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ABSTRACT

SPARSE SIGNAL RECONSTRUCTION IN LINEAR INVERSE SCATTERING

PROBLEM

Tanmoy Bhowmik, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Soontorn Oraintara

Proper mathematical modeling of inverse scattering problem is of utmost im-

portance in applications such as optical imaging and microscopy, radar, acoustic,

seismic and medical imaging. However, the problem is non-linear and ill-posed due to

the diffusive nature of wave propagation through the scattering medium. Born and

Rytov approximation are two widely used techniques to linearize the inverse scat-

tering problem that simplifies the mathematics and modeling of wave propagation

through scattering medium in special cases. The linear inverse scattering problem is

still severely ill-posed and hence, in general, the solution is not stable and unique,

unless a priori knowledge about the solution is used to regularize the inverse problem.

In many of the inverse scattering problem it is known a priori that the object to be

imaged is sparse in spatial domain or in some transform domain. In such cases, regu-

larization techniques that impose sparsity of the solution should be used. The focus

of this dissertation is sparsity regularization of the linear inverse scattering problem.

The major contributions can be divided in two segments: (i) Investigate the condition

of uniqueness for the sparsity regularized linear inverse scattering problem and (ii)
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Propose a dimensionality reduction based optimization method for rapid and high

resolution sparse image reconstruction for the inverse scattering problem in optical

imaging.

After studying the scattering wave measurement process and the nature of

the inverse problem, the condition for obtaining a unique sparsest solution of the

linear inverse scattering problem is derived. The condition is based on the degree of

sparsity of the image for a fixed source-detector geometry. This result will be useful to

determine when one can use Born/Rytov approximation reliably for inverse scattering

problem. Computer simulations and laboratory phantom experiments are performed

and state-of-the-art sparse signal reconstruction scheme is used to reconstruct the

solution. The results show that the quality of reconstruction is satisfactory within

the derived sparsity limit.

In the second part of this dissertation, a novel optimization scheme is proposed

to solve a particular instance of inverse scattering problem, namely, diffuse optical

tomography (DOT), which is a promising low cost and portable imaging modal-

ity. Conventional sparse optimization approaches to solve DOT are computationally

expensive and have no selection criteria to optimize the regularization parameter.

A novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-

DOT), is proposed in this research. It reduces the dimensionality of the inverse

DOT problem by reducing the number of unknowns in two steps and thereby makes

the overall process fast. First, it constructs a low resolution voxel basis based on the

sensing-matrix properties to find an image support. Second, it reconstructs the sparse

image inside this support. To compensate for the reduced sensitivity with increasing

depth, depth compensation is incorporated in DRO-DOT. An efficient method to op-

timally select the regularization parameter is developed for obtaining a high-quality

DOT image. DRO-DOT is also able to reconstruct high-resolution image even with a
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limited number of optodes in a spatially limited imaging set-up which leads towards

further application in in-vivo prostate DOT imaging
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CHAPTER 1

INTRODUCTION

The problem of determining an object from scattering data has recently received

much attention. The task of direct scattering theory is to determine the relation be-

tween the medium property and scattered waves, given the details about the scattering

target. Inverse scattering theory determines properties of the target, given sufficiently

many measurements [1]. How a wave is scattered depends on the difference in con-

stitutive parameters of the inhomogeneity with the reference medium. Inference of

properties of such inhomogeneities inside the medium from the detection of scattered

waves finds widespread applications in different imaging modalities [2, 3, 4, 5]. In

seismic imaging inference is made about the interior structure of the earth by solv-

ing the inverse problem of determining the sound speed by measuring travel times

of seismic waves. Medical imaging uses scattering of X-rays, ultrasound waves and

electromagnetic waves to make images of the human body which is of invaluable help

with medical diagnosis. The oil exploration industry uses the reflection of seismic

waves in oil prospecting. Inverse scattering is also used in non-destructive evaluation

of materials to find cracks and corrosions [1].

In general, scattering from inhomogeneous media is a complex process. The

problem is highly nonlinear because of the nonlinear coupling between the unknown

medium property and the scattered field [6]. At the same time, due to the diffu-

sive nature of wave propagation and limited number of measurements, the inverse

scattering problem is severely ill-posed. Because of the difficulty of modeling arbi-

trary inhomogeneous scatterers, approximations are frequently made that simplify the
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mathematics and modeling in special cases [7]. The conventional inversion approach

to deal with nonlinearity is linearization, i.e., to approximate the measurement as a

linear function of the perturbation in medium property [8]. The two most commonly

used linearization approaches are Born and Rytov approximation. Born approxi-

mation assumes that the scattered field is proportional to the variation in medium

property, while Rytov approximation linearizes the scattered phase with respect to

perturbation in medium property [8]. The linear inverse problem is still ill-posed

which results in non-uniqueness and instability of the solution. However, in many

of the inverse scattering problems this ill-posedness is overcome by using a priori

knowledge of the solution. This technique of incorporating prior knowledge such as

smoothness, bounded variation, sparsity, of the underlying image in the inverse prob-

lem formulation is called regularization [9, 10, 11]. Different optimization schemes

can be adopted to reach the solution of different regularized linear inverse scattering

problems (LISP)[4, 12, 13].

1.1 Unique Sparse Recovery

In many of the LISPs such as medical imaging, the inhomogenious object is

localized occupying only a small portion of the whole field of view, which implies

that the underlying image representing medium property variation is sparse [14].

By exploiting this additional sparsity constraint it is possible to find the unique and

stable solution for the ill-posed LISP [15]. The problem of sparse signal recovery is well

studied in the area of compressed sensing [16, 17]. It is provable that having sparsity

below some bound is a sufficient condition for the solution to be the unique sparsest

one [18]. In the first part of this thesis, the goal is to derive the sparsity bound for

the uniqueness of inverse scattering solution using Born and Rytov approximation.

The approach is based on the finding that Born and Rytov approximation can be

2



reformulated as particular instances of multiple measurement vector (MMV) problem.

Computer simulation and laboratory phantom experiments are used to validate the

unique sparse recovery condition.

1.2 Dimensionality Reduced Optimization

The second part of the thesis contributes towards developing a computationally

efficient optimization method for solving an instance of LISP arising in the field

of medical imaging, called diffuse optical tomography (DOT). State of the art `1

norm minimization techniques involves solving a linear system with the size of the

unknown image which ensues a huge computational burden for the full 3-D imaging

volume [19, 20]. Hence the current sparse optimization approaches are not suitable

or practical for 3-D DOT reconstruction in real time.

A major challenge for the researchers in solving regularized inverse problem is

to select the correct regularization parameter. For sparsity enhanced optimization,

choosing the regularization parameter is still an unsolved technical problem and the

choice is made empirically [21, 12, 22].

The second challenge in DOT is that DOT reconstruction suffers from poor

depth localization as the sensitivity of DOT measurement decreases exponentially

along the depth [23, 24]. Pogue et al. proposed a spatially variant regularization

scheme to enhance depth sensitivity [25]. Recently a more direct approach of modi-

fying the sensing matrix to compensate for sensitivity decrease with increasing depth

has been adopted [24, 26].

Another challenge for DOT research community is the optode geometry op-

timization, with which high quality reconstruction can be obtained by deploying a

minimum number of optodes. Tian et al. have studied different optode configurations

to find the optimal measurement density using `2-based regularization [27].
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This dissertation demonstrates a novel reconstruction method that is able to

overcome the challenges mentioned so far for solving the sparse DOT inverse prob-

lem. For sparse images, the size of the linear system for the inverse problem can be

reduced drastically if one can approximately create a low-resolution support mask of

the nonzero voxels beforehand. Motivated by this insight, a two-step, dimensionality-

reduction-based optimization (DRO) algorithm for DOT image reconstruction has

been developed. In the first step, DRO-DOT finds a low resolution support mask of

the sparse image to be reconstructed by identifying and grouping the sensing columns

of the measurement or sensing matrix and the corresponding image voxels. The num-

ber of such groups is far less than the number of original voxels. In the second

and final step, sparse optimization is carried inside the recovered support mask only,

whose size is smaller than the full 3-D imaging volume. Hence in both steps the num-

ber of unknowns is reduced, resulting from dimensionality reduction of the original

problem and thereby scaling down the computational complexity. In addition, the

sensing matrix is re-weighted to enhance the depth sensitivity of the overall method

by including depth compensation. The critical problem of chosing the regularization

parameter is also addressed by developing an adaptive scheme to find the parameter

based on the statistical interpretation of sprasity regularization. It will be shown that

DRO-DOT is able to recover high-resolution images even with a limited number of

optodes, which in turn reveals the possibility and feasibility of using transcretal DOT

for prostate cancer imaging.

Overall, the major novelty of this approach is to solve an optimization model

that consists of a data residue item and a sparse regularization item. The algorithm

leads to three advantages: (1) It forms a low resolution supporting basis to reduce

computional complexity. (2) It refines the depth compensation algorithm so as to
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recover more accurate DOT images. (3) It offers a semi-automatic method to choose

optimal regularization parameter.

1.3 Thesis outline

Chapter 2 provides a brief review of the background study related to Born

and Rytov approximation and inverse problem. In chapter 3 the condition for sparse

image reconstruction under both Born and Rytov approximation is presented and the

simulation and experimental results to test the sparse recovery condition are shown.

Chapter 4 presents a dimensionality reduced two step inverse scattering solver for

rapid and high quality DOT image reconstruction . Laboratory phantom experiments

are carried out to quantify the speed and performance of the algorithm. Summary

and possible future directions are discussed and listed in chapter 5.

5



CHAPTER 2

LINEAR INVERSE SCATTERING PROBLEM

Modeling the propagation and scattering of waves in inhomogeneous media is

necessary to solve both the direct and inverse scattering problems. Given an accurate

or approximate model of the scattering phenomenon for the particular application,

inverse scattering problem extracts the properties of inhomogeneity inside the scatter-

ing media from the measurable quantities such as the scattered fields and intensities

[7].

