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ABSTRACT

On m-inverse loops and quasigroups of order n with a long inverse cycle.

Carl Looney, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Minerva Cordero

In 2002, A.D Keedwell and V.A Sherbacov introduced the concept of finite m-

inverse quasigroups with long inverse cycles. Keedwell and Sherbacov observed that

finite m-inverse loops and quasigroups with a long inverse cycle could be useful in the

study of cryptology. Keedwell and Sherbacov studied the existence of these algebraic

structures by determining if a Cayley table of the elements of such structures could

be constructed. They showed that m-inverse loops of order 9 with a long inverse

cycle do not exist for m = 2; 4 and 6; thus, there do not exist 2,4, or 6 inverse-

quasigroups of order 8. However the investigation of 3 or 7-inverse loops of order 9

and of 3 or 7-inverse quasigroups of order 8 with a long inverse cycle was considered

more complicated and was left unanswered. In this paper we attack the unanswered

question of the existence of 3 and 7-inverse loops and quasigroups with long inverse

cycles. We also investigate the following two problems: (i)The existence of m-inverse

loops with a long inverse cycle of orders 11 and 15. (ii)The existence of m-inverse

quasigroups with a long inverse cycle of order 12,16 and 20.
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CHAPTER 1

Introduction

1.1 Introduction

Cryptology is a science that consists of two parts: cryptography and cryptanal-

ysis. Cryptography can be described as the science of transferring information that

has been protected from unlawful users[2]. Cryptanalysis is the science of breaking

down the transferred information. In general, cryptography requires sets of integers

and specific operations that are defined for those sets. The set of elements and the

operations that are applied to the elements of the set is called an algebraic structure.

Algebraic structures can be classified as associative, such as groups and fields, or non-

associative, such as quasigroups and loops. Our focus will be on finite quasigroups

and loops. In particular we will study quasigroups with the m-inverse property. We

study these particular algebraic structures because Keedwell noticed that finite m-

inverse loops and quasigroups with a long inverse cycle were useful in the study of

cryptology[1]. In this paper we continue the work of Keedwell where we investigate

the existence of finite m-inverse loops and quasigroups with a long inverse cycle.

Keedwell’s approach for investigating the existence of these algebraic structures was

to determine if a Cayley table of the elements can be constructed. The approach con-

sisted of completing row zero in order to determine if a Cayley table exists. In this

work, we will continue the same approach for determining the existence of m-inverse

loops and quasigroups with a long inverse cycle.
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In Chapter 2, we investigate the existence of 3 and 7-inverse loops with a long

inverse cycle. We will also investigate the existence of m-inverse quasigroups of order 8

with a long inverse cycle. Next in Chapter 3 we study the existence of finite m-inverse

loops with a long inverse cycle where we determine all the possible ways to complete

row zero for a finite m-inverse loop. Finally in Chapter 4 we study the existence of

finite m-inverse quasigroups with a long inverse cycle where again we determine all the

possible ways to complete row zero for a finite m-inverse quasigroup. It is important

to note that for finite m-inverse loops and quasigroups with a long inverse cycle we

examine all the possible ways to complete row zero. This is important because one

of these forms may lead to the construction of a Cayley table. However if all ways

to complete row zero fail to construct a Cayley table then we conclude that a finite

m-inverse loop or quasigroup with a long inverse cycle does not exist.

Definition 1.1

A finite quasigroup (Q, ∗) of order n consists of a set Q of n symbols on which

a binary operation (∗) is defined such that for all a, b ∈ Q, a ∗ b ∈ Q, and there exist

unique x, y ∈ Q such that x ∗ a = b and a ∗ y = b. If there exists an identity element

e ∈ Q such that for all a ∈ Q, a ∗ e = e ∗ a = a then (Q, ∗) is a loop.

Definition 2.1

The Cayley table of a finite quasigroup is a table with rows and columns

labelled by the elements of the group and the entry a ∗ b in the row labelled by a and

column labelled by c.

Here is an example of the Cayley table of quasigroup (Z3, +). Notice that we

will call ”row a” the row giving the products a ∗ x for all x ∈ Q.

2



+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Definition 3.1

Let (Q, ∗) be a quasigroup (respectively a loop). Then (Q, ∗) is an m-inverse

quasigroup/loop if there exists a permutation J of the set Q such that for all a, b ∈ Q,

Jm(a ∗ b) ∗ Jm+1(a) = Jm(b).

If (Q, ∗) is a quasigroup/loop then Q = {e, 0, 1.....n − 2} or {0, 1.....n − 1}

respectively. Note for our study of m-inverse loops and quasigroups we will define J

as J(a) ≡ a + 1, where the arithmetic is modulo n − 1 when discussing loops and

modulo n for quasigroups.

3



CHAPTER 2

3 and 7-inverse loops and quasigroups

2.1 3 and 7-inverse loops of order 9 with a long inverse cycle

In this chapter we determine the existence of 3 and 7-inverse loops of order 9

with a long inverse cycle. We also determine if 3 and 7-inverse quasigroups of order 8

with a long inverse cycle exist. Determining the existence of a m-inverse loop of order

9 and a m-inverse quasigroup of order 8 with a long inverse cycle was the stopping

point for Keedwell in his paper written on m-inverse loops and quasigroups[1]. Now

in order to determine if a m-inverse loop or quasigroup with a long inverse cycle exists

we follow Keedwell’s approach and determine if a Cayley table of the set Q can be

constructed. If all attempts to construct a Cayley table fail then we conclude that

a 3 or 7-inverse loop of order 9 and a 3 or 7-inverse quasigroup of order 8 does not

exist. Note that for 3 and 7 inverse loops and quasigroups with a long inverse cycle

the arithmetic is modulo 8.

2.1.1 3-inverse loops of order 9 with a long inverse cycle

Suppose that (Q, ∗) is a 3-inverse loop of order 9 with a long inverse cycle and

a ∗ b = c where a, b, c ∈ Q. Therefore, by the m-inverse property a permutation

J exists such that [J3(a ∗ b)] ∗ [J4(a)] = J3(b) for all a, b ∈ Q. Let J(a) ≡ a + 1;

then J(J(a)) = J(a + 1) ≡ a + 2. Therefore by applying J , m − 1 times we obtain

Jm(a) ≡ a+m. Consider [Jm(a∗e)]∗ [Jm+1(a)] = Jm(e) for a ∈ Q. This implies that

[Jm(a)] ∗ [J(Jm(a)] = e. Let Jm(a) = b ∈ Q. It follows that b ∗ J(b) = e = b ∗ (b + 1).

4



Let a∗b = c. Thus [J3(c)]∗ [J4(a)] = J3(b) which implies that (c+3)∗ (a+4) =

(b+3). From the equality (c+3)∗(a+4) = (b+3) we obtain [J3(b+3)]∗ [J4(c+3)] =

J3(a + 4) which implies that (b + 6) ∗ (c + 7) = (a + 7). Next from the equality

(b + 6) ∗ (c + 7) = (a + 7) we obtain [J3(a + 7)] ∗ [J4(b + 6)] = J3(c + 7) which implies

that (a + 2) ∗ (b + 2) = c + 2. Therefore, if a ∗ b = c, then (c + 3) ∗ (a + 4) = (b + 3),

(b + 6) ∗ (c + 7) = (a + 7) and (a + 2) ∗ (b + 2) = c + 2.

Next we describe how to obtain the equalities for a 3-inverse loop of order 9 in

general for the choice a∗b = c. First we add 3 to the last term in the previous equality

to obtain the first term in the new equality. Next we add 4 to the first term in the

previous equality to obtain the second term in the new equality. Lastly, we add 3 to

the second term in the previous equality to obtain the last term in the new equality.

This process will continue until we reach [a+s(3m+1)]∗[b+s(3m+1)] = c+s(3m+1)

where s is the smallest positive integer such that s(3m+1) ≡ 0. Therefore, by letting

a ∗ b = c the set of equalities given in Table 2.1 hold. We will say that the choice

a ∗ b = c generates each equality.

Table 2.1. Iteration 2.1

a ∗ b = c

(c + 3) ∗ (a + 4) = (b + 3)
(b + 6) ∗ (c + 7) = (a + 7)
(a + 2) ∗ (b + 2) = (c + 2)
(c + 5) ∗ (a + 6) = (b + 5)
b ∗ (c + 1) = (a + 1)
(a + 4) ∗ (b + 4) = (c + 4)
(c + 7) ∗ a = (b + 7)
(b + 2) ∗ (c + 3) = (a + 3)
(a + 6) ∗ (b + 6) = (c + 6)
(c + 1) ∗ (a + 2) = (b + 1)
(b + 4) ∗ (c + 5) = (a + 5)

5



The elements of Q are e, 0, 1....7. This implies the given entries for the Cayley

table are: 0∗1 = e, 1∗2 = e, .....,7∗0 = e and 0∗e = 0 = e∗0 = 0,......,7∗e = 7 = e∗7.

Therefore, we are given 25 entries of the Cayley table associated with Q. Thus 56

entries have yet to be inputted into the Cayley table. Recall that ”row a” is the row

yielding the product a ∗ x for all x ∈ Q. Consider the missing entries in row zero:

0 ∗ 0, 0 ∗ 2, 0 ∗ 3, 0 ∗ 4, 0 ∗ 5, 0 ∗ 6 and 0 ∗ 7. Next we fill row zero in the following way:

Let 0∗0 = 3,0∗2 = 4, 0∗3 = 7, 0∗4 = 1, 0∗5 = 3, 0∗6 = 5 and 0∗7 = 6. Therefore,

since we assumed (Q, ∗) is a 3-inverse loop of order 9 we obtain the following partially

completed Cayley table.

* e 0 1 2 3 4 5 6 7

e e 0 1 2 3 4 5 6 7

0 0 3 e 4 7 1 2 5 6

1 1 4 3 e ? 2 ? 7 5

2 2 7 0 5 e 6 1 3 4

3 3 1 7 6 5 e ? 4 ?

4 4 5 6 1 2 7 e 0 3

5 5 6 ? 3 1 0 7 e ?

6 6 2 5 7 0 3 4 1 e

7 7 e ? 0 ? 5 3 2 1

Consider row one since the entries 0 and 6 are missing from row one then

1 ∗ 3 = 0 or 1 ∗ 3 = 6. Therefore we obtain the following iterations:

Table 2.2. Iteration 2.2

1 ∗ 3 = 0 1 ∗ 3 = 6
3 ∗ 5 = 6 1 ∗ 5 = 6
1 ∗ 7 = 0)

6



Notice that each choice leads to a contradiction. Therefore, by completing row

zero in this manner we are not able to construct a Cayley table. Now if we continue to

construct the partial Cayley table by checking all the possible choices for the missing

entries in row zero then we will have numerous cases: Therefore, to eliminate this

tedious process we introduce the following lemma and propositions that we help us

generalize the construction of row zero.

Lemma 1. If (Q, ∗) is a 3-inverse loop of order 9 with a long inverse cycle then the

choice a ∗ b = c generates 12 or 4 entries in the Cayley table.

Proof. Notice that from table 2.1 it is clear that the choice a ∗ b = c generates at

most12 distinct entries in the Cayley table. Let’s assume that a∗b = c generates t < 12

entries in the Cayley table. This implies that t divides 12. Therefore, t = 1, 2, 3, 4

or 6. If a ∗ b = c generates 3 or 6 entries then by table 2.1 a ≡ a + 2 or a ≡ a + 6,

respectively, which is a contradiction since the arithmetic is modulo 8. Assume t = 1

or 2; by table 2.1 a ≡ a + 2 or a ≡ a + 4 respectively, which again is a contradiction

since the arithmetic is modulo 8. Finally if t = 4, then b ≡ a + 6 and c ≡ a + 3 where

a ∗ (a + 6) = a + 3 generates 4 entries in the Cayley table.

In the next proposition we study the product 0 ∗ b = c for b, c ∈ Q and consider

the entries the product generates in row zero depending on whether they are even or

odd.

Proposition 1. Let (Q, ∗) be a 3-inverse loop of order 9 with a long inverse cycle.

1. If 0 ∗ b = c generates 12 distinct entries in the Cayley table with b even and c odd

then the choice 0 ∗ b = c generates 3 odd entries in row zero.

7



2. If 0 ∗ b = c generates 12 distinct entries in the Cayley table such that b and c are

even then the choice 0 ∗ b = c generates one odd and one even entry in row zero.

3. If 0 ∗ b = c generates 12 distinct entries in the Cayley table with b odd and c even

then the choice 0 ∗ b = c generates one even entry in row zero.

Proof. 1. Assume 0 ∗ b = c generates 12 distinct entries in row zero with b even

and c odd. Consider table 2.1. Notice that the first term in each equation is in the

form a + xi, c + yi or b + zi for i = 1, .., 4 and xi, yi, zi ∈ Q. Each term respectively

determines what row the entry will be inputted in. We know that a = 0, b is even

and c is odd. Therefore, each term is congruent to some even element of Q. Thus for

some i each term is congruent to zero where the entries are odd.

2. Assume 0 ∗ b = c generates 12 distinct entries in row zero such that b and c are

even. Consider table 2.1. Again the first term in each equation is in the form a + xi,

c + yi or b + zi for i = 1, .., 4 where xi, yi, zi ∈ Q. Each term respectively determines

what row the entry will be inputted in. We know that a = 0, b and c are even.

Therefore, only a + xi and b + zi are congruent to some even element of Q. Thus for

some i each term is congruent to zero where the entry associated with a + xi is even

and the entry associated with b + zi is odd.

3. Assume 0 ∗ b = c generates 12 distinct entries in row zero with b odd and c even.

Consider table 2.1. Again the first term in each equation is in the form a + xi, c + yi

or b+ zi for i = 1, .., 4 and xi, yi, zi ∈ Q. Each term respectively determines what row

the entry will be inputted in. We know that a = 0, b is odd and c is even. Therefore,

only a + xi is congruent to some even element of Q. Thus, for some i, a + xi, is

congruent to zero where the entry associated with a + xi is even.
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Proposition 2. If (Q, ∗) is a 3-inverse loop of order 9 with a long inverse cycle such

that 0 ∗ 6 = 3 then the choice 0 ∗ 6 = 3 generates 4 distinct entries in the Cayley

Table.

Proposition 3. Let (Q, ∗) be a 3-inverse loop of order 9 with a long inverse cycle

and let the choice 0 ∗ b = c generate 3 odd entries in row zero. Then 0 ∗ 6 6= 3.

Proof. By computing the possible choices that generates 3 entries in row zero we

obtain that if the choice 0∗b = c generates 3 entries in the Cayley table then 0∗6 = 5.

Let A be the set of all the equalities 0 ∗ b = c that generate 3 odd entries in

row zero. Let B be the set of all the equalities 0 ∗ b = c that generate one even and

one odd entry in row zero. Finally let C be the set of all the equalities 0 ∗ b = c that

generate one even entry in row zero. Recall that the choice a ∗ b = c generates 12 or

4 entries in the Cayley table. If a ∗ b = c generates 4 entries in the Cayley table then

a ∗ (a + 6) = a + 3. Hence 0 ∗ 6 = 3 and 1 ∗ 7 = 4. Thus to obtain the 56 missing

entries we need a combination of equalities that generate 12 distinct entries in the

Cayley table for the following reasons. We know that there can only be two choices

that generate 4 entries in the Cayley table. This implies that the remaining choices

a ∗ b = c must generate 12 distinct entries in the Cayley table. Therefore in order to

obtain the 56 missing entries we must find y ≤ 2 x, y ∈ Z+ that satisfy the following

equation 12x + 4y = 56. This implies that x = 4 and y = 2. Therefore, in order for

a m-inverse loop of order 9 to exist we need the choice 0 ∗ 6 = 3, the choice 1 ∗ 7 = 4

and four equalities that generate 12 distinct entries each in the Cayley table.

Notice that from row zero we have the choices 0 ∗ e = 0, 0 ∗ 1 = e and 0 ∗ 6 = 3.

Therefore, there are three odd and three even entries missing in row zero. Furthermore
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by proposition 3, if we choose 0∗b = c ∈ A then 0∗6 6= 3. However, 0∗6 = 3. Therefore

the remaining odd entries in row zero must be obtained by some combination of

0 ∗ b = c ∈ B. Recall that each 0 ∗ b = c ∈ B generates one odd and one even entry

in row zero. Therefore, we need three equalities from set B in order to complete row

zero.

Next we determine if the completion of row zero leads to the construction of a

Cayley Table. We have three choices 0∗b = c from B that generate 12 distinct entries

in the Cayley table, and the choices 0 ∗ 6 = 3 and 1 ∗ 7 = 4 that generate 4 entries in

the Cayley table, respectively. Therefore we have a total of 44 of 56 missing entries.

Now the choice a ∗ b = c generates 12 or 4 entries in the table. Therefore we need

some a ∗ b = c that generates 12 distinct entries in the Cayley table after row zero is

filled. Recall that the choice 0 ∗ b = c ∈ B generates one odd entry in row one. This

implies that by completing row zero we obtain three odd entries in row one and one

even entry in row one since 1 ∗ 7 = 4. By letting (Q, ∗) be a m-inverse loop of order 9

we obtain 1∗e = 1, 1∗2 = e, 1∗7 = 4. Therefore 0, 2, 6 are the missing entries in row

one after row zero is completed. This implies that there exist some choice 1 ∗ b = c

that generates the entries 0, 2, 6 in row one after row zero is completed. We assume

that some 1 ∗ b = c generates 12 distinct entries in the Cayley table and row zero is

filled. The table below will assist us in determining if the elements b ∈ Q and c ∈ Q

are odd or even. It is important to note that the first term in each equality determines

the row and the second term determines the column the entry will be inputted in.
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Table 2.3. Iteration 2.3

1 ∗ b = c

(c + 3) ∗ 5 = (b + 3)
(b + 6) ∗ (c + 7) = 0
3 ∗ (b + 2) = (c + 2)
(c + 5) ∗ 7 = (b + 5)
b ∗ (c + 1) = 2
5 ∗ (b + 4) = (c + 4)
(c + 7) ∗ 1 = (b + 7)
(b + 2) ∗ (c + 3) = 4
7 ∗ (b + 6) = (c + 6)
(c + 1) ∗ 3 = (b + 1)
(b + 4) ∗ (c + 5) = 6

Consider the first term in each equation in table 2.2. Notice that the first terms

for the set of equations are: 1, 3, 5, 7, c + xi and b + yi with xi odd and yi even for

i = 1, .., 4. Thus c is congruent to some even element of Q and b is congruent to some

odd element of Q. Hence the choices for b are 1, 3, 5 and the choices for c are 0, 2, 6.

Consider the following table:

Table 2.4. Iteration 2.4

1 ∗ 1 = 0 1 ∗ 1 = 6 1 ∗ 3 = 0 1 ∗ 3 = 2 1 ∗ 3 = 6 1 ∗ 5 = 0 1 ∗ 5 = 2
3 ∗ 5 = 4 1 ∗ 5 = 4 3 ∗ 5 = 6 5 ∗ 5 = 6 1 ∗ 5 = 6 3 ∗ 5 = 0 5 ∗ 5 = 0
7 ∗ 7 = 0 1 ∗ 7 = 0 1 ∗ 1 = 0 3 ∗ 1 = 0
3 ∗ 3 = 2 3 ∗ 7 = 4
5 ∗ 7 = 6 7 ∗ 7 = 2
1 ∗ 1 = 2 5 ∗ 3 = 2

5 ∗ 1 = 6
1 ∗ 1 = 4
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Notice that from column 1 of table 2.3, 1 ∗ 1 = 0 and 1 ∗ 1 = 2. However if

1 ∗ 1 = 0 then 1 ∗ 1 6= 2 since 0 6≡ 2. Therefore 1 ∗ 1 6= 0 or 1 ∗ 1 6= 2. Now considering

column 2, we conclude that if 1 ∗ 1 = 6 then 1 ∗ 5 = 4. However, 1 ∗ 7 = 4. Thus

1 ∗ 1 6= 6. This implies that 1 ∗ 1 6= 0, 1 ∗ 1 6= 6 or 1 ∗ 1 6= 2. By examining each

individual column we obtain that these choices for 1 ∗ 1,1 ∗ 3 and 1 ∗ 5 cannot equal

0, 2 or 6. This implies that there does not exist a choice 1 ∗ b = c that generates

the entries 0, 2, 6 in row one after row zero is filled. Therefore, we are not able to

construct a Cayley table associated with Q. Thus we conclude a 3-inverse loop of

order 9 with a long inverse cycle does not exist.

