user to consume the corresponding item. For example,

the user consumed i1 due to f1. While the solid arrows are observable, the dotted

ones are not. Hence the major challenge of FFM is to identify that f1 is a frequent

feature instead of f2 without any explicit feedback from user.

Challenges: We now consider the various challenges in the general FFM prob-

lem where, an item could be consumed by a user due to any arbitrary subset of its
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features. Further, the rationale for different users to consume the same item could

be very different. For instance, on New York Times, one user may read an Sports

section article due to of its coverage of games while another user may read the same

article for its coverage of the players involved. Of course, user transactions on New

York Times do not provide any information about why an item was consumed. This

hidden mapping between items and features makes identifying frequent featuresets

extremely challenging.

It might seem that running an existing frequent itemset mining algorithm by

aggregating the features could identify frequent featuresets. For example, item i1

in transaction T1 is replaced {f1, f2} while i2 in T2 is replaced by {f2, f3}. This

approach, while intuitive, results in potentially incorrect frequent featureset due to a

subtle pitfall - the most frequent feature is not necessarily the most important one.

Frequency Vs Importance. Using the dataset from Figure 1, this results

in f2 being the most frequent featureset followed by f1. However, we can make a

simple argument to negate this conclusion. If feature f2 was indeed the dominant

feature, then more users would have also consumed item i2. Instead, it languishes

with only 1000 transactions. Hence it is clear that the feature f1 must have a higher

importance than f2 and must have been declared the most frequent featureset. The

root cause for the incorrect conclusion is due to the fact that traditional itemset

mining approaches considers all the features of the items in transaction instead of

considering only the subset for which the user picked those items. We highlight

other pitfalls of straightforward adaptations of existing deterministic and probabilistic

frequent itemset mining algorithms in Section 5.4.

Combinatorial Explosion. Another major problem is that of combinatorial

explosion of potential featuresets that could have generated the item transaction

database. Consider for instance a single transaction of ten items with 5 features
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each. If the features of items in the transaction do not overlap, then are there are 50

different features. Even if we assumed that a user picked an item for a single feature,

there are 510 potential featuresets that could have generated this item transaction.

If we allow the user to choose an item over any subset of its features, then there are

exactly 25 feature combinations to pick it. Thus, there are (25)
10

= 250 hidden feature

transactions that would generated the single item transaction.

5.1.2 Outline of Our Approach

Intuitively, any deterministic approach could not be used to solve the FFM

problem. Unlike deterministic frequent itemset mining where the presence of an item

in a transaction is known with certainty, it is hard to say which subset of features

of that item lead the user to pick that item in the transaction. The difficulty comes

from the fact that the presence of a feature in a transaction depends on whether the

user was interested in that feature while generating the transaction rather than on

the presence of that feature in one of the items of the transaction.

We tackle this problem in two stages. First, we identify the potential reasons

(featuresets) for which an item was consumed in the context of the transaction/user.

Due to the limited user-item interaction information, it is unlikely that we could

identify the featureset that generated the transaction with any certainty. Given an

item transaction T , we enumerate the various featuresets that could have generated it.

We introduce a novel featureset uncertainty model to represent the likelihood for each

of the candidate featuresets to have generated T . Identifying this likelihood is the

first fundamental problem we solve in this paper. We use constrained least squares

based approach to estimate the likelihood. Our second problem seeks to mine the

frequent featuresets under the featureset uncertain model. We propose an efficient

dynamic programming based approach for this purpose. In an effort to improve
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the performance, we also designed a scalable “approximation” algorithm with only a

marginal decrease in accuracy.

Our experimental results over a number of large datasets show that the fre-

quent featuresets identified by our algorithms have high qualitative score under a

number of popular interestingness measures. Additionally, in contrast to traditional

itemset mining, the availability of user information allows us to perform personalized

featureset mining.

Summary of Contributions.

• We introduce and motivate the novel problem of frequent featureset mining for

transactions over structured items.

• We describe various approaches to map item transactions to feature transactions

and highlight their pros and cons. We also make observations about the subtle

issues that render adaptations of traditional itemset mining inapplicable.

• We introduce a novel featureset uncertainty model and develop an efficient algo-

rithm to estimate the likelihood that a featureset generated an item transaction.

• We develop diverse algorithms to mine frequent featuresets under featureset

uncertainty model .

• We present a thorough experimental evaluation of our algorithms and study

their scalability using large synthetic datasets.

5.2 Framework and Problem Definition

In this section, we define the data model and the necessary background. We

formally state the two central problems addressed in the paper - estimating the like-

lihood that a featureset generated an item transaction and using this information
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to mine frequent featuresets. We then describe two variants that occur in practice

depending on whether the user who made the transactions is identifiable.

5.2.1 Framework

Structured Items and Features. Let I = {I1, I2, . . . , In} be a universe of struc-

tured items. Each item I ∈ I could be described as a set of features. A feature

is a property of the item whose presence or absence can be observed. Let F =

{f1, f2, . . . , fm} be the universe of all features. An item can be equivalently consid-

ered as a tuple over boolean attributes {f1, f2, . . . , fm}. Given an arbitrary item I

and feature f , I[f ] = 1 if I contains f and 0 otherwise. We represent the set of

features of an item I by features(I).

As an example, consider an online news website such as New York Times. Each

news article can be considered as a structured item. I is the entire news article

catalog. The set of named entities present in an article can be considered as its

features. F is the set of all the named entities covered by the catalog.

A non empty set of items, X ⊆ I is called an itemset. An itemset is called

as l-itemset if it has exactly l items. Similarly, a featureset F ⊆ F is a non empty

set of features. A l-featureset has exactly l features. An item I is said to contain a

featureset F , iff ∀f ∈ F, I[f ] = 1. We will henceforth use the word item to refer to

structured item.

Item Transactions. Let IT = {T1, T2, . . . , TN} be a database of item transactions,

|IT |=N. We represent each transaction as a triple < tid, uid,X >, where tid is the

transaction identifier, uid is the user identifier who made the transaction and X ⊆ I

is the set of items in the transaction. A transaction is said to contain an itemset if

all the items in the itemset are also present in the transaction. Further, the notation
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features(T ) for a transaction T returns the set of features that are present in at least

one item in T .

User-Transaction Interaction Information. We consider the database of item

transactions IT to be available at two levels of granularity - aggregate and fine-

grained. Under the aggregate granularity, the only information available are the

transaction identifier and the items contained in the transaction. Under the fine-

grained granularity, we also know the user id that identifies the user who made the

transaction. This additional information allows us to group the transactions by users.

