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ABSTRACT

AUTOMATIC CARRIER LANDING SYSTEM FOR V/STOL AIRCRAFT

USING L1 ADAPTIVE AND OPTIMAL CONTROL

SHASHANK HARIHARAPURA RAMESH, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Dr Kamesh Subbarao

This thesis presents a framework for developing automatic carrier landing sys-

tems for aircraft with vertical or short take-off and landing capability using two

different control strategies - gain-scheduled linear optimal control, and L1 adaptive

control. The carrier landing sequence of V/STOL aircraft involves large variations

in dynamic pressure and aerodynamic coefficients arising because of the transition

from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude,

and turns performed to align with the runway. Consequently, the dynamics of the

aircraft exhibit a highly non-linear dynamical behavior with variations in flight con-

ditions prior to touchdown. Therefore, the implication is the need for non-linear

control techniques to achieve automatic landing. Gain-scheduling has been one of

the most widely employed techniques for control of aircraft, which involves designing

linear controllers for numerous trimmed flight conditions, and interpolating them to

achieve a global non-linear control. Adaptive control technique, on the other hand,

eliminates the need to schedule the controller parameters as they adapt to changing

flight conditions.
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A fully-non-linear high fidelity simulation model of the AV-8B is used for sim-

ulating aircraft motion, and to develop the two automatic flight control systems.

Carrier motion is simulated using a simple kinematic model of a Nimitz class carrier

subjected to sea-state 4 perturbations.

The gain-scheduled flight control system design is performed by considering the

aircraft’s velocity, altitude, and turn-rate as scheduling variables. A three dimen-

sional sample space of the scheduling variables is defined from which a large number

of equilibrium flight conditions are chosen to design the automatic carrier landing

system. The trim-data corresponding to each flight condition is extracted follow-

ing which the linear models are obtained. The effects of inter-mode coupling and

control-cross coupling are studied, and control interferences are minimized by control

decoupling. Linear optimal tracking controllers are designed for each trim point, and

their parameters are scheduled. Using just two linear models, an L1 adaptive con-

troller is designed to replace the gain-scheduled controller. The adaptive controller

accounts for matched uncertainties within a control bandwidth that is defined using

a low-pass filter.

Guidance laws are designed to command reference trajectories of velocity, alti-

tude, turn-rate and slip-velocity based on the deviation of the aircraft from a prede-

fined flight path. The approach pattern includes three flight legs, and culminates with

a vertical landing at the designated landing point on the flight deck of the carrier.

The simulations of automatic landing are performed using SIMULINKr en-

vrironment in MATLAB r. The simulation results of the automatic carrier landing

obtained using the gain-scheduled controller, and the L1 adaptive controller are pre-

sented.
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CHAPTER 1

BACKGROUND AND MOTIVATION

Aircraft carrier landings have been regarded as one of the most challenging

phases of flight due to the extremely tight space available for touchdown on the

flight-deck of a ship or aircraft carrier. Night operations, rough seas, and adverse

weather conditions further increase the risks associated with carrier landing, some-

times making manual landings impossible. After flying for long hours on combat

missions, executing a shipboard landing is usually seen as a daunting task by even

the most experienced naval aviators. Shipboard vertical landing of VSTOL aircraft

such as the AV-8B harrier have been known to be extremely dangerous due to the air-

craft’s inherent instabilities that prevail in hover flight conditions [1]. A testament to

this is the large number of crashes of the Harrier that have occurred during shipboard

approaches either due to pilot error or stability issues [2]. Automatic carrier land-

ing systems play a pivotal role in mitigating such accidents arising from the pilot’s

physiological factors or flight dynamic instabilities. The precision approach landing

system (PALS) employed by the US Navy is an automatic carrier landing system

that is housed in the carrier, and provides guidance commands to approaching air-

craft [3]. Currently, majority of the aircraft in the US Navy are capable of executing

an all-weather automatic carrier landings by relying on PALS. The approaching air-

craft couple their autopilots with the guidance signals issued by PALS to execute a

fully automatic landing. The AV-8B Harrier, however, does not possess an automatic

flight control system which (AFCS) permits automatic carrier landing. Therefore, in

this thesis, an automatic carrier landing system (ACLS), comprising of an AFCS and

1



a guidance system will be developed for the AV-8B Harrier. Nuthi P. and Subbarao

K. [4] develop a gain-scheduled AFCS and guidance laws for the AV-8B Harrier, and

demonstrate autonomous vertical landing on a marine vessel. The authors define

a flight envelope characterized by airspeed and altitude from which numerous trim

points are selected. A linear quadratic regulator (LQR)-based inner and outer loop

controllers are designed for each trim point with a view to provide stabilization, and

track velocity and altitude reference commands that are computed using adaptive

guidance laws. Since the controllers are only capable of tracking velocity and alti-

tude, the applicability of this design is limited to straight-in carrier landings that do

not require any lateral maneuvering. McMuldroch [5] addresses the shipboard vertical

landing problem for lift-fan type VSTOL aircraft. The landing sequence is separated

into two phases - hover and landing- and linear quadratic gaussian controllers are

synthesized for either phases. While in hover, the controller ensures that the aircraft

tracks the position and orientation of the flight deck, and the landing controller hov-

ers smoothly to touchdown using minimum control effort. Deck motion prediction

is included in the controller design which enhances the tracking performance of the

controller. Hauser et. al. [6] design a feedback-linearized controller to stabilize the

unstable roll dynamics of VSTOL aircraft in hover. A simplified 3 degree of freedom

aircraft model is considered to explain roll instabilities and the associated limit cy-

cles. Dynamic extension is performed until a model inversion is achieved following

which a control law is synthesized to regulate roll angle to zero. Marconi et. al. [7]

design an autonomous vertical landing system for a VTOL aircraft by considering

planar dynamics of the aircraft. The objective is to land on a marine vessel which

under the influence of sea-states, however the parameters that characterize the ship

motion are assumed to be unknown. The controller is required to adapt itself with the

ship motion to prevent negative vertical offsets and crashes. Denison N. [8] designs a

2



dynamic inversion-based automated carrier landing system for futuristic unmanned

combat aerial vehicles (UCAV) by including the effects of winds, turbulences, and

burble. Due to the stochastic nature of the problem, the performance of the system

is evaluated using Monte-Carlo simulations. Fitzgerald P. [9] compares the perfor-

mances of direct lift control, and thrust vectoring control applied to automatic carrier

landing in the presence of turbulence. The navigation system provided a reference

flight path, and also accounted for position corrections during touchdown.

1.1 Thesis Outline

The objective of this thesis is to simulate automatic vertical landing of AV-8B

Harrier-like-V/STOL aircraft on an aircraft carrier using two different flight control

techniques - linear, gain-scheduled control system, and L1 adaptive control. The air-

craft is required to fly along a predefined, fully three-dimensional flight path prior

to executing a vertical landing. Chapter 2 presents the aircraft and the carrier mod-

els employed in this thesis. A high fidelity, fully non-linear flight simulation model

of the aircraft and a kinematic model of the carrier is considered. Gain-scheduled

landing autopilot design is presented in chapter 3. A flight envelope characterized by

the aircraft’s velocity, altitude, and turn-rate is first defined within which numerous

equilibrium points are selected. Trim data pertaining to each flight condition is ex-

tracted following which plant linear models are obtained. Linear quadratic integral

(LQI) controllers are designed for each equilibrium point, and the controller param-

eters are scheduled. The chapter also investigates inter-mode coupling, and control

cross-coupling, and presents a control decoupling technique. Chapter 4 presents the

design of landing autopilots using L1 adaptive control. This control technique elim-

inates the need for a precomputed gain-database, unlike gain-scheduling. Proofs of

stability for adaptation laws are presented, and the low-pass filter design is discussed

3



in detail. The chapter concludes with reference model selection, and control architec-

ture. Guidance laws which facilitate in automatic landing are presented in chapter 5.

Design procedures for obtaining velocity, altitude, and turn-rate reference commands

are presented. Chapter 6 presents simulation results of automatic carrier landing that

are performed using the gain-scheduled and the L1 adaptive autopilots.

4



CHAPTER 2

SIMULATION MODELS

2.1 Flight Dynamics Model

yB

xB

zB

p

r

q

u

v

zI

xI
yI

Figure 2.1: Reference Frames in the AV-8B Harrier Model

A high-fidelity, fully non-linear simulation model of the AV-8B Harrier is em-

ployed in this research. This simulation model was originally developed by the De-

partment on Aerospace Engineering at Texas A&M University in collaboration with

the United states Navy, and Engineering Systems Inc. [10]. The entire simulation,

which was programmed in C++, was compiled to a C-Mex function by the authors

in [4]. The origin of the body frame is fixed to the aircraft’s center of gravity with

the axes of the frame oriented in the usual directions - the xB axis lies in the plane
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of symmetry and points towards the nose, the yB axis points to the right while being

perpendicular to the plane of symmetry, and the zB axis lies in the plane of symmetry

and points downwards. The inertial frame is fixed to a point on the earth with its xI

axis pointing towards true North, yI axis pointing towards East, and zI axis pointing

down while being mutually perpendicular to xI and yI axes. The orientation of the

aircraft with respect to the inertial frame is parametrized in terms of 3-2-1 Euler an-

gles - φ, θ, and ψ . Let u, v, and w denote the components of the aircraft’s velocity

with respect to the inertial frame, represented on the body frame; p, q and r denote

the components of the aircraft’s angular velocity represented on the body frame. The

governing kinematic and dynamic equations of the aircraft motion presented in this

section are based on [11], [12], and personal notes. The translational dynamics of the

aircraft are governed by

u̇ = rv − qw +
Fx
m
− g sin θ (2.1)

v̇ = pw − ru+
Fy
m
− g cos θ sinφ (2.2)

ẇ = qu− pv +
Fz
m
− g cos θ cosφ (2.3)

‘m’ denotes the aircraft’s mass, and ‘g’ denotes acceleration due to gravity. Fx, Fy,

and Fz denote the aerodynamic and thrust forces that are acting on the aircraft along

the xB, yB, and zB directions. The aircraft’s rotational dynamics are given by

ṗIxx − q̇Ixy − ṙIxz = L+ pqIxz − (r2 − q2)Iyz − qr(Izz − Iyy)− prIxy (2.4)

q̇Iyy − ṗIxy − ṙIyz = M − pr(Ixx − Izz)− (p2 − r2)Ixz + qrIxy − pqIyz (2.5)

ṙIzz − ṗIxz − q̇Iyz = N − pq(Iyy − Ixx)− qrIxz − (q2 − p2)Ixy + prIyz (2.6)

where, Ixx, Iyy, and Izz represent the aircraft’s principal moments of inertia, and Ixy,

Iyz, and Ixz denote the aircraft’s products of inertia. L, M , and N represent the

6



moments due to thrust and aerodynamics acting on the aircraft about the xB,

yB, and zB axes, respectively. In the presence of wind, the forces Fx, Fy, and Fz,

and the moments L, M , and N depend on the relative velocity of the aircraft with

respect to wind, which is determined as follows. Let RBI denote the rotation matrix

from the inertial frame to the body frame, which is given by

RBI =


cos θ cosψ cos θ sinψ − sin θ

− cos θ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


(2.7)

Let vB = [ u v w ]T be the representation of the aircraft’s inertial velocity on the

body frame, and W = [ WN WE WD ]T denote the wind velocity vector represented

on the inertial frame with WN , WE, and WD denoting the North, East and down

components of wind velocity. The relative velocity of the aircraft with respect to the

surrounding air, expressed on the body frame, denoted by v̄B is given by

v̄B = vB −RBIW (2.8)

Let U = [ δS δT δN δA δR δF ]T denote a vector constituting the control inputs avail-

able on the AV-8B Harrier model. δS is the longitudinal stick deflection, δT is the

throttle, δN is the nozzle gimbal angle, δA is the aileron deflection, δR is the rudder

deflection, and δF is the flaps setting. Let W = [ p q r]T denote the aircraft’s an-

gular velocity vector with respect to the inertial frame expressed on the body frame.

