
Training Algorithm for Radial Basis Function Classifier 

 

by 

 

YILONG HAO 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2015 

 

  



ii 
 

Copyright © by Yilong Hao 2015 

All Rights Reserved 

 



iii 
 

Acknowledgements 

I would like to express my sincere gratitude to my advising professor Dr. Manry for his 

support in completing my research. I also appreciate him giving me financial support 

throughout my Master’s program. I am very grateful for his patience. 

I would like to say thank you to my lab mates, especially Rohit and Kanishka who 

worked with me to debug and explain problems. Thank you Gautam, Son, Parastoo and Audy, 

who always let me feel the warm and harmonious environment of our lab. Everyone in our lab 

always helps each other without judgment. Thank you to everybody who gave me fond 

memories during my Master program.    

August 13, 2015 

  



iv 
 

Abstract 

Training Algorithm for Radial Basis Function Classifier 

 

Yilong Hao, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Michael T Manry 

The computational complexity of kernel machines and their poor performance in the 

multi-label classification case is a major bottleneck to their success. In this thesis we present a 

systematic two step batch approach for constructing and training a new multiclass kernel 

machine (MKM). Unlike other kernel learning algorithms, the proposed paradigm prunes the 

kernels, and uses Newton’s method to improve the kernel parameters. In each iteration, output 

weights are found using orthogonal least squares. The proposed hybrid training algorithm is 

compared with least square support vector machines(LS-SVM) and support vector 

machines(SVM). Simulations results on many benchmark and real life datasets show that the 

proposed algorithm has significantly improved convergence speed, network size and 

generalization over conventional kernel machine training algorithms. 
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Chapter 1  

Introduction 

1.1 Neural Network 

 An artificial neural network(ANN) is an information processing model inspired by 

biological nervous systems, such as the brain. The key element of the model is the novel 

structure, it is composed of a huge number of highly interconnected processing nodes each 

meant for solving specific problems. ANNs can learn from examples like a human. In a 

nonlinear neuron, a structure called the synapse connects two nodes and each synapse has 

an appropriate value called the synaptic weight. The synaptic weights are multiplied by the 

input signal at the head of the synapse to obtain an output at the end of the synapse. There is 

a summing junction called the net value of the neuron, which sums up the outputs of all the 

synapses connected to it. The final output of a neuron can be obtained by the net value 

through an activation function.     

  

 

Figure 1-1  A simple nonlinear neuron 
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Artificial neural networks have been used in many fields, such as image 

processing[1][67][68][69][70][71][75], control systems[2][76][77][78][79][80][81], medical image 

analysis[3][82][83][84][85], prediction (such as predicting Stock Index or 

cancers)[58][61][65][74][86][87][88] and pattern recognition (such as  face detection and 

finger detection) [4][72][73][89][90][91][92][93][94][95]. There are many applications of neural 

networks in present day businesses[5][58][59][60][61][62][105]. Financial institutions are 

developing superior neural network models for credit card risk and 

bankruptcy[58][59][60][96][97][98][99]. Neural networks are used to forecast stock market 

prices[62][100][101][102][103][104][105]. Oil and gas corporations are learning more from their 

data by using neural networks to predict oil 

PVT(pressure-volume-temperature )[64][106][107][108][109]. In the medical area, neural 

networks technology can be used for classification and diagnostic prediction of 

cancers[65][110][111][112][113][114][115].  

1.2 Benefits of Neural Networks 

Neural networks have the following useful properties and capabilities[9][10]: 

1. Nonlinearity: An artificial neuron is nonlinear because of its activation function. A neural 

network made up of such elements is also nonlinear. This property is extremely important, 

especially when modeling nonlinear phenomenon [11, 12] 

2. Input-Output Mapping: In supervised learning, the synaptic weights of a neural network can 

be modified to reduce the error between the desired output and the actual output. The training 

of the network is repeated for many patterns, until we can ignore the changes in the synaptic 

weights. Thus the network learns from the training data by constructing an input-output 
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mapping[9]. So they are useful in regression analysis, such as time series prediction, fitness 

approximation and modeling [13]. 

3.Adaptivity: Neural networks have the capability to adapt their synaptic weights to changes in 

the surrounding environment. Particularly, a neural network trained to operate in a specific 

environment can easily be retrained to deal with minor changes in the operating environmental 

conditions[9]. 

4. Evidential Response: In the context of pattern recognition, a neural network based 

classifiers can be designed to provide information not only about the predicted class of a 

pattern, but also about confidence in the decision made[9]. This helps in eliminating 

ambiguous patterns. 

5. Contextual Information: Every neuron in the network is potentially affected by the activity of 

all other neurons in the network. So, contextual information is dealt with naturally by neural 

network[9].  

6. Due to the highly distributed information stored in a neural network, the loss of or damage to 

one neuron does not affect the performance of the whole network drastically[10]. There is a 

graceful degradation in performance [14]. 

1.3 Common Types of Neural Networks 

The well-known neural networks are the multi-layer perceptron (MLP)[116] and radial 

basis function neural (RBF) network[25]. 
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1.3.1 Multi-layer Perceptron( MLP) 

The MLP consists of multiple layers of computational units, usually interconnected in a feed 

forward way. The MLP has one or more hidden layers between the input layer and the output 

layer. Usually, each neuron in one layer connects to all the neurons of the following layer.  

 

 

Figure 1-2  Multilayer perceptron with one hidden layer 

 

1.3.2. Radial Basis Function Networks 

An RBF neural network is a three-layer feed forward network consisting of a single 

hidden layer which uses radial basis activation functions (such as the Gaussian function)[9]. 
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The RBF neural network has neurons with nonlinear RBF activations in the hidden layer and 

linear summation activation functions in the output layer.   

1.4 Kernel Machines 

Kernel methods owe their name to the use of kernel functions, which enable them to 

map a low-dimension space to a high-dimension space[118]. The main idea is[119]: the 

integral point set which cannot be linearly segmented in a low dimensional space can be 

linearly segmented if it is transformed to a high-dimensional space. In machine learning, kernel 

methods are a class of algorithms for pattern analysis[120]. 

The most well-known kernel machine is the support vector machine (SVM) which can 

be used for classification and regression analysis[15][42][118][121][122]. 

1.5 Research Motivation 

SVMs are widely used in binary classification due to their simplicity of implementation. 