We hasten to add that our algorithms do not require any additional profile informa-

tion about the user. Under aggregate granularity, we would consider all the items to

be performed by a single “average” user and use the same user identifier for all item

transactions.

Such interaction can be represented via an aggregate interaction vector v where

each component corresponds to the number of times a particular transaction was

made. If the user who made the transaction is known, then we could compute, for

each user u, an individual interaction vector vu where each component provides the

number of times u performed a given transaction. The interaction vector is normalized

and has non-negative numbers that add upto 1.

Frequent Itemset Mining. The support of an itemset X, denoted by sup(X),

is the number of transactions in which X appears in the transaction database. Let

minSup ∈ (0, N ] be an integer, where N is the number of transactions. An itemset

X is considered frequent if sup(X) > minSup.

Typically, items occurring in a transaction are considered to be certain. In other

words, an item exists in a transaction or it doesn’t. However, there are scenarios

where the presence of an item is uncertain and quantified probabilistically [67, 68].
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For example, in our paper, we observe only the item transaction created by the user.

However, the underlying featureset that generated the item transaction is typically

unknown. A natural model to manage such uncertainty is to assign values to various

featuresets based on the likelihood that they have created the item transaction.

Uncertain Transaction Databases. An uncertain item I [67] is one whose presence

in an item transaction T is provided by its existential probability P (I ∈ T ) ∈ [0, 1].

In contrast, a certain item either occurs or does not in a transaction. i.e. P (I ∈ T ) ∈

{0, 1}. An uncertain transaction contains uncertain items. Finally, an uncertain

transaction database [68] contains uncertain transactions.

Probabilistic Frequent Itemset Mining. We can see that the support of an

itemset X, sup(X) is a random variable in uncertain databases and no longer has a

constant value. There are multiple candidate definitions that extend support of an

itemset to uncertain scenario [69, 70]. However, [71] showed the two most popular

definitions (based on expected support and frequent probability) have a tight corre-

lation between them. Given an uncertain database, a minimum support minSup and

an itemset X, the frequent probability of X is defined as:

Pr(X) = Pr{sup(X) ≥ minSup} (5.1)

X is considered to be a probabilistic frequent itemset if Pr(X) ≥ minSup is at least

a constant probabilistic frequent threshold of pft .

Running Example. Table 5.1 describes a simple dataset with n = 3 items, m = 4

features and N = 3 transactions that will serve as a running example to highlight our

various algorithms.
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Table 5.1. Hidden Itemset Mining: Running Example

TId Item {features} Count
T1 I1{f1, f3}, I2{f3, f4} 50
T2 I3{f2, f3}, I2{f3, f4} 100
T3 I1{f1, f3}, I2{f3, f4}, I3{f2, f3} 1000

5.2.2 Featureset Uncertainty Model

Model for Generating Item Transactions We first present an intuitive generative

model for item transaction using their component features. As we argued in the

introduction, a user picks an item due to a subset of its features. Such a behavior

extends for each item in a transaction. To generate an item transaction T , the user

first picks the size of the transaction, |T |. Each item in transaction is chosen as follows

: the user first picks a featureset F ⊆ F according to a probability distribution.

Then among the items that contain all the features in featureset F , she selects an

item uniformly at random. This process is repeated |T | times to generate the item

transaction.

Generating Featureset. Recall that each item in a transaction was chosen by the

user due to a subset of its features. Given a transaction T = {I1, I2, . . . , I|T |}, let

Fi be the subset of features for which item Ii was chosen. We refer to the union of

these featuresets GT = ∪|T |i=1Fi as the generating featureset for the item transaction

T . In other words, GT is the “ground-truth” that generated T . Ideally, if our aim is

to identify the frequent featuresets, the frequent mining algorithm must be run over

GT for each item transaction T ∈ IT .

Featureset Uncertainty Model. However, in practice, it is unlikely that we will

be able to ascertain the featureset that generated a transaction deterministically.

Further, for any given item transaction T , there are numerous possible featuresets
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that could have generated T . The set of all featuresets that could have generated T

is given by, GT = {GT |GT ⊆ F ∧ |GT ∩ I| > 0 ∀I ∈ T}.

Given a single transaction T and no additional information, we cannot ascertain

which of the featureset FT ∈ GT could have generated T . In our paper, we associate

with each featureset the probability that it could have generated the transaction given

other item transactions. Of course, given a single item transaction T , each generating

featureset in GT has a uniform probability (as we do not possess adequate information

to claim otherwise). However, given multiple item transactions, it is possible to assign

different likelihoods to each generating featureset. Hence, frequent featuresets can be

obtained by running uncertain frequent mining algorithms over FT .

Featureset Likelihood. The likelihood of a featureset F for a given transaction T

is defined as the conditional probability that F was the generating featureset for T

given the entire item transaction dataset I and all possible generating featureset GT

for T . The featureset likelihood of transaction is a probability distribution over all

featuresets in its generating featureset. Of course, any featureset not in GT will have

a likelihood of 0. We would like to note that the likelihood of a featureset formalizes

the notion of importance first described in Introduction.

Problem 1 (Featureset Likelihood Estimation: FLE). Given an item transac-

tion database IT containing user transactions over structured items and aggregate

interaction vector v, estimate the featureset likelihood for each transaction T ∈ IT .

5.2.3 Frequent Featureset Mining

Once the relative likelihood of the generating featuresets of an item transaction

are identified, the next step is to use this information to mine frequent featuresets.

Problem 2 (Frequent Featureset Mining : FFM). Given an item transaction

database IT containing user transactions over structured items, the corresponding

159



featureset likelihood and minimum support threshold minSup, identify the set of

frequent featuresets with expected support of at least minSup.

5.3 Overview of Our Approach

In this subsection, we describe the high level components of our approach that

also provide a roadmap to the rest of the technical sections.

Challenge I: Enumerating Generating Featuresets. The first major challenge is

to generate all possible featuresets that could have generated a given item transaction.

However, even for small item transaction, this number could be exponential. Hence

we make a simplifying assumption by noting that most users consume an item due to

a small subset of its features. Recall that each item in the transaction must have at

least one feature in the generating featureset. If we consider each item as a set with

its feature as the elements, then a candidate generating featureset is a hitting set (a

set of elements that has non empty intersection with all the other sets [72]). Section

4 talks about generating featuresets in more detail.