The forces arising due to aerodynamics and thrust in Eqs.(2.1) - (2.6) are non-linear

functions of v̄B, W , and U, as shown in Eqs.(2.10) - (2.14). X , Y , Z, L, M, and

N represent the unknown non-linear functions contained in the AV-8B simulation

model.
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Fx = X
(
v̄B,W ,U

)
(2.9)

Fx = Y
(
v̄B,W ,U

)
(2.10)

Fx = Z
(
v̄B,W ,U

)
(2.11)

L = L
(
v̄B,W ,U

)
(2.12)

M = M
(
v̄B,W ,U

)
(2.13)

N = N
(
v̄B,W ,U

)
(2.14)

Let pE and pN denote the North and the East inertial position of the aircraft

with with h being its altitude. The velocity of the aircraft expressed on the inertial

frame, denoted by vI can be obtained by transforming the body velocity components

to inertial frame. It is to be noted that vI = [ ṗE ṗN − ḣ ]T . Therefore

vI = RT
BIv

B (2.15)

Further,

ṗN = u cos θ cosψ + v(− cosφ sinψ + sinφ sin θ cosψ) (2.16)

ṗE = u cos θ sinψ + v(cosφ cosψ + sinφ sin θ sinψ)

+w(−sinφ cosψ + cosφ sin θ sinψ) (2.17)

ḣ = u sin θ + v sinφ cos θ + w cosφ cos θ (2.18)

The rotational kinematic equations are

ψ̇ = (q sinφ+ r cosφ) secθ (2.19)

θ̇ = q cos θ − r sinφ (2.20)

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (2.21)

8



Therefore the state variables that characterize the behavior of the aircraft in

the simulation model are written in the form of a vector X ∈ R12×1 which is given

by X = [ pN pE h φ θ ψ u v w p q r]T . pN , pE, and h are measured in ft; φ, θ,

and ψ are measured in deg.; u, v and w are measured in ft/s; and p, q, r are

measured in deg./s. The wind velocities, WN , WE, and WD, are measured in ft/s.

The control inputs δN , δA, δR, and δF are measured in deg., while δS and δT are

measured in percentage. A positive aileron deflection results in a positive roll rate,

and a positive rudder deflection results in negative yaw rate. The longitudinal stick

deflection corresponding to zero δS is 28%. Any value of δS > 28% results in a

positive pitch rate. The nozzle can swivel from a fully-upright position to 90◦, and

a downward deflection is considered positive. A reaction control system is also built

into the model, and is automatically activated based on the nozzle setting. Table

(2.1) shows the limits on each of the control effectors on the harrier model.

Table 2.1: Limits on Control inputs

Control Limits

Inputs

Stick δS 0 to 100 %

(Stick Center - 28 %)

Throttle δT 0 to 100 %

Nozzle δN 0 - 90o

Aileron δA -25o to +25o

Rudder δN -15o to +15o

Flaps δF 0o to 60o
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The system of non-linear differential equations that govern the motion of the

aircraft in Eqs.(2.1) -(2.6), (2.16)-(2.21), can be written as

Ẋ = F (X,U,W) (2.22)

where F(·) ∈ R12 denotes a vector of non-linear algebraic equations involving X, U, and W.

AV-8B

Harrier

States X

Wind W

Control U

State
Derivatives

Ẋ

Figure 2.2: Schematic diagram of the AV-8B simulation model

2.2 Aircraft Carrier Model

The NAVAIR kinematic model of a Nimitz class carrier that is found in [8] is

employed in this research. The landing spot is approximately 374 ft to the aft of C.G,

and 22 ft towards the port side. The flight deck is angled at 9◦ to the longitudinal

axis.

The ship’s body frame is rigidly fixed to the hull at the C.G. with the xS axis

pointing towards the bow, the yS axis pointing towards starboard, and the zS axis

pointing downwards. The orientation of the ship with respect to the inertial frame is

parameterized using 3-2-1 Euler angles. The motion of the carrier is composed of a

forward motion with constant velocity at zero pitch and roll angles, and perturbations

caused due to sea states. The carrier is considered to have perturbations in heave,

surge, sway, pitch and roll.
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However, yaw perturbations are assumed to be zero. xac, yac are the inertial

coordinates (North-East) of the carrier, Vac is the velocity of the carrier, and ψac

denotes the heading of the carrier. φac, θac, and ψac denote the roll, pitch, and yaw

angles of the carrier. The mean forward motion of the ship is given by

xS, us

zS, ws

yS, vs

Surge

Sway

Heave

rs

qs

ps

Figure 2.3: Notations used for the aircraft carrier

ẋac = Vac cos ψac (2.23)

ẏac = Vac sin ψac (2.24)

˙ψac = 0 (2.25)

The translational perturbations acting on the C.G. of the ship are found using
δx1

δy1

δz1

 =


cos ψac sin ψac 0

sin ψac cos ψac 0

0 0 1



δuac

δvac

δwac

 (2.26)

where δuac, δvac, and δwac denote the surge, sway, and heave displacements, respec-

tively, which are measured in feet.
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The perturbations due to pitching and rolling are determined using
δx2

δy2

δz2

 = RIB( δφac, δθac, δψac)


−∆XCM

−∆YCM

−∆ZCM

 (2.27)

where RIB(·) represents the rotation matrix from the carrier’s body frame to inertial

frame; δφS, δθS, and δψS denote the sea-state perturbations in the carrier’s bank,

pitch, and yaw angles, respectively. ∆XCM , ∆YCM , and ∆ZCM denote the separation

between the landing point and the center of gravity of the carrier expressed on the

carrier’s body frame, and their respective values are -374 ft, -22 ft and -50 ft. The

height of the carrier from the sea-level is assumed to be 70 ft. The total perturbation is

obtained by summing up Eqs. (2.26) and (2.27) which is added to the mean forward

motion in Eq.(2.25). A sea-state 4 perturbation model that is provided in [8] is

considered in the simulation. The perturbations are modeled as sinusoidal waves

using the information provided in table.(2.2)

Table 2.2: Sea-State 4 Perturbations

Perturbation Amplitude Frequency
rad/s

Roll δφS 0.6223 deg. 0.2856

Pitch δθS 0.5162 deg. 0.5236

Yaw δψS 0.0 deg. 0.0

Surge δuac 0.9546 ft. 0.3307

Sway δvac 1.4142 ft. 0.3307

Heave δwac 2.2274 ft. 0.3491
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CHAPTER 3

GAIN-SCHEDULED CONTROLLER

The non-linear aircraft dynamics in Eq.(2.22)can be parametrized in terms of

a vector of scheduling variables σ ∈ R3 as

Ẋ(σ) = F (U(σ),X(σ)) (3.1)

where σ = [ Vd ψ̇d hd ]T with Vd, ψ̇d, and hd denoting the desired values of

velocity, turn-rate, and altitude, respectively. Note that the wind term W has been

dropped from Eq.(3.1), since the controller is developed assuming no winds. Let S

denote a three dimensional, admissible convex sample space of Vd, hd and, ψ̇d, defined

as

S ,
{
σ ∈ R3 : Vd ∈ [ 0 500 ] , ψ̇d ∈ [−10 10 ] , hd ∈ [ 10 1000 ]

}
The bounds on Vd, ψ̇d and hd are imposed based on the flight envelope considered for

ACLS design. The equilibrium family for Eq.(3.1) defined on the set S, represented

by (X0(σ),U0(σ)) satisfies the relation

Ẋ0(σ) = F (U0(σ),X0(σ)) (3.2)

where Ẋ0(σ) is the state derivative vector corresponding to zero steady-state error,

which is given by Ẋ0(σ) = [ṗN ṗE 0 0 0 0 0 0 0 0 0 0 0 ]T for steady, straight and

level flight condition, and Ẋ0(σ) = [ ṗN ṗE 0 0 0 ψ̇d 0 0 0 0 0 0 ]T for steady turning

flight condition.
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For both cases, the following constraint relations, ṗN = Vd · cosψ, ṗE = Vd ·

sinψ, and ψ̇d = sign(ψ̇d)
√
p2 + q2 + r2, hold good. Note that the equilibrium pair

(X0,U0) are unknown for any given σ, and are determined by the process of trim-

ming. Discretizing the sample-space S, which is a 3-dimensional box, produces a

finite set of grid elements as illustrated in Fig.(3.1), and the associated grid points

represent the desired operating points. The grid dimensions must be small enough
ψ̇

h

V

hmax

hmin

ψ̇min

ψ̇max
Vmin

Vmax

Figure 3.1: Illustration of discretized V − ψ̇ − h sample-space

to capture the effect of non-linearities present in the aircraft’s dynamics, and are

selected purely based on engineering intuition since the non-linearities are unknown.

The landing autopilot developed in [4] is scheduled on airspeed and altitude, and pro-

vided satisfactory performance with the corresponding sample steps being 20ft and

20ft/s, respectively. However, decreasing the step sizes can enhance the controller’s

performance. In this research, step sizes of 5ft/s and 1◦/s are conservatively chosen

for Vd and ψ̇d, respectively. From the trim study performed in section 3.1, the equi-
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librium pair (X0(σ),U0(σ)) is found to be highly sensitive to changes in altitude for

hd ≤ 100ft. Therefore, an altitude step increment of 10 ft is chosen for hd < 100ft.

However, when 100ft ≤ hd ≤ 1000ft, the equilibrium pair varied more smoothly with

h because of which an altitude step increment of 100ft is chosen in this range. Due

to the conservativeness adopted in selecting the grid dimensions, the Vd, ψ̇d and hd

axes of the sample-space S contain 101, 21, and 19 equilibrium points, respectively.

Hence, discretization yields 101 × 21 × 19 = 40299 trim points in total. The grid

dimensions are summarized in the table below.

Table 3.1: Summary of sample-space mesh dimensions

Scheduling
Variable

Range Step size No. of points

Vd 0.1ft/s - 500.1ft/s 5ft/s 101

hd 10ft - 100ft 10ft 19

100ft - 1000ft 100ft

ψ̇d − 10◦/s to 10◦/s 1◦/s 21

3.1 Trim Database

Extraction of trim data is the most crucial stage is developing a gain-scheduled

flight controller - the quality of trim data, and the variation of trim states and control

inputs along the equilibrium trajectories in S govern the performance of the controller.

The objective of trimming is to determine the equilibrium pair (X0(σ),U0(σ)) corre-

sponding to every grid point in S by solving the set of non-linear differential equations

in Eq.(3.2). However, the solution to the trim problem is non-unique as F(·, ·, ·) is

non-linear, and dim{X}+dim{U} >dim{σ}. Hence, the trim states and control in-
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puts have to be estimated by specifying the desired upper and lower bounds, and

this is made possible by resorting to constrained numerical optimization. First, an

objective function J is defined with a motivation to perform seek for trim solution

pertaining to both steady turning, and steady straight and level flight conditions, as

follows.

J , E1 + E2 + E3 + ėT ė (3.3)

where,

e = [h φ θ u v w p q r]T (3.4)

E1 = (u2 + w2 − V 2
d )2 + (ṗ2

N + ṗ2
E − V 2

d )2 (3.5)

E2 = (h− hd)2 (3.6)

E3 =
∣∣∣sign(ψ̇d)

√
p2 + q2 + r2 − ψ̇d

∣∣∣+ (ψ̇ − ψ̇d)2 (3.7)

The state-derivative terms in Eqs.(3.4)-(3.7) , ė, ψ̇, ṗN , and ṗE , are determined from

Eq.(2.22) while holding W = [ 0 0 0 ]T . The rationale behind the definition of the

objective function in Eq.(3.3) in explained as follows. Minimizing E1 constrains the

aircraft’s velocity vector to the inertial xI−yI plane, and to the aircraft’s xB−zB plane

(plane of symmetry) which in turn causes the slip-velocity v, and the time derivative

of altitude ḣ to be zero. Minimizing E2 trims the aircraft at the desired altitude,

whereas minimizing E3 ensures the aircraft’s turn-rate equals the desired turn-rate.

Finally, a steady flight condition is obtained by minimizing ėT ė. Let ( Xmin Umin )

and ( Xmax Umax ) denote the desired upper and lower bounds on the equilibrium

pair (X0(σ),U0(σ)). These bounds become the constraints on states and controls

for the trim problem which is stated as :

min
X,U

J subject to the constraints X ∈ [ Xmin Xmax ] and U ∈ [ Umin Umax ]
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This constrained minimization problem is initialized with an guess Xi ∈ [ Xmin Xmax ]

and Ui ∈ [ Umin Umax ], and is solved iteratively until (X,U) converge to the un-

known equilibrium pair (X0(σ),U0(σ)). The fmincon function available in MATLABr

was employed for solving the problem. The constraints [ Xmin Xmax ] and [ Umin Umax ]

are carefully varied as a function of Vd and ψ̇d to ensure fast, error-free convergence

of the optimization problem.