However, they can also be used in regression problems and multi- class classification 

problems. Although the SVM and LS-SVM [40][41][42][43][44] are available for multi-class 

classification problems, available SVM and LS-SVM software[123] tools are complicated to 

use for entry level users. The network parameters are not easy to select properly for good 

performance and the training algorithms are not easily programmed and modified. Newton’s 

method is not used to optimize the kernel parameters. The number of support vectors can be 

extremely large, which results in the high computation[53]. Even though both the SVM and 

LS-SVM can solve multiclass classification problems, their performance for multiclass 

classification is not good enough[52][56][117]. Hence a different approach for designing kernel 

machines is needed. 
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1.6 Organization of the thesis 

In this thesis, we develop a training method for RBF based kernel machines for both binary 

and multi-class classification. Chapter 2 reviews the structure, notation and training of 

conventional RBF networks. Chapter 3 reviews the support vector machine algorithm and its 

training. In chapter 4, we introduce a training method for the least square support vector 

machine (LS-SVM). Finally, we discuss the SVM’s problems. In chapter 5, we improve RBF 

training using a pruning method [28], Newton’s method, regularization [31], and output reset 

method [57]. In chapter 6, we focus on the simulation results on several widely available data 

files, and we make comparisons with the SVM and LS-SVM training algorithms. In chapter 7, 

we present our conclusions and possible enhancements to this work.  
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Chapter 2  

RBF Neural Network Review 

2.1 Training Data 

     The training data is a set of data consisting of input vectors and label vectors. The 

training dataset consists of Nv training patterns {𝐱p, ic(p)}, 1≤p≤Nv, where 𝐱p is the pth 

input vector with dimension N, and ic(p) is the pth  desired output class label. ic(p) is 

between 1 and M, where M is the total number of classes. The class label ic(p) is converted 

to a desired output vector 𝐭p with dimension M as 

 tp(i) = δ�i − ic(p)�   1 ≤ 𝑖 ≤ M (2.1) 

xp(n)  denotes the nth element of 𝐱p. So 𝐱p  can be represented as 

𝐱𝐩 = �xp(1), xp(2) … , xp(N)�T. tp(i) denotes the ith desired output for the pth input pattern. 𝐲p 

denotes the actual output vector when x = 𝐱p, so yp(i) is the ithelement of 𝐲p. Nh is the 

number of hidden units. W is the output weight matrix and w(i, k) is the output weight from the 

kth hidden unit to the ith output unit. 

2.2 RBF structure and operation 

     The RBF neural network is a three layer feed forward neural network which has a single 

hidden layer that uses radial basis activation functions (such as the Gaussian function) [9]. Its 

layers are the input layer, hidden layer, and output layer. Each neuron in the input layer 

connects to each neuron in the hidden layer, and each neuron in the hidden layer consists of a 

radial basis function (e.g. Gaussian). The output layer has a weighted sum of outputs from the 

hidden layer to form the network outputs.   
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Figure 2-1 Structure of RBF Neural Network with bias 

For mapping 𝐱p to 𝐲p, we have the following steps 

(1) Initially we have Nv center vector 𝐦k, which are equal to the input training vectors 𝐱k, 

where k varies from 1 to Nv. βk is defined as the spread parameter, µk is defined as the 

mean value of the elements of 𝐦𝐤.  For the pth training pattern, d(𝐱p,𝐦k) is defined as the 

2-norm distance between 𝐱p and 𝐦k[25]: 

 
d(𝐱p,𝐦k) =  �(xp(n) − mk(n))2

N

n=1

   (2.2) 

(2) Initially, the hidden layer consist of the basis vector Xp of length Nh+1, where 

Xp(1) = 1, and the remaining elements of 𝐗p are calculated from 𝐱p, the spread parameter 

βk, and the center vector 𝐦k as: 
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                              Xp(k + 1)=exp�−βkd(𝐱p,𝐦k)�           k = 1,2 … Nh                                          (2.3) 

 (3) Calculate auto correlation matrix R and cross correlation matrix C 

(4) Calculate weight matrix W by using R and C 

(5) The hidden layer is fully connected to the output layer via output weights. The weights 

which connect from each hidden unit to each output unit form a M × (Nh+ 1) weight matrix W, 

and 𝐲p is calculated as: 

 
yp(i) = � w(i, k)XP(k)

Nh+1

k=1

   (2.4) 

or 

 𝐲p = 𝐖 ∙ 𝐗p    (2.5) 

2.3 RBF Neural Network parameter initialization 

Given the training data {𝐱p, 𝐭p}, initialize the center vectors as 𝐦k = 𝐱k for k between 1 to Nv.  

We initialize βk as[9]  

 
 βk = 1/(2N�(mk(n) − µk)2)

N

n=1

  (2.6) 

where 

 
µk = 1

N�mk(n)
N

n=1

  (2.7) 

The error function of an RBF is measured using the Mean Square Error (MSE) as: 

 
E =

1
Nv

� Ep

Nv

p=1

=
1

Nv
���tp(i) − yp(i)�2

M

i=1

Nv

p=1

  (2.8) 
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2.4 Optimal Output Weights 

We consider a linear system mapping an (Nh + 1) dimensional hidden layer basis vector 𝐗p to 

an M dimensional output vector 𝐲p. 𝐗p is obtained by equation (2.3).The (Nh + 1) × (Nh + 1) 

auto correlation matrix R is defined as: 

 
r(k, n) =

1
Nv

� Xp(k) ∙ Xp(n)
Nv

p=1

  (2.9) 

The (Nh + 1) ×M cross-correlation matrix C is defined as: 

 
c(k, i) =

1
Nv

� Xp(k) ∙ tp(i)
Nv

p=1

  (2.10) 

The weight matrix W can be solved by the following steps: 

1. Writing equation (2.8) in terms of elements of W: 

 
E =

1
Nv

� Ep

Nv

p=1

=
1

Nv
���tp(i) − � w(i, k)

Nh+1

k=1

∙ Xp(k)�

2M

i=1

Nv

p=1

  (2.11) 

Differentiating E with respect to the elements of W:  

 ∂E
∂w(m, n)

=
−2
Nv

∙��tp(m) − � w(m, k)
Nh+1

k=1

∙ Xp(k)�
Nv

p=1

∙ Xp(n)  (2.12) 

Then we get: 

 ∂E
∂w(m, n)