Challenge II: Identifying Likelihood of Generating Featuresets. Once we

have identified the generating featuresets for each item transaction in the dataset, we

represent them as a bipartite graph where one partition corresponds to item trans-

actions while the other partition corresponds to featuresets. An edge exists between

a transaction T and a featureset F if F was a generating featureset for T . Given

this bipartite graph, the next challenge is to identify the relative likelihood of each

featureset to generate the item transaction. We treat this as a constrained optimiza-

tion problem, the solution of which allows us to order the generating featuresets of an

item transaction based on the likelihood that it generated the transaction. Section 4

talks about identifying the likelihood of featuresets in more detail.
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Challenge III: Mining Frequent Featuresets. Once the relative likelihood of

the generating featuresets of an item transaction are identified, the next step is to

identify the frequent featuresets. We first describe an exact but inefficient algorithm

followed a much more efficient but approximate variant. Section 5 talks about mining

featuresets in more detail.

Challenge IV: Scaling Featureset Mining. Numerous hurdles exist in each of

the prior stages that hinder our ability to develop scalable solution for frequent fea-

tureset mining. We utilize sampling as the key technique to achieve scalability. We

propose two different algorithms based on sampling the item transaction database and

sampling the item transaction-featureset bipartite graph that provide a nice tradeoff

between performance and quality . Section 6 talks about our scalability approaches.

5.4 Baseline Techniques

In this section, we describe two intuitive baseline ideas for solving the frequent

featureset mining problem and point out their respective pitfalls which motivate our

proposed approach. Both techniques solve the problem by transforming the item

transaction database into a feature transaction database and utilize existing itemset

mining algorithms.

5.4.1 Adapting Frequent Itemset Mining Algorithms.

In this subsection, we describe two approaches that transform the certain item

transaction database into another certain feature transaction database.

Consider an obvious approach that transforms item transactions into trans-

actions over features by using the union of features present in all the items in the

transaction. This approach could lead to inaccurate results as it ignores two impor-

tant facts: (a) The frequency of features within a transaction. (b) The combination

161



of features for which a user picked the item. If multiple items in a given transaction

contain the same feature (for example, multiple articles read by a user contains the

topic Egypt), then it is highly likely that this feature must be given a higher weight.

Taking the union of features fails in capturing this valuable information. Second, this

approach considers all the features of the items in transaction instead of considering

only the subset for which the user picked those items.

However, even assigning a weight based on its frequency does not solve the issue

as we show below. Consider a more sophisticated approach where each item transac-

tion T is converted to a feature transaction FT by taking the union of the features of

all items in T . In other words, FT = {features(I)|I ∈ T}. Once the feature transac-

tion database is obtained, we can apply classical frequent itemset mining algorithms

such as APriori[73] with appropriately chosen threshold. However, as pointed out

in the example from Section 5.1, this also suffers from a subtle pitfall of mistaking

frequency for importance.

5.4.2 Adapting Probabilistic Itemset Mining Algorithms.

In this subsection, we describe an intuitive approach that transform the certain

item transaction database into an uncertain feature transaction database.

Attribute Uncertainty Model. The most basic model for describing an uncertain

transaction database is the attribute uncertainty model [74]. Under this model, each

attribute of the tuple is associated with a probability. If we consider a transaction

as a tuple where the attributes are {I1, I2, . . . , Ik}, then each item I ∈ I exists in T

with an existential probability P (I ∈ T ). This model assumes that the presence of

an item is independent of other items in the transaction.
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Tag-Cloud Approach. This approach works by transforming the certain item

transaction database into an uncertain feature transaction database. This is an

adaptation of the technique used in [70]. We call this as a tag cloud [75] based

approach (as tag clouds in social media are often generated this way). Each item

transaction T is converted to an uncertain feature transaction FT where the ex-

istential probability of a feature is computed as the ratio of number of items in

which it is present to the total number of all items in the transaction. Formally,

FT = {f :
∑

I∈T |{f}∩features(I)|
|T | |f ∈ features(T )}. Once the feature transaction

database is obtained, we can apply any probabilistic frequent itemset mining al-

gorithm such as UAPriori[69] with appropriately chosen threshold.

While more sophisticated that the previous approach, this algorithm still suffers

from the flaws described in the introduction. It treats the most frequent feature(set)

as also the most important one. As our counter example pointed out this may not

always be valid.

5.5 Computing Featureset Likelihood

Recall from Section 5.2 that each item in a transaction was chosen by a user

due to a subset of its features. The collection of all such subsets for the entire

transaction is its generating featureset. If we have access to this information, frequent

featuresets can be obtained by running traditional frequent mining over it. However,

since this information is not available, we have to generate the possible featuresets and

then evaluate their likelihood to be a generating featureset. We tackle this problem

in two stages. We first generate all possible candidate featuresets that could have

generated the transaction and then using this information estimate the likelihood for

each transaction.
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5.5.1 Generating Candidate Featuresets

In this subsection, our objective is to enumerate all possible featuresets that

could have generated the transaction. Since each transaction could have an expo-

nential number of generating featuresets, we use the idea of minimal hitting sets to

substantially reduce this number.

Hitting Sets and Generating Featuresets. A key idea in reducing the com-

binatorial explosion comes from observing the close relationship between generating

featuresets and hitting sets. Notice that for a featureset to be a potential generat-

ing featureset, it has to necessarily have at least one feature from each item in the

transaction.

Given a finite set S (also called as universal set) and a collection C of subsets

of S, the hitting set for C is a subset S ′ ⊆ S such that it contains at least one element

from each subset in C [72]. A hitting set is minimal if none of its proper subsets

are also hitting sets. If we treat each item as a set of features and the union of all

item features of the transaction as the universal set, then it is easy to see that any

generating featuresets is also a hitting set. A further reduction in search space of

featuresets can be achieved by observing that typically, users choose an item due

to a small number of its features. This parsimonious behavior has been exploited

in multiple prior work to generate concise models. This observation motivates us

to identify minimal generating featuresets by using their relation to minimal hitting

sets[76, 77].

Running Example. We can express the relation between transactions and the

featuresets as a bipartite graph. The transactions form one partition while featuresets

form another. An edge exists between a featureset F and a transaction T when F is

a generating featureset for T . Using our running example, this bipartite graph would
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have 3 transactions and 11 featuresets. However, if we use the minimal hitting set

requirement, the graph has just 4 featuresets. Figure 5.2 shows the resulting graph.

T1(50)

T2(100)

{f3}

{f1,f4}

T3(1000) {f2,f4}

{f1,f2,f4}

Figure 5.2. Bipartite Graph with Minimal Generating Featuresets.

Enumerating Minimal Generating Featuresets.