2.1.2 7-inverse loop of order 9 with a long inverse cycle

In this section we investigate the existence of a 7-inverse loop of order 9. First

we observe the following iterations:

Table 2.5. Iteration 2.5

m = 3 m = 7
a ∗ b = c a ∗ b = c
(c + 3) ∗ (a + 4) = (b + 3) (c + 7) ∗ a = (b + 7)
(b + 6) ∗ (c + 7) = (a + 7) (b + 6) ∗ (c + 7) = (a + 7)
(a + 2) ∗ (b + 2) = (c + 2) (a + 6) ∗ (b + 6) = (c + 6)
(c + 5) ∗ (a + 6) = (b + 5) (c + 5) ∗ (a + 6) = (b + 5)
b ∗ (c + 1) = (a + 1) (b + 4) ∗ (c + 5) = (a + 5)
(a + 4) ∗ (b + 4) = (c + 4) (a + 4) ∗ (b + 4) = (c + 4)
(c + 7) ∗ a = (b + 7) (c + 3) ∗ (a + 4) = (b + 3)
(b + 2) ∗ (c + 3) = (a + 3) (b + 2) ∗ (c + 3) = (a + 3)
(a + 6) ∗ (b + 6) = (c + 6) (a + 2) ∗ (b + 2) = (c + 2)
(c + 1) ∗ (a + 2) = (b + 1) (c + 1) ∗ (a + 2) = (b + 1)
(b + 4) ∗ (c + 5) = (a + 5) b ∗ (c + 1) = (a + 1)
a ∗ b = c a ∗ b = c
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From the above iterations, we observe that for m = 3 and m = 7 the choice

a∗b = c generates the same equalities. Therefore, if m = 7 we obtain the same results

as when m = 3. Thus we conclude that a 7-inverse loop of order 9 with a long inverse

cycle does not exist. We have proven the following theorem.

Theorem 1. A 3 or 7-inverse loop of order 9 with a long inverse cycle does not exist.

2.1.3 3-inverse quasigroups of order 8 with a long inverse cycle

The objective of this section is to determine if there exists a 3-inverse Quasi-

group of order 8 with a long inverse cycle. Let’s assume a 3-inverse quasigroup of

order 8 with a long inverse cycle exists and let Q = {e, 0, 1, ..., 7}. This implies that

there exists a permutation J such that [J3(a ∗ b)] ∗ [J4(a)] = J3(b) for all a, b ∈ Q

where J(a) ≡ a + 1. Therefore we obtain the following equalities.

Table 2.6. Iteration 2.6

a ∗ b = c

(c + 3) ∗ (a + 4) = (b + 3)
(b + 6) ∗ (c + 7) = (a + 7)
(a + 2) ∗ (b + 2) = (c + 2)
(c + 5) ∗ (a + 6) = (b + 5)
b ∗ (c + 1) = (a + 1)
(a + 4) ∗ (b + 4) = (c + 4)
(c + 7) ∗ a = (b + 7)
(b + 2) ∗ (c + 3) = (a + 3)
(a + 6) ∗ (b + 6) = (c + 6)
(c + 1) ∗ (a + 2) = (b + 1)
(b + 4) ∗ (c + 5) = (a + 5)
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Notice that the equalities are the same as when investigating 3 and 7-loops of

order 9 with a long inverse cycle. We obtain similar results for quasigroup and the

proofs are the same as the corresponding ones for loops.

Lemma 2. If (Q, ∗) is a 3-inverse quasigroup of order 8 with a long inverse cycle

then the choice a ∗ b = c generates 12 or 4 entries in the Cayley table.

Proposition 4. Let (Q, ∗) be a 3-inverse quasigroup of order 8 with a long inverse

cycle.

1. If 0 ∗ b = c generates 12 distinct entries in the Cayley table with b even andc odd

then the choice 0 ∗ b = c generates 3 odd entries in row zero.

2. If 0 ∗ b = c generates 12 distinct entries in the Cayley table such that b and c are

even then the choice 0 ∗ b = c generates one odd and one even entry in row zero.

3. If 0 ∗ b = c generates 12 distinct entries in the Cayley table with b odd and c even

then the choice 0 ∗ b = c generates one even entry in row zero.

Proposition 5. Let (Q, ∗) be a 3-inverse quasigroup of order 8 with a long inverse

cycle such that the choice 0 ∗ 6 = 3. Then the choice 0 ∗ 6 = 3 generates 4 distinct

entries in the Cayley table.

Proposition 6. If (Q, ∗) is a 3-inverse quasigroup of order 8 with a long inverse

cycle and the choice 0 ∗ b = c generates 3 odd entries in row zero then 0 ∗ 6 6= 3.

Proposition 7. Let (Q, ∗) be a 3-inverse quasigroup of order 8 with a long inverse

cycle and the choice a ∗ b = c generates 4 entries in the Cayley table. Then a ∗ b = c

generates 0 ∗ 6 = 3 or 1 ∗ 7 = 4.
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Let the definition for A,B and C hold as previously stated when investigating

m-inverse loops of order 9. Let (Q, ∗) be a 3-inverse quasigroup of order 8 with a long

inverse cycle. This implies that there are 64 missing entries in the Cayley table. We

know that there can only be two choices that generate 4 distinct entries in the Cayley

table. This implies that the remaining choices a ∗ b = c must generate 12 distinct

entries in the Cayley table. Therefore in order to obtain the 64 missing entries we

must find x, y ∈ Z+ that satisfy the equation 12x + 4y = 64, where x represents

the number of equalities that generate 12 distinct entries in the Cayley table, and y

represents the number of equalities that generate 4 entries in the Cayley table and

y ≤ 2. This implies that x = 5 and y = 1. Therefore, in order for a m-inverse

quasigroup of order 8 to exist we need four equalities that generate 12 distinct entries

each in the Cayley table corresponding to the choice 0∗6 = 3, or the choice 1∗7 = 4.

Let 0 ∗ 6 = 3; this implies that 0 ∗ b = c 6∈ A. Therefore we need three equalities from

B that generate the remaining odd missing entries in row zero. This combination

yields three odds and three even entries in row zero. This implies that there remains

one even entry missing in row zero. Therefore, we need one equality 0 ∗ b = c ∈ C to

complete row zero. Let 0 ∗ 0 = 2 ∈ B, 0 ∗ 2 = 0 ∈ B, 0 ∗ 4 = 4 ∈ B, 0 ∗ 5 = 6 ∈ C,

0 ∗ 6 = 3, and 1 ∗ 1 = 4. Notice that the choices 0 ∗ 6 = 3 and 1 ∗ 1 = 4 are not

contained in the set A, B or C. The choice 0 ∗ 6 = 3 generates 4 entries in the Cayley

table and the choice 1 ∗ 1 = 4 generates no entries in row zero. It is important to

note that a set has not been defined for these choices. We obtain the following Cayley
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table which implies that a 3-inverse quasigroup of order 8 with a long inverse cycle

does exist.

Table 2.7. 3-inverse quasigroup of order 8 with a long inverse cycle

* 0 1 2 3 4 5 6 7
0 2 5 0 1 4 6 3 7
1 7 4 3 5 0 2 1 6
2 5 1 4 7 2 3 6 0
3 3 0 1 6 5 7 2 4
4 0 2 7 3 6 1 4 5
5 4 6 5 2 3 0 7 1
6 6 7 2 4 1 5 0 3
7 1 3 6 0 7 4 5 2

Here is an example of a 3-inverse quasigroup of order 8 with a long inverse cycle

where 1 ∗ 7 = 4 but 0 ∗ 6 6= 3.

Table 2.8. 3-inverse quasigroup of order 8 with a long inverse cycle

* 0 1 2 3 4 5 6 7
0 5 4 0 2 3 6 1 7
1 2 7 3 5 0 1 6 4
2 3 1 7 6 2 4 5 0
3 0 6 4 1 5 7 2 3
4 7 2 5 3 1 0 4 6
5 4 5 2 0 6 3 7 1
6 6 0 1 4 7 5 3 2
7 1 3 6 7 4 2 0 5
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2.1.4 7-inverse quasigroups of order 8 with a long inverse cycle

In this section we investigate the existence of a 7-inverse quasigroup of order 8

with a long inverse cycle. Let’s observe the iteration listed below.

Table 2.9. Iteration 2.9

m = 3 m = 7
a ∗ b = c a ∗ b = c

(c + 3) ∗ (a + 4) = (b + 3) (c + 7) ∗ a = (b + 7)
(b + 6) ∗ (c + 7) = (a + 7) (b + 6) ∗ (c + 7) = (a + 7)
(a + 2) ∗ (b + 2) = (c + 2) (a + 6) ∗ (b + 6) = (c + 6)
(c + 5) ∗ (a + 6) = (b + 5) (c + 5) ∗ (a + 6) = (b + 5)

b ∗ (c + 1) = (a + 1) (b + 4) ∗ (c + 5) = (a + 5)
(a + 4) ∗ (b + 4) = (c + 4) (a + 4) ∗ (b + 4) = (c + 4)

(c + 7) ∗ a = (b + 7) (c + 3) ∗ (a + 4) = (b + 3)
(b + 2) ∗ (c + 3) = (a + 3) (b + 2) ∗ (c + 3) = (a + 3)
(a + 6) ∗ (b + 6) = (c + 6) (a + 2) ∗ (b + 2) = (c + 2)
(c + 1) ∗ (a + 2) = (b + 1) (c + 1) ∗ (a + 2) = (b + 1)
(b + 4) ∗ (c + 5) = (a + 5) b ∗ (c + 1) = (a + 1)

a ∗ b = c a ∗ b = c

From the above iteration notice that if (Q, ∗) is a m-inverse quasigroup of order

8 with a long inverse cycle then for m = 3 or m = 7 the choice a ∗ b = c generates the

same entries for the Cayley table. Therefore, since there exist a 3-inverse quasigroup
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of order 8 with a long inverse cycle, then there also exist a 7-inverse quasigroup of

order 8 with a long inverse cycle. Here is an example when 0 ∗ 6 = 3.

Table 2.10. 7-inverse quasigroup of order 8 with a long inverse cycle.

* 0 1 2 3 4 5 6 7
0 2 5 6 1 4 7 3 0
1 7 4 0 3 5 2 1 6
2 5 2 4 7 0 3 6 1
3 3 0 1 6 2 5 7 4
4 0 3 7 4 6 1 2 5
5 1 6 5 2 3 0 4 7
6 4 7 2 5 1 6 0 3
7 6 1 3 0 7 4 5 2

Next we give an example when 1 ∗ 7 = 4.

Table 2.11. 7-inverse quasigroup of order 8 with a long inverse cycle

* 0 1 2 3 4 5 6 7
0 3 2 0 6 1 4 5 7
1 0 5 3 1 6 7 2 4
2 7 1 5 4 2 0 3 6
3 4 6 2 7 5 3 0 1
4 5 0 1 3 7 6 4 2
5 2 3 6 0 4 1 7 5
6 6 4 7 3 3 5 1 0
7 1 7 4 5 0 2 6 3

We have proven the following theorem.

Theorem 2. A 3 and 7-inverse quasigroup of order 8 with a long inverse cycle exists.
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CHAPTER 3

The existence of m-inverse loops of order n with a long inverse cycle

3.1 Introduction to m-inverse loops with a long inverse cycle

In this chapter we generalize our results by investigating the existence of m-

inverse loops of order 3k and 3k + 2 with a long inverse cycle. The following theorem

was proven by Keedwell in his paper on m-inverse loops and quasigroups.[1]

Theorem 3. A m-inverse loopof order n=3k+1 with an inverse cycle of length 3k

does not exist for k ∈ Z+.

Since we know that these structures do not exist for orders 3k+1 we are left

to investigate the orders 3k and 3k+2. We may suppose without lost of generality

that the elements of Q are e, 0, 1.......n− 2 where e is the identity element, and that

the notation is chosen so that J = (e)(0, 1.....n − 2): that is, so that (0, 1.....n − 2)

is the long inverse cycle and J(a) ≡ a + 1 mod(n − 1). Recall for a m-inverse loop

a∗J(a) = e for all a ∈ Q. Therefore a∗ (a+1) = e. When investigating the existence

of these algebraic structures we will examine the possible entries for a Cayley table to

determine if the choice a ∗ b = c leads to the construction of a Cayley table. If we are

able to construct a Cayley table of the elements of (Q, ∗) where J is a permutation

of Q such that [Jm(a ∗ b)] ∗ [Jm+1(a)] = Jm(b) then a m-inverse loop exists.

We begin the investigation in the same manner as when we investigated m-

inverse loops of order 9 with a long inverse cycle. We assume that (Q, ∗) is a m-

inverse loop of order n with a long inverse cycle. Next we determine all the possible

ways that row zero can be constructed. Recall, when we were investigating the
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existence of m-inverse loops of order 9, after row zero was completed we obtained a

partially completed Cayley table. We only needed to complete the remaining missing

entries in row 1 to determine the existence of the algebraic structure. Therefore, by

completing row zero the majority of the work was done. Thus for m-inverse loops of

order 3k and 3k + 2 we will assume that after row zero is complete we will have a

partially completed Cayley table. If the structure exists the Cayley table then can be

constructed by completing row one. Therefore, our main focus will be on completing

row zero and row one.

It is important to note that we will only investigate m-inverse loops with a long

inverse cycle that meet the following conditions: First m, and n are odd; therefore

gcd(3m + 1, n − 1) > 1. Secondly, (n − 1)/2 is the smallest positive integer such

that [(n − 1)/2](3m + 1) ≡ 0 mod(n − 1), where 3m + 1 ≡ a mod(n − 1) for a ∈ Q.

Therefore, x(3m + 1) ≡ b mod(n − 1) for b ∈ Q for some x ∈ Z+. Recall that

we are assuming that after row zero is filled we have a partially complete table.

Therefore, the choice a ∗ b = c generates the entry c and some other entries in the

Cayley table not necessarily in row a, as we now describe. Recall by definition of a

m-inverse loop of order n with a long inverse cycle, that there exist a permutation

J such that [Jm(a ∗ b)] ∗ [Jm+1(a)] = [Jm(b)] and J(a) ≡ a + 1 mod(n − 1). Notice

that since J(a) ≡ a + 1 mod(n − 1) then J(J(a)) = J(a + 1) ≡ a + 2 mod(n − 1).

Therefore if we apply J m times then Jm(a) ≡ a + m mod(n − 1). Therefore,

from the choice a ∗ b = c we derive the following: [Jm(c)] ∗ [Jm+1(a)] = [Jm(b)]

which implies that [(c + m)] ∗ [a + (m + 1)] = [(b + m]). Then from the equality

[(c+m)]∗[a+(m+1)] = [(b+m)] we obtain [Jm(b+m)]∗[Jm+1(c+m)] = [Jm(a+(m+1)]

which implies that [(b+ 2m)]∗ [c+ (2m+ 1)] = [a+ (2m+ 1)]. Next from the equality

[(b+2m)]∗[c+(2m+1)] = a+(2m+1)] we obtain [Jm(a+(2m+1))]∗[Jm+1(b+2m)] =
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[Jm(c + (2m + 1))] which implies that [a + (3m + 1)] ∗ [b + (3m + 1)] = [c + (3m + 1)].

Therefore, from the choice a ∗ b = c we obtain [(c + m)] ∗ [a + (m + 1)] = [(b + m)],

[(b+2m)]∗[c+(2m+1)] = [a+(2m+1)]and[a+(3m+1)]∗[b+(3m+1)] = [c+(3m+1)].

Notice that if we choose a∗b = c then in order to obtain the next equality we add m to

c so that we get the first term in the new equality. Next we add m + 1 to a to get the

second term in the new equality. Then finally we add m to b to obtain the last term in

the new equality. Therefore, to determine how to obtain the equalities generated by

the choice a ∗ b = c in general we will add m to the last term in the previous equality

to obtain the first term in the new equality. Next we add m+1 to the first term in the

previous equality to obtain the second term in the new equality. And finally we add m

to the second term in the previous equality to obtain the last term in the new equality.

This process will continue until we reach [a+s(3m+1)]∗[b+s(3m+1)] = [c+s(3m+1)]

where s is the smallest positive integer such that s(3m + 1) ≡ 0 mod(n− 1) since Q

is finite. Therefore, if a ∗ b = c then the set of equalities given below must hold; we

say that the choice a ∗ b = c generates each equality in the set. Let x = s− 1.

Table 3.1. Iteration 3.1

a ∗ b = c
[c + m] ∗ [a + (m + 1)] = [b + m]
[b + 2m] ∗ [c + (2m + 1)] = [a + (2m + 1)]
[a + 1(3m + 1)] ∗ [b + 1(3m + 1)] = [c + 1(3m + 1])
[c + 1(3m + 1) + m] ∗ [a + 1(3m + 1) + (m + 1] = [b + 1(3m + 1) + m]
[b + 1(3m + 1 + 2m] ∗ [c + 1(3m + 1) + (2m + 1)] = [a + 1(3m + 1) + (2m + 1)]
[a + 2(3m + 1)] ∗ [b + 2(3m + 1)] = [c + 2(3m + 1)]
[c + 2(3m + 1) + m] ∗ [a + 2(3m + 1) + (m + 1] = [b + 2(3m + 1) + m]
[b + 2(3m + 1) + 2m] ∗ [c + 2(3m + 1) + (2m + 1] = [a + 2(3m + 1) + (2m + 1)]
........................................
........................................
[a + x(3m + 1)] ∗ [b + x(3m + 1)] = [c + x(3m + 1)]
[c + x(3m + 1) + m] ∗ [a + x(3m + 1) + (m + 1)] = [b + x(3m + 1) + m]
[b + x(3m + 1) + 2m] ∗ [c + x(3m + 1) + (2m + 1)] = [a + x(3m + 1) + (2m + 1)]
[a + s(3m + 1)] ∗ [b + s(3m + 1)] = [c + s(3m + 1)]
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It is important to reiterate that we will only study m-inverse loops where s =

(n − 1)/2. Recall that the arithmetic for m-inverse loops of order n is modulo n-1,

the arithmetic for m-inverse quasigroups of order n is modulo n. Notice that the

equations in table 3.1 can be represented by the equations in table 3.2 listed below.

We will refer to table 3.2 as Xj for j = 0, 1, ....s− 1.

Table 3.2. Iteration 3.2

[a + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [a + j(3m + 1) + (m + 1)] = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2m] ∗ [c + j(3m + 1) + (2m + 1)] = [a + j(3m + 1) + (2m + 1)]

Since j = 0, 1, ....s− 1, there exist a maximum of 3s equalities that hold. Note that if

the choice a ∗ b = c generates t entries in the Cayley table and t 6= 3s then t divides

3s. Also when discussing or deriving any results related to the entries in the Cayley

table we will only need to refer to the set Xj for j = 0, 1, ....s− 1 since the equalities

of this set yield the entries in the Cayley table. Next we investigate each equality in

Xj to derive an equivalent form. This form will assist us in determining the value of

t when the choice a ∗ b = c generates t < 3s entries in the Cayley table.

Now observe the following table in which we rewrite the terms that are added

to a, b and c in the set Xj.
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Table 3.3. Iteration 3.3

j(3m + 1) = (3j)m + j
j(3m + 1) + m = (3(j + 1))m + j
j(3m + 1) + m + 1 = (3j + 1))m + (j + 1)
j(3m + 1) + 2m = (3j + 2)m + j
j(3m + 1) + 2m + 1 = (3j + 2)m + (j + 1)

Let j− 1 = x0Using this table we rewrite the equalities generated by the choice

a ∗ b = c in the following way.

Table 3.4. Iteration 3.4

a ∗ b = c
[c + m] ∗ [a + (m + 1)] = [b + m]
[b + 2m] ∗ [c + (2m + 1)] = [a + (2m + 1)]
[a + (3m) + 1] ∗ [b + (3m) + 1][= c + 1(3m) + 1]
[c + (4m) + 1] ∗ [a + (4m) + 2)] = [b + (4m) + 1]
[b + (5m) + 1] ∗ [c + (5m) + 2] = [a + (5m) + 2]
[a + (6m) + 2] ∗ [b + (6m) + 2] = [c + (6m) + 2]
[c + (7m) + 2] ∗ [a + (7m) + 3] = [b + (7m) + 2]
[b + (8m) + 2] ∗ [c + (8m) + 3)] = [a + (8m) + 3]
........................................
........................................
[a + 3(x0)m + (x0)] ∗ [b + (3(x0)m + (x0)] = [c + 3(x0)m + (x0)]
[c + (3(x0) + 1)m + (x0)] ∗ [a + (3(x0) + 1)m + (x0) + 1] = [b + (3(x0) + 1)m + (x0)]
[b + (3(x0) + 2)m + (x0)] ∗ [c + (3(x0) + 2)m + (x0) + 1] = [a + (3(x0) + 2)m + (x0) + 1]
[a + j(3m+)] ∗ [b + j(3m + 1) = c + j(3m + 1)]

Assume that the choice a ∗ b = c generates 3 entries in the Cayley table. This

implies that a ∗ b = c,(c + m) ∗ [a + (m + 1)] = (b + m) and (b + 2m) ∗ [c + (2m + 1)] =

[a + (2m + 1)]. Now in order to determine how many entries the choice a ∗ b = c

generates in the Cayley table we start with the choice a ∗ b = c and keep adding m

and m + 1 to the appropriate terms until we obtain the choice a ∗ b = c for a second

time. Then we determine how many equalities hold before the choice a∗b = c appears
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a second time; that number will be the amount of entries the choice a ∗ b = c has

generated. This implies that if a ∗ b = c generates 3 entries in the Cayley table, the

choice a ∗ b = c is equivalent to [a + (3m + 1)] ∗ [b + (3m + 1)] = [c + 1(3m + 1)].

