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Abstract 

NANOPARTICLE-BRIDGE ASSAY FOR AMPLIFICATION-FREE 

ELECTRICAL DETECTION OF OLIGONUCLEOTIDES  

 

Manouchehr Teimouri, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Seong Jin Koh 

The aim of this research is to investigate a highly sensitive, fast, 

inexpensive, and field-applicable oligonucleotide detection method which does 

not rely on any enzymatic or signal amplification processes. In this approach, 

target oligonucleotides are detected through the formation of nanoparticle satellite 

conjugates which make electrical paths between two electrodes. This method 

enables an extremely sensitive oligonucleotide detection because even a few 

oligonucleotide molecules can form a nanoparticle satellite conjugate which can 

provide an electrical path between electrodes and produce an electrical output 

signal. It is demonstrated that this oligonucleotide detection method can detect 

oligonucleotide molecules at concentrations as low as 50 femtomolar without any 

amplification process. This detection method can be implemented in many fields 

such as disease detection, biodefense, food safety, clinical research, and forensics. 
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Chapter 1  

Introduction 

 

1.1 Motivation to Oligonucleotide Detection 

Detection of DNA or RNA molecules has become an important part of 

research in many areas such as disease diagnostics, food safety, forensics, and 

biodefence. MicroRNA (miRNA) profiling plays a crucial role in diagnosis of 

cancer. Discovering pathogenic agents in foods is essential to prevent foodborne 

illnesses. DNA analysis of samples left at crime scene can provide evidence for 

police investigations. Therefore, it would be highly beneficial to have a DNA or 

RNA detection method which is sensitive, fast, inexpensive, and field-applicable.  

Currently, the main techniques of DNA or RNA molecule detection rely 

on amplification processes, such as enzymatic target amplification, or 

signal/probe amplification  process. For example, million to billion copies of a 

particular DNA sequence can be generated from a few DNA molecules using 

polymerase chain reaction (PCR) [1-3]. Bio barcode assay is used for detection of 

amplified target DNA in the form of barcode DNA [4, 5]. Silver reduction is used 

to enlarge the size of gold nanoparticle probes [6, 7]. Raman scattering signal is 

enhanced by modification of Raman dye-labeled nanoparticles [8, 9].  However, 

these amplification-based techniques necessarily involve many process steps, 

which cause a number of considerable drawbacks. They are time-consuming, 
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costly, sensitive to contamination, and require laboratories and complex 

instruments. This work aims to develop a highly sensitive, fast, inexpensive, and 

portable oligonucleotide detection method which does not rely on any 

amplification process and can be easily used in point-of-care settings. 

The concept of our detection method is to directly detect target 

oligonucleotides with no need of amplification through the formation of gold 

nanoparticle satellite conjugates between two electrodes. In the presence of even a 

few target oligonucleotides, probe oligonucleotide-functionalized gold 

nanoparticles are attached to central capture oligonucleotide-functionalized gold 

nanoparticles, to form nanoparticle satellite conjugates. Nanoparticle satellite 

conjugates make electrical path between two electrodes and generate electrical 

output signal. 

 

1.2 Outline  

The aim of this research is to develop an ultra-sensitive amplification-free 

nanoparticle-bridge DNA oligonucleotide sensor. Here, first the fundamental of 

DNA structure and hybridization will be presented. Then, current methods of 

oligonucleotides detection will be reviewed. In chapter 3, concept of our 

oligonucleotides detection method and procedure for the sensor fabrication will be 

introduced. In chapter 4, first the theory and a review to three experimental 

techniques which are applied in our detection method will be presented. These 
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techniques contain synthesize of DNA-functionalized gold nanoparticles, 

formation of self-assembled monolayers, and electrostatic funneling. After 

reviewing the background, experimental procedure for fabrication and testing of 

our detection method will be explained. In chapter 5, results of our DNA 

oligonucleotides detection method including SEM and I-V measurements will be 

discussed. In chapter 6, conclusion and suggestions for future work will be given. 
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Chapter 2  

Background of Oligonucleotide Detection Methods 

 

The aim of this research is to develop a new method for amplification-free 

detection of oligonucleotides, in particular a DNA oligonucleotide. In this 

chapter, a brief description to DNA structure and micro-RNA will be presented. 

After that, current oligonucleotide detection methods including target-enzymatic 

amplification- and signal/probe-amplification-based methods will be reviewed. 

Disadvantages of current detection methods will be mentioned at the end of this 

chapter. 

 

2.1 Introduction to DNA and micro-RNA Structure 

2.1.1 DNA 

2.1.1.1 DNA Structure 

DNA (Deoxyribonucleic acid) molecules consist of two polynucleotides. 

Each nucleotide is composed of three components: nucleobase in the form of 

Adenine (A), Thymine (T), Cytosine (C), or Guanine (G), saccharide sugar or 

deoxyribose, and phosphate group. The molecular structure of a nucleotide is 

shown in figure 2-1. Nucleotides are bound together via covalent bonds and 

nucleobases of two polynucleotides are paired together through hydrogen bond in 

a specific way such that A always pairs up with T and C always pairs up with G 
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2.1.1.2 DNA Hybridization 

DNA hybridization refers to the process in which two complementary 

pieces of DNA (or a piece of DNA and a piece of RNA) anneal to form a double-

stranded molecule through base pairing. DNA hybridization is a second-order 

reaction in which formation of a few base pairs from each strand, called nucleus, 

is the rate-limiting step. Hybridization of remaining base pairs would be quick 

[11]. Mechanism of the hybridization between DNA oligonucleotide immobilized 

on the gold nanoparticle and DNA oligonucleotide in the solution was reported to 

be first adsorption of free DNA oligonucleotide onto the gold nanoparticle surface 

and then two-dimensional diffusion to hybridizes with an immobilized DNA 

oligonucleotide [12, 13]. 

 

2.1.1.3 Probe DNA 

Probe DNA is usually a single-stranded DNA that is labeled with a 

molecular marker of either radioactive or fluorescent molecule and is used to 

identify a complimentary DNA sequence of interest. The probe DNA hybridizes 

to single-stranded nucleic acid (DNA or RNA) whose base sequence allows 

probe-target base pairing due to complementarity between the probe and target.  

Identification of DNA sequences with high or low homology depends on 

hybridization stringency. High stringency, such as high hybridization temperature 

and low salt in hybridization buffers, allows only hybridization between nucleic 
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acid sequences that are highly homologous, whereas low stringency, such as 

lower temperature and high salt, allows hybridization between sequences which 

are less homologous. 

 

2.1.2 Micro-RNA 

MicroRNAs (miRNAs) are a class of naturally occurring, small non-

coding RNA molecules, about 19–25 nucleotides in length. miRNAs are short 

single stranded RNA molecules, which serve as master regulators of gene 

expression. Their abnormal levels in tumours have important pathogenetic 

consequences: miRNAs that are overexpressed in tumours contribute to 

oncogenesis by downregulating tumour suppressors, whereas miRNAs lost by 

tumours generally participate in oncogene overexpression [14]. The alterations of 

miRNA expression are involved in the initiation, progression and metastasis of 

various types of human cancers, such as breast cancer [15], lung cancer [16], 

prostate cancer [17], and colon cancer [18]. 

It is known that miRNA expression patterns can characterize the 

developmental origins of tumors more effectively than mRNA expression 

signatures and can be used as an efficient tool for the diagnosis and prognosis of 

human cancer. To block the function of miRNAs and consequently to inhibit their 

oncogenic effects, several approaches have been developed. These 

accomplishments have revealed a potential for miRNA to be used as a clinical 
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tool in cancer diagnosis and as a target for therapy [19]. To determine the 

expression pattern of all known miRNAs, developing an accurate and inexpensive 

profiling method is essential. Detection of miRNA using RT-PCR method has 

been studied although this is challenging due to the short size of miRNAs which 

makes PCR amplification complicated [20].  

 

2.2 Enzymatic Target Amplification-Based Detection Methods 

Currently, the main assays of DNA detection are based on polymerase 

chain reaction (PCR) coupled with molecular fluorophores [1, 2, 21-25]. PCR is a 

method for making many copies of specific segments of DNA starting with a very 

small amount. This technology can be used to identify specific micro-organisms 

from small amount of DNA. 