We describe a simple randomized algorithm to identify minimal hitting sets

containing frequent features with high probability. The algorithm starts with an

empty candidate hitting set. It then randomly picks a feature and adds it to the

candidate. This process is repeated till all items in the transaction are covered re-

sulting in a minimal generating featureset. Each feature is picked with probability

proportional to its frequency in uncovered items. In other words, a feature that is

present in multiple items has a higher likelihood of being chosen. This enumera-

tion algorithm could be terminated after each featureset in the collection is returned

by at least two different invocation of the randomized algorithm This heuristic is

also referred to as Good-Turing test. Consider a simple invocation over transaction

T3 = I1{f1, f3}, I2{f3, f4}, I3{f2, f3}. The algorithm starts with an empty set. Sup-

pose it picked feature f3 - it will immediately terminate as all items are covered.

Suppose it picked feature f1. Then items I2, I3 are not covered. Since f3 occurs

in both items it is picked with probability 2
4

= 1
2

while f2 and f4 are picked with

probability 1
4

in the next iteration.
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Complexity of Enumerating Minimal Hitting Sets. Identifying a single min-

imal hitting set requires a time complexity that is linear in the size of all features.

However, counting all minimal hitting sets is #P-Complete [78]. It is possible to

derive tighter bounds with additional information such as the maximum number of

features in any item and the maximum transaction size in the dataset by using the

idea of parameterized complexity [78].

5.5.2 Estimating Featureset Likelihood

Given an item transaction T , Section 5.5.1 identifies the set of featuresets GT ,

that could have generated it. However, given the limited information, we do not know

the actual generating featureset. We used the featureset uncertainty model to express

the probability that a given featureset generated the transaction T . In this section,

we provide an optimization formulation to compute these values.

User-Transaction Interaction Information. Users generate transactions while

interacting with items. Such interactions could be represented differently at aggregate

or individual levels. At the aggregate level, we do not have access to the id of user

who created the transaction. Instead, we treat all transactions to be performed by

an “average” user. Such interaction can be represented via an aggregate interaction

vector v where each component corresponds to the number of times a particular

transaction was made. If the user who made the transaction is known, then we could

compute, for each user u, an individual interaction vector vu where each component

provides the number of times u performed a given transaction. The interaction vector

is normalized and has non-negative numbers that add upto 1. For the rest of the

section, we assume the average user case while in Section 5.6, we describe how to

customize the optimization formulation in the presence of user identity.
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Transaction-Featureset Transition Matrix. The output of Section 5.5.1 can be

succinctly summarized as a bipartite graph where transactions form one partition

while featuresets form another. An edge exists between a featureset F and a trans-

action T , if F could have generated T . Figure 5.2 shows the graph for our running

example.

We assume a column stochastic matrix T in which rows correspond to trans-

actions while columns are the featuresets. Each cell Tij provides the probability that

an average user would generate the transaction Ti if she is interested in featureset

Fj. We can construct a boolean matrix T that represents the transaction-featureset

bipartite graph where T ij = 1 if transaction Ti could have been generated by feature-

set Fj. We also assume that if a featureset F could not have generated a transaction

T , then the probability that a user would have generated T to be 0. In other words,

T ≤ T . There are multiple ways to construct T from T . For example, we can

assume a uniform distribution where, given a featureset F , all the transaction that

could have been generated by F are chosen uniformly at random. Of course, it is

possible to have a non-uniform distribution if we have additional domain knowledge

(for example - given an actor, users are more likely to see a movie where the actor

starred than one where he doesnt). Our likelihood estimation method is oblivious to

the distribution of T .

Featureset Likelihood Vector. As we described in Section 5.4, it is not possible

to accurately identify the likelihood of featureset for a transaction in isolation. It

is necessary to utilize the featuresets of other transactions for this purpose. As an

example, given a single movie, it is not possible to confidently ascertain which feature

caused an user to watch it. However, if we see other movies by the same actor

(and with high transaction count), our confidence increases. Due to this reason, we
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identify the featureset likelihood globally (across all transactions) instead of a single

transaction. Intuitively, the global featureset likelihood vector w can be thought of

as the “featureset preference vector” of a typical user. In other words, this provides

a probability distribution over various featuresets. Frequent featuresets will have a

higher value than less frequent featuresets. This vector is stochastic (all entries are

non-zero and sum upto 1).

Given the prior notations, we can now formally respecify our generative model

for item transactions from Section 5.2. A typical user has a “featureset-preference”

vector that describes a distribution over the featuresets. The user chooses a featureset

using that distribution. Once the featureset Fj is choosen, the user looks at the

corresponding column in T and chooses a transaction with probability proportional

to Tij. Intuitively, the relationship between various entities can be summarized by:

T w = v (5.2)

Computing Global Featureset Likelihood. From Section 5.5.1, we obtained the

transaction-featureset bipartite graph. Using this information, we can compute the

transaction-feaureset transition matrix T by assuming uniform distribution. We are

also provided with the aggregate interaction vector v. Our aim now is to identify the

featureset likelihood vector w.

Notice that typically, the number of featuresets far outnumber the number

of trasactions. Hence the linear system of equations expressed by Equation 5.2 is

overdetermined and has no solution. We can define an error metric based on the

reconstruction error, Error(v − T w). For the purpose of our paper, we use the

L2 error metric. Our problem boils to finding the best w vector that minimizes

||v − T w||2.
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Algorithm 13 FFM-AVG
1: Input: IT

2: Compute aggregate interaction vector v from IT

3: ∀T ∈ IT , generate candidate featuresets

4: Form transction-featureset bipartite graph T and estimate T

5: constraints = { ∀i wi ≥ 0, ||w||1 = 1 }

6: w = argmin
w
||v − T w||2 subject to constraints

7: return w

The solution vector w must minimize the reconstruction error and must also

satisfy some constraints. Algorithm 13 provides a pseudocode for the problem. We

model this problem as a constrained optimization problem with non negativity and

stochastic constraints. Specifically, the optimization with L2 metric corresponds to

a constrained least squares problem with stochasticity constraints. Due to how the

objective function is defined, this falls under a subset of convex optimization problem

for which optimal solutions can be computed efficiently.

Complexity. The constrained optimization problem has a worst case complexity of

O(N3). However, there exist very efficient iterative algorithms that can obtain the

optimal solution in few iterations [79].

