
SIMILARITY MEASURES AND INDEXING METHODS FOR TIME SERIES

AND MULTICLASS RECOGNITION

by

ALEXANDRA STEFAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2012

Copyright c© by Alexandra Stefan 2012

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Gautam Das for his invalu-

able advice during the course of my doctoral studies. I wish to thank my committee

members Dr. Farhad Kamangar, Dr. Heng Huang and Dr. Chengkai Li, for their

interest in my research, their helpful comments, and for taking time to serve in my

dissertation committee.

I am grateful to all the teachers who taught me during the years I spent in

school, first in Romania, then at Boston University and finally at UTA. I want to

thank the members of the IVC group at Boston University and the VLM Lab at

UTA, for their help, support, and camaraderie.

I would like to express my deep gratitude to my family who have encouraged

and inspired me and supported my undergraduate and graduate studies. Finally, I

would like to thank my husband and children for their patience with me as I was

going through graduate school.

November 9, 2012

iii

ABSTRACT

SIMILARITY MEASURES AND INDEXING METHODS FOR TIME SERIES

AND MULTICLASS RECOGNITION

Alexandra Stefan, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Gautam Das

This thesis investigates the problem of similarity search in multimedia databases.

A key application domain of the proposed work is pattern classification, with emphasis

on classification of gestures, handshapes, faces, and time series. A secondary appli-

cation of the proposed work is efficient similarity search in large biological databases

of protein sequences.

More specifically, the thesis makes contributions both by defining novel similar-

ity measures, that are used to identify the best database matches, and by proposing

methods to improve efficiency. On the topic of similarity measures, the thesis con-

tributes a method for measuring similarity in a database of videos from American

Sign Language (ASL). This method produces promising results towards enabling use-

ful educational applications for the ASL community. A second contribution of the

thesis is on the theoretical problem of how to define a useful metric distance measure

for time series data. The thesis proposes a novel metric, called MSM (abbreviation for

Move-Split-Merge), which has both attractive theoretical properties and competitive

classification accuracy on actual data.

iv

With respect to the problem of improving the efficiency of similarity search, the

thesis contributes a novel method for recognition of a large number of classes. While

many researchers have worked on the topic of how to train good classifiers for this

task, the thesis proposes a new perspective by explicitly addressing efficiency. In par-

ticular, the thesis shows that, under some conditions, multiclass recognition becomes

theoretically equivalent to similarity search, and in that case we can use off-the-shelf

similarity indexing methods to significantly speed up multiclass recognition. The the-

sis also proposes a dimensionality reduction method specifically designed for speeding

up similarity search in large string databases. While dimensionality reduction meth-

ods are commonly used in vector spaces, our method allows similar techniques to be

used for spaces of strings under the edit distance measure.

Thorough experimental evaluation on a variety of datasets demonstrates state-

of-the-art performance for the methods that constitute the contributions of the thesis.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