2.1 Lineariation of scattering problem

Usually, approximations are sought in order to linearize the model of scattering

wave propagation inside inhomogenious media and thus making it more tractable for

numerical computation. Two first-order approximations being most commonly ex-

ploited are the Born and the Rytov linear methods. For the Born approximation, the

scattered field is modeled as a linear function of the medium object function represent-

ing the change in medium properties inside the heterogeneity from the background

homogenious medium. On the other hand, in Rytov approximation linear relation

between the scattered phase and object function is assumed [7]. Here the focus is on

the continuous wave (CW) measurement i.e. wave with zero modulation frequency.
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2.1.1 Born Approximation

For Born approximation, the total fluence or total field U(r) is expressed as

[28]:

U(r) = U0(r) + Usc(r),

where U0(r) is the incident field that would have been detected if no heterogeneity was

present i.e. for homogenious medium, and Usc(r) is the scattered field which is only

due to the perturbation of medium property inside heterogeneity. The Born approxi-

mation produces a linear relation between the monochromatic scattered wavefield Usc

and a perturbed velocity field expressed as the object function O [5]:

Usc(d, s) = −
∫

Ω

g(r, d)U0(s, r)O(r)dr, (2.1)

under the assumption that U0(r) >> Usc(r). g is the Green’s function given by,

g(x, y) =
exp(−K|x− y|)

4π|x− y|
, (2.2)

with K being the wavenumber. Ω denotes the imaging volume and Usc(d, s) stands

for the scattered field at detector position d due to source placed at s. Once the

space is discretized into n equally spaced voxels located at {rk}nk=1, the scattered

field Usc(d, s) in (2.1) can be approximated by

Usc(d, s) ≈ −
n∑
k=1

g(rk, d)U0(s, rk)O(r)h3,

where h3 is the volume of each voxel. Let there be q sources and m detectors located

at {si}qi=1 and {di}mi=1 respectively. So there will be a total of m × q measurements

if one takes a measurement for every source-detector pair. Hence the linear equation

for Born approximation becomes:

yB = ABx, (2.3)
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where yB = [yB(d1, s1), . . . , yB(dm, sq)]
T is the measurement vector, x = [O(r1), O(r2), . . . , O(rn)]T

is the image vector representing the object function and AB is the Born sensing matrix

given by:

AB =



AB(1,1),1 . . AB(1,1),n

. .

AB(m,1),1 AB(m,1),n

. . .

. . .

AB(m,q),1 . . AB(m,q),n


. (2.4)

Here yB ∈ Rmq×1, x ∈ Rn×1 and AB ∈ Rmq×n. The elements of AB determine the

weight of each voxel in every measurement. Thus the sensitivity of the voxel k in the

measurement at the detector di due to the source sj is given by

AB(i,j),k = −g(rk, di)U0(sj, rk)h
3. (2.5)

2.1.2 Rytov Approximation

The Rytov approximation expresses the total fluence or total field U(r) in terms

of homogenious (φ0(r)) and scattered heterogenious (φsc(r)) complex phases [28]:

U(r) = exp(φ0(r) + φsc(r)),

where the incident field is U0(r) = exp(φ0(r)). Hence the scattered phase is measured

as

φsc(r) = ln

(
U(r)

U0(r)

)
.
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Rytov approximation produces a linear relation between the monochormatic scattered

phase φsc and object function O. The scattered phase at the detector position rd due

to the source placed at rs can be expressed by [29]:

φsc(d, s) =
−1

U0(d, s)

∫
Ω

g(r, d)U0(s, r)O(r)dr. (2.6)

under the assumption that the scattered phase is slowly varying spatially (∇φsc(r) <<

O(r)). Using the same measurement geometry with n voxels, q sources and m detec-

tors discussed in the previous section, the discrete linear equation for Rytov approx-

imation becomes:

yR = ARx, (2.7)

where yR = [yR(d1, s1), . . . , yR(dm, sq)]
T is the measurement vector and x is the same

image vector as described earlier. The Rytov sensing matrix AR is given by:

AR =



AR(1,1),1 AR(1,1),n

. .

AR(m,1),1 AR(m,1),n

. . .

. . .

AR(m,q),1 AR(m,q),n


, (2.8)

where

AR(i,j),k = −g(rk, di)U0(sj, rk)h
3

U0(di, sj)
. (2.9)

is the weight for the voxel k in the measurement at the detector di due to the source

sj.

9



2.2 Inverse Problem

The general linear scattering problem takes the form,

y = Ax+ e, (2.10)

where y is either the Born or Rytov measurement, A is either the Born or Rytov

matrix and e is the measurement noise. Due to the limited numbers of sources and

detectors, the number of measurements obtained is much fewer than that of the voxels

in x to be reconstructed. As a result, the A matrix is highly ill-posed and the solution

is non-unique and unstable [?]. Hence, it is obvious that to find the correct solution,

one needs some a priori information about x. The technique of using such a priori

knowledge to restrict the solution space is termed as regularization.

In many of the applications, it is known a priori that the object function repre-

senting the heterogeneous perturbation is localized in some small volumes inside the

medium or it can be represented by a few number of transform coefficients in some

transform domain. This in turn implies that x is sparse [14] spatially or in some

transform domain. Therefore, sparsity based regularization techniques that restrict

the number of nonzero elements in the solution demands attention.

2.2.1 Sparsity Regularization

Given the linearized Born and Rytov forward models in (2.3) and (2.7), the

inverse problem of finding the unique sparsest solution essentially becomes solving

the optimization problem [30] :

(P0) minimize ||x||0 subject to y = Ax,

where || ||0 stands for the sparsity or `0 norm which is same as the number of nonzero

elements of the vector. This is equivalent to solving 4.15 assuming the linear approx-

imation to be exact in absence of noise, i.e., for e = 0. Now the question is, under
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what condition one can obtain a unique solution of (P0). Donoho et. al. have proved

that if x is sparse enough such that ||x||0 < spark(A)
2

[31] then this is necessarily the

sparsest possible solution of (4.15). The spark of a matrix is defined as follows,

Spark : Given a matrix A, p = spark(A) is defined to be the smallest possible

number p, such that there exists a sub-groub of p columns from A that are linearly

dependent, which means any sub-group of (p-1) columns are linearly independent.

Thus having sparsity of x less than spark(A)/2 ensures that it is the unique

sparsest representation and therefore the unique solution of (P0). It is straightforward

to show that 2 ≤ spark(A) ≤ rank(A) + 1. But finding the spark of a matrix is a

combinatorially hard problem to solve [30]. Typically the number of measurements

m× q is less than the number of voxels n in the imaging domain. Hence rank(A) ≤

m× q. As the structure of matrix A solely depends on the source-detector positions,

one may think that by optimizing the source-detector geometry one can achieve the

best case scenario spark(A) = (rank(A) + 1) = (m× q + 1) i.e. to make any m× q

set of columns of matrix A independent and hence guarantee the uniqueness of the

linear inverse scattering problem upto a maximum sprasity level m×q
2

. Indeed, this is

not achievable as it will be shown that the allowable sparsity bound is of the order of

total number of sources and detectors instead of being of the order of their product.

This result is very important as it imposes a limit on the degree of sparsity of the

solution for the inverse Born/Rytov problem. The derivation of this result is based

on the observation that the single measurement vector formulation for Born (2.3)

and Rytov (2.7) approximation can be reformulated as multiple measurement vector

(MMV) problem. The uniqueness condition for the sparse solution of such MMV

problem has already been found by Chen and Huo [18] and Davis and Eldar [15].
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CHAPTER 3

UNIQUE SPARSE RECOVERY

To derive the uniqueness condition, the first step will be to show that the

Born/Rytov approximation in (2.3)/ (2.7) can be reformulated as an MMV problem

of the form Y ∗ = GZ where Y ∗ ∈ Rm×q, G ∈ Rm×n and Z ∈ Rn×q such that the

nonzero rows of Z corresponds to the nonzero element of x. In that case if the row

diversity measure i.e. the number of nonzero rows of Z is defined as ||Z||0, then

||Z||0 = ||x||0. Here the ith column of the measurement matrix Y ∗ ∈ Rm×q relates to

the ith snapshot, i.e. measurements at all the detectors for the ith source. Thus an

MMV optimization problem equivalent to (P0) is obtained as:

(P0MMV ) minimize ||Z||0 subject to Y ∗ = GZ.

Chen and Huo provided the sufficient condition for the uniqueness of (P0MMV ). Re-

cently, Davies and Eldar showed that the sufficient condition is also indeed necessary.

Theorem 1: Chen and Huo [18], Davies and Eldar [15]: Let rank(Z) denotes the

rank of the matrix Z, then (P0MMV ) has a unique solution if and only if

||Z||0 ≤ (spark(G) + rank(Y ∗)− 1)/2. (3.1)

Theorem 1 will be used to find the sparsity bound for uniqueness of Born/Rytov

linear inverse scattering problem in the subsequent sections.

3.1 Uniqueness for Born Approximation

The Born approximation in (2.3) can be converted into a multiple measurement

vector (MMV) problem as follows :
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Y B∗ = GZ, (3.2)

where the matrix Y B∗, G and Z are defined as follows :

Y B∗ =


yB(d1, s1) yB(d1, sq)

...
. . .

...

yB(dm, s1) yB(dm, sq)

 ∈ Rm×q, (3.3)

G =


g(d1, r1) g(d1, rn)

...
. . .

...

g(dm, r1) g(dm, rn)

 ∈ Rm×n, (3.4)

Z =


U0(s1, r1)x(1) U0(sq, r1)x(1)

...
. . .

...

U0(s1, rn)x(n) U0(sq, rn)x(n)

 ∈ Rn×q. (3.5)

Clearly the nonzero rows of Z correspond to the nonzero elements of x i.e.

||Z||0 = ||x||0. Hence by converting equation (2.3) into an equivalent MMV problem

as in (3.2), the (P0) problem can be reformulated to find a unique sparse solution for

the Born approximation case as follows,

(P0 BornMMV ) minimize ||Z||0 subject to Y B∗ = GZ.

From Theorem 1 it follows:

||Z||0 ≤ (spark(G) + rank(Y B∗)− 1)/2. (3.6)

Theorem 1 provides insight into the ultimate number of targets that the linear inverse

Born problem can recover. Since rank(Y B∗) ≤ q and spark(G) ≤ m + 1 , the

maximum number of targets that can be recovered is given by

||x||0 = ||V ||0 ≤ (m+ q)/2, (3.7)
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which corresponds to the average of the numbers of the source and detector elements.

Here while stating rank(Y B∗) ≤ q, it is assumed that the number of detectors is more

than the number of sources, which is true for typical inverse scattering problems such

as optical tomography [14] and seismic imaging [32].

