
Training Algorithm for Radial Basis Function Classifier

by

YILONG HAO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2015

ii

Copyright © by Yilong Hao 2015

All Rights Reserved

iii

Acknowledgements

I would like to express my sincere gratitude to my advising professor Dr. Manry for his

support in completing my research. I also appreciate him giving me financial support

throughout my Master’s program. I am very grateful for his patience.

I would like to say thank you to my lab mates, especially Rohit and Kanishka who

worked with me to debug and explain problems. Thank you Gautam, Son, Parastoo and Audy,

who always let me feel the warm and harmonious environment of our lab. Everyone in our lab

always helps each other without judgment. Thank you to everybody who gave me fond

memories during my Master program.

August 13, 2015

iv

Abstract

Training Algorithm for Radial Basis Function Classifier

Yilong Hao, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Michael T Manry

The computational complexity of kernel machines and their poor performance in the

multi-label classification case is a major bottleneck to their success. In this thesis we present a

systematic two step batch approach for constructing and training a new multiclass kernel

machine (MKM). Unlike other kernel learning algorithms, the proposed paradigm prunes the

kernels, and uses Newton’s method to improve the kernel parameters. In each iteration, output

weights are found using orthogonal least squares. The proposed hybrid training algorithm is

compared with least square support vector machines(LS-SVM) and support vector

machines(SVM). Simulations results on many benchmark and real life datasets show that the

proposed algorithm has significantly improved convergence speed, network size and

generalization over conventional kernel machine training algorithms.

v

Table of Contents

Acknowledgements .. iii

Abstract .. iv

List of Illustrations ... vii

List of Tables ... viii

List of Symbols .. ix

List of Acronyms .. xi

Chapter 1 Introduction ... 1

1.1 Neural Network .. 1

1.2 Benefits of Neural Networks .. 2

1.3 Common Types of Neural Networks .. 3

1.3.1 Multi-layer Perceptron(MLP) .. 4

1.3.2. Radial Basis Function Networks .. 4

1.4 Kernel Machines .. 5

1.5 Research Motivation .. 5

1.6 Organization of the thesis .. 6

Chapter 2 RBF Neural Network Review .. 7

2.1 Training Data .. 7

2.2 RBF structure and operation .. 7

2.3 RBF Neural Network parameter initialization ... 9

2.4 Optimal Output Weights ... 10

2.5 Pruning Method ... 11

2.5.1 Ordered Basis Function[30][28] .. 11

2.5.2 Validation Error ... 13

Chapter 3 Common Kernel Methods ... 15

3.1 Support Vector Machines ... 15

3.2 Mathematical treatment of SVMs ... 15

3.3 Problems with SVMs .. 18

Chapter 4 Least Square Support Vector Machines ... 19

vi

4.1 LS-SVMs for binary classification [43] ... 19

4.2 Multiclass classification for the LS-SVM .. 20

4.3 Problems with LS-SVM .. 20

Chapter 5 Optimization for the RBF Neural Network .. 22

5.1 One Pass Validation ... 22

5.2 Optimize Spread Parameter with Newton’s Method .. 22

5.3 Regularization .. 23

5.4 Output Reset (OR) ... 24

5.5 MKM Training Algorithm ... 25

Chapter 6 Simulation Results .. 26

Chapter 7 Conclusion and Future Work .. 29

Appendix A Description of Data Sets Used For Training, Validation and Testing 30

Appendix B Schmidt procedure ... 38

Appendix C Performance Evaluation of RBF Neural Network .. 43

Appendix D K-fold Cross Validation .. 45

References .. 47

Biographical Information .. 61

vii

List of Illustrations

Figure 1-1 A simple nonlinear neuron .. 1

Figure 1-2 Multilayer perceptron with one hidden layer ... 4

Figure 2-1 Structure of RBF Neural Network with bias .. 8

Figure 3-1 Structure of support vector machine ... 16

viii

List of Tables

Table 6- 1 Specification of datasets ... 33

Table 6- 2 Testing result after implement each techniques ... 33

Table 6- 3 Testing Performance comparison of MKM, LS-SVM, and SVM 34

Table 6- 4 Number of hidden units for MKM comparison of dataset .. 34

ix

List of Symbols

Symbol Definition

x Input vector

 𝐗p pth basis function

t Desired output vector

 𝐭p pth desired output vector

tp (i)

𝐲𝐩

ith element of 𝐭𝐩

actual output vector

 yp (i)

 𝐢c

 ic(p)

P

ith element of 𝐲𝐩

correct class vector

correct class number for pth pattern

row number in the data file

 Nv number of rows in data file

N Number of inputs

M Number of outputs

Nh

 Nc

Number of hidden units

number of classes

W output weight matrix

C

 w(i, k)

Constant

weight from the kth hidden unit to the

ith output

x

𝐦𝐤

R

C

 βk

kth center vector

auto correlation matrix

cross correlation matrix

spread parameter of the kth hidden

unit

xi

List of Acronyms

Acronym Definition

MLP Multi-Layer Perceptron

MSE Mean Squared Error

OR Output Reset

SVM

LS-SVM

Support Vector Machine

Least Square Support Vector Machine

1

Chapter 1

Introduction

1.1 Neural Network

 An artificial neural network(ANN) is an information processing model inspired by

biological nervous systems, such as the brain. The key element of the model is the novel

structure, it is composed of a huge number of highly interconnected processing nodes each

meant for solving specific problems. ANNs can learn from examples like a human. In a

nonlinear neuron, a structure called the synapse connects two nodes and each synapse has

an appropriate value called the synaptic weight. The synaptic weights are multiplied by the

input signal at the head of the synapse to obtain an output at the end of the synapse. There is

a summing junction called the net value of the neuron, which sums up the outputs of all the

synapses connected to it. The final output of a neuron can be obtained by the net value

through an activation function.

Figure 1-1 A simple nonlinear neuron

2

Artificial neural networks have been used in many fields, such as image

processing[1][67][68][69][70][71][75], control systems[2][76][77][78][79][80][81], medical image

analysis[3][82][83][84][85], prediction (such as predicting Stock Index or

cancers)[58][61][65][74][86][87][88] and pattern recognition (such as face detection and

finger detection) [4][72][73][89][90][91][92][93][94][95]. There are many applications of neural

networks in present day businesses[5][58][59][60][61][62][105]. Financial institutions are

developing superior neural network models for credit card risk and

bankruptcy[58][59][60][96][97][98][99]. Neural networks are used to forecast stock market

prices[62][100][101][102][103][104][105]. Oil and gas corporations are learning more from their

data by using neural networks to predict oil

PVT(pressure-volume-temperature)[64][106][107][108][109]. In the medical area, neural

networks technology can be used for classification and diagnostic prediction of

cancers[65][110][111][112][113][114][115].

1.2 Benefits of Neural Networks

Neural networks have the following useful properties and capabilities[9][10]:

1. Nonlinearity: An artificial neuron is nonlinear because of its activation function. A neural

network made up of such elements is also nonlinear. This property is extremely important,

especially when modeling nonlinear phenomenon [11, 12]

2. Input-Output Mapping: In supervised learning, the synaptic weights of a neural network can

be modified to reduce the error between the desired output and the actual output. The training

of the network is repeated for many patterns, until we can ignore the changes in the synaptic

weights. Thus the network learns from the training data by constructing an input-output

3

mapping[9]. So they are useful in regression analysis, such as time series prediction, fitness

approximation and modeling [13].

3.Adaptivity: Neural networks have the capability to adapt their synaptic weights to changes in

the surrounding environment. Particularly, a neural network trained to operate in a specific

environment can easily be retrained to deal with minor changes in the operating environmental

conditions[9].

4. Evidential Response: In the context of pattern recognition, a neural network based

classifiers can be designed to provide information not only about the predicted class of a

pattern, but also about confidence in the decision made[9]. This helps in eliminating

ambiguous patterns.

5. Contextual Information: Every neuron in the network is potentially affected by the activity of

all other neurons in the network. So, contextual information is dealt with naturally by neural

network[9].

6. Due to the highly distributed information stored in a neural network, the loss of or damage to

one neuron does not affect the performance of the whole network drastically[10]. There is a

graceful degradation in performance [14].

1.3 Common Types of Neural Networks

The well-known neural networks are the multi-layer perceptron (MLP)[116] and radial

basis function neural (RBF) network[25].

4

1.3.1 Multi-layer Perceptron(MLP)

The MLP consists of multiple layers of computational units, usually interconnected in a feed

forward way. The MLP has one or more hidden layers between the input layer and the output

layer. Usually, each neuron in one layer connects to all the neurons of the following layer.

Figure 1-2 Multilayer perceptron with one hidden layer

1.3.2. Radial Basis Function Networks

An RBF neural network is a three-layer feed forward network consisting of a single

hidden layer which uses radial basis activation functions (such as the Gaussian function)[9].

5

The RBF neural network has neurons with nonlinear RBF activations in the hidden layer and

linear summation activation functions in the output layer.

1.4 Kernel Machines

Kernel methods owe their name to the use of kernel functions, which enable them to

map a low-dimension space to a high-dimension space[118]. The main idea is[119]: the

integral point set which cannot be linearly segmented in a low dimensional space can be

linearly segmented if it is transformed to a high-dimensional space. In machine learning, kernel

methods are a class of algorithms for pattern analysis[120].

The most well-known kernel machine is the support vector machine (SVM) which can

be used for classification and regression analysis[15][42][118][121][122].

1.5 Research Motivation

SVMs are widely used in binary classification due to their simplicity of implementation.