Chapter Page

1. INTRODUCTION . 1

2. A SIMILARITY MEASURE FOR LARGE VOCABULARY SIGN SEARCH 4

2.1 Related Work . 6

2.2 Application Overview . 7

2.2.1 Measures of Accuracy . 9

2.3 Features and Normalization . 11

2.3.1 Coordinate System . 12

2.3.2 Time Series Length Normalization 12

2.4 Comparing Trajectories via Dynamic Time Warping 13

2.5 Incorporating Hand Appearance . 14

2.6 Experiments . 15

2.6.1 Results . 16

2.7 Discussion and Future Work . 17

3. THE MOVE-SPLIT-MERGE METRIC FOR TIME SERIES 20

3.1 Defining the MSM Distance . 23

3.2 Motivation for MSM: Metricity and Invariance to the Choice of Origin 26

3.2.1 Metricity . 26

vi

3.2.2 Invariance to the Choice of Origin 29

3.3 Transformation Graphs and the Monotonicity Lemma 31

3.3.1 Step-By-Step Graphs and Transformation Graphs 32

3.3.2 The Monotonicity Lemma . 35

3.4 Computing the MSM Distance . 43

3.5 Experiments . 48

3.6 Discussion . 53

4. REDUCING JOINTBOOST-BASED MULTICLASS CLASSIFICATION TO

PROXIMITY SEARCH . 58

4.1 Related Work . 60

4.2 Review: Multiclass Recognition Using JointBoost 62

4.3 Reduction to Nearest Neighbor Search 63

4.4 A Simple Vector Indexing Scheme . 65

4.4.1 Guarantees of Accuracy . 67

4.5 Classification Time Complexity . 67

4.6 Experiments . 68

4.6.1 Datasets . 69

4.6.2 Results . 71

4.7 Discussion . 76

5. DIMENSIONALITY REDUCTION FOR EFFICIENT SEARCH IN PRO-

TEIN SEQUENCES . 78

5.1 Related Work . 79

5.2 Method Description . 81

5.2.1 Theoretical Analysis . 83

5.3 Experiments . 85

5.3.1 Datasets . 85

vii

5.3.2 Methods . 85

5.3.3 Evaluation Measures . 86

5.3.4 Implementation Choices . 88

5.3.5 Results . 89

5.4 Discussion and Future Work . 91

6. DISCUSSION AND CONCLUSIONS . 94

REFERENCES . 96

BIOGRAPHICAL STATEMENT . 106

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Examples of signs from our dataset 9

2.2 Comparison of our method with two competitor methods 19

2.3 Evaluation of using length normalization and hand appearance 19

3.1 Examples of the Move, Split, Merge operations. 26

3.2 An example where DTW violates the triangle inequality 28

3.3 An example illustrating the different behavior of MSM and ERP . . . 31

3.4 An example of a non-optimal MSM transformation and graph 32

3.5 The optimal transformation graph corresponding to
the graph of Figure 2.4 . 33

3.6 Deleting consecutive SPLIT-MERGE edges from
a transformation graph . 35

3.7 Deleting consecutive MERGE-SPLIT edges from
a transformation graph . 36

3.8 An example of editing a non-monotonic INC-MERGE-MERGE-
MERGE-DEC path into an equivalent monotonic path 37

3.9 Another example of editing a non-monotonic INC-MERGE-
MERGE-MERGE-DEC path into an equivalent monotonic path . . . 38

3.10 A quadratic-time algorithm for computing the MSM distance 44

3.11 An example of Case 1 for an optimal monotonic transformation graph 45

3.12 Examples of the three subcases of Case 2 for an optimal
monotonic transformation graph . 46

3.13 An example of a query that MSM classifies correctly
whereas cDTW and DTW classify incorrectly. 48

3.14 An example of a query that MSM classifies correctly
whereas DTW classifies incorrectly . 57

ix

3.15 A query where MSM does worse than DTW and ERP 57

3.16 Two examples of a peak added to time series 57

4.1 Performance of OVA-VS, ClassMap, and brute force,
on synthetic hand images . 71

4.2 Performance of OVA-VS, ClassMap, and brute force,
on real hand images . 71

4.3 Performance of OVA-VS, ClassMap,and brute force,
on images from the FRGC-2 dataset 72

4.4 Performance (excluding the projection cost) of OVA-VS,
ClassMap, and brute force, on images from the FRGC-2 dataset . . . 72

5.1 Dimensionality Reduction Search Algorithm 82

x

LIST OF TABLES

Table Page

3.1 Information on the 20 UCR datasets that we have used 54

3.2 Error rates of MSM and competitors on the 20 UCR datasets 55

3.3 Number of UCR datasets where MSM produced better, equal,
or worse accuracy than each competitor 56

3.4 Runtime efficiency comparisons of MSM and competitors 56

5.1 Retrieval cost estimate for all methods 91

5.2 Runtimes for all methods . 91

5.3 Experimental results for dimensionality reduction 92

5.4 Experimental results for reference-based embeddings 92

5.5 The average length of original and embedded test and
database sequences . 92

xi

CHAPTER 1

INTRODUCTION

The amount of multimedia data that is digitally stored is constantly increasing.

Large databases of such data can potentially store vast amounts of information. How-

ever, making such information readily accessible to users can be a challenging task.

Users typically need to identify specific pieces of information that are the most rele-

vant for a specific task at hand. The challenge lies in automatically identifying, within

a large database, the relatively few pieces of information that the user is looking for.

To tackle the challenge we need to design methods that achieve both good accuracy

and acceptable efficiency. The goals of accuracy and efficiency are oftentimes at odds

with each other; more time-consuming algorithms may improve accuracy, but at the

cost of making retrieval time unacceptable to the user.

There is no single answer to the question of how to achieve accuracy and ef-

ficiency in searching multimedia databases. The answer depends on many factors,

including the specific types of data that we are searching (e.g., video, audio, biolog-

ical sequences), and the type of information that we use to specify the search (e.g.,

natural language, keywords, examples of patterns we are looking for). A large body of

literature exists that describes various methods for different variations of the problem.

In this thesis we focus on the problem of similarity search, where the user

specifies to the system examples, and asks the system to retrieve database items that

are the most similar to those examples. A key application of similarity search is

pattern classification; in that case, the example provided by the user is a pattern that

1

the user wants the system to classify/recognize. The system performs classification

of that example based on the class labels of the most similar database patterns.