3.2 Uniqueness for Rytov Approximation

The uniqueness result for Born approximation also follows for Rytov approxi-

mation because the columns of the Rytov matrix are nothing but weighted columns

of the Born matrix AB. So the linear dependency among the columns of AR remains

unchanged. Specifically from (2.4), (2.5),(2.8) and (2.9), one can write:

AR = diag(M)AB,

where M =



U0(d1, s1)

.

.

U0(dm, s1)

.

.

.

U0(dm, sq)



∈ Rmq×1.

Hence (2.7) can be re-written as

yR = diag(M)ABx. (3.8)

Following the discussion in the previous section of MMV formulation in the Born

case, the above equation is equivalent to the MMV form:
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Y R∗ = GZ, (3.9)

where the matrix Y R∗ is defined as

Y R∗ =


yR(d1, s1)U0(d1, s1) yR(d1, sq)U0(d1, sq)

...
. . .

...

yR(dm, s1)U0(dm, sj) yR(dm, sq)U0(dm, sq)

 ∈ Rm×q. (3.10)

Thus the (P0) problem for Rytov approximation is now formulated as:

(P0 RytovMMV ) minimize ||Z||0 subject to Y R∗ = GZ.

Due to Theorem 1 (P0 RytovMMV ) has unique solution if and only if,

||Z||0 ≤ (spark(G) + rank(Y R∗)− 1)/2. (3.11)

Again by assuming rank(Y R∗) ≤ q, and hence the maximum number of target that

can be recovered uniquely is given by

||x||0 = ||Z||0 ≤ (m+ q)/2. (3.12)

Note that the sparsity bound for both Born and Rytov case is found because the

linear approximation can be converted into the MMV form. This MMV formulation

comes from the finding that it is possible to decouple the source to voxel and voxel

to detector scattering terms in the Born and Rytov formulation seperately in the G

and Z matrices. Otherwise finding the uniqueness condition would have been an NP

- hard problem to solve.
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3.3 Verification Issues

In general, finding `0 norm based solutions for (P0) requires enumerating sub-

sets of the columns of the sensing matrix looking for the smallest subset able to

represent the image. The complexity of such subset search grows exponentially with

n [31]. So (P0) is combinatorially hard to solve. Also, the uniqueness condition has

been derived for noiseless case. It is warranted to verify if the uniqueness condition

is relevant in presence of noise for actual measurement data.

3.3.1 `1 relaxation of (P0)

As stated, (P0) seems to be a general combinatorial optimization problem,

requiring that one enumerates all possible k-element collections of columns of A, for

k = 1, 2, . . . ,n, looking for the smallest collection permitting representation of the

signal. Such an algorithm would cost at least O(2m) flops to carry out in general.

It is, therefore, desirable to turn into approximations/relaxations of (P0). A formal

approach is to convexify (P0) by replacing the `0-norm with the `1-norm:

(P1) minimize ||x||1 subject to y = Ax.

The `1 norm acts as the sparsity inducing regularizer. This approach to sparse

signal representation is called Basis-Pursuit (BP) in [30], which observed that it gave

highly sparse solutions to problems known to have such sparse solutions. The key

point about BP is that it is much more practical than direct solution of (P0) and in

most of the cases, correctly solves (P0). Thus, (P1) can find the sparse solution of

(P0) that otherwise on the surface seem computationally intractable. The detail of

(P0) - (P1) equivalence will not be discussed here as it is out of the scope of this work.

Henceforth, due to its tractability and sparsity enforcing behaviour, minimization of

the `1 norm will be carried out instead of `0 norm to find the sparse solution of LISP

and verify the uniqueness condition.
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3.3.2 Noise and Approximation error

Though the derivation of the uniqueness condition is for noiseless case, it will

be interesting to analyze the sparse recovery result for real noisy measurements de-

scribed by equation , under and above the uniqueness bound. For this the inequality

constrained optimization problem (P1denoise) is defined as:

(P1denoise) minimize ||x||1 subject to ||y − Ax||22 < ε

where it is assumed that e is zero mean gaussian i.i.d. with variance ε [31]. This

formulation is known as basis pursuit denoising (BPDN) in standard compressive

sensing literature [13].

Using the Lagrangian of the equality constrained (P1) or the inequality con-

strained (P1denoise) optimization problem, the general unconstrained optimization

problem (Q1) can be obtained:

(Q1) minimize ||Ax− y||22 + λ||x||1,

where, λ(x, ε) is the regularization parameter/Lagrangian multiplier which depends

on the noise level and solution sparsity [16]. By solving (Q1) with appropriate λ, it is

possible to find the sparsest solution of the LISP. It is also termed as penalized least

square problem, as the solution norm is penalized while fitting the solution to the

measurement using least square approach. Split Augmented Lagrangian Shrinkage

Algorithm (SALSA) is used for solving (Q1) as it is currently known to be the fastest

state of the art algorithms for penalized least-square problem [19].

3.4 Experimental Results

In this section the uniqueness condition derived for Born/Rytov approximation

based inverse scattering problem will be validated by experimental studies. The focus

is on one particular application of inverse scattering problem in the area of diffuse
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optical tomography (DOT). DOT is a non-invasive and low-cost imaging modality

which reconstructs optical properties of highly scattering medium in the near infra

red (NIR) domain from the measurement of scattered and attenuated optical flux

at the surface of the imaging volume. As the absorption of light in human tissues

is low in the NIR region, so NIR photons can penetrate several centimeters inside

the tissue [33]. This makes DOT a promising tool in several biomedical imaging

applications such as brain imaging, breast cancer detection and molecular imaging

etc. For DOT the object function O(r) is a linear function of tissue absorption

perturbation ∆µa(r) assuming that the scattering coefficient is nearly constant in the

tissue which is typically valid for human issues [14]. For details about how a DOT

reconstruction problem is formulated as an inverse scattering problem, the interested

readers are encouraged to refer to the excellent literature on this topic [4, 5, 29].

Similar to other inverse scattering problems, Born and Rytov approximation has

been extensively used to linearize the DOT inverse problem. Hence it is required to

experimentally validate the uniqueness condition derived in the last two sections for

the DOT problem.

In the first experiment the measurement data are generated by using the Born/Rytov

approximation for a 2D DOT problem. The matrix AB/AR is generated by the PMI

toolbox [34] for a fixed source detector geometry and 2-D imaging area. This corre-

sponds to the ideal linear and noiseless scenario where it is explicitly assumed that

the measurements do not differ from approximation due to nonlinearity or noise. For

this case one should get unique solution below the sparsity bound and should expect

non-uniqueness resulting in possible error in reconstruction as the bound is violated.

In the second experiment, the measurements are generated by solving the

nonlinear forward scattering problem or the diffusion equation using finite element

method. The TOAST toolbox [35] has been used to implement the finite element
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model (FEM). The inverse problem is linearized using both Born and Rytov model

and again the reconstruction error below and above the sparsity bound is examined.

A real phantom experiment is performed at the end to get the real DOT mea-

surement data and the reconstruction performance is evaluated below and above the

uniqueness bound.

Before elaborating on each of these experiments, it is worth to mention about

few assumptions and experimental set-up which are common for all the three exper-

iments.

1. The geometry of the sources and detectors is illustrated in Fig. 3.1, where

12 sources and 13 detectors (156 measurements) are placed in a 6 × 6 square

grid over the top surface of a 6 cm deep slab medium. The distance between

every two closest optodes is 1.4 cm. The absorption and reduced scattering

coefficients of the homogeneous background medium are chosen in a reasonable

range for human tissue [36] as µa0 = 0.06 cm−1 and µs0 = 8.2 cm−1 respectively,

in all the experiments. The image plane is located at a depth of 2 cm.

2. As given by equation (3.7) / (3.12), the maximum sparsity bound is the average

number of sources and detectors. Hence in this paper sparse reconstruction

performance below and above this bound (
m+ q

2
) will be analyzed. A similar

study has been done in MMV-based DOT reconstruction problem in [14], but

it did not cover Born or Rytov approximation.

3.4.1 Numerical Validation

In order to verify the sparse recovery condition for Born/Rytov approximation

just derived above, a numerical experiment is carried out. In the experiment the

Born (Rytov) matrix AB(AR) is generated for the given source detector geometry

and 32 by 32 voxel image. The forward data is generated as y = Ax where A is the
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Figure 3.1. Optode configuration for both Simulation and Phantom experiment.

Born (Rytov) matrix AB(AR) and x is the sparse object with a sparsity level (||x||0)

ranging from 1 to 25. The locations of the nonzero voxels are choosen randomly.

According to the finding in this paper the sparsity bound should be 12 ([12+13
2

]) for

uniqueness of the sparse solution. For each sparsity level from 1 to 25, every time

100 simulations are run. In each simulation the nonzero voxel locations are randomly

choosen and the (P1) problem is solved using SPGL1 Basis Pursuit solver [37] with

random initialization. From these simulations the empirical probability of perfect

reconstruction is calculated for each sparsity level. The probability of correct sparse

recovery for Born and Rytov case is shown in Fig. 3.2. From the figure it is observed

that below the sufficient sparsity level, which in this case is 12 , perfect reconstruction
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Figure 3.2. Empirical probability of perfect reconstruction with different sparsity
levels for the noiseless case of Born and Rytov based inverse DOT problem.

is achieved for both Born and Rytov approximation. When ||x||0 increases beyond

the sparsity bound, the probability of of perfect reconstruction gradually decreases,

implying that the sparsest reconstruction is no more the same as original image.

3.4.2 Simulation Experiment

Next, the validity of the sparse reconstruction condition is checked with a com-

puter simulation. In the simulation a continuous wave DOT system is considered and

the forward data is generated by solving the direct scattering problem numerically.

Born and Rytov model is used for image reconstruction. Hence this paper is necessar-

ily analyzing the reconstruction performance below and beyond the sparsity bound
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in presence of approximation error. The direct scattering problem or the diffusion

equation is solved by finite element method. The TOAST toolbox [35] has been used

to implement the finite element model (FEM).