3.1.1 Turn Coordination

u

w

xI
yI

zI

ψ̇

xB

~V

yBzB
φ
ψ

ψ

Figure 3.2: Illustration of constraints in steady turning flight condition

Coordinated turns are a direct consequence of minimizing the first constituent,

E1 of the objective function. Fig. (3.2) illustrates the steady turning flight condition

at the instant when course χ = 0. Besides reducing the aerodynamic drag, driving

the slip velocity v to zero also ensures that the turns are coordinated, and this is

elucidated using the aircraft’s translational dynamics in yB direction from Eq.(2.2)

aBy = g sinφ cosθ +
1

m
Fy (3.8)
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where, aBy = v̇ − pw + ru denotes the component of the aircraft’s inertial accel-

eration along the yB axis. For turn coordination, it is essential that the inertial

acceleration component ayB must be parallel to the component of gravity along yB,

i.e., ayB = g sinφ cos θ. From Eq.(3.8), this coordination condition is satisfied if the

side-force fy = 0. For symmetric aircraft, v = 0 implies fy = 0, which is not the

case for asymmetric aircraft. Though the AV-8B Harrier is not exactly known to

be symmetric, v = 0 yields coordination. This is seen by computing the difference

between ayB and g sinφ cos θ, which is the lateral g-acceleration. Fig.(3.3) shows that

the lateral g-acceleration is negligibly small for most flight conditions.

Velocity (ft/s)
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7°/s

10°/s

Figure 3.3: Variation of lateral g-acceleration with velocity for different turn-rates
under trim conditions for steady turn.

3.1.2 Flap and Nozzle Schedules

For high speed flight conditions, it is essential to trim the aircraft by restricting

the flap and nozzle deflections to zero to eliminate unrealistic trim attitudes. On

the other hand, achieving a low-speed or a hovering flight condition is impossible

without deploying flaps and nozzle. Considering these factors, the following schedul-
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ing laws, that are based on the operating procedures mentioned in [13], are imposed

as constraints in the trim optimization problem. The nozzle deflection δN has been

scheduled with respect to airspeed to cause a smooth transition from high-speed,

lift-supported flight to jet-borne flight, using the nozzle scheduling law given by

δN =


0 if V > 400ft/s

0.35(400− V ) if 200ft/s ≤ V ≤ 400ft/s

Between 70◦ and 90◦ if V < 200ft/s

This nozzle scheduling law maintains a zero nozzle-deflection at high-speeds (V >

400ft/s), and interpolates linearly between 0◦ and 70◦ as the velocity varies from

400ft/s to 200ft/s. For low velocities (V < 200ft/s), the nozzle deflection is not

specified, but determined as a solution to the optimization problem between 70◦ and

90◦.

V (ft/s)
0 50 100 150 200 250 300 350 400 450 500

δ
F
 °

0

20

40

60

Figure 3.4: Flap Schedule
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Similarly, the flap deflection is also scheduled with respect to airspeed as shown

in Fig.(3.4) using the following flap scheduling law.

δF =


0 if V > 400ft/s

0.248(400− V ) if 150ft/s ≤ V ≤ 400ft/s

62◦ if V < 150ft/s

3.1.3 Trim Results

The trim states and control inputs, X0 and U0, that were determined for each

of the 40299 points in S are stored in a three-dimensional array. Some trim results

from the large data set of equilibrium points in are presented below.

• High speed, lift-supported turning flight

V = 500ft/s, ψ̇ = 10◦/s, h = 1000ft

X0 = [ 0ft 0ft 1000ft 70.03◦ 3.04◦ 0◦ 494.16ft/s 0ft/s ....

.... 76.87ft/s − 0.53◦/s 9.39◦/s 3.41◦/s ]T

U0 = [ 57.7% 69.49% 0◦ − 0.12◦ − 0.4◦ 0◦ ]T

• Low-speed, jet-borne straight and level flight

V = 100ft/s , ψ̇ = 0◦/s, h = 300ft

X0 = [ 0ft 0ft 300ft 0◦ 10.9◦ 0◦ 98.29ft/s 0ft/s ....

.... 18.93ft/s 0◦/s 0◦/s 0◦/s ]T

U0 = [ 34.2% 83.92% 71.41◦ 0◦ 0◦ 62◦ ]T
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• Turning at intermediate, transition speed

V = 300ft/s , ψ̇ = −10◦/s, h = 600ft

X0 = [ 0ft 0ft 600ft − 58.97◦ 5.32◦ 0◦ 295.32ft/s ....

....0ft/s 53.37ft/s 0.93◦/s 8.53◦/s − 5.13◦/s ]T

U0 = [ 30.42% 74.26% 35◦ 0.22◦ 0.99◦ 24.8◦ ]T

3.2 Linearization of the Equations of Motion

Linear models of the aircraft at every trim point in S are determined by

jacobian-linearization of the governing equations of motion in Eq.(2.22), which is

achieved by providing small perturbations to the corresponding trim states X0 (σ)

and U0 (σ). The perturbed dynamics are given by

Ẋ = F (U0 + ∆U, X0 + ∆X) (3.9)

Expressing the perturbed state derivative as Ẋ = Ẋ0 + ∆Ẋ0, and expanding the

right hand side of the above equation using Taylor series, we obtain,

Ẋ0 + ∆Ẋ0 = F (U0,X0) + A∆X + B∆U + H.O.T (3.10)

where, A ∈ R12×12 and B ∈ R12×6 are the systems drift and control effectiveness

matrix that are respectively given by

A =
∂F

∂X

∣∣∣∣
(X0,U0)

and B =
∂F

∂U

∣∣∣∣
(X0,U0)

H.O.T. denotes higher order terms whose contribution in the above equation is in-

significant due to the perturbations being small.
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Subtracting Eq.(3.2) from Eq.(3.9), yields the linearized dynamics of the air-

craft, mentioned as follows.

∆Ẋ = A ∆X + B∆U (3.11)

u0, v0, and w0 denote the body velocity components under trim conditions, and

V0 is the corresponding airspeed. The A and B matrices for all the trimmed flight

conditions are determined in MATLABr using the Partial Differentiation Equation

toolbox by providing a perturbation of magnitude 10−6 to each element in the state

and control input vectors. Following the linearization, it is important to determine the

controllability of the aircraft within the flight envelope considered for AFCS design.

The ranks of the controllability matrix C = [ B | AB | A2B |....| A11B ] is 12 for all

points in S; rank(C) = dim(X) implies the system is completely controllable at all

flight conditions.

3.2.1 Selection of Output Variables

The linearized dynamics will be used for designing a MIMO proportional-

intergral controller with an view to drive the steady state errors in the velocity ‘V ’,

altitude ‘h’ and lateral velocity ‘v’ to zero. If ∆Y ∈ R3 is a vector of desired outputs

given by ∆Y = [ ∆V ∆H ∆v ]T , and C ∈ R3×12 denotes the plant output matrix

given by, then

∆Y = C ∆X (3.12)

where,

C =


0 0 0 0 0 0

u0

V0

v0

V0

w0

V0

0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

 (3.13)
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3.3 Inter-mode Coupling

The conventional approach followed to design AFCS consists of first decoupling

the linearized lateral and longitudinal aircraft dynamics followed by designing the

corresponding feedback gains, separately. This decoupling prevents control interfer-

ences, which are the adverse effects of the lateral control inputs on longitudinal state

variables, and vice-versa . However, if inter-mode coupling, which is the coupling

between longitudinal and lateral modes, exists, the lateral and longitudinal dynamics

cannot be separated . Therefore, prior to designing controllers, it is imperative to

check for any inter-mode coupling to decide whether feedback gains are designed us-

ing decoupled linear models, or the full-state model. In this regard, a reduced order,

permuted liner model of the AV-8B is considered as follows

∆ẋ = Ā∆x + B̄∆u (3.14)

∆x = [ ∆xTLon ∆xTLat ]T , where ∆xLon ∈ R4×1 and ∆xLon ∈ R4×1 are the lon-

gitudinal and lateral state vectors given by ∆xLon = [ ∆θ ∆u ∆w ∆q ]T and

∆xLat = [ ∆φ ∆v ∆p ∆r ]T . The control vector ∆u = [ ∆uTLon ∆uTLat ]T , where

∆uLon ∈ R2×1 and ∆uLat ∈ R2×1 are the longitudinal and lateral control input vec-

tors that are respectively given by ∆uLon = [ ∆δS ∆δT ]T and ∆uLat = [ ∆δA ∆δR ]T

The permuted drift and the control effectiveness matrices, Ā and B̄, are partitioned

to identify the coupling matrices as shown below.

∆ẋ =

 ALon A12

A21 ALat

∆x +

 BLon B12

B21 BLat

∆u (3.15)
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The sub-matrices A12 ∈ R4×4 and A21 ∈ R4×4 represent coupling between the

longitudinal and lateral states while B12 ∈ R4×2 and B21 ∈ R4×2 denote the coupling

in respective control effectivenesses. ALon ∈ R4×4 and ALat ∈ R4×4 are the decoupled

longitudinal and lateral drift matrices with the corresponding control effectiveness

being BLon ∈ R4×2 and BLat ∈ R4×2, respectively . If A12 = A21 = 0 indicating

the absence of inter-mode coupling, then Eq.(3.14) can be separated into longitudinal

and lateral dynamics as shown below,

∆ẋLon = ĀLon ∆xLon + B̄Lon ∆uLon (3.16)

∆ẋLat = ĀLat ∆xLat + B̄Lat ∆uLat (3.17)

and the feedback gains can be designed separately. The procedure can be extended to

cases when the coupling drift matrices are non-zero, however, a requisite is inter-mode

coupling must be insignificant. The magnitudes of eigen vectors or eigen functions

characterize inter-mode coupling. The modal transformation ∆x = V∆ξ, with

V ∈ C8×8 representing the modal matrix of Ā, is substituted in Eq.(3.14) to yield

∆ξ̇(t) = Λ∆ξ + V−1B̄ ∆u (3.18)

where Λ = V−1AV is the diagonal matrix of eigen values of Ā. The solution to

Eq.(3.18) is given by

∆ξ(t) = eΛ(t−t0) ∆ξ (t0) +

t∫
t0

eΛ(t−τ) V−1 B̄ u (3.19)

Transforming the above equation back to the actual states,

∆x(t) = V eΛ(t−t0) V−1∆x (t0) +

t∫
t0

V eΛ(t−τ) V−1 B̄ u (3.20)
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Eqs.(3.19) and Eq.(3.20) the mode shapes are governed by the eigen values

and the eigen vectors of Ā, or alternatively the eigen functions V eΛ(t−t0). The

relative degree of involvement of each state in a dynamic mode can rather be found

by examining the magnitude of the elements in corresponding eigen vectors. To

investigate the inter-mode coupling phenomenon, the Ā matrix at a trimmed flight

condition of V = 500ft/s, h = 1000ft, and ψ̇ = 0◦/s is first considered.

Table 3.2: Eigen values at V = 500ft/s, h = 1000ft, and ψ̇ = 0◦/s

Mode Eigen Value

Short Period -0.826 ± i 3.96

Phugoid -0.0019 ± i 0.08

Dutch Roll -0.544 ± i 3.046

Roll Subsidence -4.382

Spiral Divergence 0.013

Ā =



0 0 0 1 0 0 0 0

−0.56 −0.039 0.134 −0.556 0 0 0 0

−0.036 −0.05 −1.259 8.575 0 0 0 0

0 0.088 −1.85 −0.391 0 −0.22 0 0

0 0 0 0 0 0 1 0.064

0 0 0 0 0.56 −0.326 0.557 −8.684

0 0 0 0 0 −1.712 −4.448 2.043

0 0 0 0 0 0.92 −0.303 −0.681
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The coupling matrices Ā12 and Ā21 zeros due to which there is no inter-mode

coupling. This is also verified by observing the magnitude of the eigen vectors of the

dynamic modes.

Table 3.3: Magnitude of Eigen function at h = 1000 ft, V = 500.1 ft/s, and ψ̇ = 0◦/s

State Roll Short Dutch Phugoid Spiral
Subsidence Period Roll Divergence

∆θ 0 0.103 0.028 0.146 0.007

∆u 0 0.054 0.014 0.988 0.065

∆w 0.003 0.901 0.241 0.044 0.003

∆q 0.001 0.419 0.088 0.012 0

∆φ 0.223 0 0.101 0 0.995

∆v 0.044 0 0.859 0 0.05

∆p 0.971 0 0.318 0 0.009

∆r 0.068 0 0.29 0 0.063

From table (3.3), the magnitudes of lateral states ∆φ ∆v ∆p ∆r present in

short-period and phugoid modes are zero, whereas the relative magnitudes of longi-

tudinal states ∆θ ∆u ∆w ∆q present in lateral modes - dutch roll, spiral divergence,

and roll subsidence - are insignificant compared to that of the lateral states. This is

a clear indication of the absence of any inter-mode coupling in steady straight and

level flight condition. As the carrier landing sequence involves turns at high-bank

angles, inter-mode coupling may exist at flight conditions involving high turn-rates.

