# COMPREHENSIVE NEURAL NETWORK FORECASTING SYSTEM FOR GROUND LEVEL OZONE IN MULTIPLE REGIONS

by

## GAUTAM RAGHAVENDRA EAPI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015

Copyright © by Gautam R. Eapi 2015

All Rights Reserved



#### Acknowledgements

I am thankful to my Professors' Dr. Melanie L. Sattler and Dr. Michael T. Manry for their support and valuable guidance throughout my research. To the best of my knowledge, Dr. Sattler is very kind, approachable, and a helpful professor in the Civil Engineering Department and Dr. Manry is known for high quality of research work. The amount of research hours Dr. Manry spends with the students in the IPNNL lab and the long hours he spends correcting and revising the dissertation documents to ensure that the output quality is good, is an example of this. He is my most valued professor at UTA and I owe him a lot.

I am thankful to my committee members Dr. Ghandehari, Dr. Victoria Chen and Dr. Choi for their suggestions in my research work. I had the opportunity to work with Dr. Qasim, Dr. Crosby, Dr. Kruzic and the experience I gained is invaluable. Dr.Qasim, Dr.Ghandehari, Dr. Anand Puppala and Dr. Abolmaali have been a constant source of motivation and encouragement throughout my PhD. I am also thankful to Dr. Fuqiang, Joshua Been, Dr. Kim, and Richard Gaines: all good instructors.

I am thankful to my friends Rohit Rawat, Kanishka Tyagi, Bito Irie, Son Nguyen, Kunal, Jignesh, Aditi, Auddy, Jeshwanth, Parastoo, Yilong and Jugal in the IPNNL lab (Electrical Engineering Department). I am indebted to all of them for a lifetime. Their positive words helped me continue with this research topic that was above my level of understanding during the initial years. Rohit has always been a great support for me all these years and I am blessed to have a friend like him.

I am thankful to all my friends from Civil engineering department. I am grateful to Srinivas Chittoori, Richa and Neelesh for their guidance and moral support during my initial years at UTA. My civil engineering friends Nan, Reza, Zak, Ishtiaq, Zahangir,

iii

Prince, Su, Said, Hesham, Sulak, Ketwalee, Roja, Annaprabha, Sahithi, Rukmini, Pinku, Meenakshi, Elahe, Jiaqi, Mahsa, Ujwal, Daniel, Shang, Ariel, Wasui, Fari, Amir, Anna, Binu, Shikshita, Arezoo, Niloofar, Lince, Thiru, Rathan, Maryam, Arezoo, Srinivas Prabakar, Arpita, Aditya, Parthen, Angelique, Shankar, Manjeera, Laxman, Sujit, Aravind, Vijay, Rajni, Aashish, Shilpa, Eshwari, Tejo, Asher, Ujwal, Naga, Madanu, Madhu, Shammi, Vennila, Rakesh, Ranjit, Praveen, Ratna, Spoorti, Ashraf, Ramya, Kiran, Jithendra have been great support. To have friends like Kartik Siddhabathula, Harsha Meka, Chakri, Harsha Raju, Sai Krishna, Avinash, Subbu, Mandar, Snehal, Naveen, Charan, Vinod, Sid, Raja, Sayan, Thejjesh, Shravya, Vikram, Varun, Shriram, Rohit Toom, Balmu, Dileep, Vinay, Venkat, Kartik, Prasad, Harsha, Jitesh, Nema, Soma, Rohit Reddy, Sairam, Srinivas, Teju, Subash, Aditya, Sharmista, Om, Deepak, Pradeep, Raghavendra, Rohit Sawkar, Chaitu, Shreya, Singi, Praveen, Srinivas, Balla, Naval, Sreemanth, and Angela is a gift. I am thankful to my childhood friends and neighbors, Prasad, Madhu, Shyam, Nani, Balu, Rohit, Rabi akka, Jyothi akka, Vijay, and Bhushan. I might have missed a few names but I love you all. I am thankful to all my friends from High School, Bachelors, and Masters.

I am thankful to the Civil Engineering Department, and the SEL staff. Sara, Ava, Lewis, Ginny, Tina, Lynda, Ladan, Kierra, Kristina and Jamie have always been student friendly.

I loved being a TA for the classes Spring 2013, Summer 2013, Fall 2013, Spring 2014, Summer 2014, Fall 2014, Spring 2015, Summer 2015, and Fall 2015. Thank you guys for all your reviews. It was only because of you that I am living a contented life since 2013.

The support I got from my family is priceless. I am blessed to have cousins, Sughani anna, Manga akka, Sujatha, Udai, Ravi, Pedanna, Bala anna, Suma odina,

iv

Manju, Sailu, Sarada akka, Pinku, Chanti, Prakash, Sarada akka, Srinu anna, Vivek, Venu, Vijji, Madhavi, Babloo, Bhargavi, Tinku, Munna, Bannu, Likitha, Sai, Santosh, and Sindhu. My nephews: Arnav, Tanish, Vivaan, Tanav, my nieces: Aishwarya, Manasvini, and Indrani have brought lots of happiness in the family. My brother, Bharat and his wife Latha have been very supportive all these years. Bharat is a gift my mother gave me. My father and mother have spent all their earnings towards our education and I think my doctoral degree is what I can give them for all their love and sacrifice.

Finally, the countless blessings of my grandparents, Vasu pedananna, my cousins Krishna anna, Asha, and Arjun from a better world, helped me from time to time. Thanks for being a part of my life.

November 12, 2015

## Dedicated to

To my two mothers I love the most: Seshu pedamma for retaining the utmost faith in God despite all the losses in her personal life and my beautiful mother, Durga Devi for her infinite and selfless love

#### Abstract

# COMPREHENSIVE NEURAL NETWORK FORECASTING SYSTEM FOR GROUND LEVEL OZONE IN MULTIPLE REGIONS

Gautam R. Eapi, PhD

The University of Texas at Arlington, 2015

Supervising Professors: Melanie L. Sattler and Michael T. Manry

A comprehensive neural network daily maximum 8 hour-ozone forecasting model was developed based on five years of data (2010-2014) collected from 50 monitoring sites from the Dallas Fort Worth, Houston-Galveston-Brazoria, Los Angeles, San Joaquin and San Diego regions. This work represents the first neural network developed to forecast ozone in multiple regions, as well as multiple sites in the same region. Previous studies have developed separate neural network models to forecast ozone at each location.

Two stages of feature selection were applied to reduce input vector dimension and redundancy. These are Piecewise Linear Orthonormal Floating Search (PLOFS), and Karhunen - Loève Transform (KLT). Two possible approaches for organizing the data were tried. These are a tall file approach and a median file approach. Results showed better performance of the tall file approach. The Multilayer Perceptron (MLP) neural network used in this study showed better prediction performance compared to other existing MLP neural network approaches.

vii

## Table of Contents

| Acknowledgementsiii                                        |
|------------------------------------------------------------|
| Abstract                                                   |
| List of Illustrationsx                                     |
| List of Tablesxi                                           |
| Chapter 1 Introduction1                                    |
| Chapter 2 Literature Review                                |
| 2.1 Ozone chemistry5                                       |
| 2.1.1 Sources and adverse effects of ground level ozone    |
| 2.2 Neural Network Technology7                             |
| 2.2.1 Multilayer Perceptron7                               |
| 2.2.2 Radial Basis Function Network12                      |
| 2.2.3 Piecewise Linear Network                             |
| 2.3 Previous work on air quality modeling16                |
| Chapter 3 Data Description                                 |
| Chapter 4 Example forecasting system and its problems      |
| 4.1 Example system inputs and outputs32                    |
| 4.2 Training/Validation/Testing data in the example system |
| 4.3 Problems associated with the example system            |
| 4.3.1 Discontinuous inputs                                 |
| 4.3.2 Missing data                                         |
| 4.3.3 Encoding data from multiple cities                   |
| 4.3.4 Memorization                                         |
| 4.3.5 Noisy or dependent data37                            |
| Chapter 5 Possbile System                                  |

| 5.1 Possible System Approaches                          |     |
|---------------------------------------------------------|-----|
| 5.1.1 Tall file data approach                           |     |
| 5.1.2 Median Approach                                   | 42  |
| Chapter 6 Feature Selection                             | 44  |
| 6.1 Piecewise linear orthonormal floating search method | 46  |
| 6.2 Karhunen – Loeve Transform (KLT)                    | 46  |
| Chapter 7 Results and Discussion                        | 48  |
| 7.1 Results                                             | 48  |
| 7.2 Comparison Work                                     | 79  |
| Chapter 8 Final Conclusions & Future Work               | 84  |
| 8.1 Final Conclusions                                   |     |
| 8.2 Recommendations for Future Work                     | 85  |
| Appendix A Literature Review                            |     |
| Appendix B Monitoring station/site details              |     |
| Appendix C Monitoring station/site maps                 | 112 |
| References                                              | 119 |
| Biographical Information                                |     |

### List of Illustrations

| Figure 2-1 Multilayer Perceptron (MLP)                                        | 10 |
|-------------------------------------------------------------------------------|----|
| Figure 2-2 Radial Basis Function Network(RBF)                                 | 13 |
| Figure 2-3 Piecewise Linear Network (PLN)                                     | 15 |
| Figure 4-1 An impractical example multi-city pollutant forecasting system     | 35 |
| Figure 5-1 A practical multi-city neural network pollutant forecasting system | 41 |
| Figure 6-1 Two-stage feature selection                                        | 46 |

## List of Tables

| Table 7-1 Tall file results with all the input features                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------|
| Table 7-2 Tall file results based on stage 1 feature selection -PLOFS                                                                  |
| Table 7-3 Tall file results based on stage 2 feature selection (transformation) - KLT59                                                |
| Table 7-4 Best and poorly predicted sites in each city based on tall file results (with allinputs, N= 71)                              |
| Table 7-5 Best and poorly predicted sites in each city based on tall file results afterstage 1 feature selection (after PLOFS, N = 62) |
| Table 7-6 Best and poorly predicted sites in each city based on tall file results after stage2 feature selection (after KLT, N= 58)    |
| Table 7-7 Median file results with all input features    67                                                                            |
| Table 7-8 Median file results based on stage 1 feature selection -PLOFS       68                                                       |
| Table 7-9 Median file results based on stage 2 feature selection (transformation)-KLT69                                                |
| Table 7-10 Number of ozone exceedance days (National 8-hour ozone) in California70                                                     |
| Table 7-11 Statistical properties of annual hourly pollutant and meteorological                                                        |
| parameters in five regions71                                                                                                           |
| Table 7-12 Statistical properties of annual hourly pollutant and meteorological parameters                                             |
| in five regions used in training and validation averaged over the years (2010-2013)76                                                  |

#### Chapter 1

#### Introduction

Air is one of the principal components essential for the existence of life on earth and it should be clean to sustain a healthy atmosphere for present and future generations. Unfortunately, the quality of air has declined to unacceptable levels in many locations due to the activities of humans during the past few decades. After the advent of industrialization, technology, and urbanization, environmentalists, researchers and government bodies have made many efforts to curb air pollution. To deal with air pollution, the Clean Air Act (CAA) of 1970, required the United States Environmental Protection Agency (USEPA) to set up primary and secondary standards for all the six criteria pollutants to protect public health and public property, respectively.

Ozone is one of the six criteria pollutants specified by the USEPA. Ozone has several adverse health impacts that include lung infection, chest pain, and eye and throat irritation. Ozone aggravates asthma and bronchitis. Ozone also causes damage to vegetation and natural ecosystems as described by Seinfeld.<sup>29</sup> The current National Ambient Air Quality Standard (NAAQS) for ozone is 0.075 ppm for both primary and secondary standards effective March-2008, based on an 8–hour averaging time. There were 227 non-attainment counties and 46 non-attainment areas for ozone across the US as of January 30<sup>th</sup>, 2015, which do not meet the ozone NAAQS.<sup>26</sup> States that do not meet these NAAQS standards have to develop a State Implementation Plan (SIP) for that area. In its SIP, a state government specifies the implementation measures and the proper planning methods it will adopt to reduce emissions in future years.

Considering the harmful effects of ozone, forecasting of ozone is essential to inform the public well in advance about outdoor air quality. Sensitive people can be made aware of ozone episodes beforehand which should lead to fewer hospital visits. On

ozone unhealthy days, people can be advised to limit driving and buying fuel before 10 a.m. and stay indoors. Apart from taking care of public concerns, forecasting ozone gives an idea, how well the emission reduction specifications are being implemented. Further guidelines to alleviate ozone levels can be formulated by making use of these forecasting results.

In the US, air quality modeling is carried out by the EPA to predict air quality in such region. Currently, photochemical grid models are used in the development of SIP.<sup>26</sup>, <sup>27</sup> Photochemical grid models are deterministic models that simulate meteorological parameters (such as winds that carry pollutants, surface temperature, solar radiation, relative humidity), pollutant emissions (oxides of nitrogen, and volatile organic compounds from sources that participate in ozone formation), and chemistry (complex reactions that result in the formation of ozone). <sup>27</sup> The Comprehensive Air Quality Model with extensions (CAMx) is one such model that simulates air quality over many geographic scales. Urban Airshed Model Variable Grid (UAM-V) is another model that is widely used for modeling ozone episodes.

Even though these deterministic models are appropriate, they involve a great deal of computational effort because of the complexity of ozone chemistry and the meteorology. Also, deterministic models incur more costs and more processing time than other computing techniques. Statistical models are faster than deterministic models and do not consider the physical, chemical and meteorological factors involved in ozone formation.<sup>5</sup> In the past, considerable research has been done in air quality modeling using computing techniques such as neural networks<sup>6,8,9,12, 23, 25, 70,77, 78, 83, 84, 87, 88, 95,110</sup>, fuzzy logic<sup>34,35</sup> and well-known regression methods<sup>15, 22, 89</sup>.

Among these statistical models, the usage of neural networks is quite popular. Artificial neural networks (ANNs) have wide applications in the field of Civil Engineering.

Apart from air quality modeling, they have been used in water and wastewater treatment<sup>41</sup>, geotechnical engineering<sup>38, 39</sup>, transportation planning<sup>36, 37</sup>, and rainfall runoff modeling<sup>40</sup>, to mention a few.

Previous literature studies show that neural networks are reliable and faster alternative to deterministic models that are more laborious and time–intensive in forecasting complex nonlinear atmospheric pollutants. Using neural networks, air pollutants such as NO<sub>X</sub> (oxides of nitrogen), particulate matter, and ground level ozone can be predicted. Some of the networks commonly used so far are the multilayer perceptron (MLP), and the radial basis function (RBF). Some of the previous ground–level ozone forecasting studies include MLPs trained using algorithms such as backpropagation (BP),<sup>10, 15, 24</sup> scaled conjugate gradient (SCG),<sup>11, 12, 14, 57</sup> Levenberg–Marquardt (LM).<sup>8, 21</sup> Positive results have been shown for MLPs based on principal components <sup>16</sup>, MLPs trained using synergistically coupled Levenberg–Marquardt, a deterministic local optimization algorithm and Particle Swarm Optimization(PSO), and a stochastic global optimization algorithm showed positive results.<sup>15, 21</sup> RBF networks have also been used to predict ozone and oxides of nitrogen.<sup>25, 30</sup>

Even though the choice of modeling tool is problem specific, neural networks can be applied when there is richness in data and theory according to Rumelhart.<sup>18</sup> In this study, a comprehensive ozone forecasting model was developed for multiple cities/regions (Dallas-Fort Worth, Houston, Los Angeles, San Joaquin, and San Diego) using fifty ozone monitoring sites across the US using multilayer perceptron. This work represents the first neural network developed to forecast ozone in multiple regions, as well as at multiple sites in the same region. Previous studies have developed separate neural network models to forecast ozone at each location or few locations.

Chapter 2 reviews ozone chemistry, neural network technology, different types of neural networks, and previous work on air quality modeling. Chapter 3 includes data description. In Chapter 4, the example forecasting system and its problems will be described. In Chapter 5, the possible system approaches to solve the problems mentioned in Chapter 4 will be discussed. In Chapter 6, feature selection is described using subsets and transformation methods. In Chapter 7, Results and Discussion will be described. Chapter 8 includes Final Conclusions and Future Work.

#### Chapter 2

#### Literature Review

### 2.1 Ozone chemistry

Tropospheric ozone, or ground–level ozone or "bad" ozone, is a secondary pollutant formed as a result of the reaction between the primary pollutants namely, oxides of nitrogen (NO<sub>X</sub>) and Volatile Organic Compounds (VOCs), in the presence of sunlight <sup>5-</sup>  $_{9, 11-15, 21-27, 29}$ 

$$NO_X + VOCs \xrightarrow{sunlight} O_3$$
 (2.1)

Equation 2.1 is a simplified version of the actual reaction mechanism, which involves hundreds of reactions.

The formation of ozone can be explained in more detail by the Leighton mechanism 1, 26, 27, 29 that is considered as a backbone of ozone smog formation according to Seinfeld and Pandis.29 When NO2 at wavelengths less than 424nm absorbs the energy of the photon, it can be dissociated to:

$$NO_2 \xrightarrow{hv} NO + O$$
 (2.2)

The oxygen atom is a free radical and is highly reactive. The oxygen atom O, combines with molecular oxygen ( $O_2$ ) to form ozone ( $O_3$ ) in the presence of a third generic molecule (M) that absorbs the excess energy and stabilizes ozone molecule formed.

$$O + O_2 + M \rightarrow O_3 + M \tag{2.3}$$

M is generally O<sub>2</sub> or N<sub>2</sub>. Ozone formed reoxidizes to NO<sub>2</sub> according to

$$O_3 + NO \rightarrow NO_2 + O_2 \tag{2.4}$$

The reaction of (2.2) is a rate limiting reaction for this basic  $O_3$  and  $NO_x$  cycle. These three reactions eventually maintain a photo stationary steady state represented by

$$\left[\mathbf{O}_{3}\right]_{PSSA} = \frac{\mathbf{k}_{1}}{\mathbf{k}_{3}} \times \frac{\left[\mathbf{NO}_{2}\right]}{\left[\mathbf{NO}\right]}$$
(2.5)

where  $k_1$  and  $k_3$  are reaction rate constants for reactions (2.2) and (2.4). Ozone is found to be proportional to the ratio of [NO<sub>2</sub>] to [NO] in most conditions if NO<sub>2</sub>, NO and O<sub>3</sub> are measured in ambient air. At sunrise and sunset  $k_1$  is small and the above photo stationary steady state assumption does not hold well. 90 to 95% of the NO<sub>X</sub> emissions from combustion sources will be in the form of NO and 5 to 10 % in the form NO<sub>2</sub>. NO<sub>2</sub> initiates the NO<sub>X</sub> – O<sub>3</sub> cycle and with such lower concentrations cannot produce actual O<sub>3</sub> concentrations observed in the field. So, the Leighton mechanism alone is not sufficient to explain the ozone formation in urban atmospheres. VOCs play a key role in converting NO to NO<sub>2</sub> with the help of OH<sup>o</sup> radical and explain for the actual ozone observations in the field <sup>26,27,29</sup>.

#### 2.1.1 Sources and adverse effects of ground level ozone

The presence of ozone in surface air is toxic to humans and also causes damage to vegetation by oxidizing the biological tissue (Jacob, 1999). In densely populated regions, the ozone formation is rapid due to high emissions of oxides of nitrogen and VOC's, thereby making an air pollution problem. The major sources of NOx and VOCs comprise emissions from industrial facilities and electric utilities, motor vehicle exhaust, gasoline vapors and chemical solvents (USEPA). Ozone inhalation initiates health problems, such as chest pain, congestion, throat irritation and lung infection. Ozone can also worsen bronchitis, emphysema, and asthma. Children and senior citizens are more sensitive to ozone pollution (USEPA). Ozone damages vegetation and ecosystems by reducing the agricultural crop and commercial forest yields. "In the US alone, ground level ozone is responsible for an estimated loss of \$500 million in reduced crop production each year" (USEPA).

#### 2.2 Neural Network Technology

"A neural network is a massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing experiential knowledge and making it available for use." <sup>3</sup> Artificial neural networks (ANNs) are empirical, non parametric models and are data driven.

ANNs have several properties that make them powerful computational tools: (a) Nonlinearity: This property allows ANNs to better fit complex data seen in nature, where linear fits work poorly. For example, the complex relationship between the pollutants in the atmosphere and the meteorology makes a non linear system and the use of ANNs is reasonable.

(b) Non parametric: ANNs are non parametric in nature as they do not assume or have a prior knowledge about the linear or non linear functional relationship between the variables involved.

(c) Learning and self adaptivity: ANNs learn by modifying the weights or connections between the nodes in response to changes in the surrounding environment.

(d) Generalization: The ANN's show good generalization performance when the network is properly trained. Networks with good generalization predict well when fed with unseen or new input data.

Among the many ANNs developed so far, the popular networks are the multilayer perceptron (MLP)<sup>9,12-15,38,</sup> the radial basis function network (RBF)<sup>25,30,36,38,68,75</sup>, and the piecewise linear network (PLN).<sup>20, 28, 43, 63, 65</sup> Briefly, these networks are described below. *2.2.1 Multilayer Perceptron* 

MLPs are the most commonly used ANNs in the field of forecasting. They are considered to have inherent ability to approximate a smooth functional relationship between input and output data and as such they are viewed as universal

approximators.<sup>17, 19</sup> This feature of MLPs make them suitable for problems that involve a complex, nonlinear relationship between the input and output variables and where a deterministic solution becomes a laborious task.

MLPs are trained by supervised learning where the learning rule is provided with training data that has both input and target output examples. The weights and thresholds are adjusted in such a way that the error (typically, MSE) between the actual output and the given target output is minimized.

A typical fully connected MLP structure made up of input, hidden and output layers is shown in Figure 2-1. The nodes in the input layer represent input variables, the nodes in the output layer represent output variables and the target values of these are known to the modeler. The weights connect nodes in different layers. The number of nodes in the hidden layer or layers needs to be determined. They deal with the nonlinear part of the network. The determination of the number of hidden units/layers is problem specific and is evaluated generally on trial and error basis or based on modeler's experience. Generally, the hidden units are taken in the range of 1 to 30.<sup>9</sup> The hidden units play a major role in finding the optimum solution for the weights that store information of nonlinear relationship. As such, the network can be over trained if the number of hidden units is chosen to be too large.

Using the same notation as in <sup>19</sup>, the MLP can be explained as follows: Let  $\{\mathbf{x}_{p}, \mathbf{t}_{p}\}$  represent the training data to be used in a MLP network where,  $\mathbf{x}_{p}$  is the  $p^{\text{th}}$  input vector of dimension *N*,  $\mathbf{t}_{p}$  represents the  $p^{\text{th}}$  desired or target output of dimension *M* and *p* represents the pattern number that takes values from 1 to  $N_{v}$ . In the (N+1) dimensional augmented input vector  $\mathbf{x}_{p}$ , the element  $\mathbf{x}_{p}(N+1)$  equals 1 in order to generate network biases. Now,  $\mathbf{x}_{p}$  becomes  $[\mathbf{x}_{p}(1), \mathbf{x}_{p}(2), \mathbf{x}_{p}(3), \dots, \mathbf{x}_{p}(N), \mathbf{x}_{p}(N+1)]^{T}$ .

In a fully connected network, each neuron is connected to the preceding and following layers by connections (represented by arrows in Figure 2-1) with strengths termed as weights. Let w(k, n),  $w_{oh}(i, k)$ , and  $w_{oi}(i, n)$  respectively represent input weight connecting the  $n^{\text{th}}$  input to the  $k^{\text{th}}$  hidden unit, hidden weight connecting the  $k^{\text{th}}$  hidden unit's activation  $O_p(k)$  to the  $i^{\text{th}}$  output  $y_p(i)$ , and the bypass weight connecting the  $n^{\text{th}}$  output.

Each hidden unit receives data from the input layer and the  $k^{th}$  hidden unit's net function for the  $p^{th}$  pattern can be expressed as

$$n_p(k) = \sum_{n=1}^{N+1} w(k,n) \bullet x_p(n)$$
(2.6)

The activation,  $O_p(k)$  of the  $k^{\text{th}}$  hidden unit for the  $p^{\text{th}}$  pattern, is usually a nonlinear transformation of the corresponding net function, such as the sigmoid defined as

$$O_p(k) = f(n_p(k)) = \frac{1}{1 + \exp(-n_p(k))}$$
(2.7)

The *i*<sup>th</sup> output  $y_p(i)$  of the M - dimensional output vector,  $y_p$  for the  $p^{th}$  pattern is

$$y_{p}(i) = \sum_{n=1}^{N+1} w_{oi}(i,n) \bullet x_{p}(n) + \sum_{k=1}^{N_{h}} w_{oh} \bullet O_{p}(k)$$
(2.8)

where  $N_h$  denotes the number of hidden units. The weights are obtained by using a training algorithm. Training algorithms can be characterized as one stage, where all weights are updated simultaneously or two stage where input weights are updated separately from output weights. Examples of one stage training algorithms include backpropagation<sup>24</sup>, conjugate gradient<sup>11,12,14</sup> and Levenberg Marquardt <sup>8,21</sup>.



Figure 2-1 Multilayer Perceptron (MLP)<sup>62</sup>

Some two stage training algorithms include OWO – BP  $^{61,62}$ , OIG –OWO $^{19,62}$ , and MOLF – OWO $^{19,61,62}$ .

The neural network used in this study is Multilayer Perceptron-Hidden Weight Optimization-Multiple Optimal Learning Factors (MLP–HWOMOLF). More information about the MLP - HWOMOLF algorithm can be found in Rawat et al. (2013).<sup>111</sup>

The cost or error function, typically used in MLP training is the mean squared error (MSE) expressed as:

$$E = \frac{1}{N_V} \sum_{p=1}^{N_V} \sum_{i=1}^{M} [t_p(i) - y_p(i)]^2$$
(2.9)

MLP models suffer from the problem of potential convergence to local minimum along with overtraining. MLP models can be over parameterized and develop

memorization characteristics. These over trained models have poor generalization when tested on new unseen data.<sup>13</sup>

Random initialization of hidden weights or input weights is done to avoid the domination of inputs that have large standard deviations. A good practice is to train a lot of MLP models and choose the model that has the best generalization property. In MLP training, the global minimum is generally not obtainable. MLP's with two hidden layers converge faster and escape local minima during training process. <sup>12, 14, 31</sup>

Early stopping is one technique <sup>8,14, 18</sup> used to solve the overtraining problem: Data is divided into three parts, training, validation and testing sets. During the training of the MLP model, validation data is used to check the generalization property. Initially, the generalization is good but after a point the performance of generalization decreases. Training is stopped at this point. Then, performance of the network is tested with the testing data.

Bayesian regularization techniques can also be used to solve overtraining problem where the data is split into two sets, training and testing sets. Here, sensitivity analysis is used to rank the input variables and then the network is trained again considering only the important units. Pruning is used to eliminate insignificant hidden units and input variables. One advantage over early stopping is that a larger training data set is available due to merging of training and validation sets. <sup>8, 12, 14</sup>

The storage capacity of the network is a function of the numbers of weights in the network, the number of outputs and the effectiveness of the training. The lower bound for the pattern storage of the MLP <sup>32, 33, 42, 44</sup> can be expressed as

$$C_{L}^{MLP} = N + N_{h} + 1$$
 (2.10)

The upper bound for the storage capacity of the MLP<sup>32, 42, 44</sup> when training is effective can be written as

$$C_{U1}^{MLP} = \frac{P_{ab}}{M} \tag{2.11}$$

where  $P_{ab}$  denotes the number of absolute free parameters (i.e., the actual weights and thresholds in the network). An alternative and more useful expression for upper bound <sup>32,42,44</sup> would be

$$C_{U2}^{MLP} = \frac{P_{ef}}{M}$$
(2.12)

where  $P_{ef}$  denotes the effective non-redundant parameters (i.e., the most significant weights) that affect the network performance.

The mapping efficiency which quantifies the efficiency with which the network utilizes weights can be expressed as <sup>32,42,44</sup>

$$E_f = \frac{P_{ef}}{P_{ab}}$$
(2.13)

#### 2.2.2 Radial Basis Function Network

An RBF network is a feed forward neural network with a single hidden layer that has the ability to approximate a smooth functional relationship. RBFs are considered a hybrid of a sigma-pi network, an MLP, and Kohonen's Self Organizing Maps (SOM).<sup>3,36,38</sup> The hidden layer nodes have cluster center vectors used as hidden unit input weights. These RBF hidden units have nonlinear activations such as the commonly used Gaussian kernel. A typical radial basis function network is shown in Figure 2-2. Let  $m_k$ represent the mean vector of the k<sup>th</sup> hidden unit where k has values from 1 to N<sub>h</sub>. The net function of the k<sup>th</sup> hidden unit is defined as

$$net_k = \left\|\mathbf{x} - \mathbf{m}_k\right\|^2 \tag{2.14}$$

where the norm is generally Euclidean. The Gaussian hidden unit activation function is

$$O(net_k) = e^{-net_k}/\beta^2$$
(2.15)

where  $\beta$  is a spread parameter. Each output is a linear combination of hidden unit RBF activations, so output weight optimization (OWO) could be used to solve output weights. The *i*<sup>th</sup> network output can be written as

$$y_i(x) = b_i + \sum_{k=1}^{N_h} w_{ik} O(net_k)$$
 (2.16)

where  $w_{ik}$  and  $b_i$  are the weight from  $k^{th}$  hidden unit to the  $i^{th}$  output unit and threshold for the  $i^{th}$  output unit respectively.



Figure 2-2 Radial Basis Function Network<sup>62</sup>

#### 2.2.3 Piecewise Linear Network

In a piecewise linear network, the N dimensional input space is divided into K clusters and a linear mapping is approximated for patterns within a cluster as shown in Figure 2-3. In this network, the input vector is grouped in the cluster closest to it and the linear network corresponding to that cluster is used to compute the output.<sup>28, 43, 63</sup> A piecewise linear network <sup>28, 63</sup> is characterized by

- (a) K cluster center vectors  $\mathbf{m}_{\mathbf{k}}$  each of dimension N, where  $1 \le k \le K$ .
- (b) K weight matrices W<sub>k</sub>, 1≤ k≤ K, store the weights of each cluster. Each weight matrix has dimensions M x (N+1).
- (c) A weighted Euclidean distance measure to determine the cluster membership as

$$k = \arg\min_{m} \{ d(\mathbf{x}, \mathbf{m}_{m}) \}$$
 where

$$d(\mathbf{x}, \mathbf{m}_{\mathbf{m}}) = \sum_{n=1}^{N} c(n) [x_{p}(n) - m_{m}(n)]^{2}$$
(2.17)

Here the weights c(n) are calculated as inverse of the variance  $(\frac{1}{\sigma^2(n)})$ .

(d) If the k<sup>th</sup> cluster is chosen in (c), the network output vector is calculated as

$$\mathbf{y}_{\mathbf{p}} = \mathbf{W}_{\mathbf{k}} \cdot \mathbf{x}_{\mathbf{p}} \tag{2.18}$$



Figure 2-3 Piecewise Linear Network<sup>62</sup>

The number of absolute free parameters for the PLN can be written as  $^{\rm 62}$ 

$$P_{ab} = K \cdot N + (N+1) \cdot M \cdot K \tag{2.19}$$

and the pattern storage can be written as  $^{\rm 62}$ 

$$C_{\text{PLN}} = P_{ab}/M = (K \cdot N + (N+1) \cdot M \cdot K)/M$$
 (2.20)

#### 2.3 Previous work on air quality modeling

The literature contains a large number of research papers on ozone forecasting models. Most of the studies used statistical and artificial intelligence techniques such as multilinear regression (MLR), artificial neural networks (ANN), classification and regression trees (CART), and support vector machines (SVM). In this section, ozone (O<sub>3</sub>) forecasting models developed by other researchers are briefly described, starting with the most recent and progressing to the oldest:

Sekar et al.  $(2015)^{103}$  developed hourly O<sub>3</sub> and oxides of nitrogen (NO<sub>X</sub>) prediction models based on Decision Tree algorithms: reduced error pruning tree (REPTree), and M5 P tree , and a multilayer perceptron using Levenberg-Marquardt (MLP-LM) in Delhi, India. A heavy traffic intersection in Delhi for pollutant data, and Safdarjung station for meteorological data corresponding to the years 2008-2010 were chosen for this study. O<sub>3</sub>, NO<sub>X</sub>, traffic data, atmospheric pressure (P), temperature (OT), wind speed (WS) wind direction (WD), cloud cover (CC), sunshine, rainfall, stability class, mixing height, temporal variables: day of the week and time of the day were used as input variables. MP 5 tree model performed better than MLP-LM and REPTree models.