Simulations are run for different levels of sparsity of the absorption hetero-

geneity ranging from 0 to 50. ∆µa is assumed to be 0.06 cm−1 for each level of

sparsity. The reconstruction is run for both Born and Rytov approximation with the

FEM measurements. For each level of sparsity of x, (Q1) is solved with different

value of λ(giving different sparse solution) and keep the sparsest solution satisfying

||Ax− y||22 < ε where ε is the squared norm of the approximation error.

Fig. 3.3 shows the original images and the reconstructed images using Born and

Rytov approximation for various levels of sparsity. It is found that that below the

sparsity bound the reconstructed and original image has same sparsity, though they

differ in magnitude which is beacause of the approximation error. But beyond the

sparsity bound, the solution sparsity becomes less than the sparsity of the original

image. Fig. 3.4 shows the normalized reconstruction error for Born and Rytov ap-

proximation with respect to sparsity level. The plots show that if the sparsity of the

underlying image is within the sufficient sparsity bound, then Born/Rytov approxima-

tion based inverse problem formulation gives reasonable reconstruction performance.

Also as the size of the heterogeneity, i.e. sparsity, increases, Rytov gives better re-

construction performance than Born approximation. This is because of the fact that

Born approximation breaks down when the size of the absorption heterogeneity be-

comes relatively large compared to the background, whereas Rytov approximation is

still valid for large size of heterogeneity [5].
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(a)

(b)

(c)

Figure 3.3. Reconstruction with different sparsity level (1, 4, 9, 16, 25 and 36)
using forward FEM simulated data (a) Original Image; (b) Reconstruction using
Born Approximation; (c) Reconstruction using Rytov Approximation.
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(a) (b)

Figure 3.4. Sparsity level vs normalized reconstruction error using forward FEM
simulated data for (a) Born; (b) Rytov method.

3.4.3 Phantom Experiment

A laboratory phantom experiment is performed to test the sufficient sparsity

bound in actual DOT measurement scenario. In the phantom experiment, the exper-

imental setup and procedures are similar to those used in [38]: The measurements

are obtained from a container filled with 1% intralipid solution using a CW-based

DOT imaging system (DYNOT, NIRx, New York). The optodes are placed on the

top surface of the intralipid solution such that the tips of optodes just touch the

liquid phantom surface, thus allowing no air gap between the tips and the liquid to

minimize the refractive index (RI) mismatch. This setup provides us with a very

similar boundary condition to that in light-tissue interaction situation. Thus, the

experimental setup does not deviate too much from the traditional light-tissue inter-

action setup. The absorption and reduced scattering coefficients of the homogeneous

background medium are µa0 = 0.08 cm−1 and µs0 = 8.8 cm−1, respectively. The

geometry of the probes is kept the same as that in the previous computer simulation,

but the optodes here are bifurcated which means same optode can act as source and
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detector both. So effectively there are 25 sources and 25 detectors, and hence the

sparsity bound is 25. The absorber is a square piece of size 1 cm by 1 cm having

absorption coefficient around 0.052/cm placed at a depth of 2 cm below the surface

of the liquid tissue phantom. The square is centered at the origin with respect to

X − Y plane and the thickness of the piece is 5 mm.

In the presented work, the reconstruction has been limited to two dimensions,

since the main emphasis is on finding the 2-D support of the heterogeneity and it is

assumed that the resolution in Z-direction is same as the thickness (around 5 mm)

of the absorber. Hence a 2D image is reconstructed at a 2 cm depth making the 3D

reconstruction problem a 2D slice reconstruction problem. Again (Q1) is solved with

different value of λ(giving different sparse solution) and keep the sparsest solution

satisfying ||Ax− y||22 < σ2. σ2 is the noise variance estimated from the time samples

of the measurements.

Following the above approach, the image is reconstructed using different reso-

lution to verify the performance below and above the derived sparsity bound. The

image resolution tested are 12 × 12, 24 × 24, 48 × 48 and 96 × 96 corresponding to

voxel sizes of 5 mm by 5 mm, 2.5 mm by 2.5 mm, 1.25 mm by 1.25 mm and 0.625

mm by 0.625 mm, respectively. For these cases sparsity of the image is 4, 16, 64

and 256, respectively. So for the two lowest resolution images, sparsity is within the

bound, i.e., 25, and the rest two high resolution images have sparsity above the suf-

ficient limit. The reconstruction is shown in Fig. 3.5. The projection of the original

absorber in 2D are shown as dash square. As it is visible from the reconstruction

result, it is observed that for the lowest resolution, when the sparsity of the image

(= 4) is well below sufficient sparsity bound (= 25), the support of the absorber is

reconstructed correctly. For the next higher resolution though the sparsity (= 16) is

below the limit, the support is not recovered exactly, still the support is obtained with
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reasonable accuracy. For higher resolutions, when the sparsity of the image increases

far above the sufficient sparsity limit, the reconstructed sparsest images tend to have

much smaller support than the original image.

(a) (b)

(c) (d)

Figure 3.5. Reconstruction with different resolution and sparsity level using phantom
experiment data (a) Resolution 12 by 12, Sparsity = 4; (b) Resolution 24 by 24,
Sparsity = 16; (c) Resolution 48 by 48, Sparsity = 64; (d). Resolution 96 by 96,
Sparsity = 256.
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3.5 Conclusion

In this chapter the condition for the uniqueness of the solution of linear inverse

scattering problem using Born and Rytov approximation is investigated. It is found

that if the sparsity of the image is less than the average number of sources and detec-

tors then the uniqueness of the sparse solution under Born and Rytov approximation

is achieved in ideal scenario i.e. if one does not consider measurement noise and error

due to linearization and discretization.

The Born and the Rytov reconstruction performance are analyzed for computer

simulation and phantom experiment based data. Results show that reasonable recon-

struction quality is achieved if the sparsity of the solution is within the sparsity bound

derived for ideal case. Also the reconstruction quality degrades as one moves beyond

the sparsity limit.

These results provide useful insight for setting the resolution of the medium

to be imaged based on Born and Rytov approximation. By setting the resolution

low, so that the sparsity is within the sufficient bound, one can ensure uniqueness

of the sparse solution but at the same time discretization error should be taken

care of. So finding the trade off between discretization error and reconstruction

performance under Born/Rytov scheme can be a subject of future work. Although

here one particular DOT application is discussed, the result derived in this paper will

prove helpful for other imaging modality such as acoustic tomography and seismic

imaging, where Born and Rytov approximation are used to solve the inverse scattering

problem.
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CHAPTER 4

DIMENSIONALITY REDUCED OPTIMIZATION

The computational cost of the `1 norm based optimization strategy to reach the

sparse solution is very high for large number of voxels. Hence it is not suitable for

real time application where the imaging volume is considerably large. Recently DOT,

which is a special case of LISP, found widespread application in medical imaging [39,

40]. DOT reconstructs optical properties of a highly scattering medium in the near

infra red (NIR) domain from the measurement of scattered and attenuated optical

flux at the surface of the imaging volume. As the absorption of light in human

tissues is low in the NIR region, NIR photons can penetrate several centimeters inside

the tissue [33]. This makes DOT a promising tool in several biomedical imaging

applications such as for brain imaging, breast and prostate cancer detection and

molecular imaging [5, 29, 41]. Because of the nature of sparsity in DOT, sparsity

regularization has been utilized to achieve high-quality DOT reconstruction. However,

conventional approaches using sparse optimization are computationally expensive for

3-D DOT imaging of human tissues and have no selection criteria to optimize the

regularization parameter. Hence it will be highly demanding to come up with a

robust and computationally efficient algorithm for sparse 3D DOT reconstruction.

Conventional `1 optimization schemes involve solving a linear system with the

size of unknown image which ensues the computational burden for large image size

[19]. But for sparse images, if one can approximate the support of the nonzero voxels

beforehead, then the size of linear system can be reduced drastically. Motivated

by this insight , a novel algorithm, Dimensionality Reduction based Optimization
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for DOT (DRO-DOT), is developed. It reduces the dimensionality of the inverse

DOT problem by reducing the number of unknowns in two steps and thereby makes

the overall process fast. First, it constructs a low resolution voxel basis based on the

sensing-matrix properties to find an image support. Second, it reconstructs the sparse

image inside this support. To compensate for the reduced sensitivity with increasing

depth, depth compensation is incorporated in DRO-DOT. An efficient method to

optimally select the regularization parameter is proposed for obtaining a high-quality

DOT image. DRO-DOT is also able to reconstruct high-resolution image even with

a limited number of optodes in a spatially limited imaging set-up.

As discussed in chapter 2 in 4.15, either for Born or for Rytov approximation, in

general, the linearized forward model for practical DOT measurement is y = Ax+ e.

Tikhonov regularization is widely used by DOT community to recover sparse DOT

images by solving the inverse problem, because of its ease of implementation and com-

putational speed [23, 27]. `2 regularized solution can be obtained in real time while

suppressing high frequency noises. But the major drawback of Tikhonov approach is

poor spatial resolution as the reconstructed image is over-smoothed or blurred [26].

Hence, it is difficult to reconstruct images which are sparse or have distinct bound-

ary with respect to the background. As discussed in last section, sparseness of the

optical heterogeneity is imposed by using the `1-norm regularization by solving the

optimization problem (Q1).[42] :

x̂ = arg min
x
{‖Ax− y‖2

2 + λ‖x‖1} (4.1)

With correct choice of λ, the `1 regularized solution x̂ of equation 4.1 can

accurately localize and quantify the absorption anomaly [26]. Researchers in DOT

community have successfully used `1 regularization techniques to reconstruct sparse
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DOT images [4, 26, 43, 44]. However, state of the art `1 norm minimization techniques

involves solving a linear system with the size of the unknown image which ensues a

huge computational burden for the full 3-D imaging volume [19, 20]. Hence the

current `1-based approach is not suitable or practical for 3-D DOT reconstruction in

real time.

A major challenge for the researchers in solving equation 4.1 is to select the cor-

rect regularization parameter. Although for Tikhonov regularization, well-researched

theoretical guides exist to choose the parameter (γ) based on the l-curve and cross-

validation method, for `1 optimization choosing the parameter λ is still an unsolved

technical problem and the choice is made empirically [21, 12, 22].

The second challenge in DOT is that `1 or `2 regularized DOT reconstruction

suffers from poor depth localization as the sensitivity of DOT measurement decreases

exponentially along the depth [23, 24]. Pogue et al. proposed a spatially variant

regularization scheme to enhance depth sensitivity [25]. Recently a more direct ap-

proach of modifying the sensing matrix to compensate for sensitivity decrease with

increasing depth has been adopted [24, 26].