Therefore, the trimmed flight condition of V = 500ft/s, h = 1000ft, and ψ̇ = 0◦/s

is now considered for analysis.
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Ā =



0 0 0 0.341 −0.174 0 0 −0.94

−0.561 −0.031 0.087 −1.342 0 0 0 0

−0.01 0.003 −1.468 8.483 −0.527 0.009 0 0

0 0.072 −0.873 −0.403 0 −0.441 0.056 −0.003

0.175 0 0 0.05 0 0 1 0.018

−0.028 −0.06 −0.009 0 0.191 −0.477 1.342 −8.598

0 −0.034 0.083 −0.038 0 −3.077 −4.474 2.47

0 0.013 −0.029 0.003 0 0.407 −0.572 −0.636



Table 3.4: Eigen values at V = 500ft/s, h = 1000ft, and ψ̇ = 10◦/s

Mode Eigen Value

Short Period 1.06 ± i 2.73

Phugoid -0.0016 ± i 0.18

Dutch Roll -0.587 ± i 2.77

Roll Subsidence -4.15

Spiral Divergence -0.0189

Clearly, the off-diagonal sub-matrices, which are the attributes for inter-mode

coupling, are non-zero. The implication is that the magnitude of the eigen vector V

has to be determined to ascertain the extent to which the coupling exists. From table

(3.5), the existence of a strong inter-mode coupling is clearly evident; especially, the

dutch-roll mode involves large perturbation in the longitudinal states ∆q and ∆w.
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Table 3.5: Magnitude of Eigen Vectors at h = 1000 ft, V = 500.1 ft/s, and ψ̇ = 10◦/s

State Roll Short Dutch Phugoid Spiral
Subsidence Period Roll Divergence

∆θ 0.0261 0.041 0.0526 0.305 0.0494

∆u 5.47× 10−4 0.135 0.115 0.906 0.994

∆w 0.00494 0.912 0.799 0.09 0.0856

∆q 0.0129 0.299 0.272 0.00238 0.0172

∆φ 0.233 0.042 0.102 0.279 0.0475

∆v 0.0216 0.185 0.411 0.0273 0.0219

∆p 0.96 0.14 0.281 0.00821 0.00694

∆r 0.154 0.0516 0.116 0.00997 0.00356

Therefore, inter-mode coupling, which is absent at the trimmed straight and

level flight condition, manifests at the trimmed turning flight condition, and this

trend is observed at all velocities and altitudes in S. Though the gains of longitudinal

and lateral controllers of the AFCS can be separately designed for trimmed straight

and level flight conditions, full state linear models are necessary for designing gains

for all other flight conditions. It is convenient to design a controller that retains the

same structure at all flight conditions because of which full state linear models will

be considered for designing the controllers.

3.4 Control Cross-Coupling

A major draw-back of employing full-state linear models for designing the gains

of the autopilots is the control cross coupling. In this section, the relative control

effectiveness method provided in [14] is used to assess the control influence that each
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control effector possess over the flight dynamic modes. With the objective of this

technique being synthesis of a relative control effectiveness matrix, the state equation

in Eq.(3.14) is transformed to block diagonal form using the similarity transformation

∆x = M ∆z as

∆ż = Λ̃∆z + M−1B̄∆u (3.21)

where, Λ̃ = M−1ĀM is the diagonal matrix of real eigen values. The similarity

transformation matrix M ∈ R8×8 is constructed as follows. The columns in M that

correspond to real eigen values of Ā are set equal to the respective eigen vectors found

in V . For every complex conjugate eigen value pair of Ā, one column in M is set

equal to the real part of the corresponding eigen vector, and the neighboring column

is set equal to the imaginary part of one of the complex conjugate eigen vectors.

Let Σ ∈ R4×4 denote a diagonal matrix of control authorities of each input in ∆u

constructed using the limits given in Table (2.1) i.e. Σ = diag ([ 100 100 25 15 ]).

∆u = Σ ∆ũ (3.22)

where ∆ũ is the normalized input vector which has limits ±1. Let Γ ∈ R8×4 be the

transformed control influence matrix given by Γ = M−1 B̄ Σ using which Eq.(3.21)

is written as

∆ż = Λ̃∆z + Γ∆ū (3.23)

Let γij denote the element of Γ which corresponds to the iith modal coordinate ∆z,

and jth control input ∆ũ . The relative control effectiveness of a jth control input

upon an ith real mode is found by

cre =
|γij|√∑
j (γij)

2
(3.24)
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The relative control effectiveness of a jth control input on a ith and (i+ 1)th complex

conjugate mode is determined as

cim =

√
(γi,j)

2 + (γi+1,j)
2√∑

j

[
(γi,j)

2 + (γi+1,j)
2] (3.25)

Using the above definitions, the relative control effectiveness matrix found for the

steady, straight and level flight condition at V = 500 ft/s , ψ̇ = 0◦/s and h = 1000 ft

is shown below.

δS δT δA δR



0.9941 0.0571 0.06099 0.06963 Short Period

0.96 0.2266 0.1544 0.05619 Phugoid

1.703 · 10−11 3.764 · 10−12 0.9977 0.06746 Roll Subsidence

3.721 · 10−9 1.545 · 10−10 0.4112 0.9116 Dutch Roll

2.78 · 10−10 2.54 · 10−11 0.9998 0.01902 Spiral Divergence

(3.26)

The stick deflection principally influences short-period and phugoid modes while the

throttle deflection affecting only the phugoid mode. The aileron deflection affects roll

subsidence and spiral divergence modes while, rudder influences the dutch-roll mode.

Therefore, control cross coupling is negligible at this condition. Now, consider the

control effectiveness matrix at V = 500 ft/s , ψ̇ = 10◦/s and h = 1000 ft.

δS δT δA δR



0.734 0.0604 0.555 0.387 Short-Period

0.0862 0.0179 0.975 0.206 Phugoid

0.00738 9.62 · 10−4 1.0 0.0224 Roll Subsidence

0.397 0.0302 0.747 0.533 Dutch Roll

0.0744 0.0504 0.976 0.199 Spiral Divergence

(3.27)
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At this turning flight condition, there is a clear existence of control cross-

coupling is clearly evident - the stick deflection injects energy into the dutch-roll

mode and the aileron deflection injects energy into short period mode. For instance,

if feedback gains are computed using the full state linear models, then perturbations

in lateral state variables - v and r - will result in stick deflection in turn causing

undesired pitching motion. Therefore, prior to synthesizing feedback gains, control

decoupling is essential.

3.5 Control Decoupling

Numerous control decoupling and allocation schemes exist for systems with re-

dundant control effectors [15], all of which solve an optimization problem to synthesize

a mixing matrix which effectively reduce them to elevator, aileron, and rudder. For

aircraft with non-redundant controls, such as the AV-8B, [16] proposes synthesizing

an auxiliary control vector by partial inversion of the control variable matrix, B̄.

Equivalently, decoupling can also be achieved by setting the elements of B̄ that cor-

respond to undesired control coupling, to zero. Therefore, if bij represents an element

in the ‘B’ matrix which corresponds to state ‘i’ and control input ‘j’, the following

elements – bpδS , bvδS , brδS , bpδT , bvδT , brδT , buδA , bwδA , bqδA ,buδR , bwδR , bqδR – are set to

zero. It is to be noted that this decoupling scheme will not minimize the undesired

coupling between control effectors and principal modes, however, adverse feedback

control signals can be minimized.

3.6 Linear Quadratic Tracking Control

The control objective of the automatic flight control system is to track the

reference commands of velocity V, altitude h and slip velocity v. Besides augmenting
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the stability and tracking the reference states, the controller should also ensure that

the steady-state tracking error is driven to zero. These control requirements can

be satisfied by employing, infinite horizon Linear Quadratic Integral (LQI), a multi-

variable optimal tracking controller whose formulation is done as follows. Consider

the following reduced order linear model of the AV-8B Harrier

∆Ẋg = Ag∆Xg + Bg∆Ug (3.28)

∆Y = CgXg

∆Xg = [ ∆h ∆φ ∆θ ∆ψ ∆u ∆v ∆w ∆p ∆q ∆r ]T and ∆Ug = [ ∆δS ∆δT ∆δA ∆δR ]T ,

Ag ∈ R10×10, and Bg ∈ R10×4. ∆Y = [∆V ∆h ∆v]T is the output vector with C being

the output matrix obtained by eliminating the first two columns from C in Eq.(3.13).

The flap and nozzle deflections, δF and δN , are not used for controller design, and

are restricted to their trim values. Let ∆rc ∈ R3×1 denote the commanded reference

signal that are determined using a guidance system given by ∆rc = [∆Vc ∆hc ∆vc]
T .

The tracking error is ζ = ∆rc − ∆Y. The LQI formulation assumes ∆rc to be a

constant signal because of which

ζ̇ = − ∆Ẏ = − Cg∆Ẋg (3.29)

Taking the derivative of Eq.(3.29), and augmenting the state-space using Eq. (3.29)

∆ ˙̃Xg = Ãg∆X̃g + B̃g∆U̇g (3.30)

where ∆X̃g ∈ R13×1 is the augmented state vector given by ∆X̃g = [∆Ẋg ζ]T and

Ãg =

 Ag [0]10×3

Cg [0]3×3

 B̃g =

 Bg

[0]4×3

 (3.31)
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The scalar objective function chosen to determine optimal feedback gains is

J =
1

2

∞∫
0

(
∆X̃T

g (τ) Q ∆X̃g(τ) + ∆U̇T
g (τ) R ∆U̇g(τ)

)
dτ (3.32)

subject to the constraints in equation (3.30). Q ∈ R13×13 is the positive semi-definite

state weighting matrix, and R ∈ R4×4 is the positive definite control weighting matrix.

The linear quadratic optimal controller is found using the relation

∆U̇g = − R−1 B̃T
g S ∆X̃g (3.33)

where, S is determined as a solution to the following algebraic Riccati equation

S Ãg + ÃT
g S − S B̃g R−1 B̃T

g S + Q = 0 (3.34)

Let Kg ∈ R4×13 be the feedback gain matrix given by Kg = R−1 B̃T
g S , which

is separated into a gain K ∈ R4×10 which is associated with the state vector ∆Xg,

and a gain KI ∈ R4×3 which multiplies the tracking error ζ, i.e. Kg = [ K | KI ].

Therefore, Eq.(3.33) is expressed in terms of the decoupled gains is

∆U̇g = − K ∆Ẋg − KI ζ (3.35)

If Xg0 and Ug0 are the augmented state and control vectors corresponding to a

trimmed flight condition, then

∆Xg = Xg − Xg0 (3.36)

∆Ug = Ug − Ug0 (3.37)

where Xg is the actual or the perturbed state, and Ug is actual control input. In-

tegrating Eq.(3.35), and using the relations in Eqs.(3.37) and (3.37), the control law

obtained is
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Ug = Ug0 −K (Xg −Xg0)−KI

t∫
0

(∆rc (τ)−∆Y (τ)) dτ (3.38)

However, ∆rc is an incremental reference command provided to the controller about

a trimmed flight condition which can be expressed as

∆rc = rc − rc0 (3.39)

∆Y = Cg (Xg − Xg0) (3.40)

rc = [ Vc hc vc ]T is the absolute value of the reference command, with rc0 = [ V0 h0 v0 ]T

corresponding to that at the trim conditions. Consequently, rc0 = Cg Xg0 which on

substituting to Eq.(3.39), and subtracting the result from Eq.(3.40) yields ∆rc−∆Y =

rc −Y. Hence the control law in Eq.(3.38) becomes

Ug = Ug0 −K (Xg −Xg0)−KI

t∫
0

(rc (τ)−Y (τ)) dτ (3.41)

Eq.(3.38) is the control law that is used for simulating automatic landing. The aug-

mented trim states and controls, Xg0 and Ug0, are determined by employing schedul-

ing laws that are discussed in 3.7. The gains K and KI are determined using LQI

command in MATLABr by supplying the state and control weighting matrices, Q

and R, along with the system matrices Ag, Bg, and Cg. The Q and R matrices are

chosen as diagonal matrices for convenience, and the weights are turned to obtain the

desired performance. Using this approach, the gains were determined for all the trim

points in S.
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3.7 Gain Scheduling Strategy

V
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)
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V01, ψ̇02, h02

)

p1
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Figure 3.5: A single grid in sample space S

The previous sections dealt with determining the trim states and controls, and

the controller gains at every grid point in S using the corresponding plant lineariza-

tions. The control law in Eq.(3.38) is only locally valid at a trim point (X0, U0) or

alternatively (Xg0 ,Ug0). Therefore, a scheduling technique needs to be devised to

render the locally valid control law for global, non-linear control. Fig.(3.5) shows a

grid element in S which is lower bounded by the scheduling variables
(
V01, ψ̇01, h01

)
and upper bounded by

(
V02, ψ̇02, h02

)
. Consider the aircraft to be in a trim point
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‘i’ characterized the scheduling variables
(
V0i, ψ̇0i, h0i

)
, and trim values Ug0i, Xg0i,

Ki, and KIi . The control law at this point is given by

Ugi = Ug0i −Ki (Xgi −Xg0i)−KIi

t∫
0

(rci (τ)−Yi (τ)) dτ (3.42)

where rci = [ Vci hci vci]
T and Yi = [ Vi Hi vi]

T are commanded reference signal,

and plant output respectively at the trim point ‘i’. This control law stabilizes the

aircraft about the flight condition ‘i’ facilitating in tracking the reference commands

of airspeed altitude and slip velocity. Let ‘j’ be a trim point that is present in the

immediate vicinity of ‘i’. Suppose it is desired to transit from ‘i’ to ‘j’, the trim states,

controls and gains are changed to those found at ‘j’ such that Eq.(3.42) becomes

Ugj = Ug0j −Kj (Xgj −Xg0i)−KIj

t∫
0

(rcj (τ)−Yi (τ)) dτ (3.43)

Since, the asymptotic properties of LQI control law in Eq.(3.43) are valid at ‘i’, the

flight condition that is initially at ‘i’ smoothly transitions to ‘j’. This process of

transitioning to a neighboring trim point is repeated until the aircraft reaches the

desired flight condition in S. This is illustrated in Fig.(3.5) where scheduling is

performed within the grid, in order to transit from a flight condition p1 to p2 along a

smooth equilibrium trajectory. It is to be noted that the trim states and controls,Xg0

and Ug0, and gains K and KI are known only at the vertices/ grid points of the grid

element. Therefore, for all other points, in S, Xg0, Ug0, K, KI are determined using

trilinear interpolation scheme.
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3.8 Control Architecture
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Figure 3.6: Implementation of gain-scheduled flight control laws
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The implementation of the flight control law in Eq.(3.41) is illustrated in Fig.(3.6).