Biancofiore et al.  $(2014)^{101}$  applied ELMAN recurrent neural network model and MLR to predict hourly ozone up to 48 hours at Pescara, Central Italy. Hourly O<sub>3</sub>, nitrogen dioxide (NO<sub>2</sub>), OT, relative humidity (RH), WS, WD and ultraviolet radiation data from the year 2005 were used as input variables. ELMAN network model showed better performance than the MLR model.

Luna et al.  $(2014)^{67}$  showed the potentiality of ANNs, and SVMs as chemo metric tools by applying these statistical techniques in the prediction of O<sub>3</sub> at Rio de Janeiro city, Brazil. A mobile monitoring station was used to collect hourly data at two locations, namely, Pontifical Catholic University area during July-October 2011, and Rio de Janeiro

State University area during November 2012-March2013. NO<sub>2</sub>, NO, carbon monoxide (CO), O<sub>3</sub>, OT, scalar wind speed, global solar radiation (SR), moisture content (MC) in the air were used as input variables. The use of principal component analysis (PCA) in dimension reduction was explored. MLP-LM and SVM were trained using the original data sets and the results showed slightly better performance of SVM's compared to that of MLP-LM.

Zahedi et al.  $(2014)^{69}$  developed an adaptive neuro-fuzzy inference system to predict O<sub>3</sub> around the Shuaiba industrial area in Kuwait. A neuro fuzzy model was developed to predict O<sub>3</sub> using (Sugeno-Takagi-Gang fuzzy inference and hybrid) algorithm around the vicinity of Shuaiba area based on two months (March and April) of data measured every 5 minutes using a mobile station. O<sub>3</sub>, WS, WD, RH, OT, SR, methane (CH<sub>4</sub>), CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, non-CH<sub>4</sub> hydrocarbons, dust around the industrial area. The results showed that O<sub>3</sub> prediction performance of fuzzy neural network was better than that of a multilayer perceptron trained using back propagation (MLP-BP).

Tamas et al. (2014)<sup>104</sup> developed MLP-LM and persistence models to predict 24 hour ahead O<sub>3</sub> using (2008-2014) data from urban and suburban stations (Canetto, Sposata) in Ajaccio, and (Giraud, Montesoro) in Bastia from the French island of Corsica, France. O<sub>3</sub>, NO<sub>2</sub>, wind force, SR, OT, precipitation, and temporal variables, hour of the day and weekday number were used as input variables. MLP-LM models performed better than persistence models.

Alkasassbeh  $(2013)^{68}$  compared the performance of MLP-BP, radial basis function (RBF) network, and SVM on the forecasting of daily mean surface O<sub>3</sub> at Chenbagaramanputhur, Kanyakumari district, India. Based on three months (May 2009 -July 2009) of data (7 readings per day each with 3-hour interval) the mean daily ozone concentration was forecast using RBF, MLP-BP, and SVM with input variables NO<sub>2</sub>, mean temperature and RH. It was shown that RBF networks have better prediction capability than SVMs and MLP-BP; SVM's have better prediction capability than MLP-BP.

Arhami et al.  $(2013)^{71}$  developed hourly prediction models separately for six pollutants for each day of the week using ANN coupled with Monte Carlo simulation. An MLP-BP was used to predict CO, NO<sub>X</sub>, NO<sub>2</sub>, NO, O<sub>3</sub>, and particulate matter of size 10 µm (PM<sub>10</sub>) based on 2007 hourly data collected from Fatemi station, Iran. Monte Carlo simulation was used to enhance the ANN prediction by reducing the uncertainty and variability involved in the input data by computing and analyzing the prediction interval that serves as an indicator for high degree of uncertainty. The input variables used were air temperature, wet bulb temperature, RH, WS, WD, P, CC, visibility code, and vapor pressure.

Pires et al. (2012)<sup>102</sup> predicted one day ahead hourly average O<sub>3</sub> using MLP-BP and Genetic Algorithms (GA) at Oporto, North Portugal. Hourly CO, NO, NO<sub>2</sub>, O<sub>3</sub>, OT, RH, SR, WS data were collected during May-August 2004 for this study. The use of GA improved the performance of MLP-BP.

Kandya et al.  $(2012)^{86}$  studied the suitability of artificial neural networks in forecasting 8-hourly averaged O<sub>3</sub> at a busy traffic junction in Madras, India. Data collected for a period of 19 months (September 2008-March 2010) from a monitoring site located at the Indian Institute of Technology, Madras (IIT-M), Madras was used in developing a MLP to forecast 8 hourly averaged O<sub>3</sub> concentration. Also, comparison studies were made with respect to other O<sub>3</sub> forecasting models developed by Comrie (1997) at Phoenix, Tucson, Boston, Atlanta, and Charlotte. Comparison results showed that model developed by Kandya performed reasonably well. 8-hr average concentration

of O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, CO, respirable suspended particulate matter, hydrocarbons, WS, WD, solar intensity, and pressure were used as inputs.

Paoli et al.  $(2011)^{72}$  used neural networks to predict hourly O<sub>3</sub> concentration in Corsica Island, France. MLP - LM was developed to predict 1-hour forecasts of O<sub>3</sub> concentration based on hourly data collected during the period of October 2007 to May 2010 from a suburban station at Sposata, located near Ajaccio on the island of Corsica, France. O<sub>3</sub>, NO<sub>2</sub>, WS, WD, SR, RH, and hour of the day were used as input variables.

Taormina et al.  $(2011)^{73}$  predicted daily maximum O<sub>3</sub> concentrations using adaptive neural networks in London. Pollutant data from Harlington station, London Hillington-Harlington (Heathrow airport zone) and meteorological daily data from a monitoring station located in Heathrow airport corresponding to the years 2004 to 2009 was used in developing a MLP-LM model. The optimal network architecture with selected features and proper time lags was saved. The testing results were improved by adaptively changing the weights from the optimal network saved using the back propagation. The input variables used were CO, NO, NO<sub>2</sub>, NO<sub>X</sub>, O<sub>3</sub>, and SR.

Ibarra-Berastegi et al.  $(2009)^{75}$  used neural networks for short-term prediction of SO<sub>2</sub>, CO, NO<sub>2</sub>, NO, O<sub>3</sub> pollutants in Bilbao, Spain. An MLP-BP, an MLP trained using two hidden layers, RBF network, and a generalized regression neural network (GRNN) have been shown to have better prognostic capabilities from 1 hour up to 8 hours based on the studies carried out on the two year hourly data (2000, 2001) obtained from six locations in the area of Bilbao. Traffic data, WS, WD, pollutants- SO<sub>2</sub>, CO, NO<sub>2</sub>, NO, and O<sub>3</sub> were used as input variables.

Salcedo-Sanz et al.  $(2009)^{30}$  applied RBFs in the spatial regression analysis of NO<sub>x</sub> and O<sub>3</sub> concentrations in Madrid, Spain. Hourly measurements of NO<sub>x</sub> and O<sub>3</sub> were collected from 27 monitoring stations in Madrid corresponding to 6 years, from 2002 to

2007. In the spatial regression analysis, only quarterly and yearly averages of both the pollutants were considered while training RBFs' having Gaussian kernels and evolutionary based training algorithms. The evolutionary based RBFs' showed better performance and the results obtained from these networks were used as initial points in developing Land-Use Regression models (or Regression Mapping models) with the aid of Geographical Information Systems (GIS). This spatial regression analysis, in general, aids in restructuring the existing air quality monitoring network and statically analyzing the pollutants especially in the cities.

Salazar-Ruiz et al. (2008)<sup>22</sup> developed and compared 12 ozone prediction models based on input data O<sub>3</sub>, OT, NO<sub>2</sub>, NO, CO, resultant wind speed, and RH collected from Mexicali (Mexico)-Calexico (California, US) border area: using the data collected during the years 1999-2004 (excluding 2001), one day ahead maximum O<sub>3</sub> was predicted based on two different types of data sets i.e., one based on daily means and one based on the mean of the first six hours of the day. A persistence model, multilinear regression model, semi parametric ridge regression model, a MLP-BP model, an ELMAN recurrent neural network model and an SVM model were developed. Prediction performance of the artificial intelligence (AI) based models was better than that of the linear models, and among the AI based models, MLP-BP showed better performance than the ELMAN network and SVM; the ELMAN network performed better than the SVM.

Coman et al. (2008)<sup>58</sup> did comparison studies on a "Static MLP model based on a single MLP" and a "Dynamic model based on a cascade of 24 MLPs" that were developed with data collected during August 2000-July 2001 to predict hourly O<sub>3</sub> for a 24-hour horizon, at Prunay, and Aubervilliers stations, in Paris, France. Limited memory Broyden, Fletcher, Goldfarb, and Sahanno (BFGS) quasi-Newton algorithm and scaled conjugate gradient (SCG) algorithms were used in training the static and dynamic

models. Prediction performance based on both the algorithms showed similar results. Also, static models performed slightly better than dynamic and persistence models. Hourly  $O_3$ ,  $NO_2$ , RH, T, SR, sunshine duration, WS, sin (2 $\pi$ h/24), and cos (2 $\pi$ h/24), where h is hour of the day were used as inputs in this study.

Liu (2007)<sup>79</sup> developed a regression with time series (RTSE) model after incorporating principal component variable resulting from PCA to enhance peak daily one hour O<sub>3</sub> concentrations at Ta-Liao in Taiwan. Four different Box-Jenkins time series models were developed to simulate peak daily 1-hr O<sub>3</sub> concentrations in Ta-Liao based on data from the years 1997-2001. RTSE model with PC variable proved to be optimal model compared to ARIMA, RTSE model without PCA and RTSE model with additional PC variables. The input variables used were maximum temperature, dew temperature, WS, sunshine, O<sub>3</sub>, and NO<sub>x</sub>.

Dutot et al. (2007)<sup>8</sup> used neural network combined with neural classifier in forecasting daily maximum hourly O<sub>3</sub> peaks and European threshold O<sub>3</sub> exceedance level with 24 hour lead time in the city of Orleans, France. One MLP-LM based neural network, and two multilayer perceptrons trained using MLP-LM models with pattern balancing were developed and compared with a linear model, deterministic model and a persistence model based on data collected between April and September during the years (1999-2003) from three monitoring stations namely, Prefecture, La Source and Saint Jean de Braye. This neural network based model now called NEUROZONE is used in real time. Cloudiness, rainfall, WS, WD, temperature gradient, and O<sub>3</sub> were used as input data.

Sousa et al.  $(2007)^{16}$  developed multiple linear regression models and neural network models based on principal components for the prediction of next day hourly O<sub>3</sub> concentration in Oporto, Northern Portugal. Hourly data from July 2003 was collected

from a monitoring site in Oporto, Northern Portugal and four models (MLR, MLP-BP model based on original data, principal component regression and MLP-BP based on principal components) were developed. MLP-BP based on principal components, MLP-BP on original data showed better accuracy prediction compared to the two linear regression models. NO, NO<sub>2</sub>, O<sub>3</sub>, T, RH, and wind velocity were used as input variables.

Lu et al.  $(2006)^{108}$  developed two stage neural network models to predict daily maximum O<sub>3</sub> concentrations separately for four air quality stations in Taiwan using five year data corresponding to 1998-2002. The two stage neural network model first utilized an unsupervised self-organizing map neural network (SOM) followed by K- means clustering (two level clustering approach) to delineate the meteorological variables into distinct meteorological regimes and then a supervised multilayer perceptron (MLP) was used to predict O<sub>3</sub> within each meteorological regime. The superior performance of the two stage models developed at four stations separately was shown in comparison with models developed based on multilayer perceptron, multiple linear regression and two level clustering followed by multiple linear regression. Hourly data of O<sub>3</sub>, CO, NO<sub>x</sub>, SO<sub>2</sub>, PM<sub>10</sub>, WS, WD, OT, average pressure, RH, cloud cover, precipitation, and global radiation were used as input variables.

Wang et al.  $(2006)^{21}$  forecasted ground level O<sub>3</sub> concentration using a hybrid training algorithm. An MLP model with a single hidden layer was trained using two optimization algorithms coupled synergistically, namely: a Particle Swarm algorithm (PSO) and LM. They used 4 years of data (2000-2003) from two different stations (Tseun Wan, and Tung Chung) in Hong Kong and predicted one day ahead daily maximum 1-hr mean O<sub>3</sub> concentration. Average daily values of NO<sub>2</sub>, NO<sub>x</sub>, NO, CO, OT, SR, WS and temporal variable (day of the year) were used as input variables.

Pastor-Barcenas et al. (2005)<sup>10</sup> predicted hourly O<sub>3</sub> by employing sensitivity analysis and pruning techniques to artificial neural networks. An MLP-BP was trained using hourly data from April 2002, collected from a rural monitoring station located in "Centre de Capacitacio Agraria de Carcaixent" in Valencia, Spain to predict 24 hour ozone concentration. The input variables used were hourly NO, NO<sub>2</sub>, O<sub>3</sub>, WS, WD, OT, P, RH and solar irradiance.

Abdul-Wahab et al. (2005)<sup>96</sup> applied PCA and multiple regression in modelling hourly ground level ozone based on the summer data collected (every 5 minutes) during June 1997 using Kuwait University mobile laboratory at Khaldiya, Kuwait. Separate regression analysis was carried out for ozone prediction for day light and night time periods respectively. O<sub>3</sub>, NO<sub>2</sub>, NO, CO, CO<sub>2</sub>, SO<sub>2</sub>, non CH<sub>4</sub> hydrocarbons, OT, SR, RH, WS, and WD were used as input variables.

Wirtz et al.  $(2005)^{81}$  developed a ground level O<sub>3</sub> forecasting neural network model. An MLP-BP was used on data sets from two monitoring stations, Edmonton East monitoring station, and Stony Plain station in Edmonton, Alberta, Canada. Wirtz et al. were successfully able to predict 2 hr O<sub>3</sub> in advance using only the summer data from May to September from the years 1999 to 2003. The input variables used were CO, NO, NO<sub>2</sub>, SO<sub>2</sub>, total hydrocarbons, mixing height, opacity, RH, WS, WD, and temporal variables (hour of the day, month of the year, day of the week).

Heo et al. (2004) <sup>97</sup> developed methodologies for classifying high-level O<sub>3</sub> episodes within the city of Seoul, Korea by applying cluster and disjoint PCA. Consequently, classified O<sub>3</sub> episodes were used as a database for developing daily maximum O<sub>3</sub> forecasting model using fuzzy expert system, and MLP-BP was used to predict daily maximum hourly O<sub>3</sub>. Hourly data with high level O<sub>3</sub> episodes corresponding to four monitoring stations in Seoul during the period of 1989-1999 was used in this study. CO, NO<sub>2</sub>, SO<sub>2</sub>, O<sub>3</sub>, surface wind speed, surface wind direction, upper wind speed, upper wind direction, surface temperature, upper temperature, surface solar radiation, and surface relative humidity were used as inputs.

Zolgadri et al.  $(2004)^{95}$  developed an integrated operational O<sub>3</sub> warning system at Bordeaux, France based on data collected during 1998-2001 at Bordeaux Grand Parc station. A non linear adaptive state space estimator (NASSE), gain scheduling (defined for modeling threshold exceedance for extreme O<sub>3</sub> concentration) and an (MLP-LM) were used in making the daily maximum O<sub>3</sub> warning monitoring system. Hourly radiation, solar intensity, barometric pressure, WS, WD, RH OT, trend of seasonal variation of O<sub>3</sub>, and [NO<sub>2</sub>]/[NO] were used as inputs.

Kumar et al.  $(2004)^{89}$  applied autoregressive integrated moving average (ARIMA) modeling approach to forecast one day ahead daily maximum O<sub>3</sub> in Brunei Darussalam based on O<sub>3</sub> data corresponding to July 1998-March 1999.

Chaloulakou et al.  $(2003)^{109}$  developed a daily maximum hourly O<sub>3</sub> prediction model using (April - October) 1992-1999 data collected at N. Smirni, Liossia, Maroussi, and Likovrissi stations in Athens, Greece. An MLP-LM model was developed and compared with MLR using WS, SR, RH, surface OT, OT at 850 hPa (850 millibars), WD index and O<sub>3</sub> as input variables. Prediction based on MLP-LM showed better performance than that of MLR.

Rohli et al.  $(2003)^{96}$  used PCA and multiple regression analysis to forecast daily maximum 8-hour O<sub>3</sub> concentrations in Baton Rouge, Louisiana. Rohli et al. developed regression models for each of the eleven sites chosen based on the data corresponding to the years 1995-2000 and also proposed a decision making tree for short range forecasting of O<sub>3</sub> exceedance at these sites.

Wang et al.  $(2003)^{25}$  developed an adaptive RBF network to predict daily maximum ozone concentration in Hong Kong. An adaptive RBF that can dynamically determine the number of hidden nodes was used along with the statistical characteristics of ozone to forecast daily maximum O<sub>3</sub> based on (1999-2000) data measured from three monitoring stations, namely, Tsuen Wan, Kwai Chung, and Kwun Tong in Hong Kong. O<sub>3</sub>, NO<sub>2</sub>, NO, NO<sub>x</sub>, SO<sub>2</sub>, respirable suspended particles, WS, WD, SR, indoor temperature and OT were used as input variables.

Vautard et al. (2001)<sup>99</sup> developed a simplified hybrid statistical-deterministic chemistry transport model to predict O<sub>3</sub> in real time in Paris during summer, 1999. Weather forecasting data collected from European Center for Medium Range Weather Forecasts (ECMWF) was processed to be used in the chemistry transport model (CHIMERE) for ozone prediction. This model was meant to be suitable to continental cities like Paris only.

Kaprara et al. (2001)<sup>100</sup> predicted daily maximum O<sub>3</sub> concentration levels in Athens using CART technique. Daily maximum and minimum concentrations of pollutant and meteorological data collected during the period of 1990-1999 in Athens area consisting of nine monitoring stations was used in developing a CART based O<sub>3</sub> forecasting model. Results obtained showed better prediction performance of the CART model compared to that of MLR.

Gardner and Dorling (2001, 2000)<sup>13, 14, 83</sup> did extensive research in ground level ozone prediction using neural networks. In their work published in 2001, they described a technique that employed MLP-CG that maximizes the removal of variability in daily maximum O<sub>3</sub> with fluctuations in meteorological conditions and was shown to remove more of the variability than does Kolmogorov-Zurbenko filter and conventional-based technique. In their work published in 2000, they applied MLP-CG, regression trees, and
linear models to predict hourly  $O_3$  using the data from the five  $O_3$  monitoring sites, Bristol, Edinburgh, Eskdalemuir, Leeds, and Southampton in UK based on data collected during 1993-1997. MLP-CG preformed better than regression trees and linear models but the regression trees were more readily interpretable.

Cobourn et al.  $(2000)^{85}$  applied neural networks to predict ground level ozone. An MLP-BP developed based on a data set collected from seven monitoring stations within the Louisville Air Quality Control Region. In their study, Cobourn et al. used ozone season (May to September) data starting from 1993 to 1999 to predict daily maximum 1-hr ozone concentration. Daily 8-hour average of O<sub>3</sub>, clear-sky atmospheric transmittance daily minimum temperature, wind speed, cloud cover, and humidity were used as input data.

Prybutok et al. (2000)<sup>23</sup> compared neural network model with ARIMA and multivariate regression model developed to forecast daily maximum O<sub>3</sub> concentration. A MLP-BP, stepwise regression model, and Box Jenkins ARIMA ozone forecasting model were developed using (June-October) 1994 data from a monitoring station in Houston. It was shown that MLP-BP has superior performance compared to ARIMA and regression models. Hourly values of NO, NO<sub>2</sub>, O<sub>3</sub>, OT, WS, WD, and CO<sub>2</sub> were used as input variables.

Hadjiiski et al.  $(2000)^6$  used sensitivity analysis and neural networks to forecast hourly O<sub>3</sub> concentration in Houston. Using sensitivity analysis, relevant input variables were found and an MLP-BP model was developed based on these selected features to forecast hourly O<sub>3</sub> up to 5 hours with data collected from two monitoring stations namely, Galleria and Clinton, in Houston during the months of June-November, 1993. Fifty three hydrocarbons (C<sub>2</sub>-C<sub>10</sub> compounds), O<sub>3</sub>, NO<sub>X</sub>, NO, NO<sub>2</sub>, ultraviolet radiation, and OT were used as input variables.

26

Sohn et al.  $(2000)^{11}$  developed short term and long term O<sub>3</sub> forecasting models using neural networks and spatio-temporal analysis. MLP- CG neural network model was developed in Seoul, South Korea to forecast short term (1- 6 hr) prediction and long term (16-21 hr) prediction using data from the period August-September, 1997. Forecasting results improved when the neural network model was used along with spatioanalysis (distribution of O<sub>3</sub> concentrations) that includes the effects of advection and dispersion. Hourly data of O<sub>3</sub>, NO<sub>2</sub>, CO, SO<sub>2</sub>, OT, WS, sunlight, and humidity were used as input data.

Benvenuto et al. (2000)<sup>82</sup> used neural network to develop short term and medium term forecasting models for O<sub>3</sub>, CO, NO<sub>2</sub> in Venice, Italy. I hour, 3 hours and daily maximum concentrations of O<sub>3</sub>, CO, NO<sub>2</sub> were predicted using MLP-BP with 1995 data collected from Ente Zona Industriale di Porto Margera and Venice municipality monitoring network areas. Hourly measurements of global radiation, humidity, precipitation, pressure, vehicle flow rate, OT, WS, WD, SO<sub>2</sub>, O<sub>3</sub>, NO, NO<sub>2</sub>, non CH<sub>4</sub> hydrocarbons, and PM<sub>10</sub> were used as input variables.

Spellman  $(1999)^{15}$  developed different neural network models for daily maximum  $O_3$  forecasting for five sites in UK. Five sites with different topographical and demographical features (Bloomsbury, Leeds and Birmingham being urban sites; Harwell (Oxfordshire) being rural and Strath Vaich being a remote site) were chosen and (May-September) data corresponding to the years 1993-1996 was used in developing MLP-BP with two hidden layers, and regression models separately for each site. The  $O_3$  prediction accuracy of the ANN models was found to be slightly better than the regression models. Hourly  $O_3$ ,  $SO_2$ ,  $PM_{10}$ , WS, WD, and OT were used as input variables.

Comrie  $(1997)^7$  compared site specific MLP-BP and MLR models developed for daily maximum O<sub>3</sub> forecasting. Eight monitoring sites from different cities (Atlanta,

Boston, Charlotte, Chicago, Phoenix, Pittsburgh, Seattle, and Tucson) in USA were chosen for this study and hourly data was collected during the months of May-September over the five year period 1991-1995. In all the eight study sites, MLP-BP with lagged data performed slightly better than MLP-BP without lagged data, MLR with lagged data, and MLR without lagged data. Daily maximum temperature, average daily wind speed, daily total sunshine, and  $O_3$  were used as input variables.

Yi et al. (1996)<sup>24</sup> developed daily maximum O<sub>3</sub> forecasting model using MLP-BP at a monitoring site in Dallas-Fort Worth (DFW) region, Texas. Based on data corresponding to the months of June to October for the years 1993-94, daily maximum O<sub>3</sub> forecasting models were developed using MLP-BP, multilinear regression model, and Box Jenkins model. MLP-BP showed better prediction results among the three models. Hourly values of NO, NO<sub>2</sub>, O<sub>3</sub>, CO<sub>2</sub>, OT, WS, and WD were used as input variables.

Bloomfield et al.  $(1996)^{112}$  developed non linear regression model for daily maximum O<sub>3</sub> concentrations in Chicago based on median values of (1981-1991) data collected from 45 monitoring sites.

Ryan  $(1995)^{106}$  undertook pilot plant studies in Baltimore and developed stepwise regression, subjective or expert analysis and CART O<sub>3</sub> forecasting models. Daily maximum hourly O<sub>3</sub> (up to 72 hours) was predicted using the (1983-1993) data that has sky cover, WS, temperature, pressure, O<sub>3</sub>, and dew point temperature as input variables. Results showed that Subjective or Expert Analysis performed better than stepwise MLR and CART in strong O<sub>3</sub> episodes. Stepwise MLR was better than CART.

Clark et al.  $(1982)^{90}$  developed next day maximum 1-hour O<sub>3</sub> stepwise MLR models for each of the 27 monitoring stations in Northeastern states in the U.S. based on the (June-September) data collected during 1975-1977. 35 prognostic variables including

hourly OT, absolute humidity, WS,  $O_3$ ,  $NO_X$ , precipitation, sea level pressure, and altitude were used as input variables.

Karl  $(1979)^{107}$  predicted 1-hour maximum O<sub>3</sub> concentrations for 1 day ahead and 2-day ahead using data from 25 sampling sites divided into three groups at St.Louis, Missouri. Boundary layer, WS, OT, precipitation, RH, P, O<sub>3</sub>, NO<sub>X</sub>, dew point, HC's, vertical velocity, sine, and cosine of Julian date were used as input variables.

Wolff et al. (1978)<sup>105</sup> used stepwise regression model to predict maximum afternoon O<sub>3</sub> concentrations based on (April-September) 1976 data from across the northeast quadrant of the U.S. northern New Jersey. Approximately 75 monitoring sites have been considered for this study. A stepwise regression model was calibrated based on New Jersey data and tested on sites at Northeastern Ohio, Marquette, MI, Norfolk, VA, Cook County, IL and Connecticut. OT, absolute humidity, WS, O<sub>3</sub>, NO<sub>X</sub> and hydrocarbons were used as input parameters.

29

### Data Description

The data collected for the development of a comprehensive ozone forecasting model for the multiple cities across the U.S. is described in detail as shown in the tables below. For this study, five different regions/air basins in and around the cities that are non attainment for ground level ozone according to United States Environmental Protection Agency (USEPA) have been chosen. They are Dallas Fort Worth region, Houston-Galveston-Brazoria from the state of Texas; Los Angeles (South Coast air basin), San Diego air basin and San Joaquin Valley air basin from the state of California. According to USEPA (2008), Dallas-Fort Worth, Houston-Galveston-Brazoria, Los Angeles, San Diego and San Joaquin have been classified as moderate, marginal, extreme, moderate and extreme 8-hour ozone non attainment areas.

The variables responsible for the formation of ozone include nitrogen dioxide, nitric oxide, volatile organic compounds, temperature, wind, solar radiation, relative humidity, apart from the demographical and topographical characteristics of the area. The choice of input variables considered in this study was based on the availability of data in/near the ozone monitoring sites.

The five year hourly data collected during the period 2010-2014 in all the fifty monitoring stations, in the states of Texas and California includes pollutants ozone (ppb), nitric oxide (ppb), nitrogen dioxide (ppb), and meteorological variables namely, resultant wind speed (miles/hour), resultant wind direction (degrees), temperature (°F), and solar radiation (langleys per minute in Texas Commision on Environmental Quality database, or Watts/m<sup>2</sup> in California Air Resources Board database).

30

Ozone concentrations are proportional to the ratio [NO<sub>2</sub>]/[NO], according to the Leighton mechanism. Thus, the ratio of [NO<sub>2</sub>]/[NO] was considered as one of the variables in the initial trials but did not improve the results.

The Appendix A describes the data collected from all the five cities in the US. Thirteen ozone monitoring sites from DFW region, twelve ozone monitoring sites from Houston-Galveston-Brazoria region, ten ozone monitoring sites from Los Angeles county, eight ozone monitoring sites from San Joaquin Valley air basin, and seven ozone monitoring sites from San Diego air basin have been considered in this study.

## Example forecasting system and its problems

The objective of this study is to develop a forecasting system for multiple cities/regions for the prediction of daily maximum ground level ozone. The first step in obtaining a desired forecasting system involves collection of data and preprocessing before this data is fed to the neural network for training. Firstly, the example system that is impractical is described below:

4.1 Example system inputs and outputs

The input variables considered in this study are as follows:

- Temporal variables: Temporal variables include the day of the year (DOY) that has values from 1 to 365 (366 in case of leap year); hour of the day (HOD) that has values from 1 to 24; and day of the week (DOW) that has values say, 1 to 7.
- Spatial variables: Spatial variables include latitude and longitude of the monitoring stations of various cities/regions. The inclusion of these variables makes a neural network distinguish the monitoring stations and allows the network to identify the geographic location the pattern actually belongs to.
- Meteorological variables: Hourly values of meteorological variables, namely, solar radiation (SR), ambient temperature (OT), wind speed (WS) and wind direction (WD).
- Pollutant variables: Hourly concentrations of nitrogen dioxide (ND), nitric oxide (NO) and ozone (Oz).

The hourly data collected is used in generating daily mean, minimum and maximum values of the meteorological and pollutant variables. The output variables include future (one day ahead, two day ahead, and up to three day ahead) daily maximum concentrations of ozone. So the N inputs will include time variables, spatial variables, past mean, minimum and maximum daily values of temperature, solar radiation, wind speed, wind direction, nitrogen dioxide, nitric oxide, and ozone. M outputs will include future daily maximum values of ozone (up to three days).

The input vector,  $\mathbf{x}_{city}$  for each city/region in the example system will have different number of inputs (i.e., N varies for each city) due to different number of monitoring stations as shown below:

$$\mathbf{x}_{\text{city}}^{\text{T}} = [\mathbf{x}_{\text{time}}^{\text{T}} \vdots \mathbf{x}_{\text{WS}(1)}^{\text{T}} \vdots \mathbf{x}_{\text{WS}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{WS}(NS)}^{\text{T}} \vdots \mathbf{x}_{\text{WD}(1)}^{\text{T}} \vdots \mathbf{x}_{\text{WD}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{WD}(NS)}^{\text{T}} \vdots \mathbf{x}_{\text{OT}(1)}^{\text{T}} \vdots \mathbf{x}_{\text{OT}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{OT}(NS)}^{\text{T}} \vdots \\ \mathbf{x}_{\text{SR}(1)}^{\text{T}} \vdots \mathbf{x}_{\text{SR}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{SR}(NS)}^{\text{T}} \vdots \mathbf{x}_{\text{ND}(1)}^{\text{T}} \vdots \mathbf{x}_{\text{ND}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{ND}(NS)}^{\text{T}} \vdots \mathbf{x}_{\text{NO}(1)}^{\text{T}} \vdots \mathbf{x}_{\text{NO}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{NO}(NS)}^{\text{T}} \vdots \\ \mathbf{x}_{\text{POZ}1}^{\text{T}} \vdots \mathbf{x}_{\text{POZ}(2)}^{\text{T}} \vdots \dots \mathbf{x}_{\text{POZ}(NS)}^{\text{T}} ]$$

$$(4.1)$$

$$\mathbf{x}_{\text{time}}^{\text{T}} = [\text{DOY DOW}] \tag{4.2}$$

The actual output vector can be represented as

$$\mathbf{y}_{\text{city}}^{\text{T}} = [\mathbf{y}_{\text{Oz}(1)}^{\text{T}} \vdots \mathbf{y}_{\text{Oz}(2)}^{\text{T}} \vdots \dots \mathbf{y}_{\text{Oz}(\text{NS})}^{\text{T}}]$$
(4.3)

The desired output vector can be represented as

$$\mathbf{t}_{\text{city}}^{\mathrm{T}} = [\mathbf{t}_{\text{Oz}(1)}^{\mathrm{T}} \vdots \mathbf{t}_{\text{Oz}(2)}^{\mathrm{T}} \vdots \dots \mathbf{t}_{\text{Oz}(NS)}^{\mathrm{T}}]$$
(4.4)

where NS = number of monitoring stations; and

$$\begin{array}{lll} x_{WS(1)}^{T}, x_{WS(2)}^{T}, x_{WS(NS)}^{T}; & x_{WD(1)}^{T}, x_{WD(2)}^{T}, x_{WD(NS)}^{T}; & x_{OT(1)}^{T}, x_{OT(2)}^{T}, x_{OT(NS)}^{T}; \\ x_{SR(1)}^{T}, x_{SR(2)}^{T}, x_{SR(NS)}^{T}; & x_{ND(1)}^{T}, x_{ND(2)}^{T}, x_{ND(NS)}^{T}; & x_{NO(1)}^{T}, x_{NO(2)}^{T}, x_{NO(NS)}^{T}; \\ x_{POz(1)}^{T}, x_{POz(2)}^{T}, x_{POz(NS)}^{T}; & \end{array}$$

represent vectors that have past daily mean, minimum, and maximum values of wind speed, wind direction, temperature, solar radiation, nitrogen dioxide, and nitric oxide, ozone.