However, they can also be used in regression problems and multi- class classification

problems. Although the SVM and LS-SVM [40][41][42][43][44] are available for multi-class

classification problems, available SVM and LS-SVM software[123] tools are complicated to

use for entry level users. The network parameters are not easy to select properly for good

performance and the training algorithms are not easily programmed and modified. Newton’s

method is not used to optimize the kernel parameters. The number of support vectors can be

extremely large, which results in the high computation[53]. Even though both the SVM and

LS-SVM can solve multiclass classification problems, their performance for multiclass

classification is not good enough[52][56][117]. Hence a different approach for designing kernel

machines is needed.

6

1.6 Organization of the thesis

In this thesis, we develop a training method for RBF based kernel machines for both binary

and multi-class classification. Chapter 2 reviews the structure, notation and training of

conventional RBF networks. Chapter 3 reviews the support vector machine algorithm and its

training. In chapter 4, we introduce a training method for the least square support vector

machine (LS-SVM). Finally, we discuss the SVM’s problems. In chapter 5, we improve RBF

training using a pruning method [28], Newton’s method, regularization [31], and output reset

method [57]. In chapter 6, we focus on the simulation results on several widely available data

files, and we make comparisons with the SVM and LS-SVM training algorithms. In chapter 7,

we present our conclusions and possible enhancements to this work.

7

Chapter 2

RBF Neural Network Review

2.1 Training Data

 The training data is a set of data consisting of input vectors and label vectors. The

training dataset consists of Nv training patterns {𝐱p, ic(p)}, 1≤p≤Nv, where 𝐱p is the pth

input vector with dimension N, and ic(p) is the pth desired output class label. ic(p) is

between 1 and M, where M is the total number of classes. The class label ic(p) is converted

to a desired output vector 𝐭p with dimension M as

 tp(i) = δ�i − ic(p)� 1 ≤ 𝑖 ≤ M (2.1)

xp(n) denotes the nth element of 𝐱p. So 𝐱p can be represented as

𝐱𝐩 = �xp(1), xp(2) … , xp(N)�T. tp(i) denotes the ith desired output for the pth input pattern. 𝐲p

denotes the actual output vector when x = 𝐱p, so yp(i) is the ithelement of 𝐲p. Nh is the

number of hidden units. W is the output weight matrix and w(i, k) is the output weight from the

kth hidden unit to the ith output unit.

2.2 RBF structure and operation

 The RBF neural network is a three layer feed forward neural network which has a single

hidden layer that uses radial basis activation functions (such as the Gaussian function) [9]. Its

layers are the input layer, hidden layer, and output layer. Each neuron in the input layer

connects to each neuron in the hidden layer, and each neuron in the hidden layer consists of a

radial basis function (e.g. Gaussian). The output layer has a weighted sum of outputs from the

hidden layer to form the network outputs.

8

Figure 2-1 Structure of RBF Neural Network with bias

For mapping 𝐱p to 𝐲p, we have the following steps

(1) Initially we have Nv center vector 𝐦k, which are equal to the input training vectors 𝐱k,

where k varies from 1 to Nv. βk is defined as the spread parameter, µk is defined as the

mean value of the elements of 𝐦𝐤. For the pth training pattern, d(𝐱p,𝐦k) is defined as the

2-norm distance between 𝐱p and 𝐦k[25]:

d(𝐱p,𝐦k) = �(xp(n) − mk(n))2

N

n=1

 (2.2)

(2) Initially, the hidden layer consist of the basis vector Xp of length Nh+1, where

Xp(1) = 1, and the remaining elements of 𝐗p are calculated from 𝐱p, the spread parameter

βk, and the center vector 𝐦k as:

9

 Xp(k + 1)=exp�−βkd(𝐱p,𝐦k)� k = 1,2 … Nh (2.3)

 (3) Calculate auto correlation matrix R and cross correlation matrix C

(4) Calculate weight matrix W by using R and C

(5) The hidden layer is fully connected to the output layer via output weights. The weights

which connect from each hidden unit to each output unit form a M × (Nh+ 1) weight matrix W,

and 𝐲p is calculated as:

yp(i) = � w(i, k)XP(k)

Nh+1

k=1

 (2.4)

or

 𝐲p = 𝐖 ∙ 𝐗p (2.5)

2.3 RBF Neural Network parameter initialization

Given the training data {𝐱p, 𝐭p}, initialize the center vectors as 𝐦k = 𝐱k for k between 1 to Nv.

We initialize βk as[9]

 βk = 1/(2N�(mk(n) − µk)2)

N

n=1

 (2.6)

where

µk = 1

N�mk(n)
N

n=1

 (2.7)

The error function of an RBF is measured using the Mean Square Error (MSE) as:

E =

1
Nv

� Ep

Nv

p=1

=
1

Nv
���tp(i) − yp(i)�2

M

i=1

Nv

p=1

 (2.8)

10

2.4 Optimal Output Weights

We consider a linear system mapping an (Nh + 1) dimensional hidden layer basis vector 𝐗p to

an M dimensional output vector 𝐲p. 𝐗p is obtained by equation (2.3).The (Nh + 1) × (Nh + 1)

auto correlation matrix R is defined as:

r(k, n) =

1
Nv

� Xp(k) ∙ Xp(n)
Nv

p=1

 (2.9)

The (Nh + 1) ×M cross-correlation matrix C is defined as:

c(k, i) =

1
Nv

� Xp(k) ∙ tp(i)
Nv

p=1

 (2.10)

The weight matrix W can be solved by the following steps:

1. Writing equation (2.8) in terms of elements of W:

E =

1
Nv

� Ep

Nv

p=1

=
1

Nv
���tp(i) − � w(i, k)

Nh+1

k=1

∙ Xp(k)�

2M

i=1

Nv

p=1

 (2.11)

Differentiating E with respect to the elements of W:

 ∂E
∂w(m, n)

=
−2
Nv

∙��tp(m) − � w(m, k)
Nh+1

k=1

∙ Xp(k)�
Nv

p=1

∙ Xp(n) (2.12)

Then we get:

 ∂E
∂w(m, n)

=
−2
Nv

∙��tp(m)Xp(n) − � w(m, k)
Nh+1

k=1

∙ Xp(k)Xp(n)�
Nv

p=1

 (2.13)

 ∂E
∂w(m, n)

=
−2
Nv

∙ �� tp(m)Xp(n)
Nv

p=1

− � �w(m, k) ∙� Xp(k)Xp(n)
Nv

p=1

�
Nh+1

k=1

� (2.14)

Writing equation (2.13) in terms of the auto correlation and cross correlation matrices we have:

 ∂E
∂w(m, n)

=
−2
Nv

∙��c(n, m) − � w(m, k)
Nh+1

k=1

∙ r(k, n)�
Nv

p=1

 (2.15)

11

For minimizing the mean square error, let the partial derivatives be zero. Then the equations

can be represented in a compact way as:

 𝐑 ∙ 𝐖T = 𝐂 (2.16)

2.5 Pruning Method

Initially, the center vectors 𝐦k are initialized as equal to the input vectors as 𝐦k = 𝐱k, where

k varies from 1 to Nh, and Nh = Nv . Thus, the number of the center vectors are very large

since Nv is usually large. In[28], the orthogonal least squares(OLS) method is employed as a

forward regression procedure[29] to select a suitable set of center vectors from a large set of

candidates. The procedure chooses basis functions one by one till an adequate network has

been chosen based on the analysis of residuals. In this thesis, we use the OLS developed in

[31] which acts on the correlation matrices. We choose the useful hidden units with a unique

one pass pruning-with-validation method which uses OLS[28][31].

2.5.1 Ordered Basis Function[30][28]

The aim of pruning is to eliminate the less useful hidden units, and keep the useful hidden

units which have information relevant for estimating outputs. Here, we use OLS[27][28] to

eliminate the less useful hidden units including those which are linearly dependent upon others.

The algorithm first optimally orders hidden units on the basis of their usefulness. We get the

orthonormal basis functions by the Schmidt procedure.

Let o(m) be the optimal order in terms of usefulness of the hidden units, so that o(m) specifies

the order in which raw basis function 𝐗k will be processed into orthonormal basis function 𝐗′i.

Nu is equal to Nh + 1. For ordered basis function, we get the mth orthonormal basis function

as, [28][30]

12

𝐗′m = � amk𝐗o(k)

m

k=1

 (2.17)

Initially, 𝐗′1 is found as a11𝐗o(1) where,

 a11 =
1

‖𝐗o(1)‖
=

1

[𝑟(o(1), o(1))]
1
2
 (2.18)

We get

ci = � aik

i

k=1

r(o(k), o(m)) for 2 ≤ m ≤ Nu (2.19)

We set bm = 1, then we have

bk = −� ciaik for 1 ≤ i ≤ m − 1

m−1

i=k

 (2.20)

amk = bk/ �r�o(m), o(m)� − � ci2

m−1

i=1

�

1
2

 for 1 ≤ k ≤ m − 1 (2.21)

wo

′(i, m) = � amk

m

k=1

c(i, o(k)) 1 ≤ k ≤ m
(2.22)

where 𝐖o
′ are the weights for the ordered basis functions. In order to find the most useful

basis function, we treat each basis function 𝐗k as if it were the first one, find wo
′(i, m) for all i,

and sum up squares of the wo
′(i, m), over i. If mo denotes the value of m yielding the largest

sum, then 𝐗mo is the most useful basis function.

The selection process will be used to optimally order the hidden units Nh + 1. We now define

notation to help us specify the candidate set of basis function to choose during ordering.