The DNA to be amplified is mixed with deoxyribonucleotides, a thermal-

stable DNA polymerase called Tag polymerase, and DNA primers. The DNA 

primers hybridize to the ends of the genes to be amplified and provide starting 

point for the Tag polymerase. The mixture is heated to break the hydrogen bonds 

on the DNA forming single strands of molecules. The mixture is then cooled 

sufficiently to allow DNA primers to anneal to each end of the segment to be 

copied. Tag polymerase then synthesized the complementary strands of DNA 

using the primers as the starting point. The temperature is raised again to separate 

the DNA strands and then lowered sufficiently to allow the primers to attach Tag 



 

p

pr

2

co

olymerase n

rocess is rep

-3). After 2

opies. 

 

 

 

new synthes

peated until 

1 cycles, on

Figure  2-

sized anothe

enough DN

ne molecule 

-3 Schematic

10 

er set of ne

A has been 

of DNA ca

c demonstra

ew complem

produced to

an be amplif

ation of PCR

mentary stra

o be identifie

fied to over 

R [26] 

ands. This 

ed (figure 

a million 

 



 

sy

D

at

d

E

co

g

nu

fl

c

Immu

ystem which

DNA molecu

ttached DNA

etection of a

ELISA (the m

onsequence 

iven ELISA

Real‐t

ucleic acid

luorescence 

Figure  2-4

conjugate in 

comprising

uno-polymer

h was first d

ule is used as

A was amp

a few antige

most typical

of signal am

is enhanced

time (qPCR)

s levels [2

emitted from

4 Schematic c

ELISA conv

g an antibody

amplifie

ase chain rea

developed by

s the marker

plified by PC

en molecules

l protein det

mplification u

d 100–10,000

) is a sensitiv

29]. It is b

m a reporter 

comparison 

verts a substr

y and a DNA

ed by PCR fo

11 

action (Imm

y Sano et al

r to attach to

CR. Analysi

s. A compari

tection meth

using PCR, 

0 fold [28]. 

ve method f

based on d

molecule at 

of ELISA an

rate into a de

A marker is u

for signal gen

muno-PCR) is

l [27]. In th

o antigen. Th

is of the PC

ison in setup

hod) is show

the limit of 

for detection

detection an

real time.  

nd IPCR An

etectable pro

utilized in IP

neration (b)

s an antigen 

his method, 

hen, a segm

CR products

p between I-

wn in figure 

detection (L

n and quantif

nd quantific

 

n antibody–e

oduct (a), a c

PCR. The ma

[28] 

detection 

a specific 

ment of the 

s allowed 

-PCR and 

2-4. As a 

LOD) of a 

fication of 

cation of 

enzyme 

conjugate 

arker is 



 

pr

p

li

o

th

N

[3

im

s

Real-t

rofiles. It i

athogenesis.

ines and hum

Real-t

f protein and

he advantag

Niemeyer et 

34]. They f

mprovement

Figure  2-5

strategies (se

qIPCR (blue

time PCR 

is used to 

. Real-time P

man cancer c

time Immun

d antigens. T

ges of immu

al. used qIP

found 10-fo

t in the detec

5 Schematic

equential qIP

e bars)) for h

has been e

study the 

PCR was em

ell lines [30

no-PCR (qIP

The quantita

unoassays a

PCR assay t

old (sequen

ction of IL-6

c Typical resu

PCR (gray b

human IL-6 i

control ELIS

12 

employed t

potential f

mployed to m

, 31]. 

PCR) has be

ative immuno

and signal a

to detect hu

ntial qIPCR)

 compared t

ults of the th

bars), modula

in human se

SA (black lin

to quantify 

function of 

measure miR

een efficient

o-PCR (qIPC

amplificatio

uman interleu

) to 1,000-

o ELISA (fi

hree optiona

ar qIPCR (g

erum, compa

ne) [34]. 

miRNA e

miRNAs i

RNA precurso

tly used for 

CR) technol

on of PCR 

ukin 6 (IL-6

-fold (direct

igure 2-5). 

 

al qIPCR dete

green bars) an

ared to the an

expression 

in cancer 

ors in cell 

detection 

logy takes 

[32, 33]. 

6) protein 

t qIPCR) 

ection 

nd direct 

nalogous 



 

an

R

th

le

is

T

in

re

d

d

st

Rollin

nother ampl

RNA molecu

he free 3’O

engthened w

s displaced a

The single-st

nvolving RN

eplication (F

Immu

etection. In 

etection ant

tranded DNA

ng circle amp

lification pr

ules [35-39].

H is extend

while the grow

and forms a 

tranded tail 

NA primers, 

Figure 2-6).  

uno-rolling c

immune-RC

tibody, is e

A as templat

Figure  2-

plifications 

ocess which

 In rolling c

ded by DNA

wing point r

tail of single

is converte

as in the syn

circle amplif

CA, an oligo

enzymaticall

te [40, 41]. 

-6 Schematic

13 

(RCA) using

h has been 

circle amplif

A polymera

rolls around 

e-stranded D

ed into dou

nthesis of th

fication (RC

onucleotide p

ly elongated

c demonstrat

g DNA and 

used for de

fication, one

ase. The 3’ 

the circular 

DNA that ex

uble-stranded

he lagging st

CA) is anoth

primer, cova

d by addin

ation of RCA

RNA polym

etection of D

e strand is ni

end on the

r template. T

xtends from t

d DNA by 

trand of norm

her method o

alently attach

ng a circula

A [42] 

merases is 

DNA and 

icked and 

e circle is 

The 5’ end 

the circle. 

synthesis 

mal DNA 

of protein 

hed to the 

ar single-



 

am

R

re

(f

(R

hy

br

ex

re

Rever

mplification

RNA molecu

everse trans

figure 2-7).  

Asaga

RT-qPCR) 

ypothesized 

reast tumors

Anoth

xponential 

eaction and n

Figure  2-7

rse transcrip

n technique w

ule is first c

scriptase. Th

  

a et al devel

assay for d

that serum

s, would corr

her efficient

amplificatio

nicking [47-

7 Schematic 

tion polyme

which is use

converted in

he cDNA i

loped a reve

direct detec

m concentrat

relate with th

t amplificati

on reactions

50].  

demonstrati

14 

erase chain r

d in RNA d

nto a comple

s then expo

erse-transcrip

ction of cir

tions of miR

he presence 

ion used fo

s (EXPAR)

ion of RT-PC

reaction (RT

detection [43

ementary D

onentially a

ption quanti

rculating mi

R-21, a bio

and extent o

or DNA an

) using iso

 

CR to form t

T-PCR) is a

-46]. In RT-

DNA (cDNA

amplified us

itative real-t

iRs in seru

omarker inc

of breast can

nd RNA det

othermal po

the first DNA

a common 

-PCR, the 

A) using a 

sing PCR 

time PCR 

um. They 

creased in 

ncer [3]. 

tection is 

olymerase 

A [51] 



 

15 

2.3 Signal/Probe Amplification-Based Detection Methods Using Gold 

Nanoparticles 

Over the past twenty years, unique properties of gold nanoparticles have 

attracted researcher’s attention to develop gold nanoparticle-based DNA detection 

assays. Chemical and physical properties of the gold nanoparticles determine the 

applications of gold nanoparticles to oligonucleotides detection. The application 

of gold nanoparticles in biosensors is strongly related to their properties that 

depend on synthetic procedures and the subsequent chemical and biological 

modifications of the gold nanoparticles [52].  

Gold nanoparticles appear red in color with surface plasmon band at 

around 520 nm but they exhibited blue-purple color with shifted characteristic 

plasmon resonance when they get agglomerated. Physical properties of gold 

nanoparticles can be easily tailored using surface modification. Unique properties 

of gold nanoparticles which are strongly depend on their size and shape has made 

them an interesting nanomaterial to be used in bio-sensing applications [53, 54].  