 $\mathbf{y}_{Oz(1)}^{T}, \mathbf{y}_{Oz(2)}^{T}, \mathbf{y}_{Oz(NS)}^{T}; \mathbf{t}_{Oz(1)}^{T}, \mathbf{t}_{Oz(2)}^{T}, \mathbf{t}_{Oz(NS)}^{T};$  represent actual network outputs and desired output vectors that have future daily maximum values (up to three days) of ozone as features at stations 1, 2 up to NS.

## 4.2 Training/Validation/Testing data in the example system

The data from DFW region, Houston-Galveston-Brazoria region, Los Angeles air basin, San Joaquin air basin and San Diego air basin of years 2010, 2011, 2012, 2013, and 2014 will be collected and the preprocessed data from the years 2010, 2011, 2012, and 2013 will be randomly split so that (3/4) of the data will be used for training and (1/4) of the data for validation. The generated example system pattern files of size (N<sub>v</sub> x (N+M)) for each city will be of different size as (N+M) varies due to different number of monitoring stations in each city. Figure 4 -1 shows an impractical example multi-city pollutant forecasting system.

## 4.3 Problems associated with the example system

### 4.3.1 Discontinuous inputs

Some inputs can be discontinuous such as the time variables and wind direction. Discontinuity associated with the time inputs: The formation of ozone and its transport is influenced by the seasonal, the diurnal and the hourly changes in the meteorological variables as well as the pollutant variables in the atmosphere. The inclusion of the temporal inputs makes a neural net perform better. The temporal inputs being considered are day of the year (DOY) that accounts for seasonal variations, day of the week (DOW) that indicates vehicle miles travelled per day. The time variables: DOY that has values



Figure 4-1 An impractical example multi-city pollutant forecasting system

from 1 to 365 in a non leap year is discontinuous since the last day of December (365<sup>th</sup> day) is followed by first day of January (1<sup>St</sup> day) of the following year; DOW that has values from 1 to 7 is discontinuous since the last day of a week, Saturday is followed by the first day of a next week, Sunday. One way to represent these input time variables is with binary format. But representing time variables in binary format would increase the number of input features enormously and might affect the network generalization performance.

Discontinuity associated with the wind direction: Wind speed and wind direction are abrupt and uncertain in nature. Wind direction (WD) expressed in radians/degrees is like the phase of a signal and is discontinuous: WD takes values from 0 to 360 degrees but the shift from 0 to 360 degrees is not the same as 360 to 0. The inclusion of these variables without normalizing or transforming might affect the network's ability to learn during training.

### 4.3.2 Missing data

For many reasons the meteorological data and pollutant data is not always complete or valid. This could be due to the malfunctioning of the equipment operating at various monitoring sites or could be due to power outages. This missing data problem can be handled using linear interpolation. If data was missing for a longer duration (say more than a month), data from nearby station will be used (when nearby station was less than 5 miles); when the nearby stations were at a distance greater than 5 miles, then the average values of the surrounding stations will be used to fill up missing values.

## 4.3.3 Encoding data from multiple cities

Each city has different number of monitoring stations,  $N_s$ . The feature vectors corresponding to each city will have different dimensions as the number of inputs, N will be different due to different number of monitoring stations in each city and arranging these inputs as shown in Figure 4-1 would increase the number of inputs or columns in the data set. Making the pattern files in this way is impractical.

### 4.3.4 Memorization

In an ideal Bayes estimator, training error decreases monotonically as long as we add more information by increasing N. But, according to Hughes phenomenon<sup>12,14,18,32,33</sup>, in real processors (say, MLP), increasing the number of hidden units or the number of inputs, leads to memorization or over-fitting problem or overtraining. In memorization, training error tends to decrease, while testing error increases when the network is fed with new unseen data. This over-fitting problem occurs when the network memorizes the specific input output patterns rather than the relationship between them. To avoid memorization, and achieve better generalization performance we have to make

(a) (N<sub>v</sub>/N) large

(b)  $N_h$  or N small so that

$$C_{\rm U1}^{\rm MLP} = \frac{P_{\rm ab}}{M} << N_{\rm v}^{-62}$$
(4.5)

## 4.3.5 Noisy or dependent data

When the data set contains redundant features or inputs, it is called noisy or dependent data. Redundant inputs increase N and storage capacity without providing useful information. When neural nets like the MLP are trained with noisy data, useless inputs act like noise and this leads to overtraining. Overtrained models show poor generalization performance when fed with unseen data.

## Possible System

## 5.1 Possible System Approaches

The example forecasting system of Chapter 4 is impractical. To build a better system, the modeler should see that the neural network has the following characteristics to ensure proper training: continuous inputs; training file should be free of the "curse of dimensionality"<sup>43</sup> (The "curse" typically refers to exponential growth in the computational effort as the number of input increases linearly); pattern files should be "thin and tall" with N<sub>v</sub> >> N; favorably, input features that are linearly independent and are conducive for training; same number of inputs for each pattern; input feature definition same for all the cities.

Two possible approaches that might solve the problems associated with the example system are described below:

5.1.1 Tall file data approach

In the tall file data approach, the pattern files of each monitoring station of all the cities are concatenated one below the other as shown in Figure 5-1. This approach has more patterns and fewer input features (columns); assists in good generalization and prevents memorization. The approach is described below:

(i) Each monitoring station in each city generates one training pattern each day.

- (ii) Consider the following input variables for a pattern:
  - The latitude and the longitude (expressed in decimal degrees) of each monitoring station in the city. The latitude and longitude of a city's center (say, the average of the latitudes and longitudes of all the monitoring stations in the city). The general sign convention adopted for latitude: North is positive; for longitude: East

is positive. The two inputs, i.e., the latitude and longitude tell the system which city the patterns come from.

- For each monitoring station, the two inputs, i.e., the deviations of the latitude and longitude of the monitoring stations from the latitude and longitude of city's center tell the system which monitoring station in the city the data comes from.
- Four temporal variables encoded as Cos(<sup>2π</sup>/<sub>365</sub> × DOY), Sin(<sup>2π</sup>/<sub>365</sub> × DOY) for non leap year and Cos(<sup>2π</sup>/<sub>366</sub> × DOY), Sin(<sup>2π</sup>/<sub>366</sub> × DOY) for leap year that represent the season of the year and Cos(<sup>2π</sup>/<sub>7</sub> × DOW), Sin(<sup>2π</sup>/<sub>7</sub> × DOW) that represent the day of the week. These four variables that account for season, and day of the week are continuous in nature.
- Temperature (x<sub>OT</sub>), Nitric oxide (x<sub>NO</sub>), Nitrogen dioxide (x<sub>ND</sub>) that contribute towards photochemical production.
- Wind speed (x<sub>WS</sub>), and wind direction (x<sub>WD</sub>) that relate to ozone transport can be encoded in complex form as (x<sub>WS</sub> · Cos(x<sub>WD</sub>)), and (x<sub>WS</sub> · Sin(x<sub>WD</sub>)), to account for the discontinuity associated with the wind direction and uncertainty in the wind speed.
- > Previous ozone levels  $(x_{POz})$  that account for ozone accumulation.
- Solar radiation  $(x_{SR})$ .

(iii) After preprocessing, the input vector will consist of the daily minimum, mean and maximum values of the above input variables with time delays (up to 3 days). Meteorological variables such as temperature take values that can be expressed as  $x_{T(k)} = x_T(-k)$ , where  $x_T(-k)$  represents ambient temperature at past *k* days. For example,  $x_{T(0)} = x_T(0)$  represents ambient temperature at current day,  $x_{T(1)} = x_T(-1)$ , represents ambient temperature one day ago,  $x_{T(2)} = x_T(-2)$ , represents ambient temperature 2 days ago. Likewise, pollutant and meteorological variables such as  $x_{NO}$ ,  $x_{ND}$ ,  $x_{Oz}$  and  $x_{SR}$  take values that can be expressed as  $x_{NO(k)} = x_{NO}(-k)$ ,  $x_{ND(k)} = x_{ND}(-k)$ ,  $x_{POZ(k)} = x_{POZ}(-k)$ ,  $x_{SR(k)} = x_{SR}(-k)$ , where *k* has values from 0 to 2 respectively. The input vector will now have, say, N = 71 features (i.e., 4 spatial variables, 4 temporal variables, 4x3x3 (= 36) meteorological variables (4 variables × 3 (i.e., mean, minimum, and maximum) x 3 time delays) and 3x3x3 (=27) pollutant variables (i.e., 3 variables × 3 (i.e., mean, minimum, and maximum) x 3 time delays) and 3x3x3 (=27) pollutant variables (i.e., 1 time delays). Another input vector with N = 69 features can also be made by considering only 2 spatial variables (i.e., latitude and longitude of a monitoring station).

(iv)The output feature vector consists of future daily maximum values of ozone that can be expressed as  $t_{Oz(j)} = t_{Oz}(j)$ , where j has values from 1 to 3. For example,  $t_{Oz(1)} = t_{Oz}(1)$ , represents ozone concentration one day ahead of time,  $t_{Oz(2)} = t_{Oz}(2)$ , represents ozone concentration two days ahead of time, and ,  $t_{Oz(3)} = t_{Oz}(3)$ , represents ozone concentration three days ahead of time. The output vector will have M = 3 features.

(v) After preprocessing, the training data file will have (N + M) columns for each monitoring station. In a similar way, we preprocess data of all monitoring stations in all the cities being considered. The order of the input features and output features should be same for each monitoring station.

Finally, a large data set is made by combining all these preprocessed data. The total number of patterns in one year can be expressed as

$$N_{\rm v} = N_{\rm days} \sum_{\rm city=1}^{\rm N_c} (N_{\rm s})_{\rm city}$$
(5.1)

where  $N_c$ ,  $N_s$  are the numbers of cities and monitoring stations respectively;  $N_{days}$  represents the number of days in a year. These data files prepared for the years 2010,

2011, 2012, 2013, and 2014 can be used for making training, validation and testing data.

A practical multi-city neural net forecasting system is shown in Figure 5-1.



Figure 5-1 A practical multi-city neural network pollutant forecasting system

### 5.1.2 Median Approach

In the median approach, hourly data is preprocessed in such a way that each city generates one training pattern each day. Each variable is a median taken over the city's monitoring stations. Even though this approach helps reduce the number of input features from that of the example system, we might not get better results compared to the tall file data approach with more patterns and fewer inputs. One reason why this approach could fail is that the meteorological variables such as wind speed, solar radiation, wind direction and temperature show complex behavior and these vary from station to station. Also, these meteorological variables are influenced by topographical features and hence are site specific. Preprocessing can be done in the following way:

- (i) Find the median of all the corresponding temperatures at all monitoring stations in a city. This median value becomes the representative temperature for that particular city. Likewise, find a median value for each input variable, namely wind speed, wind direction, nitric oxide, nitrogen dioxide and ozone. Now, each city contains representative median values of all input variables.
- (ii) Choose a reference location (say, city center), represented by latitude and longitude for each city which is the average of the latitude and longitude of all the monitoring stations in the particular city.
- (iii) After preprocessing, the input vector will have daily minimum, mean and maximum values of the above inputs (medians) with time delays (up to 3 days). For example, median values of meteorological variables such as temperature take values that can be expressed as  $MT_k = MT(-k)$ , where MT(-k) represents median temperature of that particular city at the past *k* days. For example,  $MT_0 = MT(0)$  represents median temperature on the previous day,  $MT_2 = MT(-2)$  represents median temperature 2 days ago, and so on.

42

Likewise, median values of wind speed and wind direction can be expressed as  $MWS_k = MWS(-k)$ ,  $MWD_k = MWD(-k)$ , where *k* has values from 0 to 2 respectively. Also, the median wind speed and wind direction have to be expressed in complex form as (MWS (-k) · Cos MWD (-k)), and (MWS (-k) · Sin MWD (-k)). Likewise, median values of pollutant variables NO, NO<sub>2</sub> and ozone take values that can be expressed as  $MNO_k = MNO(-k)$ ,  $MNO_{2k} = MNO_2(-k)$ ,  $MO_k = MO(-k)$  where *k* has values from 0 to 2 respectively.

- (iv) The output vector consists of future 3 days ahead median values of daily maximum ozone that can be expressed as  $MO_j = MO(j)$  where j has values from 1 to 3. The output will have M = 3 features. For example,  $MO_1 = MO(1)$  represents ozone concentration one day ahead of time,  $MO_2 = MO(2)$  represents ozone concentration two days ahead of time, and  $MO_3 = MO(3)$  represents ozone concentration three days ahead of time.
- (v) Combine all preprocessed files (one for each city) one below the other. Each city is represented by a reference location (L<sub>c</sub>, G<sub>c</sub>) say, city's center.

The total number of patterns in a median approach in each year can be expressed as:

$$N_{\rm v} = (N_{\rm c} \cdot N_{\rm days}) \tag{5.2}$$

To avoid overfitting problem and improve generalization performance we can use feature selection. This will reduce number of input features by considering only the significant input features.

Between the two approaches, the tall file data approach has the most patterns and fewer input features compared to the example system. More information is available to the network, so tall file approach may perform better than the median approach.

## Feature Selection

The performance of a network can be bad and consume more processing time if the training data sets are large with high dimensionality. Feature selection aims to solve the dimensionality problem by removing redundant and irrelevant inputs. Feature selection improves network performance by preventing memorization, and by increasing the generalization capability.<sup>43, 45, 48, 93, 94.</sup> Feature selection retains most of the information underlying the data by selecting the optimal subset of available features or inputs thereby reducing noise. In feature selection, features retain their original characteristics as opposed to the transformed features in feature extraction. <sup>49,50,57,60.</sup>

Given training data ( $\mathbf{x}_{\mathbf{p}}, \mathbf{t}_{\mathbf{p}}$ ) with N<sub>v</sub> patterns and N input features, feature selection finds the best subset of size N<sub>1</sub> that gives minimum training error. A feature selection method requires a subset evaluation function (SEF) *J*, a scalar function of  $\mathbf{x}^{N1}$  that evaluates the effectiveness of a candidate feature subset. The subset generation algorithm (SGA) generates subsets for the SEF. Common types of SEF are mean squared error (MSE)<sup>45-54</sup>, feature goodness (FG),<sup>63</sup> Bayes Probability of error,<sup>63</sup> filters,<sup>46,63</sup> SEFs based upon scatter matrices,<sup>63</sup> and wrappers<sup>45,46,63,93,94</sup>. Common SGA types include exhaustive search or brute force or optimal subset method <sup>63</sup>, branch and bound method<sup>63</sup>, sequential backward selection,<sup>45,63,66</sup> sequential forward selection<sup>45,63,66</sup> and plus - L minus - R method.<sup>63</sup>

The exhaustive search method gives optimal subsets but it is time consuming and incurs additional computational burden<sup>43, 47, 48, 54</sup>. The branch and bound algorithm proposed by Narendra and Fukunaga results in optimal feature subsets provided the subset evaluation function or the criterion function satisfies monotonicity, a property where error decreases as features increase. Further, as the number of features exceed 30, the branch and bound algorithm becomes unusable.<sup>43, 54</sup> To obtain a near optimal or sub optimal feature set, a sequential backward selection (SBS) or "top down" search method or pruning method and a sequential forward selection (SFS) or "bottom up" search method or growing method could be used. But these suboptimal search methods suffer from nesting. The plus - *I* - minus - *r* method, a suboptimal search method, prevents nesting of feature sets, but this method lacks method for determining the *I* and *r* values. To obtain near optimal feature sets, and reduce the computational complexity involved in high dimensional feature selection problems, Pudil et al used floating search method step.<sup>54</sup> The floating search methods namely, the sequential forward floating search (SFFS) and sequential backward floating search (SBBS) methods have better computational performance and yield results comparable to that of branch and bound.<sup>54</sup>

Also, there are transformation methods of feature selection. In a transformation approach<sup>53</sup> to feature selection we look for a transformation

$$\mathbf{z} = \mathbf{f}(\mathbf{x}) \tag{6.1}$$

where z is a vector of reduced dimension N<sub>1</sub> and x is the original input feature vector of dimension N. Transformation method of feature selection can result in smaller feature vectors when compared to subset selection methods. However, transformation methods are slower (consume more processing time) as all features of x are combined to produce vector z. Subset selection methods produce more efficient feature extraction as all the features of x are not needed for evaluation. <sup>50, 55, 63</sup>

In this study, a two stage feature selection: piecewise linear orthonormal floating search method (PLOFS) followed by Karhunen-Loeve Transform (KLT), is used to help

discard redundant input features and retain linearly independent input features. Figure 6-



1. shows the two stage feature selection method.

Note: N'' <  $N_1$  < N



## 6.1 Piecewise linear orthonormal floating search method

In order to obtain optimal feature subsets for a given SEF, one has to use branch and bound. But, branch and bound suffers with combinatorial explosion and involves lot of computational complexity especially when the number of input features is large. To avoid combinatorial explosion and still obtain near optimal subsets coupled with better efficiency and moderate computational complexity, a piecewise linear orthonormal floating search method (PLOFS)<sup>43, 65</sup> is used in this study.

In PLOFS, a forward floating search algorithm, that dynamically adds and removes features predominantly in the forward direction is used as the SGA; and training mean squared error (MSE) that has monotonocity is used as an SEF. A detailed description of PLOFS can be found in <sup>43</sup>.

6.2 Karhunen – Loeve Transform (KLT)

In the KLT <sup>55, 56, 57, 60, 67, 79, 91, 92, 96, 97, 98</sup>, the transformation kernel is actually derived from the data over which the transformation has to be performed, whereas in transforms such as the Discrete Fourier Transform (DFT), the transformation kernels are

fixed and are independent of the data. KL transforms have many applications in data alignment, data compression and object recognition. Previous studies on ozone forecasting using neural networks based on the KL transform can be found in<sup>16, 52, 57, 60, 67, 79, 96, 97, 98</sup>

KL transform or principal component analysis (PCA) can be used to eliminate multi-collinearity (problem associated with highly correlated input features) and generate linearly independent input features. KL transform is basically a rotation transformation that establishes a new coordinate system in such a way that the transformed axes are orthogonal and transformed features are uncorrelated to each other. A detailed description of KL transform can be found in <sup>55, 56, 64</sup>.

## **Results and Discussion**

## 7.1 Results

Tall file approach described in section 5.1.1 was carried out using five year data (2010-2014) from the 50 monitoring sites selected based on the availability of data from the regions Dallas-Fort Worth (13 sites), Houston-Galveston-Brazoria (12 sites), Los Angeles (10 sites), San Joaquin (8 sites) and San Diego (7 sites). The details of the sites used are described in Appendix B and site maps are shown in Appendix C.

In this approach, the four year data corresponding to the years 2010-2013 were randomly divided in the ratio 3:1 into training and validation data. Random division of data into training and validation sets achieved better results. The data corresponding to the year 2014 was used as testing data. The tall training file formed in this manner had 54050 patterns, tall validation file had 18000 and the tall testing file had 18000 patterns respectively. For comparison, the testing pattern file from the year 2014 of each individual site was used. Each pattern (observation or data point) had 71 input features formed as described in section 5.1.1. Results are shown in the Tables 7-1, 7-4. To reduce the input vector dimension and redundancy, PLOFS and KLT were implemented in stages and the corresponding results are shown in Tables 7-2,7-5 and Table 7-3, 7-6.

Median approach described in section 5.1.2 was carried out and the results are shown in Tables 7-7, 7-8, 7-9 respectively. In median approach, too, the data is randomly divided in the ratio of 3:1 into training and validation data from the years 2010-2013. The 2014 data was used as testing data. Each pattern had 69 input features formed as described in section 5.1.2. Results are shown in the Table 7-7. To reduce the input vector dimension and redundancy, PLOFS and KLT were implemented in stages and the corresponding results are shown in Table 7-8 and Table 7-9.

|             | TALL FILE (N=71, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |  |
|-------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|
| Site<br>No. | Station name (region)                                | Tall file (                     | made with 5<br>from 5 cities    | i0 stations<br>s)               | Indiv                           | idual statio                    | on file                         | Tall Method Better?<br>(Yes/No) |                                 |                                 |  |  |
|             | Dallas Fort Worth<br>(Moderate)                      | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |  |
| 1           | Fort Worth Northwest                                 | 8.99                            | 11.16                           | 11.71                           | 9.43                            | 11.75                           | 12.55                           | Yes                             | Yes                             | Yes                             |  |  |
| 2           | Arlington Municipal<br>Airport                       | 8.02                            | 10.03                           | 10.72                           | 8.42                            | 10.59                           | 11.51                           | Yes                             | Yes                             | Yes                             |  |  |
| 3           | Italy                                                | 7.35                            | 8.95                            | 9.59                            | 7.64                            | 9.64                            | 10.42                           | Yes                             | Yes                             | Yes                             |  |  |
| 4           | Midlothian                                           | 7.32                            | 9.00                            | 9.64                            | 7.67                            | 9.85                            | 10.81                           | Yes                             | Yes                             | Yes                             |  |  |
| 5           | Greenville                                           | 8.44                            | 10.34                           | 10.83                           | 8.80                            | 10.49                           | 10.92                           | Yes                             | Yes                             | Yes                             |  |  |
| 6           | Kaufman                                              | 7.44                            | 9.13                            | 9.64                            | 7.63                            | 9.90                            | 10.69                           | Yes                             | Yes                             | Yes                             |  |  |
| 7           | Corsicana Airport                                    | 7.47                            | 9.19                            | 9.79                            | 7.61                            | 9.69                            | 10.52                           | Yes                             | Yes                             | Yes                             |  |  |
| 8           | Eagle Mountain Lake                                  | 8.59                            | 10.51                           | 11.05                           | 8.67                            | 10.69                           | 11.56                           | Yes                             | Yes                             | Yes                             |  |  |
| 9           | Keller                                               | 8.63                            | 10.46                           | 11.03                           | 9.05                            | 11.11                           | 12.07                           | Yes                             | Yes                             | Yes                             |  |  |
| 10          | Grapevine Fairway                                    | 9.31                            | 11.08                           | 11.48                           | 9.67                            | 11.66                           | 12.56                           | Yes                             | Yes                             | Yes                             |  |  |
| 11          | Dallas Executive Airport                             | 7.81                            | 9.75                            | 10.55                           | 7.95                            | 9.95                            | 10.93                           | Yes                             | Yes                             | Yes                             |  |  |
| 12          | Dallas Hilton                                        | 8.54                            | 10.44                           | 11.05                           | 8.75                            | 10.66                           | 11.56                           | Yes                             | Yes                             | Yes                             |  |  |
| 13          | Denton South Airport                                 | 9.38                            | 10.95                           | 11.28                           | 9.73                            | 11.43                           | 12.05                           | Yes                             | Yes                             | Yes                             |  |  |

Table 7-1 Tall file results with all input features

| Table 7. | 1—Co | ontinue | d |
|----------|------|---------|---|
|----------|------|---------|---|

|             | TALL FILE (N=71, M = 3) – Based on Ozone 8hr Average                  |       |       |       |       |              |         |                                 |       |       |  |  |  |
|-------------|-----------------------------------------------------------------------|-------|-------|-------|-------|--------------|---------|---------------------------------|-------|-------|--|--|--|
| Site<br>No. | Station name (region) Tall file (made with 50 stations from 5 cities) |       |       |       |       | idual static | on file | Tall Method Better?<br>(Yes/No) |       |       |  |  |  |
|             |                                                                       | 1 day | 2 day | 3 day | 1 day | 2 day        | 3 day   | 1 day                           | 2 day | 3 day |  |  |  |
|             | Houston                                                               | ahead | ahead | ahead | ahead | ahead        | ahead   | ahead                           | ahead | ahead |  |  |  |
|             | (Marginal)                                                            | (RMSE | (RMSE | (RMSE | (RMSE | (RMSE        | (RMSE   | (RMSE                           | (RMSE | (RMSE |  |  |  |
|             |                                                                       | ppb)  | ppb)  | ppb)  | ppb)  | ppb)         | ppb)    | ppb)                            | ppb)  | ppb)  |  |  |  |
| 14          | Houston Aldine                                                        | 9.96  | 11.28 | 11.90 | 10.13 | 11.66        | 12.49   | Yes                             | Yes   | Yes   |  |  |  |
| 15          | Clinton                                                               | 9.29  | 10.98 | 11.70 | 9.64  | 11.51        | 12.16   | Yes                             | Yes   | Yes   |  |  |  |
| 16          | Conroe (Relocated)                                                    | 9.78  | 10.48 | 10.80 | 9.73  | 10.63        | 11.08   | No                              | Yes   | Yes   |  |  |  |
| 17          | Channel View                                                          | 9.21  | 10.97 | 11.60 | 9.79  | 11.53        | 11.90   | Yes                             | Yes   | Yes   |  |  |  |
| 18          | Galveston 99th Street                                                 | 9.33  | 11.68 | 12.21 | 9.64  | 12.11        | 12.65   | Yes                             | Yes   | Yes   |  |  |  |
| 19          | Houston Bayland Park                                                  | 9.87  | 11.66 | 12.45 | 10.18 | 12.22        | 12.83   | Yes                             | Yes   | Yes   |  |  |  |
| 20          | Houston Deer Park 2                                                   | 9.01  | 10.83 | 11.60 | 9.36  | 11.45        | 12.13   | Yes                             | Yes   | Yes   |  |  |  |
| 21          | Lynchbury Ferry                                                       | 8.81  | 10.45 | 11.12 | 8.79  | 10.38        | 11.04   | No                              | No    | No    |  |  |  |
| 22          | Lake Jackson                                                          | 8.64  | 10.46 | 11.20 | 8.80  | 10.95        | 11.35   | Yes                             | Yes   | Yes   |  |  |  |
| 23          | Northwest Harris                                                      | 8.98  | 10.66 | 11.21 | 9.40  | 11.05        | 11.67   | Yes                             | Yes   | Yes   |  |  |  |
| 24          | Park Place                                                            | 9.69  | 11.58 | 12.16 | 9.96  | 12.09        | 12.70   | Yes                             | Yes   | Yes   |  |  |  |
| 25          | Seabrook Friendship<br>Park                                           | 8.70  | 11.02 | 11.85 | 9.07  | 11.58        | 12.15   | Yes                             | Yes   | Yes   |  |  |  |

| Table | 7.1- | -Continued |
|-------|------|------------|
|       |      |            |

|      | TALL FILE (N=71, M = 3) – Based on Ozone 8hr Average |              |               |            |       |               |         |          |            |       |  |
|------|------------------------------------------------------|--------------|---------------|------------|-------|---------------|---------|----------|------------|-------|--|
| Site | Station name                                         | Tall file (n | nade with 50  | ) stations | Indiv | vidual statio | n filo  | Tall     | Method Bet | tter? |  |
| No.  | (region)                                             | f            | rom 5 cities) |            | man   |               | ii iile | (Yes/No) |            |       |  |
|      |                                                      | 1 day        | 2 day         | 3 day      | 1 day | 2 day         | 3 day   | 1 day    | 2 day      | 3 day |  |
|      | Los Angeles                                          | ahead        | ahead         | ahead      | ahead | ahead         | ahead   | ahead    | ahead      | ahead |  |
|      | (Extreme)                                            | (RMSE        | (RMSE         | (RMSE      | (RMSE | (RMSE         | (RMSE   | (RMSE    | (RMSE      | (RMSE |  |
|      |                                                      | ppb)         | ppb)          | ppb)       | ppb)  | ppb)          | ppb)    | ppb)     | ppb)       | ppb)  |  |
| 26   | Azusa                                                | 8.82         | 10.16         | 10.58      | 8.88  | 10.69         | 10.96   | Yes      | Yes        | Yes   |  |
| 27   | Compton-700<br>North Bullis Road                     | 7.16         | 8.34          | 8.83       | 7.49  | 8.92          | 9.49    | Yes      | Yes        | Yes   |  |
| 28   | Glendora Laurel                                      | 9.60         | 11.62         | 12.42      | 9.78  | 12.26         | 13.02   | Yes      | Yes        | Yes   |  |
| 29   | Lancaster -43301<br>Division street                  | 8.79         | 10.16         | 10.41      | 8.28  | 9.72          | 10.05   | No       | No         | No    |  |
| 30   | Los Angeles North<br>Main Street                     | 7.61         | 8.98          | 9.62       | 7.67  | 9.05          | 9.62    | Yes      | Yes        | Yes   |  |
| 31   | Pasadena S<br>Wilson Avenue                          | 9.87         | 12.33         | 13.44      | 10.61 | 13.33         | 14.07   | Yes      | Yes        | Yes   |  |
| 32   | Pomona                                               | 9.19         | 11.23         | 12.39      | 10.31 | 13.60         | 15.55   | Yes      | Yes        | Yes   |  |
| 33   | Santa Clarita                                        | 9.57         | 12.21         | 13.28      | 9.23  | 11.62         | 12.27   | No       | No         | No    |  |
| 34   | West Los Angeles-<br>VA Hospital                     | 7.23         | 8.38          | 9.06       | 8.38  | 12.00         | 13.91   | Yes      | Yes        | Yes   |  |
| 35   | Los Angeles<br>Westchester<br>Parkway                | 6.69         | 8.32          | 9.11       | 6.81  | 8.49          | 9.80    | Yes      | Yes        | Yes   |  |

|--|

|             | TALL FILE (N=71, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |
|-------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station name<br>(region)                             | Tall file (I                    | made with 5<br>from 5 cities    | 0 stations<br>)                 | Indiv                           | vidual statio                   | n file                          | Tall Method Better?<br>(Yes/No) |                                 |                                 |  |
|             | San Joaquin<br>(Extreme)                             | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 36          | Clovis-N Villa<br>Avenue                             | 9.32                            | 11.47                           | 12.17                           | 9.12                            | 11.62                           | 13.07                           | No                              | Yes                             | Yes                             |  |
| 37          | Merced S<br>Coffee Avenue                            | 8.38                            | 10.18                           | 10.89                           | 8.17                            | 10.06                           | 10.85                           | No                              | No                              | No                              |  |
| 38          | Shafter-Walker<br>Street                             | 8.29                            | 9.67                            | 10.05                           | 8.28                            | 9.65                            | 10.10                           | No                              | No                              | Yes                             |  |
| 39          | Fresno-Sierra<br>Skypark #2                          | 8.83                            | 10.85                           | 11.57                           | 8.65                            | 11.05                           | 12.38                           | No                              | Yes                             | Yes                             |  |
| 40          | Stockton-<br>Hazelton Street                         | 6.94                            | 8.74                            | 9.29                            | 6.87                            | 8.36                            | 8.88                            | No                              | No                              | No                              |  |
| 41          | Tracy-Airport                                        | 7.48                            | 9.43                            | 9.83                            | 8.88                            | 10.20                           | 10.18                           | Yes                             | Yes                             | Yes                             |  |
| 42          | Turlock-S<br>Minaret Street                          | 8.00                            | 9.74                            | 10.23                           | 7.81                            | 9.47                            | 9.92                            | No                              | No                              | No                              |  |
| 43          | Visalia-N<br>Church Street                           | 8.53                            | 10.12                           | 10.53                           | 8.44                            | 10.45                           | 10.87                           | No                              | Yes                             | Yes                             |  |

|--|

|             | TALL FILE (N=71, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                                           |       |               |                                 |                                 |                                 |                                 |  |
|-------------|------------------------------------------------------|---------------------------------|---------------------------------|-----------------------------------------------------------|-------|---------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station name<br>(region)                             | Tall file (r                    | made with 5<br>from 5 cities    | 0 stations<br>)                                           | Indiv | vidual statio | n file                          | Tall Method Better?<br>(Yes/No) |                                 |                                 |  |
|             | San Diego<br>(Marginal)                              | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day1 day2 dayaheadaheadahead(RMSE(RMSE(RMSEppb)ppb)ppb) |       |               | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 44          | Alpine-Victoria<br>Drive                             | 6.60                            | 8.53                            | 9.32                                                      | 6.49  | 8.40          | 9.47                            | No                              | No                              | Yes                             |  |
| 45          | Chula Vista                                          | 5.31                            | 6.62                            | 7.13                                                      | 5.55  | 6.80          | 7.27                            | Yes                             | Yes                             | Yes                             |  |
| 46          | El Cajun-<br>Redwood<br>Avenue                       | 6.01                            | 7.58                            | 8.32                                                      | 7.23  | 9.06          | 9.72                            | Yes                             | Yes                             | Yes                             |  |
| 47          | Escondido-E<br>Valley Parkway                        | 6.52                            | 7.90                            | 8.81                                                      | 6.68  | 8.03          | 8.67                            | Yes                             | Yes                             | No                              |  |
| 48          | Otay Mesa-<br>Paseo<br>International                 | 5.66                            | 6.98                            | 7.43                                                      | 6.32  | 7.43          | 7.63                            | Yes                             | Yes                             | Yes                             |  |
| 49          | San Diego-1110<br>Beardsley Street                   | 6.18                            | 7.26                            | 7.74                                                      | 6.38  | 7.57          | 8.14                            | Yes                             | Yes                             | Yes                             |  |
| 50          | San Diego -<br>Kearny Villa<br>Road                  | 5.74                            | 7.24                            | 8.04                                                      | 5.81  | 7.49          | 8.10                            | Yes                             | Yes                             | Yes                             |  |

|             | Results from PLOFS              | :                               |                                 | TALL FILE (N = 62, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |                                 |  |
|-------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station name (region)           | made with 5<br>from 5 cities    | 50 stations<br>s)               | Indiv                                                  | idual statio                    | on file                         | Tall Method Better?<br>(Yes/No) |                                 |                                 |                                 |  |
|             | Dallas Fort Worth<br>(Moderate) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb)                        | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 1           | Fort Worth Northwest            | 8.97                            | 10.92                           | 11.58                                                  | 9.33                            | 11.67                           | 12.61                           | Yes                             | Yes                             | Yes                             |  |
| 2           | Arlington Municipal<br>Airport  | 8.11                            | 10.05                           | 10.82                                                  | 8.39                            | 10.52                           | 11.54                           | Yes                             | Yes                             | Yes                             |  |
| 3           | Italy                           | 7.39                            | 9.08                            | 9.81                                                   | 7.60                            | 9.81                            | 10.57                           | Yes                             | Yes                             | Yes                             |  |
| 4           | Midlothian                      | 7.36                            | 9.08                            | 9.77                                                   | 7.69                            | 9.77                            | 10.79                           | Yes                             | Yes                             | Yes                             |  |
| 5           | Greenville                      | 8.49                            | 10.47                           | 11.09                                                  | 8.83                            | 10.66                           | 11.23                           | Yes                             | Yes                             | Yes                             |  |
| 6           | Kaufman                         | 7.46                            | 9.27                            | 10.16                                                  | 7.75                            | 9.83                            | 10.69                           | Yes                             | Yes                             | Yes                             |  |
| 7           | Corsicana Airport               | 7.51                            | 9.43                            | 10.26                                                  | 7.48                            | 9.33                            | 10.25                           | No                              | No                              | No                              |  |
| 8           | Eagle Mountain Lake             | 8.44                            | 10.19                           | 10.95                                                  | 8.68                            | 10.76                           | 11.64                           | Yes                             | Yes                             | Yes                             |  |
| 9           | Keller                          | 8.53                            | 10.18                           | 10.93                                                  | 8.93                            | 11.03                           | 11.91                           | Yes                             | Yes                             | Yes                             |  |
| 10          | Grapevine Fairway               | 9.22                            | 10.74                           | 11.37                                                  | 9.65                            | 11.63                           | 12.53                           | Yes                             | Yes                             | Yes                             |  |
| 11          | Dallas Executive Airport        | 7.96                            | 9.90                            | 10.80                                                  | 7.95                            | 9.96                            | 10.97                           | No                              | Yes                             | Yes                             |  |
| 12          | Dallas Hilton                   | 8.51                            | 10.28                           | 11.04                                                  | 8.77                            | 10.66                           | 11.51                           | Yes                             | Yes                             | Yes                             |  |
| 13          | Denton South Airport            | 9.26                            | 10.51                           | 11.12                                                  | 9.78                            | 11.48                           | 12.11                           | Yes                             | Yes                             | Yes                             |  |