=
−2
Nv

∙��tp(m)Xp(n) − � w(m, k)
Nh+1

k=1

∙ Xp(k)Xp(n)�
Nv

p=1

    (2.13) 

 ∂E
∂w(m, n)

=
−2
Nv

∙ �� tp(m)Xp(n)
Nv

p=1

− � �w(m, k) ∙� Xp(k)Xp(n)
Nv

p=1

�
Nh+1

k=1

�  (2.14) 

Writing equation (2.13) in terms of the auto correlation and cross correlation matrices we have: 

 ∂E
∂w(m, n)

=
−2
Nv

∙��c(n, m) − � w(m, k)
Nh+1

k=1

∙ r(k, n)�
Nv

p=1

 (2.15) 
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For minimizing the mean square error, let the partial derivatives be zero. Then the equations 

can be represented in a compact way as: 

 𝐑 ∙ 𝐖T = 𝐂   (2.16) 

2.5 Pruning Method 

Initially, the center vectors 𝐦k are initialized as equal to the input vectors as 𝐦k =  𝐱k, where 

k varies from 1 to Nh, and Nh = Nv . Thus, the number of the center vectors are very large 

since Nv is usually large. In[28], the orthogonal least squares(OLS) method is employed as a 

forward regression procedure[29] to select a suitable set of center vectors from a large set of 

candidates. The procedure chooses basis functions one by one till an adequate network has 

been chosen based on the analysis of residuals. In this thesis, we use the OLS developed in 

[31] which acts on the correlation matrices. We choose the useful hidden units with a unique 

one pass pruning-with-validation method which uses OLS[28][31]. 

2.5.1 Ordered Basis Function[30][28] 

The aim of pruning is to eliminate the less useful hidden units, and keep the useful hidden 

units which have information relevant for estimating outputs. Here, we use OLS[27][28] to 

eliminate the less useful hidden units including those which are linearly dependent upon others. 

The algorithm first optimally orders hidden units on the basis of their usefulness. We get the 

orthonormal basis functions by the Schmidt procedure.  

Let o(m) be the optimal order in terms of usefulness of the hidden units, so that o(m) specifies 

the order in which raw basis function 𝐗k will be processed into orthonormal basis function 𝐗′i. 

Nu is equal to Nh + 1. For ordered basis function, we get the mth orthonormal basis function  

as, [28][30] 
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𝐗′m  = � amk𝐗o(k)

m

k=1

  (2.17) 

Initially, 𝐗′1 is found as a11𝐗o(1) where,  

 a11 =
1

‖𝐗o(1)‖
=

1

[𝑟(o(1), o(1))]
1
2
    (2.18) 

We get  

 
ci = � aik

i

k=1

r(o(k), o(m))      for 2 ≤  m ≤  Nu    (2.19) 

We set  bm = 1, then we have 

 
bk =    −� ciaik             for 1 ≤  i ≤  m − 1   

m−1

i=k

 (2.20) 

 
amk = bk/ �r�o(m), o(m)� −  � ci2

m−1

i=1

�

1
2

  for 1 ≤  k ≤  m − 1 (2.21) 

 
wo

′(i, m) = � amk

m

k=1

c(i, o(k))         1 ≤  k ≤  m    
(2.22) 

where 𝐖o
′ are the weights for the ordered basis functions. In order to find the most useful 

basis function, we treat each basis function 𝐗k as if it were the first one, find wo
′(i, m) for all i, 

and sum up squares of the wo
′(i, m), over i. If mo denotes the value of m yielding the largest 

sum, then 𝐗mo is the most useful basis function.  

The selection process will be used to optimally order the hidden units Nh + 1. We now define 

notation to help us specify the candidate set of basis function to choose during ordering.  

First define S(m) as the set of indices of chosen basis functions where m is the number of 

hidden units. Then S(m) is given by 

 S(m) = �       {   ∅  }                                                      for m = 0    
{o(1), o(2), … , o(m)}                          for 0 < m ≤   Nh + 1                (2.23) 
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Let’s take o (1) =1, putting the threshold as a first hidden unit. The set of candidate basis 

functions is clearly Sc(m) = {1,2, … , Nh + 1 } − S(1), so we get Sc(m) as: 

 Sc(m) = {2, … , Nh + 1 } (2.24) 

For 2 < m <   Nh + 1, we get Sc(m − 1). For each trial value of o(m) belonging to Sc(m − 1) , 

perform operations of equation (2.19),(2.20),(2.21),(2.22). We define P(m) is : 

 
P(m) = �  wo

′(i, m)2
M

i=1

 (2.25) 

The trial value of o(m) which maximizes P(m) is found. Assuming that P(m) is maximum when 

testing the kth element, then o(m)=k. S(m) is updated as  

 S(m) = S(m − 1) ∪ {o(m)}  (2.26) 

Then for the general case the candidate basis functions are 

 Sc(m − 1) = {1,2, … , Nh + 1} − {o(1), o(2), … , o(m − 1)} (2.27) 

By using equation (2.27) after testing all the candidate basis function, o(m) takes its value and 

S(m) is updated according to equation(2.25). The process is repeated until m=Nh + 1, after the 

complete o(m) function is obtained, both the original basis functions and the orthonormal ones 

are ordered. Then the orthonormal weights are mapped to normal weights.  

2.5.2 Validation Error 

We use validation data to implement the pruning. Let yp(i, m) represent the ith output of the 

network which is having m hidden units for the pth  pattern, let Ne(m)  represent the 

misclassified validation patterns with m hidden units. Let Xp′(m) represent the mth ordered 

orthonormal basis function. For 1 ≤ i ≤ M and  1 ≤ m ≤ Nh + 1, yp(i, m) is calculated as  

 yp(i, 1) =  w′(i, 1) ∙ Xp′(1) (2.28) 
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 yp(i, m) = yp(i, m − 1) +  w′(i, m) ∙ Xp′(m)  (2.29) 

Define ic′ (m) =  argmax1≤i≤M �yp(i, m)�. 