The scheduling variables σc =
[
Vc ψ̇c hc

]T
, and the commanded reference signal

rc = [ Vc hc vc ]T are provided as inputs to the gain-scheduled control system, and

are indicated by the red arrows. Both the scheduling variables and the reference com-

mands are determined using the guidance laws, which have been discussed in chapter

5, based on relative position of the aircraft with respect to the carrier. Interpolated

values of the trim state vector Xg0 = [ h0 φ0 θ0 ψ0 u0 v0 w0 p0 q0 r0 ]T , trim control

vector Ug0 = [δS0 δT0 δA0 δR0 ]T , trim nozzle and flap deflections δN0 and δF0, re-

spectively, and the gains K and KI are calculated by the block labeled “linear model

interpolation” for the specified scheduling signal. These interpolated quantities are

used for synthesizing the control input Ug using the control law in Eq.(3.41), which

along with δN0 and δF0 are supplied to the aircraft through a saturation block which

serves to restrict the input signals to their limits specified in table(2.1).

Extraction of the trim data in section 3.1 was performed by restricting the

heading angle to zero for all points in S. As a result, the trim state vectors contain

zeros for the heading angle because of which the proportional feedback of the heading

error signal ∆ψ = ψ−ψ0 stabilizes the aircraft about the heading angle of 0◦, thus not

permitting the aircraft to turn or stabilize about other heading angles. To overcome

this issue, a logic variable “turn” is defined to determine whether heading angle

feedback is to be provided or not, using which ∆ψ is determined as follows

∆ψ =


ψ −

t∫
0

ψ̇(τ)dτ if turn = 0

0 if turn = 1
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The value of the logic variable is set by the guidance laws. For turning ma-

neuvers involving large turn-rates and large heading angle changes, “turn” is set to

1 which in turn eliminates the undesired heading error feedback signal by selecting

∆ψ = 0. For straight and level flights where it is necessary to stabilize the aircraft

about the desired heading angle, “turn” is set to 0, thereby choosing the heading

error feedback to be ∆ψ = ψ −
t∫

0

ψ̇c(τ)dτ . The integral term
t∫

0

ψ̇c(τ)dτ represents

the commanded heading angle, because of which the heading error feedback results in

the aircraft’s heading angle ψ asymptotically tracking the commanded heading angle

ψc .
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CHAPTER 4

L1 ADAPTIVE CONTROLLER

4.1 Introduction

Ever since the advent of high performance aircraft, there has been a great deal of

interest in designing flight control systems (FCS) whose parameters adapt to varying

conditions of flight, and uncertainties. Adaptive control, unlike gain-scheduling, do

not require an extensive, precomputed database of controller parameters, and their

global stability and performance can be guaranteed by resorting to Lyapunov stability

theory. One of the most widely researched adaptive control techniques is model

reference adaptive control (MRAC). Here, the control objective is to ensure that the

aircraft replicates the behavior of a specified reference model, even in the presence

of uncertainties. MRAC augmentation of gain-scheduled flight control systems have

been explored using multiple reference models in [17], and for guidance of munition

in [18]. However, [19] and [20] show that MRAC subjected to large uncertainties

during transients lead to unbounded control signals, large transient tracking errors,

and slow parameter convergence rates. Moreover, the adaptation rate is shown to set

a trade-off between performance and robustness - fast adaptation improves tracking

performance, but at the cost of phase margin. These key drawbacks of the highly

potent MRAC scheme led to the development of the L1 adaptive control theory. The

architecture of L1 adaptive control guarantees performance and robustness even in

the presence of fast adaptation. Essentially, the adaptation loop is decoupled from

the feedback loop by employing a low-pass filter which ensures that the control signals

are confined to the low frequency range. The capabilities of the L1 adaptive control
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have been substantiated with the help of a large number of flight tests of NASA’s

generic transport model [21]. L1 controllers have also been successfully tested on a

number of UAVs in [22], [23],[24], and [25]. Numerous simulation studies performed

in [27], [28], and [26] also corroborate the benefits of using L1 adaptive controllers.

In this chapter, an L1 adaptive tracking controller is designed for the AV-8B Harrier

by considering full state feedback. The design is based on the fundamental principles

of the L1 adaptive control theory provided in [20].

4.2 Mathematical Preliminaries

4.2.1 Norms of Vectors and Matrices

Consider a vector y ∈ Rm and a matrix A ∈ Rn×m. If ||y||p and ||A||p denote

p-norms of the vector y and A, respectively, then the norm definitions are as follows.

||y||1 =
m∑
i=1

|yi| (4.1)

||y||2 =
√

yTy (4.2)

||y||∞ = max
1≤i≤m

|yi| (4.3)

||A||1 = max
1≤j≤m

n∑
i=1

|aij| (4.4)

||A||2 =
√
λmax (ATA) (4.5)

||A||∞ = max
1≤i≤n

m∑
i=1

|aij| (4.6)
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4.2.2 L-Norms

Consider a function f : [0,∞)→ Rn for which L-norm definition are as follows

||f ||L1 =

∞∫
0

||f(τ)|| dτ (4.7)

||f ||L∞ = max
1≤i≤n

(
sup
τ≥0
|fi(τ)|

)
(4.8)

The truncated L∞ norm is defined as

||(f)t||L∞ , max
1≤i≤n

(
sup

0≤τ≤t
|fi(τ)|

)
(4.9)

4.2.3 L1 Gain

For a stable proper single-input-single-output-system G(s), its L1 gain is defined

as follows.

||G(s)||L1 ,
∞∫

0

|g(τ)| dτ (4.10)

where g(t) denotes the impulse response of G(s). For a stable m input n output linear

time invariant (LTI) system H(s), its L1 gain is given by

||H(s)||L1 , max
1≤i≤n

m∑
j=1

||Hij(s)||L1 (4.11)

4.3 Problem Formulation

Consider the dynamics of the AV-8B Harrier to be as follows

∆Ẋad(t) = Am ∆Xad(t) + Bm ω ∆Uad(t) + f (∆Xad(t),Z(t), t) (4.12)

ẋz(t) = g (xz(t),∆Xad(t), t) (4.13)

Z(t) = g◦ (xz(t), t) (4.14)
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∆Xad(t) = [ ∆h(t) ∆φ(t) ∆θ(t) ∆ψ(t) ∆u(t) ∆v(t) ∆w(t) ∆p(t) ∆q(t) ∆r(t) ]T

and ∆Uad(t) = [ ∆δS(t) ∆δT (t) ∆δA(t) ∆δR(t) ]T . Am ∈ R10×10 is a known Hurwitz

matrix that specifies the desired dynamics for closed loop, and Bm ∈ R10×4 is a known

control influence matrix such that the pair (Am,Bm) is controllable. ω ∈ R4×4 is an

uncertain input gain matrix; Z(t) ∈ Rp and xz(t) ∈ Rl are the output and state vectors

of unmodeled internal dynamics; f : R10 × Rp × R → R10, g : Rl × R10 × R → Rl,

and g◦ : Rl × R→ Rp are unknown non-linear functions that are continuous in their

arguments. The L1 adaptive control formulation requires systems to be square, i.e.

systems with equal number of outputs and inputs. In this regard, heading angle

∆ψ(t) is chosen as an output in conjunction with velocity ∆V (t), altitude ∆h(t), and

slip velocity ∆v(t), which were considered in the LQI formulation. If y ∈ R4 denotes

the vector of outputs, then

y(t) = Cm ∆Xad(t) (4.15)

y(t) = [ ∆V (t) ∆h(t) ∆v(t) ∆ψ(t) ]T , Cm ∈ R4×10 is a known full rank constant

output matrix, and the pair (Am,Cm) is observable. Also, let X̄(t) ,
[
∆XT

ad(t) ZT (t)
]T

such that f (∆Xad(t), Z(t), t) , f
(
X̄(t), t

)
. The system in Eqs. (4.12) - (4.14) also

satisfies the following assumptions.

1 - Initial condition : The initial state ∆Xad(0) is assumed to be inside an arbi-

trarily large known set, i.e. ||∆Xad (0)||∞ ≤ ρ0 <∞ for some ρ0 > 0.

Also if ρin ,
∣∣∣∣s (sI10×10 −Am)−1

∣∣∣∣
L1
ρ0 and ∆Xin(t) , (sI10×10 −Am)−1 ∆Xad(0),

then ||∆Xin(t)||L∞ ≤ ρin.

2 - Matching condition : There exists an unknown non-linear function f∗ : R10 ×

Rp × R 7→ R4 such that the matching condition Bm f∗
(
X̄(t), t

)
= f

(
X̄(t), t

)
is

satisfied due to which Eq.(4.12) can be written as
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∆Ẋad(t) = Am ∆Xad(t) + Bm

(
ω ∆Uad(t) + f∗

(
X̄(t), t

))
(4.16)

3 - Boundedness of f∗ (0, t) : There exists a constant B∗ > 0 such that ||f∗ (0, t)||∞ <

B∗ for all t ≥ 0.

4 - Semiglobal uniform boundedness of partial derivatives For any ε > 0,

there exist arbitrary constants dfx(ε) > 0 and dft(ε) > 0 such that if
∣∣∣∣X̄(t)

∣∣∣∣
∞ < ε ,

the partial derivatives are piecewise continuous and bounded.∣∣∣∣∣∣∣∣∂f∗

∂X̄

∣∣∣∣∣∣∣∣
∞
≤ dfx(ε) and

∣∣∣∣∣∣∣∣∂f∗

∂t

∣∣∣∣∣∣∣∣
∞
≤ dft(ε)

Assumptions 3 and 4 ensure that the non-linear differential equation in 4.16

with the initial condition X̄(0) has a has a unique solution for t ≥ 0

5 - Stability of unmodeled dynamics The unmodeled dynamics given in Eqs.

(4.13)-(4.14) are bounded-input-bounded-output (BIBO) stable with respect to the

input ∆Xad(t) and the initial conditions xz(0), and satisfy the following relation for

all t ≥ 0

||(Z)t||L∞ ≤ Lz ||(∆Xad)t||L∞ + Bz (4.17)

where Lz and Bz are positive constants, and ||(·)t||L∞ denotes the extended L∞ norm

in the interval [0, t]

6 - Knowledge of the input gain The uncertain input gain ω is assumed to be

strictly row diagonally dominant with known signs for its diagonal elements. Also

there exists a known compact convex set Ω such that ω ∈ Ω.