Thus a ≡ a + (3m + 1) b ≡ b + (3m + 1) and c ≡ c + (3m + 1). Next let the choice

a∗b = c generate 4 entries in the Cayley table. This implies that the choice a∗b = c is

equivalent to [c+(4m+1+m)]∗[a+(4m+2))] = [b+(4m+1)]. Thus a ≡ c+(4m)+1,

b ≡ a + (4m + 2) and c ≡ b + (4m) + 1. Next let the choice a ∗ b = c generate 5

entries in the Cayley table. This implies that the choice a ∗ b = c is equivalent to

[b + (5m + 1)] ∗ [c + (5m + 2)] = [a + (5m + 2)] . Therefore a ≡ b + (5m + 1),

b ≡ c + (5m + 2) and c ≡ a + (5m + 2). Notice that if the choice a ∗ b = c generates 3

entries in the Cayley table then the number of entries the choice a ∗ b = c generates

is the exact number adjacent to m in the equality a ∗ b = c. Note the same result

holds when a ∗ b = c generates 4 or 5 entries in the Cayley table. Now recall that all

equalities generated by the choice a ∗ b = c are in the form of one of the equalities

in Xj. Therefore, if the choice a ∗ b = c generates less than 3s entries in the Cayley

table, then the choice a ∗ b = c must be equivalent to one of the following equalities

in table 3.6 for j = 0, 1, ....s− 1.

Table 3.5. Iteration 3.5

[a + (3j)m + j][∗b + (3j)m + j] = [c + (3j)m + j]
[c + (3j + 1)m + j] ∗ [a + (3j + 1)m + (j + 1)] = [b + (3j + 1)m + j]
[b + (3j + 2)m + j] ∗ [c + (3j + 2)m + (j + 1)] = [a + (3j + 2)m + (j + 1)]

Therefore, if the choice a ∗ b = c is equivalent to [a + (3j)m + j][∗b + (3j)m +

j] = [c + (3j)m + j],then the choice a ∗ b = c generates 3j entries in the Cayley
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table. Next, if the choice a ∗ b = c is equivalent to [c + (3(j + 1))m + j] ∗ [a +

(3(j + 1))m + ((j + 1))] = [b + (3(j + 1))m + j] then the choice a ∗ b = c generates

3(j + 1) entries in the Cayley table. Next, if the choice a ∗ b = c is equivalent to

[b + (3(j + 2))m + j] ∗ [c + (3j + 2)m + (j + 1)] = [a + (3j + 2)m + (j + 1)] then the

choice a ∗ b = c generates 3j + 2 entries in the Cayley table. It is important to note

that if the choice a ∗ b = c generates 3j, 3j + 1 or 3j + 2 entries in the Cayley table

then these values must divide 3s.

3.2 M-inverse loop of order 3k with a long inverse cycle

In this section we will devote our attention to m-inverse loops with a long inverse

cycle of order 3k. The goal of this section is to determine ways to fill out row zero

when n = 3(2k1 + 1) for k1 ∈ Z+. Recall that each equality generated by the choice

a∗b = c can be represented by one of the equalities in Xj for j = 0, 1, ....s−1 where s

is the smallest positive integer such that s(3m + 1) ≡ 0. Therefore, we refer to Xj to

prove the following proposition that will assist us in filling out row zero in the Cayley

table.

Proposition 8. If (Q, ∗) is a m-inverse loop of order n then there exists t ∈ Z+ such

that t(3m + 1) ≡ 0

Proof. If 3m + 1 ≡ 0 then we are done. Assume 3m + 1 6≡ 0. We know that

i(3m + 1) ≡ a mod(n− 1) for a ∈ Q and a 6= e. Recall that the order of Q is n. Let

i(3m + 1) ≡ ai for i = 1, 2, ..., n − 1 and consider n(3m + 1) ≡ an. Now since there

are only n − 1 choices this implies n(3m + 1) ≡ i(3m + 1) where n > i. Therefore,

(n − i)(3m + 1) ≡ 0 where 0 < n − i < n. Therefore, there exist an integer t ∈ Z+

such that t(3m + 1) ≡ 0

25



Proposition 9. Let (Q, ∗) be a m-inverse loop of order n with a long inverse with

the choice a ∗ b = c and i 6= j. Then i(3m + 1) 6≡ j(3m + 1).

Proof. Note that j − i > 0 where 0 < i < j < s and s is the smallest positive integer

such that s(3m + 1) ≡ 0. Assume that i(3m + 1) ≡ j(3m + 1). This implies that

(j − i)3m + 1 ≡ 0. However since (j − i) < s and (j − i) 6≡ 0, this is a contradiction

since s is the smallest positive integer such that s(3m + 1) ≡ 0.

Lemma 3. If (Q, ∗) is a m-inverse loop of order n then the choice a∗ b = c generates

3s or s entries in the Cayley table where s is the smallest positive integer such that

s(3m + 1) ≡ 0. Note for m-inverse loops s = (n− 1)/2.

Proof. With the choice a ∗ b = c we have already shown that at most 3s equalities

hold. We show that if the choice a ∗ b = c generate less than 3s entries then the

amount of entries generated by the choice a∗ b = c is s. Let s be the smallest positive

integer such that s(3m + 1) ≡ 0 and the choice a ∗ b = c generates t entries in the

Cayley table such that t < 3s. It follows that t divides 3s and the choice a ∗ b = c is

equivalent to one of the equalities in the the set below.

Table 3.6. Iteration 3.6

[a + (3j)m + j][∗b + (3j)m + j] = [c + (3j)m + j]
[c + (3(j + 1))m + j] ∗ [a + (3(j + 1))m + (j + 1)] = [b + (3j) + 1)m + j]
[b + (3j + 2)m + j] ∗ [c + (3j + 2)m + (j + 1)] = [a + (3j + 2)m + (j + 1)]
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Recall that j = 0, 1, ....s − 1. Therefore since s is the smallest positive integer

such that s(3m + 1) ≡ 0, this implies that the choice a ∗ b = c is not equivalent to

the first equality. Assume the choice a ∗ b = c is equivalent to the second equality.

Therefore we obtain that [3(j +1)](3m+1) ≡ 0. This implies that the choice a∗b = c

generates 3(j + 1) entries in the Cayley table and 3j + 1 ≡ xs for some x ∈ Z+ since

s(3m + 1) ≡ 0. If x = 1 then we are done. Assume x > 1; we know from previous

work that 3(j + 1) < 3s. Therefore x = 2. However since 3j + 1 divides 3s x 6= 2,

thus we conclude that x = 1. Therefore if the choice a ∗ b = c generates t entries in

the Cayley table where t < 3s, then t = s. Next assume that the choice a ∗ b = c

is equivalent to the third equality. Therefore we obtain that [3j + 2](3m + 1) ≡ 0.

This implies that the choice a ∗ b = c generates 3j + 2 entries in the Cayley table and

3j + 2 ≡ xs for some x ∈ Z+ since s(3m+ 1) ≡ 0. If x = 1 then we are done. Assume

x > 1; we know from previous work that 3j +2 < 3s. Therefore x = 2. However since

3j + 2 divides 3s we must have x 6= 2. Thus we conclude that x = 1. Therefore if the

choice a ∗ b = c generates t entries in the Cayley table where t < 3s, then t = s.

Proposition 10. Let (Q, ∗) be a m-inverse loop of order n = 3k = 3(2k1 + 1) and

(n − 1)/2 be the smallest positive integer such that (n − 1)/2)(3m + 1) ≡ 0. Then

a ∗ [a + k1(3m + 1) + m + 1] = a + 2k1(3m + 1) + 2m + 1 generates (n− 1)/2 distinct

entries in the Cayley table.

Proof. Assume the choice a ∗ b = c generates (n − 1)/2 entries in the Cayley table.

Recall from the previous proposition that s ≡ 3j + 1 or s ≡ 3j + 2 and s = (n− 1)/2.

This implies that s = 3k1 + 1. Therefore s ≡ 3j + 1 which implies that the choice

a ∗ b = c is equivalent to the second equality in the set below.
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Table 3.7. Iteration 3.7

[a + (3j)m + j] ∗ [b + (3j)m + j] = [c + (3j)m + j]
[c + (3(j + 1))m + j] ∗ [a + (3(j + 1))m + (j + 1)] = [b + (3j) + 1)m + j]
[b + (3j + 2)m + j] ∗ [c + (3j + 2)m + (j + 1)] = [a + (3j + 2)m + (j + 1)]

Therefore b ≡ a+ j(3m+1)+m+1 and c ≡ a+2j(3m+1) = 2m+1. However

since 3(j+1) ≡ 3k1+1 then k1 ≡ j. Thus we conclude that a∗[a+k0+1] = a+(2k0+1)

generates (n− 1)/2 distinct entries in the Cayley table where k0 = k1(3m + 1) + m.

In the next proposition we study the product 0 ∗ b = c for b, c ∈ Q and consider

the entries the product generates in row zero depending on whether they are even or

odd.

Proposition 11. Let (Q, ∗) be a m-inverse loop of order n with a long inverse cycle

where s = (n− 1)/2.

1. If 0 ∗ b = c generates 3s entries in the Cayley table with b even and c odd then the

choice 0 ∗ b = c generates 3 odd entries in row zero.

2. If 0 ∗ b = c generates 3s entries in the Cayley table such that b and c are even then

the choice 0 ∗ b = c generates one odd and one even entry in row zero.

3. If 0 ∗ b = c generates 3s entries in the Cayley table with b odd and c even then the

choice 0 ∗ b = c generates one even entry in row zero.

Proof. 1. Assume b is even and c is odd. We know that the first term in each equality

from set Xj determines the row the entry will be inputted in. It has been proven that

the first terms 0+j(3m+1), c+j(3m+1)+m and b+j(3m+1)+2m are unique, for j =
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0, 1..., ((n−1)/2)−1 Therefore, we must determine which of these terms is congruent to

zero since we are investigating entries in row zero. We are given one entry in row zero,

0∗b = c which can also be written as [0+0(3m+1)]∗ [b+0(3m+1)] = [c+0(3m+1)].

Recall that each j(3m+ 1) is unique for j = 0, 1..., ((n−1)/2)−1 and 0(3m+ 1) ≡ 0.

Now there are (n − 1)/2 of the terms j(3m + 1) since j = 0, 1..., ((n − 1)/2) − 1.

Note that j(3m + 1) ≡ a where a ∈ Q is even . Since there are n − 1 non-identity

elements this implies that there exist (n− 1)/2 even elements of Q. Therefore, since

0(3m + 1) ≡ 0 no other j(3m + 1) can be congruent to zero. Next we check to

see if for some j, c + j(3m + 1) + m is congruent to zero. Recall that c and m are

odd and j(3m + 1) is even; therefore c + j(3m + 1) + m ≡ a where a is even and

j = 0 : ((n− 1)/2). This implies for some j, c + j(3m + 1) + m ≡ 0. Finally we check

to see if for some j, b + j(3m + 1) + 2m can be congruent to zero. Recall that b and

j(3m + 1) are even and m is odd; therefore b + j(3m + 1) + m ≡ b, where b ∈ Q is

even. Therefore, b + j(3m + 1) + 2m ≡ 0 for some j = 0 : (n− 1)/2. Notice that the

entry associated with c + j(3m + 1) + m is b + j(3m + 1) + m. Since b is even this

entry is odd and the entry associated with b + j(3m + 1) + 2m is j(3m + 1) + 2m + 1.

Therefore, this entry is odd as well, so c, b + j(3m + 1) + m and j(3m + 1) + 2m + 1

are the odd entries in row zero.

2. Assume b and c are even; again we know that each j(3m + 1), c + j(3m + 1) + m

and b+j(3m+1)+2m are unique for j = 0, 1..., ((n−1)/2)−1 and from the previous

proof j(3m + 1) 6≡ 0 except when j = 0. Therefore, the terms c + j(3m + 1) + m

and b + j(3m + 1) + 2m are the remaining choices for an entry in row zero. Consider

c + j(3m + 1) + m. Note that c and j(3m + 1) are even and m is odd; therefore

c + j(3m + 1) + m is odd and cannot be congruent to zero. Finally we check b +

j(3m+1)+2m where b, j(3m+1) and 2m are even. Therefore c+ j(3m+1)+m ≡ a

and a ∈ Q is even. Thus by the same logic as in the previous proof, for some j,
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b + j(3m + 1) + 2m ≡ 0. Notice that the entry associated with b + (3m + 1) + 2m

is j(3m + 1) + 2m + 1. Therefore this entry is odd; thus c is even and for some j,

j(3m + 1) + 2m + 1 is an odd entry in row zero.

3. Assume b is odd and c is even. Recall j(3m + 1) 6≡ 0 except when 0 ∗ b = c. Now

since c and j(3m+1) are even and m is odd then c+ j(3m+1)+m is odd. Also since

b and m are odd and j(3m + 1) is even then b + j(3m + 1) + 2m is odd. Therefore,

c + j(3m + 1) + m and b + j(3m + 1) + 2m are both congruent to some odd element

in Q. Thus neither term can be congruent to zero. Therefore, we conclude that c is

the only entry generated in row zero where c is even.

Proposition 12. Let (Q, ∗) be a m-inverse loop of order n with a long inverse cycle

with b even,c odd and the choice 0 ∗ b = c generates 3(n− 1)/2 entries in the Cayley

table. Then the choice 0 ∗ b = c generates no entries in row one.

Proof. Assume b is even and c is odd. Observe that j(3m + 1),c + j(3m + 1) + m,b +

j(3m + 1) + 2m for j = 0, 1..., ((n− 1)/2)− 1 are the terms that will determine what

row the entries are inputted in. Therefore, one of the three terms must be congruent

to one in order for the choice 0 ∗ b = c to generate an entry in row 1. Note that

j(3m + 1) ≡ a0 and a0 ∈ Q is even; therefore j(3m + 1) 6≡ 1. Secondly c and m

are odd and j(3m + 1) is even; therefore c + j(3m + 1) + m ≡ a1 and a1 ∈ Q is

even. Thus c + j(3m + 1) + m 6≡ 1. Finally b, j(3m + 1) and 2m are even; therefore

b + j(3m + 1) + 2m ≡ a2 and a2 is even; thus b + j(3m + 1) + 2m 6≡ 1. Therefore all

the possible choices for rows are even. However 1 is odd. Thus the choice 0 ∗ b = c

generates no entries in row one.
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Proposition 13. Let (Q, ∗) be a m-inverse loop of order n with a long inverse cycle

such that b and c are even and 0 ∗ b = c generates 3(n − 1)/2 entries in the Cayley

table. Then the choice 0 ∗ b = c generates one odd entry in row one.

Proof. Assume b and c are even and j(3m+1), c+ j(3m+1)+m ,b+ j(3m+1)+ 2m

for j = 0, 1..., ((n− 1)/2)− 1 are the terms that will determine what row the entries

are inputted in. Therefore, one of the three terms must be equivalent to 1 in order

for the choice 0 ∗ b = c to generate an entry in row 1. Notice that j(3m + 1) ≡ a0

and a0 ∈ Q is even; therefore j(3m + 1) 6≡ 1. Secondly b, j(3m + 1) and 2m are even;

therefore b + j(3m + 1) + 2m ≡ a2 and a2 is even. Thus b + j(3m + 1) + 2m 6≡ 1.

Finally c and j(3m + 1) are even and m is odd; therefore c + j(3m + 1) + m ≡ a1 and

a1 ∈ Q is odd. Thus for some j, c+j(3m+1)+m ≡ 1 since j = 0, 1..., ((n−1)/2)−1.

Note that the entry associated with c + j(3m + 1) + m is b + j(3m + 1) + m which is

an odd entry in row one.

Proposition 14. Let (Q, ∗) be a m-inverse loop of order n with a long inverse cycle

with b odd, c even and the choice 0 ∗ b = c generates 3(n− 1)/2 entries in the Cayley

table. Then the choice 0 ∗ b = c generates one odd and one even entry in row one.

Proof. Assume b is odd and c is even. Now we know that j(3m+1), c+j(3m+1)+m

and b + j(3m + 1) + 2m are unique, where j = 0, 1..., ((n− 1)/2)− 1. We have that

j(3m + 1) is always congruent to some even element. Since b is odd and c even this

implies that c + j(3m + 1) + m and b + j(3m + 1) + 2m are both congruent to some

odd element in Q. Now since we are assuming that (Q, ∗) is a m-inverse loop with

long inverse cycle there exist only (n − 1)/2 odd elements. This implies that there

exist some j such that c + j(3m + 1) + m ≡ 1 and b + j(3m + 1) + 2 ≡ 1. Notice that
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the entry associated with c + j(3m + 1) + m is b + j(3m + 1) + m. Since b is odd this

entry is even; also the entry associated with b+ j(3m+1)+2m is j(3m+1)+2m+1.

Therefore, this entry is odd. Thus the choice 0 ∗ b = c generates one odd and one

even entry in row one.

Proposition 15. Suppose (Q, ∗) is a m-inverse loop of order n, (n − 1)/2 is the

smallest positive integer such that [(n− 1)/2](3m + 1) ≡ 0 and row zero is filled out.

Then all the even rows and columns are filled out and no odd entires are missing.

Proof. Assume row zero is filled out and there exist the choice a ∗ b = c where a and

b are even and c is odd. This implies that after row zero is filled out there remains

an even row and an even column with a missing odd entry. Now recall that the first

term of each equality in set Xj determines what row the entry is inputted in for

j = 0, 1..., ((n− 1)/2)− 1. Recall that each a + j(3m + 1), b + j(3m + 1) + 2m and

c+j(3m+1)+m are unique and a and b are even. This implies that a+j(3m+1) ≡ a0

and b+j(3m+1)+2m ≡ b0 for even a0, b0 ∈ Q. Also since c is odd, c+j(3m+1)+m ≡

a1 for even a1 ∈ Q. Therefore, since j = 0, 1..., ((n − 1)/2) − 1 then each term is

congruent to zero for some j which is a contradiction since row zero is filled.

Now we present some number theoretic results that will be useful as we move

forward. For completeness we include their proofs.

Proposition 16. If n = 3k, k ∈ Z+, then 3(n− 1)/2 does not divide n2 − 3n + 2.

Proof. Note that n2−3n+2 is the amount of entries initially missing from the Cayley

table when (Q, ∗) is a m-inverse loop of order n.
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Assume 3(n−1)/2 divide n2−3n+2 where 3(n−1)/2 and n2−3n+2 are both

positive integers. This implies that [(3(n−1)/2)]k1 = n2−3n+2 = (n−1)(n−2) for

some k1 ∈ Z+. Therefore, since n = 3k then 3/2(k1) = (n−2) and 3k1 = 2(3k)−2(2)

thus 2(3k)−3k1 = 4. This implies that 2k−k1 = 4/3. However since 2k−k1 ∈ Z this

is a contradiction since 4/3 6∈ Z. Therefore, 3(n− 1)/2 does not divide n2 − 3n + 2.

Proposition 17. If n = 3k, k ∈ Z+ then 3(n− 1)/2 does not divide [(n2− 3n + 2)−

(n− 1)/2]

Proof. Assume 3(n − 1)/2 divide n2 − 3n + 2 − (n − 1)/2 where 3(n − 1)/2 and

n2 − 3n + 2 are both positive integers. This implies that [(3(n − 1)/2)]k1 = n2 −

3n + 2 = (n − 1)(n − 2) − (n − 1)/2 for some k1 ∈ Z+. Therefore, since n = 3k

then 3/2(k1) = (n − 5/2) and 3k1 = 2(3k) − 5. Thus 2(3k) − 3k1 = 5. This implies

that 2k − k1 = 5/3; however since 2k − k1 ∈ Z this is a contradiction since 5/3 6∈ Z.

Therefore, 3(n− 1)/2 does not divide n2 − 3n + 2

Proposition 18. If n = 3k, k ∈ Z+ then 3(n− 1)/2 divides (n2 − 3n + 2)− (n− 1)

Proof. Let n = 3(2k1 + 1); this implies that 3(n− 1)/2 = 3(3k1 + 1) where k1 ∈ Z+.

Consider n2−3n+2−(n−1) = (n−1)(n−2)−n−1 = (n−1)(n−3). Since n = 3(2k1+1)

then n − 1 = 2(3k1 + 1). Therefore (n − 1)(n − 3) = [3(2k1 + 1)][3(2k1 + 1) − 2] =

3(3k1 + 1)(4k1). This implies that 3(n− 1)/2 divides (n2 − 3n + 2)− (n− 1).

Proposition 19. Let (Q, ∗) be a m-inverse loop of order n with a long inverse cycle.