First define S(m) as the set of indices of chosen basis functions where m is the number of

hidden units. Then S(m) is given by

 S(m) = � { ∅ } for m = 0
{o(1), o(2), … , o(m)} for 0 < m ≤ Nh + 1 (2.23)

13

Let’s take o (1) =1, putting the threshold as a first hidden unit. The set of candidate basis

functions is clearly Sc(m) = {1,2, … , Nh + 1 } − S(1), so we get Sc(m) as:

 Sc(m) = {2, … , Nh + 1 } (2.24)

For 2 < m < Nh + 1, we get Sc(m − 1). For each trial value of o(m) belonging to Sc(m − 1) ,

perform operations of equation (2.19),(2.20),(2.21),(2.22). We define P(m) is :

P(m) = � wo

′(i, m)2
M

i=1

 (2.25)

The trial value of o(m) which maximizes P(m) is found. Assuming that P(m) is maximum when

testing the kth element, then o(m)=k. S(m) is updated as

 S(m) = S(m − 1) ∪ {o(m)} (2.26)

Then for the general case the candidate basis functions are

 Sc(m − 1) = {1,2, … , Nh + 1} − {o(1), o(2), … , o(m − 1)} (2.27)

By using equation (2.27) after testing all the candidate basis function, o(m) takes its value and

S(m) is updated according to equation(2.25). The process is repeated until m=Nh + 1, after the

complete o(m) function is obtained, both the original basis functions and the orthonormal ones

are ordered. Then the orthonormal weights are mapped to normal weights.

2.5.2 Validation Error

We use validation data to implement the pruning. Let yp(i, m) represent the ith output of the

network which is having m hidden units for the pth pattern, let Ne(m) represent the

misclassified validation patterns with m hidden units. Let Xp′(m) represent the mth ordered

orthonormal basis function. For 1 ≤ i ≤ M and 1 ≤ m ≤ Nh + 1, yp(i, m) is calculated as

 yp(i, 1) = w′(i, 1) ∙ Xp′(1) (2.28)

14

 yp(i, m) = yp(i, m − 1) + w′(i, m) ∙ Xp′(m) (2.29)

Define ic′ (m) = argmax1≤i≤M �yp(i, m)�.

Then Ne(m) is calculated as

 Ne(m) ← Ne(m) + �1 − δ�ic′ − ic(p)�� (2.30)

Let Pev represent the misclassification for the validation data with Nh + 1 hidden units, where

Pev is calculated as:

 Pev(m) =
Ne(m)

Nv
 (2.31)

Pev is calculated efficiently in one pass through the validation data. Define Nhd as the best

number of hidden units. Compute the validation error using the ordered basis functions and

validation data and find the Nhd
th hidden unit which gives the minimum Pev. So the first Nhd

hidden units are kept, the remaining units are pruned by deleting the last Nh + 1 − Nhd hidden

units.

15

Chapter 3

Common Kernel Methods

In this chapter, we will review support vector machine and its training algorithms.

3.1 Support Vector Machines

Support Vector Machines (SVMs)[36][37][38][39] are the most well-known learning

systems based on kernel methods for solving pattern recognition problems. They have been

shown to be effective for many classification problems[16][17][18][19]. In the method, the SVM

maps the data into a higher dimensional input space and constructs an optimal separating

hyperplane between the positive and negative classes with the maximal margin in the space.

3.2 Mathematical treatment of SVMs

Support vector machines have one output but two classes. The scalar output yp is

calculated as [21]

 yp = 𝐰T ∙ 𝐗p − b (3.1)

where the coefficient vector w is Nsv by 1 and b is a bias. The basis vector 𝐗p is Nsv by 1,

and 1 ≤ p ≤ Nsv. Assume support vectors make up the first Nsv patterns, so 𝐗P is a support

vector of dimension Nsv. The vector 𝐗P is generated from the N by 1 input vector 𝐱p as in

the MLP, but the activation function is different.

The support vectors are a subset of the basis vectors 𝐗P for which yp = tp.

16

Figure 3-1 Structure of support vector machine

Consider the binary classification task, where Nc = 2. We have a training set { 𝐱P, tp},

p=1,2, …, Nv. The equation of a decision surface in the form of a hyperplane is[25]:

 𝐰T ∙ 𝐗p − b = 0 (3.2)

where coefficient vector w is Nsv by 1, and b is a bias. Note that basis vectors 𝐗p which are

not support vectors satisfy (Nsv + 1) ≤ p ≤ Nv.

For a given weight vector w and bias b, the separation between the hyperplane and the

support vector is called the margin of separation[9]. Clearly, there are many possible

separating hyperplanes. The goal of a support vector machine is to find the particular

hyperplane for which the margin of separation is maximized.

From Vapnik’s statistical learning theory [23], for 1 ≤ p ≤ Nsv

 𝐰T ∙ 𝐗p − b ≥ 1 if tp = 1 (3.3)

17

 𝐰T ∙ 𝐗p − b ≤ −1 if tp = −1 (3.4)

The margin of separation between the upper bound and the lower bound is[22]:

2
∥𝐰∥

= 2
�𝐰T𝐰

 (3.5)

So, if we want to maximize the margin of separation 2
∥ 𝐰 ∥� , it is equivalent to minimizing

‖𝐰‖2.

The primal problem is[22]

min𝐸𝑠𝑠𝑠 =

1
2
‖𝐰‖2 + 𝐶�𝜉𝑝

Nv

𝑝=1

 (3.6)

where C is a user- specified positive parameter, and the ξp are called the slack variables.We

need to find the optimum values of the weight vector w, bias b and the slack variables ξp to

minimize Esvm. We can formulate the dual problem as follow:

Based on the Karush-Kuhn-Tucker theorem [15],we have the dual form for the constrained

optimization of a support vector machine as:

Given the training data { 𝐱P , tp }, p=1,2, …, Nv , find the Lagrange multipliers αp which

maximize the objective function

yp = �αp

Nv

p=1

−
1
2
��αpαktptkK�xp, xk�

Nv

k=1

Nv

p=1

 (3.7)

where K�xp, xk� = Xp(k) = exp (−�xp − xk�
2/(2𝜎k2))

subject to the constraints

�αp

Nv

p=1

yp = 0 (3.8)

 0 ≤ αp ≤ C (3.9)

18

where K�𝐱p, 𝐱k� is the RBF kernel function Xp(k) where 𝐦k = 𝐱k. Some common types of

support vector machines[52][128] are polynomial learning machine and radial-basis-function

network.

3.3 Problems with SVMs

SVMs are difficult for entry level users. The network parameters are not easy to select for good

performance and the training algorithms are not easily programmed or modified. The number

of support vectors can be extremely large, which results in a high computational load, and

SVMs can take a long time to train. Even though SVMs can be used for multiclass

classification problems, the results are often not satisfactory.

19

Chapter 4

Least Square Support Vector Machines

The Least Square Support Vector Machines(LS-SVMs) which is the least squares

formulation of SVM, has been proposed [40][41], which involves the equality constraints

only[42]. LS-SVMs are a set of supervised learning related methods which analyze data and

recognize patterns, and which are used for classification and regression analysis.

4.1 LS-SVMs for binary classification [43]

Given a training set { 𝐱P,p=1,2, …, Nv} and corresponding binary class labels tp ∈ {−1, +1},

Vapnik’s SVM classifier formulation was modified by Suykens[41] into the following LS-SVM

formulation:

min𝐸𝑙𝑙𝑙𝑙𝑙 =

1
2
‖𝐰‖2 + γ

1
2
�(ep

2)
Nsv

p=1

 (4.1)

subject to the equality constraints instead of inequality constraints.

 yp� 𝐰T𝐗p − b � = 1 − ep (4.2)

where γ is the regularization constant[66]. b is the output threshold parameter. ep are called

the slack variables[41]. Then, we construct the Lagrangian function with the Lagrange

multipliers as.

L(𝐰, b, 𝐞,𝛂) =

1
2
‖𝐰‖2 −�αp

Nv

p=1

�yp� 𝐰T𝐗p − b � − 1 + ep� (4.3)

where αp are the Lagrange multipliers, 𝐞 are called the slack variables. Differentiating

L(𝐰, b, 𝐞,𝛂) with respect to w, b, e and 𝛂 and equating to zero yields[66]

𝐰 = �αp

Nv

p=1

𝐗p (4.4)

20

�αp

Nv

p=1

= 0
(4.5)

 αp = γep (4.6)

 yp� 𝐰T𝐗p − b � − 1 + ep = 0 (4.7

After taking the conditions for optimality, the LS-SVM classifier with RBF kernel can be

constructed as follows:

yp = �αp

Nv

p=1

−
1
2
��αpαktptkK�xp, xk�

Nv

k=1

Nv

p=1

 (4.8)

where K�xp, xk� = Xp(k) = exp (−�xp − xk�
2/(2𝜎k2))

K�xp, xq� is the RBF kernel function Xp(k) where mk = xk.

4.2 Multiclass classification for the LS-SVM

Multiclass LS-SVMs have been proposed in [44], The task of an M-class classifier is to predict

the class label Cm, m =1,...,M, given a new input vector x. A popular way to solve the M class

problem is to reformulate the problem into a set of L binary classification

problems[44][45][46][47][48][49][50]. The first method is to construct M(M-1)/2 one-versus-one

binary classifiers, each classifier discriminating between each pair of classes[47][51]. In an

alternative approach [48], a minimal output coding(MOC), has been applied to solve the

multiclass problem with binary least square support vector machines, using L bits to encode up

to 2L classes. The one-versus-all and error correcting output codes(ECOC) approach also

can solve the multiclass problems in LS-SVM.