Then  Ne(m) is calculated as  

 Ne(m) ← Ne(m) + �1 − δ�ic′ − ic(p)�� (2.30) 

Let Pev represent the misclassification for the validation data with Nh + 1 hidden units, where 

Pev is calculated as: 

 Pev(m) =
Ne(m)

Nv
 (2.31) 

Pev is calculated efficiently in one pass through the validation data. Define Nhd as the best 

number of hidden units. Compute the validation error using the ordered basis functions and 

validation data and find the Nhd
th hidden unit which gives the minimum Pev. So the first Nhd 

hidden units are kept, the remaining units are pruned by deleting the last Nh + 1 − Nhd hidden 

units. 
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Chapter 3  

Common Kernel Methods 

In this chapter, we will review support vector machine and its training algorithms. 

3.1 Support Vector Machines 

Support Vector Machines (SVMs)[36][37][38][39] are the most well-known learning 

systems based on kernel methods for solving pattern recognition problems. They have been 

shown to be effective for many classification problems[16][17][18][19]. In the method, the SVM 

maps the data into a higher dimensional input space and constructs an optimal separating 

hyperplane between the positive and negative classes with the maximal margin in the space. 

3.2 Mathematical treatment of SVMs 

Support vector machines have one output but two classes. The scalar output yp is 

calculated as [21]  

 yp = 𝐰T ∙ 𝐗p − b  (3.1) 

where the coefficient vector w is Nsv by 1 and b is a bias. The basis vector 𝐗p is Nsv by 1, 

and 1 ≤ p ≤ Nsv. Assume support vectors make up the first Nsv patterns, so 𝐗P is a support 

vector of dimension Nsv. The vector 𝐗P is generated from the N by 1 input vector 𝐱p as in 

the MLP, but the activation function is different.  

The support vectors are a subset of the basis vectors 𝐗P for which yp = tp. 
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Figure 3-1 Structure of support vector machine 

 

Consider the binary classification task, where Nc = 2. We have a training set { 𝐱P, tp}, 

p=1,2, …, Nv. The equation of a decision surface in the form of a hyperplane is[25]: 

   𝐰T ∙ 𝐗p − b = 0   (3.2) 

where coefficient vector w is Nsv by 1, and b is a bias. Note that basis vectors 𝐗p which are 

not support vectors satisfy (Nsv + 1)  ≤ p ≤ Nv. 

For a given weight vector w and bias b, the separation between the hyperplane and the 

support vector is called the margin of separation[9]. Clearly, there are many possible 

separating hyperplanes. The goal of a support vector machine is to find the particular 

hyperplane for which the margin of separation is maximized.  

From Vapnik’s statistical learning theory [23], for 1 ≤ p ≤ Nsv 

 𝐰T ∙ 𝐗p − b ≥ 1         if  tp = 1 (3.3) 
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   𝐰T ∙ 𝐗p − b ≤ −1        if  tp = −1 (3.4) 

The margin of separation between the upper bound and the lower bound is[22]: 

 
2
∥𝐰∥

= 2
�𝐰T𝐰

 (3.5) 

So, if we want to maximize the margin of separation 2
∥ 𝐰 ∥� , it is equivalent to minimizing 

‖𝐰‖2. 

The primal problem is[22]  

 
min𝐸𝑠𝑠𝑠 =

1
2
‖𝐰‖2 + 𝐶�𝜉𝑝 

Nv

𝑝=1

 (3.6) 

where C is a user- specified positive parameter, and the ξp are called the slack variables.We 

need to find the optimum values of the weight vector w, bias b and the slack variables ξp to 

minimize Esvm. We can formulate the dual problem as follow: 

Based on the Karush-Kuhn-Tucker theorem [15],we have the dual form for the constrained 

optimization of a support vector machine as: 

Given the training data { 𝐱P , tp }, p=1,2, …, Nv , find the Lagrange multipliers αp  which 

maximize the objective function 

 
yp = �αp

Nv 

p=1

−
1
2
��αpαktptkK�xp, xk�

Nv

k=1

 
Nv

p=1

  (3.7) 

where         K�xp, xk� = Xp(k) = exp (−�xp − xk�
2/(2𝜎k2)) 

subject to the constraints 

 
�αp

Nv

p=1

yp = 0   (3.8) 

 0 ≤ αp ≤ C      (3.9) 
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where K�𝐱p, 𝐱k� is the RBF kernel function Xp(k) where 𝐦k = 𝐱k. Some common types of 

support vector machines[52][128] are polynomial learning machine and radial-basis-function 

network.  

3.3 Problems with SVMs 

SVMs are difficult for entry level users. The network parameters are not easy to select for good 

performance and the training algorithms are not easily programmed or modified. The number 

of support vectors can be extremely large, which results in a high computational load, and 

SVMs can take a long time to train. Even though SVMs can be used for multiclass 

classification problems, the results are often not satisfactory. 
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Chapter 4  

Least Square Support Vector Machines 

The Least Square Support Vector Machines(LS-SVMs) which is the least squares 

formulation of SVM, has been proposed [40][41], which involves the equality constraints 

only[42]. LS-SVMs are a set of supervised learning related methods which analyze data and 

recognize patterns, and which are used for classification and regression analysis.  

4.1 LS-SVMs for binary classification [43] 

Given a training set { 𝐱P,p=1,2, …, Nv} and corresponding binary class labels tp ∈  {−1, +1},  

Vapnik’s SVM classifier formulation was modified by Suykens[41] into the following LS-SVM 

formulation:  

 
min𝐸𝑙𝑙𝑙𝑙𝑙 =

1
2
‖𝐰‖2 + γ

1
2
�(ep

2)
Nsv

p=1

   (4.1) 

subject to the equality constraints instead of inequality constraints. 

 yp� 𝐰T𝐗p −  b � = 1 −  ep   (4.2) 

where   γ is the regularization constant[66]. b is the output threshold parameter. ep are called 

the slack variables[41]. Then, we construct the Lagrangian function with the Lagrange 

multipliers as. 

 
L(𝐰, b, 𝐞,𝛂) =

1
2
‖𝐰‖2 −�αp

Nv 

p=1

�yp� 𝐰T𝐗p −  b � − 1 + ep�   (4.3) 

where αp  are the Lagrange multipliers, 𝐞  are called the slack variables. Differentiating 

L(𝐰, b, 𝐞,𝛂) with respect to w, b, e and 𝛂 and equating to zero yields[66] 

 
𝐰 = �αp

Nv

p=1

𝐗p  (4.4) 
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�αp

Nv

p=1

= 0 
(4.5) 

 αp = γep (4.6) 

 yp� 𝐰T𝐗p −  b � − 1 + ep = 0   (4.7 

After taking the conditions for optimality, the LS-SVM classifier with RBF kernel can be 

constructed as follows: 

 
yp = �αp

Nv 

p=1

−
1
2
��αpαktptkK�xp, xk�

Nv

k=1

 
Nv

p=1

 (4.8) 

where        K�xp, xk� = Xp(k) = exp (−�xp − xk�
2/(2𝜎k2)) 

K�xp, xq� is the RBF kernel function  Xp(k) where mk = xk. 