1. If 0 ∗ b = c ∈ B and 0 ∗ b1 = c1 ∈ B then b− c 6≡ b1 − c1.

2. If 0 ∗ b = c ∈ C and 0 ∗ b1 = c1 ∈ C then b− c 6≡ b1 − c1.
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Proof. 1. Assume 0∗b = c, 0∗b1 = c1 and b−c ≡ b1−c1 where b, b1, c, c1 are even. Since

0 ∗ b = c ∈ B and 0 ∗ b1 = c1 ∈ B then each equality generates an entry in row zero

other than c and c1 respectively. This implies that for some j, i = 0, 1, ..., (n−1/2)−1

we have c + j(3m + 1) + m ≡ 0 and c1 + i(3m + 1) + m ≡ 0 where b + j(3m + 1) + m

and b1 + i(3m + 1) + m are the entries in row zero respectively. This implies that

−c ≡ j(3m+1)+m and −c1 ≡ i(3m+1)+m. Therefore the entries can be rewritten

as b − c and b1 − c1. Recall that we assume that b − c ≡ b1 − c1, hence 0 ∗ b = c

and 0 ∗ b1 = c1 generate the same entry in row zero which is a contradiction. Thus

b− c 6≡ b1 − c1.

2. Assume 0 ∗ b = c, 0 ∗ b1 = c1 and b − c ≡ b1 − c1 where b, b1 are odd and , c, c1

are even. Since 0 ∗ b = c ∈ C and 0 ∗ b1 = c1 ∈ C then each equality respectively

generates two entries in row 1. This implies that for some j, i = 0, 1, ..., (n− 1/2)− 1

we have c + j(3m + 1) + m ≡ 1 and c1 + i(3m + 1) ≡ 1 where b + j(3m + 1) + m

and b1 + i(3m + 1) + m are the entries in row one respectively. This implies that

1 − c ≡ j(3m + 1) + m and 1 − c1 ≡ i(3m + 1) + m. Therefore the entries can be

rewritten as (b − c) + 1 and (b−c1) + 1. Recall that we assume that b − c ≡ b1 − c1.

This implies that 0 ∗ b = c and 0 ∗ b1 = c1 generates the same entry in row one which

is a contradiction. Thus b− c 6≡ b1 − c1.

Now we use the previous propositions to ascertain all the ways that we can

fill out row zero for a m-inverse loop of order 3k with a long inverse cycle. Once

a particular manner for completing row zero is determined, the next objective is to

determine what entries in row one are missing. Once this information is obtain we

then decide if the completion of row one leads to the construction of a Cayley table.

In order to determine how many ways we can fill row zero we must consider the

34



non-identity elements in Q. Then we determine the number of missing entries in row

zero, where the missing entries are characterized as odd or even. Since the order of

Q is n there are n − 1 non-identity elements. Recall that n = 3k = 3(2k1 + 1) and

n − 1 = 3(2k1) + 2 = 2(3k1 + 1). Therefore, there are 3k1 + 1 odd and 3k1 + 1 even

entries in each row. Since we assumed that (Q, ∗) is a m-inverse loop with long inverse

cycle, we are given two entries in each row a ∗ e = a and a ∗ (a + 1) = e where a ∈ Q.

This implies that we are given 3n− 2 entries in the Cayley table. This implies there

are n2 − 3n + 2 missing entries. Note that if the choice a ∗ b = c generates (n− 1)/2

entries in the Cayley table then 0∗(k0 +1) = 2k0 +1 or1∗ [1+(k0 +1)] = 1+(2k0 +1).

Recall that thus far we are given the choices 0 ∗ e = 0 and 0 ∗ 1 = e. Therefore

we are only given one even non-identity element. This implies that 3k1 even entries

and 3k1 + 1 odd entries are missing in row zero. If we attempt to construct the

Cayley table such that for all a, b, c ∈ Q, a ∗ b = c generates 3(n− 1)/2 entries in the

Cayley table then 3(n − 1)/2 must divide n2 − 3n + 2. However it has been proven

in a previous proposition that 3(n − 1)/2 does not divide n2 − 3n + 2. However,

3(n− 1)/2 divides (n2− 3n + 2)− (n− 1). Therefore we need 0 ∗ (k0 + 1) = (2k0 + 1)

or 1 ∗ [1 + (k0 + 1)] = 1 + (2k0 + 1) which generates (n − 1)/2 entries each in the

Cayley table respectively. Therefore, if a m-inverse loop of order 3k exists then

0 ∗ (k0 + 1) = (2k0 + 1) and 1 ∗ [1 + (k0 + 1)] = 1 + (2k0 + 1) which implies that for

row zero we are given 0 ∗ 1 = e, 0 ∗ e = 0 and 0 ∗ (k0 + 1) = (2k0 + 1) where 2k0 + 1 is

some odd entry in row zero. Thus for a m-inverse loop of order 3(2k1 + 1) there are

only 3k1 odd missing and 3k1 even missing entries in row zero.

Now recall that the choice 0 ∗ b = c generates either 3 odd,1 odd 1 even, or 1

even entry in row zero. Therefore, let’s define A as the set of all choices 0∗ b = c that

generate exactly 3 odd entries in row zero. Define B as the set of all choices 0 ∗ b = c
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that generate 1 odd and 1 entry in row zero. Finally, define C as the set of all choices

0 ∗ b = c that generate 1 even entry in row zero. Next we determine the maximum

amount of equalities that can be used from A in order to complete row zero. Each

0 ∗ b = c from A will only generate 3 odd entries in row zero and we know that there

are 3k1 odd missing entries. Therefore, the maximum number of equalities that can

be utilized from A to complete row zero is k1. The following table shows the number

of equalities derived when 0∗ b = c is taken from set A, B and B. We designate forms

1− k1 to all possible combinations.

Table 3.8. Completion of row zero for the order of 3k

Form 0 ∗ b = c from A 0 ∗ b = c from B 0 ∗ b = c from C
1 k1 0 3k1

2 k1 − 1 3 3k1 − 3
3 k1 − 2 6 3k1 − 6
4 k1 − 3 9 3k−1
... ....... .....
k1 − 1 k1 − (k1 − 2) 3(k1 − 2) 3k1 − 3(k1 − 2)
k1 k1 − (k1 − 1) 3(k1 − 1) 3k1 − [3(k1 − 1)]

Next we consider if it is possible to fill row zero with equalities only from set

B. Note that the equalities from setB generates 1 odd and 1 even entry in row zero.

Since there are 3k1 odd and 3k1 even missing entries in row zero then we can have

3k1 equalities from B; therefore there are k1 + 1 possible ways of selecting equalities

from set A, B, and C to complete row zero.
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3.2.1 M-inverse loops of order 15 with a long inverse cycle

We now apply the information that has been acquired to determine if a m-

inverse loop with a long inverse cycle exist when n = 15 where Q = e, 0, 1....13. First

we assume that such a structure exists where (n−1)/2 is the smallest positive integer

such that [(n − 1)/2](3m + 1) ≡ 0. With the assistance of Mathlab we determined

that the choice a ∗ b = c generates the same equalities regardless of what m is chosen

when 3m + 1 6≡ 0. Recall that since n = 3k, then 0 ∗ (k0 + 1) = (2k0 + 1) and

1 ∗ [1 + (k0 + 1)] = 1 + (2k0 + 1). Hence we have the following entries in the Cayley

table: 0 ∗ e = e,0 ∗ 1 = e and 0 ∗ 10 = 5. Recall that n = 15 = 3(5) where 5 = 2k1 + 1;

this implies that k1 = 2. Therefore, there are 3(2) odd and 3(2) even missing entries

in row zero. We also know that there are 2 + 1 ways to complete zero. As previously

stated, the first form that can be employed to fill row zero will consist of k1 equalities

from set A and in this case k1 = 2. The following table displays three different ways

to complete row zero and for each form we have the choice 0 ∗ 10 = 5.

Table 3.9. Completion of row zero for the order of 15

Form Number of 0 ∗ b = c ∈ A Number of 0 ∗ b = c ∈ B Number of 0 ∗ b = c ∈ C
1 2 0 6
2 1 3 3
3 0 6 0

Consider form 1 and recall that if 0 ∗ bi = ci ∈ C then bi odd, ci even and

bi − ci 6≡ bj − cj. Therefore, let 0 ∗ bi = ci for i = 1, 2..., 6. The table below displays

the possible values for ci when bi is odd for i = 1, 2..., 6.
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Table 3.10. Equalities 3.10

0 ∗ 3 = c1 = 2 4 6 8 10 12
0 ∗ 5 = c2 = 2 4 6 8 10 12
0 ∗ 7 = c3 = 2 4 6 8 10 12
0 ∗ 9 = c4 = 2 4 6 8 10 12
0 ∗ 11 = c5 2 4 6 8 10 12
0 ∗ 13 = c6 2 4 6 8 10 12

Let 0 ∗ 3 = 2; this implies that 5− c2, 7− c3, 9− c4, 11− c5 and 13− c6 cannot

be congruent to 1. And ci cannot equal 2 for i = 2, ..., 6. Therefore, we obtain the

following table.

Table 3.11. Equalities 3.11

0 ∗ 5 = c2 = 6 8 10 12
0 ∗ 7 = c3 = 4 8 10 12
0 ∗ 9 = c4 = 4 6 10 12
0 ∗ 11 = c5 4 6 8 12
0 ∗ 13 = c6 4 6 8 10

Observe that if 0 ∗ 3 = 2, then 0 ∗ 5 = 6, 8, 10, or 12. Let 0 ∗ 5 = 6; this implies

that 7− c3, 9− c4, 11− c5 and 13− c5 cannot be congruent to -1. Moreover c4.....c6

cannot equal 6. Therefore, we obtain the following table.

38



Table 3.12. Equalities 3.12

0 ∗ 7 = c3 = 4 10 12
0 ∗ 9 = c4 = 4 12
0 ∗ 11 = c5 4 8
0 ∗ 13 = c6 4 8 10

Let 0 ∗ 9 = 4; this implies that 0 ∗ 11 = 8 and 0 ∗ 13 = 10. Notice that

11 − 8 = 13 − 10. Therefore 0 ∗ 9 6= 4. Let 0 ∗ 9 = 12; this implies that 0 ∗ 7 6= 10.

Therefore 0 ∗ 7 = 4 and 0 ∗ 11 = 8. However 7− 4 = 11− 8. Thus 0 ∗ 9 6= 12 which

implies that 0 ∗ 5 6= 6.

Next let 0 ∗ 3 = 2 and 0 ∗ 5 = 8, with these choices we obtain the following

table.

Table 3.13. Equalities 3.13

0 ∗ 7 = c3 = 4 12
0 ∗ 9 = c4 = 4 6 10
0 ∗ 11 = c5 4 6 12
0 ∗ 13 = c5 4 6 10

Let 0 ∗ 7 = 4, 0 ∗ 3 = 2 and 0 ∗ 5 = 8; this implies that 0 ∗ 9 = 10, 0 ∗ 13 = 6 and

0 ∗ 11 = 12. Therefore, 0 ∗ 7 6= 4. Let 0 ∗ 7 = 12, 0 ∗ 3 = 2 and 0 ∗ 5 = 8; this implies

that 0 ∗ 11 = 4 or 0 ∗ 11 = 6. Assume 0 ∗ 11 = 4; this implies that 0 ∗ 13 = 10 and

0 ∗ 9 = 6. Therefore, 0 ∗ 11 6= 4. Next assume 0 ∗ 11 = 6; this implies that 0 ∗ 13 = 10

and 0 ∗ 9 = 4. Therefore 0 ∗ 7 6= 12. Thus we conclude that 0 ∗ 5 6= 8. Let 0 ∗ 3 = 2

and 0 ∗ 5 = 10. Therefore, we obtain the following table as listed below.
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Table 3.14. Equalities 3.14

0 ∗ 7 = c3 = 4 8
0 ∗ 9 = c4 = 4 6 12
0 ∗ 11 = c5 4 6 8 12
0 ∗ 13 = c5 6 8

Let 0 ∗ 7 = 4; this implies that 0 ∗ 9 = 12, 0 ∗ 11 = 6 and 0 ∗ 13 = 8. Therefore

0 ∗ 7 6= 4. Let 0 ∗ 7 = 8; this implies that 0 ∗ 13 = 6. Consider 0 ∗ 11 = c5; c5 = 4 or

c5 = 12. If c5 = 4 then 11− 4 = 13− 6. Therefore 0 ∗ 11 6= 4. Assume c5 = 12; this

implies 0 ∗ 11 = 12. Therefore 0 ∗ 7 6= 8. Furthermore we conclude that 0 ∗ 5 6= 10.

Letting 0 ∗ 3 = 2 and 0 ∗ 5 = 12 we obtain the following table.

Table 3.15. Equalities 3.15

0 ∗ 7 = c3 = 4 8 10
0 ∗ 9 = c4 = 4 6 10
0 ∗ 11 = c5 6 8
0 ∗ 13 = c5 4 8 10

Let 0 ∗ 11 = 6; this implies that 0 ∗ 9 = 10 ,0 ∗ 7 = 4 and 0 ∗ 13 = 8. Thus if

0 ∗ 3 = 2 there is no choice for 0 ∗ 5 = c2. We conclude that 0 ∗ 3 6= 2. Note to show

that 0 ∗ 3 6= 4, 6, 8, 10, or 12 we follow the same steps. Therefore, form 1 does not

lead to the construction of a Cayley table.

Now let’s draw our attention to form 3 where we have 0 ∗ 10 = 5 and six

equalities from B. From the previous propositions we discover that equalities from

B and C satisfy the same property: b − c 6≡ b1 − c1. Therefore, if we cannot have 6
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equalities from C then 6 equalities from B is also not possible thus the final form does

not hold. We have eliminated 2 of the 3 forms to fill row zero, now we investigate form

2. Observe that form 2 has the choice 0∗10 = 5, one equality from A, three equalities

from B and three equalities from C. Therefore, in order to fill row zero we need a

total of 8 equalities where each 0 ∗ b = c generates 21 entries in the Cayley table,

except 0 ∗ 10 = 5 which generates 7 entries in the Cayley table. This implies that

the total amount of entries generated in the Cayley table after row zero is completed

is 154. Recall that in order for a m-inverse loop of order 15 to exists 1 ∗ 11 = 6

where this equality generates 7 entries in the Cayley table. This implies we now have

154 + 6 of 182 missing entries. Notice that we need 21 entries to complete the Cayley

table. Therefore, since we are focusing on completing row zero and row one we need

to determine how many of the 154 entries have been placed into row 1. We know

that only the choices 0 ∗ b = c ∈ B and 0 ∗ b = c ∈ C generate entries in row 1, where

0 ∗ b = c ∈ B generates 1 odd entry in row 1 and 0 ∗ b = c ∈ C generate 1 odd entry

and 1 even entry in row 1. Therefore, we have a total of 10 entries inputted in row 1

after row zero is filled, where 6 entries are odd and 4 are even. This implies that in

order to complete the Cayley table there must exist the choice 1∗b = c that generates

3 even entries in row one. With the help of Mathlab we determined that if the choice

1∗ b = c generates three even entries in row one after row zero is filled then the choice

1 ∗ b = c generates either the entries 2, 4, 12 or 0, 8, 10 in row one. Also with the help

of Mathlab we determined if 0 ∗ b = c ∈ A then the choice 0 ∗ b = c generates one of

the following set of odd entries in row zero:(5, 11, 13), (1, 5, 9), (3, 5, 7), (1, 3, 11) or

(7, 9, 13). However since 0 ∗ 10 = 5, the only options for entries in row zero obtained

by the choice 0 ∗ b = c ∈ A are: (1, 3, 11) and (7, 9, 13). Therefore, we conclude that

there are four cases which have to be investigated in order to determine if the Cayley
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table can be constructed. Note that we will only discuss case 1 and the investigation

of all other cases lead to the same conclusion. Here are the cases:

1. The choice 0 ∗ b = c ∈ A generates the entries 1, 3, 11 in row zero and the

choice 1 ∗ h = k generates the entries 2, 4, 12 in row one.

2. The choice 0 ∗ b = c ∈ A generates the entries 1, 3, 11 in row zero and the

choice 1 ∗ h = k generates the entries 0, 8, 10 in row one.

3. The choice 0 ∗ b = c ∈ A generates the entries 7, 9, 13 in row zero and the

choice 1 ∗ h = k generates the entries 2, 4, 12 in row one.

4. The choice 0 ∗ b = c ∈ A generates the entries 7, 9, 13 in row zero and the

choice 1 ∗ h = k generates the entries 0, 8, 10 in row one.

Case 1

Assume 0 ∗ b = c ∈ A generates the entries 1, 3, 11 in row zero; therefore we

need 0 ∗ bi = ci ∈ B for i = 1, .., j = 0, 1..., ((n − 1)/2) − 13 such that the choice

0∗ b1 = c1 generates the entry 7 in row zero, the choice 0∗ b2 = c2 generates the entry

9 in row zero, and the choice 0 ∗ b3 = c3 generates the entry 13 in row zero. The

next step is to determine the value of bi and to do so we need the following iterations.

Recall that each equality that is generated by the choice 0 ∗ b = c can be represented

by one of the equalities in the set below for j = 0, 1..., ((n− 1)/2)− 1.

Table 3.16. Iteration 3.16

[0 + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [0 + j(3m + 1) + (m + 1)] = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2] ∗ [c + j(3m + 1) + (2m + 1)] = [0 + j(3m + 1) + (2m + 1)]
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First we determine the choices for an entry in row zero. We are given [0 +

0(3m+1)]∗ [b+0(3m+1)] = [c+0(3m+1)]. Therefore since (n−1)/2 is the smallest

positive integer such that [(n−1)/2](3m+1) ≡ 0. We conclude that j(3m+1) 6≡ 0 for

j = 1, 2..., ((n− 1)/2)− 1. Notice that for 0 ∗ bi = ci ∈ B, bi and ci are even; thus the

only choice for an entry in row zero is [b+j(3m+1)+2m]∗ [c+j(3m+1)+2m+1] =

[j(3m + 1) + 2m + 1] when 0 ∗ bi = ci ∈ B for i = 1, 2, 3.

Now we determine to which element of Q is bi congruent to when the choice

0 ∗ bi = ci generates the entry 7 in row zero. If 0 ∗ bi = ci generates the entry 7 in

row zero then for some j, bi + j(3m + 1) + 2m ≡ 0 and j(3m + 1) + 2m + 1 ≡ 7; this

implies j(3m + 1) + 2m ≡ 6. Therefore bi + 6 ≡ 0; thus bi ≡ 8 since the arithmetic

is modulo 14. This implies that 0 ∗ 8 = ci generates the entry 7 in row zero where

0 ∗ (ci + 7) = 7.

Next we determine to which element of Q is bi congruent to when the choice

0 ∗ bi = ci generates the entry 9 in row zero. If 0 ∗ bi = ci generates the entry 9 in

row zero then for some j, bi + j(3m + 1) + 2m ≡ 0 and j(3m + 1) + 2m + 1 ≡ 9. This

implies j(3m + 1) + 2m ≡ 8. Therefore, bi + 8 ≡ 0 and bi ≡ 6 since the arithmetic

is modulo 14. This implies that 0 ∗ 6 = ci generates the entry 9 in row zero where

0 ∗ (ci + 9) = 9.

Finally we determine to which element of Q is bi congruent to when the choice

0 ∗ bi = ci generates the entry 13 in row zero. If 0 ∗ bi = ci generates the entry 13 in

row zero then for some j, bi + j(3m+ 1) + 2m ≡ 0 and j(3m+ 1) + 2m+ 1 ≡ 13. This

implies j(3m + 1) + 2m ≡ 12; therefore bi + 12 ≡ 0 and bi ≡ 2 since the arithmetic

is modulo 14. This implies that 0 ∗ 2 = ci generates the entry 13 in row where

0 ∗ ci + 13 = 13. Now that we have determined the value to which bi is congruent to

let’s consider row one. Recall that we need 3 even entries in row 1. Therefore, we

have to choose 0 ∗ b = c ∈ C in such a way that the equality does not generate 1 ∗ 11
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since we know that 1∗11 = 6. Also we do not want the equality to generate the same

even entries that will be generated by the choice 1 ∗ b = c. Therefore since we have

the choice 1 ∗ b = c that generates 2, 4, 12 this implies that 0 ∗ bi = ci ∈ C i = 1, 2, 3

must generate 0, 8, 10 in row one respectively. Next we determine what conditions

are necessary for 0∗ b = c to generate 0, 8, or 10 in row one if 0∗ b = c ∈ C. Consider

the following iteration. Recall that each equality that is generated by 0 ∗ b = c can

be represented by one of the equalities in the set below for j = 0, 1..., ((n− 1)/2)− 1.