4.3 Problems with LS-SVM

The LS-SVM is difficult to use for entry level users. The network parameters are not easy to

select properly for good performance and the training algorithms are not easily generated and

21

programmed. The drawback of the LS-SVM[124] is that sparseness is lost in the LS-SVM

solution. In this case every data point is contributing to the model

and the relative importance of a data point is given by its support value. So the number of

support vectors can be extremely large, which results in the high computation, and LS-SVM

can take a long time to train. Even though LS-SVM can be used for multiclass classification

problems and gets better results than SVMs, the results are not good enough.

22

Chapter 5

Optimization for the RBF Neural Network

5.1 One Pass Validation

Our aim is to get a validation error Pev versus RBF hidden units which are the basis fucntions.

Calculating the error Pev over all hidden units from chapter 2, thus we generate the validation

mean square error versus the hidden units size curve in one pass through the validation data

set. Then, the pruning is completed with the following steps

 1. We need to find Nh_best, the numbers of hidden units which minimize the validation error.

2. We delete the ordered orthonormal basis functions after Nh_best, so 𝐗k′ only keeps the

first Nh_best units. We then set Nh = Nh_best.

3. Find 𝐗k from the 𝐗k′ and A matrices as 𝐗k = 𝐀−1𝐗k′ .

4. We rearrange RBF center vectors 𝐦k and βk in the same order, for 0 < k ≤ Nh.

5.2 Optimize Spread Parameter with Newton’s Method

The initial spread parameter cannot get good results. So after we prune the center vectors, we

can optimize the spread parameters βk . In chapter 2 we have initialized the spread

parameters and defined them as the inverse of the standard deviation of 𝐦k. We use the error

function as in (2.8). For the pth pattern, the kth hidden unit output is:

 Xp(k + 1)=exp�−βkd(𝐱p,𝐦k)� (5.1)

The output vector 𝐲p is the same as described in (2.5).

We calculate the gradient for 𝛃 as[127]:

gβ(k) =

−∂E
∂βk

=
2

Nv
���tp(i) − yp(i)� ∙

∂yp(i)
∂βk

M

i=1

Nv

p=1

 (5.2)

where

23

 ∂yp(i)
∂βk

= − � �w(i, k) ∙ Xp(k) ∙ (xp(n) − mk(n))2
N

n=1

Nh+1

k=1

 (5.3)

Combining (5.29) and (5.30), we get 𝐠β. Then we can get the Hessian matrix element as:

hβ(u, v) =

∂2E
∂βu ∂βv

=
2

Nv
���

∂yp(i)
∂βu

∙
∂yp(i)
∂βv

M

i=1

�
Nv

p=1

 (5.4)

We get the following equation

 𝐇β ∙ 𝐳 = 𝐠β (5.5)

Solving by using OLS, we can get z, βk can be updated as

 βk ← βk + zk (5.6)

5.3 Regularization

If too many hidden units are used, RBF neural network may result in poor performance

because of overfitting[126]. One method to solve the overfitting problem is to use

regularization [31] as in SVM design. We have the error function of (2.8), now we add a weight

penalty to the error function as:

E =

1
Nv

���tp(i) − yp(i)�2 + λ ∥ 𝐰 ∥2
M

i=1

Nv

p=1

=
1

Nv
���tp(i) − � w(i, k)

Nh+1

k=1

∙ Xp(k)�

2M

i=1

Nv

p=1

+ λ ∥ 𝐰 ∥2

(5.7)

Differentiating E with respect to the elements of 𝐰, and writing equation in terms of the auto

correlation and cross correlation matrices we have:

 ∂E
∂w(m, n)

 =
−2
Nv

∙��c(n, m) − � w(m, k)
Nh+1

k=1

∙ r(k, n)� + 2 𝜆 w(m, n)
Nv

p=1

 (5.8)

For minimizing the mean square error E, we equate the derivative to be zero, then the

equations can be represented in a compact way as:

24

 𝐂 − 𝐑 ∙ 𝐖T = λ𝐖 (5.9)

or

 𝐖 = (𝐑 + λ𝐈)−𝟏𝐂 (5.10)

We then minimize Ev with respect to λ, where Ev is the validation error using the

regularization.

5.4 Output Reset (OR)

OR is an algorithm that we use to prevent distortion of class boundaries. Each of the individual

outputs could perform better than expected or worse and some of them might still be

memorized. As an example suppose we have uncoded outputs for a multiclass classifier. If

instead of being 1 or -1, the correct class output is 1.5 which is better than expected for

positive class, then In that case OR would not count that as an error. It would be the same

case for a negative class, if the output is -1.5. However, for the incorrect class, if the output is

0.7, OR will not affect it and will count as error.

The output reset algorithm [57] [125]can minimize the training error.

E =

1
Nv

���tp(i) − yp(i)�2
M

i=1

Nv

p=1

 (5.11)

In the basic OR algorithm[57][125], first, we set the desired output equal to the actual output

when the output has the correct sign but is larger than 1 in magnitude, or when the output has

the incorrect sign but is smaller than -1. ic denotes the correct class number for the current

training pattern, id denotes the incorrect class number for the pattern. M is the number of

class. Then the error function E′ can be presented as

E′ = ���t′p(i) − yp(i)�2

M

i=1

Nv

p=1

 (5.12)

25

For the correct class,

 if yp(ic) ≥ tp(ic) , then tp(ic) = yp(ic) (5.13)

For the incorrect class,

 if tp(id) ≥ yp(id) , then tp(id) = yp(id) (5.14)

Finally, tp(i) is replaced by t′p(i), and the error function used in optimizations becomes E′.

5.5 MKM Training Algorithm

The training algorithm consists of the following steps:

Given training data, validation data, and testing data.

1. Initialize RBF neural network, get Nh, βk, 𝐦k, R, C, W,

2. Use validation data to do pruning, then we get updated 𝐦k, βk, Nh, W

3. Calculate Pe1 which is the misclassification error probability of the validation data using the

initialized β1 which is the same as βk after pruning

4. Optimize βk using Newton’s method and output reset method, obtain optimized beta as β2.

Calculate Pe2 which is the misclassification of validation data using the β2.

5. Compare Pe1 and Pe2, select β1 or β2 which has the minimum validation error.

6. Find λ for of regularization by using validation data

7. Put training data and validation data together to from a new training data. Use λ and OR

to do output weights optimization.

8. Calculate the actual outputs.

26

Chapter 6

Simulation Results

In this chapter, the results of the MKM algorithm, SVM, LS-SVM are compared. All the

simulations shown in this chapter are run in Matlab 2014.

The binary datasets we used can be classified in two groups. One is Diabetes that has 8 inputs

and 768 patterns. On the other hand Heart which has 13 inputs which has higher input

dimension but 270 patterns which has smaller data size. Next we investigate the performance

on multiclass datasets, Iris which has 150 patterns, 2 inputs and 3 classes is small size and

low input dimension. Image segment which has 2310 patterns, 19 inputs and 7 classes has

large data size and high dimension of inputs. Grng which has 800 patterns, 16 inputs and 4

classes has medium data size but high input dimensions. Ecoli which has 336 patterns, 7

inputs and 8 classes has small data size and medium input dimensions. Vowel which has 990

patterns, 10 inputs but 11 classes has medium data size and input dimension but having the

most classes. Table 6.1 summarizes the specifications of the datasets in detail. Table 6.2

shows the testing result after implement each technique. Table 6.3 and 6.4 summarize the

k-fold testing performance of the proposed algorithm with other comparable algorithms.

27

Table 6- 1 Specification of datasets

Dataset Data size Nc N Nv for
training

Nv for
validation

Nv for
testing

Diabetes 768 2 8 691 77 138

Heart 270 2 13 243 27 49

Iris 150 3 4 135 15 13

Grng 800 4 16 720 80 216

IS 2310 7 19 2079 231 416

Ecoli 336 8 7 302 34 30

Vowel 990 11 10 891 99 178

Table 6- 2 Testing result after implement each techniques

Dataset Initialization
Success Rate

Pruning
Success Rate

Optimizeβ
Success Rate

Regularization
Success Rate

Output reset
Success Rate

Diabetes 54.95 73.95 73.95 73.95 74.86

Heart 48.15 74.45 74.45 74.45 74.45

Iris 61.33 96.67 96.67 96.67 98

Grng 28.375 96.375 96.375 96.5 96.625

IS 16.80 96.88 96.88 96.88 97.23

Ecoli 26.67 80.18 80.18 80.76 83.12

Vowel 99.09 99.09 99.09 99.09 99.19

28

Table 6- 3 Testing Performance comparison of MKM, LS-SVM, and SVM

Dataset MKM
Success Rate (%)

LS-SVM
Success Rate (%)

SVM
Success Rate (%)

Diabetes 74.86 65.11 65.11

Heart 74.45 55.56 55.66

Iris 98 94.67 97.33

Grng 96.625 95.875 95.88

IS 97.23 95.671 61.08

Ecoli 83.12 80.81 75.98

Vowel 99.19 97.68 89.29

Table 6- 4 Number of hidden units for MKM comparison of dataset

Dataset MKM Initial
Nh

MKM Final
Nh

LSSVM
NLS−SVM

SVM
NSVM

Diabetes 553 27.4 691 691

Heart 194 36.6 243 243

Iris 122 5.1 135 41.8

Grng 504 219 720 350.7

Image
Segmentation

1663 256.4 2079 1987.4

Ecoli 272 33.3 302 220.1

Vowel 713 325.9 891 771

29

Chapter 7

Conclusion and Future Work

In the thesis, RBF neural network basis functions are pruned, spread parameters are

optimized by Newton’s method and regularization is used for avoid overfitting. Pruning method

for basis functions is an improvement over the existing training algorithms. After pruning, we

only keep the useful basis functions, so we get fewer support vectors than SVM and LSSVM

training methods. The testing errors on all data we present are smaller than SVM and LSSVM

training algorithms. The MKM training algorithm is not only simple but also powerful since it

requires fewer numbers of hidden units. We can successfully use it to train small but powerful

networks for both the two classes and multi-class cases. Although, the proposed training

algorithm performs well on small and medium size of data, it has problems with datasets

having thousands of patterns.