The purpose of functionalizing gold nanoparticles with biomolecules is to 

have both characteristic properties of biomolecules and gold nanoparticles 

without change respect to their individuals. There are different processes for 

functionalizing gold nanoparticles with biomolecules [55]. Ligand-like binding to 

the surface in which biomolecules are adsorbed directly onto the gold 

nanoparticle surface is one process. Another one is electrostatic adsorption of 
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2.3.3 Bio-Bar Code Assay 

The bio-bar-code assay is a promising new amplification and detection 

system that utilizes short oligonucleotides as target identification strands and 

surrogate amplification units in both protein and nucleic acid detection. 

The typical assay involves two types of particles. One particle is magnetic 

and has recognition elements for the target of interest attached to its surface. The 

second is a particle (e.g., a gold nanoparticle) that has a recognition agent, which 

can sandwich the target with the magnetic particle. The second particle also 

carries oligonucleotides covalently attached to its surface that support 

complementary oligonucleotides. The hybridized oligonucleotides are the bar-

code strands. When the sandwich structures are formed, a magnetic field is used 

to localize and collect them. Excess sample is removed and then water or buffer at 

an elevated temperature is used to release and collect the bar-code strands. The 

strands can be identified using any number of common DNA detection modalities 

(e.g., scanometric detection or fluorescence detection). 

Using bio-barcode assay to detect DNA targets was first reported by Nam  

et al. [4]. That system relies on two-component oligonucleotide-modified gold 

nanoparticles and single-component oligonucleotide-modified magnetic 

microparticles, and subsequent detection of amplified target DNA in the form of 

barcode DNA using a chip-based detection method (figure 2-23). 
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Simultaneous detection of multiple oligonucleotide targets by using 

oligonucleotide sequences associated with a) hepatitis B virus surface-antigen 

gene (HBV), b) variola virus (small pox, VV), c) Ebola virus (EV), and d) human 

immunodeficiency virus (HIV) as model systems was reported by Stoeva et. al. 

(figure 2-25). They demonstrated that these four DNA targets can be detected 

with high selectivity at mid-femtomolar concentrations [76] . 

The utility of the bio-barcode assay for detecting protein markers and 

specifically Prostate specific antigen (PSA) has been extensively studied.  

Nam et al. reported PSA detection at 30 attomolar concentration [77]. 

Their system relies on magnetic microparticle probes with antibodies that 

specifically bind PSA and nanoparticle probes that are encoded with DNA that is 

unique to the PSA and antibodies that can sandwich the target captured by the 

microparticle probes. Identifying the oligonucleotide sequence released from the 

nanoparticle probe allowed the determination of the presence of the BSA (figure 

2-26). 

Thaxton et al. developed the bio-barcode assay for the detection of PSA at 

330 fg/mL [78]. They also detected PSA in the serum of men after radical 

prostatectomy which was 300 times more sensitive than commercial 

immunoassays. 
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2.4 Other Detection Methods 

 

2.4.1 Electrochemical Detection Methods 

In electrochemical oligonucleotide sensors, the hybridization event is 

converted into a direct electrical signal. In electrochemical sensors, by using an 

highly or moderately electrocatalytic electrode, such as Au,Pt, ITO (indium tin 

oxide), or applying a significant change in the electrocatalytic activity of an 

electrode, electrocatalysis can be utilized [80-83]. 

Das and Yang found that that DNA-conjugated AuNPs are not good 

enough to be used as electrocatalytic labels because of slow electron-transfer 

kinetics on DNA-conjugated AuNPs. So, they enhanced the electrocatalytic 

activity of DNA-conjugated AuNPs by NaBH4 treatment which led to significant 

increase in the electrocatalytic current of hydrazine on the ITO electrodes [84]. 

By using ITO electrode which has low background noise and modification of 

electrode with gold nanoparticles, they were able to detect 1fM target DNA 

(figure 2-28).  

Selvaraju et al utilized the combination of AuNP labeling and magnetic 

beads (Mbs). Using capture-probe conjugated Mbs and ferrocene (Fc)-modified 

ITO electrodes, p-aminophenol was generated and electrooxidized.  They also 

reported sensitivity of 1 fM [85].  
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developed a platform involving immobilization of specic probes for target and 

labeling targets with paramagnetic markers. Real time monitoring of probe-target 

interaction was measured via variation in sensor resistance with label’s magnetic 

stray fields [94].  

 

2.4.4 Quantum Dot-based Detection Methods 

Quantum dots are a type of nanoparticles which are used for fluorescence 

tagging of biomolecules. They are brighter and much photostable than organic 

fluorophores. It is possible to monitor different components in a system because 

most of the quantum dots can be excited using a single, short-wavelength 

excitation source [95]. 

Fluorescence resonance energy transfer (FRET)-based probes was studied 

for unamplified DNA [96]. Using this structure, Zhang et al. used probes DNA-

quantum dots to capture DNA targets. The schematic of quantum dot-based assay 

is shown in figure 2-30. Binding to a dye-labelled reporter strand, a FRET donor–

acceptor ensemble was formed. This assembly ends up in fluorescence emission 

from the acceptor fluorophores by means of illumination of the quantum dot 

donor [97]. 
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ultrasensitive analysis. Considering these drawbacks, we aimed to develop a 

highly sensitive oligonucleotide detection method which does not rely on any 

amplification method. The concept of our amplification-free nanoparticle-bridge 

oligonucleotide sensor is explained in chapter 3. 
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Chapter 3  

A New Amplification-Free Oligonucleotide Detection Method 

 

In this chapter, Concept and fabrication procedure of our new 

amplification-free nanoparticle-bridge Oligonucleotide sensor is presented. 

 

 3.1 Concept of the Amplification-Free Nanoparticle-Bridge Oligonucleotide 

Sensor 

The main concept of this method which is schematically demonstrated in 

figure 3-1 is to create an electrical path between two electrodes through the 

formation of nanoparticle satellite conjugates. The formation of nanoparticle 

satellite conjugates which indicates the presence of target oligonucleotide is 

examined by conducting I-V measurements. Presence of target oligonucleotide 

and consequently formation of nanoparticle satellite conjugate leads to the 

generation of a linear I-V curve. In this method, two kinds of gold nanoparticle 

and three kinds of single-stranded Oligonucleotide molecules are used to provide 

electrical path between two electrodes. Single-stranded Capture DNA (C-ssDNA), 

Target DNA (T-ssDNA), and Probe DNA (P-ssDNA) strands are all synthetic. C-

ssDNA is immobilized onto larger gold nanoparticle (~50 nm) to form C-AuNP 

conjugate and P-ssDNA is immobilized onto smaller gold nanoparticle (~30 nm) 

to form P-AuNP conjugate. One section of T-ssDNA is complementary to C-
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ssDNA and the other section is complementary to P-ssDNA. C-AuNPs are place 

at the center positions of the gap between two electrodes. After introducing T-

ssDNA and then P-AuNPs, nanoparticle satellite conjugates are formed which 

bridges two electrodes. Formation of nanoparticle satellite conjugates provide 

electrical paths between two electrodes and produce an electrical current when a 

voltage bias is applied. In this method, the sensing signal is an electrical current.  

The main advantage of this method is that only a few number of T-ssDNA 

is needed to form a nanoparticle satellite conjugate and consequently produce an 

electrical signal without any amplification. A 30-mer single-stranded anthrax 

DNA (3’-TAG GAA TAG TTA TAA ATT GTT ATT AGG GAG-5’) was used 

as T-ssDNA.  
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beam lithography, deposition, and lift-off techniques, gold electrodes are made on 

the silicon dioxide substrate. Positively- and negatively-charged self-assembled 

monolayers (SAMs) are formed onto silicon dioxide and gold areas, respectively, 

using 3-aminopropyltriethoxysilane and 16-mercaptohexadecanoic acid. C-

AuNPs are then placed between the gold electrodes via electrostatic funneling. 

Here, placing C-AuNPs at the center of the gap between two electrodes is very 

important to ensure that nanoparticle satellite conjugates can bridges two 

electrodes. After placement, positively-charged self-assembled monolayers are 

removed. APTES removal is essential to avoid loss of T-ssDNA. In other words, 

by removing APTES, T-DNA is just hybridized with C-DNA and is not lost onto 

silicon dioxide surface. By introducing T-ssDNA and then P-AuNPs solutions, 

nanoparticle satellite conjugates are formed through two hybridization reactions. 

