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Abstract 

 
A  LIDAR-BASED AUTO HYDRO BREAKLINE GENERATION ALGORITHM FOR 

STANDING WATER BODIES   

 

George John Toscano, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Venkat Devarajan  

Airborne light detection and ranging (LiDAR) is a sensor that can generate terrain 

elevation and intensity data of very large areas with high precision and dense resolution. 

The intensity and elevation are co-registered, which eliminates the need for tedious 

registration after the fact. This combined LiDAR data can be used to classify different 

topographic features. Given the enormous amount of such data generated all over the 

world, total automation in these classification processes in a batch process is highly 

desired if not a critical need.  

In this dissertation, a novel LiDAR-based automated standing waterbody 

extraction (LASWE) algorithm is presented. The special characteristics of water bodies 

that helped with the development of the LASWE are: a) the essentially flat surface of 

water bodies and b) the surface elevation of water bodies is lower than that of its 

surrounding areas. In addition, the special characteristics of LiDAR intensity return from 

the water surface, which helped with the ideation of the LASWE algorithm are:  a) the 

specular reflection from smooth water surface and b) the spectral reflectance of water is 

low compared with vegetation and other topographic features. 

The LASWE algorithm employs a novel histogram analysis method for 

segmentation of flat areas and then an SVM classifier to eliminate false detections. An 
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intensity-based classifier was also used to remove other false detections that were not 

eliminated by the SVM classifier. An iterative pixel-based maximum likelihood 

classification (MLC) technique was employed to fine-tune water surface detection at the 

land edge of water bodies. Three LiDAR datasets from different geographical locations 

were split into training and testing sets for validating our LASWE algorithm. The 

classification accuracy of the algorithm was measured by calculating the overall accuracy 

and the standard Cohen’s kappa coefficient. The LASWE algorithm was found to give 

classification accuracy greater than 97.92%. 

Speed of computation is of essence in all classification problems. The 

multiresolution LASWE (MLASWE) algorithm presented in this dissertation is an 

upgraded version of the LASWE, which was designed to detect water surface 

significantly faster than the LASWE algorithm without compromising the classification 

accuracy. The MLASWE algorithm detects water surface with a coarse resolution first 

and then with an intermediate resolution and finally, with a fine resolution in addition to 

using efficient buffering techniques. 

In summary, the MLASWE algorithm presented in this dissertation is a robust, 

raster-based method that detects water surfaces at high speed, in a fully automated 

mode and with high accuracy. 
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Chapter 1  

Introduction 

1.1 Background 

Light detection and ranging (LiDAR) technology is widely used for mapping earth 

surface with high precision and accuracy. A LiDAR system can be broadly categorized as 

an airborne or a terrestrial system. Terrestrial LiDAR gives higher resolution and 

accuracy, whereas an airborne LiDAR can cover a large area in a very short time. The 

essential components of an airborne LiDAR system is  

a) an aircraft 

b) a laser scanning emitter and receiver unit  

c) a differential global positioning system (DGPS) 

d) an inertia measurement unit (IMU) and  

e) a computer.  

Current LiDAR systems can collect samples from the earth’s surface at rates 

greater than 150 kHz (Schmid et al., 2008).  

The main advantage of airborne LiDAR over other mapping technologies is its 

higher accuracy, denser resolution and its ability to map the earth below the vegetation. 

The other advantage is that LiDAR may be the only mapping option in many geographical 

locations where field surveying is not possible due to low accessibility. Because of LiDAR 

technology, a very accurate digital elevation model (DEM), a digital terrain model (DTM), 

a triangulated irregular network (TIN) etc. can be obtained. 

Surface water mapping is important for accurate characterization of topography 

for geomorphological research (French, 2003), for efficient flood management (Hollaus et 

al., 2005) and for surveying geomorphological change of floodplains (Jones et al., 2007). 
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Surface water mapping is also important to understand wetland dynamics (Jenkins and 

Frazier, 2010) and estimate water storage capacity in isolated wetlands (Lane and 

D’Amico, 2010). It is difficult to study forested wetland hydrology, since conventional 

remote sensing methods such as aerial photographs and multispectral images fail to see 

through vegetation (Lang and McCarty, 2008). LiDAR data can penetrate vegetation and 

can be used to detect inundation under forest canopy. Thus, LiDAR technology opens a 

new window for research in the field of geoscience and hydrology. 

A LiDAR system records the intensity of the returned pulse from the object it 

maps. LiDAR intensity return represents the strength of reflection from the object at the 

wavelength of light used by the LiDAR system. Most of the topographic LiDAR systems 

use light in the near infra-red part of the spectrum, whereas bathymetric LiDAR systems 

use light in near infra-red and green spectrum. LiDAR elevation and intensity data are 

used to classify different topographic features such as water, vegetation, forests, soil 

saturation, roads, grass and roofs (Antonarakis et al., 2008; Brennan and Webster, 2006; 

Charaniya et al., 2004). Automation in these classification processes is highly desired 

and, is therefore a key area of interest in both commercial arena as well as in academia 

(Flood, M., 2001).  

 

1.2 Motivation for current research 

Classification in remote sensing can be broadly categorized as classification in 

urban areas and classification in rural areas. Classification in urban areas includes 

rooftops, roads and other man-made structures. Classification in rural areas includes 

water bodies, different types of forests, gravel, bare earth, wetlands etc. 

In rural areas, hydro breaklines are necessary to create LiDAR derivative 

products such as DEM, DTM, TIN etc. Water body detection and delineation are in turn 
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necessary to generate hydro breaklines. Hydro-flattening follows the detection and 

delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.). Manual hydro 

breakline generation is time consuming and expensive, especially when there are a large 

number of lakes, rivers and their tributaries and, a large number of vertices are marked 

for delineation of water bodies. Therefore, automation with minimal human intervention is 

desired for this operation. In this dissertation, an algorithm is proposed to automatically 

detect standing water bodies using both LiDAR elevation and intensity data. 

 
 

1.3 Specific Problem Statement 

The LiDAR-based automated standing waterbody extraction (LASWE) algorithm 

and the Multiresolution LASWE (MLASWE) algorithm, presented in this dissertation, were 

developed with an aim to hydro-flatten standing water bodies (SWB) such as ponds, 

lakes, reservoirs in a rural environment. The algorithms specifically exclude rivers and 

streams. Hydro-flattening of an SWB requires its detection and, delineation with hydro 

breaklines and, then the assignment of a constant elevation to it.  

The training and testing dataset should be large enough in order to validate a 

robust LASWE algorithm applicable in different conditions.  

The LASWE algorithm needs to run fast because it was developed to detect 

SWBs in large areas. The time required to detect water bodies per unit area should be 

within a limit, though no real time output is required.   

The US Geological Survey (USGS) specifies that the minimum water body size 

to be detected should be 2 acres (Heidemann, 2012). However, our goal was to detect 

water bodies greater than half acre in size.  
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Chapter 2  

Literature Review 

2.1 Introduction 

Classification in rural environments is an important and active research area in 

remote sensing. Land-use features comprise an important set within rural features. 

Multispectral imagery has been used by many researchers for land use classification 

(Duda et. al. 1999; Sun et al., 2003, Huang et al. 2002). However, in the last decade 

much work has been accomplished on land cover classification including water bodies 

using LiDAR data (Antonarakis et. al, 2008; Brennan and Webster, 2006, Charaniya et 

al., 2004). Gesch, D.B., (2009) and Brzank et al., (2008) used LiDAR data to detect and 

delineate water in coastal areas. Höfle et al., (2009) and Briese et al., (2009) used LiDAR 

data for water surface classification in rivers. Lang and McCarty, (2009); Lane and 

D’Amico, (2010) classified water surfaces in wetland areas. All these papers related to 

water surface classification are discussed in the following section. 

 

2.2 Previous work 

Antonarakis et al. (2008) classified river water, gravel, short vegetation and five 

types of forest quickly and efficiently using LiDAR elevation and intensity data without the 

need for multispectral imagery. LiDAR elevation data was used as a spatial and spectral 

segmentation tool. A vegetation height model (VHM) and an intensity model were used 

for the classification. The VHM was derived by calculating the difference between a 

terrain model and the original point cloud surface model. The overall accuracy for water 

pixel (5m resolution) classification was found to be 99.19%, 98.72% and 95.20% for three 

different areas. It is to be noted that the result was not LiDAR point classification, rather 
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pixel classification. There could be multiple returns from one pixel and many pixels might 

have returns both from land and water. If LiDAR points were classified, the overall 

accuracy would be lower. In conclusion, due to the dissimilarity between pixel 

classification and our LiDAR point based classification, a direct comparison was not 

possible with our results. 

Brzank et al. (2008) classified water and extracted structure lines in the Wadden 

sea area in Netherlands. A new supervised fuzzy logic classification was used to 

segment water from land. The height, intensity and 2D point cloud density were the three 

features used for classification. They hypothesized that water points have lower 

elevation, lower intensity and lower 2D point density. Since intensity and 2D point density 

are influenced systematically by the angle of incidence, adjusted membership functions 

were used for those features. The weights of individual features were calculated by 

calculating the level of significance by the two-sided student’s t-test. A threshold was 

calculated by finding the intersecting point between the normalized Gaussian distribution 

of both classes derived from the entire membership values of all points inside a training 

area to classify points into water and mudflat. Overall classification accuracy was 

recalculated by us and found to be 94.51% and 99.08% for two areas from the 

classification results. This enabled a comparison of our result with theirs to a limited 

extent on a common basis, although it must be mentioned that they didn’t solve quite the 

same problem as ours. 