Table 7-2 Tall file results based on Stage 1 feature selection-PLOFS

|             | Results from PLOFS          |                                 | TALL FILE (N=62, M = 3) – Based on Ozone 8hr Average |                                 |                                  |                                 |                                 |                                 |                                 |                                 |  |
|-------------|-----------------------------|---------------------------------|------------------------------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station name (region)       | Tall file (r<br>f               | nade with 5<br>from 5 cities                         | 0 stations                      | stations Individual station file |                                 |                                 | Tall Method Better?<br>(Yes/No) |                                 |                                 |  |
|             | Houston<br>(Marginal)       | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb)                      | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb)  | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 14          | Houston Aldine              | 10.08                           | 11.36                                                | 12.01                           | 10.12                            | 11.61                           | 12.45                           | Yes                             | Yes                             | Yes                             |  |
| 15          | Clinton                     | 9.46                            | 11.23                                                | 11.93                           | 9.66                             | 11.58                           | 12.28                           | Yes                             | Yes                             | Yes                             |  |
| 16          | Conroe (Relocated)          | 9.91                            | 10.57                                                | 10.87                           | 9.65                             | 10.35                           | 10.95                           | No                              | No                              | Yes                             |  |
| 17          | Channel View                | 9.44                            | 11.07                                                | 11.75                           | 9.55                             | 11.13                           | 11.62                           | Yes                             | Yes                             | No                              |  |
| 18          | Galveston 99th Street       | 9.31                            | 11.58                                                | 12.24                           | 9.63                             | 12.13                           | 12.64                           | Yes                             | Yes                             | Yes                             |  |
| 19          | Houston Bayland Park        | 9.89                            | 11.67                                                | 12.28                           | 10.18                            | 12.22                           | 12.85                           | Yes                             | Yes                             | Yes                             |  |
| 20          | Houston Deer Park 2         | 9.12                            | 10.92                                                | 11.65                           | 9.34                             | 11.44                           | 12.13                           | Yes                             | Yes                             | Yes                             |  |
| 21          | Lynchbury Ferry             | 8.87                            | 10.51                                                | 11.24                           | 9.41                             | 11.30                           | 11.48                           | Yes                             | Yes                             | Yes                             |  |
| 22          | Lake Jackson                | 8.71                            | 10.59                                                | 11.19                           | 8.95                             | 10.98                           | 11.88                           | Yes                             | Yes                             | Yes                             |  |
| 23          | Northwest Harris            | 9.18                            | 10.73                                                | 11.35                           | 9.27                             | 10.94                           | 11.68                           | Yes                             | Yes                             | Yes                             |  |
| 24          | Park Place                  | 9.77                            | 11.63                                                | 12.15                           | 9.89                             | 12.02                           | 12.64                           | Yes                             | Yes                             | Yes                             |  |
| 25          | Seabrook Friendship<br>Park | 8.75                            | 11.03                                                | 11.82                           | 9.02                             | 11.55                           | 12.19                           | Yes                             | Yes                             | Yes                             |  |

Table 7.2—Continued

|             | Results from                            | m PLOFS :                       |                                 | TA                              | ALL FILE (N=62, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |  |
|-------------|-----------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station name<br>(region)                | Tall file (r<br>f               | nade with 5<br>from 5 cities    | 0 stations<br>)                 | Indiv                                               | idual statio                    | n file                          | Tall Method Better?<br>(Yes/No) |                                 |                                 |  |
|             | Los Angeles<br>(Extreme)                | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb)                     | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 26          | Azusa                                   | 8.92                            | 10.347                          | 10.56                           | 8.60                                                | 10.35                           | 10.73                           | No                              | Yes                             | Yes                             |  |
| 27          | Compton-700<br>North Bullis<br>Road     | 7.17                            | 8.23                            | 8.65                            | 7.32                                                | 8.79                            | 9.32                            | Yes                             | Yes                             | Yes                             |  |
| 28          | Glendora Laurel                         | 9.68                            | 11.57                           | 12.26                           | 9.62                                                | 11.97                           | 12.70                           | No                              | Yes                             | Yes                             |  |
| 29          | Lancaster -<br>43301 Division<br>street | 8.43                            | 9.64                            | 9.83                            | 8.34                                                | 9.67                            | 10.08                           | No                              | Yes                             | Yes                             |  |
| 30          | Los Angeles<br>North Main<br>Street     | 7.66                            | 8.73                            | 9.30                            | 7.68                                                | 9.04                            | 9.65                            | Yes                             | Yes                             | Yes                             |  |
| 31          | Pasadena S<br>Wilson Avenue             | 9.86                            | 12.30                           | 13.32                           | 10.50                                               | 13.17                           | 13.93                           | Yes                             | Yes                             | Yes                             |  |
| 32          | Pomona                                  | 9.36                            | 11.39                           | 12.19                           | 12.01                                               | 15.82                           | 17.90                           | Yes                             | Yes                             | Yes                             |  |
| 33          | Santa Clarita                           | 9.56                            | 11.87                           | 12.55                           | 9.26                                                | 11.51                           | 12.18                           | No                              | No                              | No                              |  |
| 34          | West Los<br>Angeles-VA<br>Hospital      | 7.31                            | 8.47                            | 9.11                            | 8.27                                                | 11.66                           | 13.80                           | Yes                             | Yes                             | Yes                             |  |
| 35          | Los Angeles<br>Westchester<br>Parkway   | 6.80                            | 8.76                            | 9.69                            | 6.86                                                | 8.64                            | 9.78                            | Yes                             | No                              | Yes                             |  |

Table 7.2—Continued

| Table 7.2— | Continued |
|------------|-----------|
|------------|-----------|

|             | Results fro                  | om PLOFS :                                         |                                 | T۸                              | TALL FILE (N=62, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |
|-------------|------------------------------|----------------------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Site<br>No. | Station name<br>(region)     | Tall file (made with 50 stations<br>from 5 cities) |                                 |                                 | Indiv                                                | vidual statio                   | n file                          | Tall Method Better?<br>(Yes/No) |                                 |                                 |
|             | San Joaquin<br>(Extreme)     | 1 day<br>ahead<br>(RMSE<br>ppb)                    | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb)                      | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |
| 36          | Clovis-N Villa<br>Avenue     | 9.36                                               | 11.35                           | 12.01                           | 9.04                                                 | 11.46                           | 12.70                           | No                              | Yes                             | Yes                             |
| 37          | Merced S<br>Coffee Avenue    | 8.41                                               | 10.06                           | 10.54                           | 8.15                                                 | 9.99                            | 10.77                           | No                              | No                              | Yes                             |
| 38          | Shafter-Walker<br>Street     | 8.36                                               | 9.66                            | 9.85                            | 8.27                                                 | 9.64                            | 10.11                           | No                              | No                              | Yes                             |
| 39          | Fresno-Sierra<br>Skypark #2  | 8.83                                               | 10.87                           | 11.37                           | 8.65                                                 | 11.08                           | 12.32                           | No                              | Yes                             | Yes                             |
| 40          | Stockton-<br>Hazelton Street | 6.77                                               | 8.29                            | 8.81                            | 6.89                                                 | 8.56                            | 9.06                            | Yes                             | Yes                             | Yes                             |
| 41          | Tracy-Airport                | 7.48                                               | 9.10                            | 9.44                            | 7.50                                                 | 9.16                            | 9.77                            | Yes                             | Yes                             | Yes                             |
| 42          | Turlock-S<br>Minaret Street  | 7.83                                               | 9.49                            | 9.94                            | 7.80                                                 | 9.46                            | 9.92                            | No                              | No                              | No                              |
| 43          | Visalia-N<br>Church Street   | 8.46                                               | 9.89                            | 10.19                           | 8.31                                                 | 10.26                           | 10.94                           | No                              | Yes                             | Yes                             |

| Tab | le 7 | '.2—( | Contin | ued |
|-----|------|-------|--------|-----|
|     |      |       |        |     |

|             | Results from                         | n PLOFS :                                          |                                 | TA                              | TALL FILE (N=62, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |  |
|-------------|--------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station<br>name(region)              | Tall file (made with 50 stations<br>from 5 cities) |                                 |                                 | Indiv                                                | vidual station                  | n file                          | Tall                            | Tall Method Better?<br>(Yes/No) |                                 |  |
|             | San Diego<br>(Marginal)              | 1 day<br>ahead<br>(RMSE<br>ppb)                    | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb)                      | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 44          | Alpine-Victoria<br>Drive             | 6.95                                               | 8.89                            | 9.32                            | 6.47                                                 | 8.35                            | 9.35                            | No                              | No                              | Yes                             |  |
| 45          | Chula Vista                          | 5.29                                               | 6.53                            | 6.93                            | 5.54                                                 | 6.89                            | 7.40                            | Yes                             | Yes                             | Yes                             |  |
| 46          | El Cajun-<br>Redwood<br>Avenue       | 5.87                                               | 7.40                            | 8.10                            | 7.06                                                 | 9.13                            | 10.12                           | Yes                             | Yes                             | Yes                             |  |
| 47          | Escondido-E<br>Valley Parkway        | 6.55                                               | 7.90                            | 8.60                            | 6.68                                                 | 8.12                            | 8.77                            | Yes                             | Yes                             | Yes                             |  |
| 48          | Otay Mesa-<br>Paseo<br>International | 5.67                                               | 6.83                            | 7.27                            | 6.27                                                 | 7.47                            | 7.58                            | Yes                             | Yes                             | Yes                             |  |
| 49          | San Diego-1110<br>Beardsley Street   | 6.30                                               | 7.28                            | 7.79                            | 6.43                                                 | 7.63                            | 8.13                            | Yes                             | Yes                             | Yes                             |  |
| 50          | San Diego -<br>Kearny Villa<br>Road  | 5.76                                               | 7.20                            | 7.79                            | 6.08                                                 | 7.96                            | 8.34                            | Yes                             | Yes                             | Yes                             |  |

|             | KLT Resu                        | ults:                                           | TALL FILE ( <b>N=58</b> , M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |
|-------------|---------------------------------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station name (region)           | Tall file (made with 50 stations from 5 cities) |                                                               |                                 | Indiv                           | Individual station file         |                                 |                                 | Tall Method Better?<br>(Yes/No) |                                 |  |
|             | Dallas Fort Worth<br>(Moderate) | 1 day<br>ahead<br>(RMSE<br>ppb)                 | 2 day<br>ahead<br>(RMSE<br>ppb)                               | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 1           | Fort Worth Northwest            | 9.04                                            | 11.09                                                         | 11.68                           | 9.34                            | 11.73                           | 12.51                           | Yes                             | Yes                             | Yes                             |  |
| 2           | Arlington Municipal<br>Airport  | 8.06                                            | 10.04                                                         | 10.75                           | 8.43                            | 10.25                           | 11.22                           | Yes                             | Yes                             | Yes                             |  |
| 3           | Italy                           | 7.47                                            | 9.06                                                          | 9.66                            | 7.70                            | 9.42                            | 10.38                           | Yes                             | Yes                             | Yes                             |  |
| 4           | Midlothian                      | 7.32                                            | 9.04                                                          | 9.64                            | 7.74                            | 9.80                            | 10.81                           | Yes                             | Yes                             | Yes                             |  |
| 5           | Greenville                      | 8.49                                            | 10.33                                                         | 10.86                           | 8.57                            | 10.36                           | 11.04                           | Yes                             | Yes                             | Yes                             |  |
| 6           | Kaufman                         | 7.59                                            | 9.20                                                          | 9.70                            | 7.72                            | 9.71                            | 10.47                           | Yes                             | Yes                             | Yes                             |  |
| 7           | Corsicana Airport               | 7.52                                            | 9.27                                                          | 9.83                            | 7.63                            | 9.69                            | 10.53                           | Yes                             | Yes                             | Yes                             |  |
| 8           | Eagle Mountain Lake             | 8.49                                            | 10.54                                                         | 11.26                           | 8.68                            | 10.76                           | 11.64                           | Yes                             | Yes                             | Yes                             |  |
| 9           | Keller                          | 8.58                                            | 10.22                                                         | 10.96                           | 8.99                            | 11.09                           | 12.04                           | Yes                             | Yes                             | Yes                             |  |
| 10          | Grapevine Fairway               | 9.35                                            | 10.91                                                         | 11.46                           | 9.65                            | 11.63                           | 12.53                           | Yes                             | Yes                             | Yes                             |  |
| 11          | Dallas Executive Airport        | 7.87                                            | 9.90                                                          | 10.67                           | 7.95                            | 9.96                            | 10.97                           | Yes                             | Yes                             | Yes                             |  |
| 12          | Dallas Hilton                   | 8.69                                            | 10.45                                                         | 11.12                           | 8.74                            | 10.66                           | 11.54                           | Yes                             | Yes                             | Yes                             |  |
| 13          | Denton South Airport            | 9.29                                            | 10.63                                                         | 11.18                           | 9.58                            | 11.36                           | 12.11                           | Yes                             | Yes                             | Yes                             |  |

Table 7-3 Tall file results based on Stage 2 feature selection (transformation)-KLT

|      | KLT Results- TALL FILE (N=58, M = 3) – Based on Ozone 8hr Average |              |               |            |                         |       |       |                     |          |       |  |
|------|-------------------------------------------------------------------|--------------|---------------|------------|-------------------------|-------|-------|---------------------|----------|-------|--|
| Site | Station name(region)                                              | Tall file (r | made with 5   | 0 stations | Individual station file |       |       | Tall Method Better? |          |       |  |
| No.  |                                                                   | 1            | from 5 cities | 5)         | main                    |       |       |                     | (Yes/No) |       |  |
|      |                                                                   | 1 day        | 2 day         | 3 day      | 1 day                   | 2 day | 3 day | 1 day               | 2 day    | 3 day |  |
|      | Houston                                                           | ahead        | ahead         | ahead      | ahead                   | ahead | ahead | ahead               | ahead    | ahead |  |
|      | (Marginal)                                                        | (RMSE        | (RMSE         | (RMSE      | (RMSE                   | (RMSE | (RMSE | (RMSE               | (RMSE    | (RMSE |  |
|      |                                                                   | ppb)         | ppb)          | ppb)       | ppb)                    | ppb)  | ppb)  | ppb)                | ppb)     | ppb)  |  |
| 14   | Houston Aldine                                                    | 10.00        | 11.36         | 12.03      | 10.12                   | 11.61 | 12.45 | Yes                 | Yes      | Yes   |  |
| 15   | Clinton                                                           | 9.33         | 10.95         | 11.51      | 9.52                    | 11.57 | 12.14 | Yes                 | Yes      | Yes   |  |
| 16   | Conroe (Relocated)                                                | 9.88         | 10.64         | 10.92      | 9.61                    | 10.40 | 10.93 | No                  | No       | Yes   |  |
| 17   | Channel View                                                      | 9.29         | 10.97         | 11.55      | 9.55                    | 11.12 | 11.61 | Yes                 | Yes      | Yes   |  |
| 18   | Galveston 99th Street                                             | 9.29         | 11.74         | 12.36      | 9.63                    | 12.13 | 12.64 | Yes                 | Yes      | Yes   |  |
| 19   | Houston Bayland Park                                              | 10.02        | 11.81         | 12.35      | 10.18                   | 12.22 | 12.85 | Yes                 | Yes      | Yes   |  |
| 20   | Houston Deer Park 2                                               | 9.13         | 10.84         | 11.56      | 9.34                    | 11.44 | 12.13 | Yes                 | Yes      | Yes   |  |
| 21   | Lynchbury Ferry                                                   | 8.90         | 10.50         | 11.35      | 8.82                    | 10.38 | 11.04 | No                  | No       | No    |  |
| 22   | Lake Jackson                                                      | 8.58         | 10.53         | 11.15      | 8.91                    | 11.10 | 11.90 | Yes                 | Yes      | Yes   |  |
| 23   | Northwest Harris                                                  | 9.03         | 10.70         | 11.34      | 9.27                    | 10.93 | 11.68 | Yes                 | Yes      | Yes   |  |
| 24   | Park Place                                                        | 9.71         | 11.54         | 12.09      | 9.91                    | 12.08 | 12.72 | Yes                 | Yes      | Yes   |  |
| 25   | Seabrook Friendship Park                                          | 8.75         | 11.05         | 11.96      | 9.02                    | 11.55 | 12.20 | Yes                 | Yes      | Yes   |  |

# Table 7.3—Continued

|      | KLT Results TALL FILE (N=58, M = 3) – Based on Ozone 8hr Average |                |                                  |       |       |               |        |                     |          |       |  |
|------|------------------------------------------------------------------|----------------|----------------------------------|-------|-------|---------------|--------|---------------------|----------|-------|--|
| Site | Station                                                          | Tall file (r   | Tall file (made with 50 stations |       |       | vidual statio | n file | Tall Method Better? |          |       |  |
| No.  | name(region)                                                     | from 5 cities) |                                  |       | India |               |        |                     | (Yes/No) |       |  |
|      |                                                                  | 1 day          | 2 day                            | 3 day | 1 day | 2 day         | 3 day  | 1 day               | 2 day    | 3 day |  |
|      | Los Angeles                                                      | ahead          | ahead                            | ahead | ahead | ahead         | ahead  | ahead               | ahead    | ahead |  |
|      | (Extreme)                                                        | (RMSE          | (RMSE                            | (RMSE | (RMSE | (RMSE         | (RMSE  | (RMSE               | (RMSE    | (RMSE |  |
|      |                                                                  | ppb)           | ppb)                             | ppb)  | ppb)  | ppb)          | ppb)   | ppb)                | ppb)     | ppb)  |  |
| 26   | Azusa                                                            | 8.58           | 10.29                            | 10.47 | 8.61  | 10.36         | 10.72  | Yes                 | Yes      | Yes   |  |
| 27   | Compton-700<br>North Bullis Road                                 | 6.92           | 8.20                             | 8.69  | 7.43  | 9.02          | 9.43   | Yes                 | Yes      | Yes   |  |
| 28   | Glendora Laurel                                                  | 9.50           | 11.74                            | 12.30 | 9.63  | 12.04         | 12.75  | Yes                 | Yes      | Yes   |  |
| 29   | Lancaster -43301<br>Division street                              | 9.30           | 11.17                            | 10.82 | 7.88  | 8.90          | 9.17   | No                  | No       | No    |  |
| 30   | Los Angeles<br>North Main<br>Street                              | 7.54           | 8.93                             | 9.39  | 7.72  | 9.03          | 9.57   | Yes                 | Yes      | Yes   |  |
| 31   | Pasadena S<br>Wilson Avenue                                      | 9.73           | 12.42                            | 13.42 | 10.44 | 13.14         | 13.90  | Yes                 | Yes      | Yes   |  |
| 32   | Pomona                                                           | 8.97           | 11.38                            | 12.44 | 10.99 | 13.38         | 15.43  | Yes                 | Yes      | Yes   |  |
| 33   | Santa Clarita                                                    | 9.39           | 11.89                            | 12.89 | 9.34  | 11.69         | 12.38  | No                  | No       | No    |  |
| 34   | West Los<br>Angeles-VA<br>Hospital                               | 7.19           | 8.32                             | 9.05  | 8.38  | 11.79         | 13.91  | Yes                 | Yes      | Yes   |  |
| 35   | Los Angeles<br>Westchester<br>Parkway                            | 6.68           | 8.24                             | 9.19  | 6.92  | 8.56          | 9.62   | Yes                 | Yes      | Yes   |  |

# Table 7.3—Continued
|             | K                            | LT Results:                     |                                                 | FALL FILE (I                    | (N=58, M = 3) – Based on Ozone 8hr Average |                                 |                                 |                                 |                                 |                                 |  |
|-------------|------------------------------|---------------------------------|-------------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station<br>name(region)      | Tall file (r                    | Tall file (made with 50 stations from 5 cities) |                                 |                                            | Individual station file         |                                 |                                 | Tall Method Better?<br>(Yes/No) |                                 |  |
|             | San Joaquin<br>(Extreme)     | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb)                 | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb)            | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 36          | Clovis-N Villa<br>Avenue     | 9.28                            | 11.38                                           | 12.05                           | 9.10                                       | 11.87                           | 13.15                           | No                              | Yes                             | Yes                             |  |
| 37          | Merced S Coffee<br>Avenue    | 8.25                            | 9.84                                            | 10.40                           | 8.04                                       | 9.67                            | 10.58                           | No                              | No                              | Yes                             |  |
| 38          | Shafter-Walker<br>Street     | 8.51                            | 9.74                                            | 10.07                           | 8.27                                       | 9.64                            | 10.14                           | No                              | No                              | Yes                             |  |
| 39          | Fresno-Sierra<br>Skypark #2  | 10.90                           | 11.85                                           | 12.18                           | 8.76                                       | 11.56                           | 12.82                           | No                              | No                              | Yes                             |  |
| 40          | Stockton-<br>Hazelton Street | 8.78                            | 9.16                                            | 9.39                            | 6.77                                       | 8.36                            | 8.99                            | No                              | No                              | No                              |  |
| 41          | Tracy-Airport                | 9.29                            | 10.35                                           | 10.76                           | 7.50                                       | 9.09                            | 9.85                            | No                              | No                              | No                              |  |
| 42          | Turlock-S<br>Minaret Street  | 7.87                            | 9.69                                            | 10.31                           | 7.84                                       | 9.51                            | 10.00                           | No                              | No                              | No                              |  |
| 43          | Visalia-N Church<br>Street   | 8.49                            | 10.09                                           | 10.36                           | 8.38                                       | 10.26                           | 10.87                           | No                              | Yes                             | Yes                             |  |

|--|

|             | KL                                   | T Results                                                  | -                               | <ul> <li>TALL FILE (N=58, M = 3) – Based on Ozone 8hr Average</li> </ul> |                                 |                                 |                                 |                                 |                                 |                                 |  |
|-------------|--------------------------------------|------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Site<br>No. | Station<br>name(region)              | Station Tall file (made with 50 stations<br>from 5 cities) |                                 |                                                                          | Indiv                           | Individual station file         |                                 |                                 | Tall Method Better?<br>(Yes/No) |                                 |  |
|             | San Diego<br>(Marginal)              | 1 day<br>ahead<br>(RMSE<br>ppb)                            | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb)                                          | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |
| 44          | Alpine-Victoria<br>Drive             | 6.84                                                       | 8.64                            | 9.25                                                                     | 6.45                            | 8.34                            | 9.35                            | No                              | No                              | Yes                             |  |
| 45          | Chula Vista                          | 5.31                                                       | 6.63                            | 7.07                                                                     | 5.39                            | 6.62                            | 7.10                            | Yes                             | No                              | Yes                             |  |
| 46          | El Cajun-<br>Redwood<br>Avenue       | 5.92                                                       | 7.67                            | 8.29                                                                     | 7.15                            | 9.39                            | 10.23                           | Yes                             | Yes                             | Yes                             |  |
| 47          | Escondido-E<br>Valley Parkway        | 6.55                                                       | 8.07                            | 8.87                                                                     | 6.65                            | 7.93                            | 8.53                            | Yes                             | No                              | No                              |  |
| 48          | Otay Mesa-<br>Paseo<br>International | 5.73                                                       | 7.01                            | 7.54                                                                     | 6.08                            | 7.33                            | 7.52                            | Yes                             | Yes                             | No                              |  |
| 49          | San Diego-1110<br>Beardsley Street   | 6.11                                                       | 7.13                            | 7.60                                                                     | 6.57                            | 7.74                            | 8.19                            | Yes                             | Yes                             | Yes                             |  |
| 50          | San Diego -<br>Kearny Villa<br>Road  | 5.72                                                       | 7.40                            | 8.05                                                                     | 5.93                            | 7.62                            | 8.13                            | Yes                             | Yes                             | Yes                             |  |

| No | (City)            | Best Pr<br>(Te                       | edicted site in e<br>esting RMSE, p  | each city<br>opb)                      | Poorly  <br>(1                                      | Poorly predicted site in each city<br>(Testing RMSE, ppb) |                                        |  |  |
|----|-------------------|--------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|----------------------------------------|--|--|
|    |                   | One day<br>ahead<br>daily<br>maximum | Two day<br>ahead<br>daily<br>maximum | Three day<br>ahead<br>daily<br>maximum | One day<br>ahead<br>daily<br>maximum<br>ozone (nph) | Two day<br>ahead<br>daily<br>maximum<br>ozone (pph)       | Three day<br>ahead<br>daily<br>maximum |  |  |
| 1  | Dallas-Fort Worth | Midlothian<br>(7.32)                 | Italy<br>(8.95)                      | Italy<br>(9.59)                        | Denton South<br>Airport (9.38)                      | Fort Worth<br>North West<br>(11.16)                       | Fort Worth<br>North West<br>(11.71)    |  |  |
| 2  | Houston           | Lake<br>Jackson<br>(8.64)            | Lynchbury<br>Ferry<br>(10.45)        | Conroe<br>(Relocated)<br>(10.80)       | Aldine (9.96)                                       | Galveston<br>99 <sup>th</sup> Street<br>(11.68)           | Houston<br>Bayland Park<br>(12.45)     |  |  |
| 3  | Los Angeles       | Westchester<br>Parkway<br>(6.69)     | Westchester<br>Parkway<br>(8.32)     | Compton<br>(8.83)                      | Pasadena<br>(9.87)                                  | Pasadena<br>(12.33)                                       | Pasadena<br>(13.44)                    |  |  |
| 4  | San Joaquin       | Stockton<br>Hazelton<br>(6.94)       | Stockton<br>Hazelton<br>(8.74)       | Stockton<br>Hazelton<br>(9.29)         | Clovis-N Villa<br>Avenue<br>(9.32)                  | Clovis-N Villa<br>Avenue<br>(11.47)                       | Clovis-N Villa<br>Avenue<br>(12.17)    |  |  |
| 5  | San Diego         | Chula Vista<br>(5.31)                | Chula Vista<br>(6.62)                | Chula Vista<br>(7.13)                  | Alpine-<br>Victoria Drive<br>(6.6)                  | Alpine-<br>Victoria Drive<br>(8.53)                       | Alpine-Victoria<br>Drive (9.32)        |  |  |

Table 7-4 Best and poorly predicted sites in each city based on tall file results (with all inputs, N= 71)

Key Findings from Table 7-4

- Chula Vista (San Diego) is the best predicted site among all the 50 monitoring sites for one day ahead, two day ahead and three ahead daily maximum ozone concentrations.
- Aldine (Houston) is the most poorly predicted site among all the 50 monitoring sites for one day ahead, Pasadena (Los Angeles) is the most poorly predicted site among all the 50 monitoring sites for two day ahead and three ahead daily maximum ozone concentrations.

64

| No | (City)               | Best Pr<br>(T                                       | edicted site in e<br>esting RMSE, pr                | ach city<br>ob)                                       | Poorly predicted site in each city<br>(Testing RMSE, ppb) |                                                     |                                                    |  |
|----|----------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--|
|    |                      | One day<br>ahead<br>daily<br>maximum<br>ozone (ppb) | Two day<br>ahead<br>daily<br>maximum<br>ozone (ppb) | Three day<br>ahead<br>daily<br>maximum<br>ozone (ppb) | One day<br>ahead<br>daily<br>maximum<br>ozone (ppb)       | Two day<br>ahead<br>daily<br>maximum<br>ozone (ppb) | Three day<br>ahead<br>daily maximum<br>ozone (ppb) |  |
| 1  | Dallas-Fort<br>Worth | Midlothian<br>(7.36)                                | Midlothian<br>(9.08)                                | Midlothian<br>(9.77)                                  | Denton South<br>Airport (9.26)                            | Fort Worth<br>North West<br>(10.92)                 | Fort Worth<br>North West<br>(11.58)                |  |
| 2  | Houston              | Lake<br>Jackson<br>(8.71)                           | Lynchbury<br>Ferry (10.51)                          | Conroe<br>(Relocated)<br>(10.87)                      | Aldine (10.08)                                            | Houston<br>Bayland Park<br>(11.67)                  | Houston<br>Bayland Park<br>(12.28)                 |  |
| 3  | Los<br>Angeles       | Westchester<br>Parkway<br>(6.80)                    | Compton<br>(8.23)                                   | Compton<br>(8.65)                                     | Pasadena<br>(9.86)                                        | Pasadena<br>(12.30)                                 | Pasadena<br>(13.32)                                |  |
| 4  | San<br>Joaquin       | Stockton<br>Hazelton<br>(6.77)                      | Stockton<br>Hazelton<br>(8.29)                      | Stockton<br>Hazelton<br>(8.81)                        | Clovis-N Villa<br>Avenue<br>(9.36)                        | Clovis-N Villa<br>Avenue<br>(11.35)                 | Clovis-N Villa<br>Avenue<br>(12.01)                |  |
| 5  | San Diego            | Chula Vista<br>(5.29)                               | Chula Vista<br>(6.53)                               | Chula Vista<br>(6.93)                                 | Alpine-Victoria<br>Drive (6.95)                           | Alpine-Victoria<br>Drive (8.89)                     | Alpine-Victoria<br>Drive (9.32)                    |  |

Table 7-5 Best and poorly predicted sites in each city based on tall file results after stage 1 feature selection (after PLOFS, N =62)

Key Findings from Table 7-5

- Chula Vista (San Diego) is the best predicted site among all the 50 monitoring sites for one day ahead, two day ahead and three ahead daily maximum ozone concentrations.
- Aldine (Houston) is the most poorly predicted site among all the 50 monitoring sites for one day ahead, Pasadena (Los Angeles) is the most poorly predicted site among all the 50 monitoring sites for two day ahead and three ahead daily maximum ozone concentrations.