Similarity search can also be useful in other settings as well, by simply allowing

the user to compare the query example to the most similar database matches, and

perhaps to browse through additional annotations that the database may store for

those matches, such as, e.g., time and place of origin, or notes that other people made.

For example, biologists find it useful, when they want to analyze the properties of

a protein, to identify the most similar proteins in a large database. These most

similar proteins may contain useful information about how the protein evolved, or

what functions it may perform.

Within similarity search, this thesis makes contributions both by defining novel

similarity measures, that are used to identify the best database matches, and by

proposing methods to improve efficiency. With respect to improving accuracy, the

thesis work focuses on time series data, and proposes two specific solutions:

• The first solution, which we first described in [4], addresses the question of

how to identify similar matches in a database of videos from American Sign

Language (ASL). We will see that addressing this problem opens the way for

useful educational applications for the ASL community.

• The second solution, originally published in [5], addresses the theoretical prob-

lem of how to define a useful metric distance measure for time series data.

We propose a novel metric, called MSM (abbreviation for Move-Split-Merge),

which has both attractive theoretical properties and competitive classification

accuracy on actual data.

With respect to the problem of improving the efficiency of similarity search, the

thesis makes the following two contributions:

2

• The first contribution, published in [6], is a novel method for recognition of a

large number of classes. While many researchers have worked on the topic of how

to train good classifiers for this task, our method provides a new perspective by

explicitly addressing efficiency. We show that, under some conditions, multiclass

recognition becomes theoretically equivalent to similarity search, and in that

case we can use off-the-shelf similarity indexing methods to significantly speed

up multiclass recognition.

• The second contribution is a dimensionality reduction method specifically de-

signed for speeding up similarity search in large string databases. While dimen-

sionality reduction methods are commonly used in vector spaces, our method

shows that similar techniques can be used for spaces of strings under the edit

distance measure, despite the fundamental differences in structure between the

edit distance and Lp metrics used in vector spaces.

In the next chapters we describe in detail the contributions of the thesis, and

the experimental evaluation for demonstrating the usefulness and relevance of these

contributions.

3

CHAPTER 2

A SIMILARITY MEASURE FOR LARGE VOCABULARY SIGN SEARCH

This chapter focuses on a specific application, namely helping users look up the

meaning of a sign in American Sign Language (ASL). Looking up the meaning of a

sign is not a straightforward task. ASL dictionaries typically allow look-up of ASL

signs based on their English translations; that is, these dictionaries are really English

to ASL dictionaries, which makes it difficult to look up a sign if the user either does

not know the meaning of that sign, or does not know its translation into English.

There are ASL dictionaries that allow access to ASL signs based on their articulatory

properties, such as handshape [7], but these interfaces either require specification

of many articulatory parameters, or else they require the user to scan long lists of

signs (for example that share a particular handshape). These lookup methods may

fail entirely if the signer is looking for a variant that is different in a small way

from the dictionary entry or errs with respect to the specification of the articulatory

parameter(s). A system that helps users look up unknown signs would be useful

to the millions of users and learners of sign languages around the world (estimated

0.5 to 2 million users in the US [8, 9]). The capability to look up signs would be

particularly useful to students of a sign language, as useful as it is for students of a

written language (such as English) to be able to look up the meaning of unknown

words.

In our approach, having encountered an unknown sign, the user can simply

perform the sign in front of a webcam. Then, the system compares the input sign

with videos of signs stored in the system database, and presents the most similar

4

signs (and potentially also their English translations) to the user. The user can then

view the results and decide which (if any) of those results is correct.

In order to produce a system that works well enough for public use, we have

opted for a not fully automatic system, which requires knowing the bounding box of

the hands in each frame of both the test and the database videos. For our dataset, we

have chosen videos from the public ASLLVD resource [2], where such hand locations

are provided for thousands of examples of signs. In our demo system, the user spec-

ifies/verifies hand locations, in collaboration with a semi-automated hand detector.

Making hand detection more or entirely automatic is a challenging task that we have

left for future work.

In our dataset, we have examples from a large vocabulary of 1,113 distinct sign

classes. A key constraint is that we only have two training examples for each sign.

Given the small number of examples per sign, we use an exemplar-based method,

as opposed to a model-based method, such as Hidden Markov Models (HMMs). We

start with a baseline similarity measure based on the popular dynamic time warping

(DTW) distance [10]. DTW is applied on time series of feature vectors based on hand

motion. We improve this baseline similarity measure by incorporating information

from hand appearance.