Smeeckaert et al. (2013) classified water areas in both coastal and inland areas 

using a supervised support vector machine (SVM) classifier using features based on the 

height, the local point density and the local shape of 3D point neighborhood. Pixel wise 

misclassifications were removed by using contextual knowledge using probabilistic 

relaxation. However, probabilistic relaxation might have the negative impact of 



 

6 

exacerbating misclassification, dilating local reliability and removing very thin objects. 

This method resulted in classification accuracy from 88.41% to 98.85% for seven areas. 

Höfle et al. (2009) classified water surfaces in a regulated river and in a pro-

glacial braided river. Two important pre-processing steps were taken before segmenting 

and classifying water surfaces. Radiometric correction of LiDAR intensity data was 

performed based on the radar range equation, which accounts for spherical loss and 

atmospheric loss. Laser shot dropout modeling was also performed using pulse repetition 

frequency. Laser shot dropout occurs from water surface more than from other landscape 

features, due to non-Lambertian scattering behavior of water. The LiDAR point cloud was 

segmented by a seeded region growing algorithm using local area surface roughness, 

intensity density and intensity variation as parameters. A point cloud classification 

accuracy of 97% was obtained by them. Once again, their problem was extraction of 

rivers and not SWB. 

Lang and McCarty (2008) classified inundated and non-inundated areas in 

forested wetlands using only LiDAR intensity data. Enhanced Lee filtering was used to 

remove noise and increase the signal to noise ratio. They found 97.6% of the inundated 

area was classified accurately using filtered LiDAR intensity data. 

Brennan and Webster (2006) used both LiDAR elevation and intensity data to 

classify land cover including water surface in an object-oriented approach. Their study 

area consists of urban, mixed forest and wetland-estuary coastal environment. From 

LiDAR points DSM, DEM, intensity, multiple echo and normalized height surfaces were 

derived, segmented and classified using object rule based classification. The average 

accuracy of 10 classes was found to be 94%. It must be mentioned that in contrast to this 

paper, our objective was to classify a single feature, viz. SWB and accomplish that 
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objective using automation. Further our objective was also to use the raw point cloud with 

no manual preprocessing steps. 

Rutzinger et al. (2012) investigated the quality of breaklines derived from DTM 

generated using LiDAR data. The upper and lower edges were extracted independently 

from the region of interest with high variability in elevation by a strategy based on 

curvature calculation. The detection result was compared with manually digitized 

breaklines. 

Liu et al., (2009) used LiDAR intensity data integrated with a corresponding 

orthoimage for coastal zone mapping. A historical bluffline was used as a reference. 2D 

blufflines were made from an orthoimage and 3D blufflines ware made from the 

corresponding LiDAR data.  

 

2.3 Relevance of previous work to the dissertation 

In recent times, LiDAR data has been used to detect and delineate water bodies 

with very good accuracy. Lang and McCarty (2009) used only LiDAR intensity data to 

detect inundation in forested wetlands, whereas Rutzinger et al. (2012) used only LiDAR 

elevation data to create breaklines in glacial fluvial. Lang and McCarty (2009) showed 

that LiDAR intensity data gives a better classification result in forested area than digital 

optical imagery. Antonarakis et al. (2008) and Brennan and Webster (2006) used both 

LiDAR elevation and intensity data for land cover classification which also includes water 

surfaces. Brzank et al. (2008), Smeeckaert et al. (2013) and Höfle et al. (2009) also 

classified water using both LiDAR elevation and intensity data. Brzank et al. (2008) 

classified water in coastal areas using Fuzzy logic, where higher elevation was attributed 

to lower probability of the existence of a water body. In this dissertation, only in-land 

water bodies were detected and in-land water bodies do not necessarily have the lowest 
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elevation. Smeeckaert et al. (2013) classified water using a pixel based technique. 

However, Blaschke, (2010) pointed out that object based image analysis (OBIA) methods 

were showing considerable progress in information extraction in the remote sensing field. 
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Chapter 3  

LASWE Algorithm Ideation 

3.1 Introduction 

The LiDAR-based automated standing waterbody extraction (LASWE) algorithm 

is proposed in this dissertation for detection and delineation of standing water bodies 

(SWB) using LiDAR elevation and intensity data. The special characteristics of water 

bodies which were used for the ideation of the LASWE are:  

a) the surface elevation of a SWB is essentially flat 

b) its elevation is lower than that of the surrounding area 

c) the infra-red spectral reflectance of water is significantly lower than that of 

vegetation and other topographic features  

d) smooth water surface causes significant specular return 

The hypotheses presented in this dissertation for the LASWE algorithm are: 

If an elevation histogram is plotted for a particular area containing a water body, 

there should be a sharp peak in the histogram because of the presence of a flat water 

surface. The location of the peak in the histogram represents the elevation of that water 

surface. The water body can be detected by detecting all the pixels that have elevations 

close to the peak. Some of the false detections which are caused by flat areas but not 

water bodies can be removed by comparing the elevation of those flat areas with their 

surrounding areas. The rest of the false detections can be removed by comparing the 

LiDAR intensity returns of those flat areas with their surrounding areas.  

For the ideation of the LASWE algorithm, a knowledge of the characteristics of 

LiDAR intensity return is required. The characteristics of LiDAR intensity data is 

discussed in the following section. 
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3.2 Characteristics of LiDAR intensity returns  

An airborne LiDAR system (ALS) is an active remote sensing technique which 

not only gives the elevation information but also the reflectance characteristics of the 

earth’s surface in laser wavelength range. Typically, a topographic ALS system uses 

wavelength in near infra-red range between 800 nm to 1550 nm (Höfle and Pfeifer, 

2007). Commercial LiDAR systems were able to record multiple returns (3-5) per pulse 

by the year 2000. Early multiple returns ALS were designed to record up to 5 returns per 

pulse. However, the 4th and the 5th returns occurred very rarely. Therefore, most of the 

LiDAR systems designed recently for topographic mapping are optimized to record 3 

returns per pulse (Jensen, 2007). A LiDAR point cloud for an area in Indianapolis, Indiana 

is shown in figure 3-1, where the LiDAR data collection point density was 1.56 pts /m2. 

Figure 3-1(a) shows the point cloud, where the points are colored based on elevation 

and, figure 3-1(b) shows the strength of the laser return pulses.   

 
 

 
 

(a)                                                           (b) 
 

Figure 3-1 LiDAR point cloud (a) elevation and (b) intensity 

 



 

11 

A LiDAR system operates on the same principle as microwave radar but at a 

shorter wavelength. So the radar range equation (equation 3.1) is also valid for LiDAR 

(Jelalian, 1992). 

 

                                           𝑃𝑃𝑟𝑟 =  𝑃𝑃𝑡𝑡𝐷𝐷𝑅𝑅
2

4𝜋𝜋𝑅𝑅4𝛾𝛾2
𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎𝜎𝜎                                       (3.1)      

                                                                          

where:  Pr is the received power 

 Pt is the transmitted power 

 DR is the receiver aperture diameter 

 R is the range from sensor to target 

  𝛾𝛾 is the laser beam width 

 ηsys is the system transmission factor 

 ηatm is the atmospheric transmission factor 

σ is the backscatter cross section 

The laser beam illuminates a circular or elliptical area when it reaches the ground 

or the object on the ground. This area is called laser footprint. At a typical flying height of 

1000 m, the laser footprint is about 30 and 50 cm for a beam divergence of 0.3 and 0.5 

mrad, respectively (Petrie et al., 2008). The dependency of the size of laser footprint to 

the flying height and the beam divergence is shown in figure 3-2. 

The backscatter cross section in equation 3.1 is directly proportional to laser 

footprint and the reflectance ρ of the object. Equation 3.1 can be simplified to equation 

3.2 under the following three assumptions (Jelalian, 1992):  

a) The entire footprint is reflected on one surface and the target area is circular  

b) The target has a solid angle of π steradians 

c) The surface has Lambertian scattering characteristics 
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Figure 3-2 Relation of laser footprint with flying height and beam divergence 

 

                                              𝑃𝑃𝑟𝑟 =  𝑃𝑃𝑡𝑡𝐷𝐷𝑅𝑅
2𝜌𝜌

4𝑅𝑅2
𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖                                       (3.2) 

                                                                

where αi is the incident angle.  

System parameters Pt, DR and ηsys can be assumed to be a constant within a 

flight. Therefore, equation 3.2 is further simplified to equation 3.3. 