5.6 Mining Frequent Featuresets

Let us recap what we have achieved so far. We started with a database of

item transactions with the objective of identifying frequent featuresets. Using a novel

uncertainty model, we expressed each item transaction as a collection of featuresets

that could have generated it. Using this transaction-featureset bipartite graph as a

base, we used a constrained least squares approach to identify the global likelihood
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for each featureset. In this section, we use this information to identify the frequent

featuresets. We first describe an algorithm that performs mining directly over the

featureset uncertainty model. We then design an efficient yet approximate algorithm

that transforms the featuresets and their likelihoods into feature transactions which

can then passed to any state of the art probabilistic itemset mining algorithms.

5.6.1 Exact Algorithm for Mining Frequent Featuresets

In this subsection, we describe an exact algorithm FFM-EXACT for identifying

all frequent featuresets. This algorithm takes as input a single featureset F and

computes whether F is a probabilistic frequent featureset. Our algorithm is based on

dynamic programming and runs in polynomial time and is adapted from the approach

first described in [80].

Frequent Featuresets and Probabilistic Heavy Hitters. There exists a close

parallel between the concept of frequent featureset and that of probabilistic heavy

hitters in uncertain data [80]. Given an uncertain database, an item t is considered

as a (φ, τ)-probabilistic heavy hitter if the probability that t is heavy hitter (i.e. occurs

more than fraction of φ in a possible world) is greater than τ . We can immediately

see that if we treat each featureset F as an item (and compress other featuresets of a

transaction to F ), then verifying whether F is a (sup(X), pft)-heavy hitter corresponds

to finding if the featureset is probabilistically frequent. Our exact algorithm FFM-

EXACT takes this approach.

This algorithm takes as input a single featureset F and the per-transaction fea-

tureset likelihood estimated from Section 5.5. It then converts each item transaction

T into an uncertain transaction with two possible items F and F . The existential

probability (for a featureset F and for a transaction T ) PrT (F ) is set to estimated
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featureset likelihood if F was a generating featureset of T . Else the value was set to

0. The existential probability of F is computed as 1− PrT (F ).

Given this information, we could use the algorithm in [80] to estimate the proba-

bility that F is a frequent itemset. This algorithm is based on dynamic programming.

We create a two dimensional table BF with N rows and N columns. The cell BF (i, j)

is interpreted as the probability that F was the generating featureset in exactly i item

transactions out of the first j item transactions. Using this interpretation, the table

can be filled as follows.

Base Case:

BF [0, 0] = 1

BF [i, 0] = 0 (i ≥ 1)

BF [0, j] =


BF [0, j − 1] if F ∈ T, j ≥ 1

BF [0, j − 1](1− PrTj(F )) if F 6∈ T, j ≥ 1

(5.3)

Induction Step:

BF [i, j] =


BF [i, j − 1] if F 6∈ T

BF [i, j − 1](1− PrTj(F ))+

BF [i− 1, j − 1]PrTj(F ) if F ∈ T

(5.4)

Once the table is filled the probability that F is a frequent featureset can be

computed as in [80]. This step is repeated for each featureset and runs in O(N2) per

featureset.
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5.6.2 Approximate Algorithm for Mining Frequent Featuresets

While the previous algorithm is exact and produces accurate results, it is pro-

hibitively expensive. In this subsection, we design an approximate algorithm FFM-

APPROX by sacrificing some accuracy in favor of dramatically improved efficiency.

From Generating Featuresets to Feature Transactions. Our next step is to

use this collection of transactions and the featuresets with likelihood weights to iden-

tify the frequent featuresets. Unfortunately, there exist no algorithm to identify the

frequent featuresets. Most uncertain frequent mining problems work over attribute

uncertainty model necessitating a transformation from featureset uncertainty model

to attribute uncertainty model. This transformation might seem counterintuitive - we

are moving from featureset uncertainty model (which is quite expressive), to a simpler

uncertainty model. Further, it might seem that we are abandoning all the results of

our expensive pre-processing. However, as out later experiments show, performing

frequent featureset mining over this relaxed dataset provides a higher quality results

than transforming to attribute uncertainty model directly.

In this section, we will focus on taking item transactions along with their candi-

date generating featuresets into a simpler feature transaction where each feature has

an existential probability associated with it. Higher the probability, the more likely

its corresponding feature to generate more items in the item transaction.

It is possible to generate feature transactions at multiple levels of granularity.

Average User - Per Transaction. This is the simplest transformation and the

most generic. This is applicable in the case where the original item transaction

database did not have any mechanism to identify the user who made the transaction.

Further, in this approach we convert each item transaction into a corresponding

feature transaction.
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Algorithm 14 FFM-APPROX

1: Input: G:< T ,F ,E ,P > - bipartite graph where P represents the likelihood

distribution on F

2: FT = {}

3: for all T ∈ IT do

4: Collect generating featuresets GFT={Fi ∈ F — (F, T ) ∈ E}

5: Normalize the weights of the generating featuresets, ∀Fi ∈ GFT , P (Fi) =

P (Fi)/
∑

Fj∈GFT
P (Fj)

6: Initialize a feature transaction, TmpFT = ∪Fi|Fi ∈ GFT

7: Update weights of individual features, ∀fi ∈ TmpFT , fi.weight =∑
Fj∈GFT

P (Fj) ∗ Fj(fi) if fi ∈ Fj, 0 otherwise

8: FT = FT ∪ {TmpFT}

9: end for

10: Invoke uncertain frequent mining on F

Algorithm 14 works as follows. First, for each item transaction T , we isolate all

its generating featuresets from the transaction-featureset bipartite graph. We then

normalize the featureset likelihoods so that they sum up to 1. The updated values

provide, for each featureset, the probability that it could have generated T given

other transactions. We then convert this to a feature transaction as follows. For

each feature f in T , we identify all the generating featuresets of T in which it is

part of. The existential probability of the feature f is given by the summation of the

normalized likelihoods of the relevant featuresets.

Running Example. Recall that Figure 5.2 gave the minimal generating transactions

for the dataset. After running the constrained optimization, the global likelihood for
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each featureset is computed. Figure 5.3 shows an arbitrary subgraph for illustration

purposes.

T1(50) {f1,f3} (0.45)

{f1,f4} (0.34)

Figure 5.3. Bipartite Graph with Featureset Probabilities.

Let us convert item transaction T1 to a feature transaction. The featuresets

associated with T1 are {f1, f3} and {f1, f4} with values 0.45 and 0.34 respectively.

We first normalize the values so that updated values are 0.569 and 0.431. In other

words, the first featureset had a likelihood of 0.569 to have generated T1. We now

create the feature transaction from these normalized values. In this case, {f1} was

present in both featuresets, its existential probability is 0.569 + 0.431 = 1. For

the other features, their existential probabilities are computed based on the single

featureset they each belonged to. The final feature transaction is {f1 : 1.0, f3 : 0.569,

f4 : 0.431}.