30

Appendix A

Description of Data Sets Used For Training, Validation and Testing

31

Ⅰ. Pima Indians Diabetes (8 inputs, 2 classes, 768 patterns)

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

This data received on 9 May 1990, the original owners are National Institute of Diabetes and

Digestive and Kidney Diseases.

For each feature :(all numeric-valued)

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)^2)

7. Diabetes pedigree function

8. Age (years)

9. Class variable (0 or 1)

Class Distribution: (class value 1 is interpreted as "tested positive for diabetes")

Ⅱ. Heart (13 inputs, 2 classes, 270 patterns)

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

For each feature :(all numeric-valued):

1. age

2. sex

3. chest pain type (4 values)

32

4. resting blood pressure

5. serum cholesterol in mg/dl

6. fasting blood sugar > 120 mg/dl

7. resting electrocardiographic results (values 0,1,2)

8. maximum heart rate achieved

9. exercise induced angina

10. old peak = ST depression induced by exercise relative to rest

11. the slope of the peak exercise ST segment

12. number of major vessels (0-3) colored by flourosopy

13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

14. Class variable (0 or 1)

Class Distribution: (class value 2 is interpreted as "heart disease")

Ⅲ. Iris (4 inputs, 3 classes, 150 patterns)

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Iris

(a) Creator: R.A. Fisher

(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

(c) Date: July, 1988

This data set contains 3 classes of 50 instances each, where each class refers to a type of iris

plant.

For each feature:(all numeric-valued)

1. sepal length in cm

33

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class variable (1,2,3)

Class Distribution: (class value 1 is interpreted as Iris Setosa, class value 2 is interpreted as

Iris Versicolour, class value 3 is interpreted as Iris Virginica)

Ⅳ. Grng (16 inputs, 4 classes, 800 patterns)

Source from IPNNL LAB, UT Arlington, TX:

http://www.uta.edu/faculty/manry/new_classification.html

The geometric shape recognition data file consists of four geometric shapes, ellipse, triangle,

quadrilateral, and pentagon. Each shape consists of a matrix of size 64*64. For each shape,

200 training patterns were generated using different degrees of deformation. The deformations

included rotation, scaling, translation, and oblique distortions. The feature set is ring-wedge

energy (RNG), and has 16 features.

Ⅴ. Ecoli (7 inputs, 8 classes, 336 patterns)

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Ecoli

Creator and Maintainer:

Kenta Nakai

Institue of Molecular and Cellular Biology Osaka, University 1-3 Yamada-oka, Suita 565 Japan

nakai@imcb.osaka-u.ac.jp http://www.imcb.osaka-u.ac.jp/nakai/psort.html

mailto:nakai@imcb.osaka-u.ac.jp

34

Donor: Paul Horton (paulh@cs.berkeley.edu)

Date: September, 1996

Inputs information:

1. mcg: McGeoch's method for signal sequence recognition.

2. gvh: von Heijne's method for signal sequence recognition.

3. lip: von Heijne's Signal Peptidase II consensus sequence score.

4. chg: Presence of charge on N-terminus of predicted lipoproteins.

5. aac: score of discriminant analysis of the amino acid content of outer membrane and

periplasmic proteins.

6. alm1: score of the ALOM membrane spanning region prediction program.

7. alm2: score of ALOM program after excluding putative cleavable signal regions from the

sequence.

Class Distribution: class value 1 is interpreted as cytoplasm (cp), class value 2 is interpreted

as inner membrane without signal sequence (im), class value 3 is interpreted as inner

membrane, cleavable signal sequence (imS), class value 4 is interpreted as inner membrane

lipoprotein (imL), class value 5 is interpreted as inner membrane, uncleavable signal

sequence(imU), class value 6 is interpreted as outer membrane (om), class value 7 is

interpreted as outer membrane lipoprotein (omL), class value 8 is interpreted as perisplasm

(pp).

Ⅵ. Image Segmentation (19 inputs, 7 classes, 2310 patterns)

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Image+Segmentation

35

Creators: Vision Group, University of Massachusetts

Donor: Vision Group (Carla Brodley, brodley@cs.umass.edu)

Date: November, 1990

Relevant Information:

The instances were drawn randomly from a database of 7 outdoor images. The images were

hand segmented to create a classification for every pixel.

Inputs Information:

1. region-centroid-col: the column of the center pixel of the region.

2. region-centroid-row: the row of the center pixel of the region.

3. region-pixel-count: the number of pixels in a region = 9.

4. short-line-density-5: the results of a line extractoin algorithm that counts how many lines

of length 5 (any orientation) with low contrast, less than or equal to 5, go through the

region.

5. short-line-density-2: same as short-line-density-5 but counts lines of high contrast,

greater than 5.

6. vedge-mean: measure the contrast of horizontally adjacent pixels in the region. There

are 6, the mean and standard deviation are given. This attribute is used as a vertical edge

detector.

7. vegde-sd: (see 6)

8. hedge-mean: measures the contrast of vertically adjacent pixels. Used for horizontal

line detection.

9. hedge-sd: (see 8).

36

10. intensity-mean: the average over the region of (R + G + B)/3

11. rawred-mean: the average over the region of the R value.

12. rawblue-mean: the average over the region of the B value.

13. rawgreen-mean: the average over the region of the G value.

14. exred-mean: measure the excess red: (2R - (G + B))

15. exblue-mean: measure the excess blue: (2B - (G + R))

16. exgreen-mean: measure the excess green: (2G - (R + B))

17. value-mean: 3-d nonlinear transformation of RGB. (Algorithm can be found in Foley and

VanDam, Fundamentals of Interactive Computer Graphics)

18. saturatoin-mean: (see 17)

19. hue-mean: (see 17)

Class Distribution:

Classes: brick face, sky, foliage, cement, window, path, grass.

Ⅶ. Vowel (10 inputs, 11 classes, 990 patterns)

This data is the speaker independent recognition of the eleven steady state vowels

of British English

Source from UCI:

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deter

ding+Data%29

David Deterding (data and non-connectionist analysis)

Mahesan Niranjan (first connectionist analysis)

37

Tony Robinson (description, program, data, and results)

Maintainer: Scott E. Fahlman, CMU

38

Appendix B

Schmidt procedure

39

Schmidt procedure

The Schmidt procedure [27][28][29] maps the inputs into an orthonormal system which speeds

up the computation of weights. For un-ordered basis functions x of dimension Nu, the mth

orthonormal basis function x′m is defined as [26][27]:

x′m = � amkxk
m

k=1

Where A is a lower triangular Nu by Nu orthonormal matrix, and Nu equals to Nh + 1.

Initially , x′1 is found as a11x1 , where

a11 =
1

‖x1‖
=

1

[𝑟(1,1)]
1
2

For 2 ≤ m ≤ Nu, we first perform

ci = � aik

𝐢

k=1

r(k, m)

For 1 ≤ i ≤ m-1. Second, we set bm = 1 and get:

bk = −� ciaik
m−1

i=k

For 1 ≤ k ≤ m-1. Finally, we get coefficients amk for the lower triangular matrix A as:

amk = bk/ �r(m, m) − � ci2
m−1

i=1

�

1
2

Then we can get x′m by using equation (3.18),

Once we get the orthonormal basis functions, the linear mapping weights in the orthonormal

system can be simply found as:

w′(i, m) = � amk

m

k=1

c(i, k) 1 ≤ i ≤ M

Finally, we can get original system output weights W from orthonormal output weights 𝐖′ by:

40

w(m, k) = � amk

Nu

m=k

w′(i, m)

Ordered Basis Function

The raw basis functions X(n) will be reordered as Xo(n) which denotes the nth most useful

basis function. Define o(n) is the ordered function which is the index of the nth most useful

basis function. Then Xo(n) = X(o(n)) for 1 ≤ n ≤ Nu.

For 𝐗o , we can have [33]

𝐗o = 𝐓𝐓

or

Xo(n) = � t(n, k) ∙ X(k)
Nu

k=1

where T is a matrix which can simply reorder the elements of X. We consider T is the identity

matrix I with its kth and mth rows switched if T forces X(k) and X(m) to change places. The

mth row nth column of I is δ(m-n). Clearly, t(n,o(n)) = 1 and other t(n,k) coefficients on the nth

row of T are zeros.