 

                                       𝑃𝑃𝑟𝑟 =  𝜌𝜌
4𝑅𝑅2

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖𝐶𝐶                                             (3.3) 
                                                                            

Three variables in equation 3.3 are the reflectance ρ of the target, the range R and the 

incident angle αi. Most of the topographic LiDAR systems operate in near infra-red 

spectrum. In the infra-red spectrum, the absorption of radiation by water bodies is higher 

than that of soil and vegetation (Wolfe and Zissis, 1989). So the LiDAR intensity return 

from the water surface is significantly lower than that of the land surface. The penetration 

depth of infra-red laser is also very low in water because of its strong attenuation 

coefficient (Campbell, 2002).  
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There are two types of reflections. They are specular or mirror-like reflection and 

diffuse reflection as shown in figure 3-3. Specular reflection occurs from glass, water or  

 
(a)                                  (b)  

Figure 3-3 Basic reflection types (a) specular reflection and (b) diffuse reflection 

 

smooth wet surface, whereas diffuse reflection (Lambertian reflection) occurs from rough 

surfaces. Most of the natural surfaces are rough. Light from all points on the surface 

reaches the viewer in case of diffuse reflection. Reflection off rough surfaces such as 

clothing, paper, wood etc. leads to diffuse reflection, whereas reflection off smooth 

surfaces such as a mirror or a calm body of water leads to specular reflection. If specular 

reflection occurs in the nadir regions of a flight line, where the angle of deflection αd is 

close to zero and, if the surface of object is horizontal (angle of incidence αi = αd for 

horizontal surface), relatively very high value signal power will reach the receiver (Höfle 

et al., 2009). In figure 3-4, the specular reflection from two different types of surfaces is 

shown.  

The received signal power decreases very rapidly with the increase of deflection 

angle in case of specular reflection compared with diffusion reflection (Brzank et al., 

2008). This phenomenon is observed, when frequent laser shot dropout occurs from the 

water surface at a high deflection angle. 
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              (a)                                                               (b)  

Figure 3-4 Specular reflection on (a) horizontal and (b) tilted surfaces 
 

Brzank et al. (2008), Smeeckaert et al. (2013) and Höfle et al. (2009) used 

LiDAR shot dropout as one of the parameters for detecting water bodies. However, our 

investigation found that if the deflection angle is small, LiDAR shot dropout rates from 

land and water are not distinguishable. This hypothesis was studied by analyzing LiDAR 

data density in an area containing some water bodies. In figure 3-5, LiDAR data density 

per square meter is shown as pixel intensity and it can be observed that in the 

overlapping area of LiDAR swaths, the density of LiDAR data is high. Fourteen 10m by 

10m areas were chosen for studying LiDAR shot dropout. Seven of those small areas are 

in the region where the deflection angle is small, and seven of those areas are in the 

region where the deflection angle is large. Six of those areas are from water surfaces and 

eight of those are from land. The density count result for low deflection angle is shown in 

table 3-1 and for high deflection angle is shown table 3-2. It can be seen that there is a 

significant difference in point density from land and water when the deflection angle is 

high. However, when the deflection angle is low there is no distinguishable difference. 
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Figure 3-5 LiDAR return density for an area in L’Anguille river basin 

 
Table 3-1 LiDAR data point density when deflection angle is low 

Water Land 
Area number Point density 

Per sq. meter 
Area number Point density 

Per sq. meter 

1 2.61 7 2.63 
2 2.51 8 2.59 
3 2.50 9 2.52 
  10 2.53 
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Table 3-2 LiDAR data point density when deflection angle is high 

Water Land 
Area number Point density 

Per sq. meter 
Area number Point density 

Per sq. meter 

4 0 11 5.70 
5 1.08 12 5.54 
6 0.3 13 4.88 
  14 5.50 

 
 

3.3 Image Segmentation Techniques 

LiDAR irregular point cloud data can be rasterized to get 2D elevation and 

intensity image. Therefore, waterbody detection using LiDAR elevation and intensity data 

can be treated as an image segmentation problem. Many standard image segmentation 

techniques such as thresholding, clustering methods, compression-based method, 

histogram-based method, edge detection, region-growing method, partial differential 

equation-based method etc. can be found in the literature. Some of these methods and 

their applicability in this dissertation are discussed in the following paragraph. 

Sahoo et al. (1988) presented a survey of different thresholding techniques. 

Thresholding techniques can be classified as global and local techniques. Global 

thresholding can be classified as point dependent and region dependent techniques. The 

Otsu method (Otsu, 1975), a point dependent global thresholding technique, is based on 

a discriminant analysis. Relaxation method, a region dependent global thresholding 

technique, was introduced by Southwell et al. (1940). Thresholding is a very popular 

technique. It worked effectively for us as a part of the LASWE algorithm. 

Haralick and Shapiro (1985) described three types of region growing techniques 

for segmentation. These are single linkage region growing, hybrid linkage region growing 
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and centroid linkage region growing techniques. Single linkage region growing technique 

is simple and therefore, attractive. Höfle et al. (2009) used this technique to distinguish 

water surface from land. The main challenges of region growing algorithm are finding a 

proper seed to grow and determining proper growing criteria. 

 

3.4 Classification Techniques in Remote Sensing 

The most popular classification techniques used in remote sensing are neural 

network classifier (NNC), maximum likelihood classifier (MLC), decision tree classifier 

and SVM. Smeeckaert et al. (2013) classified water employing a supervised SVM 

classifier using features based on the height, local point density and local shape of the 

3D point neighborhood. Bartels and Wei (2006) used LiDAR based MLC fused with co-

registered spectral bands for land cover classification. Brzank et al. (2008) used 

supervised fuzzy classification for detecting water surface.  

Huang et al. (2002) compared the performance of an SVM classifier for land 

cover classification with  an MLC, a Neural network classifier (NNC) and a decision tree 

classifier. SVM was found to give better classification result compared with the ML 

classifier and the decision tree classifier. The performance of SVM depends on the 

choice of the kernel parameter. The performance of NNC is also influenced by the choice 

of the network structure. SVM was found to perform better than NNC for some training 

cases and vice versa.  

Wang et al. (2004) compared the MLC at the pixel level, nearest neighbor 

classification at the object level and, a hybrid classification that integrates the pixel-based 

MLC and object-based nearest neighbor method for mapping mangrove. Their studies 

found the hybrid classification to perform better. 
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Therefore, for the LASWE algorithm the SVM method or the NNC could be 

potential candidates for object-based classification and, pixel-based MLC could be used 

to fine tune the detection of SWB.  

 

3.5 Overview of the LASWE Algorithm 

Based on previous work and the ideation process described in the previous 

section, a novel approach was taken to detect and delineate standing water bodies with 

very little pre-processing of data. The algorithm was named as LiDAR-based automated 

standing waterbody extraction algorithm or LASWE algorithm in short. The LASWE 

algorithm employs the integration of object-based and pixel-based classifications. The 

object based classification includes a novel threshold-based histogram analysis method 

for segmentation using only the elevation of LiDAR returns. False detections were 

removed by an SVM classifier after segmentation. However, the SVM classifier was not 

able to eliminate all the false detections. An intensity-based classifier was designed to 

remove those false detections. The output was then fine-tuned by a pixel-based 

classification technique called maximum likelihood classification (MLC) using LiDAR 

intensity data. 

Since the surface of a water body is almost flat, if a histogram is created based 

on the elevation, a peak is generally noticed at the corresponding elevation in the 

histogram (Toscano et al., 2013). Peaks were also found in the elevation histogram for 

flat surfaces which were not water bodies. Therefore, all the flat areas were detected by 

finding the peak locations in the histogram followed by connected component analysis. 

Thereafter, an SVM classifier was trained to eliminate the flat areas which were not water 

bodies. All the water bodies greater than half acre in size were detected. The continuity 
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and the size of the flat areas and the elevation profiles of the terrains surrounding the flat 

areas were used as input features to the SVM model.  

The separation accuracy between land and water was improved by using LiDAR 

intensity data and elevation data as inputs to a MLC. Thereafter, the LASWE algorithm 

was validated by comparing its classification accuracy with that of a manual detection 

approach. 
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Chapter 4  

Detailed Description of the LASWE Algorithm 

4.1 Introduction 

In this chapter, the LASWE algorithm is described step by step. The LASWE 

algorithm started with creating an elevation and an intensity raster using LiDAR point 

cloud data. Then water bodies were detected by a novel threshold-based histogram 

analysis method. False detections were removed by an SVM classifier and intensity-

based classifier. Boundary of detected water bodies were fine-tuned by relaxation-based 

maximum likelihood classifier (MLC). Then hydro breaklines were generated. The 

flowchart of the algorithm is shown in  figure 4-1. The details of the flowchart will be 

discussed after introducing the study area where the algorithm was tested. 

 

4.2 Study Area 

Three study areas were chosen for training and testing the proposed LASWE 

algorithm for water body detection. The description of the study areas are given in table 

4-1. 

Table 4-1 Study Area 

Dataset Area 
(in 
km2) 

Area 
Characteristics 

Point 
density 
(per m2) 

Location 
Top right Bottom left 

1. Nebraska 28.18 Mostly flat 0.4 103o35’37.6”W 
41o58’46.5N 

103o28’8.8”W 
41o54’38.3”N 

2. Oklahoma 178.9 Flat with some 
hilly terrain 

0.7 98o0’0.1”W 
35o48’46”N 

97o33’45.3”W 
35o14’59.1”N 

3. Arkansas 11.25  Flat agricul- 
tural land 

2.8 90o48’12.2”W 
35o35’16.4”N 

90o44’47.3”W 
34o47’24”N 
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Figure 4-1 Flow chart of the LASWE algorithm 
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The first dataset is in Nebraska situated to the north east of Scottsbluff city. The 

second dataset is close to the Oklahoma City. The third dataset is in Arkansas in 

L’Anguille river basin. The testing and training areas for the second dataset are shown in 

figure 4-2. 

