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Abstract 

 
MAGNETIC FIELD ENHANCED THERMAL CONDUCTIVITY ANALYSIS OF MAGNETIC 

NANOFLUIDS 

 

Christopher Allen, MS 

 

The University of Texas at Arlington, 2015 

 

 

Supervising Professor: Hyejin Moon 

 

The magnetic properties of four water-based nanofluids consisting of Al2O3, 

CuO, Fe3O4, and SiO2 were exploited to analyze the effect of the application of an 

external magnetic field on the thermal conductivity of the nanofluid. When the magnetic 

field is applied, the magnetic dipole moments of the particles align and the particles come 

in contact with each other and form chains in the direction of the applied magnetic field. 

When parallel to the direction of heat flow, the magnetic field causes the effective thermal 

conductivity in the direction of the magnetic field to increase. A higher thermally 

conductive fluid can be applied to solve numerous heat transfer problems. 
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Chapter 1  

Introduction 

 

 

 

 
1.1 – Nanofluids 

 

 Nanofluids are comprised of a concentration of nanoscale sized particles 

immersed in a base fluid. The particles can be composed of any type of material. 

Examples include pure metals, oxides, carbides, and carbon nanotubes. The base fluid 

can be anything from pure water, ionic liquids, oils, to diluted organic compounds such as 

ethylene glycol and oleic acid.1 The addition of nanoparticles in these fluids cause this 

composite liquid to have tunable properties, which makes them extremely versatile 

substances. Nanoscale particles have an advantage over larger particles in such a way 

that, due to their small sizes, the effect of surface tension can overcome buoyant forces 

on each particle with the help of a surfactant, causing them to be suspended in the liquid 

rather than sinking to the bottom, which would be the case for microscale or larger 

particles. Thus, we can treat the flow of these nanofluids as a single-phase flow with 

consideration of the properties of both constituents and the concentration of 

nanoparticles in the fluid.2 The properties and characteristics of these fluids have been 

widely researched and tested in a wide variety of applications. There have been 

experiments conducted to determine various thermal properties of nanofluids, such as 

specific heat and thermal conductivity, as well as rheological experiments conducted in 

order to determine the viscosity of different concentrations of nanofluids and their effect 

on fluid flow.  
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Given that nanofluids contain both solid and liquid constituents, there are certain 

attributes that nanofluids have that normal liquids do not, as they have both solid and 

liquid properties. We can exploit the solid properties such as their kinematic, inertial, 

magnetic attributes and particle size in order to control the properties of the bulk fluid. 

Since the particles are on the order of several nanometers in size, the atoms on the 

surface of the particle make up a larger portion of their mass than particles on the 

microscale or larger. Therefore, heat transfer through these particles will occur rather 

quickly, given that the thermal conductivity of the particles is much larger than their 

corresponding base fluid. Fluids generally do not conduct heat well, so the addition of 

particles will significantly enhance the effective thermal conductivity of the nanofluid as a 

whole. 

 

 

 

 

1.2 – Thermal Properties 

 

 In conduction, heat flows through molecular vibrations in a material. The rate that 

heat flows through a material correlates with a temperature gradient; a relation that is 

known as Fourier’s Law of Conduction. Heat always flows from a higher temperature to a 

lower temperature. 

 

 𝐪⃗⃗ " = −𝑘 𝛁⃗⃗ 𝑇 (1.1) 
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Fourier’s Law defines the heat flux in a material as linearly proportional to the 

temperature gradient inside the material. This proportionality constant 𝑘 is known as the 

thermal conductivity. The thermal conductivity of a material is a measure of how fast heat 

flow by conduction occurs through it given a temperature gradient.  

 

When the nanofluid is stationary, the particles are randomized within the base fluid, 

similar to a porous material with pores randomized throughout the material. Instead of 

defining the thermal conductivity for a fluid with beads of solid material contained within it, 

we swap the solid and fluid properties in the equation for the total effective thermal 

conductivity of a porous material, known as the Maxwell equation.3 

 

 𝑘0 = [
𝑘𝑠 + 2𝑘𝑓 − 2𝜙(𝑘𝑓 − 𝑘𝑠)

𝑘𝑠 + 2𝑘𝑓 + 𝜙(𝑘𝑓 − 𝑘𝑠)
] 𝑘𝑓 (1.2) 

 

Instead of using a porosity 𝜖, we use the volume fraction of particles in the nanofluid, 𝜙. 

When 𝜙 = 0, we can see that the effective thermal conductivity will equal that of the fluid, 

𝑘𝑓. Conversely, when 𝜙 = 1, the effective thermal conductivity will equal that of the solid 

particles, 𝑘𝑠. Thus, the effective thermal conductivity will have a value between the fluid 

and solid thermal conductivities. If we have a nanoparticle material that has a higher 

thermal conductivity than the base fluid, then we can see that the effective thermal 

conductivity will increase with the volume fraction of particles within the nanofluid.  

 

Due to heat flow being analogous to electrical flow, we can use the thermal resistance of 

each material to find a total effective thermal conductivity of the system. Given that 

resistance is the inverse of conductance, we need to minimize its thermal resistance in 
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order to find the maximum effective thermal conductivity of the nanofluid. Analogous to 

electrical resistance, the effective thermal resistance of two materials is minimized when 

the individual resistances are connected in parallel. This allows us to treat the fluid as a 

system of two materials stacked beside each other, with the particle volume fraction 

treated as a volume percentage of one material relative to the system. Since the system 

is characterized by parallel resistances, the corresponding conductances are summed to 

find the conductivity. 