Another challenge for DOT research community is the optode geometry op-

timization, with which high quality reconstruction can be obtained by deploying a

minimum number of optodes. Tian et al. have studied different optode configurations

to find the optimal measurement density using `2-based regularization [27].

In this work, a novel reconstruction method is demonstrateed that is able to

overcome the challenges mentioned so far for solving the sparse DOT inverse prob-

lem. For sparse images, the size of the linear system for the inverse problem can be

reduced drastically if one can approximately create a low-resolution support mask of

the nonzero voxels beforehand. Motivated by this insight, a two-step, dimensionality-

reduction-based optimization (DRO) algorithm for DOT image reconstruction is de-
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veloped. In the first step, DRO-DOT finds a low resolution support mask with po-

tential nonzero voxels by identifying and grouping the sensing columns in A and the

corresponding voxels of x. The number of such groups is far less than the number

of original voxels. In the second and final step, `1 minimization is carried inside the

recovered support mask only, whose size is smaller than the full 3-D imaging volume.

Hence in both steps the number of unknowns is reduced, resulting from dimension-

ality reduction of the original problem and thereby scaling down the computational

complexity. In addition, the sensing matrix A is re-weighted to enhance the depth

sensitivity of the overall method by including depth compensation. The critical prob-

lem of chosing the regulariation parameter is also addressed by developing an adaptive

scheme to find λ based on the statistical interpretation of `1 regularization in equa-

tion 4.1. By the end of this chapter, it is shown that, DRO-DOT is able to recover

high-resolution images even with a limited number of optodes, which in turn reveals

the possibility and feasibility of using transcretal DOT for prostate cancer imaging.

Overall, the major novelty of the approach is to solve an optimization model

that consists of a data residue item and a sparse regularization item. The algorithm

leads to three advantages: (1) It forms a low resolution supporting basis to reduce

computing complexity. (2) It refines the depth compensation algorithm so as to

recover more accurate DOT images. (3) It offers a semi-automatic method to choose

optimal regularization parameter.

4.1 DRO-DOT

Consider a CW DOT imaging system, for which let the original image x ∈ Rn

represents the perturbation in absorption parameter, i.e., x = [δµa(r1), δµa(r2), . . . , δµa(rn)]T .

Also x is sparse satisfying ‖x‖0 << n and let I be the set of indices of the nonzero

voxels, i.e. I = {i : xi > 0}. Hence ‖x‖0 = |I| . Let I ′ be a subset of {1, 2, ..., n}
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which contains the nonzero voxel locations i.e., I ⊂ I ′ ⊂ {1, 2, .., n}. If it is possible

to approximate such a support I ′ so that ‖X‖0 < |I ′| = n′ << n, then the original

forward problem of (4.15) can be re-stated as:

y = AI′xI′ , (4.2)

where xI′ and AI′ are the sub-vector and sub-matrix formed within voxels of x and

columns of A chosen from the list I ′ respectively. Solving (4.2) is faster than solving

the original problem (4.15), because now the dimensionality of the inverse problem is

reduced to n′ from n. This insight leads us to the first step of DRO-DOT.

4.1.1 Step-1

The original high-resolution 3-D voxel space is first transformed into a lower

resolution voxel space and then the support of the heterogeneity is found in that

space. Remember that A is the sensing matrix whose jth column corresponds to

the measurement sensitivity in all the source-detector pairs for the jth voxel. Be-

cause of the diffusive nature of light propagation, the measurement sensitivity for

xj and xk will be highly similar or correlated if these voxels are close. Thus the

group of columns of A corresponding to the group of spatially close voxels should

be highly correlated. This important rationale leads to the procedure for forming

the low resolution voxel basis as follows: the algorithm starts from the first column

of A i.e. A1 and finds all columns that are highly correlated with A1 (for example,

setting a correlation coefficient threshold > 0.95). Then these correlated columns are

grouped together as A]1. The algorithm repeats the same process from the residual

list of columns and continues the grouping process until A is fully exhausted. Let n]

groups are formed and each group is represented by the first column member of that

group. The columns representing the jth group is denoted by A]j. For each group
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of correlated columns, one needs to take the sum of the corresponding elements of x

in that group (because of one-to-one correspondence between column locations and

voxel positions) to form x] which is the low resolution image basis of x such that,

x]j = sum of elements of x corresponding to j th group of voxels. After forming this

new basis, equation (4.15) can be approximated as:

y u
[
A]1 . . . A

]
n]

]
x]1
...

x]
n]

+ e = A]x] + e (4.3)

Choosing the correlation threshold is a crucial decision for performing the dimension-

ality reduction (from n to n]) in step-1. Suppose τ to be the correlation threshold.

If τ is very high, there will be fewer number of columns in each group and hence n]

will be large and the benefit of dimensionality reduction will be lost. Again, if τ is

very low, the approximation error ‖A]x] − Ax‖ will be high. Hence it is important

to find a trade-off between the approximation error and dimensionality reduction.

The effective value of correlation threshold is chosen to be τe, such that the relative

approximation error ‖A
]x]−Ax‖
‖Ax‖ remains less than 5% to ensure that one does not sac-

rifice accuracy in his pursuit to reduce computational burden. More details on how

to select the effective correlation threshold τe are given in Section 1 of Supplementary

Information.

Note that the collection of nonzero elements of x] will correspond to the support

for the sparse object only if the nonzero elements of x are of the same sign. Otherwise,

a scenario is possible where the sum of nonzero voxels of different signs in some kth

group is zero which will make x]k = 0. Hence, to recover the support of the sparse

object by finding nonzero elements of x], it needs to be assured that the nonzero

elements of x are of same sign, which in turn guarantees that if any kth group of
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voxels from x contains any number of nonzero elements, then x]k > 0. Fortunately,

for typical DOT imaging scenarios such as brain activation, presence of tumor etc.,

the change in absorption coefficient in the region of interest is known to be positive

and researchers have used this non-negativity constraint to design their optimization

strategies [45, 46]. With such positivity constraint on x, one can find this support by

solving the modified version of equation 4.1 adapted to the new basis :

x̂] = arg min
x]
{‖A]x] − y‖2

2 + λ‖x]‖1} (4.4)

This is the crucial step leading to the success of DRO-DOT. Equation 4.4 is solved

using split augmented lagrangian shrinkage algorithm (SALSA) which is widely used

for solving `1-minimization problem [19]. The convergence of SALSA for `1 regular-

ization has been proven in section III B of Ref. [19]. In particular, the algorithm is

said to converge when the relative change in the objective function falls below some

pre-set tolerance limit. In appendix C, convergence of DRO-DOT is illustrated.

4.1.2 Step-2

After finding the low resolution voxel basis, this basis is mapped back to the

original voxel basis to get I ′ as discussed before. `1 minimization is then performed

inside this support I ′ instead of the full imaging volume. Therefore one needs to solve

the new optimization problem associated with equation (4.2):

x̂I′ = arg min
xI′

{‖AI′xI′ − y‖2
2 + λ‖xI′‖1} (4.5)

As the number of voxels in I ′ is n′, which is much smaller than n, the optimization

problem in equation 4.5 is computationally inexpensive.
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4.2 Depth Compensation

As the measurement sensitivity degrades exponentially along the depth of the

tissue, reconstructed image becomes biased towards the surface. This problem of

poor depth localization is addressed earlier by post-multiplication of the A matrix

and spatially varying regularization approach [25, 24]. In the current work, the first

approach is followed with modification. For n = nx×ny ×nz, A can be re-written as

concatenation of nz block matrices corresponding to nz layers:

A =

[
A1|A2| . . . Anz

]
(4.6)

In principle, sensitivity of Ai should be bigger than sensitivity of Aj if i < j. To

equalize or compensate for this sensitivity attenuation along the depth, each block of

A is reweighted as follows [26]:

Å = AM where M =



θ(Anz)

. . .

θ(A2)

θ(A1)


(4.7)

where θ(Ai) is the maximum singular value of ith block. Thus the sensitivity for

the last layer is boosted most and for the first layer it is suppressed most. Now one

can obtain a depth localized image by solving the modified optimization problem of

equation 4.1 as follows:

ˆ̊x = arg min
x̊
{‖Åx̊− y‖2

2 + λ‖x̊‖1} (4.8)

One more step is required to find the final optimized solution x̂ from ˆ̊x as :

x̂ = M−1 ˆ̊x (4.9)

Equation (4.9) preserves the quantification of the reconstructed image after depth

equalization.
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4.3 Selection of regularization parameter

It is known that the success of `1 regularization depends on the correct selection

of regularization parameter λ. To avoid biasing of the reconstruction result, this

choice should not be based on a trial-and-error approach [22]; rather, an automatic

selection criterion is required. In this research, a semi-automatic method of choosing

λ is proposed for the standard DOT experimental paradigms. The method is based

on statistical interpretation of the regularization parameter as a ratio of measurement

noise level and sparsity parameter. It can be shown that the solution of equation 4.1

is indeed the maximum a posteriori (MAP) estimator for the linear model (4.15) with

a Laplacian prior and Gaussian noise model, as given below:

p(y|x) =
1

σ
√

2π
e
−
‖y − Ax‖2

2

2σ2 (4.10)

p(x) =
1

2α
e
−
‖x‖1

α (4.11)

where σ2 is the measurement noise variance and α is the sparsity parameter. The

MAP estimator can be found by maximizing the joint probability which results in

the following convex optimization:

xMAP = arg min
x
{‖y − Ax‖2

2 + 2
σ2

α
‖x‖1} (4.12)

Comparing (4.12) with equation 4.1 readily gives:

λ = 2
σ2

α
(4.13)

In general, one does neither know the noise variance nor the sparsity of the

original image in advance. Hence making the right choice for λ requires trying different
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combination of these two independent parameters and it is not known which one is

the right combination. It is possible to have a good estimate of the noise variance σ2

from adequate number of time samples of DOT measurements, owing to the excellent

sampling rate and thus temporal resolution of DOT. Also the range of α can be

estimated based on clinical/biomedical knowledge and estimation. As an example,

for prostate or breast cancer, even though the tumor location, shape and severity are

unknown, one would expect only a few suspicious lesions, namely, to have a few sparse

objects to be imaged and found. Knowing a realistic range, the sparsity parameter α

can be estimated. This range can be discretized as {α1, α2, . . . , αl}, where α1 and αl

corresponds to the minimum and maximum possible value of the sparsity parameter.