4.2 Multiclass classification for the LS-SVM 

Multiclass LS-SVMs have been proposed in [44], The task of an M-class classifier is to predict 

the class label Cm, m =1,...,M, given a new input vector x. A popular way to solve the M class 

problem is to reformulate the problem into a set of L binary classification 

problems[44][45][46][47][48][49][50]. The first method is to construct M(M-1)/2 one-versus-one 

binary classifiers, each classifier discriminating between each pair of classes[47][51]. In an 

alternative approach [48], a minimal output coding(MOC), has been applied to solve the 

multiclass problem with binary least square support vector machines, using L bits to encode up 

to 2L classes. The one-versus-all and error correcting output codes(ECOC) approach also 

can solve the multiclass problems in LS-SVM. 

4.3 Problems with LS-SVM 

The LS-SVM is difficult to use for entry level users. The network parameters are not easy to 

select properly for good performance and the training algorithms are not easily generated and 
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programmed. The drawback of the LS-SVM[124] is that sparseness is lost in the LS-SVM 

solution. In this case every data point is contributing to the model 

and the relative importance of a data point is given by its support value. So the number of 

support vectors can be extremely large, which results in the high computation, and LS-SVM 

can take a long time to train. Even though LS-SVM can be used for multiclass classification 

problems and gets better results than SVMs, the results are not good enough. 
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Chapter 5  

Optimization for the RBF Neural Network 

5.1 One Pass Validation 

Our aim is to get a validation error Pev versus RBF hidden units which are the basis fucntions. 

Calculating the error Pev over all hidden units from chapter 2, thus we generate the validation 

mean square error versus the hidden units size curve in one pass through the validation data 

set. Then, the pruning is completed with the following steps 

 1. We need to find Nh_best, the numbers of hidden units which minimize the validation error.  

2. We delete the ordered orthonormal basis functions after Nh_best, so 𝐗k′ only keeps the 

first Nh_best units. We then set Nh = Nh_best. 

3. Find 𝐗k from the 𝐗k′ and A matrices as 𝐗k = 𝐀−1𝐗k′ .  

4. We rearrange RBF center vectors 𝐦k and βk in the same order, for  0 < k ≤   Nh.  

5.2 Optimize Spread Parameter with Newton’s Method 

The initial spread parameter cannot get good results. So after we prune the center vectors, we 

can optimize the spread parameters βk . In chapter 2 we have initialized the spread 

parameters and defined them as the inverse of the standard deviation of 𝐦k. We use the error 

function as in (2.8). For the pth pattern, the kth hidden unit output is: 

                               Xp(k + 1)=exp�−βkd(𝐱p,𝐦k)� (5.1) 

The output vector 𝐲p  is the same as described in (2.5).  

We calculate the gradient for 𝛃 as[127]: 

 
gβ(k) =  

−∂E
∂βk

=
2

Nv
���tp(i) − yp(i)� ∙

∂yp(i)
∂βk

M

i=1

Nv

p=1

  (5.2) 

where  
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 ∂yp(i)
∂βk

= − � �w(i, k) ∙ Xp(k) ∙ (xp(n) − mk(n))2
N

n=1

Nh+1

k=1

  (5.3) 

Combining (5.29) and (5.30), we get 𝐠β. Then we can get the Hessian matrix element as: 

 
hβ(u, v) =

∂2E
∂βu ∂βv

=
2

Nv
���

∂yp(i)
∂βu

∙
∂yp(i)
∂βv

M

i=1

�
Nv

p=1

   (5.4) 

We get the following equation 

 𝐇β ∙ 𝐳 = 𝐠β  (5.5) 

Solving by using OLS, we can get z, βk can be updated as 

 βk  ← βk + zk (5.6) 

5.3 Regularization 

If too many hidden units are used, RBF neural network may result in poor performance 

because of overfitting[126]. One method to solve the overfitting problem is to use 

regularization [31] as in SVM design. We have the error function of (2.8), now we add a weight 

penalty to the error function as:  

 
E =

1
Nv

���tp(i) − yp(i)�2 + λ ∥ 𝐰 ∥2
M

i=1

Nv

p=1

  

=
1

Nv
���tp(i) − � w(i, k)

Nh+1

k=1

∙ Xp(k)�

2M

i=1

Nv

p=1

+ λ ∥ 𝐰 ∥2 

(5.7) 

Differentiating E with respect to the elements of 𝐰, and writing equation in terms of the auto 

correlation and cross correlation matrices we have: 

 ∂E
∂w(m, n)

 =
−2
Nv

∙��c(n, m) − � w(m, k)
Nh+1

k=1

∙ r(k, n)� + 2 𝜆 w(m, n) 
Nv

p=1

 (5.8) 

For minimizing the mean square error E, we equate the derivative to be zero, then the 

equations can be represented in a compact way as: 
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 𝐂 − 𝐑 ∙ 𝐖T =   λ𝐖  (5.9) 

or  

 𝐖 = (𝐑 + λ𝐈)−𝟏𝐂  (5.10) 

We then minimize Ev with respect to λ, where Ev is the validation error using the 

regularization.  

5.4 Output Reset (OR) 

OR is an algorithm that we use to prevent distortion of class boundaries. Each of the individual 

outputs could perform better than expected or worse and some of them might still be 

memorized. As an example suppose we have uncoded outputs for a multiclass classifier. If 

instead of being 1 or -1, the correct class output is 1.5 which is better than expected for 

positive class, then In that case OR would not count that as an error. It would be the same 

case for a negative class, if the output is -1.5. However, for the incorrect class, if the output is 

0.7, OR will not affect it and will count as error.   

The output reset algorithm [57] [125]can minimize the training error. 