Per User - Per Transaction. If we have information that could identify the user

who made the transactions, we could design a user-specific feature transaction. In this

approach, we start with the subset of item transactions performed by the user. Then

we generate the candidate featuresets, identify their likelihood and use the previous

method to convert to feature transaction. The major advantage is that if there is an

item transactions made by two different users, the previous method would generate

identical feature transaction. However, in this case, they could potentially generate

different feature transactions.

Per User. Traditional frequent featuresets are executed over the entire dataset.

However, it is also possible to identify frequent featuresets across users. A major
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advantage is that this approach provides featuresets popular among a large fraction

of the user population as opposed to featurests popular among a large fraction of

transactions. This approach alleviates the effect of users who make a lot of identi-

cal transactions hence generating irrelevant frequent featuresets. We start from the

subset of item transactions performed by the user. We then identify the candidate

featuresets for all transactions and identify their global likelihood. Notice that the

likelihood Then, we create a single feature transaction for the user. For each feature

that is present in some transaction made by the user, its existential probability is the

sum of featuresets in which the featureset is present.

Frequent Featureset Mining. Once we have converted the item transactions into

feature transactions, they could be passed to any state-of-the-art uncertain frequent

itemset mining algorithms [69, 81, 82] to obtain frequent featuresets. As the experi-

ment section will confirm, the featuresets obtained are of higher quality than direct

adaptations of certain or uncertain frequent itemset algorithms.

5.7 Scaling Featureset Mining

The previous sections described the various stages involved in taking a dataset

of item transactions and processing it to identify the frequent featuresets. These

algorithms are feasible for datasets with a relatively small number of features or

items. Also recall from Section 5.5 that the worst case complexity of finding the

likelihood is cubic in the size of transactions. In this section, we describe how to

overcome the two major scalability challenges - large number of candidate generating

featuresets and large size of item transaction databases. Surprisingly, the solution to

both the problem rely on a common trick - sampling.
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5.7.1 Sampling Transaction-Featureset Bipartite Graph.

Recall that one of the major challenges in identifying frequent featuresets is to

enumerate all the major candidate featuresets of each transaction. This was similar

to enumerating all the minimal hitting sets. In the worst case, this number could be

exponential. This issue is amplified by the fact that the same process has to repeat

for each item transaction in the database. Hence, in order to scale the algorithm, we

have to identify the most important featuresets and retain only them. Any featureset

that does not have a high likelihood could be removed.

We use a combination of heuristics to scale the algorithm. First, we relax the

constraint that the generating featureset has to be minimal. This might seem coun-

terintuitive as the number of non minimal generating featuresets far outnumbers that

of minimal ones. However, this relaxation allows us to build featuresets that are

simultaneousaly related to multiple transactions. We adapt the existing randomized

algorithms described in Section 5.5.1 for this purpose. Given the expected support

threshold, we identify the minimum number of transactions that any candidate gen-

erating featureset has to cover. For example, it might be the case that for a featureset

to be frequent, it has to cover at least 100 transactions. The heuristic starts with

a hitting set containing all the features in F . This is obviously a valid featureset

touching all transactions. We randomly drop features from it till the number of

transactions it covers reach the threshold (say 100). We repeat the process as long

as necessary to cover all the transactions in the database. We can observe that each

iteration of this approach results in a featureset that covers at least 100 transactions.

These featuresets also contains features that are, intuitively, more likely to be in the

final frequent featuresets. A bottom-up variant of this heuristic is also possible where

we start with an empty set and add features till it covers at least 100 transactions.
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Refer to Algorithm 15 for pseudocode. This approach, in the worst case, degenerates

to the algorithms we described in previous sections.

Complexity of FFM-APPROX-SAM1. From the pseudocode in Algorithm 15,

it is possible to analyze its worst case complexity. From Section 5.5, recall that the

complexity of FFM-APPROX is O(N3) where N is the number of transactions. Other

operations in the algorithm can be ignored for asymptotic analysis. This implies that

the algorithm FFM-APPROX-SAM1 has a time complexity of O(N3). In practice,

the scalable variant is extremely efficient.

Algorithm 15 FFM-APPROX-SAM1

1: Input: G: bipartite graph, r: max featuresets, t: threshold

2: Candidate featuresets H = {}

3: for index=1 to r do

4: Candidate hitting set hs = {}

5: randomly add features from F until hs hits at least t item transactions

6: H = H ∪ hs

7: end for

8: G = Build-Bipartite-Graph(IT ,H)

9: w = FFM-APPROX(IT )

10: FT = FEATURE-TRAN-GEN(G)

11: FFS = frequent featuresets from (FT )

12: return FFS
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5.7.2 Sampling Item Transactions

An orthogonal approach to scale is based on sampling the item transaction

database so as to get a smaller sample on which the algorithms are feasible. Intuitively,

we pick a random sample of the database and run the algorithms described in previous

sections over it. If the sample obtained is representative, then the frequent featuresets

obtained with a scaled down threshold would also be frequent in the entire database.

A key issue with this sampling strategy is the possibility of errors. Specifically, it is

possible to get both false negative (when a featureset is frequent in the database but

not in the sample) and false positive when a spurious frequentset is frequent in the

sample but not in original dataset.

There are multiple strategies to reduce the number of false positives and neg-

atives ranging from using a lower threshold, using multiple chunked samples instead

of a single sample etc. One of the elegant algorithms to remove the false positives or

negatives completely is the one proposed by Toivonen et al. [83]. We adapt a vari-

ant of this algorithm for our paper. We start with obtaining a random sample and

run our algorithms over it. Once the frequent featuresets are identified, we collect

the featuresets in the negative border. These are featuresets that are not frequent

by themselves but all their immediate subsets are. We then make a pass over the

entire dataset and verify the expected support of all the frequent featuresets identi-

fied from the sample and also their negative border. The set of frequent featuresets

identified in the second pass are exactly the solution to our original problem. Refer

to Algorithm 16 for pseudocode.

Complexity of FFM-APPROX-SAM2. The analysis of FFM-APPROX-SAM2

follows from that of FFM-APPROX-SAM1. The dominant factor is the procedure

FFM-APPROX which takes time O(N3
S). Unless the sample size is very small, this
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Algorithm 16 FFM-APPROX-SAM2
1: Input: IT

2: Generate sample S from IT

3: GS = transaction-featureset bipartite graph for S

4: w = FFM-APPROX(IT )

5: FTS = FEATURE-TRAN-GEN(GS)

6: FFSS = frequent featuresets from (FTS)

7: FFS−S = Compute negative border for FFSS

8: FFS = Filter non frequent featuresets from FFSS ∪ FFS−S

9: return FFS

provides the time complexity. Of course, the scalable variant is in practice extremely

efficient.