 

 𝑘𝑒𝑓𝑓,𝑚𝑎𝑥 = 𝜙𝑘𝑠 + (1 − 𝜙)𝑘𝑓 (1.3) 

 

However, in a case where two materials are stacked in the direction of heat flow, the 

thermal resistances are configured in series. The thermal resistances are summed 

accordingly, which maximizes the effective thermal resistance. Given that the 

conductance of a material is the inverse of its resistance, we can find an expression for 

the minimum effective thermal conductivity. 

 

 
1

𝑘𝑒𝑓𝑓,𝑚𝑖𝑛 

=
1

𝜙𝑘𝑠

+
1

(1 − 𝜙)𝑘𝑓

 (1.4) 
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Figure 1.1: Thermal Resistances of two materials in a) series, and b) parallel 

 

 

 

 

 

1.3 – Magnetism 

 

 When charged particles are in motion, they create forces that act on each other 

due to their motion. These forces are caused by a phenomenon known as magnetism. 

Similar to forming an electric field due to their charge, these charges form a magnetic 

field due to their motion. However, unlike the electric field, the magnetic field can do no 

work, causing the magnetic flux through a closed surface to be zero. Therefore, the 

𝑅𝑓 𝑅𝑠 
𝑅𝑓 

𝑅𝑠 

1 

𝜙 

a) b) 
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divergence of the magnetic flux density will be zero. This is known as Gauss’ Law of 

Magnetism. 

 

 𝛁⃗⃗ ⋅ 𝐁⃗⃗ = 0 (1.5) 

 

This implies that a magnetic field cannot exist as a source or a sink point, thus the 

simplest form it can exist as is a dipole. The convention that is most widely used for 

identifying magnetic fields is to orient it in a direction that points from a “south” pole to a 

“north” pole. Due to Gauss’ Law of Magnetism, a north pole cannot exist without a south 

pole.  

 

We can take the magnetic field of a solenoidal electromagnet as an example. A solenoid 

consists of an electrically conductive wire configured in a helical fashion. The core of the 

solenoid can contain either air or some magnetic material. Inside of an air-core solenoid 

the magnetic field is expressed by the following expression. 

 

 𝐵𝑧 =
𝜇0𝑁𝐼

ℓ
 (1.6) 

 

where 𝜇0 is the permittivity of free space, 𝑁 is the number of turns in the solenoid, and ℓ 

is the total length of the solenoid. Given that 𝜇, 𝑁, and ℓ are characteristic parameters of 

the solenoid, we can combine them into a single parameter 𝛾, known as the coil constant. 

 

 𝐵𝑧 = 𝛾𝐼 (1.7) 
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We can see that the magnetic field inside of the solenoid is linearly proportional to the 

current flowing through the wires in the coil. The field outside of the solenoid can be 

treated as that of a dipole. Combining the fields of these two sections, we are able to find 

that the magnetic field lines (similar to lines formed at constant values of the stream 

function) will form closed paths.  

 

 

 

 

 

1.4 – Magnetic Properties of Nanoparticles 

   

As stated in the previous section, magnetic fields are caused by charged particles in 

motion, such as that of a current-carrying wire. Although not as evident, this effect can be 

observed in matter. In the atoms of the material, electrons orbit around their nuclei and 

also have a certain spin about an axis. These two quantum mechanical phenomena give 

rise to the notion that charge moves inside matter, thus making it susceptible to 

manipulation by magnetic forces.  

 

Given that the simplest form a magnetic field can exist is as a single dipole, the magnetic 

field in matter can be described as a collection of dipoles. The presence of an external 

magnetic field creates a torque on the dipoles and aligns them to it, defined by their 

magnetic dipole moment. 

 

 𝛕⃗ = 𝐦⃗⃗⃗  × 𝐁⃗⃗ 𝐞𝐱𝐭 (1.8) 
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In matter, we define the magnetic dipole moment per unit volume of the collection of 

these dipoles as the magnetization of a material. The magnetization field caused by 

these “bound currents” (electrons bound to each atom) along with an auxiliary field 

caused by “free currents” (electrons free to travel across the atoms’ outer valence shell) 

form the total magnetic field outside of the material.4 This explains how a metal-core 

solenoid has a stronger outer magnetic field than that of an air-core solenoid. 

 

 In nanofluids, each nanoparticle becomes magnetized in the presence of an 

external magnetic field and creates a small field, in the direction of its average magnetic 

dipole moment. These small fields interact with each other and the particles attract, 

forming chains in the direction of the external field. 

 

 𝐅 𝟏 = 𝛁⃗⃗ (𝐦⃗⃗⃗ 𝟏 ⋅ 𝐁⃗⃗ 𝟐) (1.9a) 

 𝐅 𝟐 = 𝛁⃗⃗ (𝐦⃗⃗⃗ 2 ⋅ 𝐁⃗⃗ 𝟏) (1.9b) 
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Figure 1.2: External magnetic field induced interaction between two magnetized particles: 

a) average magnetic dipole moments, b) small magnetic forces acting on each other, c) 

particles in equilibrium when in contact 

 

𝐦⃗⃗⃗ 𝟐 𝐦⃗⃗⃗ 𝟏 

𝐁⃗⃗ 𝐞𝐱𝐭 

𝐅 𝟐 𝐅 𝟏 

a) 

b) 

c) 
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The most widely known example of this phenomenon is the alignment of iron filings 

around a bar magnet. In the figure below, we can see how the iron filings align with the 

magnetic field created by the bar magnet. The dipole moments of the particles align 

along the direction of the magnetic field and connect to each other. Also, notice that the 

greatest concentration of particles is located at the poles of the magnet, where the 

magnetic field is the strongest.  