Table 3.17. Iteration 3.17

[0 + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [0 + j(3m + 1) + (m + 1)] = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2] ∗ [c + j(3m + 1) + (2m + 1)] = [0 + j(3m + 1) + (2m + 1)]

Assume 0 ∗ b = c ∈ C; this implies that our choices for an entry in row 1

are determined by the terms c + j(3m + 1) + m and b + j(3 + m + 1) + 2m since

j(3m + 1) 6≡ 1 because j(3m + 1) is even for j = 0, 1..., ((n − 1)/2) − 1. Recall

that b,m are odd and c is even. Therefore the only possible even entry in row 1 is

[c+j(3m+1)+m]∗[j(3m+1)+m+1] = [b+j(3m+1)+m] for j = 0, 1..., ((n−1)/2)−1.

First we determine the choices 0 ∗ b = c ∈ C that generate the entry 0 in

row 1. If the choice 0 ∗ b = c generates the entry 0 in row 1 then for some j,

c + j(3m + 1) + m ≡ 1 and b + j(3m + 1) + m ≡ 0; this implies 1− c ≡ j(3m + 1) + m

and −b ≡ j(3m + 1) + m. Therefore c ≡ b + 1 and 0 ∗ b = b + 1 generates the entry

0 in row 1. Next we determine the choice 0 ∗ b = c ∈ C that generates the entry

8 in row 1. If the choice 0 ∗ b = c generates the entry 8 in row 1 then for some j,

c + j(3m + 1) + m ≡ 1 and b + j(3m + 1) + m ≡ 8; this implies 1 − c ≡ j(3m + 1)
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and 8− b ≡ j(3m + 1) + m. Therefore c ≡ b + 7 and 0 ∗ b = b + 7 generate the entry

8 in row 1. Finally we determine the choice 0 ∗ b = c ∈ C that generate the entry

10 in row 1. If the choice 0 ∗ b = c generates the entry 10 in row 1 then for some j,

c + j(3m + 1) + m ≡ 1 and b + j(3m + 1) + m ≡ 10; this implies 1− c ≡ j(3m + 1)

and 10 − b ≡ j(3m + 1) + m. Therefore c ≡ b + 5 and 0 ∗ b = b + 5 generates the

entry 10 in row 1.

Recapping, we have chosen one equality 0 ∗ b = c from A where 0 ∗ b = c

generates the entries 1, 3, 11 in row zero, three equalities 0 ∗ b = c from B as follows,

0 ∗ 8 = c which generates the entry 7 in row zero since 0 ∗ (c + 7) = 7,0 ∗ 6 = c1 which

generates the entry 9 in row zero since 0 ∗ (c1 + 9) = 9,0 ∗ 2 = c2 which generates the

entry 13 in row zero since 0 ∗ (c2 + 13) = 13. Hence all the odd entries have been

obtained and three even entries in row zero. Therefore, to obtain the remaining even

entries in row zero we need three equalities 0 ∗ b = c from C that respectively must

generate 0,8 and 10 in row one. Therefore if (Q, ∗) is a m-inverse loop of order 15

such that 3m + 1 6≡ 0, the choice 0 ∗ b = c generates the entries (1, 3, 11) in row zero

and 1 ∗ h = k generates the entries (2, 4, 12) in row one. Then the following set of

equalities must hold.

Table 3.18. Iteration 3.18

0 ∗ 8 = c
0 ∗ (c + 7) = 7
0 ∗ 6 = c1

0 ∗ (c1 + 9) = 9
0 ∗ 2 = c2

0 ∗ (c2 + 13) = 13
0 ∗ c3 = c3 + 1
0 ∗ c4 = c4 + 5
0 ∗ c5 = c5 + 7
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Note that the proof for any applicable value of c where 0 ∗ 8 = c is similar to

the proof that will be given below so we will only show the case when c = 2. The

goal of this proof is to investigate if the previous equalities hold can we construct a

Cayley table associated with Q. Recall that 0 ∗ 8 = c, 0 ∗ 6 = c1 and 0 ∗ 2 = c2 are

from set B and 0∗c3 = c3 +1, 0∗c4 = c4 +5, 0∗c5 = c5 +7 are from set C. Therefore,

c, c1, c2, c3 + 1, c4 + 5 and c5 + 7 are even and ci is odd where ci 6≡ 1 for i = 3 : 5.

The table below displays the possible choices for an entry in the Cayley table . For

example since 0 ∗ 8 = c the table shows that 0 ∗ 8 = c = 2, 4, 6, 10 or 12 where 0 and

8 are excluded since (Q, ∗) is a loop. Also since ci 6≡ 1 this implies that c3 + 1 6= 2,

c4 + 1 6= 6 and c5 + 7 6= 8.

Table 3.19. Equalities 3.19

c = 2 4 6 10 12
c1 = 2 4 8 10 12
c2 = 4 6 8 10 12
c3 + 1 = 4 6 8 10 12
c4 + 5 = 2 4 8 10 12
c5 + 7 = 2 4 6 10 12

Case 1a

Let c = 2; this implies that 0∗8 = 2 and 0∗9 = 7. Recall that c,c1,c2,c3+1,c4+5

and c5 + 7 are even; ci is odd and ci 6≡ 9 for i = 3, 4, 5. Also that 6 − c1 6≡ 8 − 2

and 2 − c2 6≡ 8 − 2 since 0 ∗ 8 = c, 0 ∗ 6 = c1 and 0 ∗ 2 = c2 are from B. Thus the

remaining choices for c1, c2, c3 + 1, c4 + 5 and c5 + 7 are as listed below.

46



Table 3.20. Equalities 3.20

c1 = 4 8 10 12
c2 = 4 6 8 12
c3 + 1 = 4 6 8 12
c4 + 5 = 4 8 10 12
c5 + 7 = 4 6 10 12

Notice from the above table if 0 ∗ 8 = 2 then 0 ∗ 6 = 4, 0 ∗ 6 = 8, 0 ∗ 6 = 10 or

0 ∗ 6 = 12. Let 0 ∗ 6 = 4; this implies that 0 ∗ 13 = 9 and therefore c2, c3 + 1, c4 + 5

cannot equal 4. Moreover ci cannot be congruent to 13 for i = 3, 4, 5 and 2− c2 6≡ 2.

Thus the remaining choices for c2, c3 + 1, c4 + 5 and c5 + 7 are as listed below.

Table 3.21. Equalities 3.21

c2 = 6 8 12
c3 + 1 = 6 8 12
c4 + 5 = 8 10 12
c5 + 7 = 10 12

Observe that if 0 ∗ 8 = 2 and 0 ∗ 6 = 4 then c5 + 7 = 10 or c5 + 7 = 12. Let

c5 + 7 = 10; this implies that 0 ∗ 3 = 10 and by the same logic the remaining choices

for c2, c3 + 1, c4 + 5 and c5 + 7 are as listed below.

Table 3.22. Equalities 3.22

c2 = 6 8 12
c3 + 1 = 6 8 12
c4 + 5 = 12
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Therefore, from the previous table, c4 + 5 = 12; this implies 0 ∗ 7 = 12 so again

by the same logic the remaining choices for c3 + 1, c4 + 5 and c5 + 7 are as listed

below.

Table 3.23. Equalities 3.23

c2 = 6
c3 + 1 = 6

The previous table implies that c2 ≡ c3 + 1 which is a contradiction since the

choice for c2 and c3+1 are unique. Therefore, if 0∗8 = 2 and 0∗6 = 4 then c5+7 6= 10.

Next let 0 ∗ 8 = 2, 0 ∗ 6 = 4 and c5 + 7 = 12. Therefore, the remaining choices for c2,

c3 + 1 and c4 + 5, are as listed below.

Table 3.24. Equalities 3.24

c2 = 6 8
c3 + 1 = 8
c4 + 5 = 8

Notice that c4 + 5 ≡ c3 + 1 which is a contradiction since the choice for c4 + 5

and c3 + 1 are unique. Therefore if 0 ∗ 8 = 2 and 0 ∗ 6 = 4 then c5 + 7 6= 10 or 12.

This implies that if 0 ∗ 8 = 2 then 0 ∗ 6 6= 4.

Case 1b

Let 0 ∗ 8 = 2 and 0 ∗ 6 = 8; this implies that 0 ∗ 9 = 7 and 0 ∗ 3 = 9. Recall

that c,c1, c2, c3 + 1, c4 + 5 and c5 + 7 are even and ci is odd for i = 3, 4, 5. Therefore,
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c1, c2, c3 + 1, c4 + 5 cannot equal 2 or c4 + 5 6= 8, ci 6≡ 9 or ci 6≡ 3 for i = 3, 4, 5 and

6− c1 6≡ 8− 2 and 2− c2 6≡ 8− 2 and 2− c2 6≡ 6− 8 since 0 ∗ 8 = c, 0 ∗ 6 = c1 and

0∗2 = c2 are from B. Therefore, the remaining choices for c2, c3 +1, c4 +5 and c5 +7

are as listed below.

Table 3.25. Equalities 3.25

c2 = 6 12
c3 + 1 = 6 12
c4 + 5 = 4 10 12
c5 + 7 = 4 6 12

From the new table we conclude if 0∗8 = 2 and 0∗6 = 8 then 0∗c3 = c3 +1 = 6

or 0 ∗ c3 = c3 + 1 = 12. Let 0 ∗ c3 = 6; this implies that 0 ∗ 5 = 6 and by the same

logic used to determine the previous table we obtain the following table.

Table 3.26. Equalities 3.26

c2 = 12
c4 + 5 = 4 12
c5 + 7 = 4

Therefore from the new table c2 = 12; thus 0 ∗ 2 = 12 and we obtain the table

below.
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Table 3.27. Equalities 3.27

c4 + 5 = 4
c5 + 7 = 4

Therefore c4 + 5 = c5 + 7 which is a contradiction since the choices c4 + 5 and

c5 + 7 are unique. Therefore, if 0∗ 8 = 2 and 0∗ 6 = 8 then 0∗ c3 6= 6. Let 0∗ c3 = 12;

this implies that 0 ∗ 11 = 12. Therefore we obtain the following table.

Table 3.28. Equalities 3.28

c2 = 6
c4 + 5 = 4 10
c5 + 7 = 6

Therefore c2 = c5 + 7, which is a contradiction. Thus if 0 ∗ 8 = 2 and 0 ∗ 6 = 8

then 0 ∗ c3 6= 6 or 0 ∗ c3 6= 12. This implies that if 0 ∗ 8 = 2 then 0 ∗ 6 6= 8.

Case 1c

Assume 0 ∗ 8 = 2 and 0 ∗ 6 = 10; this implies that 0 ∗ 9 = 7 and 0 ∗ 5 = 9.

Recall that c, c1, c2, c3 + 1, c4 + 5 and c5 + 7 are even and ci is odd for i = 3, 4, 5.

Therefore, c1, c2, c3 + 1, c4 + 5 6= 2 or c4 + 5 6= 10, ci 6≡ 9 or ci 6≡ 5 for i = 3, 4, 5 and

6− c1 6≡ 8− 2 and 2− c2 6≡ 8− 2 and 2− c2 6≡ 6− 10 since 0 ∗ 8 = c, 0 ∗ 6 = c1 and

0 ∗ 2 = c2 are from B. The remaining choices for c2, c3 + 1,c4 + 5 and c5 + 7 are as

listed below.
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Table 3.29. Equalities 3.29

c2 = 4 8 12
c3 + 1 = 4 8 12
c4 + 5 = 4 8 12
c5 + 7 = 4 6

The above table indicates that if 0 ∗ 8 = 2 and 0 ∗ 6 = 10 then c5 + 7 = 4 or 6.

Let c5 + 7 = 4 then we obtain the following table.

Table 3.30. Equalities 3.30

c2 = 8
c3 + 1 = 8
c4 + 5 = 8 12

This implies that c2 = c3 + 1 which is a contradiction. Therefore if 0 ∗ 8 = 2

and 0 ∗ 6 = 10 then c5 + 7 6= 4. Now let c5 + 7 = 6 then we obtain the following table.

Table 3.31. Equalities 3.31

c2 = 4 8 12
c3 + 1 = 4 8 12
c4 + 5 = 8 12

This implies that if 0 ∗ 8 = 2, 0 ∗ 6 = 10 and c5 + 7 = 6 then c4 + 5 = 8 or

c4 + 5 = 12. Let c4 + 5 = 8 then we obtain the following table.
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Table 3.32. Equalities 3.32

c2 = 12
c3 + 1 = 12

Therefore, c2 = c3 + 1 which is a contradiction. This implies that if 0 ∗ 8 = 2,

0 ∗ 6 = 10 and c5 + 7 = 6 then c4 + 5 6= 8. If c4 + 5 = 12 then we obtain the following

table.

Table 3.33. Equalities 3.33

c2 = 4
c3 + 1 = 4

This implies that c2 = c3 + 1 which is a contradiction. This implies that if

0 ∗ 8 = 2, 0 ∗ 6 = 10 and c5 + 7 = 6 then c4 + 5 6= 8 or c4 + 5 6= 12. Therefore, if

0 ∗ 8 = 2 then 0 ∗ 6 6= 10.

Case 1d

Assume 0 ∗ 8 = 2 and 0 ∗ 6 = 12; this implies that 0 ∗ 9 = 7 and 0 ∗ 7 = 9.

Recall that c, c1, c2, c3 + 1, c4 + 5 and c5 + 7 are even and ci is odd for i = 3, 4, 5.

Therefore, c1, c2, c3 + 1, c4 + 5 6= 2 or c4 + 5 6= 12, ci 6≡ 9 or ci 6≡ 7 for i = 3, 4, 5 and

6− c1 6≡ 8− 2 and 2− c2 6≡ 8− 2 and 2− c2 6≡ 6− 12 since 0 ∗ 8 = c, 0 ∗ 6 = c1 and

0 ∗ 2 = c2 are from B. Thus the remaining choices for c2, c3 + 1,c4 + 5 and c5 + 7 are

as listed below.
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Table 3.34. Equalities 3.34

c2 = 4 6
c3 + 1 = 4 6
c4 + 5 = 4 8 10
c5 + 7 = 4 6 10

The previous table implies that if 0 ∗ 8 = 2 and 0 ∗ 6 = 12. Then c2 = 4 or

c2 = 6. If c2 = 4 then we obtain the following table.

Table 3.35. Equalities 3.35

c3 + 1 = 6
c4 + 5 = 10
c5 + 7 = 6

The previous table implies that c3+1 = c5+7 which is a contradiction. Therefore

if 0 ∗ 8 = 2 and 0 ∗ 6 = 12 then c2 6= 4. Next letting c2 = 6 we obtain the following

table.

Table 3.36. Equalities 3.36

c3 + 1 = 4
c4 + 5 = 4 8
c5 + 7 = 4 10

This implies that c3 +1 = 4. However if c3 +1 = 4 we loose all choices for c4 +5

and c5 + 7 and therefore we conclude that if 0 ∗ 8 = 2 then 0 ∗ 6 6= 4, 8, 10, 12. This
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implies that 0 ∗ 8 6= 2. It is important to reiterate that the proof for any applicable

choice for c will lead to the same conclusion. Thus case 1 fails to construct a Cayley

table and since the other cases have the same conclusion we conclude that there does

not exist a m-inverse loop of order 15 with a long inverse cycle when (n − 1)/2 is

the smallest positive integer such that [(n− 1)/2](3m + 1) ≡ 0. We have proven the

following.

Theorem 4. A 1-inverse loop of order 15 with a long inverse cycle does not exist.

3.3 M-inverse loops of order 3k+2 with a long inverse cycle

In this section we study m-inverse loops of order n = 3(2k1 +1)+2 for k1 ∈ Z+.

The goal of this section is to determine ways to fill out row zero when n = 3(2k1+1)+2.

The majority of the work has already been accomplished since most of the propositions

in the first section hold true in this section. We will continue the same approach in

determining if a m-inverse loop exist of order 3k + 2, by first completing row zero

and then examining row one. Let’s prove the following propositions that will assist

us with our goal.

Proposition 20. If n = 3k + 2 then 3(n− 1)/2 does not divide n2− 3n + 2− (n− 1)

nor n2 − 3n + 2− (n− 1)/2.

Proof. Assume that 3(n−1)/2 divides n2−3n+2−(n−1) and n2−3n+2−(n−1)/2

where n = 3k+2. This implies that [3(n−1)/2]k1 = n2−3n+2−(n−1) = [(n−1)(n−

2)]− (n−1) and [3(n−1)/2]k2 = n2−3n+2− (n−1)/2 = [(n−1)(n−2)]− (n−1)/2

for some k, k1, k2 ∈ Z+. Therefore, (3/2)k1 = (n− 3) and (3/2)k2 = (n− 5/2); since

n = 3k + 2 this implies that 3k1 = 2(3k + 2) − 6 and 3k2 = 2(3k + 1) − 5. Thus
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2k − k1 = 2/3 and 2k − k2 = 1/3. However 2k − k1 and 2k − k2 ∈ Z. Therefore,

3(n− 1)/2 does not divide n2 − 3n + 2− (n− 1) nor n2 − 3n + 2− (n− 1)/2.

Proposition 21. If n = 3k + 2 then 3(n− 1)/2 divides (n2 − 3n + 2).

Proof. Let n = 3(2k1 + 1) + 2; thus n− 1 = 2(3k1 + 2) and 3(n− 1)/2 = 3(3k1 + 2).

Consider (n2 − 3n + 2) = (n − 1)(n − 2) = (2(3k1 + 2))(2(3k1 + 2) − 1) = 3(3k1 +

2)(4k1 + 4). Therefore, 3(n− 1)/2 divides (n2 − 3n + 2).

Since we are only investigating cases where (n − 1)/2 is the smallest positive

integer such that [(n−1)/2](3m+1) ≡ 0. The following condition must hold. If (Q, ∗)

is a m-inverse loop of order 3k+2 where (n−1)/2 is the smallest positive integer such

that [(n − 1)/2](3m + 1) ≡ 0, then for all a, b, c ∈ Q, the choice a ∗ b = c generates

3(n−1)/2 entries in the Cayley table. Now in order to fill row zero we first determine

the amount of missing entries in row zero. Recall that n = 3k + 2 = 3(2k1 + 1) + 2

where 0 ∗ 1 = e and 0 ∗ e = 0 are given. Since we have been given the entry zero

then the amount of even missing entries is one less than the amount of odd missing

entries. Thus, there are 3k1 + 2 odd missing entries and 3k1 + 1 even missing entries

in row zero.

We define A,B, and C as before. Next we determine the maximum number of

equalities that can be used from A in order to complete row zero. Recall that each

choice 0∗b = c contained in A will only generate 3 odd entries in row zero. Therefore,

the maximum number of equalities that can be utilized to complete row zero from

A is k1. Notice we again allow the first form to complete row zero to consist of k1

equalities from A. The following table shows the number of equalities derived when
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0 ∗ b = c is taken from set A, B and B. We designate forms 1 − k1 to all possible

combinations.

Table 3.37. Completion of row zero for order 3k + 2

Form 0 ∗ b = c from A 0 ∗ b = c from B 0 ∗ b = c from C
1 k1 2 3k1 − 1
2 k1 − 1 5 3k1 − 4
3 k1 − 2 8 3k1 − 7
4 k1 − 3 10 3k−9
... ....... .....
k1 − 1 k1 − (k1 − 2) 3(k1 − 2) + 2 3k1 + 1− [3(k1 − 2) + 2]
k1 k1 − (k1 − 1) 3(k1 − 1) + 2 3k1 + 1− [3(k1 − 1) + 2]

We conclude that there are k1 options to complete row zero if using equalities

from set A. Next we consider if it is possible to complete row zero with equalities

only equalities extracted from set B. We know that the choices 0 ∗ b = c ∈ A and the

choices 0 ∗ b = c ∈ B generate the odd entries in row zero. However since we do not

want to use equalities from set A then we need 3k1 + 1 equalities from set B to fill

row zero. Recall that the equalities in set B generate one odd and one even entry

in row zero and there are 3k1 + 2 odd and 3k1 + 1 even missing entries in row zero.

Therefore, since the amount of odd missing entries is not equal to the amount of even

missing entries. We have that row zero cannot be filled with only equalities from set

B. We need a combination from A and B, but these forms are included in the k1

options. Therefore, there are k1 ways of selecting equalities from sets A,B, and C to

complete row zero.
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3.3.1 M-inverse loop of order 11 with a long inverse cycle

Now we apply the information that has been obtained on m-inverse loop of order

n = 3k + 2, to determine if a m-inverse loop of order n = 11 = 3(3) + 2 exists, for

some m such that 5 is the smallest positive integer such that 5(3m + 1) ≡ 0. Assume

that n = 3(3) + 2 where Q = e, 0, 1...9 and 3m + 1 6≡ 0. Again in this section we

will use the previous proposition and the help of Mathlab to determine if a m-inverse

loop of order 11 with a long inverse cycle exist when 3m + 1 6≡ 0. Now it has been

determined that if the order of Q is 3k + 2 then there are k1 ways to complete row

zero where 3k1 + 2 is the number of missing odd entries in row zero. This implies

that k1 = 1 since there are 5 odd missing entries. Therefore, there is one way to

construct row zero. The unique form used to complete row zero consists of the choice

0 ∗ b = c ∈ A, two choices 0 ∗ b = c from B and two choices 0 ∗ b = c from C.