 
E =

1
Nv

���tp(i) − yp(i)�2
M

i=1

Nv

p=1

  (5.11) 

In the basic OR algorithm[57][125], first, we set the desired output equal to the actual output 

when the output has the correct sign but is larger than 1 in magnitude, or when the output has 

the incorrect sign but is smaller than -1. ic denotes the correct class number for the current 

training pattern, id denotes the incorrect class number for the pattern. M is the number of 

class. Then the error function E′ can be presented as 

 
E′  = ���t′p(i) − yp(i)�2

M

i=1

Nv

p=1

 (5.12) 
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For the correct class, 

 if yp(ic) ≥ tp(ic) ,    then  tp(ic) = yp(ic) (5.13) 

For the incorrect class, 

 if tp(id) ≥ yp(id) ,    then  tp(id) = yp(id) (5.14) 

Finally, tp(i) is replaced by t′p(i), and the error function used in optimizations becomes E′. 

5.5 MKM Training Algorithm 

The training algorithm consists of the following steps: 

Given training data, validation data, and testing data. 

1. Initialize RBF neural network, get Nh, βk, 𝐦k, R, C, W, 

2. Use validation data to do pruning, then we get updated 𝐦k, βk, Nh, W 

3. Calculate Pe1 which is the misclassification error probability of the validation data using the 

initialized β1 which is the same as βk after pruning 

4. Optimize βk using Newton’s method and output reset method, obtain optimized beta as β2. 

Calculate Pe2 which is the misclassification of validation data using the β2.  

5. Compare Pe1 and Pe2, select β1 or β2 which has the minimum validation error.  

6. Find  λ for of regularization by using validation data  

7. Put training data and validation data together to from a new training data. Use  λ and OR 

to do output weights optimization. 

8. Calculate the actual outputs.  
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Chapter 6  

Simulation Results 

In this chapter, the results of the MKM algorithm, SVM, LS-SVM are compared. All the 

simulations shown in this chapter are run in Matlab 2014.  

The binary datasets we used can be classified in two groups. One is Diabetes that has 8 inputs 

and 768 patterns. On the other hand Heart which has 13 inputs which has higher input 

dimension but 270 patterns which has smaller data size. Next we investigate the performance 

on multiclass datasets, Iris which has 150 patterns, 2 inputs and 3 classes is small size and 

low input dimension. Image segment which has 2310 patterns, 19 inputs and 7 classes has 

large data size and high dimension of inputs. Grng which has 800 patterns, 16 inputs and 4 

classes has medium data size but high input dimensions. Ecoli which has 336 patterns, 7 

inputs and 8 classes has small data size and medium input dimensions. Vowel which has 990 

patterns, 10 inputs but 11 classes has medium data size and input dimension but having the 

most classes.  Table 6.1 summarizes the specifications of the datasets in detail. Table 6.2 

shows the testing result after implement each technique. Table 6.3 and 6.4 summarize the 

k-fold testing performance of the proposed algorithm with other comparable algorithms.  
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Table 6- 1 Specification of datasets 

Dataset Data size Nc N Nv for 
training 

Nv for 
validation 

Nv for 
testing 

Diabetes 768 2 8 691 77 138 

Heart 270 2 13 243 27 49 

Iris 150 3 4 135 15 13 

Grng 800 4 16 720 80 216 

IS 2310 7 19 2079 231 416 

Ecoli 336 8 7 302 34 30 

Vowel 990 11 10 891 99 178 

 

Table 6- 2 Testing result after implement each techniques 

Dataset Initialization 
Success Rate 

Pruning 
Success Rate 

Optimizeβ 
Success Rate 

Regularization 
Success Rate 

Output reset 
Success Rate 

Diabetes 54.95 73.95 73.95 73.95 74.86 

Heart 48.15 74.45 74.45 74.45 74.45 

Iris 61.33 96.67 96.67 96.67 98 

Grng 28.375 96.375 96.375 96.5 96.625 

IS 16.80 96.88 96.88 96.88 97.23 

Ecoli 26.67 80.18 80.18 80.76 83.12 

Vowel 99.09 99.09 99.09 99.09 99.19 
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Table 6- 3 Testing Performance comparison of MKM, LS-SVM, and SVM 

Dataset MKM 
Success Rate (%) 

LS-SVM 
Success Rate (%) 

SVM 
Success Rate (%) 

Diabetes 74.86 65.11 65.11 

Heart 74.45 55.56 55.66 

Iris 98 94.67 97.33 

Grng 96.625 95.875 95.88 

IS 97.23 95.671 61.08 

Ecoli 83.12 80.81 75.98 

Vowel 99.19 97.68 89.29 

 

Table 6- 4 Number of hidden units for MKM comparison of dataset 

Dataset MKM Initial 
Nh 

MKM Final 
Nh 

LSSVM 
NLS−SVM 

SVM 
NSVM 

Diabetes 553 27.4 691 691 

Heart 194 36.6 243 243 

Iris 122 5.1 135 41.8 

Grng 504 219 720 350.7 

Image 
Segmentation 

1663 256.4 2079 1987.4 

Ecoli 272 33.3 302 220.1 

Vowel 713 325.9 891 771 
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Chapter 7  

Conclusion and Future Work 

In the thesis, RBF neural network basis functions are pruned, spread parameters are 

optimized by Newton’s method and regularization is used for avoid overfitting. Pruning method 

for basis functions is an improvement over the existing training algorithms. After pruning, we 

only keep the useful basis functions, so we get fewer support vectors than SVM and LSSVM 

training methods. The testing errors on all data we present are smaller than SVM and LSSVM 

training algorithms. The MKM training algorithm is not only simple but also powerful since it 

requires fewer numbers of hidden units. We can successfully use it to train small but powerful 

networks for both the two classes and multi-class cases. Although, the proposed training 

algorithm performs well on small and medium size of data, it has problems with datasets 

having thousands of patterns. 
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Appendix A 

Description of Data Sets Used For Training, Validation and Testing 
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Ⅰ. Pima Indians Diabetes (8 inputs, 2 classes, 768 patterns) 

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes 

This data received on 9 May 1990, the original owners are National Institute of Diabetes and 

Digestive and Kidney Diseases.  