The output vector y satisfies [21][33]:

𝐲 = 𝐖𝐖 = 𝐖o𝐗o = 𝐖o
′𝐗′

Where the weight matrix for the unordered orthonormal system is

𝐖′ = 𝐂T𝐀T

For ordered basis functions, we have

𝐗o = 𝐓𝐓

and

41

𝐗′ = 𝐀𝐗o

Then we get,

𝐖 = 𝐖o𝐓

𝐖o = 𝐖o
′𝐀

Next, we get output weight matrix for original system as:

𝐖 = 𝐖𝐨
′𝐀𝐀

For the ordered correlation matrices,

𝐑o = 𝐓𝐓𝐓𝐓

𝐂o = 𝐓𝐓

For the ordered basis function of orthonormal system, the weight matrix is:

𝐖o
′ = 𝐂oT𝐀T

Finally we get the output weight matrix for original system as:

𝐖 = 𝐂oT𝐀T𝐀𝐀

Orthonormal system outputs weight are then generated as

wo
′(i, n) = � c(o(k), i) ∙ a(n, k)

Nu

k=1

An element of T is:

t(n, k) = δ�k − o(n)�

We get

at(k, n) = � a(k, u) ∙ δ�n − o(u)�
Nu

u=1

where at(k,n) is an element of AT.

Then we map 𝐖o
′ back to W, we have

42

w(i, n) = �wo
′(i, k) ∙ at(k, n)

Nu

k=1

Replacing at(k,n), we get

w(i, n) = �wo
′(i, k)� a(k, u) ∙ δ�n − o(u)�

Nu

u=1

Nu

k=1

Replacing n by o(n), we get

w(i, o(n)) = �wo
′(i, k)� a(k, u) ∙ δ�o(n) − o(u)�

Nu

u=1

Nu

k=1

Simplify the equation, we get

w(i, o(n)) = �wo
′(i, k)� a(k, u) ∙ δ(n − u)

Nu

u=1

Nu

k=1

Finally, we get the output weights for original system as:

w(i, o(n)) = �wo
′(i, k) ∙ a(k, n)

Nu

k=1

43

Appendix C

Performance Evaluation of RBF Neural Network

44

Performance Evaluation of RBF Neural Network

1. Training error: Training error is defined as the average error produced by the network

when it is subjected to all the patterns that it was trained on.

2. Validation error: Validation error is the average error produced by the network when it is

made to process new data not seen during training.

The training error is usually smaller than the validation error, since the network is already

optimized to reduce the error by the validation data during training.

3. Testing error: Testing error is defined as the average error produced by the trained

network testing on the test data.

45

Appendix D

K-fold Cross Validation

46

K-fold Cross Validation

We use k-fold validation technique for estimating the performance of RBF based classifier.

Given a single data set, we run a single k-fold validation process as follow:

1. Randomly divide data set into k disjoint subsets of equal size where 1 ≤ k ≤ K.

2. for i=1…k, train and validate the classifier using all data which do not belong to fold i.

3. Test the classifier using the fold i.

4. Calculate Ek, the number of patterns in fold i which got wrong classification during training.

Calculate Evk, the number of patterns in fold i which got wrong classification during

validation. Calculate Etk, the number of patterns in fold i which got wrong classification

during testing.

5. Repeat the process from step one to step four choosing another i.

To obtain an satisfied accuracy of the classifier, we repeat the k-fold validation for several

times. The average of the k training misclassification Petrain, validation misclassification

Pevalidation and testing misclassification Petest are:

Petrain =
Etrain

number of training patterns

 Pevalidation =
Evalidation

number of validation patterns

Petest =
Etest

number of testing patterns

where Etrain, Evalidation and Etest are defined as

Etrain =
1
K
�Ek

K

k=1

 Evalidation =
1
K
�Evk

K

k=1

Etest = 1
K
∑ Etk K
k=1

47

References

[1] M. Egmont-Petersena , D. de Ridderb and H. Handelsc, “Image processing with neural

networks—a review”, The Journal of The Pattern Recognition Society, 21 August 2011.

[2] Derrick H.Nguyen and Bernard Widrow, “Neural Networks for Self-Learning Control

Systems”, IEEE Control Systems Magazine, April 1990.

[3] J.Jiang, P.Trundle and J.Ren, “Medical image analysis with artificial neural networks” ,

journal of Computerized Medical Imaging and Graphics, July 2010.

[4] Soumitro Swapan Auddy, “Discriminant Processing in License Plate Recognition”, Thesis

presented at UT Arlington, December 2013.

[5] Eldon.Y.Li,” Artificial neural networks and their business applications”, journal of

Information & Management, 1994.

[6] M. W. Craven and J. W. Shavlik. (1997, Using neural networks for data mining.

FGCS.Future Generations Computer Systems 13(2-3), pp. 211-229.

[7] H. Lu, R. Setiono and H. Liu. (1996, Effective data mining using neural networks. IEEE

Trans. Knowled. Data Eng. 8(6), pp. 957-961.

[8] S. Lawrence, C. L. Giles, A. C. Tsoi and A. D. Back. (1997, Face recognition: A

convolutional neural-network approach. IEEE Trans. Neural Networks 8(1), pp. 98-113.

[9] S. Haykin. (Neural Networks and learning machines, third edition).

[10] Rohit Rawat, “An Effective Piecewise Linear Network,” Thesis presented at UT

Arlington, pp. 1-8, December 2009.

[11] F. L. Lewis, S. Jagannathan and A. Yeşildirek. (1998, Neural Network Control of Robot

Manipulators and Nonlinear Systems.

48

[12] S. Chen and S. A. Billings. Neural networks for non-linear dynamic system modelling and

identification. Advances in Intelligent Control

[13] T. Y. Kwok and D. Y. Yeung. (1997, Constructive algorithms for structure learning in

feedforward neural networks for regression problems. IEEE Trans. Neural Networks

[14] C. H. Sequin and R. D. Clay. Fault tolerance in artificial neural networks. Presented at

Neural Networks, 1990., 1990 IJCNN International Joint Conference on.

[15] Chang, Chih-Chung, and Chih-Jen Lin. "LIBSVM: a library for support vector machines."

ACM Transactions on Intelligent Systems and Technology (TIST) 2.3 (2011): 27.

[16] Ye, Jieping, and Tao Xiong. "SVM versus least squares SVM." International Conference

on Artificial Intelligence and Statistics. 2007.

[17] Burges, Christopher JC. "A tutorial on support vector machines for pattern recognition."

Data mining and knowledge discovery 2.2 (1998): 121-167.

[18] Christiannini, N., and J. Shawe-Taylor. "Support vector machines and other kernel-based

learning methods." (2000).

[19] Schoslkopf, Bernhard, and Alexander Smola. "Learning with Kernels, Support Vector

Machines." (2002).

[20] Vapnik, Vladimir. The nature of statistical learning theory. Springer Science & Business

Media, 2000.

[21] Michael T. Manry, “Pattern Recognition II”, IPNNL UT Arlington, 2013

[22] Chih-Jen Lin,“Support Vector Machines for Data Classification ”, National Taiwan

University, 2004

49

[23] Vapnik, Vladimir Naumovich, and Vlamimir Vapnik. Statistical learning theory. Vol. 1. New

York: Wiley, 1998.

[24] Fletcher, Roger. Practical methods of optimization. John Wiley & Sons, 2013

[25] S. Haykin, Neural Networks: A Comprehensive Foundation, by, Macmillan Publishing

Company, Inc.,1994

[26] J. W. Dettman. (1988, Mathematical Methods in Physics and Engineering.

[27] Maldonado, F. J., and M. T. Manry. "Optimal pruning of feedforward neural networks

based upon the Schmidt procedure." Signals, Systems and Computers, 2002. Conference

Record of the Thirty-Sixth Asilomar Conference on. Vol. 2. IEEE, 2002.

[28] Chen, Sheng, Colin FN Cowan, and Peter M. Grant. "Orthogonal least squares learning

algorithm for radial basis function networks." Neural Networks, IEEE Transactions on 2.2

(1991): 302-309.

[29] Chen, Sheng, Stephen A. Billings, and Wan Luo. "Orthogonal least squares methods and

their application to non-linear system identification." International Journal of control 50.5

(1989): 1873-1896.

[30] Rawat, Rohit, Jignesh K. Patel, and Michael T. Manry. "Minimizing validation error with

respect to network size and number of training epochs." Neural Networks (IJCNN), The 2013

International Joint Conference on. IEEE, 2013.

[31] Maldonado, F. J., M. T. Manry, and Tae-Hoon Kim. "Finding optimal neural network basis

function subsets using the Schmidt procedure." Neural Networks, 2003. Proceedings of the

International Joint Conference on. Vol. 1. IEEE, 2003.

50

[32] Narasimha, Pramod L., et al. "An integrated growing-pruning method for feedforward

network training." Neurocomputing 71.13 (2008): 2831-2847.

[33] Michael T. Manry, “OLS for Ordered Basis Functions”, IPNNL UT Arlington, 2014

[34] Narasimha, Pramod Lakshmi, et al. "Fast Generation of a Sequence of Trained and

Validated Feed-Forward Networks." FLAIRS Conference. 2006.

[35] Orr, Mark JL. "Regularization in the selection of radial basis function centers."Neural

computation 7.3 (1995): 606-623.

[36] Schölkopf, Bernhard, and Christopher JC Burges. Advances in kernel methods: support

vector learning. MIT press, 1999.

[37] Vapnik, Vladimir. The nature of statistical learning theory. Springer Science & Business

Media, 2013.

[38] Vapnik, Vladimir Naumovich, and Vlamimir Vapnik. Statistical learning theory. Vol. 1. New

York: Wiley, 1998.

[39] Vapnik, Vladimir. "The support vector method of function estimation." Nonlinear Modeling.

Springer US, 1998. 55-85.

[40] Van Gestel, Tony, et al. "Benchmarking least squares support vector machine

classifiers." Machine Learning 54.1 (2004): 5-32.

[41] Suykens, Johan AK, and Joos Vandewalle. "Least squares support vector machine

classifiers." Neural processing letters 9.3 (1999): 293-300.