7 - Stability of transmission zeros The choice of Am, Bm and Cm ensures that

the transmission zeros of the transfer matrix H(s) = Cm(sI10×10 −Am)−1Bm lie in

the open left half plane.
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The objective of L1 adaptive control is to synthesize a state feedback control

law ∆Uad(t), which compensates for the non-linear uncertainty f∗ in the control

bandwidth that is defined by a low pass filter C(s), and ensures that the output

tracks the reference input ∆rc(t) ∈ R4×1 both in transient and steady-state, while

other signals remain bounded. Therefore, the desired closed loop dynamics is given

by

∆Ẋad(t) = Am ∆Xad(t) + BmKg ∆rc(t) (4.18)

where Kad ∈ R4×4 is the feed-forward gain matrix given be Kg = −CmA−1
m Bm. The

low-pass filter C(s) is a proper stable transfer matrix for all ω ∈ Ω given by

C(s) = ωkD(s) (I4×4 + ωkD(s))−1 (4.19)

where D(s) is a strictly proper 4 × 4 transfer matrix which ensures, and k ∈ R4×4

is a feedback gain matrix, and C(0) = I4×4. Introducing the low pass filter in the

feedback loop eliminates the presence of any high frequency signals in the control

channels arising due to fast adaptation. This essentially means the adaptation loop is

decoupled from the feedback loop, and the adaptation rates can be set arbitrarily high.

The bandwidth of the low-pass filter also governs the trade-off between performance

and robustness.

4.4 Equivalent Linear Time Varying System

To cancel the unknown non-linear uncertainty f∗(·, ·) in Eq.(4.16) and thus

obtain the desired closed loop dynamics in Eq.(4.18), the uncertainty needs to be

first estimated. This is achieved by estimating the unknown time varying parameters

of a linear system representation of f∗(·, ·) which is defined below. If ρ, ρu and

dx are positive constants such that ||(∆Xad)τ ||L∞ ≤ ρ, ||(∆Uad)τ ||L∞ ≤ ρu and
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∣∣∣∣∣∣∆Ẋad

∣∣∣∣∣∣
L∞
≤ dx, then for all t ∈ [0 τ ], there exist differentiable µ(t) ∈ R4×1 and

η(t) ∈ R4×1 such that

f∗(∆Xad(t),Z(t), t) = µ(t) ||(∆Xad)t||L∞ + η(t) (4.20)

and for some positive constants µb, ηb, dµb, and dηb

||µ(t)||∞ < µb ||µ̇(t)||∞ < dµ

||η(t)||∞ < µb ||η̇(t)||∞ < dη

Owing to this transformation, Eq.(4.16) becomes

∆Ẋad(t) = Am ∆Xad(t) + Bm

(
ω ∆Uad(t) + µ ||(∆Xad)t||L∞ + η(t)

)
(4.21)

4.5 State Predictor

Consider the state predictor which replicates the plant dynamics in Eq.(4.21)

using the adaptive estimates as follows

∆
˙̂
Xad(t) = Am ∆X̂ad(t) + Bm

(
ω̂ ∆Uad(t) + µ̂(t) ||(∆Xad)t||L∞ + ˆη(t)

)
(4.22)

with ∆X̂ad(0) = ∆Xad(0)

where ∆X̂ad(t) ∈ R10×1 is the predictor state vector; ω̂ ∈ R4×4, µ̂(t) ∈ R4×1 and

η̂(t) ∈ R4×1 are the adaptive estimates.

4.6 Adaptation laws

The adaptation laws for ω̂, µ̂(t), and η̂(t) are defined as

˙̂ω(t) = Γk Proj

(
ω̂(t),−

(
∆X̃T

ad(t)PBm

)T
∆UT

ad(t)

)
(4.23)

˙̂µ(t) = Γk Proj

(
µ̂(t),−

(
∆X̃T

ad(t)PBm

)T
||(∆Xad)t||L∞

)
(4.24)
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˙̂η(t) = Γk Proj

(
η̂(t),−

(
∆X̃T

ad(t)PBm

)T)
(4.25)

where, Γk ∈ R denotes the adaptation again, ∆X̃ad(t) = ∆X̂ad(t) − ∆Xad(t),

and P = PT > 0 is determined as a solution to the Lyapunov equation AT
mP+PAm =

−Q for a specified Q = QT > 0. Proj(·, ·) is the projection operator which guarantees

ω̂ ∈ Ω, ||µ̂(t)||∞ ≤ µB, and ||η̂(t)||∞ ≤ ηB. The projection operator for any two

vectors Θ,Y ∈ Rn is defined as

Proj(Θ(t),Y(t)) =


Y if F(Θ) < 0,

Y if F(Θ) ≥ 0 and ∇FTY ≤ 0,

Y − ∇F∇F
T

||∇F||2
YF(Θ) if F(Θ) ≥ 0 and ∇FTY > 0,

(4.26)

where, F : Rn → R is a smooth convex function defined as

F(Θ) ,
(εΘ + 1) ΘTΘ−Θ2

max

εΘΘ2
max

(4.27)

where Θmax is the specified norm bound for Θ, and εΘ is the projection tolerance.

4.7 Control Law

The L1 adaptive control law is given by

∆Uad(s) = −kD(s)N̂ (s) (4.28)

where N̂ (s) is the Laplace transform of the signal

N̂ (t) , ω̂ ∆Uad(t) + µ(t) ||(∆Xad)t||L∞ + η(t)−Kg ∆rc(t) (4.29)
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4.8 Sufficient Condition for Stability

The L1 adaptive controller tracks a closed-loop reference system both in tran-

sient and in steady state, whose stability needs to be characterized first. The ideal

reference system is defined as follows, under the assumption that ω and f∗(·, ·) are

known.

∆Ẋref (t) = Am ∆Xref (t) + Bm

(
ω ∆Uref (t) + f∗

(
X̄ref (t), t

))
(4.30)

∆Uref (s) = −kD(s)N ref (s) (4.31)

N ref (t) , ω ∆Uref (t) + f∗
(
X̄ref (t), t

)
−Kg ∆rc(t) (4.32)

∆Yref (t) = Cm∆Xref (t) (4.33)

The choice of k and D(s) should guarantee the existence of a constant ρr > ρ◦ such

that
∣∣∣∣(∆Xref (t))τ

∣∣∣∣
L∞

< ρr by satisfying the following L1 norm condition.

||Hx(s) (I4×4 −C(s))||L1 <
ρr − ||Hx(s)C(s)Kg||L1 ||(∆rc)τ ||L∞ − ρin

µB ρr + B∗
(4.34)

where Hx(s) = (sI10×10 −Am)−1Bm. Increasing the bandwidth of the low pass filter

C(s) results in reduction of ||(I4×4 −C(s))||L1 . Hence, the left hand side of Eq.(4.34)

can be rendered arbitrarily small by increasing the filter bandwidth, thus satisfying

the sufficient condition for stability.

4.9 Stability of the Adaptation Laws

This section presents a proof for boundedness of the prediction error for the

specific L1 controller developed in this thesis. A more generalized proof can be found

in [20].
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Lemma 1 : For the plant dynamics in Eq.(4.16), the controller and adaptation

laws defined in Eqs.(4.22) -(4.28) subject to the L1 norm condition, if ||(∆Xad)τ ||L∞ ≤

ρ and ||(∆Uad)τ ||L∞ ≤ ρu, the prediction error is bounded as follows

∣∣∣∣∣∣(∆X̃ad

)
τ

∣∣∣∣∣∣
L∞
≤

√
Θm

Γk λmin (P)
(4.35)

where

Θm ,
16 λmax (P)

λmin (Q)
[ µBdµ + ηBdη ] + 4

[
max
ω∈Ω

tr
(
ωTω

)
+ 4µ2

B + 4η2
B

]
(4.36)

Proof : For all t ∈ [0, τ ] , the following upper bounds are

||µ(t)||∞ < µb ||µ̇(t)||∞ < dµ

||η(t)||∞ < µb ||η̇(t)||∞ < dη

Consider a candidate Lyapunov function given by

V(t) = ∆X̃
T

ad(t)P∆X̃ad(t) +
1

Γk

[
tr
(
ω̃T (t)ω̃(t)

)
+ µ̃T (t)µ̃(t) + η̃T (t)η̃(t)

]
(4.37)

Let τ1 ∈ (0, τ ] be a time instant of discontinuity of either µ̇(t) or η̇(t). Consider

the derivative of the candidate Lyapunov function in t ∈ [0, τ1) as follows.

V̇(t) = −∆X̃
T

ad(t) Q ∆X̃ad(t) + 2 ∆X̃
T

ad(t) PBm ω̃(t) ∆Uad(t)

+ 2 ∆X̃
T

ad(t) PBm µ̃(t) ||(∆Xad(t))t||L∞

+ 2 ∆X̃
T

ad(t) PBm η̃(t)

+
2

Γk

[
tr
(
ω̃T (t) ˙̃ω(t)

)
+ µ̃T (t) ˙̃µ(t) + η̃T (t) ˙̃η(t)

]
(4.38)

Further simplifying these equations,
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V̇(t) = −∆X̃
T

ad(t) Q ∆X̃ad(t)

+
2

Γk
tr
[
ω̃T (t)

(
˙̂ω(t) + Γk

(
XT

ad(t) PBm

)T
∆UT

ad

)]
+

2

Γk
µ̃T (t)

[
˙̂µ(t) + Γk

(
XT

ad(t) PBm

)T ||(∆Xad(t))t||L∞
]

+
2

Γk
η̃T (t)

[
˙̂η(t) + Γk

(
XT

ad(t) PBm

)T]
+

2

Γk

[
µ̃T (t)µ̇(t) + η̃T (t)η̇(t)

]
(4.39)

Consider the following property of projection based adaptation laws as given in

[29]. For any two vectors Θ(t),Y(t) ∈ Rn and a given Θ∗(t) ∈ Rn,

(Θ(t)−Θ∗(t))T (Proj (Θ(t),Y(t))−Y(t)) ≤ 0 (4.40)

By substituting the projection based adaptation laws from Eqs(4.23) to (4.25) in

Eq.(4.39), and using the above projection property, the following relation is obtained.

V̇(t) ≤ −∆X̃T
ad(t) Q ∆X̃ad(t) +

2

Γk

[
µ̃T (t)µ̇(t) + η̃T (t)η̇(t)

]
(4.41)

Further,

V̇(t) ≤ −∆X̃T
ad(t) Q ∆X̃ad(t) +

2

Γk

∣∣[µ̃T (t)µ̇(t) + η̃T (t)η̇(t)
]∣∣ (4.42)

The maximum value that the second term in the above equation can take is

obtained by substituting the respective upper bounds to obtain

V̇(t) ≤ −∆X̃T
ad(t) Q ∆X̃ad(t) +

16

Γk
[ µBdµ(t) + ηBdη(t) ] (4.43)
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The quadratic forms are bounded as shown below.

λmin (P)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2
≤ ∆X̃T

ad(t)P∆X̃ad(t) ≤ λmax (P)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2

(4.44)

λmin (Q)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2
≤ ∆X̃T

ad(t)Q∆X̃ad(t) ≤ λmax (Q)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2

(4.45)

From Eq.(4.37),

V(t) ≤ λmax (P)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2

+
4

Γk

[
max
ω∈Ω

tr
(
ωTω

)
+ 4µ2

B + 4η2
B

]
(4.46)

To determine a uniform upper bound on V(t) for t ∈ [0, τ), two cases of the Lyapunov

derivative are considered.

Case 1 When V̇(t) ≥ 0. From Eq.(4.39),∣∣∣∣∣∣∆X̃ad(t)
∣∣∣∣∣∣2

2
≤ 16

Γk λmin (Q)
[ µBdµ + ηBdη ] (4.47)

The upper bound on V(t) , found from Eqs. (4.46) and(4.47), is

V(t) ≤ 16 λmax (P)

Γk λmin (Q)
[ µBdµ + ηBdη ] +

4

Γk

[
max
ω∈Ω

tr
(
ωTω

)
+ 4µ2

B + 4η2
B

]
(4.48)

Let

Θm =
16 λmax (P)

λmin (Q)
[ µBdµ + ηBdη ] + 4

[
max
ω∈Ω

tr
(
ωTω

)
+ 4µ2

B + 4η2
B

]
(4.49)

Therefore, V(t) ≤ Θm

Γk
when V̇(t) ≥ 0

Case 2 When V̇(t) < 0. Since ∆X̃ad(0) = ∆Xad(0)

V(0) =
1

Γk

[
tr
(
ω̃T (t)ω̃(t)

)
+ µ̃T (t)µ̃(t) + η̃T (t)η̃(t)

]
(4.50)

This implies

V(0) ≤ 4

Γk

[
max
ω∈Ω

tr
(
ωTω

)
+ 4µ2

B + 4η2
B

]
≤ Θm (4.51)
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Moreover, from Eq.(4.43), for V̇ < 0,∣∣∣∣∣∣∆X̃ad(t)
∣∣∣∣∣∣2

2
>

16

Γk λmin (Q)
[ µBdµ + ηBdη ] (4.52)

On substituting Eq,(4.52) in Eq.(4.46), the upper bound on V in Eq.(4.46) is

λmax (P)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2

+
4

Γk

[
max
ω∈Ω

tr
(
ωTω

)
+ 4µ2

B + 4η2
B

]
>

Θm

Γk
(4.53)

However, since V̇(t) < 0 , V(t) cannot grow larger than
Θm

Γk
, i.e. V(t) ≤ Θm

Γk
.