For each feature :( all numeric-valued) 

1. Number of times pregnant 

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skin fold thickness (mm) 

5. 2-Hour serum insulin (mu U/ml) 

6. Body mass index (weight in kg/(height in m)^2) 

7. Diabetes pedigree function 

8. Age (years) 

9. Class variable (0 or 1) 

Class Distribution: (class value 1 is interpreted as "tested positive for diabetes") 

 

Ⅱ. Heart (13 inputs, 2 classes, 270 patterns) 

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29 

For each feature :( all numeric-valued): 

1. age        

2. sex        

3. chest pain type  (4 values)        
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4. resting blood pressure   

5. serum cholesterol in mg/dl       

6. fasting blood sugar > 120 mg/dl        

7. resting electrocardiographic results  (values 0,1,2)  

8. maximum heart rate achieved   

9. exercise induced angina     

10. old peak = ST depression induced by exercise relative to rest    

11. the slope of the peak exercise ST segment      

12. number of major vessels (0-3) colored by flourosopy         

13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect   

14. Class variable (0 or 1) 

Class Distribution: (class value 2 is interpreted as "heart disease") 

 

Ⅲ. Iris (4 inputs, 3 classes, 150 patterns) 

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Iris 

(a) Creator: R.A. Fisher 

(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) 

(c) Date: July, 1988 

This data set contains 3 classes of 50 instances each, where each class refers to a type of iris 

plant. 

For each feature:(all numeric-valued) 

1. sepal length in cm 
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2. sepal width in cm 

3. petal length in cm 

4. petal width in cm 

5. class variable (1,2,3) 

Class Distribution: (class value 1 is interpreted as Iris Setosa, class value 2 is interpreted as 

Iris Versicolour, class value 3 is interpreted as Iris Virginica) 

 

Ⅳ. Grng (16 inputs, 4 classes, 800 patterns) 

Source from IPNNL LAB, UT Arlington, TX: 

http://www.uta.edu/faculty/manry/new_classification.html 

The geometric shape recognition data file consists of four geometric shapes, ellipse, triangle, 

quadrilateral, and pentagon. Each shape consists of a matrix of size 64*64. For each shape, 

200 training patterns were generated using different degrees of deformation. The deformations 

included rotation, scaling, translation, and oblique distortions. The feature set is ring-wedge 

energy (RNG), and has 16 features. 

 

Ⅴ. Ecoli (7 inputs, 8 classes, 336 patterns) 

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Ecoli 

Creator and Maintainer: 

Kenta Nakai 

Institue of Molecular and Cellular Biology Osaka, University 1-3 Yamada-oka, Suita 565 Japan 

nakai@imcb.osaka-u.ac.jp http://www.imcb.osaka-u.ac.jp/nakai/psort.html 

mailto:nakai@imcb.osaka-u.ac.jp
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Donor: Paul Horton (paulh@cs.berkeley.edu) 

Date:  September, 1996 

Inputs information: 

1. mcg: McGeoch's method for signal sequence recognition. 

2. gvh: von Heijne's method for signal sequence recognition. 

3. lip: von Heijne's Signal Peptidase II consensus sequence score.  

4. chg: Presence of charge on N-terminus of predicted lipoproteins. 

5. aac: score of discriminant analysis of the amino acid content of outer membrane and 

periplasmic proteins. 

6. alm1: score of the ALOM membrane spanning region prediction program. 

7. alm2: score of ALOM program after excluding putative cleavable signal regions from the 

sequence. 

Class Distribution: class value 1 is interpreted as cytoplasm (cp), class value 2 is interpreted 

as inner membrane without signal sequence (im), class value 3 is interpreted as inner 

membrane, cleavable signal sequence (imS), class value 4 is interpreted as inner membrane 

lipoprotein (imL), class value 5 is interpreted as inner membrane, uncleavable signal 

sequence(imU), class value 6 is interpreted as outer membrane (om), class value 7 is 

interpreted as outer membrane lipoprotein (omL), class value 8 is interpreted as perisplasm 

(pp). 

 

Ⅵ. Image Segmentation (19 inputs, 7 classes, 2310 patterns) 

Source from UCI: http://archive.ics.uci.edu/ml/datasets/Image+Segmentation 
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Creators: Vision Group, University of Massachusetts 

Donor: Vision Group (Carla Brodley, brodley@cs.umass.edu) 

Date: November, 1990 

Relevant Information: 

The instances were drawn randomly from a database of 7 outdoor images.  The images were 

hand segmented to create a classification for every pixel.   

Inputs Information: 

1. region-centroid-col: the column of the center pixel of the region. 

2. region-centroid-row: the row of the center pixel of the region. 

3. region-pixel-count: the number of pixels in a region = 9. 

4. short-line-density-5: the results of a line extractoin algorithm that counts how many lines 

of length 5 (any orientation) with low contrast, less than or equal to 5, go through the 

region. 

5. short-line-density-2:  same as short-line-density-5 but counts lines of high contrast, 

greater than 5. 

6. vedge-mean:  measure the contrast of horizontally adjacent pixels in the region.  There 

are 6, the mean and standard deviation are given. This attribute is used as a vertical edge 

detector. 

7. vegde-sd:  (see 6) 

8. hedge-mean:  measures the contrast of vertically adjacent pixels. Used for horizontal 

line detection.  

9. hedge-sd: (see 8). 
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10. intensity-mean:  the average over the region of (R + G + B)/3 

11. rawred-mean: the average over the region of the R value. 

12. rawblue-mean: the average over the region of the B value. 

13. rawgreen-mean: the average over the region of the G value. 

14. exred-mean: measure the excess red:  (2R - (G + B)) 

15. exblue-mean: measure the excess blue:  (2B - (G + R)) 

16. exgreen-mean: measure the excess green:  (2G - (R + B)) 

17. value-mean:  3-d nonlinear transformation of RGB. (Algorithm can be found in Foley and 

VanDam, Fundamentals of Interactive Computer Graphics) 

18. saturatoin-mean:  (see 17) 

19. hue-mean:  (see 17) 

Class Distribution:  

Classes:  brick face, sky, foliage, cement, window, path, grass. 

 

Ⅶ. Vowel (10 inputs, 11 classes, 990 patterns) 

This data is the speaker independent recognition of the eleven steady state vowels 

of British English 

Source from UCI: 

http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Vowel+Recognition+-+Deter

ding+Data%29 

David Deterding  (data and non-connectionist analysis) 

Mahesan Niranjan (first connectionist analysis) 
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Tony Robinson    (description, program, data, and results) 

Maintainer: Scott E. Fahlman, CMU 
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Appendix B 

Schmidt procedure
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Schmidt procedure  

The Schmidt procedure [27][28][29] maps the inputs into an orthonormal system which speeds 

up the computation of weights. For un-ordered basis functions x of dimension Nu, the mth 

orthonormal basis function x′m  is defined as [26][27]:   

x′m = � amkxk                                
m

k=1

 

Where A is a lower triangular  Nu by Nu orthonormal matrix, and Nu equals to Nh + 1.  