5.8 Experiments

In this section, we provide an extensive experimental evaluation of the efficiency

and effectiveness of our proposals in mining hidden frequent featuresets on real and

synthetic datasets. The experimental results confirm the superiority of our approach

over direct adaptations of existing frequent itemset mining algorithms.

System Configuration. All our algorithms are implemented in C++. Experiments

were conducted on Linux Ubuntu 13.04 machine, Intel Core i5 processor, 64 bit

machine with 8 GB RAM. Timing values are taken by averaging over twenty runs.
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5.8.1 Datasets

We used three different datasets to evaluate our algorithms. Two of them are

real-world dataset while the third is a synthetic data allowing us to evaluate the

scalability of our algorithms.

AJE dataset : This dataset consists of 2103 news articles published between April

2012 and February 2013 on Aljazeera english (AJE) website1 - one of the most influ-

ential news media in the MENA region2. Each article comes with a set of comments

(389k in total) posted by 35k different users from 179 different countries. We charac-

terized each article by its features (i.e. topics, persons and locations) extracted using

Open Calais3. We also evaluated other entity extraction libraries such as Alchemy

and Stanford NER but found the results produced by all three services were remark-

ably similar. On average, each article has 7.5 features distributed as follows: 1.42

topics, 2.58 person names and 3.5 locations names (countries and/or cities).

An item transaction is defined as the set of articles commented by a user uid

on the same date d, augmented with the comments a user posted on each article

i.e. T =< tid, uid, (a1, c1), . . . (ak, ck), d >, where ci could be the concatenation of all

comments posted by uid on ai and data d. Grouping the data by users then by dates

results in 15358 transactions. See Table 5.2 for further details.

AJE Ground Truth. We propose to use user comments as a proxy to uncover

the hidden features that interested a user while reading an article. Given an article

a with a set of features features(a), a comment c posted by user u on article a, we

assume that the features that most interested the user u are those of the intersection

features(a) ∩ features(c). The ground truth for a transaction is the set of ground

1http://www.aljazeera.com
2MENA: Middle East and North Africa
3http://www.opencalais.com/
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truth for all articles. While this ground truth is an approximation of the real ground

truth (which ideally would be obtained by surveying users), we found that our ap-

proach is an efficient and automatic way to extract the ground truth. We conducted

an user study where we evaluated different mechanisms to identify ground truths

- our approach identified more entities than other alternate methods. Finally, the

set of ground truth frequent featuresets (GT ) is obtained by running a deterministic

frequent itemset mining algorithm on the obtained feature transactions.

Synthetic dataset SD : The synthetic dataset was created to test the various facets

of our algorithm. It was generated in two phases. In the first, we used IBM Quest

Generator to generate 1000 structured items over 100 features with average feature

size of 4. (here dataset transaction corresponded to items while dataset items corre-

sponded to features). Once the structured items are known, we then create another

dataset for the actual evaluation purposes. The output was a collection of feature

transactions that also forms the ground truth. For each feature in the transaction,

we chose the corresponding item (of item transaction) uniformly at random. For eg,

suppose the feature transaction was {f1, f2}. We now look at all possible items with

f1 (resp f2) and choose an item at random. items with their presence.

Last.fm Dataset LF : Last.fm 4 is a music website where users could listen to songs

from internet radio stations or from their portable music devices. Songs corresponds

to items. Each song is described using multitude of features including artist, genre,

albums, record labels and semi-structured information via tags. The set of songs

played by a user in a session correspond to the transaction. Last.fm provides a

scrobbling API that allows programs to send and receive information about tracks

listened. We built a Chrome extension that used Last.fm’s API to monitor the set

4http://www.last.fm/
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of tracks listened by the user. We recruited more than 2000 volunteers to install our

extension. Our extension provides a gamified interface where it periodically inquires

users about which of the track’s features lead them to listen to it. The users were

also allowed to enter free-form content using tags or other detailed description. These

formed the ground truth over which our algorithms were evaluated.

Table 5.2. Hidden Itemset Mining: Characteristics of Dataset

Dataset #Trans. #Items #FeaturesAvg
Len

AJE 15K 2103 459 1.5667
SD(T10I4D100K) 100K 1000 100 10

LF 40K 5644 919 18

5.8.2 Evaluation metrics

The evaluation of our algorithms is quite tricky due to the limited amount of

information available. Specifically, it is not makes sense to use traditional metrics

used for exact itemset mining. Instead, we used measures that are commonly used in

approximate frequent itemset mining [84]. A brief description is given below.

Recoverability. Recoverability measures how well a pattern mining algorithm re-

covers the ground truth featuresets (GT ). For each ground truth featureset pattern

GTi, we first identify the frequent featureset FFSi generated by our algorithm that

best matches with it (based on the number of common features cfi they share). In

other words, the recoverability of GTi is the largest percent of an featureset found

by any pattern FFSi that is associated with GTi. This is performed as a weighted

average as matching with a larger pattern counts much than matching with smaller

patterns.
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Recoverability =

∑|GT |
i=1 cfi∑|GT |

i=1 |GTi|
(5.5)

Spuriousness. It is possible for an algorithm to get a high recoverability by return-

ing large featuresets. Spuriousness is a metric complementary to recoverability - it

measures the number of features in the pattern that are not associated with origi-

nal matching pattern. Further, precision can be computed as 1.0-spuriousness. For

each FFS say FFSi, we first identify the ground truth featureset GTi, which share

maximum number of common features (denoted as cfi) between them. The number

of spurious items for each FFS is, |FFSi| - |cfi|. The equation to calculate the

spuriousness over whole FFS is given below.

Spuriousness =

∑|FF |
i=1 (|FFi| − cfi)∑|FF |

i=1 |FFi|
(5.6)

Significance. This metric combines both recoverability and Spuriousness in the same

way F-measure does with precision and recall.