 

 

 

Figure 1.3: Iron filings being used to demonstrate the lines of the magnetic field of a bar 

magnet 

 

 

 

 There are three main types of magnetic orientation inside of a material. 

Paramagnetic materials magnetize parallel to an applied external magnetic field, then 

demagnetize after the external field is no longer applied. Diamagnetic materials are 
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similar to paramagnetic materials, but they magnetize antiparallel to the applied field 

rather than parallel. Ferromagnetic materials magnetize parallel to an external field, but 

retain magnetization when the field is no longer applied.  

 

 

 

 

 

1.5 – Purpose of Study 

 

 The purpose of this study is to determine if utilizing the magnetic properties of 

nanofluids will have any effect on thermal conductivity and investigating the cause of why 

this phenomenon happens. With a thermal conductivity that is able to be fine tuned by 

external means, we would have more control over heat transfer in any system.  With the 

advancement of technology and its emphasis on the utilization of semiconductor devices 

packed into the smallest place possible, the traditional bulky heat sinks are struggling to 

efficiently dissipate the heat that the semiconductor devices generate. Recently, there 

has been research conducted on liquid cooling of these semiconductor devices. This 

could possibly replace the metal heat sinks by providing a more efficient heat transfer in a 

much smaller volume in the future. 



 

 12 

Chapter 2 

Theory and Experiment Setup 

 

 

 
2.1 - Methodology 

 

There have been different methods developed to measure a fluid’s thermal conductivity. 

The most widely used is the transient hot wire method. In this method, a thin resistive 

wire acts as a heat source vertically inside of some container. The thermal conductivity of 

the working fluid is calculated using the resistance of the hot wire measured during the 

time before convection effects can take effect. This is a very effective method for 

measuring general liquids. However, there arises a problem when attempting to analyze 

magnetic effects. Ideally, the direction of heat flow should be parallel to the magnetic 

field. The divergence of heat flow in this case is non-zero due to the heat being sourced 

from a singular point radially within the container. Gauss’ Law of Magnetism states that 

the divergence of the magnetic flux density is zero, which implies that magnetic fields 

cannot exist as a singular source or sink point. There have been experiments conducted 

to where a permanent magnet was placed at a certain distance away from the container, 

oriented parallel to the direction of heat flow within a certain section of the container.5 

However, since the field of the permanent magnet decreases with distance, it will not 

provide the uniformity what we desire for the magnetic field.  

For this experiment, we require a uniform, unidirectional heat flow to match a uniform, 

unidirectional magnetic field. To achieve this, we constructed an apparatus consisting of 

a laterally insulated cylindrical container of height H, which holds the nanofluid. A source 

of constant heat flux is placed at the top of the container, while the bottom is insulated. 
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The resulting positive vertical temperature gradient creates a negative vertical density 

gradient within the fluid. Since the density gradient is in the same direction as the 

gravitational force, there are no buoyant forces present in the fluid, thus rendering any 

natural convective effects irrelevant. In turn, the problem is simplified to a one-

dimensional conduction problem. Since all the other sides are insulated, there is only one 

nonhomogeneous boundary condition to consider: the heat transfer due to constant heat 

flux at the top of the container. This can be described by Fourier’s Law at the boundary. 

 

 𝑞" = −𝑘
𝜕𝑇

𝜕𝑧
|
𝑧=𝐻

 (2.1) 

 

If we analyze the energy balance throughout the container, we can see that the energy 

input is coming from the source of constant heat flux. However, since all the other sides 

of the container are insulated, there will be nowhere for the energy to escape causing a 

zero energy output. All of the energy from the heat source will be stored inside the liquid. 

Thus, we cannot expect to find a steady state solution for the temperature distribution. 

 

   

 

 

2.2 – Governing Equation 

 

 For any fluid, the equation derived due to conservation of energy is expressed 

by: 
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 𝜌𝑐𝑝

𝐷𝑇

𝐷𝑡
= 𝛁⃗⃗ ⋅ (𝑘𝛁⃗⃗ 𝑇) +

𝜕𝑝

𝜕𝑡
+ 𝜇𝛷 (2.2) 

 

On the right hand side, 𝜇𝛷 is the frictional heating term, dependent on the velocity of the 

fluid. But in this instance, our configuration allows us to neglect any convective effects. 

Therefore, we can deem the effect of frictional heating negligible. Furthermore, the 

pressure rate will also be neglected due to the absence of velocity.  

Realistically, thermal conductivity is somewhat dependent on temperature, but has very 

little change within several degrees centigrade, so we can treat it as a constant. This 

greatly simplifies the problem at hand. 

 

 ∇2𝑇 =
𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 (2.3) 

 

The coordinates used in the equation should follow the geometry of the boundary at 

hand. Since the container we are using is a cylinder, we will be expressing the energy 

equation in cylindrical coordinates. 

 

 
1

𝑟

𝜕

𝜕𝑟
[𝑟

𝜕𝑇

𝜕𝑟
] +

1

𝑟2

𝜕2𝑇

𝜕𝜙2
+

𝜕2𝑇

𝜕𝑧2
 =

𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 (2.4) 

 

To further simplify the equation, we radially insulate the container so the heat will not flow 

outward. By nature, the cylinder has azimuthal symmetry, so we can neglect the 

azimuthal term. We will also place a source of constant heat flux in the vertical direction, 

so the heat flow will only travel in vertical direction. By doing this, we have simplified the 
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problem from a three-dimensional convection problem to a one-dimensional transient 

conduction problem. 

 

 
𝜕2𝑇

𝜕𝑧2
=

𝜌𝑐𝑝

𝑘

𝜕𝑇

𝜕𝑡
 (2.5) 

 

We set the fluid initially at a uniform temperature 𝑇0. The source of constant heat flux will 

be placed at the top of the container, and the bottom will be insulated. From this, we can 

define our initial and boundary conditions. 