65

| No | (City)               | Best Pre<br>(Te                               | edicted site in eac<br>sting RMSE, ppb              | h city<br>)                                           | Poorly predicted site in each city<br>(Testing RMSE, ppb) |                                               |                                                    |  |  |
|----|----------------------|-----------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--|--|
|    |                      | One day ahead<br>daily maximum<br>ozone (ppb) | Two day<br>ahead<br>daily<br>maximum<br>ozone (ppb) | Three day<br>ahead<br>daily<br>maximum<br>ozone (ppb) | One day ahead<br>daily maximum<br>ozone (ppb)             | Two day ahead<br>daily maximum<br>ozone (ppb) | Three day<br>ahead<br>daily maximum<br>ozone (ppb) |  |  |
| 1  | Dallas-Fort<br>Worth | Midlothian<br>(7.32)                          | Midlothian<br>(9.04)                                | Midlothian<br>(9.64)                                  | Grapevine<br>Fairway (9.35)                               | Fort Worth<br>North West<br>(11.09)           | Fort Worth<br>North West<br>(11.68)                |  |  |
| 2  | Houston              | Lake Jackson<br>(8.58)                        | Lynchbury<br>Ferry (10.50)                          | Conroe<br>(Relocated)<br>(10.92)                      | Houston<br>Bayland Park<br>(10.02)                        | Houston<br>Bayland Park<br>(11.81)            | Galveston 99 <sup>th</sup><br>Street (12.36)       |  |  |
| 3  | Los<br>Angeles       | Westchester<br>Parkway (6.68)                 | Compton<br>(8.20)                                   | Compton<br>(8.69)                                     | Pasadena<br>(9.73)                                        | Pasadena<br>(12.42)                           | Pasadena<br>(13.42)                                |  |  |
| 4  | San<br>Joaquin       | Turlock-S<br>Minaret Street<br>(7.87)         | Stockton<br>Hazelton<br>(9.16)                      | Stockton<br>Hazelton<br>(9.39)                        | Fresno-Sierra<br>Skypark # 2<br>(10.90)                   | Fresno-Sierra<br>Skypark # 2<br>(11.85)       | Fresno-Sierra<br>Skypark # 2<br>(12.18)            |  |  |
| 5  | San Diego            | Chula Vista<br>(5.31)                         | Chula Vista<br>(6.63)                               | Chula Vista<br>(7.07)                                 | Alpine-Victoria<br>Drive (6.84)                           | Alpine-Victoria<br>Drive (8.64)               | Alpine-Victoria<br>Drive (9.25)                    |  |  |

Table 7-6 Best and poorly predicted sites in each city based on tall file results after stage 2 feature selection (after KLT, N= 58)

Key Findings from Table 7-6

- Chula Vista (San Diego) is the best predicted site among all the 50 monitoring sites for one day ahead, two day ahead and three ahead daily maximum ozone concentrations.
- Fresno-Sierra Skypark # 2 (San Joaquin) is the most poorly predicted site among all the 50 monitoring sites for one day ahead, Pasadena (Los Angeles) is the most poorly predicted site among all the 50 monitoring sites for two day ahead and three ahead daily maximum ozone concentrations.

66

|    | Median File : (N=69) - Ozone 8 hour avg |                                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |  |  |
|----|-----------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|
| No | City                                    | Tall City (made with 5 cities)<br>Median file |                                 |                                 | С                               | City Median file                |                                 |                                 | Comparison results              |                                 |  |  |  |
|    |                                         | 1 day<br>ahead<br>(RMSE<br>ppb)               | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |  |  |
| 1  | Dallas                                  | 7.37                                          | 9.30                            | 9.92                            | 7.53                            | 9.58                            | 10.31                           | Yes                             | Yes                             | Yes                             |  |  |  |
| 2  | Houston                                 | 8.36                                          | 10.30                           | 11.05                           | 8.55                            | 10.37                           | 11.01                           | Yes                             | Yes                             | No                              |  |  |  |
| 3  | Los Angeles                             | 6.84                                          | 8.73                            | 9.35                            | 6.95                            | 8.66                            | 9.19                            | Yes                             | No                              | No                              |  |  |  |
| 4  | San Joaquin                             | 6.35                                          | 8.13                            | 8.65                            | 6.22                            | 8.18                            | 9.02                            | No                              | Yes                             | Yes                             |  |  |  |
| 5  | San Diego                               | 5.84                                          | 7.52                            | 8.05                            | 5.64                            | 7.12                            | 7.60                            | No                              | No                              | No                              |  |  |  |

Table 7-7 Median file results with all features

|    | Median File: PLOFS (N=35) - Ozone 8 hour avg |                                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |  |  |
|----|----------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|
| No | City                                         | Tall City (made with 5 cities)<br>Median file |                                 |                                 | С                               | City Median file                |                                 |                                 | Comparison results              |                                 |  |  |  |
|    |                                              | 1 day<br>ahead<br>(RMSE<br>ppb)               | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |  |  |
| 1  | Dallas                                       | 7.33                                          | 9.49                            | 10.20                           | 7.44                            | 9.23                            | 9.94                            | Yes                             | No                              | No                              |  |  |  |
| 2  | Houston                                      | 8.05                                          | 9.88                            | 10.64                           | 8.41                            | 10.44                           | 11.23                           | Yes                             | Yes                             | Yes                             |  |  |  |
| 3  | Los Angeles                                  | 6.72                                          | 8.59                            | 9.17                            | 7.03                            | 8.81                            | 9.32                            | Yes                             | Yes                             | Yes                             |  |  |  |
| 4  | San Joaquin                                  | 6.15                                          | 7.80                            | 8.50                            | 6.19                            | 8.04                            | 8.72                            | Yes                             | Yes                             | Yes                             |  |  |  |
| 5  | San Diego                                    | 5.72                                          | 7.17                            | 7.59                            | 5.71                            | 7.19                            | 7.68                            | No                              | Yes                             | Yes                             |  |  |  |

# Table 7-8 Median file results based on stage 1 feature selection: PLOFS

|    | Median File : After PLOFS and KLT (N=33) - Ozone 8 hour avg |                                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |  |  |
|----|-------------------------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|
| No | City                                                        | Tall City (made with 5 cities)<br>Median file |                                 |                                 | С                               | City Median file                |                                 |                                 | Comparison results              |                                 |  |  |  |
|    |                                                             | 1 day<br>ahead<br>(RMSE<br>ppb)               | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) | 1 day<br>ahead<br>(RMSE<br>ppb) | 2 day<br>ahead<br>(RMSE<br>ppb) | 3 day<br>ahead<br>(RMSE<br>ppb) |  |  |  |
| 1  | Dallas                                                      | 7.22                                          | 9.15                            | 9.92                            | 7.53                            | 9.41                            | 10.05                           | Yes                             | Yes                             | Yes                             |  |  |  |
| 2  | Houston                                                     | 8.29                                          | 10.18                           | 10.93                           | 8.33                            | 10.10                           | 10.84                           | Yes                             | No                              | No                              |  |  |  |
| 3  | Los Angeles                                                 | 6.88                                          | 8.64                            | 9.20                            | 7.05                            | 8.87                            | 9.50                            | Yes                             | Yes                             | Yes                             |  |  |  |
| 4  | San Joaquin                                                 | 6.31                                          | 8.05                            | 8.57                            | 6.21                            | 8.11                            | 8.87                            | No                              | Yes                             | Yes                             |  |  |  |
| 5  | San Diego                                                   | 5.91                                          | 7.48                            | 7.90                            | 5.69                            | 7.26                            | 7.80                            | No                              | No                              | No                              |  |  |  |

# Table 7-9 Median file results based on stage 2 feature selection (transformation): KLT

The number of exceedance days in Los Angeles, San Joaquin Valley, and San

Diego region (California state) during the period of 2010-2014 is listed in Table 7-10.

Table 7-11, and Table 7-12 show the statistical properties of all the input variables

considered in this study from all the five regions.

|                                  | Number of exceedance days (National |      |                   |      |      |  |  |
|----------------------------------|-------------------------------------|------|-------------------|------|------|--|--|
|                                  |                                     | 8    | <u>8-hr ozone</u> | e)   |      |  |  |
|                                  | 2010                                | 2011 | 2012              | 2013 | 2014 |  |  |
| Los Angeles                      |                                     |      |                   |      |      |  |  |
| Azusa                            | 3                                   | 12   | 10                | 6    | 11   |  |  |
| Compton-700 North Bullis Road    | 4                                   | 0    | 0                 | 1    | 2    |  |  |
| Glendora Laurel                  | 20                                  | 30   | 45                | 24   | 38   |  |  |
| Lancaster -43301 Division street | 45                                  | 53   | 39                | 34   | 36   |  |  |
| Los Angeles North Main Street    | 1                                   | 0    | 1                 | 0    | 2    |  |  |
| Pasadena S Wilson Avenue         | 3                                   | 5    | 9                 | 0    | 7    |  |  |
| Pomona                           | 4                                   | 16   | 15                | 15   | 33   |  |  |
| Santa Clarita                    | 23                                  | 31   | 57                | 40   | 45   |  |  |
| West Los Angeles-VA Hospital     | 1                                   | 0    | 0                 | 0    | 4    |  |  |
| Los Angeles Westchester Parkway  | 0                                   | 0    | 0                 | 1    | 3    |  |  |
| Total number of exceedance days  | 104                                 | 147  | 176               | 121  | 181  |  |  |
|                                  |                                     |      |                   |      |      |  |  |
| San Joaquin                      |                                     |      |                   |      |      |  |  |
| Clovis-N Villa Avenue            | 39                                  | 49   | 57                | 38   | 56   |  |  |
| Merced S Coffee Avenue           | 14                                  | 19   | 9                 | 31   | 22   |  |  |
| Shafter-Walker Street            | 22                                  | 18   | 30                | 5    | 11   |  |  |
| Fresno-Sierra Skypark #2         | 35                                  | 45   | 19                | 25   | 32   |  |  |
| Stockton-Hazelton Street         | 2                                   | 0    | 2                 | 0    | 1    |  |  |
| Tracy-Airport                    | 3                                   | 8    | 16                | 2    | 8    |  |  |
| Turlock-S Minaret Street         | 10                                  | 17   | 35                | 14   | 12   |  |  |
| Visalia-N Church Street          | 34                                  | 17   | 37                | 2    | 10   |  |  |
| Total number of exceedance days  | 159                                 | 173  | 205               | 117  | 152  |  |  |
|                                  |                                     |      |                   |      |      |  |  |
| San Diego                        |                                     |      |                   |      |      |  |  |
| Alpine-Victoria Drive            | 12                                  | 10   | 7                 | 6    | 10   |  |  |
| Chula Vista                      | 2                                   | 0    | 1                 | 0    | 0    |  |  |
| El Cajon-Redwood Avenue          | 3                                   | 1    | 0                 | 1    | 0    |  |  |
| Escondido-E Valley Parkway       | 3                                   | 2    | 0                 | 0    | 5    |  |  |
| Otay Mesa-Paseo International    | 0                                   | 1    | 0                 | 0    | 0    |  |  |
| San Diego-1110 Beardsley Street  | 0                                   | 0    | 0                 | 0    | 0    |  |  |
| San Diego - Kearny Villa Road    | 0                                   | 1    | 1                 | 0    | 1    |  |  |
| Total number of exceedance days  | 20                                  | 15   | 9                 | 7    | 16   |  |  |

Table 7-10 Number of ozone exceedance days (National 8-hour ozone) in California

Table 7-11 Statistical properties of annual hourly pollutant and meteorological parameters

### in five regions

|                           | Nitric | Nitrogen | Ozone  | Resultant   | Solar          | Temperature |
|---------------------------|--------|----------|--------|-------------|----------------|-------------|
|                           | oxide  | dioxide  | (ppb)  | wind speed  | Radiation      | ( °F )      |
|                           | (ppb)  | (ppb)    |        | (mile/hour) | (Langleys/min) |             |
| Dallas Fort<br>Worth 2010 |        |          |        |             |                |             |
| Mean                      | 1.9278 | 7.4543   | 25.157 | 3.6547      | 0.278          | 60.9        |
| Minimum                   | 0      | 0        | 0      | 0           | 0              | 0           |
| Maximum                   | 304.2  | 72.8     | 108    | 30.2        | 1.53           | 106.9       |
| Standard<br>Deviation     | 7.632  | 7.608    | 16.008 | 5.09        | 0.394          | 24.125      |
|                           |        |          |        |             |                |             |
| Dallas Fort<br>Worth 2011 |        |          |        |             |                |             |
| Mean                      | 1.8344 | 7.2766   | 28.114 | 8.07        | 0.288          | 68.28       |
| Minimum                   | 0      | 0        | 0      | 0.2         | 0              | 10.6        |
| Maximum                   | 272.8  | 70       | 101    | 33.4        | 1.54           | 110.4       |
| Standard<br>Deviation     | 7.5144 | 7.708    | 17.021 | 4.3817      | 0.412          | 19.743      |
|                           |        |          |        |             |                |             |
| Dallas Fort<br>Worth 2012 |        |          |        |             |                |             |
| Mean                      | 1.9424 | 6.7413   | 27.552 | 7.4696      | 0.28           | 68.457      |
| Minimum                   | 0      | 0        | 0      | 0.1         | 0              | 18.1        |
| Maximum                   | 215    | 70.1     | 122    | 31.6        | 1.51           | 108.4       |
| Standard<br>Deviation     | 7.608  | 7.18     | 16.813 | 4.052       | 0.3977         | 16.32       |
|                           |        |          |        |             |                |             |
| Dallas Fort<br>Worth 2013 |        |          |        |             |                |             |
| Mean                      | 1.618  | 6.4      | 28.004 | 7.5         | 0.269          | 65.32       |
| Minimum                   | 0      | 0        | 0      | 0           | 0              | 15.9        |
| Maximum                   | 342.1  | 63.4     | 112    | 30.1        | 1.763          | 105.5       |
| Standard<br>Deviation     | 6.887  | 6.872    | 17.394 | 4.25        | 0.394          | 18.076      |
|                           |        |          |        |             |                |             |
| Dallas Fort<br>Worth 2014 |        |          |        |             |                |             |
| Mean                      | 1.337  | 5.57     | 28.123 | 7.9864      | 0.265          | 64.778      |
| Minimum                   | 0      | 0        | 0      | 0.1         | 0              | 12          |
| Maximum                   | 215.4  | 62.8     | 105    | 29.4        | 1.549          | 102.8       |
| Standard<br>Deviation     | 6.123  | 6.256    | 16.165 | 4.33        | 0.384          | 17.838      |

| Table : | 7-11 | —Continued | Ż |
|---------|------|------------|---|
|---------|------|------------|---|

|                       | Nitric | Nitrogen | Ozone      | Resultant   | Solar             | Temperature |
|-----------------------|--------|----------|------------|-------------|-------------------|-------------|
|                       | oxide  | dioxide  | (ppb)      | wind speed  | Radiation         | (°F)        |
|                       | (ppb)  | (ppb)    |            | (mile/hour) | (Langleys/minute) |             |
| Houston               |        |          |            |             |                   |             |
| 2010                  |        |          |            |             |                   |             |
| Mean                  | 3.2364 | 7.876    | 24.488     | 5.228       | 0.272             | 69.37       |
| Minimum               | 0      | 0        | 0          | 0           | 0                 | 17.8        |
| Maximum               | 479.9  | 111.9    | 127        | 20.8        | 1.545             | 100.6       |
| Standard<br>Deviation | 12.107 | 7.9678   | 18.137     | 3.277       | 0.386             | 15.288      |
|                       |        |          |            |             |                   |             |
| Houston<br>2011       |        |          |            |             |                   |             |
| Mean                  | 3      | 8.64     | 24.94      | 5.8178      | 0.294             | 71.012      |
| Minimum               | 0      | 0        | 0          | 0           | 0                 | 18          |
| Maximum               | 366.2  | 53.9     | 129        | 17.8        | 1.926             | 107.8       |
| Standard<br>Deviation | 11.42  | 7.315    | 17.63      | 3.275       | 0.407             | 15.199      |
|                       |        |          |            |             |                   |             |
| Houston<br>2012       |        |          |            |             |                   |             |
| Mean                  | 3.03   | 7.5      | 23.364     | 4.99        | 0.266             | 71.8        |
| Minimum               | 0      | 0        | 0          | 0           | 0                 | 29.2        |
| Maximum               | 289.7  | 134.7    | 112        | 22.9        | 1.57              | 102.7       |
| Standard<br>Deviation | 10.573 | 7.58     | 17.256     | 3.09        | 0.385             | 12.36       |
| 201101011             |        |          |            |             |                   |             |
| Houston<br>2013       |        |          |            |             |                   |             |
| Mean                  | 2.883  | 7.116    | 22.345     | 5.39        | 0.265             | 69.18       |
| Minimum               | 0      | 0        | 0          | 0           | 0                 | 28.2        |
| Maximum               | 350.5  | 68       | 102        | 22.4        | 1.557             | 103.2       |
| Standard<br>Deviation | 11.176 | 7.44     | 16.175     | 3.183       | 0.388             | 14.322      |
|                       |        |          |            |             |                   |             |
| Houston<br>2014       |        |          |            |             |                   |             |
| Mean                  | 2.66   | 6.866    | 22.16      | 5.28        | 0.254             | 68.495      |
| Minimum               | 0      | 0        | 0          | 0           | 0                 | 19.5        |
| Maximum               | 351.9  | 97.8     | <u>9</u> 3 | 19.8        | 1.64              | 98.7        |
| Standard<br>Deviation | 9.526  | 7.163    | 15.52      | 2.99        | 0.376             | 14.26       |

Table 7-11 — Continued

|                        | Nitric | Nitrogen | Ozone  | Resultant   | Solar             | Temperature |
|------------------------|--------|----------|--------|-------------|-------------------|-------------|
|                        | oxide  | dioxide  | (ppb)  | wind speed  | Radiation         | (°F)        |
|                        | (ppb)  | (000)    |        | (mile/nour) | (Langleys/minute) |             |
| Angeles                |        |          |        |             |                   |             |
| 2010                   |        |          |        |             |                   |             |
| Mean                   | 11.864 | 17.779   | 25.534 | 4.967       | 0.284             | 61.528      |
| Minimum                | 0      | 0        | 0      | 2.01        | 0                 | 9           |
| Maximum                | 440    | 97       | 104    | 48.094      | 3.3475            | 113         |
| Standard<br>Deviation  | 27.154 | 12.677   | 16.738 | 3.1746      | 0.4348            | 11.904      |
|                        |        |          |        |             |                   |             |
| Los<br>Angeles<br>2011 |        |          |        |             |                   |             |
| Mean                   | 11.852 | 17.624   | 24.776 | 4.5536      | 0.307             | 61.744      |
| Minimum                | 0      | 0        | 0      | 2.0132      | 0                 | 23          |
| Maximum                | 417    | 110      | 111    | 70.016      | 1.5878            | 105         |
| Standard<br>Deviation  | 27.914 | 12.594   | 17.585 | 3.1545      | 0.429             | 11.72       |
|                        |        |          |        |             |                   |             |
| Los<br>Angeles<br>2012 |        |          |        |             |                   |             |
| Mean                   | 9.995  | 16.3     | 24.799 | 4.2267      | .224              | 63.479      |
| Minimum                | 0      | 0        | 0      | 0           | 0                 | 0           |
| Maximum                | 377    | 82       | 134    | 55.923      | 1.188             | 106.3       |
| Standard<br>Deviation  | 23.591 | 11.87    | 18.746 | 2.787       | 0.308             | 12.012      |
|                        |        |          |        |             |                   |             |
| Los<br>Angeles<br>2013 |        |          |        |             |                   |             |
| Mean                   | 9.87   | 16.207   | 27.38  | 4.37        | 0.31              | 62.59       |
| Minimum                | 0      | 0        | 0      | 0           | 0                 | 1           |
| Maximum                | 388    | 90       | 115    | 53.91       | 1.586             | 110         |
| Standard<br>Deviation  | 24.051 | 12.023   | 17.09  | 2.84        | 0.4317            | 12.109      |
|                        |        |          |        |             |                   |             |
| Los<br>Angeles<br>2014 |        |          |        |             |                   |             |
| Mean                   | 8.067  | 15.41    | 28.66  | 4.2878      | 0.322             | 65.778      |
| Minimum                | 0      | 0        | 2      | 0           | 0                 | 28          |
| Maximum                | 341    | 89       | 117    | 65.99       | 1.6694            | 104         |
| Standard<br>Deviation  | 20.16  | 11.89    | 17.78  | 2.7997      | 0.442             | 11.082      |

Table 7-11 — Continued

|                        | Nitric<br>oxide | Nitrogen<br>dioxide | Ozone<br>(ppb) | Resultant wind speed | Solar<br>Radiation | Temperature<br>( °F ) |
|------------------------|-----------------|---------------------|----------------|----------------------|--------------------|-----------------------|
|                        | (ppb)           | (ppb)               |                | (mile/hour)          | (Langleys/minute)  |                       |
| San<br>Joaquin<br>2010 |                 |                     |                |                      |                    |                       |
| Mean                   | 4.936           | 10.18               | 30.084         | 8.83                 | 0.294              | 61.411                |
| Minimum                | 0               | 0                   | 0              | 0                    | 0                  | 25                    |
| Maximum                | 258             | 82                  | 133            | 38.028               | 1.59               | 108                   |
| Standard<br>Deviation  | 12.07           | 7.645               | 22.327         | 6.76                 | 0.419              | 14.56                 |
| San<br>Joaquin<br>2011 |                 |                     |                |                      |                    |                       |
| Mean                   | 6.1             | 10.574              | 31.386         | 8.5                  | 0.301              | 60.848                |
| Minimum                | 0               | 0                   | 0              | 0                    | 0                  | 4                     |
| Maximum                | 683             | 62                  | 133            | 49.213               | 1.57               | 106                   |
| Standard<br>Deviation  | 15.129          | 7.922               | 23.082         | 6.74                 | 0.42               | 15.603                |
| San<br>Joaquin<br>2012 |                 |                     |                |                      |                    |                       |
| Mean                   | 5.51            | 10.41               | 34.3           | 9.14                 | 0.028              | 64.059                |
| Minimum                | 0               | 0                   | 1              | 0                    | 0                  | 23                    |
| Maximum                | 282             | 78                  | 124            | 46.976               | 1.05               | 108                   |
| Standard<br>Deviation  | 13.57           | 7.902               | 23.475         | 6.65                 | 0.13               | 15.317                |
|                        |                 |                     |                |                      |                    |                       |
| San<br>Joaquin<br>2013 |                 |                     |                |                      |                    |                       |
| Mean                   | 6.667           | 10.853              | 31.714         | 8.874                | 0.323              | 63.88                 |
| Minimum                | 0               | 0                   | 1              | 0                    | 0                  | 23                    |
| Maximum                | 219             | 118                 | 123            | 40.265               | 1.659              | 108                   |
| Standard<br>Deviation  | 15.814          | 8.669               | 22.972         | 6.62                 | 0.434              | 15.845                |
| San<br>Joaquin<br>2014 |                 |                     |                |                      |                    |                       |
| Mean                   | 4.91            | 9.951               | 34.08          | 8.7                  | 0.33               | 65.6                  |
| Minimum                | 0               | 0                   | 0              | 0                    | 0                  | 5                     |
| Maximum                | 234             | 67                  | 119            | 38.699               | 2.06               | 107                   |
| Standard<br>Deviation  | 12.382          | 8.17                | 23.68          | 6.01                 | 0.45               | 14.548                |

|                       | Nitric | Nitrogen | Ozone  | Resultant   | Solar<br>Radiation |        |
|-----------------------|--------|----------|--------|-------------|--------------------|--------|
|                       | (nnh)  | (nnb)    | (php)  | (mile/hour) | (Langlevs/minute)  | (Г)    |
| San Diego<br>2010     | (PP0)  | (PPD)    |        |             |                    |        |
| Mean                  | 8.25   | 13.548   | 40.75  | 5.786       | 0.305              | 61.344 |
| Minimum               | 0      | 0        | 1      | 0           | 0                  | 29     |
| Maximum               | 390    | 91       | 105    | 49.2        | 2.09               | 109    |
| Standard<br>Deviation | 19.72  | 10.39    | 14.01  | 6.03        | 0.433              | 9.32   |
|                       |        |          |        |             |                    |        |
| San Diego<br>2011     |        |          |        |             |                    |        |
| Mean                  | 8.46   | 12.988   | 40.927 | 4.38        | 0.322              | 61.56  |
| Minimum               | 0      | 0        | 1      | 0           | 0                  | 30     |
| Maximum               | 405    | 100      | 114    | 42.5        | 1.927              | 102    |
| Standard<br>Deviation | 20.14  | 10.5     | 14.647 | 5.2         | 0.448              | 9.85   |
|                       |        |          |        |             |                    |        |
| San Diego<br>2012     |        |          |        |             |                    |        |
| Mean                  | 7.37   | 12.465   | 40.814 | 4.06        | 0.31               | 63.09  |
| Minimum               | 0      | 0        | 2      | 0           | 0                  | 31     |
| Maximum               | 447    | 77       | 101    | 24.6        | 1.66               | 106    |
| Standard<br>Deviation | 18.467 | 10.053   | 14.62  | 4.55        | 0.437              | 10.424 |
|                       |        |          |        |             |                    |        |
| San Diego<br>2013     |        |          |        |             |                    |        |
| Mean                  | 7.26   | 12.224   | 42.545 | 4.433       | 0.311              | 62.88  |
| Minimum               | 0      | 0        | 5      | 0           | 0                  | 30     |
| Maximum               | 501    | 91       | 95     | 22.369      | 1.51               | 102    |
| Standard<br>Deviation | 18.987 | 10.677   | 13.554 | 4.62        | 0.43               | 10.27  |
|                       |        |          |        |             |                    |        |
| San Diego<br>2014     |        |          |        |             |                    |        |
| Mean                  | 4.66   | 10.722   | 43.944 | 4.374       | 0.317              | 66.043 |
| Minimum               | 0      | 0        | 5      | 0           | 0                  | 23     |
| Maximum               | 329    | 87       | 92     | 34.67       | 1.52               | 108    |
| Standard<br>Deviation | 13.538 | 9.918    | 13.872 | 4.7         | 0.43               | 10.263 |

Table 7-11 — Continued

Table 7-12 Statistical properties of annual hourly pollutant and meteorological parameters

|                       | Nitric | Nitrogen | Ozone  | Resultant   | Solar             | Temperature |
|-----------------------|--------|----------|--------|-------------|-------------------|-------------|
|                       | oxide  | dioxide  | (ppb)  | wind speed  | Radiation         | (°F)        |
|                       | (ppb)  | (ppb)    |        | (mile/hour) | (Langleys/minute) |             |
| Dallas                |        |          |        |             |                   |             |
| Fort                  |        |          |        |             |                   |             |
| worth                 | 4.00   | 0.07     | 07.04  | 0.07        | 0.00              | 05.74       |
| Iviean                | 1.83   | 6.97     | 27.21  | 6.67        | 0.28              | 65.74       |
| Minimum               | 0      | 0        | 0      | 0.08        | 0                 | 11.15       |
| Maximum               | 283.52 | 69.08    | 110.75 | 31.33       | 1.59              | 107.80      |
| Deviation             | 7.41   | 7.34     | 16.81  | 4.44        | 0.40              | 19.57       |
|                       |        |          |        |             |                   |             |
| Houston               |        |          |        |             |                   |             |
| Mean                  | 3.04   | 7.78     | 23.79  | 5.36        | 0.27              | 70.34       |
| Minimum               | 0      | 0        | 0      | 0           | 0                 | 23.3        |
| Maximum               | 371.57 | 92.13    | 117.50 | 20.98       | 1.65              | 103.57      |
| Standard<br>Deviation | 11.32  | 7.57     | 17.30  | 3.21        | 0.39              | 14.29       |
|                       |        |          |        |             |                   |             |
| Los<br>Angeles        |        |          |        |             |                   |             |
| Mean                  | 10.90  | 16.98    | 25.62  | 4.53        | 0.28              | 62.34       |
| Minimum               | 0      | 0        | 0      | 1.01        | 0                 | 7.25        |
| Maximum               | 405.5  | 94.75    | 116.0  | 56.99       | 1.95              | 108.58      |
| Standard              | 25.69  | 12 20    | 17 54  | 2.00        | 0.51              | 11.04       |
| Deviation             | 25.00  | 12.29    | 17.54  | 2.99        | 0.51              | 11.94       |
|                       |        |          |        |             |                   |             |
| San                   |        |          |        |             |                   |             |
| Joaquin               | E 01   | 10 51    | 21.07  | 0.04        | 0.24              | 60.55       |
| Minimauro             | 0.0    | 10.51    | 31.07  | 0.04        | 0.24              | 02.00       |
| Maximum               | 0      | 0        | 100.05 | 12.62       | 0                 | 10.75       |
|                       | 360.50 | 85.00    | 128.25 | 43.02       | 1.47              | 107.50      |
| Deviation             | 14.15  | 8.03     | 22.96  | 6.69        | 0.35              | 15.33       |
| 0                     |        |          |        |             |                   |             |
| San<br>Diego          |        |          |        |             |                   |             |
| Mean                  | 7.84   | 12.81    | 41.26  | 4.67        | 0.31              | 62.22       |
| Minimum               | 0      | 0        | 2.25   | 0           | 0                 | 30.0        |
| Maximum               | 435.75 | 89.75    | 103.75 | 34.67       | 1.8               | 104.75      |
| Standard<br>Deviation | 19.33  | 10.42    | 14.21  | 5.12        | 0.44              | 9.97        |

in five regions used in training and validation averaged over the years (2010-2013).

Conclusions based on Tall file approach results (Table 7-1, 7-2, and 7-3), Table 7-11, Table 7-12, and Appendix C (monitoring site maps):

- Monitoring sites from Los Angeles and San Joaquin (that are classified as extreme based on 8-hour ozone non attainment classifications by USEPA) were poorly predicted when compared to the predicted sites in San Diego (marginal), Houston (marginal) and Dallas Fort Worth (moderate). See Tables 7-1 to Table 7-3. This indicates that extreme non attainment areas might not be properly predicted using the tall file approach.
- Based on the tall file results and annual ozone summary data (from California Environmental Protection Agency Air Resources Board), shown in Table 7-10, the sites from Los Angeles have more exceedance days based on 8-hour ozone national standard (75 ppb) in the year 2014 that was used as testing data, compared to the years used to develop the model (2010-2013). This could explain why the neural network model did not perform as well in predicting ozone concentrations for Los Angeles.
- The average of standard deviation of annual ozone concentration from 2010-2013 from SanJoaquin (22.96 ppb) is high. This indicates large variability in ozone concentration across the monitoring sites in the San Joaquin Valley region was and a possible reason for poor ozone prediction results.
- The number of exceedance days in 2014 in Los Angeles county sites are: Azusa (11 days), Glendora Laurel (38 days), Lancaster Lancaster 43301 Division Street (17 days), and Santa Clarita (45 days). These sites showed poorer performance compared to other sites , Pasadena S- Wison Avenue (7 days), West Los Angeles-VA Hospital (4 days), Compton (2 days), and North Main Street (2 days) in Los Angeles. Only Pomona was an exception (33 days).