Recall that if a m-inverse loop of order 3k + 2 exists where (n − 1)/2 is the

smallest positive integer such that [(n− 1)/2](3m + 1) ≡ 0 then for all a, b, c ∈ Q, the

choice a ∗ b = c generates 3(n− 1)/2 entries in the Cayley table. In our case n = 11.

Thus the choice a ∗ b = c generates 15 entries in the Cayley table. Now form 1 gives

5 unique equalities, therefore by completing row zero we generate 75 entries in the

Cayley table. Let (Q, ∗) be a m-inverse loop of order 11; we know that 31 of the 121

entries in the Cayley table are given. This implies that 90 entries are missing, thus

by completing row zero we obtain 75 of the 90 missing entries.

Next we determine the amount of entries that we obtained in row 1 after row

zero was completed. First recall the equalities used to complete row zero. We have

the choice 0 ∗ b = c from A, two choices 0 ∗ b = c from B and two choices 0 ∗ b = c

from C. Now the choice 0 ∗ b = c from A does not generate any entries in row 1, but

the 2 equalities from B each generate 1 odd entry in row 1 and the 2 equalities from
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C generate 1 odd and 1 even entry in row 1. Therefore, by completing row zero we

obtain 4 odd and 2 even entries in row 1. This implies that there are 3 even entries

missing in row 1. We know that if row zero is completed and (n−1)/2 is the smallest

positive integer such that[(n− 1)/2](3m + 1) ≡ 0 then all the odd entries are filled in

the Cayley table and the even rows and columns are also filled. We have 75 of the 90

missing entries; therefore we need 15 even entries to complete the Cayley table. This

implies that there exist a choice 1 ∗ b = c that generates 15 even entries in the Cayley

table where 3 of the 15 even entries are in row 1. Therefore,b is odd and c is even.

Next we will determine the appropriate b and c such that 1 ∗ b = c generates 3

even entries in row 1. Now it has been previously noted that in order to determine

the equalities that hold when the choice a ∗ b = c we can refer to the set Xj for

j = 0, 1..., ((n− 1)/2)− 1. Consider Xj listed below where a = 1.

Table 3.38. Iteration 3.38

[1 + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [1 + j(3m + 1) + (m + 1)] = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2] ∗ [c + j(3m + 1) + (2m + 1)] = [1 + j(3m + 1) + (2m + 1)]

Now we know that choice a ∗ b = c generates 3(n − 1)/2 entries in the Cayley

table. This implies that there are 3(n − 1)/2 unique equalities that must hold if

1 ∗ b = c. Since each equality is unique, the choice 1 ∗ b = c can only appear one time

in the iteration for j = 0, 1..., ((n − 1)/2) − 1. Moreover there cannot exist some b1

such that 1 ∗ b1 = c since b is the unique element such that 1 ∗ b = c. Recall that the

first term determines what row the entry is inputted in. Therefore the choices are

c + j(3m + 1) + m and b + j(3m + 1) + 2m since each term is congruent to some odd
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element of Q when b is odd and c is even for j = 0, 1..., ((n− 1)/2)− 1. This implies

that there are (n−1)/2 of these terms. Therefore, for some j, c+j(3m+1)+m ≡ 1 and

b+j(3m+1)+2m ≡ 1. Next assume c+j(3m+1)+m ≡ 1 and 1+j(3m+1)+m+1 ≡ b;

this implies that 1∗b = c appears twice in the iteration and that 1−c ≡ j(3m+1)+m.

Thus 2 − c ≡ j(3m + 1) + m + 1 for j = 0, 1..., ((n − 1)/2) − 1; therefore b + c ≡ 3.

From here it follows that if b + c ≡ 3 then 1 ∗ b = c will appear twice in the iteration

which is a contradiction. Therefore b + c 6≡ 3 which implies that 1 ∗ 1 6= 2, 1 ∗ 3 6= 0,

1 ∗ 5 6= 8, 1 ∗ 7 6= 6, 1 ∗ 9 6= 4.

Next assume for some j, b+j(3m+1)+2m ≡ 1 and c+j(3m+1)+2m+1 ≡ b.

Again this implies that 1 ∗ b = c appears twice in the iteration and that 1 − b ≡

j(3m + 1) + m; thus 2− b ≡ j(3m + 1) + m + 1 and 2b ≡ c + 2. Hence if 2b ≡ c + 2,

then 1 ∗ b = c will appear twice in the iteration which is a contradiction; therefore

2b 6≡ c + 2 which implies that 1 ∗ 1 6= 0, 1 ∗ 3 6= 4, 1 ∗ 5 6= 8, 1 ∗ 7 6= 2, 1 ∗ 9 6= 6, since

b is odd and c is even.

Finally assume c + j(3m + 1) + m ≡ 1 and b + j(3m + 1) + m ≡ c. This implies

that there exist 1∗b1 = c and that 1−c ≡ j(3m+1)+m. Thus c−b ≡ j(3m+1)+m

and 2c ≡ b+1. Hence if 2c ≡ b + 1 then there exist 1∗ b1 = c which is a contradiction

since b is the unique element such that 1 ∗ b = c. Therefore 2c 6≡ b + 1 which implies

that 1 ∗ 1 6= 6,1 ∗ 3 6= 2, 1 ∗ 5 6= 8, 1 ∗ 7 6= 4, 1 ∗ 9 6= 0.

Now the choices for c are 0, 2, 4, 6, 8 since n = 11. Therefore the following

table displays the possible choices for entries in row one once row zero is filled. Each

column, respectively, represent the 3 entries for row one after row zero is filled.
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Table 3.39. Equalities 3.39

1 ∗ 1 = 4 1 ∗ 1 = 8 1 ∗ 3 = 6 1 ∗ 3 = 8
1 ∗ 5 = 2 1 ∗ 5 = 2 1 ∗ 7 = 8 1 ∗ 7 = 0
1 ∗ 9 = 8 1 ∗ 9 = 4 1 ∗ 5 = 0 1 ∗ 5 = 6

Observe that if the choice 1 ∗ b = c generate 3 even entries in row one after

row zero is filled then the entries generated in row one are 2, 4, 8 or 0, 6, 8. We used

Mathlab to determine the following results: If (Q, ∗) is a m-inverse of order 11 such

that 3m + 1 6≡ 0 and 0 ∗ b = c ∈ A then the choice 0 ∗ b = c generates the entries

1, 3, 7 or 5, 7, 9 in row zero. Also, if (Q, ∗) is a m-inverse loop of order 11 such that

3m+1 6≡ 0 and 1∗b = c generates 3 entries in row one after row zero is filled then the

choice 1 ∗ b = c generates the entries 2, 4, 8 or 0, 6, 8 in row one. Therefore if (Q, ∗) is

a m-inverse loop of order 11 then one of the following conditions must hold:

1. The choice 0 ∗ b = c ∈ A generates the entries 1, 3, 7 in row zero and the

choice 1 ∗ x = y generate the entries 2, 4, 8 are in row one.

2. The choice 0 ∗ b = c ∈ A generates the entries 1, 3, 7 in row zero and the

choice 1 ∗ x = y generate the entries 0, 6, 8 are in row one.

3. The choice 0 ∗ b = c ∈ A generates the entries 5, 7, 9 in row zero and the

choice 1 ∗ x = y generate the entries 2, 4, 8 are in row one.

4. The choice 0 ∗ b = c ∈ A generates the entries 5, 7, 9 in row zero and the

choice 1 ∗ x = y generate the entries 0, 6, 8 are in row one.

We will only look at the second condition since the proof of the other conditions

is similar and leads to the same conclusion. Recall that the choice 0 ∗ b = c ∈ B

generates one odd and one even entry in row zero and the choice 0 ∗ b = c ∈ C
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generates one odd and one even entry in row one. Assume the choice 0 ∗ b = c ∈ A

generates the entries 1, 3, 7 in row zero and the choice 1 ∗ x = y generates the entries

0, 6, 8 in row one. This implies that there exist two choices 0∗b = c ∈ B that generates

the entries 5 and 9 respectively and that there exist two choices 0 ∗ b = c ∈ C that

generate the entries 2 and 4 in row one respectively. First we will determine to what

value is b congruent to such that the choice 0 ∗ b = c ∈ B generate the entries 5 or

9 in row zero. Then we will determine to what value b is congruent to such that the

choice 0 ∗ b = c ∈ C generates 2 or 4 in row one. Since we are again looking for the

equalities that hold when the choice a ∗ b = c we will refer to set Xj listed below for

j = 0, 1..., ((n− 1)/2)− 1 where a = 0.

Table 3.40. Iteration 3.40

[0 + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [0 + j(3m + 1) + (m + 1)] = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2] ∗ [c + j(3m + 1) + (2m + 1)] = [0 + j(3m + 1) + (2m + 1)]

First we determine the choice 0 ∗ b = c from B that generates the entry 5 in

row zero. Let 0 ∗ b = c where b and c are even. Recall that the first term in each

equality determines what row the entry will be inputted in. Therefore, j(3m + 1),b +

j(3m + 1) + 2m and c + j(3m + 1) + m are the possible choices. Since m is odd this

implies 3m + 1 is even therefore c + j(3m + 1) + m is congruent to some odd element

of Q; however j(3m + 1) and b + j(3m + 1) + 2m are congruent to some even element

of Q for j = 0, 1..., ((n − 1)/2) − 1. Recall that j(3m + 1) ≡ 0 when j = 0 which

is already represented by the choice 0 ∗ b = c. Since c is even and c 6≡ 5 we must

examine the term b + j(3m + 1) + 2m, where b + j(3m + 1) + 2m is to congruent
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to some even element of Q. This implies for some j, b + j(3m + 1) + 2m ≡ 0. Now

in order for the choice 0 ∗ b = c to generate the entry 5 in row zero we must have

0+j(3m+1)+2m+1 ≡ 5 and b+j(3m+1)+2m ≡ 0. Therefore j(3m+1)+2m ≡ 4

thus b + 4 ≡ 0. Thus we conclude that the choice 0 ∗ 6 = c generate the entry 5 in

row zero and 0 ∗ (c + 5) = 5. Next we determine the choice 0 ∗ b = c from B that

generates the entry 9 in row zero. To obtain this information we follow the same steps

that we used to find which 0 ∗ b = c generates the entry 5 in row zero. Therefore,

let 0 + j(3m + 1) + 2m + 1 ≡ 9 and b + j(3m + 1) + 2m ≡ 0; this implies for some

j, 0 + j(3m + 1) + 2m ≡ 8 and b + 8 ≡ 0. We conclude that the choice 0 ∗ 2 = c

generates the entry 9 in row zero and 0 ∗ (c + 9) = 9.

Next we will identify which 0∗ b = c from C generates the entry 2 in row 1 with

b odd and c even. Again the first term in each equality determines what row the entry

will be inputted in; thus j(3m+ 1), b+ j(3m+ 1) + 2m and c+ j(3m+ 1) +m are the

possible choices. However only the terms b+j(3m+1)+2m and c+j(3m+1)+m are

congruent to some odd element of Q. Therefore for some j, b + j(3m + 1) + 2m ≡ 1

and c+ j(3m+1)+m ≡ 1. However only the entry associated with c+ j(3m+1)+m

generates an even entry in the Cayley table. Therefore letting c + j(3m + 1) + m ≡ 1

and b + j(3m + 1) + m ≡ 2 we get 1− c ≡ j(3m + 1) + m. Therefore, b + 1− c ≡ 2.

This implies that b = c + 1. We conclude that the choice 0 ∗ (c + 1) = c generates

the entry 2 in row 1. Finally we determine the choice 0 ∗ b = c ∈ C that generates

the entry 4 in row 1. Let c + j(3m + 1) + m ≡ 1 and b + j(3m + 1) + m ≡ 4; this

implies 1− c ≡ j(3m + 1) + m and b + 1− c ≡ 4. Hence b = c + 3. Thus we conclude

that the choice 0 ∗ (c + 3) = c generates the entry 4 in row 1. Therefore, if (Q, ∗) is a

m-inverse loop of order 11 such that the choice 0 ∗ b = c from A generates the entries

62



1, 3, 7 in row zero and the choice 1∗h = k generates the entries 0, 6, 8 in row one then

the following equalities must hold.

Table 3.41. Iteration 3.41

0 ∗ 6 = c
0 ∗ (c + 5) = 5
0 ∗ 2 = c1

0 ∗ (c1 + 9) = 9
0 ∗ (c2 + 1) = c2

0 ∗ (c3 + 3) = c3

Recall that the choice 0 ∗ 6 = c and the choice 0 ∗ 2 = c1 are from set B and

the choice 0 ∗ (c2 + 1) = c2 and 0 ∗ (c3 + 3) = c3 are from set C. Therefore, c, c1,

c2 and c3 are even. Now the table below displays the possible choices for an entry in

the Cayley table. For example the following table implies that 0 ∗ 6 = c = 2, 4, or

8 where 0 and 6 are excluded since (Q, ∗) is a loop. Note the following table will be

used to determine if the above equalities hold.

Table 3.42. Equalities 3.42

c = 2 4 8
c1 = 4 6 8
c2 = 2 4 6 8
c3 = 2 4 6

Case 1a

63



Let c = 2; this implies that 0 ∗ 6 = 2 and 0 ∗ 7 = 5. Recall c, c1, c2 and c3 are

even, so c2 + 1 and c3 + 3 are odd. Therefore, c1, c2 and c3 cannot equal 2. Also note

that c1 +9, c2 +1 and c3 +3 cannot be congruent to 7 and that 2− c1 6≡ 4. Therefore,

we obtain the following table.

Table 3.43. Equalities 3.43

c1 = 4 6
c2 = 4 8
c3 = 6

The previous table implies that c3 = 6. Thus 0 ∗ 9 = 6. Therefore c1 and c2

cannot equal 6 and c1 + 9 and c2 + 1 cannot be congruent to 9. Thus we obtain the

following table.

Table 3.44. Equalities 3.44

c1 = 4
c2 = 4

This implies c1 = c2 which is a contradiction since the choices c1 and c2 are

unique. Hence 0 ∗ 6 6= 2.

Case 1b

Let c = 4; this implies that 0 ∗ 6 = 4 and 0 ∗ 9 = 5. Recall c, c1, c2 andc3 are

even. Thus c2 + 1 and c3 + 3 are odd. Therefore, c1, c2 and c3 cannot equal 4. Also,
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c1 + 9, c2 + 1 and c3 + 3 cannot be congruent to 9. Also 2 − c1 6≡ 2. Therefore we

obtain the following table.

Table 3.45. Equalities 3.45

c1 = 6 8
c2 = 2 6
c3 = 2

This implies that c3 = 2. Thus 0 ∗ 5 = 2. Therefore, c1 and c2 cannot equal 2.

Also c1 + 9 and c2 + 1 cannot be congruent to 5. Therefore we obtain the following

table.

Table 3.46. Equalities 3.46

c1 = 8
c2 = 6

This implies c1 = 8. Hence 0∗2 = 8, 0∗7 = 9 and c2 = 6. Thus 0∗7 = 6 which

is a contradiction. Hence 0 ∗ 6 6= 4

Case 1c

Let c = 8; this implies that 0 ∗ 6 = 8 and 0 ∗ 3 = 5. Recall c, c1, c2 and c3 are

even. Thus c2 + 1 and c3 + 3 are odd. Therefore, c1, c2 and c3 cannot equal 8. Also

note that c1 +9, c2 +1 and c3 +3 cannot be congruent to 3 and 2− c1 6≡ 8. Therefore,

we obtain the following table.
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Table 3.47. Equalities 3.47

c1 = 6
c2 = 4 6
c3 = 2 4 6

This implies that c1 = 6 and 0 ∗ 5 = 9. Therefore, c3 and c2 cannot equal 6 and

c1 + 9 and c2 + 1 cannot be congruent to 5. Therefore, we obtain the following table.

Table 3.48. Equalities 3.48

c2 =
c3 = 4

This implies there is no choice for c2 so 0 ∗ 6 6= 8. Furthermore 0 ∗ 6 6= 2, 4 or

8. Therefore, there does not exist a m-inverse loop of order 11 when (n− 1)/2 is the

smallest positive integer such that [(n−1)/2](3m+1). We have proven the following:

Theorem 5. A 1-inverse loop with a long inverse cycle of order 11 does not exist.
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CHAPTER 4

The existence of m-inverse quasigroups of order n with a long inverse cycle.

4.1 Introduction to m-inverse quasigroups of order n with a long inverse cycle

In this chapter we investigate the existence of m-inverse quasigroups of order

3k, 3k + 1,and 3k + 2 with a long inverse cycle that meet the following conditions: m

is odd and n is even. Therefore, gcd(3m + 1, n) > 1 and n/2 is the smallest positive

integer such that (n/2)(3m + 1) ≡ 0 where the arithmetic is modulo n. We may

suppose without lost of generality that the elements of Q are 0, 1.......n−1. Also that

the notation is chosen such that J = (0, 1.....n− 1): that is, so that (0, 1.....n− 1) is

the long inverse cycle and J(a) ≡ a+1. In this chapter we prove the following results:

a 3-inverse loop of order 16 with a long inverse cycle exists when 8(3m + 1) ≡ 0, a

7-inverse loop of order 20 with a long inverse cycle exists when 10(3m+1) ≡ 0, and a 3-

inverse loop of order 12 with a long inverse cycle does not exists when 6(3m+ 1) ≡ 0.

We continue with the same approach that was used when investigating m-inverse

loops with a long inverse cycles. First, we determine how many ways row zero can

be filled. Then we examine row one to determine if the completion of row one leads

to the construction of a Cayley table. Let (Q, ∗) be a m-inverse quasigroup with a

long inverse cycle. Then there exist a permutation J define by J(a) ≡ a + 1 such

that [Jm(a ∗ b)] ∗ [Jm+1(a)] = Jm(b). This implies that the equalities generated by

the choice a ∗ b = c are generated in the same manner as m-inverse loops with a long

inverse cycle. Thus the following set of equalities hold.
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Table 4.1. Iteration 4.1

a ∗ b = c
[c + m] ∗ [a + (m + 1)] = [b + m]
[b + 2m] ∗ [c + (2m + 1)] = [a + (2m + 1)]
[a + 1(3m + 1)] ∗ [b + 1(3m + 1)] = [c + 1(3m + 1])
[c + 1(3m + 1) + m] ∗ [a + 1(3m + 1) + (m + 1)] = [b + 1(3m + 1) + m]
[b + 1(3m + 1) + 2m] ∗ [c + 1(3m + 1) + (2m + 1)] = a + 1(3m + 1) + (2m + 1)]
[a + 2(3m + 1)] ∗ [b + 2(3m + 1)] = c + 2(3m + 1])
[c + 2(3m + 1) + m] ∗ [a + 2(3m + 1) + (m + 1)] = b + 2(3m + 1) + m]
[b + 2(3m + 1) + 2m] ∗ [c + 2(3m + 1) + (2m + 1)] = [a + 2(3m + 1) + (2m + 1)]
........................................
........................................
[a + (s− 1)(3m + 1)] ∗ [b + (s− 1)(3m + 1)] = [c + (s− 1)(3m + 1)]
[c + (s− 1)(3m + 1) + m] ∗ [a + (s− 1)(3m + 1) + (m + 1)] = [b + (s− 1)(3m + 1) + m]
[b + (s− 1)(3m + 1) + 2m] ∗ [c + (s− 1)(3m + 1) + (2m + 1)] = [a + (s− 1)(3m + 1) + (2m + 1)]
[a + s(3m + 1)] ∗ [b + s(3m + 1)] = c + s(3m + 1)

Now as previously shown for m-inverse loops with a long inverse cycle. If the

previous set of equalities hold then the following set of the equalities must also hold.

Each equality generated by the choice a ∗ b = c can be represented by one of the

equalities in Xj.

Table 4.2. Xj

[a + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [a + j(3m + 1) + (m + 1)] = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2m] ∗ [c + j(3m + 1) + (2m + 1)] = [a + j(3m + 1) + (2m + 1)]
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4.2 M-inverse quasigroups of order 3k + 1 with a long inverse cycle.

In this section we begin by investigating m-inverse quasigroups with long inverse

cycle of order 3k + 1. The goal of this section is to determine ways to fill out row

zero when n = 3(2k1 + 1) + 1 for k1 ∈ Z+. Recall that each equality generated by the

choice a ∗ b = c can be represented by one of the equalities in Xj for j = 0, 1, ..., s− 1

where s is the smallest positive integer such that s(3m + 1) ≡ 0. Therefore, the proof

for each proposition below is identical to the corresponding propositions associated

with m-inverse loops with a long inverse cycle.

Proposition 22. If (Q, ∗) is a m-inverse quasigroup of order n with a long inverse

cycle then there exist some t ∈ Z+ such that t(3m + 1) ≡ 0.

Proposition 23. Let (Q, ∗) be a m-inverse quasigroup of order n with a long inverse

such that a ∗ b = c and i 6= j. Then i(3m + 1) 6≡ j(3m + 1).