 

 
 

Figure 4-2 Oklahoma train and test area 

 

4.3 Rasterization of elevation and intensity data 

The elevation and intensity data were rasterized, since the point cloud is not a 

regular, equally spaced grid.  Point cloud based approach can admittedly give us more 

accurate result, but processing of such data is complex and time consuming. If higher 
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level of accuracy is needed, point cloud data can be used around the hydro breaklines 

generated using the comparatively simpler raster based method.  

The cell size was chosen such that the number of LiDAR returns that fall in a cell 

varies from 1 to 16. Therefore, a 2m x 2m cell size was considered for the LiDAR dataset. 

At first, the area was divided into a 2m x 2m square grid. All the single returns and all the 

last returns (in case of multiple returns) were retained within each 2m x 2m square. 

Thereafter, the median elevation value of those LiDAR returns were calculated and 

assigned as the elevation of each 2m x 2m square. Interpolation methods such as the 

inverse distance weighted method, kriging etc., are generally used for DEM generation. 

However, for the LASWE algorithm, the median elevation value was selected to avoid 

some high elevation last returns, which might not be from the ground. Median value 

effectively removes white noise and salt–and-pepper radar spackles, while preserving 

sharp shoreline edges (Liu et al. 2011). Zero elevation and zero intensity values were 

given to squares from which no LiDAR return was recorded.  

To create the 2m pixel intensity image, each 2m x 2m square was represented 

by the median of all the intensity values of the single returns and, last returns (in case of 

multiple returns) of the point cloud that fall in that square. Median intensity value can 

provide a better approximation of the intensity, since it is not affected by the few 

excessively high and low values in the square. The 2m elevation raster and the 2m pixel 

intensity image for a particular test area in Oklahoma is shown in figure 4-3. Each pixel 

represents a 2m x 2m square in the figure. 
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                        (a) 2m elevation raster                       (b) 2m pixel intensity image 

Figure 4-3 2m elevation raster and pixel intensity image for a test area in Oklahoma 

 
4.4 Detection of sharp peaks from elevation histogram  

The elevation histogram was created from the elevation raster to detect the flat 

areas. It was found that on the one hand, a smaller bin size for the histogram 

unnecessarily increases the complexity of the overall algorithm and, on the other hand a 

larger bin size lacks precision in water body detection. The bin size for the elevation 

raster was chosen to be one inch as a reasonable compromise. This bin size is 

independent of any other parameters. 

The whole test area was divided into 500m by 500m small overlapping tiles. The 

overlap between adjacent tiles was chosen to be 20 percent. This small tile size was 

chosen to accelerate the detection process and to detect small size water bodies, which 

might not appear as a peak if large tile size was used. Two such tiles are shown in figure 

4-4. The elevation histograms for those tiles are shown in figure 4-5. Each bin represents 

an elevation and the frequency of a bin represents the number of pixels with the same 
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elevation in the histogram. The elevations shown in the histogram of figure 4-5 are above 

a reference minimum elevation (in this case 403.6 meters). 

 
(a) Tile 1                                                         (b) Tile 2 

 
Figure 4-4 Elevation raster for two particular tiles 

 
4.4.1 Modification of the histogram to compensate for LiDAR shot dropout 

Sometimes a high LiDAR shot dropout rate is observed from the water surface, 

especially when the deflection angle is large. In those cases, due to the lack of data, a 

peak might not be observed at the water surface elevation location in the elevation 

histogram. Modifying the elevation histogram by artificially creating some elevation pixels 

solved this problem. The artificial elevation pixels were given elevation values according 

to the elevation of the scattered pixels from which LiDAR return was recorded inside the 

void or the connected area from which no LiDAR return was recorded. This was how the 

missing pixels of the elevation raster were generated for the histogram. This is a 

reasonable step because of the no LiDAR return pixels, the peak might not appear in the 

histogram or the peak position might be changed by fractional inches to a few inches. 
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    (a) 

 

 
                                                                        (b) 

Figure 4-5 Elevation histograms for (a) tile 1 and (b) tile 2 of figure 4-4 

 
  Let the total number of voids (connected pixels from which no LiDAR return was 

recorded) inside a tile be N and, the actual elevation histogram for the tile be ha(x). A 

modified elevation histogram hm(x) for the tile can be expressed as equation 4.1 

 

ℎ𝑎𝑎(𝑥𝑥) =  ℎ𝑎𝑎(𝑥𝑥) + ∑ �𝑣𝑣𝑖𝑖 𝑛𝑛𝑖𝑖� �ℎ𝑛𝑛𝑖𝑖𝑁𝑁
𝑖𝑖=1 (𝑥𝑥)                               (4.1) 
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Where vi is the data void size for the ith void, ni is the number of scattered pixels 

and hni(x) is the distribution of those pixels inside the ith void. It should be noted that 

pixels in large clusters might represent an island inside the water body and for this 

reason, the statistics of only the scattered pixels were taken into account for the modified 

histogram calculation. Modified elevation histograms are shown in figure 4-6 for the tiles 

shown in figure 4-4. 

 

4.4.2 Enhancing the elevation histogram by Gaussian histogram correlator 

After modifying the elevation histogram, it was correlated with a Gaussian kernel 

to remove spurious peaks and to precisely determine the water surface elevation 

(Toscano et al., 2014).  The impulse response of the one-dimensional Gaussian 

correlator used is given in equation 4.2. 

 

𝑔𝑔(𝑥𝑥) =  1
√2𝜋𝜋.𝜎𝜎

𝑒𝑒−
𝑥𝑥2

2𝜎𝜎2                                                     (4.2) 
 

The parameter of this correlator was determined by statistical analysis of LiDAR 

returns from water bodies (Toscano et al., 2015). The standard deviation of the Gaussian 

correlator was calculated from three selected 200m*200m areas (area (a), area (b) and 

area (c)) from three different water bodies shown in figure 4-7. The standard deviations of 

the elevation in these areas were found to be 1.9233, 1.6721 and 1.3482 inches 

respectively. The root mean square value of the standard deviations of elevation is 

𝜎𝜎𝑟𝑟𝑎𝑎𝑠𝑠 =  ��
𝜎𝜎12 + 𝜎𝜎22 + 𝜎𝜎32

3
� 

                                                     = 1.6646 inches 



 

28 

 
                                                                 (a) 
 

 
                                                                 (b) 
 

Figure 4-6 Modified elevation histograms for (a) tile 1 and (b) tile 2 of figure 4-4 
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                     (a)                                            (b)                                                 (c)   

Figure 4-7 Three 200m*200m areas selected for water surface elevation standard 

deviation calculation 

 
The kernel length required for the FIR Gaussian  correlator is �6𝜎𝜎𝑟𝑟𝑎𝑎𝑠𝑠 –  1� or 9. 

The coefficients for the Gaussian correlator were determined to be [0.0134, 0.0472, 

0.1164, 0.2001, 0.2397, 0.2001, 0.1164, 0.0472, 0.0134] using equation 4.2. The 

coefficients are shown in figure 4-8. After correlating, smoothed/enhanced histograms are 

shown in figure 4-9(a) and 4-9(b). 

   

 
Figure 4-8 Gaussian histogram correlator used for enhancing the histogram 
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(a) 

 
(b) 

 
Figure 4-9 Smoothed elevation histograms for a) tile 1 and (b) tile 2 of figure 4-4 

 
4.4.3 Determination of sharp peak locations in the histogram  

The peak locations in the smoothed histogram were determined using a cubic 

spline data interpolation technique. Data points at adjacent bin locations in the histogram 

were connected by cubic spline interpolation. Each spline (between two adjacent bins 

with elevation xi  and xi+1) can be represented by equation 4.3. 
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                                    fi(x) = aix
3 + bix

2 + cix + di                                              (4.3) 

 
The total number of spline equations obtained was less than the total number of 

bins by 1. By calculating the first derivative, the splines associated with the maxima and 

the minima can be determined. The first derivative of fi(x) is given in equation 4.4. 

 

                                         f’i(x) = 3aix
2 + bix

2 + ci                                                   (4.4) 
 
                                                 f’i(x) = 0                                                                         (4.5) 

 

Let the solution of equation 4.5 be xa and xb. If xa or xb is real and has a value 

between xi and xi+1 then it can be assumed that a maximum or a minimum exists in the 

spline between xi and xi+1. To determine whether it is a maximum or a minimum, the 

second derivative of f(x) is calculated. For the histogram in figure 4-9(a), the total number 

of maxima was found to be 525.  The maxima or peaks due to the presence of water 

bodies generally have large curvature (absolute value) at the peak. The equation to 

calculate curvature is given in equation 4.6 

 

                                              𝜅𝜅 =  �𝑓𝑓′′�

(1+𝑓𝑓′2)3 2�
                                                   (4.6) 

 
 

Since at the maxima f’(x) = 0, the equation for calculating curvature reduces to 

 

                                             𝜅𝜅 =  |𝑓𝑓′′|                                                           (4.7) 
 
 

From experiment, it was found that all the peaks that have curvature less than -5 

can be analysed for water body detection. For the histogram in figure 4-9(a), such peaks 

were found at elevation 248.28, 253.43 and 461.42 inches above the reference elevation 
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of 403.598 meters. The curvatures of those peaks, considered as sharp peaks, were       

[-7.1096, -5.4256, -113.46]. It was found that the portion of the water body in figure 4-4(a) 

corresponds to the peak at elevation 461.42 inches. The other peaks correspond to a 

normal flat area. The zoomed version of the sharp peak at elevation 461.42 inches is 

shown in figure 4-10(a).  