- The number of exceedance days in 2014 in San Joaquin valley sites are: Clovis-N Villa Avenue (56 days), Fresno-Sierra Skypark # 2 (32 days), Shafter Walker Street (11 days), Merced - S Coffee Avenue (22 days), Turlock-S Minaret Street (12 days), Visalia- N Church (10 days). These sites showed poorer performance compared to other sites, Tracy Airport (8 days) and Stockton-Hazelton (1 day) in San Joaquin valley.
- The number of exceedance days in 2014 in San Diego sites are Alpine- Victoria Drive (10 days), and Escondido- E Valley Parkway ( 5 days). These sites showed poorer performance compared to other sites, Kearny Villa Road (1 days), Chula Vista (0 days), El Cajon-Redwood Avenue (0 days), 1110 Beardsley Street (0 days), and Otay Mesa-Paseo International (0 days) in San Diego.
- The following sites that were relatively far from the remaining sites in the respective regions and where the tall file approach did not work better are as follows (See Appendix C – Monitoring site maps):
  - Corsicana airport (Dallas Fort Worth region)
  - o Conroe (Relocated) (Houston-Galveston-Brazoria region)
  - Lancaster 43301 Division Street, Santa Clarita (Los Angeles)
  - Escondido-E Valley Parkway (San Diego)
- The comprehensive ground level ozone forecasting model using the neural network MLP-HWOMOLF should be able to be used for any region with meteorological parameters falling in the ranges given in Table 7.12, or with NO values up to 436 ppb, NO<sub>2</sub> values up to 95 ppb, ozone values up to 128 ppb, wind speeds up to 57.0 mph, solar radiation up to 1.95 Langleys/minute, and temperatures ranging from 7 to 109°F.

#### 7.2 Comparison Work

Comparison work was done to show the better performance of the MLP-HWOMOLF over

other neural networks.

Comparison work 1 - Riuz's approximate methodology

Description of methodology adopted by Riuz:

• Number of inputs: 10 (daily mean values of input variables of temperature, NO,

NO<sub>x</sub>, NO<sub>2</sub>, ozone, wind speed, wind direction, solar radiation, carbon monoxide of

the previous day, previous day daily maximum ozone).

- Data collected from the years 1999, 2000, 2002, 2003, and 2004.
- No temporal inputs included and missing values removed.
- Data from all the years randomly divided into training, validation, and testing in the ratio (65:5:30) five times and best results noted.

|   | Riuz's Methodology (MLP-LM) (Neural Network Toolbox)<br>Testing RMSE(ppb) | HWO-MOLF<br>(Testing RMSE) (ppb) |
|---|---------------------------------------------------------------------------|----------------------------------|
| 1 | Testing RMSE: 16.37                                                       | Testing RMSE: 15.03              |
| 2 | Testing RMSE: 15.029                                                      | Testing RMSE: 14.727             |
| 3 | Testing RMSE: 15.874                                                      | Testing RMSE: 14.89              |
| 4 | Testing RMSE: 14.93                                                       | Testing RMSE: 14.28              |
| 5 | Testing RMSE: 14.38                                                       | Testing RMSE: 13.85              |

Description of methodology 2: (difference in preprocessing the data)).

- Inclusion of temporal variables in continuous format
- $\operatorname{Cos}(\frac{2\pi}{365} \times DOY)$ ,  $\operatorname{Sin}(\frac{2\pi}{365} \times DOY)$  for non leap year and  $\operatorname{Cos}(\frac{2\pi}{366} \times DOY)$ ,

 $\operatorname{Sin}(\frac{2\pi}{366} \times DOY)$  for leap year.  $\operatorname{Cos}(\frac{2\pi}{7} \times DOW)$ ,  $\operatorname{Sin}(\frac{2\pi}{7} \times DOW)$  that represent the

day of the week. (X\_{WS}  $\cdot$  Cos(X\_{WD})), and (X\_{WS}  $\cdot$  Sin(X\_{WD})) to account for continuity

in wind speed and direction.

• Data collected from the years 1999, 2000, 2002, 2003, and 2004.

- Linearly interpolating missing values and using lagged inputs.
- Data from all the years randomly divided into training, validation, and testing in

the ratio (65:5:30) five times and best results noted

|   | Riuz's Methodology     | HWO-MOLF             |
|---|------------------------|----------------------|
|   | Testing RMSE(ppb)      |                      |
| 1 | Testing RMSE : 17.6918 | Testing RMSE : 17.08 |
| 2 | Testing RMSE : 26.85   | Testing RMSE : 15.14 |
| 3 | Testing RMSE : 20.51   | Testing RMSE : 16.46 |
| 4 | Testing RMSE : 20.2731 | Testing RMSE : 15.39 |
| 5 | Testing RMSE : 17.1756 | Testing RMSE : 14.49 |

Description of methodology 3: (difference in preprocessing the data and data division)

- Inclusion of temporal variables in continuous format
- $\operatorname{Cos}(\frac{2\pi}{365} \times DOY)$ ,  $\operatorname{Sin}(\frac{2\pi}{365} \times DOY)$  for non leap year and  $\operatorname{Cos}(\frac{2\pi}{366} \times DOY)$ ,

 $\operatorname{Sin}(\frac{2\pi}{366} \times DOY)$  for leap year.  $\operatorname{Cos}(\frac{2\pi}{7} \times DOW)$ ,  $\operatorname{Sin}(\frac{2\pi}{7} \times DOW)$  that represent the

day of the week. (X\_{WS}  $\cdot$  Cos(X\_{WD})), and (X\_{WS}  $\cdot$  Sin(X\_{WD})) to account for continuity

in wind speed and direction.

- Data collected from the years 1999, 2000, 2002, 2003, and 2004.
- Linearly interpolating missing values and using lagged inputs.
- Data from all the years randomly divided into training, validation, and testing in

the ratio (3:1:1) five times and best results noted.

|   | Riuz's Methodology                | HWO-MOLF              |
|---|-----------------------------------|-----------------------|
|   | (MLP-LM) (Neural Network Toolbox) | (Testing RMSE)        |
|   | Testing RMSE(ppb)                 | (ppb)                 |
| 1 | Testing RMSE : 22.20              | Testing RMSE : 17.01  |
| 2 | Testing RMSE : 17.57              | Testing RMSE : 16.03  |
| 3 | Testing RMSE : 17.32              | Testing RMSE : 14.278 |
| 4 | Testing RMSE : 15.06              | Testing RMSE : 15.62  |
| 5 | Testing RMSE : 23.53              | Testing RMSE : 16.58  |

Description of methodology 4: (difference in preprocessing the data and data

division and using feature selection)

• Inclusion of temporal variables in continuous format

 $\cos(\frac{2\pi}{365} \times DOY)$ ,  $\sin(\frac{2\pi}{365} \times DOY)$  for non leap year and  $\cos(\frac{2\pi}{366} \times DOY)$ ,  $\sin(\frac{2\pi}{366} \times DOY)$  for leap year.  $\cos(\frac{2\pi}{7} \times DOW)$ ,  $\sin(\frac{2\pi}{7} \times DOW)$  that represent the day of the week.

- (X<sub>WS</sub> · Cos(X<sub>WD</sub>)), and (X<sub>WS</sub> · Sin(X<sub>WD</sub>)) to account for continuity in wind speed and direction.
- Data collected from the years 1999, 2000, 2002, 2003, and 2004.
- Linearly interpolating missing values, using lagged inputs.
- Training and validation data is made up in the ratio (3:1) by randomly dividing data from the years 1999, 2000, 2002, 2003. The testing data is 2004 data.

|   | Riuz's Methodology                | HWO-MOLF              |
|---|-----------------------------------|-----------------------|
|   | (MLP-LM) (Neural Network Toolbox) | (Testing RMSE)        |
|   | Testing RMSE(ppb)                 | (ppb)                 |
| 1 | Testing RMSE : 13.44              | Testing RMSE : 11.618 |
| 2 | Testing RMSE : 19.84              | Testing RMSE : 11.952 |
| 3 | Testing RMSE : 13.78              | Testing RMSE : 11.63  |
| 4 | Testing RMSE : 16.4               | Testing RMSE : 11.623 |
| 5 | Testing RMSE : 19.307             | Testing RMSE : 11.632 |

Comparison work 2 – Prybutok's approximate methodology

Description of methodology adopted by Prybutok:

• Variables considered: hourly ozone, carbon dioxide (CO<sub>2</sub>), nitric oxide (NO),

nitrogen dioxide (NO<sub>2</sub>), oxides of nitrogen (NO<sub>x</sub>), temperature, wind speed and

wind direction during the period (June 1-Oct 10) 1994, near Aldine, Houston

(chosen). No temporal inputs included.

- Hourly data collected from the summer months (June 1, 1994-September 30, 1994) divided into training and validation in the ratio 4:1 randomly.
- Testing data (October 1- October 10, 1994).

- Algorithm used: multilayer perceptron based on Levenberg Marquardt (MLP-LM)
- Inputs in the pattern file :
  - (1)  $X_1$  = dummy variable (holidays vs working days)
  - (2)  $X_2$  = hourly ozone level at 9 am
  - (3) X<sub>3</sub> = actual maximum daily temperature
  - (4)  $X_4$  = average concentration of CO<sub>2</sub> between 6:00 am and 9:00 am

on the day of interest

- (5) X<sub>5</sub> = average concentration of NO between 6:00 am and 9:00 am on the day of interest
- (6) X<sub>6</sub> = average concentration of NO<sub>2</sub> between 6:00 am and 9:00 am on the day of interest
- (7) X<sub>7</sub> = average concentration of oxides of nitrogen between 6:00 am and 9:00 am on the day of interest
- (8) X<sub>8</sub> = average concentration of wind speed between 6:00 am and 9:00 am on the day of interest
- (9) X<sub>9</sub> = average concentration of wind direction between 6:00 am and 9:00 am on the day of interest
- Output: daily maximum ozone.

Results: One day ahead daily maximum ozone prediction

| Neural network                    | One day ahead daily maximum ozone<br>(RMSE) |
|-----------------------------------|---------------------------------------------|
| MLP- LM (Neural Network Tool box) | 19.57 ppb                                   |
| MLP (HWO-MOLF)                    | 18.76 ppb                                   |

| Neural network                   | One day ahead daily maximum ozone<br>(RMSE) |
|----------------------------------|---------------------------------------------|
| MLP- LM (Neural Network Toolbox) | 16.58 ppb                                   |
| MLP (HWO-MOLF)                   | 16.29 ppb                                   |

After applying feature selection (PLOFS) results improved as shown below

Conclusion: Our methodology and MLP-HWOMOLF improve results and perform better than Prybutok's methodology and MLP-LM. Use of KLT did not help both the networks.

Comparison work 3 – Comrie's approximate methodology

- Inputs considered (1 hour ozone maximum from previous day, daily maximum temperature, average daily dew point temperature, average daily wind speed, mean UV radiation. No time inputs used.
- May- September data from 1991-1995, DeKalb Jr. College, Atlanta, Georgia.
- Data randomly divided in the ratio of 50:15:35 without following chronological order

| Neural network                   | One day ahead daily maximum ozone (RMSE) |
|----------------------------------|------------------------------------------|
| MLP- LM (Neural Network Toolbox) | 18.24 ppb                                |
| MLP (HWO-MOLF)                   | 17.88 ppb                                |

Improved methodology after inclusion of time inputs and PLOFS

| Neural network                   | One day ahead daily maximum ozone<br>(RMSE) |
|----------------------------------|---------------------------------------------|
| MLP- LM (Neural Network Toolbox) | 16.67 ppb                                   |
| MLP (HWO-MOLF)                   | 16.545 ppb                                  |

Conclusion: Our methodology and MLP-HWOMOLF improve results and perform better than Comrie's methodology and MLP-LM. Use of KLT did not help both the

networks.

#### Chapter 8

#### Final Conclusions & Future Work

### 8.1 Final Conclusions

This work represents the first neural network developed to forecast ozone in multiple regions, as well as at multiple sites in the same region. Previous studies have developed separate neural network models to forecast ozone at each location. The following conclusions can be drawn from the work presented here:

- Tall file approach helps better prediction as it helped most of the monitoring sites.
- The tall file approach didn't perform well in Los Angeles (based on the results from PLOFS) and San Joaquin (based on the results without feature selection, PLOFS and KLT). Both Los Angeles and San Joaquin are designated as "extreme" ozone non-attainment areas by EPA indicating that the current model might not predict well for extreme ozone pollutant levels. The results could be improved if more stations from these two cities are included in making the tall data files.
- The comprehensive ground level ozone forecasting model using the neural network MLP-HWOMOLF with the aid of two stage feature selection (PLOFS and KLT) could predict
  - ✓ one day ahead daily maximum ozone in the range of 5.29 ppb to 10.9 ppb.
  - $\checkmark$  two day ahead daily maximum ozone in the range of 6.53 ppb to 12.42 ppb.
  - three day ahead daily maximum ozone in the range of 6.93 ppb to 13.44 ppb.
- Median approach cannot be site specific and might not be reliable as they do not truly represent any particular site.

• MLP-HWOMOLF proves to be better network compared to other networks trained with different algorithms based on the comparison work.

8.2 Recommendations for Future Work

The following are recommendataions for future work:

- To determine the statistical significance of the tall file approach results.
- To check the prediction performance of the tall file ozone neural network forecasting system based on testing data from a site not used in the training of the tall file approach (i.e., testing data from a monitoring site not picked from these 50 sites in this study).
- To evaluate whether the inclusion of more San Joaquin sites in model development help improve prediction performance in the San Joaquin region.
- To compare the developed NN model to current models (e.g., TCEQ regression models) used for ozone forecasting.
- To develop similar neural network forecasting models for other pollutants.

Appendix A

Literature Review

| Author(s)<br>(Year)                             | Study<br>Location                                                                                                                                                    | Air<br>Pollutant(s                                                               | Predictor Variables                                                                                                                                                                                                                                                                                                          | Year<br>s of<br>data | Model                                                                                                                                                                          | Model<br>Performance<br>Comparison                           |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Sekar et<br>al.<br>(2015) <sup>103</sup>        | Pollutant data<br>from a heavy<br>traffic<br>intersection,<br>and<br>meteorological<br>data from<br>Safdarjung<br>station in Delhi,<br>India.                        | Hourly<br>ozone(O <sub>3</sub> ),<br>oxides of<br>nitrogen<br>(NO <sub>X</sub> ) | O <sub>3</sub> , NO <sub>X</sub> , traffic data,<br>atmospheric pressure (P),<br>temperature (OT), wind<br>speed (WS) wind direction<br>(WD), cloud cover (CC),<br>sunshine, rainfall, stability<br>class, mixing height,<br>visibility, solar insolation,<br>temporal variables: day of<br>the week and time of the<br>day. | 2008<br><br>2010     | Multilayer<br>perceptron using<br>Levenberg-<br>Marquardt (MLP-LM)<br>Algorithm,<br>Decision tree<br>algorithms: reduced<br>error pruning tree<br>(REPTree), and M5<br>P tree. | MP 5 tree<br>performed better<br>than MLP-LM and<br>REPTree. |
| de Souza<br>et al.<br>(2015) <sup>110</sup>     | Campo Grande,<br>Brazil                                                                                                                                              | Hourly O <sub>3</sub>                                                            | O <sub>3</sub> , maximum OT, RH, WS,<br>and precipitation.                                                                                                                                                                                                                                                                   | 2004<br>-<br>2010    | Multilayer<br>perceptron using<br>back propagation<br>(MLP-BP)                                                                                                                 |                                                              |
| Biancofior<br>e et al.<br>(2014) <sup>101</sup> | Pescara in<br>Central Italy                                                                                                                                          | Hourly O <sub>3</sub><br>(up to 48<br>hours)                                     | O <sub>3</sub> , nitrogen dioxide (NO <sub>2</sub> ),<br>OT, relative humidity (RH),<br>WS, WD and ultraviolet<br>radiation.                                                                                                                                                                                                 | 2005                 | Recurrent MLP<br>(ELMAN network),<br>multiple linear<br>regression (MLR)                                                                                                       | ELMAN recurrent<br>network performed<br>better than MLR.     |
| Tamas et<br>al.<br>(2014) <sup>104</sup>        | Urban and<br>suburban<br>stations<br>(Canetto,<br>Sposata) in<br>Ajaccio, and<br>(Giraud,<br>Montesoro) in<br>Bastia from the<br>French island of<br>Corsica, France | 24 hour<br>ahead O <sub>3</sub>                                                  | $O_3$ , $NO_2$ , wind force, WD, global SR, OT, precipitation, and hour of the day. Cos ( $2\pi$ h/24), sin ( $2\pi$ h/24), and weekday number.                                                                                                                                                                              | 2008<br>-<br>2012    | MLP-LM,<br>persistence models                                                                                                                                                  | MLP-LM<br>performed better<br>than persistence<br>models.    |
| Luna et al.<br>(2014) <sup>67</sup>             | Mobile<br>automatic<br>monitoring                                                                                                                                    | Hourly O <sub>3</sub>                                                            | Hourly $O_3$ , nitric oxide<br>(NO), NO <sub>x</sub> and NO <sub>2</sub> , solar<br>radiation (SR), scalar WS,                                                                                                                                                                                                               | 2011<br>and<br>2012. | MLP-LM, Support<br>Vector Machines<br>(SVMs) SVMs. PCA                                                                                                                         | SVM's and MLP-<br>LM performance<br>was remarkably           |

|                                          | station at<br>Pontifical<br>Catholic<br>University, and<br>Rio de Janeiro<br>State University<br>in the city of Rio<br>de Janeiro,<br>Brazil. |                                                                                                                                            | carbon monoxide (CO),<br>moisture content in the air.                                                                                                                                                                                                                                                    |                                 | was used for<br>dimension reduction.                                                | close.                                                                                                  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Zahedi<br>(2014) <sup>69</sup>           | Mobile station<br>at Shuaiba<br>industrial area<br>in Kuwait.                                                                                 | O <sub>3</sub>                                                                                                                             | $O_3$ , WS, WD, RH, OT, SR,<br>methane, CO, CO <sub>2</sub> , NO,<br>NO <sub>2</sub> , SO <sub>2</sub> , non-CH <sub>4</sub><br>hydrocarbons, dust.                                                                                                                                                      | Marc<br>h and<br>April<br>1995. | (Sugeno-Takagi-<br>Gang fuzzy<br>inference and hybrid<br>algorithm), and<br>MLP-BP. | (Sugeno-Takagi-<br>Gang fuzzy<br>inference and<br>hybrid algorithm)<br>performed better<br>than MLP-BP. |
| Alkasassb<br>eh<br>(2013) <sup>68</sup>  | Chenbagarama<br>nputhur in<br>Kanyakumari<br>district, India.                                                                                 | O <sub>3</sub>                                                                                                                             | Seven readings per day for ozone, two readings per day for NO <sub>2</sub> .                                                                                                                                                                                                                             | May–<br>July<br>2009.           | Radial Basis<br>Function (RBF),<br>SVMs, MLP-BP.                                    | RBF's performed<br>better than SVM'S<br>and SVM's<br>performed better<br>than MLP-BP.                   |
| Arhami et<br>al.<br>(2013) <sup>71</sup> | Fatemi Station,<br>Iran.                                                                                                                      | Hourly CO,<br>NO <sub>X</sub> , NO <sub>2</sub> ,<br>NO, O <sub>3</sub> ,<br>particulate<br>matter of<br>10 $\mu$ m<br>(PM <sub>10</sub> ) | Hourly CO, NO <sub>X</sub> , NO, NO <sub>2</sub> ,<br>O <sub>3</sub> , PM <sub>10</sub> , air OT, wet bulb<br>OT, CC, RH, WS, WD, P,<br>vapor pressure, visibility<br>code, and temporal<br>variables cos ( $2\pi$ h/24),<br>cos ( $2\pi$ m/12), where h =<br>hour of the day, m = month<br>of the year. | 2009                            | MLP-BP coupled<br>with Monte Carlo<br>simulation.                                   |                                                                                                         |
| Pires et al.<br>(2012) <sup>102</sup>    | Oporto, North<br>Portugal                                                                                                                     | One day<br>ahead<br>hourly<br>average O <sub>3</sub>                                                                                       | Hourly CO, NO, NO <sub>2</sub> , O <sub>3</sub> ,<br>OT, RH, SR, WS.                                                                                                                                                                                                                                     | May–<br>Augu<br>st<br>2004      | MLP-BP aided with<br>Genetic Algorithms<br>(GA)                                     |                                                                                                         |
| Kandya et<br>al.<br>(2012) <sup>86</sup> | Monitoring site<br>located at<br>Indian Institute                                                                                             | 8-hourly averaged $O_3$ .                                                                                                                  | 8-hourly averaged values $O_3$ , NO, NO <sub>2</sub> , SO <sub>2</sub> , CO, P, respirable suspended                                                                                                                                                                                                     | Sept.<br>2008<br>-              | MLP-BP                                                                              |                                                                                                         |

|                                                           | of Madras<br>Madras, India.                                                                                                                                                                                              |                                                                             | particulate matter,<br>hydrocarbons, WS, WD,<br>solar intensity.                                               | Marc<br>h<br>2010.                       |                                                                                                                    |                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paoli et al.<br>(2011) <sup>72</sup>                      | Suburban<br>station at<br>Sposata<br>located near<br>Ajaccio on the<br>island of<br>Corsica, France                                                                                                                      | One hour<br>ahead O <sub>3.</sub>                                           | Hourly $O_3$ , $NO_2$ , WS, WD,<br>OT, RH, hour of the day,<br>and day of the month, and<br>month of the year. | Octo<br>ber<br>2007<br>–<br>May<br>2010. | MLP-LM                                                                                                             |                                                                                                                                                                                                                                                                                                      |
| Taormina<br>et al.<br>(2011) <sup>73</sup>                | Pollutant data<br>from Harlington<br>station, London<br>Hillington-<br>Harlington<br>(Heathrow<br>airport zone)<br>and<br>meteorological<br>daily data from<br>a monitoring<br>station located<br>in Heathrow<br>airport | Daily<br>maximum<br>hourly O <sub>3</sub>                                   | Hourly CO, NO, NO <sub>2</sub> , NO <sub>X</sub> ,<br>O <sub>3</sub> , SR.                                     | 2004<br><br>2009.                        | MLP-LM,<br>Persistence method                                                                                      | Results improved<br>when the optimal<br>model returned by<br>MLP-LM was<br>employed on test<br>data after<br>dynamically<br>updating the<br>weights using an<br>adaptive neural<br>network based on<br>back propagation.<br>Also, forecasting<br>prediction was<br>better than<br>persistence model. |
| Ibarra-<br>Berastegi<br>et al.<br>(2009)<br><sup>75</sup> | Six locations in<br>Bilbao, Spain                                                                                                                                                                                        | Hourly $SO_2$ , $CO$ , $NO_2$ , $NO$ , and up to 8 hour ahead eight $O_3$ . | Hourly traffic data, WS,<br>WD, pollutants- SO <sub>2</sub> , CO,<br>NO <sub>2</sub> , NO, O <sub>3</sub>      | 2000<br>and<br>2001.                     | MLP-BP, MLP-LM,<br>and generalized<br>regression neural<br>network (GRNN),<br>linear models,<br>persistence models | Performance of 4<br>out of 24 cases<br>showed that<br>persistence<br>models<br>outperformed<br>other models, 13<br>out of 24 cases<br>linear models<br>performed better                                                                                                                              |

|                                                 |                                                         |                                                       |                                                                                                             |                                      |                                                                                                                                                                                                                                                                               | than any other<br>model, in 6 out of<br>24 cases non-<br>linear models<br>performed better,<br>and in one case,<br>RBF outperformed<br>other models.                                                                                   |
|-------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salcedo-<br>Sanz et al.<br>(2009) <sup>30</sup> | 27 monitoring<br>stations in<br>Madrid, Spain           | Hourly O <sub>3</sub> ,<br>NO <sub>X</sub>            | Hourly O <sub>3</sub> , NO <sub>X</sub>                                                                     | 2002<br>-<br>2007.                   | Gaussian RBF and<br>evolutionary based<br>RBF.                                                                                                                                                                                                                                | Evolutionary<br>based RBF<br>showed better<br>performance<br>compared to other<br>RBFs. Results<br>from evolutionary<br>based RBFs used<br>as initial points in<br>developing Land<br>Use regression<br>models with the<br>aid of GIS. |
| Coman et<br>al.<br>(2008) <sup>58</sup>         | Prunay,<br>Aubervilliers<br>stations, Paris,<br>France. | Hourly O <sub>3</sub><br>for a 24-<br>hour<br>horizon | Hourly O <sub>3</sub> , NO <sub>2</sub> , RH, T, SR,<br>sunshine duration, WS,<br>sin(2πh/24), cos(2πh/24). | Augu<br>st<br>2000<br>–July<br>2001. | A "static" MLP (A<br>single MLP) and a<br>"dynamic" MLP (a<br>cascade of 24<br>MLPs, each MLP<br>feeds the following<br>MLP) based on two<br>training algorithms<br>(MLP-SCG) and<br>limited memory<br>Broyden, Fletcher,<br>Goldfarb, and<br>Sahanno (BFGS)<br>quasi-Newton. | Static model<br>performed little bit<br>better than<br>dynamic model<br>and persistence<br>model. Results<br>showed similar<br>levels of<br>performance when<br>the two trained<br>with MLP-SCG<br>and MLP- BFGS<br>algorithms.        |
| Salazur-                                        | Mexicali                                                | Daily                                                 | Daily mean, and mean of                                                                                     | 1999                                 | A persistence                                                                                                                                                                                                                                                                 | Prediction                                                                                                                                                                                                                             |

| Ruiz et al<br>(2008) <sup>22</sup>  | (Mexico)-<br>Calexico<br>(California, US)<br>border area                                                                        | maximum<br>hourly O <sub>3.</sub>          | first six hours of the day of $O_3$ , OT, NO <sub>2</sub> , NO, CO, resultant WS, and RH.     | -<br>2004<br>(excl<br>uding<br>2001<br>)  | model, multilinear<br>regression model,<br>semi parametric<br>ridge regression<br>model, a MLP-BP<br>model, an ELMAN<br>recurrent neural<br>network model and<br>an SVM model.                          | performance of the<br>artificial<br>intelligence (AI)<br>based models was<br>better than the<br>linear models, and<br>among the AI<br>based models,<br>MLP-BP showed<br>better performance<br>than the ELMAN<br>network and the<br>SVM; the ELMAN<br>network performed<br>better than the<br>SVM. |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liu<br>(2007) <sup>79</sup>         | Ta-Liao at<br>Kaohsiung in<br>Taiwan                                                                                            | Daily<br>maximum<br>hourly O <sub>3.</sub> | Maximum OT, dew OT, PM <sub>10</sub> , WS, WD, sunshine, O <sub>3</sub> , and NO <sub>X</sub> | 1997<br>-<br>2001.                        | Box-Jenkins<br>univariate<br>autoregressive<br>integrated moving<br>average (ARIMA),<br>regression with time-<br>series error (RTSE)<br>models; PCA was<br>used in the<br>development of<br>RTSE model. | RTSE model with<br>PCA is superior to<br>ARIMA, RTSE<br>models.                                                                                                                                                                                                                                   |
| Dutot et<br>al. (2007) <sup>8</sup> | Three<br>monitoring<br>stations<br>namely,<br>Prefecture, La<br>Source and<br>Saint Jean de<br>Braye in the<br>city of Orleans, | Daily<br>maximum<br>hourly O <sub>3.</sub> | Cloudiness, rainfall, WS,<br>WD, OT gradient, and O <sub>3.</sub>                             | April<br>–<br>Sept.<br>1999<br>–<br>2003. | Linear model,<br>deterministic model,<br>persistence model,<br>MLP-LM.                                                                                                                                  | Real time neural<br>network model,<br>NEUROZONE,<br>performed better<br>than linear model,<br>deterministic<br>model, and<br>persistence model.                                                                                                                                                   |

|                                         | France                                                                                                                                                                            |                                            |                                                                                                                                                                       |                    |                                                                                                                                                                                                                                                                             |                                                                                                                                                                           |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sousa et<br>al.<br>(2007) <sup>16</sup> | A monitoring<br>site in Oporto,<br>Northern<br>Portugal.                                                                                                                          | Hourly O <sub>3.</sub>                     | NO, NO <sub>2</sub> , O <sub>3</sub> , OT, RH, wind velocity.                                                                                                         | July<br>2003.      | MLR, MLP-BP<br>model based on<br>original data,<br>principal component<br>regression and MLP-<br>BP based on<br>principal<br>components.                                                                                                                                    | MLP-BP based on<br>principal<br>components, MLP-<br>BP on original data<br>showed better<br>accuracy<br>prediction<br>compared to the<br>two linear<br>regression models. |
| Lu et al.<br>(2006) <sup>108</sup>      | Four air quality<br>stations (Cutin,<br>Chungming,<br>Chiayi, and<br>Chianjin) and<br>meteorological<br>stations (Taipei,<br>Taichung,<br>Chiayi, and<br>Kaohsuing) in<br>Taiwan. | Hourly O <sub>3.</sub>                     | Hourly average O <sub>3</sub> , CO,<br>NO <sub>x</sub> , SO <sub>2</sub> , PM <sub>10</sub> , WS, WD,<br>OT, average P, RH, CC,<br>precipitation, global<br>radiation | 1998<br>–<br>2002. | MLP based on two<br>stage clustering<br>(unsupervised self-<br>organizing map<br>neural network<br>(SOM) followed by<br>K- means<br>clustering),<br>multilinear<br>regression (MLR).<br>PCA used to obtain<br>component scores of<br>eigen values used<br>as inputs in SOM. | MLP based on two<br>stage clustering<br>performed better<br>than MLP, MLR<br>and two level<br>clustering followed<br>by MLR.                                              |
| Wang et<br>al.<br>(2006) <sup>21</sup>  | Two stations:<br>Tseun Wan,<br>and Tung<br>Chung in Hong<br>Kong                                                                                                                  | Daily<br>maximum<br>hourly O <sub>3.</sub> | NO <sub>2</sub> , NO <sub>X</sub> , NO, CO, OT,<br>SR, WS and temporal<br>variable (day of the year).                                                                 | 2000<br>-<br>2003. | MLP based on<br>synergistically<br>coupled particle<br>swarm optimization<br>(PSO) and<br>Levenberg-<br>Marquardt (LM)<br>algorithm, (MLP-<br>PSO-LM).                                                                                                                      | MLP-PSO-LM<br>performed better<br>than MLP-LM, and<br>MLP-PSO.                                                                                                            |
| Paster-<br>Barcenas                     | A rural monitoring                                                                                                                                                                | Hourly O <sub>3.</sub>                     | NO, NO <sub>2</sub> , O <sub>3</sub> , WS, WD, OT, solar irradiance, P, RH                                                                                            | April<br>2002.     | MLP-BP. Sensitivity analysis was used to                                                                                                                                                                                                                                    |                                                                                                                                                                           |