 

 𝑇(𝑧, 0) = 𝑇0 (2.6a) 

 
𝜕𝑇

𝜕𝑧
|
𝑧=0

= 0 (2.6b) 

 
𝜕𝑇

𝜕𝑧
|
𝑧=𝐻

=
𝑞"

𝑘
 (2.6c) 

 

 

 

 

2.3 – Derivation of Working Equation 

  

The main objective for solving this boundary value problem is to manipulate the function 

in a way that we can easily solve for the temperature distribution by simplifying the 

boundary conditions.  

 

 𝜃(𝑧, 𝑡) = 𝑇(𝑧, 𝑡) − 𝑇0 (2.7) 
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This represents the temperature change of the fluid relative to its initial temperature. This 

configuration allows us to manipulate the boundary conditions without disturbing the 

governing equation.  

 

 
𝜕2𝜃

𝜕𝑧2
=

𝜌𝑐𝑝

𝑘

𝜕𝜃

𝜕𝑡
 (2.8) 

 

 𝜃(𝑧, 0) = 0 (2.9a) 

 
𝜕𝜃

𝜕𝑧
|
𝑧=0

= 0 (2.9b) 

 
𝜕𝜃

𝜕𝑧
|
𝑧=𝐻

=
𝑞"

𝑘
 (2.9c) 

 

The ideal conditions for solving this equation is to manipulate the boundary conditions to 

where the only non-homogeneity is in the initial condition. To do this, we can separate the 

function into a summation of smaller functions. We can define two of the terms as 

functions of each variable, and a third term as a function of both variables. 

 

 𝜃(𝑧, 𝑡) = 𝑢(𝑧) + 𝑣(𝑡) + 𝑤(𝑧, 𝑡) (2.10) 

 

This changes the governing equation and the boundary conditions to where we can 

separate the ordinary derivatives from the partial derivatives. 

 

 
𝑑2𝑢

𝑑𝑧2
+

𝜕2𝑤

𝜕𝑧2
=

𝜌𝑐𝑝

𝑘
(
𝑑𝑣

𝑑𝑡
+

𝜕𝑤

𝜕𝑡
) (2.11) 
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 𝑣(0) + 𝑤(𝑧, 0) = 0 (2.12a) 

 𝑢′(0) +
𝜕𝑤

𝜕𝑧
|
𝑧=0

= 0 (2.12b) 

 𝑢′(𝐻) +
𝜕𝜃

𝜕𝑧
|
𝑧=𝐻

=
𝑞"

𝑘
 (2.12c) 

 

Solving for 𝑢(𝑧) and 𝑣(𝑡), we obtain the ideal conditions to solve for 𝑤(𝑧, 𝑡). After solving 

the boundary value problem and all the constants of integration, we end up with 

expressions for each function.6 

 

 𝑢(𝑧) =
𝑞"

2𝑘𝐻
(𝑧2 −

𝐻2

3
) (2.13a) 

 𝑣(𝑡) =
𝑞"

𝜌𝑐𝑝𝐻
𝑡 (2.13b) 

 𝑤(𝑧, 𝑡) =
2𝑞"𝐻

𝑘
∑

(−1)𝑛+1

(𝑛𝜋)2
cos (

𝑛𝜋𝑧

𝐻
) exp (−

𝑘(𝑛𝜋)2

𝜌𝑐𝑝𝐻
2

𝑡)

∞

𝑛=1

 (2.13c) 

 

From Equation 2.10, we can obtain a complete expression for the temperature change in 

the fluid. 

 

 𝜃(𝑧, 𝑡) =
𝑞"

𝜌𝑐𝑝𝐻
𝑡 +

𝑞"

2𝑘𝐻
(𝑧2 −

𝐻2

3
) +

2𝑞"𝐻

𝑘
∑

(−1)𝑛+1

(𝑛𝜋)2
cos (

𝑛𝜋𝑧

𝐻
) exp (−

𝑘(𝑛𝜋)2

𝜌𝑐𝑝𝐻
2

𝑡)

∞

𝑛=1

 (2.14) 

 

Using this expression, we can find the temperature measured at each boundary. 

 

 𝜃(0, 𝑡) =
𝑞"

𝜌𝑐𝑝𝐻
𝑡 −

𝑞"𝐻

6𝑘
−

2𝑞"𝐻

𝑘
∑

(−1)𝑛

(𝑛𝜋)2
exp (−

𝑘(𝑛𝜋)2

𝜌𝑐𝑝𝐻
2

𝑡)

∞

𝑛=1

 (2.15a) 
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 𝜃(𝐻, 𝑡) =
𝑞"

𝜌𝑐𝑝𝐻
𝑡 +

𝑞"𝐻

3𝑘
−

2𝑞"𝐻

𝑘
∑

1

(𝑛𝜋)2
exp (−

𝑘(𝑛𝜋)2

𝜌𝑐𝑝𝐻
2

𝑡)

∞

𝑛=1

 (2.15b) 

 

After a long period of time, the temperature change will linearize due to the diminishing 

effect of the summation term. Therefore, since the other terms remain constant, the 

difference in temperature between the top and bottom boundaries will converge to a 

particular value. We can define a function to describe the temperature difference. 

 

 Δ(𝑡) = 𝜃(𝐻, 𝑡) − 𝜃(0, 𝑡) (2.16) 

 

Notice that the first term in Equations 2.15a and 2.15b are equal, so the linear terms will 

simplify into a constant. 