For the area shown in figure 4-4(b), sharp peaks were found at elevation   

[461.33, 483.84, 521.64, 614.42] inches above reference elevation with curvature             

[-64.75,   -6.55,   -5.72,   -9.05]. The peak at 461.33 inches elevation (this peak is very 

close to the peak at 461.42 inches, since they are part of the same water body) 

corresponds to the large water body. The zoomed version of the sharp peak at elevation 

461.33 inches is shown in figure 4-10(b). 

 

4.5 Detection of probable water bodies around sharp peaks 

Since water surface is flat, it is highly probable to find surface of water bodies in 

a certain range of elevation around each sharp peak. For each of the sharp peaks, all the 

pixels were detected which fall in the elevation range (peak elevation – lower limit) to 

(peak elevation + upper limit). The upper limit and the lower limit values should be 

chosen in such a way so that they maximize the probability of including all the pixels from 

water bodies and minimize the probability of including any pixel from land. The standard 

deviation of elevation (σrms) calculated from water surface was found to be 1.6646 inches 

in section 4.4.2. Table 4-2 shows the percentage of pixels that will be excluded form 

detection for different choice of upper limits and lower limits for three different water 

surfaces shown in figure 4-7.  
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(a) 

 

 
(b) 

Figure 4-10 Smoothed elevation histograms (zoomed to a single peak) in figure 4-9 after 

cubic spline interpolation 
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Table 4-2 Percentage of water pixels excluded vs upper limit and lower limit ranges  

Upper 
limit/ 

lower limit 
(in inches) 

Upper 
limit/ 

lower limit 
(in terms 
of σrms) 

Percentage of water surface pixels excluded from 
detection for different choice of upper and lower limits 

Area (a) Area (b)  Area (c) 
upper lower upper lower upper lower 

1 0.6 17.08 46.61 14.79 44.34 7.45 55.06 
2 1.2 9.79 14.31 7.14 16.33 2.26 19.97 
3 1.8 5.55 1.66 3.36 1.62 0.34 2.45 
4 2.4 3.46 0.80 1.77 0.12 0.08 0.19 
5 3 1.77 0.36 0.71 0.03 0.02 0.03 
6 3.6   1.09 0.19 0.40 0.02 0 0 
7 4.2 0.58 0.12 0.19 0 0 0 

 
 

It can be seen from table 4-2 that if the lower limit is chosen to be 7 inches or 

4.2σrms then 0.12%, 0% and 0% of the water pixels that have elevation lower than the 

peak elevation will not be detected for area (a), (b) and (c) respectively. For this case, 

there are no misclassifications (since water surface has lower elevation than that of its 

surrounding area). However, if 7 inches or 4.2σrms is chosen as upper limit then a large 

number of land pixels from the land/water boundary will be included in the detection. 

Therefore, an optimum value of 4 inches or 2.4σrms was chosen as the upper limit. 

However, this choice of upper limit failed to detect some water pixels that have elevation 

higher than the peak elevation (from histogram) by 4 inches or 2.4σrms. For areas (a), (b) 

and (c), the choice of the upper limit causes an exclusion of 3.46%, 1.77% and 0.08% of 

water pixels respectively, as seen from table 4-2. However, most of these excluded water 

pixels fall inside the water body, which can be included or redetected by morphological 

closing operation, unlike the ones on the land/water boundary. 

Some pixels from the land could potentially also be detected as water pixel, if at 

the land/water boundary the elevation difference between water surface and land surface 
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is very small. This type of error could be removed using relaxation-based ML 

classification discussed later.  

For the sharp peak at elevation 461.42 inches, all the pixels were detected which 

were in the range from (461.42-4.2σrms) or 454.42 inches to (461.42+2.4σrms) or 465.42 

inches for the tile shown in figure 4-4(a). The detected pixels are shown in figure 4-11. 

Then all the pixels from which no LiDAR return were recorded (shown in figure 4-12), 

were added (logical OR operation) with those detected pixels. Thereafter, using a 

connected component analysis, only the areas greater than half acre in size were kept. 

The resultant binary raster for the peak at elevation of 461.42 inches is shown in       

figure 4-13. 

 
Figure 4-11 Pixels within elevation range from 454.42 inches to 465.42 inches for the tile 

in figure 4-4(a) 
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Figure 4-12 Pixels from which no LiDAR return were found for the tile in figure 4-4(a) 

 

 
Figure 4-13 Binary raster created by adding all the pixels in figure 4-11 and 4-12 

 
For each of the sharp peaks, flat areas greater than half acre in size were 

detected using the same method. The primary detected flat areas were identified as 

probable water bodies in this dissertation, since there could be many false detections 

with the actual water bodies. For the tile shown in figure 4-4(a), all the false detections 

(top right corner) together with the correct detection are shown in figure 4-14. In the 

following section, the SVM model to remove the false detections is described. 
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Figure 4-14 False and correct detections for the tile shown in figure 4-4(a) 

 
4.6 SVM model training and removing false detections 

In an earlier reported work (Toscano et al., 2014), four stages of filtering were 

used to remove the false detections using many hard coded thresholds. In this 

dissertation, a new SVM model was trained to identify the false detections without using 

hard coded thresholds. The SVM model gives a more robust result, applicable in different 

geographic locations compared to the previously developed threshold-dependent filtering 

method. To train the SVM model, an area containing plenty of water bodies from the 

Arkansas dataset, Oklahoma dataset and Nebraska dataset were chosen. Some 

randomly chosen areas from the same dataset were used for testing purposes. The input 

features used for the SVM model were: 

i) The continuity of the detected area 

ii) The size of the detected area 

iii) The elevation profile of the surrounding area and 

iv) The median elevation difference between the detected area and the 

surrounding area. 



 

38 

A brief description of each of the input features is given in the following section: 

 

4.6.1 Continuity of the detected area 

Water bodies must be continuous and should not contain too many non-water 

pixels. Non-water pixels inside a probable water body appear as gaps in the binary raster 

(figure 4-13). Closing the gaps inside a water body increases the number of its pixels. A 

dilation operation followed by an erosion operation was performed with a 7 * 7 structuring 

function (shown in figure 4-15) to close the gaps. All the gaps, which had smaller radii, 

were closed and, the ratio of the probable water body areas after and before closing the 

gaps was determined. This ratio was used as one of the input features. After closing the 

gaps of the binary raster shown in figure 4-13, the resultant raster is shown in figure 4-16. 

The area was increased by 6.06% which was used as the first input feature of the SVM. 

 

 
 

Figure 4-15 Structuring function used for morphological operation 
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Figure 4-16 Binary raster after closing the gaps of the connected area shown in         

figure 4-13 

 
4.6.2 Size of the detected area 

The size of the flat area (a probable water body) was chosen to be the second 

input feature. It was found that elevation profile of land area surrounding a water body 

changes with the size of the water body. For this reason, the second input feature was 

used. It was experimentally found that if the natural log of the area of the flat area was 

selected, the SVM classifier resulted in better classification accuracy. Since water bodies 

can have a very wide range of areas starting from a fraction of acres to some hundreds of 

acres, the natural log of the area of a water body is a more elegant input to the SVM 

classifier. From all the training areas used for training the SVM classifier, 71 flat areas 

were chosen for training the SVM classifier. Table 4-3 illustrates how the choice of 

different kernel parameters and input types affect the number of errors in classification 

(this feature is indicated by ln(A) in the table). 
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4.6.3 Elevation profile of the surrounding area 

The surrounding area of a water body must have higher elevation. For this 

reason, the third input feature was used. A chain of pixels 4 meter away from the 

probable water body was selected and the number of pixels that have elevation greater 

than the median elevation of the water surface was counted. The third input feature was 

chosen to be the ratio of the number of pixels in the surrounding chain of pixels that had 

elevation greater than the median elevation of the water surface, to the total number of 

pixels in the chain of surrounding pixels. The value of the third input feature for the flat 

area in figure 4-13, was found to be 0.9824. 

 

4.6.4 Median elevation difference between the detected area and the surrounding area 

The fourth input feature is the natural log of the difference between the median 

elevation of the surrounding chain of pixels and the median elevation of the probable 

water body. Taking the natural log of the elevation difference resulted in better 

classification accuracy than using only the elevation difference as can be seen from the 

results shown in table 4-3 (this feature is indicated by ln(D) in the table). For the flat area 

in figure 4-13, the elevation difference was found to be 40.7479 inches and the natural 

log of the difference was 3.7074. 