| et al.<br>(2005) <sup>10</sup>          | station located<br>in "Centre de<br>Capacitacio<br>Agraria de<br>Carcaixent" in<br>Valencia,<br>Spain.      |                                                      |                                                                                                                                                                                                             |                                          | find relatively<br>important inputs.                        |                                                                                                                                                  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Abdul-<br>Wahab et<br>al. (2005)<br>96  | Kuwait<br>University<br>mobile<br>laboratory at<br>Khaldiya,<br>Kuwait.                                     | Hourly O <sub>3.</sub>                               | O <sub>3</sub> , NO <sub>x</sub> , NO, CO, SO <sub>2</sub> ,<br>non CH <sub>4</sub> hydrocarbons OT,<br>SR, WS and WD                                                                                       | June<br>1997                             | MLR using PCA.                                              |                                                                                                                                                  |
| Wirtz et al.<br>(2005) <sup>81</sup>    | Edmonton East<br>monitoring<br>station and<br>Stony Plain<br>station in<br>Edmonton,<br>Alberta,<br>Canada. | Hourly O <sub>3</sub><br>(up to 2<br>hours<br>ahead) | CO, NO, NO <sub>2</sub> , SO <sub>2</sub> , O <sub>3</sub> total<br>hydrocarbons, mixing<br>height, opacity, RH, WS,<br>WD, temporal variables<br>(hour of the day, month of<br>the year, day of the week). | May<br>to<br>Sept.<br>1999<br>–<br>2003. | MLP-BP                                                      |                                                                                                                                                  |
| Heo et al.<br>(2004) <sup>97</sup>      | Ssangmun,<br>Bangi, Guro,<br>and<br>Gwangghwamu<br>n stations in<br>Seoul in Korea.                         | Daily<br>maximum<br>hourly O <sub>3.</sub>           | CO, NO <sub>2</sub> , SO <sub>2</sub> , O <sub>3</sub> , surface<br>WS, surface WD, upper<br>WS, upper WD, surface<br>OT, upper OT, RH, surface<br>SR.                                                      | 1989<br>–<br>1999.                       | Two forecast models<br>MLP-BP, and Fuzzy<br>expert systems. | MLP-BP model<br>forecasts daily<br>maximum hourly<br>ozone model one<br>day ahead. Fuzzy<br>expert system<br>forecasts the high<br>ozone levels. |
| Kumar et<br>al.<br>(2004) <sup>89</sup> | Brunei<br>Darussalam<br>airport, Brunei                                                                     | Daily<br>maximum<br>hourly O <sub>3</sub>            | Hourly O <sub>3</sub>                                                                                                                                                                                       | July<br>1998<br>–<br>Marc<br>h<br>1999.  | ARIMA                                                       |                                                                                                                                                  |
| Zolgadri et                             | Bordeaux                                                                                                    | Daily                                                | Hourly OT, radiation, solar                                                                                                                                                                                 | 1998                                     | Non-linear adaptive                                         | An integrated                                                                                                                                    |

| al.<br>(2004) <sup>95</sup>                     | Grand Parc<br>station,<br>Bordeaux,<br>France                                                              | maximum<br>O <sub>3.</sub>                                       | intensity, barometric<br>pressure, WS, RH, WD,<br>trend of seasonal variation<br>of ozone, and [NO <sub>2</sub> ]/[NO].                                                                                                            | _<br>2001                            | state space<br>estimator (NASSE),<br>gain scheduling<br>defined for modeling<br>threshold<br>exceedance for<br>extreme O <sub>3</sub><br>concentration and<br>an (MLP-LM) was<br>used in an<br>integrated<br>monitoring system | operational ozone<br>warning system<br>was developed. |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Chaloulak<br>ou et al.<br>(2003) <sup>109</sup> | N. Smirni,<br>Liossia,<br>Maroussi, and<br>Likovrissi<br>stations in<br>Athens,<br>Greece.                 | Daily<br>maximum<br>hourly O <sub>3.</sub>                       | WS, SR, RH, surface OT,<br>OT at 850 hPa (850<br>millibars), WD index and<br>ozone                                                                                                                                                 | April<br>– Oct<br>1992<br>–<br>1999. | MLP-LM, MLR                                                                                                                                                                                                                    | MLP-LM<br>performed better<br>than MLR.               |
| Rohli et al.<br>(2003) <sup>98</sup>            | Eleven sites in<br>Baton Rouge,<br>Louisiana.                                                              | Daily<br>maximum<br>hourly O <sub>3</sub> .<br>(8 hr<br>average) | NO <sub>X</sub> , O <sub>3</sub> , surface OT, dew<br>point OT, WS, sea level P,<br>visibility, dew point<br>depression, vertical mixing<br>features, synoptic scale<br>weather features, and<br>transport from upwind<br>regions. | 1995<br>-<br>2000.                   | MLR using PCA,<br>and Decision tree.                                                                                                                                                                                           | Each site has a separate model.                       |
| Wang et<br>al.<br>(2003) <sup>25</sup>          | Three<br>monitoring<br>stations,<br>namely, Tsuen<br>Wan, Kwai<br>Chung, and<br>Kwun Tong in<br>Hong Kong. | Daily<br>maximum<br>O <sub>3</sub>                               | O <sub>3</sub> , NO <sub>2</sub> , NO, NO <sub>X</sub> ,CO,<br>SO <sub>2</sub> , respirable suspended<br>particles, WS, WD, SR,<br>indoor OT and outdoor OT                                                                        | 1999<br>-<br>2000.                   | RBF, and Adaptive<br>RBF.                                                                                                                                                                                                      | Adaptive RBF<br>performed better<br>than RBF.         |
| Vautard et                                      | Paris, France                                                                                              | O <sub>3</sub> (up to                                            | Horizontal wind, surface P.                                                                                                                                                                                                        | Sum                                  | A hybrid statistical-                                                                                                                                                                                                          | Model developed                                       |

| al.<br>(2001) <sup>99</sup>                | using data<br>collected from<br>European<br>center for<br>Medium range<br>weather<br>forecasts. | three days<br>ahead)                                                  | humidity, OT, cloudiness,<br>SO <sub>2</sub> , VOC's, NO <sub>X</sub> , CO,<br>boundary conditions,<br>anthropic and biogenic<br>emissions. | mer<br>1999.                                         | deterministic<br>chemistry transport<br>model.                                                      | applicable to<br>continental cities<br>like Paris only.                                          |
|--------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Kaprara et<br>al.<br>(2001) <sup>100</sup> | Nine monitoring<br>stations in<br>Athens,<br>Greece.                                            |                                                                       | O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub> , CO, smoke,<br>OT, RH, WS, WD,                                                          | 1990<br><br>1999.                                    | Classification and<br>Regression Trees<br>(CART), MLR                                               | CART model<br>performed better<br>than MLR.                                                      |
| Cobourn<br>et al<br>(2000) <sup>85</sup>   | Seven<br>monitoring<br>stations in<br>Louisville.                                               | Daily<br>maximum<br>hourly O <sub>3</sub><br>(8 hour<br>average)      | Daily 8-hour average of O <sub>3</sub> ,<br>clear-sky atmospheric<br>transmittance daily<br>minimum OT, WS, CC,<br>humidity.                | May–<br>Sept.<br>1993<br>–<br>1999.                  | MLP-BP                                                                                              |                                                                                                  |
| Prybutok<br>et al.<br>(2000) <sup>23</sup> | A monitoring<br>station in<br>Houston                                                           | Daily<br>maximum<br>hourly O <sub>3.</sub>                            | NO, NO <sub>2</sub> , O <sub>3</sub> , OT, WS,<br>WD, carbon dioxide.                                                                       | June-<br>Oct.<br>1993.                               | MLP-BP, ARIMA,<br>Stepwise regression<br>model.                                                     | MLP-BP showed<br>superior<br>performance<br>compared to<br>ARIMA, and<br>stepwise<br>regression. |
| Hadjiiski et<br>al (2000) <sup>6</sup>     | Galleria and<br>Clinton stations<br>in Houston.                                                 | Hourly O <sub>3</sub><br>(up to 5<br>hours).                          | Fifty three hydrocarbons $(C_2-C_{10} \text{ compounds}), O_3, NO_X, NO, NO_2, OT, ultraviolet radiation.$                                  | June<br>–<br>Nov.<br>1993.                           | MLP-BP aided with<br>Sensitivity Analysis                                                           |                                                                                                  |
| Sohn et al.<br>(2000) <sup>11</sup>        | Seoul, South<br>Korea.                                                                          | Short term<br>(1-6 hour)<br>and long<br>term (16-21<br>hour) $O_{3.}$ | O <sub>3</sub> , NO <sub>2</sub> , CO, SO <sub>2</sub> , OT,<br>WS, sunlight, humidity.                                                     | (Aug<br>ust<br>and<br>Sept<br>embe<br>r) in<br>1997. | MLP-CG aided with<br>spatio-analysis that<br>includes the effects<br>of advection and<br>dispersion |                                                                                                  |
| Benvenuto et al.                           | Ente Zona<br>Industriale di                                                                     | I hour, 3<br>hours and                                                | Hourly measurements of OT, WS, WD, global                                                                                                   | 1995.                                                | MLP-BP                                                                                              |                                                                                                  |

| (2000)                                                                                   | Porto Margera<br>and Venice<br>municipality<br>monitoring<br>network areas,<br>Venice, Italy.                                                                                                                                                 | daily<br>maximum<br>concentrati<br>ons of O <sub>3</sub> ,<br>CO, NO <sub>2</sub> . | radiation, humidity,<br>precipitation, P, vehicle<br>flow rate, SO <sub>2</sub> , O <sub>3</sub> ,<br>NO,NO <sub>2</sub> , O <sub>3</sub> , non CH <sub>4</sub><br>hydrocarbons, PM <sub>10.</sub>                                                                                               |                                                                                 |                                                                                                                |                                                                                                                                                |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Gardner<br>and<br>Dorling<br>(2001,<br>2000,<br>1999) <sup>83,</sup><br><sup>14,12</sup> | Bristol,<br>Edinburgh,<br>Eskdalemuir,<br>Leeds, and<br>Southampton in<br>UK.                                                                                                                                                                 | Hourly O <sub>3</sub> ,<br>NO <sub>X</sub> , NO <sub>2</sub> .                      | $O_3$ , $NO_X$ , $NO_2$ , amount of<br>low cloud, base of lowest<br>cloud, visibility, dry bulb<br>OT, vapor pressure, WS,<br>and WD.<br>$cos(2\pi h/24)$ , $sin(2\pi h/24)$ ,<br>$cos(2\pi d/365)$ ,<br>$sin(2\pi d/365)$ , where h is<br>the hour of the day, and d<br>is the day of the year. | 1993<br>–<br>1996<br>and<br>for –<br>Sout<br>ham-<br>pton<br>1994<br>–<br>1997. | Multilayer<br>perceptron-scaled<br>conjugate gradient<br>(MLP-SCG),<br>regression trees,<br>and linear models. | MLP-SCG<br>performed better<br>than regression<br>trees and linear<br>models even<br>though regression<br>trees were readily<br>interpretable. |
| Spellman<br>(1999) <sup>15</sup>                                                         | Five sites with<br>different<br>topographical<br>and<br>demographical<br>features<br>(Bloomsbury,<br>Leeds and<br>Birmingham<br>being urban<br>sites; Harwell<br>(Oxfordshire)<br>being rural and<br>Strath Vaich<br>being a remote<br>site). | Daily<br>maximum<br>hourly O <sub>3.</sub>                                          | Hourly O <sub>3</sub> , SO <sub>2</sub> , PM <sub>10</sub> , WS, WD, OT.                                                                                                                                                                                                                         | May<br>–<br>Sept.<br>1993<br>–<br>1996                                          | MLP-BP, MLR.                                                                                                   |                                                                                                                                                |
| Comrie<br>(1997) <sup>7</sup>                                                            | Eight<br>monitoring sites<br>from different                                                                                                                                                                                                   | Daily<br>maximum<br>hourly O <sub>3.</sub>                                          | Daily maximum OT,<br>average daily WS, daily<br>total sunshine, and O <sub>3.</sub>                                                                                                                                                                                                              | May–<br>Sept.<br>1991                                                           | MLP-BP, MLR                                                                                                    | MLP-BP<br>performed slightly<br>better than MLR.                                                                                               |

|                                     | cities (Atlanta,<br>Boston,<br>Charlotte,<br>Chicago,<br>Phoenix,<br>Pittsburgh,<br>Seattle, and<br>Tucson) in USA |                                                                                     |                                                                                                                                                                                     | _<br>1995.                               |                                                                                                                                               |                                                                                                                                                              |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yi et al.<br>(1996) <sup>24</sup>   | A monitoring<br>site in Dallas-<br>Fort Worth<br>(DFW) region,<br>Texas                                            | Daily<br>maximum<br>hourly O <sub>3.</sub>                                          | Hourly values of NO, NO <sub>2</sub> , O <sub>3</sub> , CO <sub>2</sub> , OT, WS, and WD.                                                                                           | June<br>–Oct.<br>1993<br>–<br>1994.      | MLP-BP, MLR, and<br>Box-Jenkins model.                                                                                                        | MLP-BP showed<br>better performance<br>than MLR, and<br>Box-Jenkins<br>model.                                                                                |
| Ryan<br>(1995) <sup>106</sup>       | Baltimore<br>metropolitan<br>area<br>(Baltimore-<br>Washington<br>region).                                         | Daily<br>maximum<br>hourly O <sub>3.</sub>                                          | Skycover, WS, OT,<br>pressure, O <sub>3</sub> , and dew<br>point temperature.                                                                                                       | 1983<br>-<br>1993                        | CART, Stepwise<br>MLR, Subjective or<br>Expert Analysis.                                                                                      | Subjective or<br>Expert Analysis<br>performs better<br>than stepwise<br>MLR and CART in<br>strong ozone<br>episodes.<br>Stepwise MLR is<br>better than CART. |
| Clark et al<br>(1982) <sup>90</sup> | 27 monitoring<br>stations from<br>Northeastern<br>quadrant of the<br>US                                            | Daily<br>maximum<br>based on<br>one hour<br>average<br>ozone.                       | 35 prognostic variables<br>including hourly OT,<br>absolute humidity, WS, $O_3$ ,<br>NO <sub>x</sub> , precipitation, sea<br>level pressure, altitude.                              | June<br>–<br>Sept.<br>1975<br>–<br>1977. | (Stepwise) MLR                                                                                                                                | Stepwise MLR<br>model was<br>developed<br>separately for<br>each of the 27<br>sites.                                                                         |
| Karl<br>(1979) <sup>107</sup>       | 25 sites divided<br>into three<br>different groups<br>of sites from<br>Greater<br>St.Louis,<br>Missouri.           | Daily<br>maximum<br>based on<br>one hour<br>average<br>ozone (up<br>to 48<br>hours) | Boundary layer, WS, $\overline{OT}$ ,<br>precipitation, RH, P, O <sub>3</sub> ,<br>dew point, OT, vertical<br>velocity, and day of the<br>week, sine, and cosine of<br>Julian date. | April<br>–Oct.<br>1975<br>–<br>1976.     | Model Output<br>Statistics (MOS)<br>based on derived<br>from National<br>Meteorological<br>Center's Limited<br>area Fine Mesh<br>(LFM) model. |                                                                                                                                                              |
| Wolff et al<br>(1978) <sup>105</sup> | Approximately<br>75 sites from<br>Northeastern<br>quadrant of the<br>US. | Daily<br>maximum<br>based on<br>one hour<br>average<br>ozone. | Hourly T, absolute<br>humidity, WS, O <sub>3</sub> , NO <sub>x</sub> ,<br>and hydrocarbons. | April<br>–<br>Sept.<br>1976. | (Stepwise) MLR | A stepwise<br>regression model<br>was calibrated<br>based on New<br>Jersey data and<br>tested on sites at<br>Northeastern Ohio,<br>Marquette, MI,<br>Norfolk, VA, Cook<br>County, IL and |
|--------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                                                          |                                                               |                                                                                             |                              |                | Connecticut.                                                                                                                                                                             |

Appendix B

Monitoring station/site details

|            | Dallas Fort Worth region data                                                                            |                                                                                                                                               |                                                                                                                                                                                                                                  |  |  |
|------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Site<br>No | Ozone<br>Monitoring<br>site details<br>(Name,<br>AQS_ID/EPA<br>site number,<br>(latitude,<br>longitude)) | Pollutant data (O <sub>3</sub> ,<br>NO, NO <sub>2</sub> measured<br>in parts per billion<br>(ppb))details                                     | Meteorological data (Resultant wind<br>speed (miles/hour), resultant wind<br>direction(degrees), outdoor<br>temperature (° F), solar radiation<br>(Langleys/minute)) details                                                     |  |  |
| 1          | Fort Worth<br>Northwest<br>AQS_ID:<br>484391002<br>(32.8058183,<br>- 97.3565675)                         | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Fort Worth<br>Northwest        | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Fort Worth<br>Northwest.                                                                                             |  |  |
| 2          | Arlington<br>Municipal<br>Airport<br>AQS_ID:<br>484393011<br>(32.6563574,<br>- 97.0885849)               | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Arlington<br>Municipal Airport | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Arlington<br>Municipal Airport.                                                                                      |  |  |
| 3          | Italy<br>AQS_ID:<br>481391044<br>(32.1754166,<br>- 96.8701892)                                           | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Italy                                   | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Italy.                                                                                                               |  |  |
| 4          | Midlothian<br>OFW AQS_ID:<br>481390016<br>(32.4820829,<br>- 97.0268987)                                  | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Midlothian OFW                         | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Midlothian<br>OFW.                                                                                                   |  |  |
| 5          | Greenville<br>AQS_ID:<br>482311006<br>(33.1530882,<br>- 96.1155717)                                      | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Greenville                    | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Greenville.                                                                                                          |  |  |
| 6          | Kaufman<br>AQS_ID:<br>482570005<br>(32.5649684,<br>- 96.3176873)                                         | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Kaufman.                       | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Kaufman.                                                                                                             |  |  |
| 7          | Corsicana<br>Airport<br>AQS_ID:<br>483491051<br>(32.0319335,-<br>96.3991408)                             | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Corsicana Airport             | Temperature, Wind for the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>Corsicana Airport.<br>Solar radiation data for the years 2010,<br>2011, 2012, 2013, 2014 was made using<br>the mean of the three sites: Italy, |  |  |

|    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 | Midlothian and Kaufman stations.                                                                                                                                                                                                                                                                                                    |
|----|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Eagle<br>Mountain Lake<br>AQS_ID:<br>484390075<br>(32.9878908,<br>-97.4771754)         | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Eagle Mountain<br>Lake. For the<br>missing months of<br>2010 NO, NO <sub>2</sub> data,<br>stations Midlothian,<br>Arlington Municipal<br>Airport, Dallas<br>Executive Airport,<br>Fort Worth North<br>West, Dallas Hilton,<br>Grapevine Fairway,<br>and Denton Airport<br>South | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Eagle<br>Mountain Lake.                                                                                                                                                                                                 |
| 9  | Keller<br>AQS_ID:<br>484392003<br>(32.9225007,<br>-97.2820936)                         | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Keller. For the<br>missing months of<br>2010 NO, NO <sub>2</sub> data,<br>stations Midlothian,<br>Arlington Municipal<br>Airport, Dallas<br>Executive Airport,<br>Fort Worth North<br>West, Dallas Hilton,<br>Grapevine Fairway,<br>and Denton Airport<br>South                 | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Keller.                                                                                                                                                                                                                 |
| 10 | Grapewine<br>Fairway<br>AQS_ID:<br>484393009<br>(32.9842596,-<br>97.0637211)           | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from<br>Grapewine Fairway                                                                                                                                                                                                                                                             | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013,2014 collected from Grapewine<br>Fairway                                                                                                                                                                                                     |
| 11 | Dallas<br>Executive<br>Airport<br>AQS_ID:<br>484393011<br>(32.6563574,<br>-97.0885849) | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from<br>Dallas Executive<br>Airport.                                                                                                                                                                                                                                                  | Temperature, Wind for the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>Dallas Executive Airport.<br>Solar radiation data for the years 2010,<br>2011, 2012, 2013, 2014 was made using<br>the mean of the Italy, Midlothian, Keller,<br>Kaufman, Arlington Municipal Airport,<br>Dallas Hilton, Eagle Mountain Lake, Fort |

|    |                                                                                  |                                                                                                                                      | Worth North West, Grapevine Fairway,<br>Dallas Executive Airport, and Denton<br>Airport South.                                       |
|----|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 12 | Dallas Hilton<br>AQS_ID:<br>481130069<br>(32.8200608, -<br>96.8601165)           | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Dallas Hilton         | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013,2014 collected from Dallas Hilton.            |
| 13 | Denton South<br>Airport<br>AQS_ID:<br>481210034<br>(33.2190690, -<br>97.1962836) | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Denton South Airport | Temperature, Wind, and Solar Radiation<br>data for the years 2010, 2011, 2012,<br>2013, 2014 collected from Denton South<br>Airport. |

|            | Houston-Galveston-Brazoria region data                                                          |                                                                                                                                    |                                                                                                                                                                                 |  |  |
|------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Site<br>No | Ozone Monitoring<br>site details (Name,<br>AQS_ID/EPA site<br>number, (latitude,<br>longitude)) | Pollutant data (O <sub>3</sub> ,<br>NO, NO <sub>2</sub> measured in<br>parts per billion<br>(ppb))details                          | Meteorological data (Resultant<br>wind speed (miles/hour),<br>resultant wind<br>direction(degrees), outdoor<br>temperature (°F), solar radiation<br>(Langleys/minutes)) details |  |  |
| 1          | Houston Aldine<br>AQS_ID:<br>482010024<br>(29.9010364,<br>- 95.3261373)                         | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Houston Aldine.     | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Houston Aldine.                                                   |  |  |
| 2          | Clinton AQS_ID:<br>482011035<br>(29.7337263,<br>- 95.2575931)                                   | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from Clinton.                       | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Clinton.                                                          |  |  |
| 3          | Conroe (Relocated)<br>AQS_ID:<br>483390078<br>(30.3503017,<br>- 95.4251278                      | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from<br>Conroe (Relocated) | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Conroe (Relocated).                                               |  |  |
| 4          | Channel View<br>AQS_ID:<br>482010026<br>(29.8027073,<br>- 95.1254948)                           | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from<br>Channel View.      | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Channel View.                                                     |  |  |
| 5          | Galveston 99th<br>Street<br>AQS_ID:<br>481671034<br>(29.2544736,-<br>94.8612886)                | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from<br>Galveston 99th Street.      | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Galveston 99th Street.                                            |  |  |
| 6          | Houston Bayland                                                                                 | $O_3$ , NO, NO <sub>2</sub> data for                                                                                               | Temperature, Wind, and Solar                                                                                                                                                    |  |  |

|    | Park AQS_ID:<br>482010055<br>(29.6957294,<br>- 95.4992190)                           | the years 2010, 2011,<br>2012, 2013, 2014<br>collected from<br>Houston Bayland Park                                                          | Radiation data for the years 2010, 2011, 2012, 2013,2014 collected from Houston Bayland Park.                                           |
|----|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Houston Deer Park2<br>AQS_ID:<br>482011039<br>(29.670025,<br>- 95.1285077)           | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011,2012,2013, 2014<br>collected from<br>Houston Deer Park 2.           | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Houston Deer Park 2.      |
| 8  | Lynchbury Ferry<br>AQS_ID:<br>482011015<br>(29.7616528,<br>- 95.0813861)             | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Lynchbury Ferry.              | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Lynchbury Ferry.          |
| 9  | Lake Jackson<br>AQS_ID:<br>480391016<br>(29.0437592,<br>- 95.4729462)                | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Lake Jackson.                          | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Lake Jackson.             |
| 10 | Northwest Harris<br>AQS_ID:<br>482010029<br>(30.0395240,<br>- 95.6739508)            | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Northwest Harris              | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Northwest Harris.         |
| 11 | Park Place<br>AQS_ID:<br>482010416<br>(29.6863890,<br>- 95.2947220)                  | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Park Place                    | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013, 2014 collected<br>from Park Place.              |
| 12 | Seabrook<br>Friendship Park<br>AQS_ID:<br>482011050<br>(29.5830473,<br>- 95.0155437) | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from<br>Seabrook Friendship<br>Park. | Temperature, Wind, and Solar<br>Radiation data for the years 2010,<br>2011, 2012, 2013,2014 collected<br>from Seabrook Friendship Park. |

|            | Los Angeles county data                                                                         |                                                                                                              |                                                                                                                                                                                  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Site<br>No | Ozone Monitoring<br>site details (Name,<br>AQS_ID/EPA site<br>number, (latitude,<br>longitude)) | Pollutant data (O <sub>3</sub> ,<br>NO, NO <sub>2</sub> measured<br>in parts per billion<br>(ppb))details    | Meteorological data (Resultant<br>wind speed (miles/hour),<br>resultant wind direction(degrees),<br>outdoor temperature(° F), solar<br>radiation (Watt/m <sup>2</sup> )) details |  |  |  |
| 1          | Azusa<br>AQS_ID:<br>060370002<br>(34.1364,-<br>117.9239)                                        | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Azusa. | Temperature data for 2010, 2012,<br>2013, 2014 was collected from<br>Azusa, 2011 from Santa Fe Dam<br>((34.12111,-117.94611),1.6504<br>miles from Azusa)).                       |  |  |  |

|    |                                                                                           |                                                                                                                                                        | Solar radiation for the year<br>2010,2012 was collected from<br>Azusa, 2011, 2013,2014 from<br>Santa Fe Dam (34.12111,-<br>117.94611)<br>Wind data for the year 2010,<br>2011,2012,2013, and 2014 was<br>collected from Santa Fe Dam<br>(34.12111,-117.94611)                                                                                                                                                                                                     |
|----|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Compton-700 North<br>Bullis Road<br>AQS_ID:060371002<br>(33.901389, -<br>118.205)         | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Compton-700 North<br>Bullis Road.      | Temperature data for all the years<br>2010, 2011, 2012, 2013, 2014<br>collected from Compton-700 North<br>Bullis Road.<br>Solar Radiation data for all the<br>years 2010,2011,2012,2013, and<br>2014 collected from (Long Beach #<br>2 (33.79699,-118.09399) 9.61 miles<br>away from Compton-700 North<br>Bullis Road).<br>Wind data for the years 2010, 2011,<br>2012, 2013 collected from Long<br>Beach # 2 and 2014 data from<br>Compton-700 North Bullis Road |
| 3. | Glendora Laurel<br>AQS_ID:<br>060370016<br>(34.14437,-<br>117.85038)                      | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Glendora<br>Laurel.                     | Temperature data for all the years<br>2010, 2011, 2012, 2013, 2014<br>collected from Glendora Laurel.<br>Solar Radiation and Wind data for<br>all the years 2010, 2011, 2012,<br>2013 and 2014 were collected from<br>Santa Fe Dam (34.12111,-<br>117.94611) 5.6879 miles away from<br>Glendora Laurel.                                                                                                                                                           |
| 4  | Lancaster -43301<br>Division street<br>AQS_ID:<br>060379033<br>(34.669586,-<br>118.13076) | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from<br>Lancaster -43301<br>Division street. | Temperature data for all the years<br>2010, 2011, 2012, 2013, 2014<br>collected from Lancaster -43301<br>Division street.<br>Wind data for all the years 2010,<br>2011, 2013 and 2014 were<br>collected from (Palmdale #4<br>(34.6150,-118.033) 6.7076 miles<br>away from Lancaster -43301<br>Division street) and 2012 data from<br>Lancaster -43301 Division street.                                                                                            |

|   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 | Solar Radiation for all the years<br>2010, 2011, 2012, 2013 and 2014<br>were collected from Palmdale #4<br>(34.6150,-118.033) 6.7076 miles<br>away from Lancaster -43301<br>Division street.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Los Angeles North<br>Main Street<br>AQS_ID:<br>060370016<br>(34.06638,-<br>118.22666) | O <sub>3</sub> data for the years<br>2010, 2011, 2012,<br>2013,2014 collected<br>from Los Angeles<br>North Main Street.<br>NO, NO <sub>2</sub> data for the<br>years 2010, 2011,<br>2013,2014 collected<br>from Los Angeles<br>North Main Street<br>and 2012 data from<br>Pasadena-S Wilson<br>Avenue (34.132778,-<br>118.127222) 16.85<br>miles away from Los<br>Angeles North Main<br>Street. | Temperature data for the years<br>2010, 2011, 2014 collected from<br>Los Angeles North Main Street and<br>for the years 2012, 2013 from Los<br>Angeles USC_Campus Downtown (<br>34.0167, -118.283), 4.7045 miles<br>away from Los Angeles North Main<br>Street<br>Solar Radiation data for the years<br>2010, 2011, 2012, 2013 was<br>collected from (Glendale # 2 (34.2, -<br>118.232) 9.2249 miles away from<br>Los Angeles North Main Street) and<br>for the year 2014 data was collected<br>from Los Angeles North Main<br>Street.<br>Wind data for the for the years<br>2010, 2011, 2012, 2013 was<br>collected from Glendale # 2 and for<br>the year 2014 data was collected<br>from Los Angeles USC Campus |
| 6 | Dagadana S Wilson                                                                     | O NO NO data for                                                                                                                                                                                                                                                                                                                                                                                | Downtown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | Avenue<br>AQS_ID:<br>060372005<br>(34.132778,-<br>118.127222)                         | the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from<br>Pasadena S Wilson<br>Avenue and for the                                                                                                                                                                                                                                                                                        | data for all the years 2010, 2011,<br>2012, 2013, 2014 collected from<br>(Glendale # 2 (34.2, -118.232)<br>21.865 miles away from Pasadena<br>S Wilson Avenue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                       | missing months<br>during the years<br>2010, 2012, 2013<br>data was used from<br>Los Angeles North<br>Main Street.                                                                                                                                                                                                                                                                               | Wind data for all the years 2010,<br>2011, 2012, 2013 collected from<br>Glendale # 2, and for the year 2014,<br>data was collected from Pasadena<br>S Wilson Avenue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7 | Pomona<br>AQS_ID:<br>060371701<br>(34.066696,-<br>117.751358)                         | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012,<br>2013,2014 collected<br>from Pomona.                                                                                                                                                                                                                                                                                   | Temperature data, Wind data and<br>Solar Radiation data for the years<br>2010, 2011, 2012, 2013 and 2014<br>data was collected from Pomona #<br>2 (34.058, -117.812)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8 | Santa Clarita                                                                         | O <sub>3</sub> , NO, NO <sub>2</sub> data for                                                                                                                                                                                                                                                                                                                                                   | Temperature data, Wind data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|    | AQS_ID:<br>060376012<br>(34.38340,-<br>118.528471)                                       | the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Santa Clarita.                                                                          | Solar Radiation data for the years 2010, 2011, 2012, 2013 and 2014 data was collected from Santa Clarita.                                                                                                                             |
|----|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | West Los Angeles-<br>VA Hospital<br>AQS_ID:060370113<br>(34.050556, -<br>118.456665)     | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>West Los Angeles-<br>VA Hospital.               | Temperature data, Wind data and<br>Solar Radiation data for the years<br>2010, 2011, 2012, 2013 and 2014<br>data was collected from Santa<br>Monica (34.04399,-118.476) 1.1945<br>miles away from West Los Angeles-<br>VA Hospital.   |
| 10 | Los Angeles<br>Westchester<br>Parkway<br>AQS_ID:060375005<br>(33.955055,-<br>118.430442) | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010,<br>2011, 2012, 2013,<br>2014 collected from<br>Los Angeles<br>Westchester<br>Parkway. | Temperature data, Wind data and<br>Solar Radiation data for the years<br>2010, 2011, 2012, 2013 and 2014<br>data was collected from Santa<br>Monica (34.04399,-118.476) 6.6681<br>miles away from Los Angeles<br>Westchester Parkway. |

|            |                                                                                                 | San Joaquin air basin data                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site<br>No | Ozone Monitoring<br>site details (Name,<br>AQS_ID/EPA site<br>number, (latitude,<br>longitude)) | Pollutant data (O <sub>3</sub> , NO,<br>NO <sub>2</sub> measured in parts per<br>billion (ppb))details                             | Meteorological data<br>(Resultant wind speed<br>(miles/hour), resultant<br>wind direction(degrees),<br>outdoor temperature(°<br>F), solar radiation<br>(Watt/m <sup>2</sup> )) details                                                                                                                                                                                                                        |
| 1          | Clovis-N Villa Avenue<br>AQS_ID: 060195001<br>(36.81944,-119.71638)                             | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Clovis-N Villa Avenue. | Temperature and Wind<br>data for all the years<br>2010, 2011, 2012, 2013,<br>2014 collected from<br>Clovis-N Villa Avenue.<br>Solar radiation data for all<br>the years 2010, 2012,<br>2013 collected from<br>Clovis-N Villa Avenue.<br>2011 and missing<br>monthly data for the year<br>2014 collected from<br>Fresno State # 2<br>(36.820999,-119.742),<br>1.4188 miles away from<br>Clovis-N Villa Avenue. |
| 2          | Merced S Coffee<br>Avenue<br>AQS_ID: 060470003<br>(37.28166,-120.43361)                         | O <sub>3</sub> , NO, NO <sub>2</sub> data for the years 2010, 2011, 2012, 2013,2014 collected from Merced S Coffee Avenue.         | Temperature and Wind<br>data for all the years<br>2010, 2011, 2012, 2013,<br>2014 collected from                                                                                                                                                                                                                                                                                                              |