 

 Δ(𝑡) =
𝑞"𝐻

𝑘
[
1

2
+ 2 ∑

1 − (−1)𝑛

(𝑛𝜋)2
exp (−

𝑘(𝑛𝜋)2

𝜌𝑐𝑝𝐻
2

𝑡)

∞

𝑛=1

] (2.17) 

 

When time becomes large, the summation term vanishes, causing the temperature 

difference to converge to a constant, steady state-like value. 

 

 Δ𝑠𝑠 =
1

2

𝑞"𝐻

𝑘
 (2.18) 

 

Finally, we can extract the thermal conductivity of the fluid from the expression of the 

steady state temperature difference. 
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 𝑘 =
1

2

𝑞"𝐻

Δ𝑠𝑠

 (2.19) 

 

 

 We created a Finite Difference Model of the problem in order to easily visualize 

the temperature distribution inside the container over space and time. The parameters we 

used for the model were the fluid properties of pure water (density: 1000 kg m3⁄ , specific 

heat: 4180 J kg K⁄ , thermal conductivity: 0.6 W m K⁄ )7, constant heat flux value at 

200 W m2⁄ , and the cylinder height at 0.05 m. A 5 millimeter spacing and a 60 second 

time step was used in the finite-difference equations.  

 

 

 

Figure 2.1: Finite Difference Model of the Temperature Change at the top and bottom 

boundaries vs. Time  
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A time duration of 120 minutes was used to show the linearity of the temperature change 

at a large time. The coefficient of the time-dependent term (the second term in Equation 

2.10) serves as the slope of the linear region, which is dependent on the density and the 

specific heat of the fluid. Since it is the same for both the top and bottom temperature 

distributions, it is easy to see that the temperature difference between the top and bottom 

boundaries converges to a single value at a large time. 

 

  

Figure 2.2: Finite Difference Model of the Temperature Difference between the top and 

bottom boundaries vs. Time 
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spatial distribution matures into some sort of pseudo-steady state distribution. At this 

point, all the values of temperature increase with time at the same rate. 

 

  

Figure 2.3: Finite Difference Model of the Temperature Difference between the top and 

bottom boundaries vs. Vertical Distance 

 

 

 

The heat flux of the system, however, has a different behavior. We can apply Fourier’s 

Law to the temperature distribution stated in Equation 2.14 to obtain the heat flux 

distribution. 
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 𝑞"(𝑧, 𝑡) = 𝑞"
𝑧

𝐻
+ 2𝑞" ∑

(−1)𝑛

𝑛𝜋
sin (

𝑛𝜋𝑧

𝐻
) exp (−

𝑘(𝑛𝜋)2

𝜌𝑐𝑝𝐻
2

𝑡)

∞

𝑛=1

 (2.20) 

 

 

 

Figure 2.4: Finite Difference Model of the Heat Flux Distribution between the top and 

bottom boundaries vs. Vertical Distance 

 

 

As we can see from Figure 2.4, The heat flux distribution becomes steady state at a large 

time. When the heat flux becomes steady state, the temperature distribution linearizes at 

every point with time. Thus, the temperature difference converges and we can extract the 

thermal conductivity from the expression in Equation 2.19.   
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2.4 – Description of Apparatus 

 

In order to execute this experimentally, we configured a container with a circular electric 

wire heater placed on the underside of the cap. Since the resistivity of a material 

increases with temperature, the heater was made from nichrome wire to ensure a 

constant heat flux, due to its significantly low temperature coefficient of resistivity. In 

order to create a uniform magnetic field, we constructed a copper-wire solenoidal 

electromagnet that surrounded the nanofluid container. The electromagnet, powered by a 

Hewlett Packard 6038A DC Power Supply, was oriented in such a way that its magnetic 

field lines run parallel to the direction of heat flow.  

 

 

 

Figure 2.5: Cross-Sectional View of the Main Apparatus 

Heater Top Thermocouple 

Electromagnet 

Fluid Container 

Bottom Thermocouple 

PVC Tube 

Insulation (inside tube) 
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Two thermocouples were configured on the cap where the heater was placed, and 

bottom of the container to measure the temperature at those two points. The 

thermocouples were connected to a Keithley 2700 Digital Multimeter (DMM), which 

enabled us to read the temperature in degrees centigrade. The DMM transferred data 

from the thermocouples to a LabVIEW program. Using the program, the temperature 

difference between the two thermocouples was calculated and the data was written into a 

Microsoft Excel spreadsheet via LabVIEW and plotted over time.  

 

A benefit of using this method of thermal conductivity measurement is that we are able to 

neglect any convective effects due to the nature of the setup. This allows us to consider 

only the conduction of the system; the temperature range is low (around room 

temperature), therefore we can also neglect any radiative effects. Also, we are able to 

control a uniform magnetic field that is parallel to a uniform heat flow. When the system is 

one-dimensional, uniform, and unidirectional, the problem becomes extremely simple. 

However, this method requires a rather large duration of measurement, whereas each 

measurement in the transient hot wire method occurs over only a few seconds. Alas, the 

benefits of this method are well worth the time required for each measurement. 
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Chapter 3 

Experiment and Discussion 

 

 

 
3.1 – Procedure 

 

We prepared four different nanofluids: Aluminum (III) Oxide (Al2O3, diamagnetic, 

80 nm diameter), Copper (II) Oxide (CuO, paramagnetic, 40 nm diameter), Iron (II, III) 

Oxide (Fe3O4, ferrimagnetic, 20-30 nm diameter), and Silicon (IV) Oxide (SiO2, 

diamagnetic, 20-30 nm diameter). Each nanofluid was stabilized with a sodium dodecyl 

sulfate (SDS) surfactant, and was prepared at a volume fraction of 0.125 by adding 5 

milliliters of nanoparticles to 35 milliliters of the water-surfactant solution. The 

electromagnet was constructed from 294 meters of 12 Gauge copper wire and a 1 ½ inch 

PVC pipe. 709 turns of the wire were wrapped around the PVC pipe to form the solenoid 

at a height of 14 centimeters, which characterized the electromagnet with a coil constant 

of 63.8 G A⁄ . The electromagnet was oriented in such a way that the magnetic field was 

pointed upward, antiparallel to the direction of heat flow and gravitational acceleration. 