Therefore, for all t ∈ [0, τ1) the bound V(t) ≤ Θm

Γk
holds good. Moreover,

∆X̃T
ad(t)P∆X̃ad(t) ≤ V(t) ≤ Θm

Γk
(4.54)

λmin (P)
∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣2
2
≤ Θm

Γk
(4.55)∣∣∣∣∣∣∆X̃ad(t)

∣∣∣∣∣∣
2
≤

√
Θm

Γk λmin (P)
(4.56)

This further implies∣∣∣∣∣∣∆X̃ad(t)
∣∣∣∣∣∣
∞
≤

√
Θm

Γk λmin (P)
∀t ∈ [0, τ1)

Also, V(t) ≤ Θm

Γk
because µ(t), η(t), µ̂(t), and, η̂(t) are continuous. If there exists

another time instant τ2 ∈ [τ1, τ) when the derivative of either of µ(t) or η(t) is

discontinuous, it can be shown that∣∣∣∣∣∣∆X̃ad(t)
∣∣∣∣∣∣
∞
≤

√
Θm

Γk λmin (P)
∀t ∈ [τ1, τ2)

Repeating this procedure for t ∈ [0, τ ], the following relation is obtained.∣∣∣∣∣∣(∆X̃ad

)
τ

∣∣∣∣∣∣
L∞
≤

√
Θm

Γk λmin (P)
(4.57)

The above equation presents a highly conservative upper bound on
∣∣∣∣∣∣(∆X̃ad(t)

)
τ

∣∣∣∣∣∣
L∞

.

Hence, the prediction error dynamics can be driven arbitrarily small by increasing the

adaptation gain.
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4.10 Transient and Steady State performance

The ideal closed loop reference system shown in Eqs.(4.30) -(4.32) that the

actual system tracks involves the unknown terms, ω, f(·, ·), and Z because of which

the ideal reference system cannot be implemented The stability and performance of

the actual closed loop system with respect to the reference system is determined using

the following theorem.

Theorem 1 : Let c1 and c2 be positive constants such that

c1 ,
||Hx(s)C(s)H−1(s)Cm||L1

1− µB ||Hx(s) (I4×4 −C(s))||L1
c0 + c3 (4.58)

c2 , µB c1

∣∣∣∣ω−1C(s)
∣∣∣∣
L1

+ c0

∣∣∣∣ω−1C(s)H−1(s)Cm

∣∣∣∣
L1

(4.59)

where, c0 and c3 are arbitrarily small constants, and let the adaptive gain be lower

bounded as follows.

Γk >
Θm

λmin (P) c2
0

(4.60)

Given the actual system in 4.16 implemented with the L1 adaptive controller in Eqs.

(4.22) to (4.28) subject to the L1 norm condition, and the closed-loop reference system

given in Eqs.(4.30) - (4.32), if ||∆Xad (0)||∞ ≤ ρ0 <∞, then

||(∆Xad)τ ||L∞ ≤ ρ (4.61)

||(∆Uad)τ ||L∞ ≤ ρu (4.62)∣∣∣∣∣∣(∆X̃ad

)
τ

∣∣∣∣∣∣
L∞

< c0 (4.63)∣∣∣∣(∆Xad −∆Xref )τ
∣∣∣∣
L∞

< c1 (4.64)∣∣∣∣(∆Uad −∆Uref )τ
∣∣∣∣
L∞

< c2 (4.65)∣∣∣∣(∆Yad −∆Yref )τ
∣∣∣∣
L∞

< c1 ||Cm||∞ (4.66)
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Proof : The reader is referred to Theorem 3.2.1 in [20] for the proof. The constants

c0, c1, and c2 can be rendered small by arbitrarily increasing Γk as a consequence

of which the actual closed loop system closely tracks the reference system both in

steady state and in transients.

4.11 Reference Systems Design

Initially, an L1 adaptive controller was designed based on the linear model

corresponding to the steady, straight and level flight condition at V = 500ft/s,

H = 1000ft, and ψ̇ = 0◦/s to perform the automatic landing. However, simulations

indicated that the tracking performance of the controller degraded at speeds below

100ft/s due to its inability to handle the uncertainties. Hence, for low speed flight

conditions, another L1 adaptive controller is designed based on the reference model

corresponding to V = 150ft/s, ψ̇ = 0◦/s and H = 1000ft. The switch from the

high-speed controller to the low sped controller is made at a velocity of 150ft/s. The

drift and the control influence matrices, A ∈ R10×10 and B ∈ R10×4, respectively, at

these flight conditions are taken from the linear model database that was developed

for the gain-scheduled controller. For each of the two flight conditions, a reference

model matrix Am is designed using linear quadratic regulator (LQR) technique by

selecting the state and control weighting matrices,Qw ∈ R10×10 and Rw ∈ R4×4,

appropriately. If km ∈ R4×10 denotes the feedback gain matrix determined using

LQR, then Am = A − Bkm and Bm = B. The output matrix Cm needed for
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calculating the inverse DC gain Kg for each of these flight conditions, is determined

as follows.

Cm =



0 0 0 0
u0

V0

v0

V0

w0

V0

0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0


(4.67)

where u0, v0, w0, and V0 are the trim velocities that were defined in chapter 2.

The Q matrix required for calculating P is chosen to be an identity matrix, i.e. Q =

I10×10. Henceforth, subscripts ‘hi’ and ‘lo’ will be used to denote the matrices corre-

sponding to high-speed and low-speed reference models, respectively. The state and

control weighting matrices that are chosen to assign the closed loop dynamics for the

high-speed controller are Qhi = 200 · I10×10 and Rhi = 10 · I4×4, while those chosen for

the low speed controller are Qlo = diag
(

[ 100 100 100 100 1000 100 100 100 100 100]T
)

and Rlo = 10 · I4×4. Eqs.(4.68) - (4.71) show the reference models that are used for

designing the two controllers.

Amhi
=



0 0 8.73 0 0.06 0 −1 0 0.43 0

0 0 0 0 0 0 0 1 0 0.06

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−0.07 0.38 −2.5 0.18 −1.96 0.29 0.03 0.38 −0.76 −0.28

0.07 1.48 0.79 2.11 0.03 −2.3 −0.06 1.44 0.05 −5.9

−1.25 1.32 −15.61 1.24 −0.69 0 −0.71 1.28 6.78 0.3

−7.62 −297.71 −64.72 −253.39 −0.16 −34.99 4.86 −297.06 −4.98 −13.62

−18.35 −2.44 −223.51 −2.12 −3.25 0 6.79 −2.62 −25.92 −0.31

−0.97 −13.72 −10.3 −27.97 −0.33 25.04 0.82 −13.47 −0.65 −35.13


(4.68)
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Cmhi
=



0 0 0 0 1 0 0.06 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0


(4.69)

Bmhi
=



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.01 0.43 −0.07 −0.07

0 0 −0.3 0.49

0.29 0.11 −0.29 0

0 0 65.61 9.07

4.09 0.24 0.66 0

0 0 4.22 −6.02



(4.70)

Amlo
=



0 0 2.62 0 0.06 0 −1 0 0.06 0

0 0 0 0 0 0 0 1 0 0.07

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−0.62 0.1 −1.2 0.08 −2.05 0.03 0.79 0.09 0.11 0.01

0 0.62 0.02 0.28 −0.02 −0.33 0 0.24 0.01 −2.13

1.69 −0.93 0.86 −0.73 6.13 −0.25 −2.47 −0.82 1.5 −0.13

−1.3 −61.25 −15.06 −45.84 9.25 −20.57 1.06 −55.02 −4.23 −2.78

−2.02 −2.84 −19.5 −2.09 10.55 −0.99 2.09 −2.5 −6.91 −0.14

−0.03 −3.05 −0.86 −5.37 0.6 2.78 0.08 −3.03 −0.22 −6.86


(4.71)
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Cmlo
=



0 0 0 0 0.99 0 0.065 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0


(4.72)

Bmlo
=



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−0.01 0.29 −0.04 0

0 0 −0.04 0.11

0.08 −0.84 0.29 0

0 0 17.01 1.44

1.29 −0.42 0.88 0.11

0 0 1.18 −1.43



(4.73)

4.12 Filter Design

The design of the low pass filter for the L1 adaptive controller involves selec-

tion the gain matrix K and the transfer matrix D(s) to obtain the desired tracking

performance and robustness. The bounds for the projection operator are chosen con-

servatively as follows. µB = 20, ηB = 20, and

Ω =



[0.1, 10] [−10, 10] [−10, 10] [−10, 10]

[−10, 10] [0.1, 10] [−10, 10] [−10, 10]

[−10, 10] [−10, 10] [0.1, 10] [−0.1, 10]

[−10, 10] [−10, 10] [−10, 10] [0.1, 10]


57



The diagonal elements of Ω are chosen to be strictly positive since it is known from

the trim analysis that no control reversal occurs in the flight envelope considered for

the automatic carrier landing system development. C(s) is chosen to be a first order

filter for both high and low speed flight conditions by selecting D(s) =
1

s
· I4×4. For

both the flight conditions, k = 100 · I4×4 is chosen initially, and their elements are

tuned until the desired tracking performance is obtained without the presence of any

high frequency signals in the input channel. The gain matrices were obtained after

tuning are khi = diag
(

[ 50 2 40 40 ]T
)

and klo = diag
(

[ 50 30 40 40 ]T
)

. These

values of khi and klo do not satisfy the L1 gain condition for any value of ρr, but yield

a satisfactory performance which is witnessed in simulations.

It is to be noted that selecting k to obtain the desired performance while sat-

isfying L1 stability condition is still an open-ended problem [20]. By examining

the condition in Eq.(4.34), it is seen that by increasing the bandwidth of the filter

matrix, ||C(s)||L1 can be increased arbitrarily, which in turn decreases the value of

||I4×4 −C(s)||L1 . However, this also increases ||Hx(s)C(s)Kg||L1 , in turn decreasing

the magnitude of the right hand side of the expression.

4.13 Remarks on implementation

The adaptation gain Γk for both the low-speed and the high-speed controllers

are chosen to be 500. The control law in Eq.(4.28) is written in terms of trim states

and controls as follows

Uad = Uad0 + ∆Uad(t) (4.74)

Similarly, the state perturbation needed in Eq.(4.29) is found using ∆Xad = Xad −

Xad0 . Xad0 and Uad0 are the trim state and input vectors corresponding to the
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commanded signals, Vc, hc, and ψ̇c, found by the trilinear interpolation of the trim

values in S. The reference signal supplied is

∆rc = [∆V ∆h ∆v ∆ψ]T (4.75)

where, ∆V = Vc − V , ∆h = hc − h, ∆v = vc − v, The heading angle error ∆ψ,

which is a constituent of the reference signal ∆rc, and ∆Xad, is determined using the

technique illustrated in section(3.7). Vc, hc, and vc are determined using guidance

laws, while V, h, v are the outputs of the aircraft model.
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CHAPTER 5

GUIDANCE LAW DESIGN

5.1 Flight plan

So far, optimal, gain-scheduled, and L1 adaptive autopilots have been devel-

oped for the AV-8B Harrier in chapters (3) and (4), respectively, which allow for the

tracking of commanded trajectories of velocity, turn-rate, altitude, and slip-velocity.

The objective, in this chapter, is to develop guidance laws which enable the aircraft

to fly along a predefined flight path, rendezvous with the aircraft carrier, and execute

a vertical shipboard landing.

For the simulation of automatic landing, the aircraft carrier is initially assumed

to be moving with an initial velocity of 50ft/s with a heading of 60◦ under the influ-

ence of sea-state 4 perturbations. To construct the flight path, the relative position

of the aircraft with respect to the carrier is first transformed to “flight deck frame”,

a new coordinate frame defined such that its origin is centered at that of the inertial

reference with its axes being parallel to the carrier’s axes - xS, yS, zS. Let x̃ and ỹ

denote the relative position of the aircraft with respect to carrier measured in flight

deck coordinates given by x̃

ỹ

 =

 cosψac sinψac

− sinψac cosψac


 pN − xac

pE − yac

 (5.1)

A flight plan is comprising of 3 flight legs shown fig.(5.1) is considered for

designing the guidance laws. Initially, the aircraft is assumed to flying straight and

level, with a heading of 240◦ and a velocity of 500ft/s. The flight plan begins at

waypoint 1 which is along the downwind leg, at the end of which the aircraft is
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Figure 5.1: Flight path considered for automatic landing

required to decelerate to a velocity of 350ft/s. Between waypoints 2 and 3, the

aircraft is required to execute a 90◦ right hand turn, so that it is lined up with the

base leg. The aircraft is further needed to decelerate from a velocity of 350 ft/s

to 250ft/s along this leg while the altitude is maintained constant. The final leg

begins at waypoint 4 with the execution of another right hand 85◦ turn towards the

final leg. When the lateral separation between the aircraft and the carrier, which

is measured perpendicular to the direction of carrier motion, is less than 50ft, a 5◦
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heading correction is made to the flight path so that the aircraft is in-line with the

touchdown point. Between waypoint 5 and 6, the aircraft velocity is decreased from

250ft/s to 51ft/s, while it descents from an altitude of 1000ft to 120ft. At waypoint

6, which is just 20ft to the aft of the landing zone on the carrier, the aircraft begins

to fly at a relative velocity of just 1ft/s during which lateral position errors are

minimized. When the axial separation between the aircraft and the waypoint is less

than 5ft, between waypoints 7 and 8, proportional navigational laws are activated to

stabilize the aircraft over the landing point, and a vertical landing is performed with

a constant descent rate.