[42] Ye, Jieping, and Tao Xiong. "SVM versus least squares SVM." International Conference

on Artificial Intelligence and Statistics. 2007.

51

[43] Baesens, B., et al. "An initial approach to wrapped input selection using least squares

support vector machine classifiers: some empirical results."Proceedings of the Twelfth

Belgium-Netherlands Conference on Artificial Intelligence (BNAIC). 2000.

[44] Suykens, Johan AK, and Joos Vandewalle. "Multiclass least squares support vector

machines." Neural Networks, 1999. IJCNN'99. International Joint Conference on. Vol. 2. IEEE,

1999.

[45] Allwein, Erin L., Robert E. Schapire, and Yoram Singer. "Reducing multiclass to binary: A

unifying approach for margin classifiers." The Journal of Machine Learning Research 1 (2001):

113-141.

[46] Dietterich, Thomas G., and Ghulum Bakiri. "Solving multiclass learning problems via

error-correcting output codes." Journal of artificial intelligence research (1995): 263-286.

[47] Hastie, Trevor, Robert Tibshirani, and Andreas Buja. "Flexible discriminant analysis by

optimal scoring." Journal of the American statistical association89.428 (1994): 1255-1270.

[48] Platt, John C., Nello Cristianini, and John Shawe-Taylor. "Large Margin DAGs for

Multiclass Classification." nips. Vol. 12. 1999.

[49] Sejnowski, Terrence J., and Charles R. Rosenberg. "Parallel networks that learn to

pronounce English text." Complex systems 1.1 (1987): 145-168.

[50] Utschick, Wolfgang. "A regularization method for non-trivial codes in polychotomous

classification." International Journal of Pattern Recognition and Artificial Intelligence 12.04

(1998): 453-474.

[51] Kreßel, Ulrich H-G. "Pairwise classification and support vector machines."Advances in

kernel methods. MIT Press, 1999.

52

[52] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

[53] Colmenarez, Antonio, Brendan Frey, and Thomas S. Huang. "Detection and tracking of

faces and facial features." Image Processing, 1999. ICIP 99. Proceedings. 1999 International

Conference on. Vol. 1. IEEE, 1999.

[54] Maglaveras, Nicos, et al. "ECG pattern recognition and classification using non-linear

transformations and neural networks: a review." International journal of medical

informatics 52.1 (1998): 191-208.

[55] Wang, Haifeng, and Dejin Hu. "Comparison of SVM and LS-SVM for regression." Neural

Networks and Brain, 2005. ICNN&B'05. International Conference on. Vol. 1. IEEE, 2005.

[56] Mathur, A., and G. M. Foody. "Multiclass and binary SVM classification: Implications for

training and classification users." Geoscience and Remote Sensing Letters, IEEE 5.2 (2008):

241-245.

[57] Li, Jiang, Michael T. Manry, Li-Min Liu, Changhua Yu, and John Wei. "Iterative

Improvement of Neural Classifiers." FLAIRS Conference. 2004.

[58] Odom, Marcus D., and Ramesh Sharda. "A neural network model for bankruptcy

prediction." 1990 IJCNN International Joint Conference on neural networks. 1990.

[59] Koster, A., N. E. Sondak, and W. Bourbia. "A business application of artificial neural

network systems." J. COMP. INF. SYST. 31.2 (1991): 3-9.

[60] Salchenberger, Linda M., E. Cinar, and Nicholas A. Lash. "Neural networks: A new tool for

predicting thrift failures*." Decision Sciences 23.4 (1992): 899-916.

53

[61] Chen, An-Sing, Mark T. Leung, and Hazem Daouk. "Application of neural networks to an

emerging financial market: forecasting and trading the Taiwan Stock Index." Computers &

Operations Research 30.6 (2003): 901-923.

[62] Lawrence, Ramon. "Using neural networks to forecast stock market prices."University of

Manitoba (1997).

[63] NeuralWare, Inc. Pushing the Frontiers of Neural Computing. NeuralWare, Inc,

Pittsburgh,PA (1991) (Available from NeuralWare, Inc., Penn Center West, Building IV, Suite

227, Pittsburgh,PA 15276, Tel: 412-787-8222.)

[64] Guardado, J. L., et al. "A comparative study of neural network efficiency in power

transformers diagnosis using dissolved gas analysis." Power Delivery, IEEE Transactions

on 16.4 (2001): 643-647.

[65] Khan, Javed, et al. "Classification and diagnostic prediction of cancers using gene

expression profiling and artificial neural networks." Nature medicine 7.6 (2001): 673-679.

[66] De Brabanter, Kris. "Least squares support vector regression with applications to

large-scale data: a statistical approach." Faculty of Engineering, KU Leuven, Katholieke

Universiteit Leuven (2011).

[67] Parisi, R., et al. "Car plate recognition by neural networks and image processing." Circuits

and Systems, 1998. ISCAS'98. Proceedings of the 1998 IEEE International Symposium on.

Vol. 3. IEEE, 1998.

[68] Koval, V., et al. "Smart license plate recognition system based on image processing using

neural network." Intelligent Data Acquisition and Advanced Computing Systems: Technology

54

and Applications, 2003. Proceedings of the Second IEEE International Workshop on. IEEE,

2003.

[69] Zhou, Yi-Tong, et al. "Image restoration using a neural network." Acoustics, Speech and

Signal Processing, IEEE Transactions on 36.7 (1988): 1141-1151.

[70] Daugman, John G. "Complete discrete 2-D Gabor transforms by neural networks for

image analysis and compression." Acoustics, Speech and Signal Processing, IEEE

Transactions on 36.7 (1988): 1169-1179.

[71] Kulkarni, Arun D. Artificial neural networks for image understanding. John Wiley & Sons,

Inc., 1993.

[72] Lawrence, Steve, et al. "Face recognition: A convolutional neural-network

approach." Neural Networks, IEEE Transactions on 8.1 (1997): 98-113.

[73] Carpenter, Gail A. "Neural network models for pattern recognition and associative

memory." Neural networks 2.4 (1989): 243-257.

[74] Zhang, G. Peter. "Time series forecasting using a hybrid ARIMA and neural network

model." Neurocomputing 50 (2003): 159-175.

[75] Dony, Robert D., and Simon Haykin. "Neural network approaches to image

compression." Proceedings of the IEEE 83.2 (1995): 288-303.

[76] Lin, Chin-Teng, and CS George Lee. "Neural-network-based fuzzy logic control and

decision system." Computers, IEEE Transactions on 40.12 (1991): 1320-1336.

[77] Hunt, K. Jetal, et al. "Neural networks for control systems—a survey."Automatica 28.6

(1992): 1083-1112.

55

[78] Tanaka, Kazuo. "An approach to stability criteria of neural-network control

systems." Neural Networks, IEEE Transactions on 7.3 (1996): 629-642.

[79] Narendra, Kumpati S., and Kannan Parthasarathy. "Identification and control of dynamical

systems using neural networks." Neural Networks, IEEE Transactions on 1.1 (1990): 4-27.

[80] Nguyen, Derrick H., and Bernard Widrow. "Neural networks for self-learning control

systems." Control Systems Magazine, IEEE 10.3 (1990): 18-23.

[81] Miller, W. Thomas, Paul J. Werbos, and Richard S. Sutton. Neural networks for control.

MIT press, 1995.

[82] Hall, Lawrence O., et al. "A comparison of neural network and fuzzy clustering techniques

in segmenting magnetic resonance images of the brain." Neural Networks, IEEE Transactions

on 3.5 (1992): 672-682.

[83] Özkan, Mehmed, Benoit M. Dawant, and Robert J. Maciunas. "Neural-network-based

segmentation of multi-modal medical images: a comparative and prospective study." Medical

Imaging, IEEE Transactions on 12.3 (1993): 534-544.

[84] Reddick, Wilburn E., et al. "Automated segmentation and classification of multispectral

magnetic resonance images of brain using artificial neural networks." Medical Imaging, IEEE

Transactions on 16.6 (1997): 911-918.

[85] Ahmed, Mohamed N., and Aly A. Farag. "Two-stage neural network for volume

segmentation of medical images." Pattern Recognition Letters 18.11 (1997): 1143-1151.

[86] Smith, Brian L., and Michael J. Demetsky. "Short-term traffic flow prediction: neural

network approach." Transportation Research Record 1453 (1994).

56

[87] Kneller, D. G., F. E. Cohen, and R. Langridge. "Improvements in protein secondary

structure prediction by an enhanced neural network." Journal of molecular biology 214.1

(1990): 171-182.

[88] Schaap, Marcel G., Feike J. Leij, and Martinus Th van Genuchten. "Neural network

analysis for hierarchical prediction of soil hydraulic properties." Soil Science Society of

America Journal 62.4 (1998): 847-855.

[89] Martin, Gale L. "Pattern recognition neural network." U.S. Patent No. 5,440,651. 8 Aug.

1995.

[90] Bishop, Christopher M. Neural networks for pattern recognition. Oxford university press,

1995.

[91] Looney, Carl Grant. Pattern recognition using neural networks: theory and algorithms for

engineers and scientists. Oxford University Press, Inc., 1997.

[92] Kamijo, Ken-ichi, and Tetsuji Tanigawa. "Stock price pattern recognition-a recurrent

neural network approach." Neural Networks, 1990., 1990 IJCNN International Joint

Conference on. IEEE, 1990.

[93] Rowley, Henry, Shumeet Baluja, and Takeo Kanade. "Neural network-based face

detection." Pattern Analysis and Machine Intelligence, IEEE Transactions on 20.1 (1998):

23-38.