The heater was constructed from 1.2 meters of 26 Gauge nichrome wire in a spiral with 

an outside diameter of 3.2 centimeters to fit inside the container. The wire heater was 

powered by a Duracell MN908 6-volt battery with a toggle switch and five 150 Ω resistors 

in parallel for a total of 30 ohms in order to limit the current through the heater.  

 

We tested each nanofluid by applying heat from the heater and measuring the 

temperature difference after it converged to a single value. In order to measure the 

temperature difference accurately, we conducted each measurement over the course of 
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one hour. After the hour of measurement, the heater was turned off and the temperature 

difference was recorded. Before each measurement, the nanofluid was brought back to 

equilibrium conditions by stirring it back to room temperature. This ensured a consistent 

measurement throughout the course of the experiment. We used this method to calibrate 

the apparatus by using deionized water at room temperature, which has a known thermal 

conductivity of 0.6W m K⁄ . Given a known thermal conductivity, we were able to calculate 

the heat flux that the heater provided as 260 W m2⁄ . We conducted six measurements 

with each nanofluid. The first measurement was performed with no effect from the 

magnetic field, then the electromagnet was turned on and increased by 2-amp 

increments for a magnetic field increment of 127.6 Gauss. The electromagnet was 

powered to a maximum of 10 amps for the sixth measurement in each nanofluid. With six 

measurements in each of the four nanofluids, we conducted a total of 24 measurements. 

 

 

 

 

3.2 – Results & Discussion 

 

 The experiment apparatus performance was nearly identical to the theoretical 

scenario described in Chapter 2. The figure below shows the transient temperature as a 

function of time for the iron oxide nanofluid under the influence of a magnetic field that 

has a strength of 255.2 Gauss. 
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Figure 3.1: Transient temperature of 12.5% volume fraction Fe3O4 with a 255.2 Gauss 

applied magnetic field: measured at the top and bottom thermocouples over time. Data 

retrieved from LabVIEW. 
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In this case, the heater was turned on at 1 minute into the measurement. The shape of 

the temperature vs. time graph is consistent with the finite difference method description 

of the theoretical model in Figure 2.1, so this shows that this measurement method is 

valid. The temperature differences for each of the 24 measurements were recorded and 

analyzed.  

 

 

 

Table 3.1: Measured Temperature Difference for each nanofluid with various magnetic 

field strengths 

 

Magnetic Field 

(Gauss) 

Temperature Difference (K) 

Al2O3 CuO Fe3O4 SiO2 

0 7.71971 7.64615 9.29794 9.52108 

127.6 5.93585 5.60441 7.97141 8.48898 

255.2 1.98777 3.34173 6.99433 6.80422 

382.8 1.66577 1.7651 5.67032 5.95806 

510.4 1.42631 1.31974 5.00351 5.72037 

638 1.32561 1.04493 4.39606 5.48342 
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We can see that the temperature difference decreases as the strength of the magnetic 

field increases. As described in the relation in Equation 2.19, the thermal conductivity is 

inversely proportional to the temperature difference. Therefore, we can see that the 

thermal conductivity does in fact increase as an external magnetic field increases.  

 

 

 

Table 3.2: Thermal Conductivity calculated from the measured Temperature Difference 

for each nanofluid with various magnetic field strengths 

 

Magnetic Field 

(Gauss) 

Thermal Conductivity (W/(m K)) 

Al2O3 CuO Fe3O4 SiO2 

0 0.84200 0.85010 0.69907 0.68269 

127.6 1.09504 1.15980 0.81541 0.76569 

255.2 3.26999 1.94510 0.92932 0.95528 

382.8 3.90209 3.68251 1.14631 1.09095 

510.4 4.55720 4.92521 1.29908 1.13629 

638 4.90340 6.22051 1.47859 1.18539 

 

 

 

 

The value of thermal conductivity with no applied magnetic field our experimental value of 

𝑘0, the thermal conductivity of the nanofluid at its suspended equilibrium. From this, we 
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can manipulate the relation in Equation 1.2 to find the experimental value of the thermal 

conductivity of the nanoparticles.  

 

 

 

Table 3.3: Calculated thermal conductivity of solid nanoparticles, and the Maxwellian 

thermal conductivity of each nanofluid 

 

 𝑘0 (W m K⁄ ) 𝑘𝑠 (
W

m K⁄ ) 𝑘𝑠,𝑘𝑛𝑜𝑤𝑛 (W m K⁄ )8 9 10 

Al2O3 0.84200 33.477 30 

CuO 0.85010 73.663 78 

Fe3O4 0.69907 1.889 Unknown 

SiO2 0.68269 1.575 1.4 

 

 

 

Notice that the copper oxide and aluminum oxide nanoparticles have a much greater 

thermal conductivity than the iron oxide and the silicon dioxide nanoparticles. This can 

explain the greater increase of thermal conductivity in the copper oxide and the aluminum 

oxide as opposed to the smaller increase in thermal conductivity in the iron oxide and the 

silicon dioxide.  