5.2 Heading Angle Guidance

Heading angle reference commands are determined using two types of guidance

laws. The first one is the widely used, lateral beam guidance law [30] which is given

by

ψc = ψdes − sin−1

(
r̃ − r̃des
V τ

)
(5.2)

where, ψc is the commanded heading angle, ψdes is the desired heading angle, and r̃

is either x̃ or ỹ depending of the leg of flight, and r̃des is the value of r̃ at which the

aircraft’s heading angle ψ is desired to be equal to ψc. τ is a time constant, which

is tuned to obtain a smooth trajectory. This guidance law was used only to prevent

heading angle errors along straight flight paths, and not to perform the 90◦ turns at

waypoints 2 and 4. This is because, when

(
r̃ − r̃des
V τ

)
≥ 1, the commanded heading

angle is indeterminate. To overcome this issue, a new heading angle command law is

written by scaling and shifting a hyperbolic tangent function as follows

ψc = ψi+

(
ψdes − ψi

2 tanh(2.25)

)(
tanh(2.25) + tanh

((
1− r̃ − r̃des

r̃i − r̃des

)
4.5− 2.25

))
(5.3)
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where, ψi is the initial heading angle, r̃i is the initial value of r̃. It is to be noted

that the factor tanh(2.25) that is seen in the guidance law, is used so that the law

replicates the behavior of tanh(·) function in the interval −2.5 and + 2.5. To ensure

that the aircraft tracks the heading angle commanded using the guidance laws in

Eqs.(5.2) and (5.3) asymptotically, a turn-rate command law is employed as follows.

ψ̇c = −kψ (ψc − ψ) (5.4)

The constant kψ is initially selected as 1, and tuned as needed to obtain the desired

performance.

5.3 Velocity Guidance Law

Velocity reference commands are issued either using proportional laws or time-

to-go laws. The proportional velocity command law is given by

Vc = Vi +

(
Vdes − Vi
r̃des − r̃i

)
(r̃ − r̃i) (5.5)

This guidance law is used to decelerate the aircraft along all flight segments except the

final segment between waypoints 5 and 6. This is because the desired relative velocity

at waypoint 6 is just 1ft/s, and using the proportional would result in the aircraft

requiring a large amount of time to reach the waypoint. To address this issue, a time-

to-go based guidance law is formulated with a view to maintain constant deceleration

between waypoints 5 and 6. At any instant of time ‘t’, consider the following constant

acceleration guidance law, given by

Vc = Vi +

(
Vf − Vi
tf − ti

)
(t− ti) (5.6)

= Vi + (Vf − Vi)
(

1− tf − t
tf − ti

)
(5.7)
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where, Vi and Vf are the initial and the desired final velocities, and tf and ti are

the time instants corresponding to the start and the end points of the flight leg. Let

tgo = tf − t, which is known as time to go using which Eq.(5.7) is written as

Vc = Vi + (Vf − Vi)
(

1− tgo
tgoi

)
(5.8)

However, by defining time-to-go as a ratio of range to the closing velocity [4], Eq.(5.8)

becomes,

Vc = Vi + (Vf − Vi)
(

1− r̃f − r̃
r̃f − r̃i

Vi − 50

V − 50

)
(5.9)

5.4 Altitude Guidance Law

The altitude guidance law that is required to perform the final descent between

waypoints 5 and 6 is chosen to be a time-to-go-based law, which takes a form similar

to Eq.(5.9).

hc = hi + (hf − hi)
(

1− r̃f − r̃
r̃f − r̃i

Vi − 50

V − 50

)
(5.10)

The vertical touchdown which begins at waypoint 7 is achieved at a constant descent

rate of 3ft/s using

hc = hi − 3(tf − ti) (5.11)

5.5 Position Control Laws

At waypoint 7, it is imperative to minimize any axial and lateral position errors

of the aircraft with respect to the touchdown point on the carrier. The axial position

control is achieved by employing proportional navigation law

Vc = Vac − kV x̃ (5.12)

64



The lateral position control law is used to determine the slip velocity prior to touch-

down as follows.

vc = −kvỹ (5.13)

The constants kV and kv are initially chosen as 0.1, and are tuned to obtain satisfac-

tory performance.
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CHAPTER 6

RESULTS AND DISCUSSION

This chapter presents the results of the automatic carrier landing simulations

that are performed using both control strategies : Gain-scheduled linear optimal

control, and L1 adaptive control. These simulations are conducted in SIMULINKr

using ODE45 Dormand-Prince solver, and are terminated when the altitude of the

aircraft equals that of the carrier.

6.1 Gain-Scheduled Flight Control System

The simulation results of the automatic carrier landing performed using the

gain-scheduled automatic flight coontrol system have been plotted in Figs.(6.1)-(6.9).

From Fig.(6.1), the tracking performance is seen to satisfactory throughout the length

of the flight. The spikes seen in the slip velocity at around 50 and 150 second mark

are caused by the initiation and termination of the two 90◦ turns. The velocity

tracking error, seen from Fig(6.2) is less than 1ft/s. Between 250 and 350 seconds,

the altitude tracking error ranges between −5ft and 5ft. This is attributed to the

controller attempting to minimize velocity tracking error, at the expense of altitude

tracking performance. Rendezvous of the aircraft with designated landing point on

the carrier is achieved successfully, following which a vertical landing is performed as

seen in Fig(6.3). The aircraft landed 1.86 ft to the aft and 0.35 ft to the right of the

designated landing point. The maximum bank angle attained during turns is 60◦,

and the plots euler angles and body angular rates indicate smooth turns.
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Figure 6.1: Velocity, altitude, and slip tracking performance
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Figure 6.2: Variation of Velocity, altitude, and slip velocity tracking error with time
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Figure 6.8: Stick, throttle, nozzle and flap deflection history
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Figure 6.9: Aileron and rudder deflection history
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6.2 L1 adaptive Flight Control System

The simulation results of automatic landing performed using the L1 adaptive

flight control system have been plotted in Figs.(6.10)- (6.18). Fig.(6.1) indicates sat-

isfactory tracking performance. Altitude tracking error is bounded between ±5ft,

while the slip velocity tracking error is maintained less than 0.5ft/s. The velocity

tracking error which increases up to 5ft/s prior to touchdown. Also, Fig.(6.11) in-

dicates that the velocity tracking error increases after a time instant of 300 seconds

which corresponds to a velocity of 150ft/s, when the switch from the high-speed to

the low-speed L1 adaptive controller is made. The velocity tracking performance is

found to degrade at hover conditions. For this reason, the simulation is terminated

at an altitude of 20 ft above the flight deck at 454 seconds., when the aircraft is

still in hover. The lateral and longitudinal position of the aircraft at time of termi-

nation of the simulation is found to be 4.8ft and −0.68ft, respectively. The spikes

seen in the control histories in Figs(6.17) and (6.18), at 300 seconds is due to the

switching between the controllers. However, the velocity tracking performance in

hover can be greatly improved by employing a time varying reference as opposed to

just two time-invariant reference systems. Also, the touchdown portion of the flight

can be conducted by switching to the gain-scheduled controller from the L1 adaptive

controller.
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Figure 6.10: Velocity, altitude, and slip tracking performance
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Figure 6.17: Stick, throttle, nozzle and flap deflection history
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CHAPTER 7

SUMMARY AND CONCLUSION

Automatic carrier landing systems for V/STOL aircraft play a crucial role in

minimizing pilot workload, as well as mitigating accidents during shipboard landings.

In this thesis, the goal was to design automatic carrier landing systems for AV-8B

Harrier like V/STOL aircraft using the two leading control strategies, gain-scheduling,

and L1 adaptive control. A high-fidelity simulation model of the AV-8B Harrier was

considered for this purpose. Carrier motion was simulated by employing a kinematic

model of a Nimitz class aircraft carrier subjected to sea-state-4 perturbations.

The gain-scheduled flight control system design began with the selection of

scheduling variables. The large variations in the aircraft’s velocity, turn-rate, and

altitude seen in a carrier landing sequence renders the aircraft’s dynamics highly

non-linear, because of which it was suitable to choose them as scheduling variables.

A sample space characterized by velocity, altitude, and turn-rate was defined and

discretized to select a large number of equilibrium operating points. Trim states,

and control inputs pertaining to these points were determined by the process of con-

strained minimization of a trim cost function. Linearized dynamics of the aircraft

corresponding to each trim point was determined by performing jacobian lineariza-

tion. Inter-mode coupling and control cross-coupling were investigated at a high-speed

straight and level, and a turning flight conditions. While the coupling phenomenon

was found to be absent in the straight and level flight condition, they manifested in

the turning flight condition. To minimize control cross-coupling, a decoupling strat-

egy was presented whose basis was the concept of partial inversion of the control
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influence matrix. At each trimmed flight condition, an LQI controller was developed

to track velocity, altitude, and slip. The presence of an integral feedback in the LQI

technique ensured the elimination of any steady state error. The trim states and

control inputs, and the controller gains pertaining to each trim point were stored in

a three dimensional look-up table, and were scheduled with respect to commanded

velocity, altitude, and turn-rate, using trilinear interpolation scheme.

The L1 adaptive flight control system was designed based only on two reference

models - one based on a high speed flight condition which functions efficiently at

speeds greater than 150ft/s, and the other for low-speed and hovering flight condi-

tions. The formulation of the adaptive controller assumed an unknown non-linear

matched uncertainty which was transformed to an equivalent linear time varying sys-

tem. Projection based adaptation laws were incorporated to estimate the uncertain-

ties, and ensure boundedness of the parameters. The low pass filter was chosen to be

of first order, and the filter bandwidth was designed to minimize any high frequency

noise arising from fast adaptation. The control law being non-linear, still required

trim states, and control inputs which were determined from the linear model database

that was populated for the gain-scheduled controller. The adaptive controller tracked

reference commands of velocity, altitude, slip velocity, and heading angle.

Guidance laws were designed to compute reference commands of airspeed, al-

titude, turn-rate and slip velocity based on the deviation of the aircraft from a pre-

defined flight path. The flight path consisted of a downwind leg, base leg, and final

leg. Heading corrections along each leg was achieved using lateral beam guidance law,

while turning maneuvers were performed with the help of a tan-hyperbolic guidance

law. Velocity control was achieved with the help of proportional, and time-to-go based

guidance laws. The time-to-go velocity guidance law was instrumental in reducing

the time taken to rendezvous with the aircraft carrier.
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Automatic carrier landing was simulated using both the L1 adaptive and the

gain-scheduled controllers, and their overall performance was satisfactory. The veloc-

ity tracking performance of the L1 adaptive controller degraded in hover conditions

because of which the vertical touchdown was partially completed, and the simulation

was terminated when the aircraft was 20ft above the flight deck. However, the per-

formance of the L1 adaptive controller at hover conditions can be greatly improved by

accounting for unmatched uncertainties and by employing time-varying reference sys-

tems. The L1 adaptive controller performed better than the gain-scheduled controller

when slip velocity tracking is considered.
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CHAPTER 8

FUTURE WORK

Based on the techniques and ideas presented in this thesis, the future work can

encompass :

• Considering robust multi-input-multi-output techniques such as H∞, LQG-

LTR, and µ-synthesis for designing the gain-scheduled automatic flight control

system.

• Designing an L1 adaptive flight control system which can handl unmatched

uncertainties.

• Selection of the low-pass filter in the L1 adaptive controller to maximize time

delay margin.

• Including actuator dynamics, and time delays to make the controllers more

robust.

• Including winds, turbulences, and burble models which were completely ignored

in this research.

• Considering time-varying reference systems for the adaptive controller

• Designing an L1 adaptive augmented gain-scheduled flight control system to

combine the benefits of both the techniques.
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