Applying the voltage and measuring the current between two electrodes indicates 

that if T-ssDNA is present or not. 
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Chapter 4  

Experimental Procedure 

 

The procedure for fabrication of amplification-free nanoparticle-bridge 

oligonucleotide sensor was schematically illustrated in Figure 3-2. The main steps 

of fabrication are as following: 

 Chip preparation 

 Gold nanoparticle functionalization with single-strand DNAs (AuNP-DNA) 

 Engineering of silicon dioxide and gold surfaces through the formation of 

Self-Assembled Monolayers (SAMs) 

 Formation of nanoparticle satellite conjugates between two electrodes 

 IV measurement and characterization 

 

In this chapter, first background of experimental techniques which has 

been applied in our oligonucleotide detection method including immobilizing 

DNA strands onto gold nanoparticles, formation of Self-Assembled Monolayers 

(SAMs), and single particle placement via electrostatic funneling, is reviewed. 

Then, the materials, instrumentations, and procedures protocols utilized for 

fabrication of amplification-free nanoparticle-bridge oligonucleotide sensor are 

presented. 
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4.1 Background of DNA-Functionalized Gold Nanoparticles 

By mixing alkanthiol-terminated oligonucleotides and gold nanopartilcles, 

oligonucleotides are immobilized onto gold nanoparticles surface through gold-

thiol bond. In order to have a dense monolayer of oligonucleotides onto gold 

nanopartilcles surface, NaCl is added to the mixture to shield the charge repulsion 

between oligonucleotides. 

The number of immobilized oligonucleotides onto gold nanoparticle 

surface depends on salt concentration [107, 108], gold nanoparticle size [107, 

109], and Spacer (the region between the recognition sequence and the thiol 

modification site) Composition [110, 111]. 

 

 

4.1.1 Effect of salt on DNA surface loading 

Loading density of the oligonucleotides increases with NaCl concentration 

which is mainly attributed to the screening effect of the concentrated counter-ions 

on the electrostatic repulsion force between the surface-bound oligonucleotide 

strands [107, 108] (Figure 4-1). Hurst et al. found that at high salt concentrations 

(between 0.7 and 1.0 M NaCl), maximum screening is achieved between 

neighboring oligonucleotides and loading remains relatively constant [107] 

(Figure 4-2).  
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4.1.2 Effect of spacer type on DNA surface loading 

Effect of spacer composition has also been investigated by researchers. 

The spacer role is to move recognition sequence further from the particle surface 

in order to reduce steric crowding of this region during hybridization. Poly-T, 

Poly-A, and PEG are three most common spacers. 

Interactions between neighboring spacer regions and spacer region with 

gold determine the surface loading of gold nanoparticles. Poly-T and Poly-A 

spacers are composed of nucleobases and negatively-charged. Due to repulsion 

forces between strands and interaction tendency of nucleobases with gold 

surfaces, number of loaded DNA strands with nucleobase-containing spacers is 

less than that of with PEG-containing spacer (Figure 4-3).  

It is known that the affinity of adenine nucleobase (A) with gold is 

stronger than thymine nucleobase (T) [111]. Oligonucleotides with poly-A spacer 

are more likely to lie on the gold surface and decrease surface density (Table 4-1). 

In other words, Poly-T spacer segments may orient perpendicular to gold 

nanoparticle surface promoting higher surface coverage [110]. 

 

Table  4-1 Comparison of surface coverage for A20 and T20 spacers [110]. 

Oligonucleotide Surface coverage, pmol/cm2 

S3’A20N12f 241 

S3’T20N12f 351 
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4.1.3 Effect of gold nanoparticle size on DNA surface loading 

Effect of gold nanoparticle size on surface loading has also been explored. 

It has been found that as the nanoparticle size increases, surface density decreases 

which is attributed to the decrease in the curvature of the nanoparticle [107, 109]. 

As a result, DNA strands stand closer to each other and inter-strand repulsion 

increases (Tables 4-2). 

The influence of gold nanoparticle size on surface density is more 

significant for PEG-containing spacer compared to poly-T or poly-A-containing 

spacers (Table 4-3). 

 

Table  4-3 Comparison of surface coverage of DNA on 15 to 250 nm gold 

nanoparticles for different spacers from [107]. 

NP, nm 
A10 spacer, 
pmol/cm2 

T10 spacer, 
pmol/cm2 

PEG spacer, 
pmol/cm2 

15 19 38 56 

30 19 35 48 

50 17 19 26 

80 19 20 27 

150 15 18 19 

250 14 16 21 
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4.3 Electrostatic Funneling 

Electrostatic funneling is an approach for placement of charged 

nanoparticles onto specific locations on the surface. Figure 4-12 shows the 

concept of electrostatic funneling where interactions between nanoparticles and 

positively and negatively-charged areas of surface guide the placement of 

nanoparticles [144, 145]. The interaction between surface and charged 

nanoparticles occurs through double-layer. 

Free ions in an aqueous solution can terminate electric field lines, and 

therefore can severely screen Coulomb interactions of charges. They also change 

the shape of the potential energy, making it go to zero exponentially beyond a 

characteristic distance called the Debye Length. In other words, the Debye length 

is the distance over which a charge is shielded by the ions in a solution. Debye 

length, which is usually denoted with -1, can be determined by 

 

ଵ


ൌ ට

ఌೝఌబ௞்

ଶ௘మேಲଵ଴଴଴ூ೎
   (4-1) 

 

Where εr is the dielectric constant of water; ε0 is the permittivity of free 

space; k is the Boltzmann’s constant; T is the absolute temperature; e is the 

electron charge; NA is the Avogadro number; and Ic is the ionic strength of the 

electrolyte 



 

F

p

Figure  4-12 W

schematic 

negatively

positively an

guided t

 

Wafer-scale 

of the electr

y charged na

nd negatively

to the center

int

nanoparticle

rostatic inter

anoparticle n

y charged mo

s of positive

eraction ene

65 

 

e placement 

raction energ

ear a substra

olecules. (b)

ely charged l

ergy is minim

with electro

gy in an aqu

ate surface fu

) The nanopa

lines (of wid

mum [144].

ostatic funnel

eous solutio

functionalize

articles (red 

dth W) where

 

ling (a) A 

on for a 

ed with 

dots) are 

e the 



 

4

 

 

 

 

 

 

.4.1 Reagent

Si wafer, 

E-beam p

Photo resi

30-nm go

4-13.a) 

50-nm go

4-13.b) 

Zonyl FSN

a 

b 

Figu

ts 

test grade, p

photo resist m

ist developer

old colloid (

old colloid (

N-100, ((C2

ure  4-13 Prop

4.4 Exper

p-type (100)

ma-N 2401 (

r ma-D 525 

(30-nm AuN

(50-nm AuN

2H4O)x(CF2

perties of as-

66 

rimental Mat

(Nova electr

microchem)

(microchem

NP), Tannic 

NP), Tannic 

2)yC2H5FO)

-received (a)

terials 

ronic materi

) 

m) 

surface (Na

surface (Na

) (Sigma-Ald

) 30 and (b)5

ials) 

anocomposix

anocomposix

drich) 

50nm AuNP

x) (Figure 

x) (Figure 

 

 

Ps 



 

67 

 Synthetic oligonucleotide probe-DNA (P-DNA) with disulfide linker (HPLC 

purified) (BioBasic) (Table 4-4) 

 Synthetic oligonucleotide capture-DNA (C-DNA) with disulfide linker 

(HPLC purified) (BioBasic) (Table 4-4) 

 Synthetic oligonucleotide target-DNA (T-DNA) (HPLC purified) (BioBasic) 

(Table 4-4) 

 Synthetic oligonucleotide 1bp- mismatch target-DNA (T-DNA) (HPLC 

purified) (BioBasic) (Table 4-4) 

 Synthetic oligonucleotide 3bp- mismatch target-DNA (T-DNA) (HPLC 

purified) (BioBasic) (Table 4-4) 