 

 

We can describe the enhancement as a ratio of the measured thermal conductivity over 

the thermal conductivity of the base fluid. This shows that the thermal conductivity is 
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enhanced by simply adding a concentration of nanoparticles to the base fluid, given that 

the thermal conductivity of the particles is greater than the thermal conductivity of the 

base fluid. 

 

 

 

 

Figure 3.2: Thermal conductivity ratio of each nanofluid vs. magnetic field strength 

 

 

 

We can more easily see the enhancement of thermal conductivity by defining a relative 

thermal conductivity enhancement 𝜅. This dimensionless quantity can be described as 

the ratio of the enhanced thermal conductivity over the maximum thermal conductivity 
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relative to the non-enhanced thermal conductivity. The relative enhancement will be at 1 

when at maximum, and at 0 when non-enhanced. 

 

 𝜅 =
𝑘 − 𝑘0

𝑘𝑚𝑎𝑥 − 𝑘0

 (3.1) 

 

 

 

 

Figure 3.3: Relative thermal conductivity enhancement of each nanofluid vs. magnetic 

field strength 

 

 

The shape of the data somewhat resembles a hyperbolic tangent function. We can 

analyze the data by comparing it to a parameterized function. 
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 𝜅(𝐵) = 𝑎 + 𝑏 tanh(𝑐𝐵 − 𝑑) (3.2) 

 

where 𝑎, 𝑏, 𝑐, and 𝑑 are parameter constants specific to each nanofluid. When at 

maximum, 𝜅 = 1, and when at minimum, 𝜅 = 𝜅𝑚𝑖𝑛. When the nanofluid is not being 

subject to a magnetic field, 𝜅 = 0.  The relative enhancement seems to experience a 

point of inflection at a certain strength of magnetic field, which the thermal conductivity 

will be at its average value between the maximum and minimum values. Applying these 

conditions to Equation 3.2, we find expressions for the parameter constants as a function 

of the critical relative enhancement values. 

 

 

 𝑎 =
1 + 𝜅𝑚𝑖𝑛

2
 (3.3a) 

 
𝑏 =

1 − 𝜅𝑚𝑖𝑛

2
 

(3.3b) 

 
𝑑 = arctanh

1 − 𝜅𝑚𝑖𝑛

1 + 𝜅𝑚𝑖𝑛

 
(3.3c) 

 

Inputting the expressions into the parameters in Equation 3.2, we obtain a relation for the 

relative thermal conductivity enhancement as a function of magnetic field and the 

nanofluid characteristics. By the Least Squares Method of curve fitting, we can determine 

the value for each coefficient in each of the nanofluids. 

 

 𝜅(𝐵) =
1 + 𝜅𝑚𝑖𝑛

2
+

1 − 𝜅𝑚𝑖𝑛

2
tanh (𝑐𝐵 − arctanh

1 − 𝜅𝑚𝑖𝑛

1 + 𝜅𝑚𝑖𝑛

) (3.4) 
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Table 3.4: Coefficients and constants in the suggested hyperbolic tangent function for 

each nanofluid 

 

 𝑎 𝑏 𝑐 (G−1) 𝑑 

Al2O3 0.455239458 0.544513689 0.006539845 1.496263935 

CuO 0.290306234 0.311534479 0.004718452 1.758431519 

Fe3O4 5.777211228 6.796580476 0.003604584 1.187479438 

SiO2 5.652393785 6.911375166 0.005329344 1.199936996 

 

 

 

 

Given that the system will maximize at 𝜅𝑚𝑎𝑥 = 𝑎 + 𝑏, we can see that the experimental 

relative enhancement values differ from our expectation. Both the silicon dioxide and iron 

oxide nanofluids were over twelve times the relative maximum, whereas the copper oxide 

actually was about 60 percent of the relative maximum. Notice that both silicon dioxide 

and iron oxide have thermal conductivities closer to that of the base fluid, thus the 

difference in thermal conductivity of each constituent in the nanofluid is rather small. 

Whereas aluminum oxide and copper oxide have much larger thermal conductivities than 

their corresponding base fluid. The thermal conductivity difference between the particles 

and the base fluid tends to have an inverse proportionality to the relative enhancement 

scaling that we see in the experimental case. If we divide the relative enhancement by 

the experimental maximum, 𝑎 + 𝑏, we can further analyze the behavior of the thermal 

conductivity. 
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Figure 3.3: Adjusted relative thermal conductivity enhancement of each nanofluid vs. 

magnetic field strength 

 

 

 

From here, we can see where each point of inflection occurs in the relative enhancement, 

and there exists a critical point in the magnetic field to where this inflection occurs, 

defined by 𝐵𝑐. By nature of the hyperbolic tangent function, the inflection occurs at the 

point where the argument of the hyperbolic tangent function is zero. 

 

 
𝐵𝑐 =

1

𝑐
arctanh

1 − 𝜅𝑚𝑖𝑛

1 + 𝜅𝑚𝑖𝑛

 
(3.5) 
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Table 3.5: Critical Magnetic Field of each nanofluid compared with the magnetic 

susceptibility of the particles and the slope coefficient of thermal conductivity 

 

 𝐵𝑐 (Gauss) 𝜒𝑚
11 12 𝑐 (G−1) 

Al2O3 184.698 -3.700 x 10-5 0.006539845 

CuO 354.423 +2.596 x 10-4 0.004718452 

Fe3O4 348.505 1.2 - 19 0.003604584 

SiO2 215.835 -2.96 x 10-5 0.005329344 

 

 

 