 

4.6.5 Choice of kernel function 

The kernel function for SVM generation plays an important role in locating the 

complex decision boundaries between classes. An inhomogeneous polynomial kernel of 

the type in equation 4.8 was used for SVM model generation. For best results ‘p’ in 

equation 4.8 was experimentally found to be 3.  
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                                                   K(xi, xj) = (xi.xj + 1)p                                               (4.8) 
 
 
 

Table 4-3 SVM classification error (in percentage) for choice of different kernel 

parameters and input types 

 
Inputs C, A, E, D C, ln(A), E, D C, A, E, ln(D) C, ln(A), E, 

ln(D) 
p = 1  73.24  73.24  71.83  71.83 
p = 2  4.23  4.23  4.23  1.41 
p = 3  1.41 0 0 0 

 
 

In table 4-3, ‘C’, ‘A’, ‘E’ and ‘D’ represent the first, second, third and fourth input 

features respectively to the SVM classifier, described in sections 4.6.1, 4.6.2, 4.6.3 and 

4.6.4 .  ‘p’ is the kernel parameter, described in section 4.6.5. 

After removing the false detections and adding all the overlapping binary raster 

tiles, the resultant detected water body is shown in figure 4-17 

 

4.7 Removal of false detections by processing individual probable water bodies 

After removing false detections from individual tiles, there might still remain two 

types of false detections. The first type is tile boundary error. The second type is large flat 

area false detection error. By processing individual water bodies, these two types of false 

detections could be removed. The methods to remove those false detections are 

discussed in the following sections.  
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Figure 4-17 Binary raster after removing the false detections and adding all the 

overlapping binary raster tiles 

 
4.7.1 Removal of tile boundary false detection error by SVM classifier 

Sometimes some flat areas fall near the boundary of a tile and so the boundary 

of the whole flat area is not available. The SVM classifier developed in this dissertation 

requires the whole boundary of the water body. Therefore, those flat areas near the tile 

boundary were falsely detected as water body. An example of false detection due to tile 

boundary error is shown in light gray shade at the bottom middle part of figure 4-18(a). To 

remove this type of error, the SVM classification was applied on each detected probable 

water body. When SVM classification was applied on individual tiles, if the probable water 
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body fell near the tile boundary, it was not possible to get the chain of pixels in all sides of 

it. Therefore the SVM method didn’t work properly in removing some of those false 

detections. After processing individual flat areas, the total boundary of the flat area was 

obtained and the false detections were removed by the same SVM method. The resultant 

binary raster is shown in figure 4-18(b). 

 

                                                                                                       
(a)                                           (b)                                        (c) 

Figure 4-18 (a) Tile boundary false detection error and large flat area false detection 

error, (b) removal of tile boundary error, (c) removal of large flat area false detection error 

 
4.7.2 Removal of large flat area false detection error by intensity data 

The SVM model developed sometimes fails to remove false detection if the size 

of the flat area or probable water body is greater than 10 acres and the score from the 

SVM classifier is less than a threshold. In this section, a method is described to remove 

those false detections using the LiDAR intensity data. LiDAR intensity return from a water 

body can be of three types: 

i) No return due to specular reflection from water surface if the deflection 

angle is high. 
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ii) Very high intensity LiDAR return due to specular reflection if the 

deflection angle is low. 

iii) Low intensity return since water absorbs very high amount of light energy 

in near infrared range. 

So, LiDAR intensity return from a water surface is significantly different from that 

of the land area. Large flat area false detection error was removed by using this 

difference. At first, a rectangular intensity raster was selected, which contained the water 

body with some extra 50 meters around each side of the water body. Pixels which 

represented returns from the land and which had intensity less than a threshold (5 times 

the median intensity of the area) were selected from inside the rectangular area and the 

mean (µ) and standard deviation (σ) of those pixels were calculated in the intensity 

raster. Thereafter, all the pixels of the intensity raster, which were from the probable 

water body were selected and the percentage of those pixels which were within µ± σ  

range of the surrounding area was calculated. If more than a third of the pixels from the 

probable water body were within the specified range, then the probable water body was 

identified as a false detection. A large flat land area detected as water body is shown in 

dark gray shade at the bottom right corner of figure 4-18(a). After removing the false 

detection, the resultant image is shown in figure 4-18(c). 

 

4.8 Fine-tuning detection using maximum likelihood classification 

The approach used for post processing or fine-tuning detection in this 

dissertation is a modified version of the probabilistic relaxation method described by 

Eklundh et al. (1980). If the elevation difference between the water surface and its 

surrounding land area is small, some land pixels could wrongly be classified as water 

pixels. In those cases, LiDAR intensity data could be used to reclassify those pixels at the 
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land/water edge. In near infrared range, the reflectivity of water is small compared with 

vegetation or other topographic features. This property of water was used to fine-tune the 

detection at the boundary. At first, a rectangular intensity raster was selected, which 

contained the water body plus 50 meters around each side of the water body and, the 

mean (µl) and standard deviation (σl) of the land pixels from inside the rectangular area 

were calculated. The mean intensity (μw) and standard deviation (σw) of the pixels 

identified as water body were also calculated in a similar way. The pixels from which no 

LiDAR return were recorded and the pixels from which very high intensity LiDAR return 

were obtained (pixels from which the LiDAR return was 5 times the median intensity of all 

the LiDAR returns of the area were considered here as high intensity LiDAR returns in 

this dissertation) were considered outliers and, were not selected for the mean and 

standard deviation calculations. Two normalized Gaussian curves were plotted as shown 

in figure 4-19 for LiDAR intensity returns from the detected water body and from its 

surrounding land area, using the mean and standard deviation values. The maximum 

likelihood classification method was used only if there were no significant overlap 

between the normalized Gaussian curves for water and surrounding land area. The 

overlap between the water and land pixel intensity return distribution was determined by 

Bhattacharyya distance (BD) given in equation 4.9 
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The water pixels at the land water boundary were reclassified only if the BD 

between the water and land pixel intensity distribution was greater than 0.5. The 

intersecting point between the normalized Gaussian curves was determined. All the 
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pixels in the land/water boundary that had intensity greater than the intersecting point 

intensity but lower than (µl +2*σl) and, had elevation greater than the median elevation of 

the water body were considered as land pixel. Initially, all the pixels that have elevation  

 

 
Figure 4-19 Normalized Gaussian curve for intensity return from water surface and from 

its surrounding land area 

 

less than the upper limit (4 inches) above the median elevation of water surface elevation 

were considered as returns from water. So the method described here is an attempt to 

correctly classify the pixels at the land/water boundary that have elevation within the 

range of 0 to 4 inches above the median surface elevation of the water body. For 

reclassification, maximum number of iteration used was 11. It was experimentally found 

that desired result was obtained within 11 iterations. 

  In figure 4-20, breaklines are shown without using MLC by a red line and 

manual detection by a black line. A discrepancy is found between the manual detection 

and the auto detection without MLC.  
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Bhattacharyya distance for the large water body shown in figure 4-20 was found 

to be 0.92, which is greater than reclassification threshold of 0.5. After reclassifying the 

pixels at the boundary, the resultant breakline was found to closely match with the 

manually generated breakline. The breakline is shown by a green line in figure 4-20.  

 

 
 

Figure 4-20 Water body detected with MLC (green line), without MLC (red line) and 

manually drawn breakline (black line) 

 
4.9 Hydro breakline generation from binary raster 

Hydro breaklines are generated from the binary raster of classified pixels. The 

midpoints of the edges of the binary raster pixels at the detected water/land boundary 

were automatically connected to generate the breaklines shown in figure 4-21(a). The 

hydro breaklines were then converted to polygons and, smoothed by Bezier interpolator. 

The resultant polygon for a water body is shown in figure 4-21(b) 
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(a)                                                       (b) 
 

Figure 4-21 Hydro breakline generation: (a) binary raster, (b) smoothed polygons 

superimposed on the satellite image 

 
 

4.10 Results and discussions 

To determine the accuracy of classification of land and water, the standard 

overall accuracy and Cohen’s kappa coefficient were used (Foody, 2002). The equations 

used for the accuracy measurements are 

 

                               Overall accuracy =  𝑛𝑛𝑤𝑤𝑤𝑤+ 𝑛𝑛𝑙𝑙𝑙𝑙
𝑛𝑛

 × 100%                                 (4.10) 
 
 

                           Kappa coefficient = 
𝑛𝑛(𝑛𝑛𝑤𝑤𝑤𝑤+𝑛𝑛𝑙𝑙𝑙𝑙)−(𝑛𝑛𝑤𝑤+𝑛𝑛+𝑤𝑤+𝑛𝑛𝑙𝑙+𝑛𝑛+𝑙𝑙)

𝑛𝑛2−(𝑛𝑛𝑤𝑤+𝑛𝑛+𝑤𝑤+𝑛𝑛𝑙𝑙+𝑛𝑛+𝑙𝑙)
              (4.11) 

 
 

where n is the total number of LiDAR returns 
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nww is the number of returns from water correctly classified as water                 

returns (True positives) 

nll is the number of returns from land correctly classified as land returns    

(True negatives) 

nw+ is the total number of returns classified as returns from water by the         

LASWE algorithm 

            n+w is the total number of actual returns from water 

nl+ is the total number of returns classified as returns from land by the 

LASWE algorithm 

            n+w is the total number of actual returns from land 

 

Reference data was manually labeled as water or land by a commercial vendor 

and then re-examined by us. For three different datasets, some areas were chosen for 

training the algorithm and some areas were chosen for testing the algorithm. The total 

number of manually classified water and land pixels and correctly classified water and 

land pixels using the LASWE algorithm is shown in table 4-4. The accuracy of the 

classification, calculated using equation 4.10 and 4.11, is shown in table 4-5. Only the 

last returns (in case of multiple returns) and first returns (in case of single return) were 

classified. For all the test and train areas, overall accuracy was found to be greater than 

97.92%. So the LASWE method is comparable with all the other major water surface 

detection algorithms.  
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Table 4-4 Number of correctly classified water and land pixels by the LASWE algorithm 

Dataset Testing/ 
Training 

Manual classification LASWE Classification 
Total water 

returns 
Total land 

returns 
Correctly 
classified 

water returns  

Correctly 
classified 

land returns  
1. 