 Synthetic oligonucleotide fluorescent marker-labeled probe-DNA with 

disulfide linker (HPLC purified) (BioBasic) 

 Synthetic oligonucleotide fluorescent marker-labeled capture-DNA with 

disulfide linker (HPLC purified) (BioBasic) 

 DTT (DL-Dithiothreitol), molecular biology grade 

(HSCH2CH(OH)CH(OH)CH2SH) (Sigma-Aldrich) 

 NAP-5 column (GE Healthcare) 

 Phosphate buffered saline, 10× concentrate, BioReagent (Sigma-Aldrich) 

 Sodium chloride,  99.5%  (NaCl) (Sigma-Aldrich) 

 Sodium hydroxide (NaOH) (Sigma-Aldrich) 
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Table  4-4 Target, Capture, and Probe DNAs product information (all sequences 

are from 5’ to 3’) 

T
-D

N
A

 

Seq. : GAG GGA TTA TTG TTA AAT ATT GAT AAG GAT 

Primer length: 30 Modification: None Aggregate MW: 9363 

OD: 1 ug: 28.91 nmol: 3.09 

C
-D

N
A

 

Seq. : TTT TTT TTT TTT TTT TTT TTA TCC TTA TCA ATA TTT AA 

Primer length: 38 Modification: 5’ HS-SH C6 Aggregate MW: 11844 

OD: 1 ug: 34.02 nmol: 3.00 

P
-D

N
A

 

Seq. : CAA TAA TCC CTC TTT TTT TTT TTT TTT TT 

Primer length: 32 Modification: 3’ HS-SH C3 Aggregate MW: 9877 

OD: 4 ug: 142.48 nmol: 14.8 

1b
p 

m
m

 T
-D

N
A

 Seq. : GAG GGA TTA TTG TTA AAT ATT CAT AAG GAT 

Primer length: 30 Modification: None Aggregate MW: 9323 

OD: 1 ug: 29.18 nmol: 3.13 

3b
p 

m
m

 T
-D

N
A

 Seq. : GAG GGA TTA TTG TTA ACT ATT CAT AAC GAT 

Primer length: 30 Modification: None Aggregate MW: 9259 

OD: 1 ug: 30.00 nmol: 3.24 
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 Tris-EDTA buffer solution, molecular biology grade (NH2C(CH2OH)3+ 

C10H16N2O8+HCl) (Sigma-Aldrich) 

 APTES (3-aminopropyltriethoxysilane) 99% (H2N(CH2)3Si(OC2H5)3) 

(Sigma-Aldrich) 

 Sodium phosphate monobasic monohydrate,  98% (NaH2PO4.H2O) (Sigma-

Aldrich) 

 Sodium phosphate dibasic heptahydrate,  98% (Na2HPO4.7H2O) (Sigma-

Aldrich) 

 16 MHDA (16-mercaptohexadecanoic acid) 90% (HS-(CH2)15-COOH) 

(Sigma-Aldrich) 

 MHA (6-mercapto-1-hexanol) (Sigma-Aldrich) 

 Hydrochloric acid (HCl) 

 Denhardt’s solution, molecular biology grade, lyophilized powder (50 mg 

Bovine Serum Albumin (BSA), 50 mg Polyvinylpyrrolidone (PVP), and 50 

mg Ficoll) (Sigma-Aldrich) 

 Triton X-100 solution, 10% in H2O, (Sigma-Aldrich) 

 SSPE buffer, 20× concentrate, molecular biology grade (Sigma-Aldrich) 

 DMSO (Dimethyl sulfoxide)  99.5%  ((CH3)2SO)(Sigma-Aldrich) 

 Acetone (C3H6O) 

 Ethanol, 200 proof (C2H5OH) 



 

70 

4.4.2 Reagents Setup 

 Disulfide cleavage buffer 200 mM phosphate buffer (pH = 8.0) 

 Exchange buffer 10 mM phosphate buffer (pH = 7.5) 

 Salting buffer 10× phosphate buffered saline + 3.46 M NaCl 

 Conjugate washing buffer 10 mM phosphate buffer + 100 mM NaCl (pH = 

7.5) 

 Storage buffer Tris-EDTA buffer: 10 mM Tris-HCl, 1 mM disodium EDTA 

(pH = 8.0) 

 Hybridization buffer 5× Denhardt’s solution + 0.5% Triton X-100 + 6× 

SSPE + 10% DMSO + 45% water: 5 ml 50× Denhardt’s, 2.5  ml 10% Triton 

X-100, 15 ml  20× SSPE, 5 ml  DMSO , 22.5 ml DI water. 

 Hybridization washing buffer 0.5% Triton X-100 + 6× SSPE + 10% DMSO 

+ 55% water: 2.5  ml 10% Triton X-100, 15 ml  20× SSPE, 5 ml  DMSO , 

27.5 ml DI water. 

 Low Stringency wash buffer 0.1% Triton X-100 + 2× SSPE + water: 100  μl 

10% Triton X-100, 1000 μl  20× SSPE, 8900 μl  DI water. 

 High Stringency wash buffer 0.1% Triton X-100 + 0.5× SSPE + water: 100  

μl 10% Triton X-100, 250 μl  20× SSPE, 8900 μl  DI water. 

 Ultra-high Stringency wash buffer 0.1% Triton X-100 + 0.1× SSPE + 

water: 100  μl 10% Triton X-100, 50 μl  20× SSPE, 8900 μl  DI water. 
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4.5 Experimental Instruments 

 Scanning electron microscope (SEM) equipped with e-beam writer, Zeiss 

1540 

 Atomic Force Microscopy (AFM), (AFM-DI-Dimension 5000) 

 E-beam evaporator, AJA international 

 Oxidation furnace, Tystar 

 Electrical test, Agilent 4155C 

 UV/VIS Spectrometer, PerkinElmer Lambda 35  

 Fluorescence Spectrophotometer 

 Nanodrop Spectrophotometer, NanoDrop 1000 

 Centrifuge, Eppendorf 5418 

 Cole-Parmer hot plate 

 Ultra-sonicator 

 UV-Ozone cleaner 

 Tube rotator, Labquake 

 pH meter, Oakton 

 Millipore DI Water purification system 
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4.6 Experimental Procedure 

4.6.1 Chip Preparation 

The goal of this section is to make a comb structure pattern of 100 nm 

silicon dioxide trenches separated by gold. Here, three important issues should be 

paid attention. First, the negative e-beam resist is very sensitive to moisture, so 

the wafer should be heated at 200 C for dehydration. Second, during evaporation 

of gold onto wafer, chromium is deposited first to act as an adhesive between 

silicon dioxide wafer and gold. Third, after final cleaning, chips should be 

immersed in ethanol to break the gold oxide layer formed during the cleaning. 

Gold oxide prohibits the proper formation of SAMs. Below, experimental steps 

for fabrication of chip are presented.   

 

1| Clean (100) Si wafer (4” dia.) in acetone using ultrasonicator at room 

temperature for 15 min. Wash with methanol and then DI water thoroughly. Dry 

with N2. 

2| Grow 100 nm dry SiO2 layer on Si wafer using oxidation furnace. 

3| Cut SiO2 wafer into small SiO2 wafer pieces (1 cm × 1 cm). 

4| Clean SiO2 wafer piece in acetone using ultrasonicator at room 

temperature for 15 min. Wash with methanol thoroughly. Dry with N2. 

5| Dehydrate the SiO2 wafer piece at 200 C for 20 min. 
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6| Spin coat the negative e-beam resist ma-N 2401 onto SiO2 wafer piece 

at 3000 rpm for 30 sec immediately after dehydration. 

7| Pre-bake the SiO2 wafer piece at 90 C for 1 min. 

8| Expose the ebeam resist using e-beam writer with 200 C/cm2 dose. 

9| Develop the SiO2 wafer piece using developer ma-D 525 for 10 sec 

(gently shaking). Wash with DI water gently for 5 min. Dry with N2. 

10| Deposit 5 nm Cr + 15 nm Au onto SiO2 wafer piece using AJA e-

beam evaporator.  

11| Lift-off the photo resist using acetone in ultrasonicator for 30 min. 