Lemma 4. If (Q, ∗) is a m-inverse quasigroup of order n then a ∗ b = c generates

3s or s entries in the Cayley table; where s is the smallest positive integer such that

s(3m + 1) ≡ 0. Note s = n/2 for m-inverse quasigroups.

Proposition 24. Let (Q, ∗) be a m-inverse quasigroup of order n with a long inverse

cycle.

1. If 0 ∗ b = c generates 3s entries in the Cayley table with b even and c odd then the

choice 0 ∗ b = c generates 3 odd entries in row zero.

2. If 0 ∗ b = c generates 3s entries in the Cayley table such that b and c are even then

the choice 0 ∗ b = c generates one odd and one even entry in row zero.

3. If 0 ∗ b = c generates 3s entries in the Cayley table with b odd and c even then the

choice 0 ∗ b = c generates one even entry in row zero.
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Proposition 25. Let (Q, ∗) be a m-inverse quasigroup of order n with a long inverse

cycle with b even, c odd and the choice 0∗b = c generates 3(n/2) entries in the Cayley

table. Then the choice 0 ∗ b = c generates no entries in row one.

Proposition 26. Let (Q, ∗) be a m-inverse quasigroup of order n with a long inverse

cycle such that b and c are even, and the choice 0 ∗ b = c generates 3(n/2) entries in

the Cayley table. Then the choice 0 ∗ b = c generates one odd entry in row one.

Proposition 27. Let (Q, ∗) be a m-inverse quasigroup of order n with a long inverse

cycle with b odd, c even, and the choice 0 ∗ b = c generates 3(n/2) entries in the

Cayley table. Then the choice 0 ∗ b = c generates one odd and one even entry in row

one.

Proposition 28. Let (Q, ∗) be a m-inverse quasigroup of order n where (n)/2 is the

smallest positive integer such that [(n)/2](3m + 1) ≡ 0 and row zero is filled. Then

all the even rows and columns are filled where only even entries remain unfilled in the

odd columns and rows.

Proposition 29. Let (Q, ∗) be a m-inverse quasigroup of order n with a long inverse

cycle.

1. If 0 ∗ b = c ∈ B and 0 ∗ b1 = c1 ∈ B then b− c 6≡ b1 − c1.

2. If 0 ∗ b = c ∈ C and 0 ∗ b1 = c1 ∈ C then b− c 6≡ b1 − c1.

Now the following propositions must be proving since the proofs are not the

same as when investigating m-inverse loops with a long inverse cycle.

Proposition 30. If (Q, ∗) is a quasigroup of order n = 3k + 1 with a long inverse

cycle, then a ∗ [a + 2(k1(3m + 1) + 2m + 1)] = a + k1(3m + 1) + 2m + 1 generates n/2

entries in the Cayley table for k, k1 ∈ Z+ .
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Proof. Assume the choice a∗b = c generates (n)/2 entries in the Cayley table. Recall

from the previous proposition that s ≡ 3j + 1 or s ≡ 3j + 2 for j = 0, 1, ..., s − 1.

Recall that s = n/2. This implies that s = 3k1 + 2. Therefore j ≡ k1 which implies

that the choice a ∗ b = c is equivalent to the third equality in the table below.

Table 4.3. Iteration 4.3

[a + (3j)m + (i)] ∗ [b + (3j)m + (i)] = [c + (3j)m + (j)]
[c + (3j + 1)m + (j)] ∗ [a + (3j + 1)m + (j) + 1] = [b + (3j) + 1)m + (j)]
[b + (3j + 2)m + (j)] ∗ [c + (3j + 2)m + (j) + 1] = [a + (3j + 2)m + j + 1]

Therefore b ≡ +2j(3m+ 1) + 2m+ 1) and c ≡ a+ j(3m+ 1) + 2m+ 1. However

since k1 ≡ j. Thus we conclude a∗[a+2k1(3m+1)+2m+1)] = a+k1(3m+1)+2m+1

generates n/2 distinct entries in the Cayley table.

Proposition 31. If n = 3k + 1 for some k ∈ Z+ then 3(n/2) divides (n2 − n)

Proof. Let n = 3(2k1+1)+1 = 2(3k1+2); this implies that 3(n/2) = 3(3k1+2) where

k1 ∈ Z+. Consider (n2−n) = [2(3k1+2)][2(3k1+2)]−2(3k1+2) = 3(3k1+2)(4k1+2).

Therefore 3(n/2) divides (n2 − n).

Proposition 32. If n = 3k + 1, for some k ∈ Z+ then 3(n/2) does not divide n2 nor

n2 − (n/2)

Proof. Assume n2 = [(3/2)n]k1and n2 − (n)/2 = [(3/2)n]k2 for some k, k1, k2 ∈ Z+.

This implies that n = (3/2)k1 and (n − 1/2) = (3/2)k2. Since n = 3k + 1 then

3k + 1 = (3/2)k1 and 3k + 1 = (3/2)k2 + (1/2). Therefore k1 − 2k = 2/3 and
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k2 − 2k = (1/3). Thus both equalities leads to a contradiction since k, k1, k2 ∈ Z+.

Thus 3(n/2) does not divide n2 nor n2 − (n/2).

Let’s use the previous propositions to determine ways to fill out row zero for

a m-inverse quasigroup of order 3k + 1 with a long inverse cycle. Once a particular

manner for completing row zero is determined, the next objective is to determine

what entries in row one are missing. Once this information is obtained we decide

if the completion of row one leads to the construction of a Cayley table. In order

to determine how many possible ways we can fill row zero we must determine the

number of missing entries in row zero where the missing entries are characterized as

odd or even. Now the order of Q is n = 3(2k1 + 1) + 1. Therefore, there are 3k1 + 2

odd and 3k1 + 2 even entries in row zero. Recall that the choice 0 ∗ b = c generates

either three odd entries in row zero, one even one odd even entry in row zero or

one even entry in row zero. Let’s again define A,B,C as previously noted. Next we

determine the maximum amount of equalities that can be used from A in order to

complete row zero. By proposition 30, we need the choice a ∗ b = c and the choice

a1 ∗ b1 = c1 which generates n/2 entries in the Cayley table respectively. Therefore,

since a∗ [a+ 2(k1(3m+ 1) + 2m+ 1)] = a+k1(3m+ 1) + 2m+ 1 generates n/2 entries

in the Cayley table then 0 ∗ [0 + 2(k1(3m + 1) + 2m + 1)] = 0 + k1(3m + 1) + 2m + 1

and 1∗ [1+2(k1(3m+1)+2m+1)] = 1+k1(3m+1)+2m+1. This implies that there

are 3k1 + 1 odd missing entries in row one. Now each choice 0∗ b = c from A generate

3 odd entries in row zero. Therefore, k1 is the maximum amount of equalities that

can be utilized from A to complete row zero. The following table shows the number

of equalities derived when 0∗ b = c is taken from set A, B and B. We designate forms

1− k1 to all possible combinations.
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Table 4.4. Completion of row zero for order 3k + 1

Form 0 ∗ b = c ∈ A 0 ∗ b = c ∈ C 0 ∗ b = c ∈ A

1 k1 1 (3k1 + 2)− 1
2 k1 − 1 4 (3k1 + 2)− 4
3 k1 − 2 7 (3k1 + 2)− 7
... ....... ...........
k1 k1 − (k1 − 1) 3(k1 − 1) + 1 (3k1 + 2)− 3(k1 − 1) + 1

Next we consider if it is possible to fill row zero with equalities that are not

extracted from set A. In view of the fact that there are 3k1 + 1 odd and 3k1 + 2 even

missing entries in row zero we conclude that we need at least one choice from set A

to fill out row zero. Therefore, there are k1 possible ways of selecting equalities from

set A,B and C.

4.2.1 3-inverse quasigroups of order 16 with a long inverse cycle

In this section we apply the results from the previous section to prove the

following theorem.

Theorem 6. A 3-inverse quasigroup with a long inverse cycle of order 16 exists.

Proof. Let n = 16 = 3(5) + 1 and m = 3. This implies that 2k1 + 1 = 5. Thus

k1 = 2. Therefore, there are three ways to complete row 1. Next we will use form

2 to complete row zero. Therefore we must have one equality 0 ∗ b = c ∈ A, four

equalities 0 ∗ b = c ∈ B and four equalities 0 ∗ b = c ∈ C. We also need the choice

a ∗ b = c and the choice a1 ∗ b1 = c1 that generates n/2 entries in the Cayley table

respectively. Let 0 ∗ 6 = 11, 1 ∗ 7 = 12, 0 ∗ 0 = 3 ∈ A, 0 ∗ 2 = 6 ∈ B ,0 ∗ 8 = 4 ∈ B

,0∗10 = 0 ∈ B, 0∗12 = 10 ∈ B, and 0∗1 = 2 ∈ C, 0∗3 = 14 ∈ C, 0∗9 = 12 ∈ C and
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0 ∗ 11 = 8 ∈ C which leads us to following Cayley table. Thus a 3-inverse quasiqroup

of order 16 with a long inverse cycle exist. The table below gives the Cayley table for

such structure.

Table 4.5. 3-inverse quasigroup of order 16 with a long inverse cycle

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 3 2 6 14 1 15 11 7 4 12 0 8 10 9 13 5
1 0 8 11 1 6 9 14 12 3 2 4 10 13 15 5 7
2 15 7 5 4 8 0 3 1 13 9 6 14 2 10 12 11
3 7 9 2 10 13 3 8 11 0 14 5 4 6 12 15 1
4 14 13 1 9 7 6 10 2 5 3 15 11 8 0 4 12
5 1 3 9 11 4 12 15 5 10 13 2 0 7 6 8 14
6 6 14 0 15 3 11 9 8 12 4 7 5 1 13 10 2
7 10 0 3 5 11 13 6 14 1 7 12 15 4 2 9 8
8 12 4 8 0 2 1 5 13 11 10 14 6 9 7 3 15
9 11 10 12 2 5 7 13 15 8 0 3 9 14 1 6 4
10 5 1 14 6 10 2 4 3 7 15 13 12 0 8 11 9
11 8 6 13 12 14 4 7 9 15 1 10 2 5 11 0 3
12 13 11 7 3 0 8 12 4 6 5 9 1 15 14 2 10
13 2 5 10 8 15 14 0 6 9 11 1 3 12 4 7 13
14 4 12 15 13 9 5 2 10 14 6 8 7 11 3 1 0
15 9 15 4 7 12 10 1 0 2 8 11 13 3 5 14 6

4.3 M-inverse quasigroups of order 3k + 2 with a long inverse cycle

In this section we investigate the existence of m-inverse quasigroups with a long

inverse cycle of order 3k + 2. The goal of this section is to determine ways to fill out

row zero when n = 3(2k1) + 2 for k1 ∈ Z+. Note that proposition 1.1-12.1 still hold.
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Next we introduce the following propositions to assist us with the investigation of

m-inverse quasigroups of order 3k + 2 with a long inverse cycle.

Proposition 33. If (Q, ∗) is a m-inverse quasigroup with a long inverse cycle of

order n = 3k + 2 = 3(2k1) + 2 for some k1 ∈ Z+ then a ∗ [a + k1(3m + 1) + m + 1] =

a + 2k1(3m + 1) + 2m + 1 generates (n/2) distinct entries in the Cayley table.

Proof. Assume the choice a∗b = c generates (n)/2 entries in the Cayley table. Recall

from the previous proposition that s ≡ 3j + 1 or s ≡ 3j + 2 and s = (n)/2. This

implies that s = 3k1 + 1. Therefore k1 ≡ j which implies that a ∗ b = c is equivalent

to the second equality in the table below.

Table 4.6. Iteration 4.6

[a + (3j)m + (i)] ∗ [b + (3j)m + (i)] = [c + (3j)m + (j)]
[c + (3j + 1)m + (j)] ∗ [a + (3j + 1)m + (j) + 1] = [b + (3j) + 1)m + (j)]
[b + (3j + 2)m + (j)] ∗ [c + (3j + 2)m + (j) + 1] = [a + (3j + 2)m + j + 1]

Therefore b ≡ a+ j(3m+1)+m+1 and c ≡ a+2j(3m+1) = 2m+1. However

k1 ≡ j. Thus we conclude that a∗a+k1(3m+ 1) +m+ 1 = a+ 2k1(3m+ 1) + 2m+ 1

generates (n)/2 entries in the Cayley table.

Proposition 34. If n = 3k + 2 for some k ∈ Z+ then 3(n/2) divides (n2 − n/2)

Proof. Let n = 3(2k1) + 2 = 2(3k1 + 1); this implies that 3(n/2) = 3(3k1 + 1) where

k1 ∈ Z+. Consider (n2−n/2) = [2(3k1+1)][2(3k1+1)]−(3k1+1) = 3(3k1+1)(4k1+1).

Therefore 3(n/2) divides (n2 − n/2).
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Proposition 35. If n = 3k + 2 for some k ∈ Z+ then 3(n/2) does not divide n2 nor

n2 − n.

Proof. Assume n2 = [(3/2)n]k1 and n2 − n = [(3/2)n]k2 for some k, k1, k2 ∈ Z+.

This implies that n = (3/2)k1 and n − 1 = (3/2)k2. Thus 3k + 2 = (3/2)k1 and

3k + 1 = (3/2)k2. Therefore k1− 2k = 4/3 and k2− 2k = (2/3). Thus both equalities

leads to a contradiction since k, k1, k2 ∈ Z+. This implies that 3(n/2) does not divide

n2 nor n2 − n.

Let n = 3(2k1) + 2 for some k1 ∈ Z+. This implies that there are 3k1 + 1 odd

entries and 3k1 + 1 even entries in row zero. Notice by propositions 34 and 35 that

in order for a m-inverse loop of order 3k + 2 to exist there must exist some choice

a ∗ b = c that generates n/2 entries in the Cayley table. Let k0 = k1(3m + 1) + m.

This implies that 0 ∗ (k0 + 1) = 2k0 + 1 or 1 ∗ [1 + (k0 + 1)] = 1 + (2k0 + 1). Now

we determine the possible ways to complete row zero. We do this by determining the

maximum amount of equalities from set A that can be used to fill row zero. Since

there are 3k1 + 1 odd entries in row zero then the maximum amount of equalities is

k1. The following table shows the number of equalities derived when 0∗b = c is taken

from set A, B and B. We designate forms 1− 2k1 to all possible combinations.

Table 4.7. Completion of row zero for order 3k + 2

Form 0 ∗ b = c ∈ A 0 ∗ b = c ∈ C 0 ∗ b = c ∈ C
1 k1 0 3k1 + 1
2 k1 1 (3k1 + 1)− 1
3 k1 − 1 3 (3k1 + 1)− 3
4 k1 − 1 4 (3k1 + 1)− 4
... ...... ....... ...........
2k−1 k1 − (k1 − 1) 3(k1 − 1) (3k1 + 1)− (3(k1 − 1))
2k1 k1 − (k1 − 1) 3(k1 − 1) + 1 (3k1 + 2)− 3(k1 − 1) + 1
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Note that the previous table only displays the forms that consist of the choices

0 ∗ b = c ∈ A. However if 1 ∗ [1 + (k0 + 1)] = 1 + (2k0 + 1) then there are 3k1 + 1 odd

and 3k1 + 1 even missing entries. Hence the final form consists of 3k1 + 1 equalities

0 ∗ b = c ∈ B. Therefore, there are 2k1 + 1 possible ways to complete row zero.

4.3.1 7-inverse quasigroups of order 20 with a long inverse cycle

In this section we apply the results from the previous section to prove the

following theorem.

Theorem 7. A 7-inverse quasigroup with a long inverse cycle of order 20 exists.

Proof. Since n = 20 = 3(6)+2 and m = 7 then we have 2k1 = 6. Therefore, there are

7 possible ways to select equalities for set A,B and C to complete row zero. Let’s use

form 2k1 from table 4.6 to complete row zero. This implies that we need one equality

0 ∗ b = c ∈ A, seven equalities 0 ∗ b = c ∈ B and three equalities 0 ∗ b = c ∈ C.

Also we need the choice a ∗ b = c that generates n/2 entries in the Cayley table.

Therefore, if we choose 0 ∗ 0 = 3 ∈ A, 0 ∗ 2 = 2 ∈ B, 0 ∗ 6 = 4 ∈ B, 0 ∗ 8 = 10 ∈ B,

0 ∗ 10 = 6 ∈ B,0 ∗ 12 = 18 ∈ B, 0 ∗ 14 = 8 ∈ B, 0 ∗ 16 = 0 ∈ B, 0 ∗ 9 = 14 ∈ C,

0 ∗ 11 = 12 ∈ C and 0 ∗ 13 = 16 ∈ C. These choices leads us to the following Cayley

table. Thus a 7-inverse quasiqroup of order 20 with a long inverse cycle exists.
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Table 4.8. 7-inverse quasigroup of order 20 with a long inverse cycle

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 3 19 2 13 1 5 4 9 10 14 6 12 18 16 8 7 0 11 17 15
1 1 10 17 11 15 9 18 13 16 4 0 2 19 12 7 8 5 14 3 6
2 19 17 5 1 4 15 3 7 6 11 12 16 8 14 0 18 10 9 2 13
3 5 8 3 12 19 13 17 11 0 15 18 6 2 4 1 14 9 10 7 16
4 4 15 1 19 7 3 6 17 5 9 8 13 14 18 10 16 2 0 12 1 1
5 9 18 7 10 5 14 1 15 19 13 2 17 0 8 4 6 3 16 11 1 2
6 14 13 6 17 3 1 9 5 8 19 7 11 10 15 16 0 12 18 4 2
7 13 14 11 0 9 12 7 16 3 17 1 15 4 19 2 10 6 8 5 18
8 6 4 16 15 8 19 5 3 11 7 10 1 9 13 12 17 18 2 14 0
9 7 0 15 16 13 2 11 14 9 18 5 19 3 17 6 1 4 12 8 10
10 16 2 8 6 18 17 10 1 7 5 13 9 12 3 11 15 14 19 0 4
11 10 12 9 2 17 18 15 4 13 16 11 0 7 1 5 19 8 3 6 14
12 2 6 18 4 10 8 0 19 12 3 9 7 15 11 14 5 13 17 16 1
13 8 16 12 14 11 4 19 0 17 6 15 18 13 2 9 3 7 1 10 5
14 18 3 4 8 0 6 12 10 2 1 14 5 11 9 17 13 16 7 15 19
15 12 7 10 18 14 16 13 6 1 2 19 8 17 0 15 4 11 5 9 3
16 17 1 0 5 6 10 2 8 14 12 4 3 16 7 13 11 19 15 18 9
17 11 5 14 9 12 0 16 18 15 8 3 4 1 10 19 2 17 6 13 7
18 0 11 19 3 2 7 8 12 4 10 16 14 6 5 18 9 15 13 1 17
19 15 9 13 7 16 11 14 2 18 0 17 10 5 6 3 12 1 4 19 8

4.4 M-inverse quasigroups of order 3k with a long inverse cycle

In this section we investigate the existence of m-inverse quasigroups with a long

inverse cycle of order 3k. The goal of this section is to determine ways to fill out

row zero when n = 3(2k1) for k1 ∈ Z+. Let’s introduce the following propositions

to assist us with the investigation of m-inverse quasigroups of order 3k with a long

inverse cycle.

Proposition 36. If n = 3k for some k ∈ Z+ then 3(n/2) does not divide [n2 − n]

nor [n2 − (n/2)].
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Proof. Assume that n2−n = [(3/2)n]k1 and n2−n/2 = [(3/2)n]k2 for some k, k1, k2 ∈

Z+. This implies that n − 1 = (3/2)k1 and n − 1/2 = (3/2)k2. Since n = 3k

then 3k = (3/2)k1 + 1 and 3k = (3/2)k2 + (1/2). Therefore 2k − k1 = 2/3 and

2k − k2 = (1/3). Thus both equalities leads to a contradiction since k, k1, k2 ∈ Z+.

This implies that 3(n/2) does not divide [(n2 − n)] nor [n2 − (n/2)].

Proposition 37. If n = 3k for some k ∈ Z+ then 3(n/2) divides n2.

Proof. Let n = 3(2k1) k1 ∈ Z+; this implies that 3(n/2) = 3(3k1) and n2 =

(3(2k1))(3(2k1)) = 3(3k1)(4k1). Therefore, 3(n/2) divides n2.

Next we assume that (Q, ∗) is a m-inverse quasigroup of order order 3(2k1)

with a long inverse cycle. Therefore, there are 3k1 even and 3k1 odd missing entries

in each row. Also we are not given any entries in the Cayley table therefore there

are n2 missing entries. Recall that the set A contains all the choices 0 ∗ b = c that

generates three odd entries in row zero. Therefore, the maximum amount of equalities

that can be used from set A is again k1. Also from propositions 36 and 37 we discover

that each choice a ∗ b = c must generate 3(n/2) entries in the Cayley table. The

following table shows the number of equalities derived where 0 ∗ b = c is taken from

set A, B and B. We designate forms 1− k1 to all possible combinations.