|   |                                                                                 |                                                                                                                                                                                                                                                                       | Merced S Coffee Avenue.<br>Solar radiation data for all<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from Merced<br>(37.314,-120.386), 3.4364<br>miles away from Merced<br>S Coffee Avenue.                                                                                                                                                                                                                                                                            |
|---|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Shafter-Walker Street<br>AQS_ID: 060296001<br>(35.503307,-<br>119.272807)       | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Shafter-Walker Street.                                                                                                                                    | Temperature and Wind<br>data for all the years<br>2010, 2011, 2012, 2013<br>collected from Shafter-<br>Walker Street and data<br>for the missing months in<br>2014 was collected from<br>Shafter-USDA (35.533,-<br>119.2810), 2.1 miles<br>away Shafter-Walker<br>Street.<br>Solar radiation data for<br>the years 2010, 2012,<br>and 2013 collected from<br>Shafter-Walker Street.<br>2011 data and data for<br>the missing months in<br>2014 were collected from<br>Shafter-USDA. |
| 4 | Fresno-Sierra Skypark<br>#2<br>AQS_ID: 060190242<br>(36.84170,-119.8828)        | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Fresno-Sierra Skypark #2<br>and ozone data for the<br>missing months in the year<br>2014 was collected from<br>Fresno Garland (36.78532,-<br>119.774174). | Temperature and Wind<br>data for all the years<br>2010, 2011, 2012, 2013,<br>2014 collected from<br>Fresno-Sierra Skypark#2.<br>Solar radiation data for all<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from Fresno<br>State # 2 (36.820999,-<br>119.742) 7.9068 mile<br>away from Fresno-Sierra<br>Skypark #2.                                                                                                                                                      |
| 5 | Stockton-Hazelton<br>Street<br>AQS_ID: 060771002<br>(37.951667, -<br>121.26888) | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Stockton-Hazelton Street.                                                                                                                                 | Temperature and Wind<br>data for all the years<br>2010, 2011, 2012, 2013,<br>2014 collected from<br>Stockton-Hazelton Street.<br>Solar radiation data for all<br>the years 2010, 2011,                                                                                                                                                                                                                                                                                              |

| - |                                                                                 |                                                                                                                                       |                                                                                                                                                                                              |
|---|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                 |                                                                                                                                       | 2012, 2013, 2014<br>collected from Manteca<br>(37.8350, -121.223),<br>8.4296 miles away from<br>Stockton-Hazelton Street.                                                                    |
| 6 | Tracy-Airport<br>AQS_ID: 060773005<br>(37.682499,-121.4406)                     | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Tracy-Airport.            | Temperature and Wind<br>data for all the years<br>2010, 2011, 2012, 2013,<br>2014 collected from<br>Tracy- Airport.                                                                          |
|   |                                                                                 |                                                                                                                                       | Solar radiation data for all<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from Tracy<br>(37.72599, -121.474),<br>3.5122 miles away from<br>Tracy Airport.                       |
| 7 | Turlock-S Minaret<br>Street<br>AQS_ID: 060990006<br>(37.488236,-<br>120.835886) | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Turlock-S Minaret Street. | Temperature data for the years 2010, 2011 was collected from Rose Peak (37.50194,-120.73555). 2012, 2013, and 2014 data was collected from Turlock-S Minaret Street.                         |
|   |                                                                                 |                                                                                                                                       | Wind data for all the<br>years 2010, 2011, 2012,<br>2013, 2014 collected from<br>Turlock-S Minaret Street.                                                                                   |
|   |                                                                                 |                                                                                                                                       | Solar radiation data for all<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from Rose Peak<br>(37.50194, -120.735556),<br>5.5739 miles away from<br>Turlock-S Minaret Street.     |
| 8 | Visalia-N Church<br>Street<br>AQS_ID: 061072002<br>(36.3325,-119.290833)        | O <sub>3</sub> , NO, NO <sub>2</sub> data for the<br>years 2010, 2011, 2012,<br>2013,2014 collected from<br>Visalia-N Church Street.  | Temperature data for all<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from Visalia-<br>Airport (36.31388,-<br>119.39222), 5.7814 miles<br>away from Visalia-N<br>Church Street. |
|   |                                                                                 |                                                                                                                                       | Wind data for all the years 2010, 2011, 2012,                                                                                                                                                |

|  | 2014 collected from<br>Visalia-N Church Street<br>and 2013 data was<br>collected from Visalia-<br>Airport.                                                                                                                       |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Solar radiation data for all<br>the years 2010, 2012,<br>2013, 2014 collected from<br>Visalia-Airport and 2011<br>data collected from<br>Lindcove (36.35699,-<br>119.059), 12.996 miles<br>away from Visalia-N<br>Church Street. |

| San Diego air basin data |                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site<br>No               | Ozone<br>Monitoring<br>site details<br>(Name,<br>AQS_ID/E<br>PA site<br>number,<br>(latitude,<br>longitude)) | Pollutant data (O <sub>3</sub> ,<br>NO, NO <sub>2</sub> measured in<br>parts per billion<br>(ppb))details                            | Meteorological data (Resultant wind<br>speed (miles/hour), resultant wind<br>direction(degrees), outdoor<br>temperature(° F), solar radiation<br>(Watt/m <sup>2</sup> )) details                                                                                                                                                                                                                                                                                                               |
| 1                        | Alpine-<br>Victoria<br>Drive<br>AQS_ID:<br>060731006<br>(32.84219,<br>-116.7683)                             | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Alpine-Victoria Drive | Temperature data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>Alpine-Victoria Drive.<br>Solar radiation data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>(Alpine (RAWS)-(32.83361, -116.73916)),<br>1.7434 miles away from Alpine-Victoria<br>Drive.<br>Wind data for the year 2010, 2011 was<br>collected from Alpine (RAWS) for the<br>missing months and for the years 2012,<br>2013, 2014 data was collected from<br>Alpine-Victoria Drive. |
| 2                        | Chula Vista<br>AQS_ID:<br>060730001<br>(32.631258,<br>-117.05907)                                            | $O_3$ , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>Chula Vista.                   | Temperature and Wind data for all the<br>years 2010, 2011, 2012, 2013, 2014<br>collected from Chula Vista.<br>Solar radiation data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>San Miguel # 1(32.68,-116.97), 6.1977                                                                                                                                                                                                                                                   |

|   |                                                                                              |                                                                                                                                                                                                                                                           | miles away Chula Vista.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | El Cajon-<br>Redwood<br>Avenue<br>AQS_ID:<br>060730003<br>(32.79083,<br>-116.94249)          | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013 collected<br>from El Cajun-<br>Redwood Avenue.<br>2014 data for the<br>missing months<br>collected from San<br>Diego Kearny Villa<br>Road (32.84546,-<br>117.12389). | Temperature and Wind data for all the<br>years 2010, 2011, 2012, 2013 collected<br>from El Cajon-Redwood Avenue. 2014<br>data for the missing months collected<br>from Gillespie Field (32.826099,-<br>116.97199), 2.975 miles away from<br>El Cajon-Redwood Avenue<br>Solar radiation data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>San Miguel # 1(32.68,-116.97), 7.5229<br>miles away from El Cajon-Redwood<br>Avenue. |
| 4 | Escondido-<br>E Valley<br>Parkway<br>AQS_ID:<br>060731002<br>(33.127707,-<br>117.07532)      | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013, 2014<br>collected from<br>Escondido-E Valley<br>Parkway.                                                                                                            | Temperature and Wind data for all the<br>years 2010, 2011, 2012, 2013, 2014<br>collected from Escondido-E Valley<br>Parkway.<br>Solar radiation data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>Escondido SPV (33.081,-116.978),<br>6.5843 miles away from<br>Escondido-E Valley Parkway.                                                                                                                                   |
| 5 | Otay Mesa-<br>Paseo<br>International<br>AQS_ID:<br>060732007<br>(32.552216,<br>-116.93793)   | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013 collected<br>from Otay Mesa-Paseo<br>International. 2014 data<br>collected from Otay<br>Mesa-Donovan<br>(32.57936,116.929486)                                        | Temperature and Wind data for the years<br>2010, 2011, 2012, 2013 collected from<br>Otay Mesa-Paseo International. 2014<br>data collected from Otay Mesa-Donovan.<br>Solar radiation data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>Otay Lake (32.63,-116.938), 5.3675 miles<br>away from Otay Mesa-Paseo<br>International.                                                                                                |
| 6 | San Diego-<br>1110<br>Beardsley<br>Sreet<br>AQS_ID:<br>060731010<br>(32.70139,-<br>117.1528) | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the years 2010, 2011,<br>2012, 2013,2014<br>collected from<br>San Diego-1110<br>Beardsley Street.                                                                                                        | Temperature and Wind data for all the<br>years 2010, 2011, 2012, 2013, 2014<br>collected from San Diego-1110 Beardsley<br>Street.<br>Solar radiation data for all the years 2010,<br>2011, 2012, 2013, 2014 collected from<br>San Diego # 6 (32.72999,-117.139),<br>2.1306 miles away San Diego-1110<br>Beardsley Street.                                                                                                                            |
| 7 | San Diego<br>- Kearny<br>Villa Road<br>AQS_ID:<br>060731016                                  | O <sub>3</sub> , NO, NO <sub>2</sub> data for<br>the missing months<br>for the years 2010,<br>2011 collected from<br>San Diego Overland                                                                                                                   | Temperature and Wind data for the<br>missing months for the years 2010, 2011<br>collected from San Diego Overland<br>Avenue. 2012, 2013, 2014 data collected<br>from San Diego-Kearny Villa Road.                                                                                                                                                                                                                                                    |

|             | Avenue.(32.836461,-  |                                           |
|-------------|----------------------|-------------------------------------------|
| (32.845467, | 117.12869). 2012,    | Solar radiation data for the missing      |
| -117.12389) | 2013, 2014 data      | months for the year 2010 collected from   |
|             | collected from San   | San Diego Overland Avenue, 2011           |
|             | Diego - Kearny Villa | collected from Miramar (32.886,-117.142), |
|             | Road                 | 2.9874 mile away from San Diego -         |
|             |                      | Kearny Villa Road. 2012, 2013 and 2014    |
|             |                      | data collected from San Diego-Kearny      |
|             |                      | Villa Road.                               |

Appendix C

Monitoring station/site maps



Dallas Fort Worth region



Houston Galveston Brazoria region



Los Angeles air basin



San Joaquin air basin



San Diego air basin



California

## References

- 1. Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton: New Jersey, 1999.
- Turner, D.B.; Schulze, R.H. *Practical Guide to Atmospheric Dispersion Modeling*; Trinity Consultants: Texas, 2007.
- 3. Haykin, S. Neural Networks; Prentice Hall: New Jersey, 1999.
- Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Company: Boston, MA, 1996.
- Schlink, U.; Helbarth, O.; Richter, M.; Dorling, S.; Nunnari, G.; Cawley, G.; Pelikan, E. Statistical models to assess the health effects and to forecast ground-level ozone; *Environmental Modelling & Software* 2006, *21*, 547-558.
- Hadjiiski, L.; Hopke, P. Application of Artificial Neural Networks to Modeling and Prediction of Ambient Ozone Concentrations; *J. Air Waste Manage. Assoc.* 2000, *50*, 894-901.
- Comrie, A. C. Comparing Neural Networks and Regression Models for Ozone Forecasting; *J. Air Waste Manage. Assoc.* **1997**, *47*, 653-663.
- Dutot, A. L.; Rynkiewicz, J.; Steiner, F. E.; Rude, J. A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions; *Environmental Modelling & Software* 2007, *22*, 1261-1269.
- Wang, D.; Lu, W. Z. Ground level ozone prediction using multiple perceptron trained with an innovative hybrid approach; *Ecological Modelling* 2006, *198*, 332-340.
- Barcenas, O. P.; Olivas, E. S.; Guerrero, J. D. M.; Valls, G.C.; Rodriguez, J. L. C.; Tascon, S.D.V. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling; *Ecological Modelling* **2005**, *182*, 149-158.

- Sohn, S. H.; Oh, S. C.; Jo, B. W.; Yeo, Y. K. Prediction of Ozone Formation Based on Neural Network; *Journal of Environmental Engineering* 2000, *126*(8), 688-696.
- Gardner, M. W.; Dorling, S. R. Neural network modeling and prediction of hourly NO<sub>X</sub> and NO<sub>2</sub> concentrations in urban air in London; *Atmos.Environ.* **1999**, *33*, 709-719.
- 13. Gardner, M. W.; Dorling, S. R. Meteorologically adjusted trends in UK daily maximum surface ozone concentrations; *Atmos.Environ.* **2000**, *34*, 171-176.
- 14. Gardner, M. W.; Dorling, S. R. Statistically surface ozone models: an improved methodology to account for non-linear behavior; *Atmos.Environ.* **2000**, *34*, 21-34.
- 15. Spellman, G. An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom; *Applied Geography* **1999**, *19*, 123-136.
- Sousa, S. I. V.; Martins, F. G.; Ferraz, M. C. M. A.; Pereira, M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations; *Environmental Modelling & Software* 2006, *22*, 97-103.
- 17. Zhang, G.; Pattuwo, B. E.; Hu, M. Y. Forecasting with artificial neural networks: The state of the art; *International Journal of Forecasting* **1998**, *14*, 35-62.
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: fundamentals, computing, design, and application; *Journal of Microbiological Methods* 2000, 43, 3-31.
- Malalur, S.S.; Manry, M.T. Feed-Forward Network Training Using Optimal Input Gains; Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia 2009, 1953-1960.
- Rohit Rawat, Kunal Vora, Michael T.Manry, and Gautam R.Eapi. Multivariable neural network forecasting using two stage feature selection, 13<sup>th</sup> International Conference on Machine Learning and Application (ICMLA), Detroit, MI, Dec 2014.

- 21. Wang, D.; Lu, W.Z. Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm; *Atmos.Environ.* **2006**, *40*, 913-924.
- Ruiz, E. S.; Ordieres, J. B.; Vergara, E. P.; Rizo, S. F. C. Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in Mexicali, Baja California(Mexico) and Calexico, California (US); *Environmental Modelling & Software* 2008, *23*, 1056-1069.
- 23. Prybutok, V. R.; Yi, J.; Mitchell, D. Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations; *European Journal of Operational Research* **2000**, *122*, 31-40.
- Yi, J.; Prybutok, V. R. A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area; *Environmental Pollution* **1996**, *92*(3), 349-357.
- Wang, W.; Lu, W.; Wang, X.; Leung, A. Y. T. Prediction of maximum daily ozone level using combined neural network and statistical characteristics; *Environment International* 2003, 29, 555-562.
- U.S. Environmental Protection Agency. 8 Hour Ozone Nonattainment Areas; accessed at www.epa.gov/airquality/greenbook/gntc.html, February 2012.
- Texas Commission on Environmental Quality. Introduction to Air Quality Modeling: Photochemical Modeling; accessed at www.tceq.texas.gov/airquality/airmod/overview, February 2012.
- Rawat, R. An efficient piecewise linear network; Masters Thesis, University of Texas at Arlington December 2009.
- 29. Seinfeld, J.H.; Pandis, S.N. *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*; John Wiley & Sons: New York, **1998**.

- Salcedo-Sanz, S.; Portilla Figueras, J. A.; Ortiz Garcia, E. G.; Perez Bellido, A. M.; Garcia Herrera, R.; Elorrieta, J.I. Spatial Regression analysis of NO<sub>x</sub> and O<sub>3</sub> concentrations in Madrid urban area using Radial Basis Function networks; *Chemometrics and Intelligent Laboratory Systems* **2009**, *99*, 79-90.
- Sarle, W.S. Stopped training and other remedies for overfitting. *Proceedings of the* 27<sup>th</sup> Symposium on the Interface. Available via ftp://ftp.sas.com/pub/neural/inter95.ps.Z 1995.
- Gopalakrishnan, A.; Jiang, X.; Chen, M.S.; Manry, M.T. Constructive proof of Efficient Pattern Storage in the Multilayer Perceptron; *Twentyseventh Asilomar Conference on Signals, Systems & Computers* 1993, *1*, 386-390.
- 33. Chen, M. S.; Manry, M.T. Conventional modeling of the multilayer perceptron using polynomial basis functions; *Neural Networks, IEEE Transactions* **1993**, *4*(1) 164-166.
- 34. Mintz, R.; Young, B.R.; Svrcek W.Y. Fuzzy logic modeling of surface ozone concentrations; *Computers & Chemical Engineering* **2005**, 29, 2049-2059.
- 35. Peton, N.; Dray, G.; Pearson, D.; Mesbah, M.; Vuillot, B. Modelling and analysis of ozone episodes; *Environmental Modelling and Software* **2000**, 15, 647-652.
- Celikoglu, H.B.; Cigizoglu H.K. Modelling public transport trips by radial basis function neural networks; *Mathematical and Computer Modeling* 2006, 45, 480 - 489.
- Costa,A.; Markellos, R.N. Evaluating public transport efficiency with neural network models; *Transpn Res.-C* 1997, 5, 301-312.
- Yilmaz, I.; Kaynar, O. Multiple regression, ANN (RBF,MLP) and ANFIS models for prediction of swell potential of clayey soils; *Expert Systems with Applications* 2011, 38, 5958-5966.

- Hurtado, J.E.; Londono, J.M.; Meza, M.A. On the applicability of neural networks for soil dynamic amplification analysis; *Soil Dynamics and Earthquake Engineering* 2001, 21, 579-591.
- 40. Chen, J.; Adams, B.J. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling; *Journal of Hydrology* **2005**, 318, 232-249.
- Mjalli, F. S.; Al-Asheh, S.; Alfadala, H.E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance; *Journal of Environmental Management* 2007,83, 329-338.
- Narasimha, P.L.; Manry, M.T.; Maldonado, F. Upper bound on pattern storage in feedforward networks; *Neurocomputing* 2008, 71, 3612-3616.
- Li, Jiang.; Manry, M.T.; Narasimha, P.L. Feature Selection Using a Piecewise Linear Network; *Neural Networks, IEEE Transactions* 2006, 17, 1101-1115.
- Vaidyalingam, J. Cubic model of a multilayer perceptron; Masters Thesis, University of Texas at Arlington December 2003.
- 45. Guyon, I.; Elisseeff, A. An introduction to Variable and Feature Selection; *Journal of Machine Learning Research* **2003**, 3, 1157-1182.
- 46. Crone, S. F.; Kourentzes, N. Feature selection for time series prediction A combined filter and wrapper approach for neural networks; *Neurocomputing* 2010, 73, 1923 1936.
- 47. Dash, M.; Liu, H. Feature Selection for Classification; *Intelligent Data Analysis* 1997, 1, 131-156.
- Verikas, A.; Bacauskiene, M. Feature selection with neural networks; *Pattern Recognition Letters* 2002, 23, 1323-1335.
- Castellano,G.; Fanelli, A.M. Variable selection using neural-network models; Neurocomputing 2000, 31, 1-13.

- 50. Zheng, H.; Zhang, Y. Feature selection for high-dimensional data in astronomy; *Advances in Space Research* **2008**, 41, 1960-1964.
- Duda, R.O.; Hart, P.E.; Stork, D.G. *Pattern Classification*; John Wiley & Sons, Inc: New York, 2001.
- 52. Vora, K. Neural network based forecaster using feature selection; *Masters Thesis*, University of Texas at Arlington December **2012**.
- Fukunaga,K. Introduction to Statistical Pattern Recognition; Academic Press, California, 1990.
- Pudil,P.; Novovicova, J.; Kittler, J. Floating search methods in feature selection; Pattern Recognition Letters 1994, 15, 1119 -1125.
- 55. K L Transforms accessed at <u>http://nptel.iitm.ac.in</u>. 2008.
- 56. Karhunen –Louve Theorem accessed at <a href="http://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve\_theorem">http://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve\_theorem</a> 2012.
- 57. Chattopadhyay, S.; Chattopadhyay, G. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis; Pure and Applied Geophysics **2012**, 169, 1891-1908.
- Coman,A.; Ionescu, A.; Candau, Y. Hourly ozone prediction for a 24-h horizon using neural networks. *Environmental Modeling & Software* 2008, 23, 1407-1421.
- Chattopadhyay, S.; Bandyopadhyay, G. Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland; *International Journal of Remote Sensing* 2007, 4471-4482.
- Pires, J.C.M.; Sousa, S.I.V.; Pereira, M.C.; Alvim-Ferraz, M.C.M.; Martins, F.G. Management of air quality monitoring using principal component and cluster analysis– Part II: CO, NO<sub>2</sub> and O<sub>3</sub>; *Atmospheric Environment* **2008**, 42, 1261-1274.

- Malalur, S.S.; Manry, M.T. Multiple optimal learning factors for feed-forward networks; Proceedings of SPIE: Independent Component Analysis, Wavelets, Neural Networks, Biosystems, and Nano Engineering VIII, Orlando, Florida, Vol.7703, pp.77030F-1–77030F-12, April 7-9, 2010
- 62. Manry, M.T. Neural Networks, Course material, Fall 2010, University of Texas at Arlington.
- Manry, M.T. Statistical Pattern Recognition, Course material, Summer 2011, University of Texas at Arlington.
- Manry, M.T. Statistical Signal Processing, Course material, Spring 2011, University of Texas at Arlington.
- 65. Piecewise linear orthonormal floating search method accessed at <a href="https://www.youtube.com/watch?v=z87BMktA3vU">https://www.youtube.com/watch?v=z87BMktA3vU</a> 2012.
- Theodoridis, S.; Koutroumbas, K. *Pattern Recognition*; Academic Press, Elsevier (USA), 3<sup>rd</sup> edition, 2006.
- Luna, A.S.; Paredes, M.L.L.; de Oliveira, G.C.G.; Correa, S.M. Prediction of ozone concentration in tropospheric levels using artificial networks and support vector machine at Rio de Janeiro, Brazil; *Atmospheric Environment* **2014**, 98, 98-104.
- Alkasassbeh, M. Prediction of surface ozone using artificial neural networks and support vector machines; International Journal of Advanced Science and Technology 2013, 55, 1-12.
- Zahedi, G.; Saba, S.; Elkamel, A.; Bahadori, A. Ozone pollution prediction around industrial areas using fuzzy neural network approach; *Clean – Soil, Air , Water* **2014**, 42(7), 871-879.
- 70. Russo, A.; Raischel, F.; Lind, P, G. Air quality prediction using optimal neural networks; 2013.

- 71. Arhami, M.; Kamali, M.; Rajabi, M.M. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations; *Environmental Science Pollution Research*, **2013**, *20*, 4777-4789.
- 72. Paoli, C.; Notton, G.; Nivet, M.; Padovani, M.; Savelli, J. A neural network model forecasting for prediction of hourly ozone concentration in Corsica; IEEE 2011.
- Taormina, R.; Mesin. L.; Orione, F.; Pasero. E. Forecasting tropospheric ozone concentrations with adaptive neural networks; *Proceedings of International Joint Conference on Neural Networks, IEEE*, **2011**, 1857-1863.
- Pasero, E.; Mesin, L. Artificial neural networks for pollution forecast, *Air pollution, Villanyi (Ed.), ISBN:* 978-953-307-143-5, *InTech*, 2010.
- Ibarra-Berastegi, G.; Saenz, J.; Ezcurra, A.; Elias, A.; Barona, A. Using neural networks for short-term prediction of air pollution levels; *ACTEA*, *IEEE*, **2009**, 498-502.
- Kaminski, W.; Skrzypski, J.; Jach-Szakiel, E. Application of artificial neural networks (ANNs) to predict air quality classes in big cities; 19<sup>th</sup> International Conference on System Engineering, IEEE, 2008, 135-140.
- 77. Sun, G.; Hoff, S. J.; Zelle, B.C., Nelson, M.A. Forecasting daily source air using multivariate statistical analysis and radial basis function networks; *J. Air & Waste Manage. Assoc.* **2008**, *58*, 1571-1578.
- Thomas, S.; Jacko, R.B. Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models; *J. Air & Waste Manage. Assoc.*2007, *57*, 480-488.
- 79. Liu, P.G. Establishment of a Box-Jenkins Multivariate time-series model to simulate ground-level peak daily one-hour ozone concentrations at Ta-Liao in Taiwan; *J. Air & Waste Manage. Assoc.***2007**, *57*, 1078-1090.

- Niska, H.; Hiltunen, T.; Karppinen, A.; Russkanen, J.; Kolehmainen, M. Evolving the neural network model for forecasting air pollution time series; J. *Engineering Applications of Artificial Intelligence*, **2004**, *17*, 159-167.
- Wirtz, D. S.; El-din, M.G.; El-Din, A.; Idriss, A. Systematic development of an Artificial neural network model for real time prediction of ground level ozone in Edmonton, Alberta, Canada; *J. Air & Waste Manage. Assoc.*2005, *55*, 1847-1857.
- Benvenuto, F.; Marani, A. Neural networks for environmental problems: Data quality control and air pollution nowcasting; *Global Nest*, **2000**, *2*(3), 281-292
- 83. Gardner, W.; Dorling, S. Artificial neural network-derived trends in daily maximum surface ozone concentrations; *J. Air & Waste Manage. Assoc.* **2001**, *51*, 1202-1210.
- Gardner, M. W.; Dorling, S. R. Artificial neural networks (The multilayer perceptron)-A review of applications in the atmospheric sciences; *Atmos.Environ.*1998, 32, 2627-2636.
- Cobourn, G.W.; Dolcine, L.; French, M.; Hubbard, M.C. A comparison of nonlinear regression and neural network models for ground level ozone forecasting; *J. Air & Waste Manage. Assoc.* 2000, *50*, 1999-2009.
- Kandya.A.; Nagendra,S.S.M.; Tiwari. V.K. Forecasting the tropospheric ozone using artificial network modeling approach: A case study of megacity Madras, India; *J Civil Environ Engg.* 2012, *S1*, 1-5
- Cobourn, G.W.; Lin, Y. Trends in meteorological adjusted ozone concentrations in six Kentucky metro areas, 1998-2002; *J. Air & Waste Manage. Assoc.* 2004, *54*, 1383-1393.
- Al-Alawi, S.M.; Abdul-Wahab S.A.; Bakheit, C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone; *Environmental Modeling & Software*.2008, 23, 396-403.

- Kumar,K.; Yadav, A.K.; Singh,M.P.; Hassan,H.; Jain, V.K. Forecasting daily maximum surface ozone concentrations in Brunei Darussalam- An ARIMA modeling approach; *J. Air & Waste Manage. Assoc.* 2004, 54, 809-814.
- Clark, T. L.; Karl, T. R. Application of prognostic meteorological variables to forecasts of daily maximum one-hour ozone concentrations in the Northeastern United Sates; J. Applied Meteorology. **1982**, *21*, 1662-1671.
- Pires, J.C.M.; Pereira, M.C.; Alvim-Ferraz, M.C.M.; Martins, F.G. Identification of redundant air quality measurements through the use of principal component analysis. *Atmos.Environ.*2009, *43*, 3837-3842.
- Pires, J.C.M.; Martins, F.G.; Sousa, S.I.V.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Selection and validation of parameters in multiple linear and principal component regressions; *Environmental Modeling & Software*.2008, 23, 50-55.
- 93. Piramuthu, S. Evaluating feature selection methods for learning in data mining applications; *European Journal of Operational Research.* **2004**, *156*, 483-494.
- Gheyas, I.A.; Smith, L.S. Feature subset selection in large dimensionality domains;
  Pattern Recognition. 2010, 43, 5-13.
- Zolghadri, A.; Monsion, M.; Marchionini, C.; Petrique, O. Development of an operational model-based warning system for tropospheric ozone concentrations in Bordeaux, France; *Environmental Modeling & Software*. 2004, *19*, 369-382.
- 96. Abdul-Wahab, S.A., Bakheit, C.S., Al-Alawi, S.M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. *Environmental Modelling & Software*. **2005**, *20 (10)*, 1263-1271.
- Heo, J.S.; Kim, D.S. A new method of ozone forecasting using fuzzy expert system and neural network systems. *Science of the Total Environment*, **2004**, *325 (1-3)*, 221-237.

- Rohli, R.V.; Hsu, S.A., Blanchard, B.W., Fontenot, R.L. Short-Range Prediction of Tropospheric Ozone Concentrations and Exceedances for Baton Rouge, Louisiana. *American Meteorological Society*, **2003**, *18*, 371-383.
- Vautard, R.; Beekmann, M., Roux, J., Gombert, D. Validation of a hybrid forecasting system for the ozone concentrations over the Paris area. Atmospheric Environment, 2001, 35, 2449-2461.
- 100. Kaprara. A.; Karatzas, K., Moussiopoulos, N. Maximum ozone level prediction in Athens with the aid of the CART system. 7<sup>th</sup> International conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 2001, Belgirate, Italy.
- Biancofiore, F.; Verdecchia, M., Carlo, P, D., Tomasetti, B., Aruffo, E., Busilacchio, M., Bianco, S., Tommaso, S.D., Colangeli, C. Analysis of surface ozone using a recurrent neural network. *Science of Total Environment*, **2015**, *514*, 379-387.
- 102. Pires, J. C. M.; Goncalves. B.; Azevedo, F. G.; Carneiro, A. P.; Rego, N.; Assembleia, A.J.B.; Lima, J.F.B.; Silva, P.A.; Alves. C.; Martins, F. G. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting. *Environmental Science Pollution Research*, **2012**, *19*, 3228-3234.
- 103. Sekar, C.; Ojha, C. S. P.; Gurjar, B. R.; Goyal. M. K. Modeling and prediction of hourly ambient ozone and oxides of nitrogen and decision tree algorithms for an urban intersection in India. *Journal of hazardous toxic and radioactive waste, American Society of Civil Engineers*, **2015**.
- 104. Tamas, W.; Notton, G.; Paoli, C.; Voyant, C.; Nivet, M.; Balu, A. Urban ozone concentration forecasting with artificial neural network in Corsica. *Mathematical modeling in Civil Engineering*, **2014**, 10(1), 1-9.

- 105. Wolff, G. T.; Lioy, P. J. An empirical model for forecasting maximum daily ozone levels in the Northeastern U.S. *Journal of Air Pollution Control Association*, **1978**, *28(10)*, 1034-1038.
- 106. Ryan, W.F. Forecasting severe ozone episodes in the Baltimore metropolitan area. *Atmospheric Environment*, **1995**, *29(17)*, 2387-2398.
- 107. Karl, T.R. Potential application of model output statistics (MOS) to forecasts of surface ozone concentrations. *Journal of Applied Meteorology*, **1979**, *18*, 254-265.
- 108. Lu, H-C.; Hsieh, J-C.; and Chang, T-S. Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. *Atmospheric Research*, **2006**, 81,124-139.
- 109. Chaloulakou, A.; Saisana, M.; Spyrellis, N. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. *The Science of Total Environment*, **2003**, *313*, 1-13.
- deSouza, A.; Aristone, F.; Sabbah, I. Modeling the surface ozone concentration in Campo Grande (MS) - Brazil using Neural Networks. *Natural Science*, **2015**, 171-178.
- 111. Rawat, R.; Patel, J.K.; Manry, M.T. Minimizing validation error with respect to network size and number of training epochs. Neural Networks. *The 2013 International Joint Conference (IJCNN)*, Dallas, Texas, Aug. **2013**, 1-7. doi:10.1109/IJCNN.2013.6706919
- 112. Donald F. Gatz. Feasibility of Forecasting Surface Ozone Concentrations in the Chicago Area. Prepared for the Illinois Department of Natural Resources Department of Commerce and Community Affairs. April 2003.

## **Biographical Information**

Gautam R. Eapi was born in Visakhapatnam, Andhra Pradesh, India, in 1979. He received his B.Tech degree in Civil Engineering from Jawaharlal Nehru Technological University, Kakinada, India in 2003. He received his M.Tech degree in Environmental Engineering from Motilal Nehru National Institute of Technology, Allahabad, India in 2007. He received his Ph.D. degree in Environmental Engineering from the University of Texas at Arlington, Texas, U.S.A in 2015. In the past, he worked in the Environmental Defense Fund and Go Green projects. His current research interest is in the area of application of artificial neural networks and statistical pattern recognition in the field of Environmental Engineering.