12| Clean the gold-coated SiO2 wafer piece by Acetone and UV-ozone 

cleaner at room temperature for 10 and 20 min, respectively. Repeat step 12 five 

times. 

13| Cut the gold-coated SiO2 wafer piece into a small ~ 5×5 mm piece 

having comb-structure pattern (Chip). 

14| Immerse the chip into 1.5 ml ethanol overnight (more than 10 hr) to 

break the gold oxide. 

 

The schematic representation of e-beam lithography and image of the chip 

are shown in figures 4-14 and 4-15, respectively.  
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4.6.2 Gold Nanoparticle Functionalization with Single-Strand DNAs (DNA-

AuNP) 

The goal of this section is to immobilize probe and capture DNAs onto 30 

and 50 nm AuNPs, respectively. The DTT is used to cleave the disulfide 

functionality of as-received DNAs to turn them into thiolated single strands. The 

immobilizing of DNA single strands is occurred through the thiol-gold bond. The 

NaCl is added to the mixture of AuNPs and DNAs to shield the repulsion between 

DNA strands and increase the number of immobilized DNAs. The gold 

nanoparticles are first capped with surfactant FSN layer. The FSN layer stabilize 

gold nanoparticles in the presence of high salt concentration and also inhibits non-

specific adsorption of nucleobases which leads to upright orientation of 

immobilized DNA strands [108]. Below, experimental steps for synthesis of 

DNA-AuNPs are presented.   

 

4.6.2.1 30 nm AuNP functionalization with probe-DNA (P-AuNP) 

15| Centrifuge 14.8 nmol probe-DNA (P-DNA) for 3 min at 3000 rpm. 

16| Prepare 1 ml of 0.1 M DTT in disulfide cleavage buffer. 

17| Add 125 μl of DTT solution to 14.8 nmol P-DNA tube, wrap the tube 

in aluminum foil and shake it for 2-3 h on rotating shaker. 

Disulfide functionality of oligonucleotides is cleaved by DTT through the 

following reactions: 
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For 5’ Thiols: R–S–S–(CH2)6–Oligo + DTT  HS–(CH2)6–Oligo 

For 3’ Thiols: Oligo–(CH2)3–S–S–(CH2)3–OH + DTT  Oligo–(CH2)3–SH  

18| Allow the excess storage buffer to flow through the Nap-5 column. 

Equilibrate Nap-5 column with 15 ml of exchange buffer. Allow the buffer to 

enter the gel bed by gravity flow. 

19| Load 125 μl P-DNA solution (step 17) onto Nap-5 column and allow 

entering the gel bed completely. 

20| Add 375 µl of exchange buffer to Nap-5 column and allow entering 

the gel bed completely. 

21| Elute purified P-DNA using 500 µl exchange buffer. 

The schematic representation of NAP-5 instruction is shown in figure 4-

16. purification of oligonucleotides is occurred through gel filtration process in 

which oligonucleotides are separated on the basis of size. Oligonucleotides move 

through a porous matrix. Larger oligonucleotides enter less into the pores or 

excluded from the matrix and thus elute first, while smaller oligonucleotides 

diffuse further into the pores and therefore move through the matrix more slowly 

and elute last. 

 

22| 15 minutes before the end of P-DNA purification, pipette 950 μl 30-

nm AuNP into a 2-ml microcentrifuge tube. 
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4.6.3 Quantification of oligonucleotides loaded onto gold nanoparticles 

The goal of this section is to determine surface density of immobilized 

DNA strands onto gold nanoparticles. The importance of surface density is based 

on this factors that low surface density reduce stability of gold nanoparticles while 

working at high salt concentrations and on the other hand, high surface density 

reduce the hybridization efficiency. To determine the surface density, fluorescent-

labeled probe and capture DNA are used. Synthesis of fluorescent DNA-AuNPs is 

carried in accordance with the procedure used for regular DNA. After synthesis, 

concentration of gold nanoparticles is measured through UV-Vis spectroscopy. To 

measure the concentration of fluorescent-labeled probe or capture DNA, 

mercaptohexanol (MCH) is used to displace the immobilized fluorescent-labeled 

DNA from the gold nanoparticle surface. After measuring the intensity of 

fluorescent-labeled DNA through fluorescent spectroscopy and interpolating that 

in standard calibration curve of known concentrations, the concentration of 

fluorescent-labeled capture or probe DNA is calculated. Knowing the 

concentrations of both gold nanoparticle and DNA, surface density is obtained. 

Below, experimental steps for determination of surface density is presented.   

 

4.6.3.1 Quantification of loaded P-DNAs on 30-nm AuNPs 

31| Perform steps 15-28 using 14.8 nmol fluorescent marker-labeled probe 

DNA (P*-DNA) in lieu of probe-DNA (P-DNA). 
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32| Take 200 μl of DNA-functionalized gold nanoparticles (P*-AuNP) to 

Nanodrop spectrophotometer to determine gold nanoparticle concentration via 

Beer’s Law. 

33| Add 400 μl 0.7M NaCl 10mM PB (pH 7.5) and 84.6 μl 2vol.% MCH 

in 0.3M NaCl 10mM PB (pH 7.5) to remaining 800 μl of DNA-functionalized 

gold nanoparticles (P*-AuNP). Shake the mixture for four hours to displace P*-

DNA (figure 4-18).  

In this mixture: 

Final concentration of salt is 0.3 M 

Final concentration of MCH is 10 mM 

Final buffer strength is 10 mM 

34| Centrifuge the solution of displaced P*-DNAs and 30-nm AuNPs for 

10 min at 10,000 rpm. Take 200 μl from top portion of solution (Fig 4-18) to 

fluorescence spectrophotometer. Determine the concentration of P*-DNA using 

standard calibration line.  

35| Ratio of P*-DNA concentration to AuNPs concentration determines 

the average number of loaded ss-DNA per AuNP.  

 

4.6.3.2 Quantification of loaded C-DNAs on 50-nm AuNPs 

36| Perform steps 31-35 using 3.0 nmol fluorescent marker-labeled capture 

DNA (C*-DNA) and 50-nm AuNPs in lieu of P*-DNA and 30-nm AuNPs. 
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39| Immerse the chip into APTES solution at room temperature for 40 

min. 

40| Rinse the chip with ethanol thoroughly three times. 

4.6.4.2. Formation of negatively-charged SAM onto Au surface 

41| Prepare 500 μl of 10 mM 16-MHDA (16-mercaptohexadecanoic acid) 

in ethanol 

42| Add 5 μl of HCl to 16-MHDA solution 

43| Immerse the chip in 16-MHDA solution at room temperature for 2.5 h. 

44| Rinse the chip with ethanol thoroughly three times. Dry with N2. 

 

4.6.5. Formation of Nanoparticle Satellite Conjugates between two Electrodes 

Nanoparticle satellite conjugates are formed via five main steps. First, C-

AuNPs are accurately placed between two electrodes. Second, free amine-

terminated SAM onto silicon dioxide surface is removed to avoid attachement and 

loss of target DNA. Third, target DNA is hybridized with capture DNA onto C-

AuNPs. Fourth, stringency washing is carried out to de-hybridize mismatched 

target DNA from capture DNA in order to ensure that just complementary DNA 

is detected, and fifth, P-AuNPs are introduced for hybridization between target 

DNA and probe DNA. Below, experimental steps for formation of nanoparticle 

satellite conjugates is presented 
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4.6.5.1. Accurate placement of C-AuNPs between two electrodes onto the center 

of SiO2 surface 

45| Place 10 μl of C-AuNP onto pattern area of the chip inside 

hybridization chamber Wait for 15 min. 

46| Wash the chip with DI water. 

 

4.6.5.2. Removing free APTES molecules from SiO2 surface 

47| Immerse the chip into hybridization buffer at 42 C for 2.5 h. 

 

4.6.5.3. Hybridization of Target DNA (T-DNA) with C-DNA onto C-AuNP 

48| Prepare 2 ml of T-DNA in hybridization buffer. 

49| Immerse the chip into T-DNA solution at room temperature for 3, 20, 

68, 96 h for 5nM, 50 pM, 500 fM, and 50 fM T-DNA, respectively. Shake gently 

using orbital shaker. 