This gives a range of λ values where λi = 2σ
2

λi
. The appropriate λ can be chosen from

that range based on the discrepancy principle [47]. According to the discrepancy

principle the correct choice of λ will make the data discrepancy equal to the noise

variance. Hence the optimum λ denoted by λ̂ is chosen such that,

λ̂ = arg min
λi

{| 1

mq
‖Axλi − y‖2

2 − σ2|} (4.14)

where λi ∈ {2σ2/αi}ni=1 for i = {1, 2, . . . , l}

Where xλi is the solution for `1 regularization with λ = λi. The practical utility

of this method is of utmost importance to reconstruct tissue properties in real time

without any assistance from other imaging modalities.

4.4 Frequency Domain DOT

While solving the DOT inverse problem for the linear model described by y =

Ax + e, it is assumed until now that x is absorption parameter and y is continuous

wave (CW) light measurement. For many of the DOT imaging applications such
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as brain imaging, it is sufficient to recover only the absorption coefficient variation

δµa assuming that the scattering coefficient µ′s is nearly constant. But in case of

prostate DOT imaging, several recent studies have reported that light scattering of

prostate cancer is significantly different from normal prostate tissue [48, 49]. Thus

perturbation in the scattering coefficient δµ′s, can be used to distinguish malign tumor

from the normal tissue. Hence, the ability to accurately recover δµ′s along with δµa

is essential if one wishes to apply DOT for early prostate cancer detection using a

transrectal prostate DOT setup. In the CW system, only the signal intensity can

be measured, which does not allow one to distinguish the effects of light absorption

from scattering [50, 51]. A Frequency Domain (FD) system measures the amplitude

and phase shift of the either transmitted or reflected photon density waves from the

tissue [48]. Detection of both amplitude and phase shift facilitates quantification and

imaging of δµa and δµ′s simultaneously.

For FD DOT, linear system of equation 4.15 is modified as :

yFD = AFDxFD + e (4.15)

where yFD = [real(y) imag(y)]T ∈ R2mq×1, xFD = [xδµa xδµ′s ]
T ∈ R2n×1. Because

the measurement now has both amplitude and phase, hence yFD is complex where

the first half is the real part and second half is the imaginary part. The first half of

xFD is the absorption parameter and second half is scattering parameter at n voxels

and hence xFD ∈ R2n×1. With this formulation for the FD DOT problem, DRO-DOT

can be applied to reconstruct xFD from the FD measurement yFD.
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4.5 Performance Metrics

Four parameters are used to evaluate the quality of reconstruction with DRO-

DOT:

Area Ratio (AR): This quality metric is defined as the area ratio between

the reconstructed object and original object for 2D image [27]:

AR =
Ar
At

(4.16)

where Ar and At are the area of reconstructed and true object in 2D, respectively.

Ar is calculated using the full width half maximum (FWHM) approach.

Volume Ratio (VR): For 3D reconstruction, a more relevant evaluation met-

ric is volume ratio (VR), as introduced:

V R =
Vr
Vt

(4.17)

where Vr and Vt are the volume of reconstructed and true object in 3D, respectively.

Vr is also calculated using FWHM in 3 dimensions.

Contrast Ratio (CR): CR is defined as the ratio of the mean value of re-

construction in the region of interest(ROI) i.e., inside the true object boundary and

mean value of the background (BG) outside the object boundary, as given by:

CR =
mean(xROI)

mean(xBG)
(4.18)

As x represents the change in absorption coefficient, ideally x = 0 in the background

and hence for perfect reconstruction, CR→∞.

Run Time (RT): RT is the total time taken by the reconstruction algorithm to

complete the computation process, assuming the regularization parameter is already

selected.
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4.6 Results

4.6.1 Performance Evaluation

The accuracy of newly developed DRO-DOT algorithm has to be evaluated in

terms of localization and quantification of reconstructed object. Also the computa-

tional efficiency needs to be independently evaluated. To establish or demonstrate

the superiority of DRO-DOT, DRO-DOT is compared with two other state of the

art optimization techniques extensively used for DOT reconstruction. The first one

is Tikhonov regularization and second one is the conventional `1 regularization used

for sparse object recovery. The experimental set-up is illustrated in Figure 4.1. This

laboratory phantom experiment is designed to mimic the brain imaging paradigm,

where 5 × 5 optodes with a minimum optode separation of 1 cm are arranged on

the surface. The 25 optodes are bifurcated, permitting each of them to transmit and

detect the NIR light through the tissue phantom. A black cylindrical disk of 1.1cm in

diameter and 0.4cm in thickness is placed into the 1% intralipid phantom, with one

circular side facing up. The depth of the center of the absorbing object is 1.5cm and

it is located along the center of the x − y plane. For more details about the set-up

and instrumentation, the reader can refer to the work of Tian et. al. [27].

As described in the Method step-1 section, after plotting the relative approxi-

mation error ‖A
]x]−Ax‖
‖Ax‖ for different values of correlation threshold, it is observed that

the relative error goes below 5% for τ ≥ 0.96. Hence τe = 0.96 is set, which reduces

the dimensionality by more than 80% in step-1. The tolerance limit for convergence of

the `1 regularized optimization is set to be 10−5, namely, the calculation stops when

the relative difference in the cost function becomes lower than 10−5. λ = 0.0251 is

found by applying the novel regularization parameter selection approach.
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Figure 4.1. Schematic diagram of the experimental setup. The optode array is a
5× 5 geometry of bifurcated source-detector optodes with a 1cm separation between
neighboring optodes. A cylindrical absorption anomaly is placed into the intralipid
phantom along the center of the grid at a depth of 1.5cm below the surface..

Fig. 4.2 depicts the two-step reconstruction of the object at sequential layers

for the phantom experiment shown in Fig. 4.1. It is known that the sensitivity

pattern for each source-detector pair follows a banana shape, and outside of that

shape objects are not detectable [52]. Hence the imaging volume for reconstruction is

taken to be 4cm×4cm×2.5cm. Initial visual inspection of the reconstruction clearly

shows that DRO-DOT recovers the image location in 3D and size with good accuracy

and high contrast [Fig. 4.2a]. And it is important to note that owing to the novel

regularization parameter selection approach, the reconstruction is done without any

prior information on the true size and location of the object. At the same time the

computational complexity is greatly reduced: Step-1 took 1.9s and Step-2 took just

0.17s to achieve convergence. Given that this is 3D reconstruction, the time taken

is much shorter than conventional `1 based methods. This shows the promise by

DRO-DOT for real time functional DOT imaging applications. At this point, it is

warranted to have a fair comparison between DRO-DOT and other state of the art

DOT recovery algorithms.
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Figure 4.2. DRO-DOT step by step reconstruction for the tissue phantom: (a) The
low resolution image support region recovered in Step-1 and (b) The final recon-
structed image obtained in Step-2 by solving `1 optimization inside the support region
obtained in Step-1..

DRO-DOT is compared to two other conventional methods that are extensively

used for DOT reconstruction: `2 norm and `1 norm based optimization respectively.

Fig. 4.3 shows the image reconstruction at a plane of depth 1.5cm from the surface

(along the centre of the object). As can be seen, both DRO-DOT and `1 based method

outperform `2 minimization approach in terms of image localization and quantization.

`2 minimization is fast, easy to solve and has the automated regularization parameter

selection such as l− curve and Generalized Cross Validation method [47, 22]. But it

suffers from over-smoothing effect as shown in Fig. 4.3a. `1 minimization promotes

sparseness and hence good quality reconstruction, but the computational burden is

very high for a large number of voxels which is indeed a challenge for 3D DOT
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reconstruction. Also the choice of regularization parameter in `1 based approach is

heuristic which needs prior information of image size and location. It is claimed

that DRO-DOT gives at least as good quality as `1 minimization while using a small

amount of computational time without any prior information to find an optimal

regularization parameter.

At this point, a quantitative comparison between DRO-DOT and the state of

the art techniques should be carried out in terms of different quality metrics following

the common practice [26, 27]. Table 4.1 compares the performance of DRO-DOT

with other two optimization schemes in terms of reconstruction quality and speed. It

shows that AR and V R values are close to unity by DRO-DOT and pure `1 method,

whereas these values are greater than 1 by `2 regularization because of the over-

smoothing effect. DRO-DOT and the `1 method also offer approximately 4 times

better contrast than the `2 method. The run time of DRO-DOT is as short as that of

the `2 method and 5 times faster than the pure `1 method. Thus DRO-DOT achieves

best of the both aspects: enhanced quality of `1 reconstruction and high speed of `2

optimization.

Figure 4.3. Reconstruction at Z=1.5cm plane for (a) `2-norm minimization method
(b) `1-norm minimization method and (c) DRO-DOT. The black circle represents the
perimeter of the true object in each case. .
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Table 4.1. Comparison of DRO-DOT with pure `1 and `2 based methods

DRO-DOT `1-minimization `2-minimization
AR 0.98 0.97 1.13
VR 0.97 1.05 1.24
CR 87.25 86.38 17.90

RT(s) 2.61 13.55 2.73

4.6.2 Depth Compensation

The sensitivity of the measurement wanes rapidly with increasing depth. Hence

the reconstruction is bound to be biased near the surface. By incorporating depth

compensation (DC) in DRO-DOT, i.e., truthfully reconstructing the deeper layers

more than the near surface layers, it is possible to reconstruct a DOT image at

correct depth. Fig. 4.4 shows how depth compensation mitigates the depth-biasing

effect. The reconstruction with and without depth compensation is shown along the

two vertical planes y−z and x−z. It can be seen that without DC, the reconstruction

comes near the surface and the depth of the object center is wrongly biased at 1.1cm.

With DC the center is reconstructed at 1.6cm depth which is close to the original

(1.5cm).

4.6.3 Optode Placement

In Fig. 4.1, the set up is with a dense array of 25 bifurcated source and detectors.