Significance =
2 ∗ (Recoverability ∗ (1− Spuriousness))

(Recoverability + (1− Spuriousness)
(5.7)

Redundancy. This metric mitigates the effect of producing relevant but redundant

FFS (i.e. frequent sets that are subsets of other frequent sets). Redundancy is mea-

sured by creating a matrix, M of size |FFS|X|FFS|. Each entry in the matrix,ffsij

denotes the number of common items between FFSi and FFSj. Then we compute

the sum of the upper triangular matrix of M and subtracting the diagonal entries to

estimate the redundancy. This measure doesn’t take the average over the number of

FFS. Hence, it implicitly penalize if the number of FFS is too large.
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Redundancy =

∑
i,j=1...|FFS|,j�i ffsij −

∑
i=1...|FFS| ffsii

2
(5.8)

5.8.3 Qualitative Evaluation

For the qualitative purposes, we test two algorithm. BASELINE is a simple

tag cloud based approach defined in Section 5.4. We did not test the deterministic

baseline as it consistently underperformed BASELINE. The frequent featureset min-

ing algorithm FFM-APPROX treats all transactions are made by a single user. We

evaluate the exact, approximate and sampling based variants of our algorithm. After

identifying the frequent featuresets using baseline and our algorithms, we evaluate

their quality using the evaluation metrics described previously.

Experimental Observations: Figures 5.4(a)-5.4(l) show how our algorithms

perform against baseline for the three datasets. The major observations are as fol-

lows: (a) Our algorithms consistently out perform BASELINE for larger value of

support (b) The exact algorithm FFM-EXACT have a higher score than the approxi-

mate versions. (c) The sampling based algorithms perform slightly worse than the

approximate variants. FFM-APPROX-SAM1 which is designed for speed has a lower

accuracy than FFM-APPROX-SAM2 that is optimized for accuracy.

We vary the minimum support from 0.1 to 0.5 and measure its impact over

the evaluation metrics. Figures 5.4(a), 5.4(b) and 5.4(c) show the corresponding

impact over recoverability. Higher values of recoverability is desirable. We can see

that the recoverability of the algorithms increase as minimum support decreases. This

expected behavior is due to the high number of FFS that are discovered at lower values

of support, increasing the number of recovered GT . Our algorithms out performs

BASELINE for higher values of support. Figures 5.4(d), 5.4(e) and 5.4(f) show the

spuriousness scores achieved at different support values. A lower value of spuriousness
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is desired. The figures show that our algorithms obtain a significantly lower value of

spuriousness than BASELINE. Higher values are desirable for significance while lower

values are desirable for redundancy. Figures 5.4(g)-5.4(l) show that our algorithms

have a superior performance for both significance and redundancy.

5.8.4 Quantitative Evaluation and Scalability

Scalability. Figures 5.5(a)-5.5(c) show the runtime performance of all our algo-

rithms. We measure three parameters - number of transactions (N), number of items

(n) and number of features (m). As expected, the exact algorithm takes prohibitive

amount of time and for large datasets, it took more than two days. The approximate

variant is much faster than the exact version while the two sampling variants are

orders of magnitude faster. We can also see that the number of transactions and

features have a higher impact on running time than the number of items. This is to

be expected as the major factor in the runtime is the number of featuresets which are

directly impacted by the number of features.

Robustness of Sampling: In this set of experiments we measure the robust-

ness of our sampling algorithms. We utilize the theoretical results from [83] as a

heuristic to determine the minimum sample size. We seek to obtain a representative

sampling by ensuring that, given an itemset S, the probability that the difference

between S’s relative frequency in the database and the sample varies by atmost a

constant ε is less than a constant δ. Given ε, δ, [83] provides the minimum sample

size that must be obtained regardless of database size. Figures 5.6(a)-5.6(c) show the

robustness of our algorithms. Once the sample size exceeds 30K (minimum sufficient

size for ε = δ = 0.01), the quality does not dramatically improve with higher sample

size. Figures5.6(a), 5.6(b) show the results for recoverability and Significance respec-

tively. The results of other metrics were similar and not included to conserve space.
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Figure 5.6(c) shows that given a fixed sample size as suggested by [83] is sufficient to

reach a good accuracy regardless of the size of the database.

5.9 Related Work

While there has been extensive work on Frequent itemset mining starting with

[85], most of the proposed approaches and techniques assume the atomicity of items

and hence aim at identifying frequent itemsets by mining transactions over items.

To the best of our knowledge, we are the first to solve the problem of identifying

hidden frequent featuresets by mining observed transactions using a novel featureset

uncertainty model.

Uncertain Frequent Itemset Mining. Chui and al. [69] were the first to investi-

gate mining frequent itemsets over uncertain transactions. Since then, an important

amount of work has been done in this area (see [67] for a survey). There are two

main approaches for mining uncertain frequent itemsets: expected support and prob-

abilistic models, both of which consider the support as a random variable but with

different interpretations. In expected support approaches [69, 81, 82], an itemset

is frequent iff its expected support is greater or equal than a predefined threshold.

Several well-known frequent itemset mining algorithms have been adapted to deal

with the expected support such as UAPriori [69], UFP-Growth [81], and UH-Mine

[82]. On the other hand, probabilistic frequent itemset mining approaches rely on

the concept of frequentness probability which denotes the probability of an itemset

support to be greater than a predefined minimum support [70, 86]. Only itemsets

with frequentness probability greater than the minimum support are considered as

frequent. This is typically solved using dynamic programming [70] or divide and

conquer [86]. Tong et al. showed that these two definitions are equivalent [71].
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Uncertain Model in Probabilistic Database. There are three different models to

represent uncertainty in relational databases: tuple uncertainty, attribute uncertainty,

and xtuple uncertainty. In tuple uncertainty model, each tuple is associated with a

score reflecting the probability of that tuple to exist in the database [87]. In attribute

uncertainty model, the uncertainty is more fine grained where a probability score is

assigned to each attribute value in a tuple [74]. Notice that both models are mapped

into probability distribution over all the Possible World [88] where each Possible

world is an deterministic instance of the database. The concept of xtuples is used in

the ULDB model proposed in [68]. An xtuple could be seen as a probability distri-

bution over a set of mutually exclusive tuples. Uncertain itemset mining approaches

follow either the tuple uncertainty model [86] where a probability score is associated

with each transaction, or attribute uncertainty model [70] where probabilities are

associated to each item in a transaction.

5.10 Final Remarks

In this paper we study the novel problem of mining hidden frequent featuresets

from item transactions. We motivated this novel problem with several illustrative

examples and introduced a featureset uncertainty model. We developed a constrained

least squares based approach to solve the problem of learning generating featureset

likelihoods. We also developed two heuristics based on sampling to scale up our

algorithm to real world problem sizes.
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(d) Spuriousness (AJE)
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Figure 5.4. Qualitative Evaluation of Datasets with Varying Minimum Support.
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