The above table shows the critical magnetic field alongside the magnetic susceptibility 

and the slope coefficient inside the argument of the hyperbolic tangent function for 

comparison. The particles with the highest magnetic susceptibility, copper oxide and iron 

oxide, have the least effect on the slope coefficient, but have the highest critical magnetic 

field. It should be noted, however, that these materials are paramagnetic and 

ferrimagnetic, respectively. They align parallel to the magnetic field, which is oriented 

against gravitational acceleration. Whereas the aluminum oxide and the silicon dioxide 

are diamagnetic and align antiparallel to the magnetic field and along with gravitational 

acceleration. When the magnetic field is aligned against gravitational acceleration, the 

paramagnetic and ferrimagnetic particles seem to require a stronger magnetic field to 

overcome gravitational forces than the diamagnetic particles. Therefore, the critical 

magnetic field may represent the field at which magnetic forces and gravitational forces 

are equal.  
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We can see from the previous table that the slope coefficient decreases as the 

magnetic susceptibility increases, causing the correlation to become more linear in 

nature. We can see some sort of inverse relationship between the slope coefficient and 

the magnetic susceptibility. With the slope coefficient being a function of magnetic 

susceptibility and the horizontal shift component of the hyperbolic tangent function 

argument being a function of the maximum and minimum thermal conductivities, the 

critical magnetic field can be found as dependent on all three of these quantities. 
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Chapter 4 

Conclusions 

 

 

 

 
4.1 – Conclusions 

 

 We have completed our objective and confirmed that a magnetic field parallel to 

heat flow does indeed enhance the thermal conductivity of magnetic nanofluids. Although 

the results did not fully follow the thermal resistance model predicted in Chapter 1, we 

were able to obtain a somewhat empirical expression of the thermal conductivity as a 

function of the external magnetic field.  

 

 

𝑘(𝐵) = 𝛬(𝑘𝑠, 𝑘𝑓) {
𝑘𝑚𝑎𝑥 + 𝑘𝑚𝑖𝑛

2

+
𝑘𝑚𝑎𝑥 − 𝜅𝑚𝑖𝑛

2
tanh (𝑐(𝜒𝑚)𝐵 − arctanh

𝑘𝑚𝑎𝑥  − 𝑘𝑚𝑖𝑛

𝑘𝑚𝑎𝑥 + 𝑘𝑚𝑖𝑛

)} 

(4.1) 

 

Also, by completely eradicating convective effects in the fluid, we have confirmed the 

validity of a rather unique method of measuring thermal conductivity of a fluid. 

With the most common method being the transient hot wire method, this would provide 

an alternative when the experiment requires conditions beyond the restrictions of the 

transient hot wire apparatus. 

 

 Due to the large density ratio between the particles and the base fluid, particle 

settling posed a potential problem, especially with the large duration of measurement. 

Without the stabilization of the particles in the fluid by a surfactant, the particles would 
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settle to the bottom of the container and completely separate from the fluid. This effect 

would have shown up in the thermal conductivity measurement due to the thermal 

resistances configuring in series. This would be the case of minimum thermal conductivity 

described in Chapter 1, where we would have seen a rather large measurement in 

temperature difference. We did not see this effect show up in the experiment, as we only 

saw enhancement when the magnetic field was applied and the equilibrium measurement 

was nearly identical to the Maxwell equation of effective thermal conductivity. 

 

 

 

 

4.2 – Future Work 

 

In order to utilize this theory in various applications, we will need to form a more complete 

understanding of the behavior of the thermal conductivity of various nanofluids under the 

influence of an external magnetic field. There are a large number of parameters that can 

be adjusted in this experiment alone. For instance, we can vary the base fluid rather than 

vary the particles. This will provide more information on the scaling of the relative 

enhancement due to the differences between the thermal conductivity of the particles and 

the base fluid. In the conducted experiment, we found that the thermal conductivity 

maximizes when the magnetic field is parallel to the direction of heat flow due to the 

parallel connection of the thermal resistances. If the thermal conductivity minimizes when 

the thermal resistances align in series, then we can theorize that this would be the case if 

the magnetic field is perpendicular to the direction of heat flow. If this is true, then we can 
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vary the angle between the direction of magnetic field and the direction of heat flow, 

which can possibly be described by the following relation. 

 

 𝑘𝑒𝑓𝑓 = 𝑘𝑚𝑖𝑛 + (𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛)|cos𝜓| (4.2) 

 

where 𝜓 is the angle between the magnetic field and heat flow directions, at a maximum 

of 90 degrees.  

 

 The conditions of this experiment were set as uniform distributions, unidirectional 

fields, and constant values in order to make the experiment as simple as possible. To 

further delve into the study, we would need to look into using a variable, non-uniform 

magnetic field to see how heat is directed through the fluid in different directions, as well 

as different geometries for the heat source input. Powering an electromagnet with AC 

current would produce interesting results due to the rapidly changing magnetic field; the 

fluid might heat itself by means of magnetic induction inside the particles.  

 We would be able to extend the study into analyzing heat transfer effects in 

convection. With the conductivity studies, we gave traditionally solid properties to a fluid 

that it would not normally have. But in convection, we would give fluid properties to solid 

particles that they would not normally have due to a solid’s inability to flow. By exposing 

the effect of the magnetic properties of the fluids on thermal conductivity and along with 

rheological studies on viscosity enhancement by magnetic field, we can have a fluid 

enhanced with solid properties flow so that the solid properties would then be enhanced 

when the fluid is in motion. For example, a higher thermally conductive fluid would cause 

a relatively higher convective heat transfer coefficient in a system. Having the nanofluid 
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flow through a series of microchannels would even greater enhance the convective heat 

transfer in the system.  

 

We can use this technology in a large number of heat transfer applications remove heat 

from semiconductor devices at an extremely high efficiency. The implementation of this 

technology would replace the traditional bulky metal heat sinks, and change the way we 

use heat transfer in the future. 
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