Initially , x′1 is found as a11x1 , where  

a11 =
1

‖x1‖
=

1

[𝑟(1,1)]
1
2
                                 

For 2 ≤ m ≤ Nu, we first perform  

ci = � aik

𝐢

k=1

r(k, m)                    

For 1 ≤ i ≤ m-1. Second, we set bm = 1 and get: 

bk = −� ciaik                                  
m−1

i=k

 

For 1 ≤ k ≤ m-1. Finally, we get coefficients amk for the lower triangular matrix A as: 

amk = bk/ �r(m, m) −  � ci2
m−1

i=1

�

1
2

   

Then we can get x′m by using equation (3.18), 

Once we get the orthonormal basis functions, the linear mapping weights in the orthonormal 

system can be simply found as:  

w′(i, m) = � amk

m

k=1

c(i, k)         1 ≤  i ≤  M                

Finally, we can get original system output weights W from orthonormal output weights 𝐖′ by: 
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w(m, k) = � amk

Nu

m=k

w′(i, m)                               

 

Ordered Basis Function  

The raw basis functions X(n) will be reordered as Xo(n) which denotes the nth most useful 

basis function. Define o(n) is the ordered function which is the index of the nth most useful 

basis function. Then Xo(n) = X(o(n)) for 1 ≤  n ≤  Nu.    

For 𝐗o , we can have [33] 

𝐗o = 𝐓𝐓                                                  

or 

Xo(n) = � t(n, k) ∙ X(k)
Nu

k=1

                                    

where T is a matrix which can simply reorder the elements of X. We consider T is the identity 

matrix I with its kth and mth rows switched if T forces X(k) and X(m) to change places. The 

mth row nth column of I is δ(m-n). Clearly, t(n,o(n)) = 1 and other t(n,k) coefficients on the nth 

row of T are zeros.   

The output vector y satisfies [21][33]: 

𝐲 = 𝐖𝐖 = 𝐖o𝐗o = 𝐖o
′𝐗′     

Where the weight matrix for the unordered orthonormal system is  

𝐖′ = 𝐂T𝐀T   

For ordered basis functions, we have  

𝐗o = 𝐓𝐓     

and 
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𝐗′ = 𝐀𝐗o   

Then we get,  

𝐖 = 𝐖o𝐓 

𝐖o = 𝐖o
′𝐀   

Next, we get output weight matrix for original system as: 

𝐖 = 𝐖𝐨
′𝐀𝐀 

For the ordered correlation matrices,  

𝐑o = 𝐓𝐓𝐓𝐓   

𝐂o = 𝐓𝐓   

For the ordered basis function of orthonormal system, the weight matrix is: 

𝐖o
′ = 𝐂oT𝐀T                                         

Finally we get the output weight matrix for original system as: 

𝐖 = 𝐂oT𝐀T𝐀𝐀                                    

Orthonormal system outputs weight are then generated as  

wo
′(i, n) = � c(o(k), i) ∙ a(n, k)                            

Nu

k=1

 

An element of T is: 

t(n, k) = δ�k − o(n)�                                                   

We get  

at(k, n) = � a(k, u) ∙ δ�n − o(u)�                            
Nu

u=1

 

where at(k,n) is an element of AT.  

Then we map 𝐖o
′ back to W, we have 
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w(i, n) = �wo
′(i, k) ∙ at(k, n)                                    

Nu

k=1

 

Replacing at(k,n), we get  

w(i, n) = �wo
′(i, k)� a(k, u) ∙ δ�n − o(u)�

Nu

u=1

           
Nu

k=1

 

Replacing n by o(n), we get 

w(i, o(n)) = �wo
′(i, k)� a(k, u) ∙ δ�o(n) − o(u)�

Nu

u=1

        
Nu

k=1

 

Simplify the equation, we get  

w(i, o(n)) = �wo
′(i, k)� a(k, u) ∙ δ(n − u)

Nu

u=1

        
Nu

k=1

 

Finally, we get the output weights for original system as:  

w(i, o(n)) = �wo
′(i, k) ∙ a(k, n)                              

Nu

k=1
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Appendix C 

Performance Evaluation of RBF Neural Network 
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Performance Evaluation of RBF Neural Network 

1. Training error: Training error is defined as the average error produced by the network 

when it is subjected to all the patterns that it was trained on. 

2. Validation error: Validation error is the average error produced by the network when it is 

made to process new data not seen during training. 

The training error is usually smaller than the validation error, since the network is already 

optimized to reduce the error by the validation data during training.  

3.  Testing error: Testing error is defined as the average error produced by the trained 

network testing on the test data.  
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Appendix D 

K-fold Cross Validation 
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K-fold Cross Validation  

We use k-fold validation technique for estimating the performance of RBF based classifier. 

Given a single data set, we run a single k-fold validation process as follow: 

1. Randomly divide data set into k disjoint subsets of equal size where 1 ≤ k ≤ K. 

2. for i=1…k, train and validate the classifier using all data which do not belong to fold i. 

3. Test the classifier using the fold i. 

4. Calculate Ek, the number of patterns in fold i which got wrong classification during training. 

Calculate Evk, the number of patterns in fold i which got wrong classification during 

validation. Calculate Etk, the number of patterns in fold i which got wrong classification 

during testing. 

5. Repeat the process from step one to step four choosing another i. 

To obtain an satisfied accuracy of the classifier, we repeat the k-fold validation for several 

times. The average of the k training misclassification Petrain, validation misclassification 

Pevalidation and testing misclassification Petest are: 

Petrain =
Etrain

number of training patterns
                  

                                  Pevalidation =
Evalidation

number of validation patterns
       

Petest =
Etest

number of testing patterns
                   

where Etrain, Evalidation and Etest are defined as 

Etrain =
1
K
�Ek

K

k=1

                                        

                                                            Evalidation =
1
K
�Evk

K

k=1

 

Etest = 1
K
∑ Etk                            K
k=1   
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