Table 4.9. Completion of row zero for order 3k

Form 0 ∗ b = c ∈ A 0 ∗ b = c ∈ C 0 ∗ b = c ∈ A

1 k1 0 3k1

2 k1 − 1 3 (3k1 − 3
3 k1 − 2 6 (3k1 − 6
... ....... ...........
k1 k1 − (k1 − 1) 3(k1 − 1) (3k1 − 3(k1 − 1)
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Note that the previous table displays the equalities derived where 0 ∗ b = c is

taken from set A, B and C. Since there are 3k1 odd and 3k1 even missing entries.

We also have the form that consist of 3k1 choices 0 ∗ b = c ∈ B. Therefore, there are

k1 + 1 possible ways of selecting equalities from set A,B and C.

4.4.1 3-inverse quasigroups of order 12 with a long inverse cycle

In this section we apply the results from the previous section to prove the

following theorem.

Theorem 8. A 3-inverse quasigroup with a long inverse cycle of order 12 does not

exists.

Proof. Let n = 12. This implies that the arithmetic is modulo 12; also m = 3 and

Q = {0, 1, ....11}. Let’s assume by way of contradiction that a 3-inverse quasigroup of

order 12 with a long inverse cycle exists. Therefore, we need 144 entries to complete

the Cayley table and each row is missing six odds and six even entries. Note that

if we choose 0 ∗ b = c ∈ A then the choice 0 ∗ b = c generates one of the following

sets of entries in row zero: {1, 3, 9}, {1, 5, 7} or {5, 9, 11}. Also note that if the choice

0∗b = c generates the entries {1, 3, 9} or {1, 5, 7} in row zero then b = 0. If the choice

1 ∗ h = k where h is odd, generates three entries in row one then the choice 1 ∗ h = k

generates the entries {2, 4, 10}, {2, 6, 8 } or {0, 6, 10} in row one. Note that if the

choice 1 ∗ h = k generates the entries {2, 4, 10} or {2, 6, 8} in row one then h = 1.

Recapping, n = 3(4) where k1 = 2. This implies there are 3 forms that can

be used to fill row zero. Let’s consider the first form which consist of two choices

0 ∗ b = c ∈ A and six choices 0 ∗ b = c ∈ C. However this form will not lead to

the construction of a Cayley table since the choices 0 ∗ b = c ∈ A generates 1, 3, 9 or
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5, 9, 11. Since these sets are not disjoint it is impossible to have two choices from set

A. Next Let’s consider form k1 + 1 which consist of six choices 0 ∗ b = c ∈ C. Recall

that each choice 0 ∗ b = c ∈ B generates 3(n/2) = 18 entries in the Cayley table and

one odd entry in row one. This implies that by filling row zero we obtain 108 of 144

missing entries for the Cayley table where 6 of the 108 entries are odd entries in row

one. Therefore, there are 36 even entries missing in the Cayley table 6 of which are

missing for row one. Recall that each choice a ∗ b = c generates 18 entries in the

Cayley table. This implies that in order to complete the Cayley table we need two

choices 1 ∗ h = k the generates three even entries respectively in row one. Note that

h is odd since we have established that after row zero is filled all the even columns

are also filled. However if the choice 1 ∗ h = k generates 18 entries in the Cayley

table where h is odd then 1 ∗ h = k generates the entries 2, 4, 10, 2, 6, 8 or 0, 6, 10 in

row one. Notice that these sets are not disjoint. Therefore, it is impossible to have

two equalities 1 ∗ h = k that generates 3 entries in row one after row zero is filled.

Let’s consider form 2 which consists of one equality 0 ∗ b = c ∈ C, three equalities

0 ∗ b = c ∈ B and three equalities 0 ∗ b = c ∈ C. This implies that after row zero

is filled we obtain 126 of 144 missing entries for the Cayley table. Now each choice

0 ∗ b = c ∈ B generates one odd entry in row one. The choice 0 ∗ b = c ∈ C generates

one odd entry and one even entry in row one. Therefore 9 of 126 entries are inputted

in row one where 6 are odd and 3 are even. Thus, we need three odd entries to fill

row one. This leads us to the following 9 cases to determine if form 2 leads to the

construction of a Cayley table.

1. Let the choice 0 ∗ b = c ∈ A generate the entries 1, 3, 9 in row zero and the

choice 1 ∗ x = y generate the entries 2, 4, 10 in row one. Note x is odd and y is even.
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2. Let the choice 0 ∗ b = c ∈ A generate the entries 1, 3, 9 in row zero and the

choice 1 ∗ x = y generate the entries 2, 6, 8 in row one.

3. Let the choice 0 ∗ b = c ∈ A generate the entries 1, 3, 9 in row zero and the

choice 1∗x = y generate the entries 0, 6, 10 in row one. 4. Let the choice 0∗b = c ∈ A

generate the entries 1, 5, 7 in row zero and the choice 1 ∗ x = y generate the entries

2, 4, 10 in row one.

5. Let the choice 0 ∗ b = c ∈ A generate the entries 1, 5, 7 in row zero and the

choice 1 ∗ x = y generate the entries 2, 6, 8 in row one.

6. Let the choice 0 ∗ b = c ∈ A generate the entries 1, 5, 7 in row zero and the

choice 1 ∗ x = y generate the entries 0, 6, 10 in row one.

7. Let the choice 0 ∗ b = c ∈ A generate the entries 5, 9, 11 in row zero and the

choice 1 ∗ x = y generate the entries 2, 4, 10 in row one.

8. Let the choice 0 ∗ b = c ∈ A generate the entries 5, 9, 11 in row zero and the

choice 1 ∗ x = y generate the entries 2, 6, 8 in row one.

9.Let the choice 0 ∗ b = c ∈ A generate the entries 5, 9, 11 in row zero and the

choice 1 ∗ x = y generate the entries 0, 6, 10 in row one.

We only show case 1 since all other cases are handled similarly and lead to the

same conclusion.

Assume 0 ∗ b = c ∈ A generates the entries 1, 3, 9 in row zero and 1 ∗ x = y

generates the entries 2, 4, 10 in row one. This implies that the choice 0 ∗ b = c ∈ B

must generate the entry 5, 7 or 11 in row zero. The choice 0∗b = c ∈ C must generate

the entry 0, 6 or 8 in row one. Next we determine the value to which b is congruent
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to when the choice 0 ∗ b = c generates the entry 5, 7 or 11 in row zero. Consider the

following table:

Table 4.10. Iteration 4.10

[a + j(3m + 1)] ∗ [b + j(3m + 1)] = [c + j(3m + 1)]
[c + j(3m + 1) + m] ∗ [a + j(3m + 1) + (m + 1]) = [b + j(3m + 1) + m]
[b + j(3m + 1) + 2m] ∗ [c + j(3m + 1) + (2m + 1)] = [a + j(3m + 1) + (2m + 1)]

First we determine to which value b is congruent to when the choice 0∗b = c ∈ B

generates the entry 5 in row zero. Now in order to generate the entry 5 in row zero

we must have [b + j(3m + 1) + 2m] ≡ 0 and [a + j(3m + 1) + (2m + 1) ≡ 5. Since

m = 3 and a = 0 then b + 10j + 6 ≡ 0 and 10j + 7 ≡ 5. Therefore b + 4 ≡ 0.

Thus b ≡ 8. We then determine to which value b is congruent to when the choice

0 ∗ b = c ∈ B generates the entry 7 in row zero. This implies b + 10j + 6 ≡ 0 and

10j + 7 ≡ 7. Therefore b + 6 ≡ 0. Thus b ≡ 6. Lastly we determine to which value

b is congruent to when the choice 0 ∗ b = c ∈ B generates the entry 11 in row zero.

This implies b + 10j + 6 ≡ 0 and 10j + 7 ≡ 11. Therefore b + 10 ≡ 0. Thus b ≡ 2.

Now from the previous statements the choice 0 ∗ 8 = c generates the entry 5 in row

zero since 0 ∗ c + 5 = 5. The choice 0 ∗ 6 = c1 generates the entry 7 in row zero since

0 ∗ c1 + 7 = 7. And the choice 0 ∗ 2 = c2 generates the entry 11 in row zero since

0 ∗ c2 + 11 = 11.

Now we determine to which value c is congruent to when the 0 ∗ b = c ∈ C

generates the entry 0, 6, or 8 in row one. First we determine to which value c is

congruent to when the choice 0 ∗ b = c ∈ C generates the entry 0 in row one. This

implies that c + 10j + 3 ≡ 1 and b + 10j + 3 ≡ 0. Therefore, c ≡ b + 1. Next we
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determine to which value c is congruent to when the choice 0∗b = c ∈ C generates the

entry 6 in row one. This implies that c + 10j + 3 ≡ 1 and b + 10j + 3 ≡ 6. Therefore,

c ≡ b + 7. Finally we determine to which value c is congruent to when the choice

0 ∗ b = c ∈ C generates the entry 8 in row one. This implies that c + 10j + 3 ≡ 1 and

b + 10j + 3 ≡ 8. Therefore, c ≡ b + 5. Thus the choice 0 ∗ c3 = c3 + 1 generates the

entry 0 in row one, the choice 0 ∗ c4 = c4 + 7 generates the entry 6 in row one, and

the choice 0 ∗ c5 = c5 + 5 generates the entry 8 in row one. Therefore if (Q, ∗) is a

3-inverse quasigroup of order 12 such that the choice 0 ∗ b = c generates the entries

1, 3, 9 in row zero and the choice 1 ∗ x = y generates the entry 0, 6 or 8 in row one

then the following set of equalities must hold.

Table 4.11. Iteration 4.11

0 ∗ 8 = c
0 ∗ c + 5 = 5
0 ∗ 6 = c1

0 ∗ c1 + 7 = 7
0 ∗ 2 = c2

0 ∗ c2 + 11 = 11
0 ∗ c3 = c3 + 1
0 ∗ c4 = c4 + 7
0 ∗ c5 = c5 + 5

Note that the proof for any applicable value of c where 0 ∗ 8 = c is similar to

the proof that will be given below. Therefore we will only show the case when c = 2.

The goal of this proof is to determine if the previous equalities hold can we construct

a Cayley table associated with Q. Recall that 0 ∗ 8 = c, 0 ∗ 6 = c1, and 0 ∗ 2 = c2

are from set B and 0 ∗ c3 = c3 + 1, 0 ∗ c4 = c4 + 7, 0 ∗ c5 = c5 + 5 are from set C.
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Therefore, c, c1, c2, c3 + 1, c4 + 7, and c5 + 5 are even and ci are odd for i = 3, 4, 5.

Now the table below displays the possible choices for an entry in the Cayley table .

For example since 0 ∗ 8 = c then the table shows that 0 ∗ 8 = c = 0, 2, 4, 6, 8 or 10.

Table 4.12. Equalities 4.12

c = 0 2 4 6 8 10
c1 = 0 2 4 6 8 10
c2 = 0 2 4 6 8 10
c3 + 1 = 0 2 4 6 8 10
c4 + 7 = 0 2 4 6 8 10
c5 + 5 = 0 2 4 6 8 10

Let c = 2; this implies that 0 ∗ 8 = 2 and 0 ∗ 7 = 5. Recall that c, c1,c2,c3 + 1,

c4 + 5, and c5 + 7 are even and ci are odd for i = 3, 4, 5. Therefore, c1, c2, c3 + 1,

c4 +5, c5 +5 cannot equal 2; and ci 6≡ 7 for i = 3, 4, 5. Thus c1 6≡ 0, c2 6≡ 8, c3 +1 6≡ 8,

c4 + 7 6≡ 2 and c5 + 5 6≡ 0. Moreover 6 − c1 6≡ and 2 − c2 6≡ 8 − 2 since 0 ∗ 8 = c,

0 ∗ 6 = c1, and 0 ∗ 2 = c2 are from set B. Therefore, the remaining choices for c2,

c3 + 1, c4 + 5, and c5 + 7 are listed below.

Table 4.13. Equalities 4.13

c1 = 4 6 8 10
c2 = 0 4 6 10
c3 + 1 = 0 4 6 10
c4 + 7 = 0 6 8 10
c5 + 5 = 4 6 8 10
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Notice from the previous table if 0 ∗ 8 = 2 then 0 ∗ 6 = 4, 0 ∗ 6 = 6, 0 ∗ 6 = 8

and 0 ∗ 6 = 10.

Case 1a

Let 0 ∗ 6 = 4; this implies that 0 ∗ 11 = 7. Therefore c2, c3 + 1,c4 + 7 and c5 + 5

cannot equal to 4. Also ci cannot be congruent to 11 for i = 3, 4, 5 and 2 − c2 6≡ 2.

Therefore, the remaining choices for c2, c3 + 1, c4 + 5, and c5 + 7 are as listed below.

Table 4.14. Equalities 4.14

c2 = 6 10
c3 + 1 = 6 10
c4 + 7 = 0 8 10
c5 + 5 = 6 8 10

Observe that if 0 ∗ 8 = 2 and 0 ∗ 6 = 4 then c2 = 6 or c2 = 10. Let c2 = 6. This

implies that 0 ∗ 5 = 11 and 0 ∗ 5 = 7. However if 0 ∗ 5 = 7 then 0 ∗ 5 6= 7. Let c6 = 10.

This implies that 0 ∗ 5 = 6 and 0 ∗ 5 = 0. However if 0 ∗ 5 = 6 then 0 ∗ 5 6= 0. Thus

0 ∗ 6 6= 4.

Case 1b

Next let c1 = 6; this implies that 0 ∗ 6 = 6 and 0 ∗ 1 = 7. Therefore we obtain

the following table.
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Table 4.15. Equalities 4.15

c2 = 0 4 10
c3 + 1 = 0 4 10
c4 + 7 = 0 10
c5 + 5 = 4 8 10

The choices for c4 + 7 = 0 or c4 + 7 = 10. Let c4 + 7 = 0. This implies 0 ∗ 2 = 4

or 0 ∗ 2 = 10. Let 0 ∗ 2 = 4. This implies that 0 ∗ 3 = 11, and 0 ∗ 3 = 8. If 0 ∗ 3 = 11

then 0 ∗ 3 6= 8. Therefore 0 ∗ 2 6= 4. Let 0 ∗ 2 = 10. This implies that 0 ∗ 3 = 4 and

0 ∗ 3 = 8. If 0 ∗ 3 = 8 then 0 ∗ 3 6= 4. Therefore 0 ∗ 2 6= 10. Thus we conclude that

c4 + 7 6= 0. Let c4 + 7 = 10. This implies 0 ∗ 2 = 4 or 0 ∗ 2 = 0. Let 0 ∗ 2 = 4. This

implies that 0 ∗ 3 = 11 and 0 ∗ 3 = 10. If 0 ∗ 3 = 10 then 0 ∗ 3 6= 11 . Therefore

0 ∗ 2 6= 4. Let 0 ∗ 2 = 0. This implies that 0 ∗ 3 = 10 and 0 ∗ 3 = 4. If 0 ∗ 3 = 4 then

0 ∗ 3 6= 10 . Therefore 0 ∗ 2 6= 0. Thus we conclude that 0 ∗ 6 6= 6.

Case 1c

Next let c1 = 8. This implies that 0 ∗ 6 = 8 and 0 ∗ 3 = 7. Therefore we obtain

the following table.

Table 4.16. Equalities 4.16

c2 = 0 6 10
c3 + 1 = 0 6 10
c4 + 7 = 0 6
c5 + 5 = 4 6 10
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Notice that the choices for c4 + 7 are 0 and 6. Let c4 + 7 = 0. This implies that

0 ∗ 2 = 6 or 0 ∗ 2 = 10. Let 0 ∗ 2 = 6. This implies that 0 ∗ 5 = 0 and 0 ∗ 5 = 11

which is a contradiction. Therefore 0 ∗ 2 6= 6. If 0 ∗ 2 = 10 then we get 0 ∗ 5 = 0 and

0 ∗ 5 = 6 which is again a contradiction. Therefore 0 ∗ 2 6= 10. Thus we conclude that

c4 + 7 6= 0. Let c4 + 7 = 6. This implies that 0 ∗ 2 = 0 or 0 ∗ 2 = 10. Let 0 ∗ 2 = 0.

This leads to the contradictory statements 0 ∗ 11 = 11 and 0 ∗ 11 = 6. Therefore

0∗2 6= 0. Let 0∗2 = 10. the choice again leads to contradictory statements 0∗11 = 6

and 0 ∗ 11 = 0. Therefore 0 ∗ 2 6= 10. Thus we conclude that c4 + 7 6= 6. Hence both

choices for c4 + 7 leads to a contradiction. Therefore 0 ∗ 6 6= 8.

Case 1d

Next let c1 = 10; this implies that 0∗6 = 10 and 0∗5 = 7. Therefore we obtain

the following table.

Table 4.17. Equalities 4.17

c2 = 0 4
c3 + 1 = 0 4
c4 + 7 = 6 8
c5 + 5 = 4 6 8

Notice the choices for c2 are 0 and 4. Let c2 = 0. This implies that 0 ∗ 2 = 0.

Therefore 0 ∗ 11 = 11, 0 ∗ 3 = 4 and c4 + 7 = 6 or c4 + 7 = 8 . Let c4 + 7 = 6.

This implies that 0 ∗ 11 = 6. If 0 ∗ 11 = 6 and 0 ∗ 11 6= 11. Thus c4 + 7 6= 6. Let

c4 +7 = 8. This implies that 0∗11 = 6. If 0∗11 = 6 then 0∗11 6= 11. Thus c4 +7 6= 8.

Therefore, we conclude that c2 6= 0. Let c2 = 4 This implies that 0 ∗ 2 = 4. Therefore

0 ∗ 3 = 11, 0 ∗ 11 = 0 and c4 + 7 = 6 or c4 + 7 = 8 . Let c4 + 7 = 6. This implies that
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0 ∗ 11 = 6. However 0 ∗ 11 6= 0 if 0 ∗ 11 = 6. Thus c4 + 7 6= 6. Let c4 + 7 = 8. This

implies that 0 ∗ 11 = 6. If 0 ∗ 11 = 6 then 0 ∗ 11 6= 0 . Thus c4 + 7 6= 8. Therefore,

we conclude that c2 6= 4. Furthermore 0 ∗ 6 6= 10. In conclusion, since 0 ∗ 6 6= 4,

0 ∗ 6 6= 6, 0 ∗ 6 6= 8 or 0 ∗ 6 6= 10. This implies that 0 ∗ 8 6= 2. Since the proof for

each case and any applicable choice for 0 ∗ 8 = c lead to a contradiction we conclude

that a 3-inverse quasigroup of order 12 with a long inverse cycle does not exist when

(n/2)(3m + 1) ≡ 0.
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CHAPTER 5

Conclusion

5.1 Conclusion

Finite inverse loops and quasigroups with long inverse cycles have applications

in cryptography as shown by Keedwell.[3] The existence of such structures for some

specific orders has been studied extensively by Keedwell[3] and Scherbacov.[5] With

our research we continued the investigation of the possible orders for which such

structures exist.

In Chapter 2 we started our study by looking at order 9 loops with a long inverse

cycle, as well as the quasigroups of order 8 with a long inverse cycle. More specifically

we studied the existence of the following algebraic structures: (i) 3 and 7- inverse

loops with a long inverse cycle of order 9, and (ii) 3 and 7 inverse quasigroups with a

long inverse cycle of order 8. We approached our investigation of such structures by

looking at which products 0 ∗ b = c would lead to the construction of a Cayley table.

After providing the basic definition of m-inverse loops and quasigroups we proved the

following.

Theorem 1. A 3 or 7- inverse loop with a long inverse cycle does not exist.

Theorem 2. A 3 or 7- inverse quasigroup with a long inverse cycle does not

exist.

In Chapters 3 and 4 we generalized the work from Chapter 2 to order 3k, 3k +1

and 3k + 2. More specifically in Chapter 3 we studied the existence of m-inverse

loops with a long inverse cycle of order 3k and 3k + 2. Notice the existence for order
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3k + 1 was studied by Keedwell in.[1] We showed the different ways to fill out row

zero for each particular order and after this information was provided we proved the

following:

Theorem 3. A 1-inverse loop with a long inverse cycle of order 11 does not

exist.

Theorem 4. A 1-inverse loop with a long inverse cycle of order 15 does not

exist.

In chapter 4 we studied the existence of m-inverse quasigroups with a long

inverse cycle of order 3k, 3k + 1 and 3k + 2. We again showed the different ways to

fill out row zero for each particular order and after this information was provided we

proved the following:

Theorem 5. A 3-inverse quasigroup with a long inverse cycle of order 16 exists.

Theorem 6. A 7-inverse quasigroup with a long inverse cycle of order 20 exists.

Theorem 7. A 3-inverse quasigroup with a long inverse cycle of order 12 does

not exist.

Notice that our work, together with previous work of Keedwell, completely

answers the question of the existence of finite m-inverse loops and quasigroups with

a long inverse cycle for all orders.
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