50| Wash the chip with hybridization washing buffer three times to remove 

all unhybridized T-DNA. 

 

4.6.5.4. Stringency washing 

51| Immerse the chip into low stringency wash buffer at room temperature 

for 10 min. 
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52| Immerse the chip into high stringency wash buffer at room temperature 

for 10 min. 

53| Immerse the chip into ultra-high stringency wash buffer at room 

temperature for 10 min. 

 

4.6.5.5. Pre-hybridization of P-DNA of P-AuNP with T-DNA onto C-AuNP 

54| Immerse the chip into 250 μl of hybridization buffer at room 

temperature for 10 min. 

 

4.6.5.6. Hybridization of P-DNA of P-AuNP with T-DNA onto C-AuNP 

55| Centrifuge 150 μl of P-AuNP at 10,000 rpm for 10 min. Remove 

supernatant and resuspend in hybridization buffer. 

56| Immerse the chip into P-AuNP solution at room temperature for 4 h. 

Wash with DI water and dry with N2. 

 

4.6.6. I-V measurement and SEM characterization 

57| Get I-V measurements and do SEM to investigate the formation of 

nanoparticle satellite conjugates and sensitivity of the sensor. 
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Chapter 5  

Results and Discussion 

 

5.1 Characterization and Quantitative Analysis of Oligonucleotide-Functionalized 

Gold Nanoparticles 

Figures 5-1 and 5-2 show the UV-vis spectra of non- and DNA-

functionalized 30 and 50 nm gold nanoparticles, respectively. After 

functionalization, only a small shift in the surface plasmon band from 519 to 523 

nm and 527 to 530nm was observed for 30 and 50-nm gold nanoparticles, 

respectively. The decrease in intensity of the plasmon band is due to a decrease in 

particle concentration during synthesis of the oligonucleotide-functionalized gold 

nanoparticles. Surface modification is not necessarily the cause of plasmon 

absorption wavelength shift; centrifugation of the Oligonucleotide - 

functionalized particles may affect the particle size distribution and consequently 

the position of the plasmon band [146]. In addition, Oligonucleotide - 

functionalized nanoparticles electrolyte could affect the plasmon band due to 

charge screening effects and a change in the dielectric constant of the medium 

[147]. Plasmon absorption wavelength shift is the main characterization tool 

which is monitored in most of biosensors which are utilizing surface plasmon 

resonance of gold nanoparticles [148-151].  
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Oligonucleotide loading of the single-stranded thiolated capture and probe 

Oligonucleotide on 50-nm AuNPs (C-AuNP) and 30-nm AuNPs (P-AuNP), 

respectively, as a function of salt concentration is shown in figure 5-4. As seen, 

increase of Nacl concentration leads to higher immobilized DNA on gold 

nanoparticle which is due to screening effect of the counter-ions [108]. It should 

be noted that the oligonucleotide immobilization onto gold nanoparticles is 

obtained through covalent binding of thiol and gold. 

To have oligonucleotide-functionalized gold nanoparticles that can be 

utilized in detection of bio-molecules, surface coverage and hybridization 

efficiency should be in a good balance. There is a minimum required number of 

immobilized oligonucleotide to stabilize gold nanoparticles. On the other hand, 

number of immobilized oligonucleotide should not be too high not to be capable 

of hybridization. 

Oligonucleotide surface coverage increases with salt concentration due to 

reduced electrostatic repulsion between the negatively charged oligonucleotide 

strands. Spacer segments, here T20, also helps to reduce electrostatic and steric 

interactions between immobilized oligonucleotides and incoming complementary 

bio-molecules.  
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5.2 Formation of Self-Assembled Monolayers onto Silicon Dioxide and Gold 

Surfaces 

 

Figure 5-5 shows the attachment of oligonucleotide-functionalized 30-nm 

AuNPs after formation of Self-Assembled Monolayers (SAMs). Oligonucleotide -

AuNPs are suspended in 1mM PB at pH 7.5. As seen, oligonucleotide -AuNPs are 

only attached to positively-charged silicon dioxide surface and are repelled from 

the negatively-charged gold surface. This selectivity exhibits the proper formation 

of amino- and carboxyl-terminated SAMs onto silicon dioxide and gold surfaces, 

with positive and negative surface charge, respectively, which is similar to the 

observations of other groups [133]. 

Precise placement of oligonucleotide -AuNPs onto silicon dioxide area 

was investigated using a silicon dioxide substrate patterned with gold through 

electron-beam lithography (Figure 5-6). After placement of primary 

oligonucleotide -AuNPs via electrostatic funneling, secondary oligonucleotide -

AuNPs are not able to attach to surface inside the holes due to repulsion between 

gold surface and oligonucleotide -AuNPs and between oligonucleotide -AuNPs 

themselves [145]. 
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Number of placed C-AuNPs for each device of substrate is around 100-

1000 particles. This number depends on concentration of C-AuNPs in buffer, pH 

and ion concentration of buffer, and placement duration. It should also be noted 

that pre-hybridization at 42 C for 2.5 hour removes part of placed C-AuNPs from 

the surface in addition to amino-terminated SAMs. 

The effect of buffer’s ion concentration on Debye length and attachment 

of DNA-AuNPs can be seen in figure 5-9. Attachment of DNA-AuNPs on silicon 

dioxide increases with ion concentration due to reduced Debye length (equation 

4-1) and repulsion between DNA-AuNPs (figure 5-12a and c). Comparing figures 

5-12b and d show how increasing buffer’s ion concentration from 1 to 10mM 

leads to less Debye length which leads to more than one DNA-AuNP attachment 

inside the holes. 

The effect of buffer’s pH on Debye length and attachment of DNA-AuNPs 

can be seen in figure 5-10. Attachment of DNA-AuNPs on silicon dioxide 

increases with decrease in buffer’s pH. Amine-terminated SAM onto silicon 

dioxide layer exhibits more protonation at pH 6.0 than pH 7.0 which causes more 

attraction between silicon dioxide surface and DNA-AuNPs. Also, carboxyl-

terminated SAM exhibits more deprotonation at higher pH which causes more 

repulsion between gold surface and DNA-AuNPs. These two phenomena lead to 

more attachment of DNA-AuNPs onto silicon dioxide surface and more than one 

DNA-AuNP attachment inside holes at lower pH. 
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5.4 Formation of Nanoparticle Satellite Conjugates onto Silicon Dioxide Surface 

 

Formation of nanoparticle satellite conjugates was first examined onto 

bare silicon dioxide surface. Figures 5-11 and 5-12 show SEM images of formed 

nanoparticle satellite conjugates for complementary and 1-bsae pair mismatched 

T-DNA at 5nM, 50 fM, and 100 aM concentrations. SEM images show that at 

high concentrations, central C-AuNPs are fully surrounded by P-AuNPs as a 

result of presence of sufficient T-DNA nearby and two hybridization reactions 

between first C-DNA and T-DNA and then T-DNA and P-DNA. At low 

concentration of 50 fM, central C-AuNPs are hybridized with average two P-

AuNPs due to less availability of T-DNA. The lowest concentration of detected 

T-DNA on bare silicon dioxide was 100 aM. Most of the C-AuNPs were 

surrounded by zero or one P-AuNP.  

Comparing SEM images of nanoparticle satellite conjugates for 

complementary and mismatched T-DNA shows that stringency washing was 

carried out successfully to differentiate complementary from mismatched T-DNA. 

High specificity is due to the sharp melting transitions of double stranded 

oligonucleotides formed between T-DNA and C-DNA-functionalized gold 

nanoparticles. Here, thermal stringency is not needed because of the salt 

dependency of hybridized C-AuNP and T-DNA. 
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5.5 Analysis of DNA Detection Using Amplification-Free Nanoparticle-Bridge 

DNA Sensor 

5.5.1 SEM characterization 

Figures 5-13 to 5-17 show SEM images of four nanoparticle satellite 

conjugates and statistical analysis of one device from each chip at 5nM, 50 pM, 

500fM, 50 fM complementary T-DNA and 5nM 1-bp mismatched T-DNA, 

respectively. The number of the nanoparticle satellites (P-AuNPs) around each C-

AuNP was counted using SEM to evaluate the statistics of nanoparticle satellite 

conjugates. The average number of nanoparticle satellites (P-AuNPs) per C-AuNP 

decreased with deceasing T-DNA. This value was 5.1±0.80, 3.9±0.60, 2.4±0.36, 

0.7±0.16, and 0.5±0.15 for 5 nM, 50 pM, 500 fM, 50 fM complementary T-DNA, 

and 5 nM 1-bp mismatched DNA, respectively.  