[94] Waibel, Alexander, et al. "Phoneme recognition using time-delay neural

networks." Acoustics, Speech and Signal Processing, IEEE Transactions on37.3 (1989):

328-339.

57

[95] Lin, Shang-Hung, Sun-Yuan Kung, and Long-Ji Lin. "Face recognition/detection by

probabilistic decision-based neural network." Neural Networks, IEEE Transactions on 8.1

(1997): 114-132.

[96] Jagielska, Ilona, and Janusz Jaworski. "Neural network for predicting the performance of

credit card accounts." Computational Economics 9.1 (1996): 77-82.

[97] Baesens, Bart, et al. "Using neural network rule extraction and decision tables for

credit-risk evaluation." Management science 49.3 (2003): 312-329.

[98] Lee, Kun Chang, Ingoo Han, and Youngsig Kwon. "Hybrid neural network models for

bankruptcy predictions." Decision Support Systems 18.1 (1996): 63-72.

[99] Wilson, Rick L., and Ramesh Sharda. "Bankruptcy prediction using neural

networks." Decision support systems 11.5 (1994): 545-557.

[100] Yoon, Youngohc, and George Swales. "Predicting stock price performance: A neural

network approach." System Sciences, 1991. Proceedings of the Twenty-Fourth Annual Hawaii

International Conference on. Vol. 4. IEEE, 1991.

[101] Kara, Yakup, Melek Acar Boyacioglu, and Ömer Kaan Baykan. "Predicting direction of

stock price index movement using artificial neural networks and support vector machines: The

sample of the Istanbul Stock Exchange." Expert systems with Applications 38.5 (2011):

5311-5319.

[102] Dutta, Goutam, et al. "Artificial neural network models for forecasting stock price index in

the Bombay stock exchange." Journal of Emerging Market Finance 5.3 (2006): 283-295.

58

[103] Zekic, Marijana. "Neural network applications in stock market predictions-a methodology

analysis." proceedings of the 9th International Conference on Information and Intelligent

Systems. Vol. 98. 1998.

[104] Khoa, Nguyen Lu Dang, Kazutoshi Sakakibara, and Ikuko Nishikawa. "Stock price

forecasting using back propagation neural networks with time and profit based adjusted weight

factors." SICE-ICASE, 2006. International Joint Conference. IEEE, 2006.

[105] Dase, R. K., and D. D. Pawar. "Application of Artificial Neural Network for stock market

predictions: A review of literature." International Journal of Machine Intelligence 2.2 (2010):

14-17.

[106] Gharbi, R. B., and Adel M. Elsharkawy. "Neural network model for estimating the PVT

properties of Middle East crude oils." Middle East Oil Show and Conference. Society of

Petroleum Engineers, 1997.

[107] Osman, El-Sayed A., and Muhammad Ali Al-Marhoun. "Artificial neural networks models

for predicting PVT properties of oil field brines." SPE Middle East Oil and Gas Show and

Conference. Society of Petroleum Engineers, 2005.

[108] Moghadam, J. Naseryan, K. Salahshoor, and R. Kharrat. "Introducing a new method for

predicting PVT properties of Iranian crude oils by applying artificial neural

networks." Petroleum Science and Technology 29.10 (2011): 1066-1079.

[109] Elsharkawy, Adel M. "Modeling the properties of crude oil and gas systems using RBF

network." SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum

Engineers, 1998.

59

[110] Karabatak, Murat, and M. Cevdet Ince. "An expert system for detection of breast cancer

based on association rules and neural network." Expert Systems with Applications 36.2 (2009):

3465-3469.

[111] Burke, Harry B., et al. "Artificial neural networks improve the accuracy of cancer survival

prediction." Cancer 79.4 (1997): 857-862.

[112] Baker, Jay A., et al. "Breast cancer: prediction with artificial neural network based on

BI-RADS standardized lexicon." Radiology 196.3 (1995): 817-822.

[113] Lo, Joseph Y., et al. "Predicting breast cancer invasion with artificial neural networks on

the basis of mammographic features." Radiology 203.1 (1997): 159-163.

[114] Bottaci, Leonardo, et al. "Artificial neural networks applied to outcome prediction for

colorectal cancer patients in separate institutions." The Lancet350.9076 (1997): 469-472.

[115] Ahmed, Farid E. "Artificial neural networks for diagnosis and survival prediction in colon

cancer." Molecular cancer 4.1 (2005): 29.

[116] Sug, Hyontai. "Performance Comparison of RBF networks and MLPs for

Classification." Proceedings of the 9th WSEAS International Conference on applied

Informatics and Communications (AIC’09). 2009.

[117] Mayoraz, Eddy, and Ethem Alpaydin. "Support vector machines for multi-class

classification." Engineering Applications of Bio-Inspired Artificial Neural Networks. Springer

Berlin Heidelberg, 1999. 833-842.

[118] Luts, Jan, et al. "A tutorial on support vector machine-based methods for classification

problems in chemometrics." Analytica Chimica Acta 665.2 (2010): 129-145.

60

[119] Baudat, Gaston, and Fatiha Anouar. "Kernel-based methods and function

approximation." Neural Networks, 2001. Proceedings. IJCNN'01. International Joint

Conference on. Vol. 2. IEEE, 2001.

[120] Shawe-Taylor, John, and Nello Cristianini. Kernel methods for pattern analysis.

Cambridge university press, 2004.

[121] Kuh, Anthony. "Least squares kernel methods and applications." Soft Computing in

Communications. Springer Berlin Heidelberg, 2004. 365-387.

[122] Smola, Alex J., and Bernhard Schölkopf. "A tutorial on support vector

regression." Statistics and computing 14.3 (2004): 199-222.

[123] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least

Squares Support Vector Machines, World Scientific, Singapore, 2002 (ISBN 981-238-151-1)

[124] Suykens, Johan AK, et al. "Weighted least squares support vector machines: robustness

and sparse approximation." Neurocomputing 48.1 (2002): 85-105.

[125] Gore, R. G., et al. "Iterative design of neural network classifiers through

regression." International Journal on Artificial Intelligence Tools 14.01n02 (2005): 281-301.

[126] Orr, Mark JL. "Regularization in the selection of radial basis function centers."Neural

computation 7.3 (1995): 606-623.

[127] Tyagi, Kanishka. "Second Order Training Algorithms For Radial Basis Function Neural

Networks." (2012).

[128] Cristianini, Nello, and John Shawe-Taylor. An introduction to support vector machines

and other kernel-based learning methods. Cambridge university press, 2000.

http://www.worldscibooks.com/compsci/5089.html
http://www.worldscibooks.com/compsci/5089.html

61

Biographical Information

Yilong Hao was born in China in 1987. He obtained his Bachelor of Science degree in

Electronic and Information Engineering from Shenyang University of Chemical Technology,

Shenyang in July 2010. He came to the U.S. to pursue the Intensive English Program at the

English Language Institute of UT Arlington in August 2011. He enrolled in the UT Arlington

graduate school in January 2013 to pursue his Master of Science degree in Electrical

Engineering. His current research interests include machine learning and pattern recognition.

	Acknowledgements
	Abstract
	Table of Contents
	1.1 Neural Network 1
	1.2 Benefits of Neural Networks 2
	1.3 Common Types of Neural Networks 3
	1.4 Kernel Machines 5
	1.5 Research Motivation 5
	1.6 Organization of the thesis 6
	2.1 Training Data 7
	2.2 RBF structure and operation 7
	2.3 RBF Neural Network parameter initialization 9
	2.4 Optimal Output Weights 10
	2.5 Pruning Method 11
	3.1 Support Vector Machines 15
	3.2 Mathematical treatment of SVMs 15
	3.3 Problems with SVMs 18
	4.1 LS-SVMs for binary classification [43] 19
	4.2 Multiclass classification for the LS-SVM 20
	4.3 Problems with LS-SVM 20
	5.1 One Pass Validation 22
	5.2 Optimize Spread Parameter with Newton’s Method 22
	5.3 Regularization 23
	5.4 Output Reset (OR) 24
	5.5 MKM Training Algorithm 25

	List of Illustrations
	List of Tables
	List of Symbols
	List of Acronyms
	Chapter 1 Introduction
	1.1 Neural Network
	1.2 Benefits of Neural Networks
	1.3 Common Types of Neural Networks
	1.3.1 Multi-layer Perceptron(MLP)
	1.3.2. Radial Basis Function Networks

	1.4 Kernel Machines
	1.5 Research Motivation
	1.6 Organization of the thesis

	Chapter 2 RBF Neural Network Review
	2.1 Training Data
	2.2 RBF structure and operation
	2.3 RBF Neural Network parameter initialization
	2.4 Optimal Output Weights
	2.5 Pruning Method
	2.5.1 Ordered Basis Function[30][28]
	2.5.2 Validation Error

	Chapter 3 Common Kernel Methods
	3.1 Support Vector Machines
	3.2 Mathematical treatment of SVMs
	3.3 Problems with SVMs

	Chapter 4 Least Square Support Vector Machines
	4.1 LS-SVMs for binary classification [43]
	4.2 Multiclass classification for the LS-SVM
	4.3 Problems with LS-SVM

	Chapter 5 Optimization for the RBF Neural Network
	5.1 One Pass Validation
	5.2 Optimize Spread Parameter with Newton’s Method
	5.3 Regularization
	5.4 Output Reset (OR)
	5.5 MKM Training Algorithm

	Chapter 6 Simulation Results
	Chapter 7 Conclusion and Future Work
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References
	Biographical Information