Nebraska 
Training 1237747 1437832 1222130 1399881 
Testing 944389 9869615 920862 9802166 

2. 
Oklahoma 

Training 410545 67990301 392031 67709071 
Testing 224890 64076346 211648 63921455 

3. 
Arkansas 

Training 570701 13885271 549263 13674828 
Testing 173022 20336989 1651158 19957973 

 

Table 4-5 Overall accuracy (OA) and 𝜅𝜅 coefficient for the training and the test areas 

Dataset Size 
(in sq. km) 

Testing/ 
Training 

Overall 
accuracy (OA) 

𝜅𝜅 coefficient 

1. Nebraska 6.78 Training 98.00 0.96 
22.4 Testing 99.16 0.95 

2. Oklahoma 89.61 Training 99.56 0.72 
89.34 Testing 99.74 0.71 

3. Arkansas 4.5 Training 98.40 0.82 
6.75 Testing 97.92 0.87 

 
 

Comparison among different water surface detection algorithm is difficult 

because each research team applied their algorithm in different geographic location. In   

table 4-6 the accuracies obtained by different research teams are shown.  

 

Table 4-6 Overall accuracy (OA) range and 𝜅𝜅 coefficient range for different water surface 

detection algorithm 

Algorithm/Author OA range 
(in percentage) 

𝜅𝜅 coefficient 
range 

LASWE algorithm 97.92 to 99.74 0.71 to 0.96 
Brzank et al. (2008) 94.50 and 99.08 0.82 and 0.98 

Smeeckaert et al. (2013) 88.41 to 98.85 0.72 to 0.99 
Höfle et al. (2009) Above 97 Not available 
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LiDAR return classification for the train area shown in figure 4-3, is shown in 

figure 4-22. All the true positives (water return detected as water return) are shown by 

dark blue dots, all the true negatives (land return detected as land return) are shown by  

cyan dots, all the false positives (water return but detected as land) are shown by green 

dots and all the false negatives (land but detected as water) are shown by yellow dots. 

Almost all the wrongly classified pixels are found near the boundary of the water body. 

LiDAR return classification for another test area is shown in figure 4-23.  

 

 
  

Figure 4-22 LiDAR return classification for the area shown in figure 4-3 
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Figure 4-23 LiDAR return classification for a test area in Nebraska 

 
The hydro breaklines generated automatically by the LASWE algorithm were 

compared with the manually drawn breaklines. In figure 4-24 and 4-25, thin, black lines 

are the breaklines generated by the LASWE algorithm and the breaklines drawn in 

manual way are shown by dotted, black lines. From the comparison, it is found that the 

auto generated hydro breaklines closely matches with the manually generated 

breaklines. 
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Figure 4-24 LASWE algorithm breakline (solid line) and manual breakline (dashed line) 

comparison 
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Figure 4-25 LASWE algorithm breakline (solid line) and manual breakline (dashed line) 

comparison 

 
4.11 Conclusions 

In this chapter, detailed description of the LASWE algorithm for water body 

detection is provided. Overall accuracy and kappa coefficient for different test and train 

area were determined to measure the performance of the algorithm quantitatively. The 

results were presented in the results and discussion section.  The algorithm requires 3 to 

9 minutes per sq. km for water surface detection, if LiDAR data density is 0.5 to 4 returns 

per sq. meter.  In the following chapter, a faster and more memory efficient standing 

water body extraction algorithm is discussed in detail.  
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Chapter 5  

Description of the Multiresolution LASWE Algorithm 

5.1 Introduction 

The LASWE algorithm requires approximately 3 to 9 minutes per sq. km for water 

surface detection, if LiDAR data density is 0.5 to 4 returns per sq. meter. The machine 

used for the detection is a core i7 processor with 16 GB RAM. Some LiDAR projects are 

very large in size and in those cases, the algorithm requires impractical amount of time. 

For this reason, the multiresolution LASWE (MLASWE) algorithm was developed. In the 

MLASWE algorithm, water surface was detected using three different resolutions. The 

MLASWE algorithm detects all the flat areas that have elevation less than their 

surrounding areas in coarse resolution. In medium resolution, some of the false 

detections were removed using both LiDAR elevation and intensity data and the 

boundary of the water bodies became more precise. In fine resolution, more false 

detections were removed and the boundaries of water bodies were detected more 

precisely.  

 
5.2 Description of the coarse-fine integration process for the MLASWE algorithm 

The MLASWE algorithm was developed to make the detection of water bodies 

significantly faster. A coarse-fine integration process was designed for the purpose. The 

average value of the LiDAR returns from a pixel (n meter by n meter) was used to 

represent the pixel in the elevation and the intensity raster. In the LASWE algorithm, the 

median value of the LiDAR returns was used to represent the pixels. Creating median 

raster is very time consuming. It took about half of the total time required for water 

surface detection. Moreover, for large size .las files, creation of median raster causes 

memory exception errors. For all these reasons, the average value was used in the 
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MLASWE algorithm to represent each pixel, though median value was more preferable 

for getting a more accurate result. The flow chart of the MLASWE algorithm is shown in 

figure 5-1. 

 

 
 

Figure 5-1 Flow chart of the MLASWE algorithm 
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5.2.1 Flat area detection in a coarse resolution 

The first step of the MLASWE algorithm is to detect a water surface in coarse 

resolution. A coarse 8 meter elevation raster (one sixteenth the resolution of the fine 

resolution) was created from the LiDAR point cloud. The average value of elevation of the 

LiDAR returns (first return for single return and last return for multiple returns) from each 

8m by 8m cell was used to represent that cell or pixel in the raster. Zero elevation was 

given to a pixel or cell from which no LiDAR return was recorded. After creating the 

elevation raster, a histogram was plotted and sharp peaks were detected in overlapping 

tiles in the same way as in section 4.4 of the previous chapter. For each of those peaks, 

large connected areas (greater than ¼ acre in size) associated with those peaks were 

detected as described in section 4.5 of the previous chapter. The MLASWE algorithm 

was designed to detect all the water surfaces greater than half acre in size. However, in 

the coarse level all the water surfaces greater than ¼ acre was detected, since in some 

cases, the entire surface for a water body did not get detected in coarse resolution. In 

fine resolution detection, only the water bodies greater than ½ acre were retained per our 

own original specification in the LAWSE. 

The median elevations of those flat areas or probable water surfaces along with 

the median elevations of the surrounding areas were calculated. A chain of pixels 8 

meters or 1 pixel away from the flat area was selected to calculate the median elevation 

of the surrounding area. If the median elevation of the flat area was lower than that of the 

surrounding area then those flat areas were identified as potential water bodies and 

analyzed in the medium level resolution. Other flat areas were classified as land areas. At 

this stage, no SVM classification was applied. It was found that in coarse resolution, if 

SVM was applied it eliminated some actual water bodies together with the false 
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detections. The binary raster obtained from coarse resolution elevation raster for an area 

comprising some test and train area is shown in figure 5-2. 

 

 
Figure 5-2 Flat areas detected in coarse resolution 

 
5.2.2 Water surface detection in intermediate resolution 

In coarse resolution, all the flat areas that have elevation less than that of its 

surrounding area were detected and a binary raster was obtained as shown in figure 5-2. 

The binary raster was up-sampled (magnified 400%) by replication (nearest neighbor 

resampling), for intermediate resolution water surface detection. The flowchart of the 

intermediate resolution water surface detection is shown in figure 5-3. 
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Figure 5-3 Water surface detection in intermediate resolution 

 
5.2.2.1  Intermediate resolution elevation and intensity raster generation 

A 4m-elevation and a 4m-intensity raster were generated using the LiDAR point 

cloud. The average elevation and intensity of the LiDAR returns (first return for single 

return and last return for multiple returns) from each 4m by 4m cell were used to 

represent that cell or pixel in the elevation and the intensity raster. Zero elevation and 

intensity were given to cells or pixels from which no LiDAR return was recorded.  
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5.2.2.2 Calculation of median elevation of each of the flat areas 

The up-sampled binary raster provided the information about all the flat areas in 

the 4m-elevation raster. Using both the binary raster and elevation raster, it is possible to 

determine the median elevation of each of the flat areas. Often, inside large flat areas, 

large connected components were found from which no LiDAR return was recorded. 

However, inside most of those large connected areas, some scattered pixels were found 

that had LiDAR returns. Each of the pixels of those large connected areas was given 

elevation by randomly choosing elevation of the scattered pixels. Thus, the LiDAR returns 

from water surface were more correctly represented in median water surface elevation 

calculation.  