Such a setting can be afforded in cases where a wide open area is available for multiple

optode placements such as for brain imaging and breast cancer detection. However, in

some clinical applications where a very limited space is available to place an adequate

number of optodes, such as transcretal imaging for prostate cancer detection, DOT
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Figure 4.4. Reconstruction along the vertical planes with and without DC. The
first row shows reconstruction without DC along (a) y − z plane (b) x − z plane.
Reconstruction with DC is in the second row (c) y − z plane (d) x − z plane. The
original object outline is shown in black..

will face a major challenge in order to achieve high-resolution image [53]. Even in

case of functional brain imaging, lengthy set-up time needed for many optodes adds

to subject’s discomfort [27]. But decreasing the number of optodes or measurements

makes the DOT image reconstruction more ill-posed and thus the reconstruction

quality is bound to suffer. Hence it is interesting and important to know how much

one can afford to decrease number of optodes without degrading image quality. Such

a study had been done earlier by Tian et. al. [27], but the reconstruction method used

is based on `2 minimization, and hence in general, it suffered from the oversmoothing

effect. As DRO-DOT is already `1 based and therefore promotes sparsity, in general,

it is expected to achieve better quality DOT reconstruction for all different geometries.

Fig. 4.5 lists four different source detector geometries to be evaluated for com-

parison. They are named as geometry SD-I, SD-II, SD-III and SD-IV. SD-I is the

same geometry being used in the phantom experiment [Fig. 4.1] and results in recon-

structed DOT images shown in Figs. 4.2 - 4.4 . SD-II is also 5× 5 optode geometry
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similar to SD-I, with sources and detectors placed alternately (i.e. no bifurcation).

SD-III and SD-IV are derived from SD-I by discarding one row and three rows of

optodes, respectively, also without bifurcation. For SD-II to SD-IV, the data sets of

measurements are selected or reduced from the original measurements in SD-I.

Figure 4.5. Different optode geometries (a) SD-I (b) SD-II (c) SD-III (d) SD-IV. .

Fig. 4.6 shows the reconstruction for the four different optode geometries at the

center of the object i.e., at the depth of 1.5cm. It can be seen that the reconstructed

image size and location are recovered almost exactly for each case, except for some

difference in quantification.

Figure 4.6. Reconstruction using DRO-DOT at x − y plane at depth 1.5cm for (a)
SD-I (b) SD-II (c) SD-III (d) SD-IV. .
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In addition, Table D.1 shows that using DRO-DOT, the quality of the recon-

struction is maintained high even with a very limited number of sources and detectors

used.

Table 4.2. Comparison of DRO-DOT reconstruction for different optode geometries

SD-I SD-II SD-III SD-IV
VR 0.97 0.92 1.02 1.02
CR 87.25 67.26 47.90 45.10

4.6.4 Transcretal Prostate Imaging

In the previous section, it has been demonstrated that even when there are two

rows of optodes, DRO-DOT is able to localize the object at the correct depth and

position with a high contrast. This observation leads us to focus on a challenging

application of DOT: transcretal prostate cancer imaging. In prostate imaging, the

optode probe has to be inserted through the subject’s anus where a very limited space

is available for optode placement and only two rows of closely placed optodes can be

used [53]. To investigate the feasibility of DRO-DOT for transcretal imaging, several

laboratory experiments are carried out with the optode set-up shown in Fig. 4.7.

Nine sources and nine detectors are placed alternately in two rows making a total

number of 81 measurements. The two rows are separated by 2cm and the closest

optode separation is 0.5cm. The homogeneous background is 1% intralipid solution,

giving the background absorption coefficient of ' 0.03cm−1.

Four different phantom configurations as shown in Fig. 4.7 with objects of

different shapes and sizes are used to evaluate 3D image reconstruction using DRO-

DOT. Object B is a spherical ball with' 0.9cm diameter. Cs is a much smaller object
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Figure 4.7. Experimental set-up for different phantom configurations (a) single object
of type B placed at a depth of 1.8cm (b) single tiny object of type Cs placed at a
depth of 1.5cm (c) dual identical objects of type C1 placed at 1.5cm depth with center
to center separation of 1.5cm (d) dual objects of two different types C1 and C2 placed
at 1.5cm depth with center to center separation of 1cm. .

of cylindrical shape with a diameter of ' 0.2cm and a length of ' 0.3cm. Object C1

is a cylinder with a diameter of ' 0.85cm and a length of ' 0.62cm. Object C2 is

also a cylinder but with diameter of ' 0.65cm and a length of ' 0.45cm. In the first

experiment, B is placed at a depth of 1.8 cm (Fig. 4.7a). The second experiment

is more challenging as it needed to reconstruct a tiny object Cs that is placed at a

depth of 1.5 cm (Fig. 4.7b). The other two experiments are also interesting as those

needed to reconstruct dual objects. In one case, two C1 objects are placed at 1.5cm

depth and are separated by 1.5cm center-to-center distance making the separation

between their close surfaces around 0.8-0.9cm (Fig. 4.7b). In the fourth experiment,

two cylinders with different sizes i.e., C1 and C2 are closely spaced with a 1cm center-
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to-center distance or 0.45cm surface-to-surface distance at 1.5cm depth (Fig. 4.7c).

The imaging volume used in DRO-DOT is chosen to be 6cm × 4cm × 2.5cm right

below the optode surface.

Figure 4.8. Reconstructed DOT images from four different DOT phantom experi-
ments using transcretal geometry (a) Set-up 1: Object B placed at 1.8cm depth, (b)
Set-up 2: Object Cs placed at 1.5cm depth (c) Set-up 3: Two identical cylindrical
objects of both C1 separated by a 1.5 cm center-to center distance at 1.5cm depth
and (d) Set-up 4: Two different sized objects C1 and C2 with a 1cm center-to-center
separation at 1.5cm depth. .

Fig. 4.8a shows the reconstructed image using DRO-DOT for the ball-shaped

object. The size and location of the spherical object is recovered accurately. Fig.

4.8b shows the ability of DRO-DOT to reconstruct an object of dimension as low as

0.2cm. For the first dual-object phantom experiment, two C1 objects are resolved

with good accuracy as seen in Fig. 4.8c. For the second dual-object case with one C1

and one C2 object, the reconstruction is shown in Fig. 4.8d. In this case, though the

two objects are distinguishable, there no more exists a clear boundary between them.
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This experiment demonstrates that DRO-DOT can not separate objects separated

less than 5mm.

4.7 FD-DOT Reconstruction

A frequency domain DOT system is simulated using PMI toolbox. Two different

scenarios are studied for the experiment. In first case a pure absorption and a pure

scattering anomaly are placed at different locations. In second case, they are at the

same position meaning the same object both absorbs and scatters the light. The true

object boundary is shown in black circle. The optode geometry is same as shown in

Fig. 4.7. The value of δµa = 0.03 and δµ′s = 3 is chosen for the anomaly. Also 1%

noise is added to the measurement to simulate the noisy measurement scenario. It

was not possible to perform FD measurement in the laboratory, but in future when

the system will be available, DRO-DOT can be verified with real phantom experiment

FD data. The reconnstruction results in 4.9 shows that the object is localized with

almost accurate quantification.

4.8 Conclusion

A novel algorithm to rapidly reconstruct high quality 3D DOT image is de-

veloped which can be potentially used in real time in future. The novelty of the

algorithm rests on the formation of a low resolution supporting basis in its first step

by grouping highly correlated columns within the sensing matrix. This step enables

one to solve the inverse problem using `1-minimization with a small number of low

resolution voxels so as to find the approximate image support. Traditionally any

prior information from other imaging modalities, such as magnetic resonance imag-

ing(MRI), positron emission tomography(PET) or ultrasound (US) is always useful to
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(a) (b)

Figure 4.9. Simultaneous reconstruction of both absorption and scattering parameter
with absorber and acatterer at (a)different positions and (b)same position. Top figure
corresponds to reconstruction of δµa and bottom figure shows reconstruction of δµ′s.

provide additional mathematical and/or anatomical constraints that ultimately lead

to higher quality reconstructed images [41, 53, 54]. In general, however, acquisition

of multi-modality images is not always feasible and adds burden on healthcare costs.

The first step of DRO-DOT effectively addresses this issue by being able to recover

the image support without any prior information. Within this low-resolution support,

the true object can be found in a very short time in the second step using `1 opti-

mization. Thus DRO-DOT algorithm achieves the superior quality of `1 optimization

and at the same time remains computationally inexpensive.

The experimental validation of DRO-DOT to examine the quality and speed

of image reconstruction has been performed using standard laboratory phantom ex-

periments. Reconstructed images using DRO-DOT are compared with those by state

of the art `1 and `2 based optimization techniques. The reconstructed image quality

is quantified by such metrics as AR, VR, and CR. Also, computational complex-
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ity for each algorithm is judged by comparing their respective runtimes. Table 4.1

shows that both the new method and `1 perform excellently leading to high-quality

reconstructed images, whereas `2 minimization does not offer recovered images with

high spatial resolution and contrast. This result is expected because the final step

of DRO-DOT actually runs `1 minimization inside the support basis found from the

first step, which in principle gives rise to an improved spatial resolution compared

to images obtained by `2 minimization. The total runtime for DRO-DOT and `2

minimization is found to be around 80% less than the runtime of `1 method. The

improved computational speed in DRO-DOT stems from the fact that the compu-

tational burden of `1 optimization for the huge number of voxels in the 3D imaging

volume is reduced by breaking the process into two steps. Both of the steps actually

reduce the dimensionality of the original larger sensing matrix and hence reduce the

computational burden. In this way, DRO-DOT has achieved an optimal aspect of two

existing state of the art `1 and `2 based optimization techniques, i.e., high solution

quality of `1 optimization and high speed of `2 optimization.

The problem of depth localization has also been addressed in the present work.

The sensing matrix A is modified by assigning more weights to the deeper layers

of A forming Å using equation (4.7). As shown in Fig. 4.4, this approach reveals

the details in deeper layers and preserves the correct depth in the reconstruction, in

contrast to the poor depth localization without depth compensation. It should be

acknowledged that a similar depth compensation method is earlier used by Kavuri

et. al. [26], though they did not do the correction step as described by equation

(4.9). While this step requires only multiplication of the post-processed image x̊∗

by the inverse diagonal weight matrix M−1 to reach x∗, it is very important for

recovering accurate quantification of the imaged object. An earlier study reports

that quantification of absorption perturbation can be recovered with a best rate of

52



64 % in simulative experiments for reconsructed images [55]; current approach with

equation (4.9) permits much improved recovery rate of 99.1%.