The hybridization time between C-DNA and T-DNA was 3, 20, 68, and 96 

hours for 5 nM, 50 pM, 500 fM, and 50 fM complementary T-DNA. The 

hybridization time should be high enough to allow T-DNA strands reach C-

AuNPs because migration of T-DNA in this detection method is just through 

passive thermal diffusion. 

In our assay, hybridization between target oligonucleotide and capture 

oligonucleotide is controlled by diffusion of target oligonucleotide. That is a 

reason why detection at low concentrations of target oligonucleotide takes long 

time. 
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Passive hybridization, in which no external force is involved, is limited by 

diffusion. Because diffusion coefficients of nucleic acids in aqueous solutions are 

about 10−7 cm2 s−1, the travelling time of nucleic acid is about 1mm in 24 hours 

[152]. Although in some hybridization stations convection motion is used to 

enhance hybridization, the effect is not significant. Even if hybridization is carried 

out for two days, small number of target oligonucleotides can react with capture 

oligonucleotides. The corresponding diffusion length, ݈ ൌ  is 1.3 mm for two ,ݐܦ√

days hybridization. Since capture oligonucleotides hybridize with nearby target 

oligonucleotides, most of the target oligonucleotides which are outside the 

diffusion length are wasted and not involved in detection. 

The hybridization of target DNA with capture DNA on chip-based 

detection methods is considered to be based on a two-step mechanism. First, 

target DNA is adsorbed non-specifically on the surface and then diffuses along 

the surface towards the hybridization site. Since in our detection method, there is 

no adsorption of target to the surface, hybridization is controlled by diffusion of 

target oligonucleotide towards hybridization sites. Transportation of the target 

DNA in the solution is in accordance with convection diffusion equation which 

depends on concentration of target DNA, time, velocity, and diffusion coefficient. 

It was reported that rate-limiting step in passive hybridization is surface diffusion 

of target DNA [153].  
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5.5.2 I-V measurements 

Formation of nanoparticle satellite conjugates between two electrodes 

provide electrical path between two electrodes. Therefore, presence of T-DNA 

can be electrically detected through current-voltage (I-V) measurement. Applying 

voltage between two electrodes (VSD) produces current (ISD) if nanoparticle 

satellite conjugates were formed between two electrodes. Figures 6-16 to 6-20 

show I-V measurements for 5nM, 50 pM, 500 fM, 50 fM T-DNA and 5nM 1-bp 

mismatched T-DNA, respectively. 

Applying voltage produces higher current at high concentration of T-DNA 

which is due to the more number of formed nanoparticle satellite conjugates 

which provide electrical path between two electrodes. 

I-V measurements comparison between 5 nM complementary and 

mismatched T-DNA (figures 5-18 and 5-22) approves the efficiency of stringency 

washing in distinguishing between complementary and mismatched T-DNA. As 

seen, applying voltage produced no current for 5 nM mismatched T-DNA since 

no nanoparticle satellite conjugate which bridges two electrodes was formed. 

Based on I-V measurements and SEM characterizations, limit of detection 

in this amplification-free detection method is 50 fM which is considered as an 

ultra-sensitive DNA sensor.  
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Chapter 6  

Conclusion and Future Work 

 

6.1 Conclusion 

In this research, a new amplification free oligonucleotide sensor was 

developed in which gold nanoparticles were used to electrically detect the 

oligonucleotide molecules. The summary of accomplishments is as following: 

 Successful functionalizing of gold nanoparticles with thiolated single-

stranded DNA molecules. Around 700 capture DNA and 240 probe DNA was 

immobilized onto 50 and 30 nm gold nanoparticles, respectively, with inter-

molecular spacing of ~ 3.5 nm.  

 Successful formation of amino- and carboxyl-terminated self-assembled 

monolayers (SAMs) onto silicon dioxide and gold surfaces.  

 Accurate placement of DNA-functionalized gold nanoparticles onto 

specific locations of sensor via electrostatic funneling. Capture DNA-

functionalized gold nanoparticles were placed between two electrodes with 4nm 

accuracy. 

 Achieving a high level of sensitivity (50 fM) and selectivity in DNA 

detection without applying any kind of amplification technique. This detection 

method is combined with high specificity by not detecting the one base pair-

mismatched oligonucleotide. 
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6.2 Future Work 

 

6.2.1 Applying Electric Field to Accelerate Oligonucleotide Hybridization and 

Detection 

DNA molecules are strongly charged due to the presence of phosphate 

groups on the phosphate-sugar backbone of the DNA. Hence, the movement and 

orientation of DNA molecule can be controlled by application of electric field. 

Direct current electric field and pulse electric field could be effective to accelerate 

and facilitate hybridization in this research. 

DC electric field facilitates hybridization reaction by providing more DNA 

strands at the hybridization sites due to electrophoresis phenomenon [154-157]. 

Negatively-charged DNA strands are dragged towards higher potential electrode. 

Water electrolysis at voltages above 1.2 V SCE is the main drawback. To 

overcome this problem, a porous hydro gel permeation layer is used. Permeation 

layer allows running at voltages higher than 1.2V while protecting DNA strands 

from surface electrochemical reactions. Hybridization buffer is the other 

important key that provides DNA rapid transportation and facilitates hybridization 

by balancing acidic conditions at the anode surface and diminishing repulsion 

between DNA strands because of having a net positive charge. Since our 

proposed DNA detection method begins with accurate placement of DNA/AuNP 



 

112 

conjugate between two electrodes, applying permeation layer is not allowed. 

Therefore, applied voltage must be less than 1.2V.  

 Pulse electric field is another type of applied electric field that increases 

hybridization reaction kinetics by DNA desorption and reorientation which favors 

hybridization [153, 158-160]. The exerted torque on the DNA strand in an electric 

is the primary cause of DNA re-orientation. DNA strand in solution behaves as a 

rod-like polymer with charge distribution of 4.710-19 C/cm and is surrounded by 

a symmetrical counter-ions atmosphere36. Once the electric field is applied, 

counter-ions atmosphere losses its symmetry because of free ions flow along the 

DNA axis. Consequently, a torque arises from the interaction of the asymmetric 

counter-ions atmosphere with DNA strand re-orienting DNA strand along the 

electric field direction. The critical factor in pulse electric field application is the 

rise time. The rise time must be shorter than dielectric response time. The pulse 

time should also be in microsecond timescale. By applying pulse electric field, 

considering the pulse time, the migration of the DNA from the bulk is negligible. 

In this research, a proper electric field will be designed to facilitate and accelerate 

the hybridization reactions 

 

6.2.2 Implementing Microfluidic System 

Implementing microfluidic system could accelerate the hybridization, 

reduce the detection time, and likely increase the detection sensitivity. Recently, 
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devices consisting of microfluidic channels have been considered significantly in 

bio-detection methods [161, 162]. First advantage of using microfluidic system is 

that reduced volume of target bio-molecule is needed because microfluidics 

operates with the transfer and control of small amount of fluids in microscale flow 

configurations [163].  Requiring less volume of target bio-molecule makes the 

detection way more efficient and possible to have compact and portable systems. 

The important aspect using microfluidic system is that the hybridization 

between capture and target oligonucleotide can be accelerated on microfluidic 

channels. In microfluidic system, ratio of surface to volume is large which leads 

to reduced diffusion distance. Therefore, mass transport of target bio-molecules is 

enhanced and hybridization of target bio-molecules with capture bio-molecules is 

accelerated. It would be more efficient if target bio-molecule could move and 

encounter all the capture bio-molecules. One possible way could be using a 

circulation microfluidic system. 
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