 

5.2.2.3 Redetection of flat areas or probable water bodies using median elevation 

From the 4m-elevation raster, a rectangular area was selected around each of 

the flat areas detected in the coarse resolution, with 100 meters extended area in each 

side. All the pixels that have elevation in the range from [median elevation – 4.8σrms] to 

[median elevation + 3σrms] were detected within the rectangular area. In the LASWE 

algorithm described in the previous chapter, the lower limit and the upper limit were 

chosen to be 4.2σrms and 2.4σrms respectively. Since the initial detection came from the 

coarse resolution in the MLASWE algorithm, the median elevation calculated might not 

be so precise. For this reason, the upper and lower limits were increased by 0.6σrms in 

intermediate resolution. However, in fine resolution the upper limit and lower limit were 

again chosen to be 4.2σrms and 2.4σrms respectively.  
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5.2.2.4 SVM classification and intensity-based classification to remove false detections 

After detecting the flat areas or the probable water bodies, the input features for 

the SVM model were calculated as described in section 4.6 of the previous chapter. For 

the surrounding area profile calculation, a chain of pixels 8m away from the water surface 

was selected. After applying the SVM classification, the resultant detection is shown in 

figure 5-4. In section 4.7.2 of the previous chapter, it was mentioned that some large flat 

areas could not be removed from the output using the SVM classification. Those false 

detections were removed by the same method as described in section 4.7.2 of the 

previous chapter using LiDAR 4m-intensity raster. The resultant binary raster is shown in 

figure 5-5. 

 
 

Figure 5-4 Probable water bodies in intermediate resolution after removing the false 

detections using SVM classification 
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Figure 5-5 Probable water bodies after classification using LiDAR intensity data  

 
5.2.3 Water surface detection in fine resolution 

The binary raster obtained from the intermediate resolution, shown in figure 5-5, 

was up-sampled (magnified 400%) by replication (nearest neighbor resampling). At this 

stage, only the SVM classification was carried out. However, the water surface detection 

was fine-tuned at the boundary using the intensity data. The flowchart of the fine 

resolution water surface detection is shown in figure 5-6. 

A 2m-elevation and intensity raster were created the same way as described in 

section 5.2.2.1. The median elevation of each of the probable water surface was 

calculated using the 2m-elevation raster and up-sampled binary raster. Thereafter, each 

of the water surfaces was redetected using the median elevation value as described in 
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section 5.2.2.3. However, in fine resolution the upper limit and the lower limit were 

chosen to be 4.2σrms and 2.4σrms and the rectangular area was extended by 25 pixels or 

50 meter around each side of the water body.  

 

 
 

Figure 5-6 Water surface detection in fine resolution 

 
After redetecting the water surface, features were calculated for SVM classifier. 

Since the SVM classifier does not work well for large flat areas as pointed out on section 

4.7.2 of previous chapter and all the probable water surfaces already went through two 

stages of classification in the intermediate resolution, features were not calculated for the 
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SVM classifier for water bodies greater than 100 acres in size. Those large flat areas 

were assumed to be water surfaces without SVM classification to speed up the process 

of waterbody detection. 

After detecting all the water bodies the water surfaces were fine-tuned at the 

land/water boundary using the LiDAR intensity data in fine resolution the same way as 

described in section 4.8 of the previous chapter. A water surface from top right corner of 

figure 5-5 is shown in figure 5-7(b) after fine level detection. The water surface after 

intermediate resolution detection is shown in figure 5-7(a) for comparison. 

 

  
      (a)                                                         (b) 

Figure 5-7 Water surface detected in (a) fine resolution and in (b) intermediate resolution 

 
5.3 Detection of water body from LiDAR data voids 

If LiDAR shot dropout rate is very high from the small water bodies, then 

sometimes in coarse level they did not create a sharp peak in the elevation histogram. To 

get a sharp peak in the elevation histogram, a large number of LiDAR returns from the 

water surface are required. The modified elevation histogram discussed in section 4.4.1 

of chapter 4 was an attempt to compensate for LiDAR shot dropout. However, some 

small water bodies greater than half acre in size still remained undetected in coarse 

resolution even after applying the technique. To detect those water bodies in the 4m-
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elevation raster, all the pixels without any LiDAR return were detected. Using connected 

component analysis, all the connected pixels greater than half acre in size were 

identified. The binary raster thus obtained was up-sampled for fine level detection. In fine 

level, all the scattered pixels inside the connected area were detected. The median 

elevation of those scattered pixels was calculated. All the pixels that have elevation within 

the range [median elevation – 4.2σrms] to [median elevation + 2.4σrms] were added with 

the pixels that have no LiDAR returns to detect the water pixels. Thus, small water bodies 

undetected in coarse resolution were detected. One such example is given in figure 5-8. 

In figure 5-8(a), the connected pixels with no LiDAR returns in the intermediate resolution 

are shown. In figure 5-8(b), the detected water body in fine resolution is shown. 

 

      
                             (a)                                                      (b) 

                Figure 5-8 Water body detection using LiDAR data voids in (a) intermediate 

resolution and (b) fine resolution 

 
5.4 Final water body detection in fine resolution 

Water body detection by coarse-fine integration discussed in section 5.2 and by 

LiDAR data voids discussed in section 5.3 were added to get the final detection. 
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Breaklines were generated from the detection as discussed in section 4.9 of the previous 

chapter. The hydro breakline polygons superimposed on satellite image are shown by 

blue colored lines in figure 5-9. Water bodies detected by LiDAR data voids are shown 

inside white circles in the bottom left corner of the figure. 

 

 
 

Figure 5-9 Water body detection by coarse-fine integration and by LiDAR void  

 
5.5 Results and discussions 

The MLASWE algorithm was applied on the same test and train areas where the 

LASWE algorithm was applied. Overall accuracy and Cohen’s kappa coefficient were 
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calculated to determine the accuracy of classification. In table 5-1 a comparison is made 

between the accuracy of the LASWE and the MLASWE algorithm.  

From table 5-1, it can be seen that the level of accuracy given by the LASWE 

and the MLASWE algorithm were almost equal. However, the MLASWE algorithm is 

almost 15 to 62.5 times faster than the LASWE algorithm. The comparison between the 

time taken by the LASWE and the MLASWE algorithm is shown table 5-2. 

 

Table 5-1 Comparison of the LASWE and the MLASWE algorithm in terms of accuracy 

Dataset Testing/ 
Training 

LASWE Classification MLASWE Classification 
OA k OA k 

1. 
Nebraska 

Training 98.00 0.96 97.66 0.95 
Testing 99.16 0.95 99.11 0.94 

2. 
Oklahoma 

Training 99.56 0.72 99.74 0.79 
Testing 99.74 0.71 99.56 0.57 

3. 
Arkansas 

Training 98.40 0.82 98.70 0.84 
Testing 97.92 0.87 97.92 0.87 

 
  

Table 5-2 Comparison of the LASWE and the MLASWE algorithm in terms of speed 

Dataset Testing/ 
Training 

LASWE 
(in minute per 

sq. km) 

MLASWE 
(in minute per 

sq. km) 

MLASWE gain 

1. Nebraska Training 2.55 0.25 10.37 
Testing 3.4 0.12 28.33 

2. Oklahoma Training 3.15 0.21 15 
Testing 3.09 0.14 22.56 

3. Arkansas Training 8.84 0.25 35.62 
Testing 8.75 0.14 62.5 

 

Analyzing table 5-2, it can be seen that the LASWE algorithm takes around 3 to 9 

minutes for water body detection and breakline generation, whereas the MLASWE 

algorithm requires approximately 0.12 to 0.25 minutes. The MLASWE algorithm resulted 

in almost the same classification accuracy as the LASWE, but 15 to 62.5 times faster. 
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The MLASWE algorithm also does not give any memory exception errors when the .las 

file is very large in size. Therefore, it can be deduced that the MLASWE algorithm is a 

faster and memory efficient version of the LASWE algorithm. 
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Chapter 6  

Conclusion and Suggested Future Work 

6.1 Contributions 

In this doctoral dissertation, a novel approach was taken to detect and delineate 

water bodies using airborne LiDAR elevation and intensity data. The algorithms 

developed are called LASWE and MLASWE. Both algorithms provide good classification 

accuracy for three different sets of train and test areas from different geographical 

locations. The MLASWE algorithm takes coarse resolution to fine resolution approach, 

which is much more computationally efficient and faster than the LASWE algorithm.   In 

our algorithm, an object based segmentation approach was taken to detect water bodies. 

Finally, since LiDAR data has high vertical accuracy, elevation data weighted than 

intensity data for water body detection. Intensity data was used when the SVM output is 

not reliable enough in case of large flat areas and, to classify pixels at the boundary of 

water bodies when the Bhattacharyya distance between the intensity distribution of 

LiDAR water surface returns and surrounding area returns were large enough. 

The MLASWE algorithm presented in this dissertation is a robust, raster-based 

method that detects and delineates water surfaces at high speed, in a fully automated 

mode and with high accuracy. 

 

6.2 Future work 

As a future work the following things could be attempted: 

1) The standing water body detection algorithm could be extended and modified 

to detect streams and rivers. Detecting streams and rivers should be 

challenging, since rivers and streams do not have a constant elevation 

throughout their path.  
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2) After detecting water bodies using simpler raster based method, LiDAR point 

cloud data could be used at the boundary of water bodies to get higher 

classification accuracy. 

3) The algorithm developed was applied to three different sets of data to prove 

its robustness. However, the algorithm could be applied to more areas to 

make this algorithm a commercial product. 
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