As DRO-DOT requires utilization of `1 minimization to solve the inverse prob-

lem internally, choosing the correct or appropriate regularization parameter λ is a

major challenge. This challenge is addressed by developing an efficient scheme to

choose λ based on the statistical interpretation of its dependence on noise variance

and the discrepancy principle. This simplification is possible specifically for DOT

scenario because σ2 can be estimated accurately from multiple data collections of the

measurements. Then, DRO-DOT is able to systematically select an optimal regular-

ization parameter λ without time and effort consuming, subjective search of such a

parameter.

The study has also clearly demonstrated that DRO-DOT can achieve good-

quality DOT image reconstruction even with a limited number of optodes. Fig. 4.6

shows that one can optimize the optode setting geometry, namely, reduce the to-

tal number of optodes, without significantly sacrificing the image quality. Although

reducing the number of optodes makes the inverse problem (i.e. image reconstruc-

tion) more ill-posed and underdetermined, proposed method compensates for this

ill-posedness by reducing the dimensionality of the problem. DRO-DOT is still able

to achieve excellent VR and CR (Table D.1) after the source-detector pairs are re-

duced from 25 × 25 to 5 × 5 (Fig. 4.5). This result is an excellent improvement

compared to the previously known results [27].

Based on the observation that DRO-DOT works well even with limited space to

place adequate optodes, its application has been extended to prostate cancer imaging.

The real imaging scenario is emulated using laboratory phantom experiments specially

designed for this purpose, namely, having a transcretal optode setting (Fig. 4.7).

DRO-DOT is able to reconstruct single and dual objects with accurate localization
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and high CR. The reconstruction algorithm can not separate two small objects if their

separation is less than 5mm. Early research has shown that the spatial resolution in

DOT can not be less than 5mm [29]. Hence the proposed algorithm has achieved

the highest possible spatial resolution. It is worth to compare the current work

with the reports by Xu et al. and Kavuri et al. on prostate DOT studies [41,

53]. Their methods are based on `2 regularization and for 3D imaging, they are

computationally expensive as both of the methods uses NIRFAST software package to

do the forward and backward calculation using finite element method at each iteration

[56]. In contrast, DRO-DOT uses `1 regularization and is very fast or computationally

inexpensive.

Although the results by DRO-DOT are promising for DOT imaging with im-

proved resolution and computational speed, a few weaknesses of this study are to

be recognized and possibly improved in the near future. For DRO-DOT to perform

well, the object to be imaged should be both sparse and localized. Such constraint is

needed for x] to be sparse in the low dimensional voxel space (equation 4.3), which in

turn guarantees the success of solving equation 4.4. For example, if the nonzero voxels

of x are randomly scattered, then x] will have an equal number of nonzero regions in

x, and hence the dimensionality reduction of the support basis cannot be achieved

through step-1. Fortunately, such cases with multi focal lesions are not too common

in practice, and most of the time there are not more than two focci for us to focus

on [57]. Another limitation is the inability to simultaneously reconstruct absorption

and scattering perturbation with the current setup and corresponding algorithm.

In conclusion, a novel method DRO-DOT, for 3D DOT reconstruction has been

developed and experimentally supported. It can rapidly reconstruct high-quality im-

ages in very short time. The proposed method does not require prior information

from other imaging modalities and thus holds promise for cost reduction and patient
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convenience, while keeping high quality of image reconstruction. DRO-DOT also

incorporates procedures for accurate depth localization and systematic/automatic se-

lection of regularization parameter. As a specific example, several experimental tissue

phantom measurements with transcretal imaging geometry are taken, and the optimal

performance of DRO-DOT in respective imaging scenarios has been demonstrated.

Overall, DRO-DOT provides a new platform for rapid high-resolution DOT imaging

ready for clinical translation in medical imaging applications.
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CHAPTER 5

SUMMARY AND FUTURE WORKS

5.1 Summary

The major contributions of this dissertation are to establish the sparse recovery

condition for linear inverse scattering problem and development of a rapid and high

quality image reconstruction algorithm.

In the first part of this work, uniqueness condition for obtaining the sparsest

solution of LISP is derived. Born and Rytov approximation is re-formulated as MMV

problem and hence it is argued that the condition for obtaining the unique sparsest

solution of MMV problem applies to them. Based on few realistic assumptions, it is

found that the sparse solution for the Born and Rytov LISP is the unique sparsest one

if the sparsity level is less than the average number of sources and detectors. Computer

simulation and phantom experiment results validate this uniqueness condition.

A rapid and high quality image reconstruction algorithm DRO-DOT is devel-

oped to solve the sparse signal recovery problem arising in DOT, which is a par-

ticular instance of LISP useful for medical diagnostics. The algorithm reduces the

dimensionality of the original inverse problem in two steps, thereby making the over-

all optimization computationally efficient. Previously developed depth compensation

method is incorporated in the algorithm with minor corrections, to account for the re-

duction in measurement sensitivity with increasing depth. A semi-automatic method

of regularization parameter selection is developed based on the statistical interpreta-

tion of the sparsity regularization. Based on the observation that DRO-DOT works

well even with limited space to place adequate optodes, its application has been ex-
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tended to prostate cancer imaging. Overall, DRO-DOT provides a new platform for

rapid high-resolution DOT imaging ready for clinical translation in medical imaging

applications. Further evaluation of this method with animal tissues ex vivo and/or

in vivo as well as human experiment will enhance and better validate the algorithm.

5.2 Future Directions

5.2.1 Real-time medical imaging

In Ch. 4, DRO-DOT was applied for laboratory phantom experiments. Eval-

uating the performance with real human experiment data will be next step. If it is

possible to adapt DRO-DOT for practical DOT measurements, this algorithm may

further be applied to enhance the speed of functional brain imaging reconstruction.

One might also want to explore the scope of applying the algorithm for other appli-

cation specific inverse scattering problems. Further evaluation of the method with

animal tissues ex vivo and/or in vivo as well as human experiment will enhance and

better validate our algorithm.

5.2.2 Noise normalization

The `1 optimization problems (Q1) or (Q1′) being solved in this work are based

on the assumption of white gaussian noise(WGN) present in the data. But in practical

medical or seismic scenarios this assumption may no longer be valid. For example,

in DOT measurement signal to noise ratio (SNR) decreases with separation between

source and detector [58] and [59]. Thus a noise normalization approach should be

incorporated in the proposed algorithm based on the characteristic of measurement

noise.
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APPENDIX A

Acronyms
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3-D Three-Dimensional

AR Area Ratio

CR Contrast Ratio

CS Compressive Sensing

CW Continuous-Wave

DOT Diffuse Optical Tomography

DRO-DOT Dimensionality Reduction based Optimization for Diffuse Optical Tomography

FD Frequency Domain

ISP Inverse Scattering Problem

LISP Linear Inverse Scattering Problem

MAP Maximum A Posteriori

MRI Magnetic Resonance Imaging

MMV Multiple Measurement Vector

NIR Near Infra Red

PDF Probability Distribution Function

ROI Region Of Interest

RT Run Time

SALSA Split Augmented Lagrangian Shrinkage Algorithm

SD Source-Detector

SNR Signal-to-Noise Ratio

VR Volume Ratio

WGN White Gaussian Noise
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APPENDIX B

Setting the Correlation Threshold
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The effective correlation threshold τe was set to ensure that the relative ap-

proximation error || ||A
]x]−Ax||
||Ax|| remains below 5%. For each of the DOT geometries

studied in the paper, a set of 100 random test images were generated. For each of

this random test images, we calculated the relative approximation error, E(i) for

i = {1, 2, . . . , 100}, as a function of correlation threshold τ . By the end of this pro-

cess, we obtained 100 values of E(i) for each value of τ and then averaged them to

generate a single value of average relative approximation error, Ea for each value of

τ . Finally, the effective correlation threshold τe was decided from the plot of average

relative approximation error Ea vs correlation threshold τ by finding the point where

Ea goes below 5%. Supplementary Fig. B.1a shows such a plot for the DOT geometry

of Fig. 1 in the paper. We also plot the dimensionality reduction factor r = n−n]

n
as

a function of τ in Fig. B.1b.

(a) (b)

Figure B.1. Setting of τe in Step-1 and its effect on dimensionality reduction for
the geometry of Fig. 1 in the thesis. (a) Plot of average relative approximation
error Ea vs correlation threshold τ and (b) Plot of % dimensionality reduction factor
r vs correlation threshold τ . We set τe = 0.96 as the effective correlation threshold
where Ea goes below 5%. For the chosen value of τe, a reduction of dimensionality (or
number of columns of A matrix) as much as 85% was achieved in step-1 of DRO-DOT
.
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APPENDIX C

Convergence of SALSA
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The evolution of the cost function with time is plotted in Fig. C.1 to illustrate

the convergence of DRO-DOT. The convergence is shown for the phantom experiment

in Fig. 1.

Figure C.1. Convergence of SALSA in DRO-DOT step-1 for the phantom experiment
in Fig. 1 of paper. The plot shows the evolution of the `1 regularized objective
function with successive iteration time. SALSA coverges at ' 1.9s i.e. at that time
the relative error in the cost function betwen two successive iterations goes below our
tolerance limit that we set as 10−5.
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APPENDIX D

Experimental Parameters
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DRO-DOT algorithm has been applied for five different experimental set-ups:

Four optode geometries for the brain imaging phantom study (Fig. 5) and one optode

geometry for transcretal prostate phantom experiment (Fig. 7). In the table below

we show the different parameters related to each of these experiment set-up:

Table D.1. Parameters for different phantom experiments. Geometry 1-4 are for
brain imaging phantom with different optode configuration as in Fig. 5 of the paper.
Geometry 5 is for the transcretal prostate phantom whose geometry is shown in Fig.
7.

Effetive
Correlation
Threshold (τe)

dimensionality
reduction (%)

r=n−n]

n

λ Time to
converge (seconds)
(step-1 & step-2)

Geometry 1 0.96 85 0.0251 1.90 & 0.17
Geometry 2 0.95 88 0.0346 1.82 & 0.15
Geometry 3 0.95 87 0.0371 1.85 & 0.16
Geometry 4 0.97 81 0.0441 2.28 & 0.22
Geometry5 0.96 85 0.0282 1.98 & 0.18
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