We evaluate our approach in user-independent experiments with a system vo-

cabulary of 1,113 signs. The correct sign was included in the top 10 matches for 78%

of the test queries. By considering more signs per query, the user can successfully look

up an even larger percentage of query signs. These results are a significant improve-

ment over results previously reported in the literature for comparable vocabulary sizes

and under user-independent settings.

5

2.1 Related Work

Several methods exist for recognizing isolated gestures or signs, as well as con-

tinuous signing. The majority of existing methods are model-based, using Hidden

Markov Models [11, 12, 13, 14] or alternative approaches such as recursive partition

trees [15], boosted volumetric features [16], and hidden conditional random fields

[17]. Such methods typically use ten or more training examples per gesture or sign.

In contrast, in our setting, we have only two training examples per sign.

Using more examples per sign typically improves accuracy (see, e.g., [18, 19]),

but may not be an option, due to lack of data. For example, the Gallaudet dictionary

of ASL [20] includes 3,000 signs, and the only public video dataset currently available

for a vocabulary of that size is the ASLLVD resource [2], where only two examples

are available for most of the signs. Cooper et al. [21] aim at automatically generating

large corpora by automatically segmenting signs from close-captioned sign language

videos, but the usability of such automatically built corpora as training data was not

evaluated. Another promising approach for limited numbers of examples per sign is

transfer learning [22], but that approach has only been evaluated in a user-dependent

scenario, where the test signs are performed by a user who has also provided data for

training.

Exemplar-based approaches offer an alternative when only limited examples

per class are available. Motion energy images [23] are a well-known exemplar-based

approach, but perform poorly in our experiments. Gorelick et al. [24] represent videos

of gestures/actions using 3D shapes extracted by identifying areas of motion in each

video frame. However, applying that method to our setting would require accurate

silhouette extraction of the hands, which is a challenging task even if the bounding

6

box of the hand is known, especially when hands overlap with each other or with the

face, or when the background is cluttered.

Some researchers have reported results on vocabularies of thousands of signs,

using input from digital gloves, e.g., [25]. On the other hand, most existing vision-

based approaches have been evaluated with vocabularies of some tens of signs, e.g.,

[11, 15, 13]. Kadir et al. [18] report results on 164 signs, with about 85% accuracy

when only two training examples per sign are used, whereas Zieren et al. [19] use

a vocabulary of 232 signs, and achieve a remarkable 99.3% accuracy rate. However,

in both [18] and [19], a single user signed all the training and test examples. In

Zieren et al. [19], when experiments are performed in a user-independent setting,

the recognition rate drops from 99.3% to 44%, a drop that highlights the difficulty of

user-independent sign recognition.

In earlier work [2, 1] we have reported results on data from the public ASLLVD

resource, with vocabulary sizes of 992 and 921 signs respectively, and using methods

based on motion energy images in [2] and dynamic time warping (with user-aided

hand detection, as in our system) in [1]. In our experiments, the method described

here outperforms our earlier approaches [2, 1] by a large margin.

2.2 Application Overview

When a user encounters an unknown sign, the user can perform the sign in

front of a webcam, or submit an existing video of that sign. Then, the system asks

the user to mark the start and end frames of the actual sign in the video, and to

indicate whether the sign is one-handed or two-handed (see Figure 2.1), and which is

the dominant hand (if there is an asymmetry in the production of the sign).

7

At the next step, the system detects bounding boxes of hands on all frames

using features based on skin color and motion. The user views the hand detection

results, and can correct those results on any frame. As soon as the user makes a

correction, the system propagates information from that correction to improve the

detection results in the rest of the frames.

After hand detection results have been approved by the user, the system com-

putes the similarity between the query sign and all database signs. The system ranks

the 1,113 distinct signs in decreasing order of similarity to the query. There are two

examples for each of 1,113 distinct signs in the database, thus producing two similar-

ity scores with respect to the query. For the purposes of ranking the signs, the better

of those two scores is kept.

Once the signs have been ranked, the system presents to the user an ordered list

of the best matching signs. The user then views the results, starting from the highest-

ranked sign, until encountering the video displaying the actual sign of interest. For

example, if the correct match was ranked as 5th best by the system, the user needs

to view the top five results in order to view the correct match.

When the user identifies the correct database sign, the user can readily view any

additional information associated with that sign. Currently, our signs are labeled with

very rough English glosses. These do not necessarily provide accurate information

about the meaning of the signs, however, since there is no 1-1 relationship between

ASL signs and English words. The longer term plan is that this interface may provide

access to sophisticated multi-media ASL language resources, which would provide

more extensive information about the signs being looked up. For the time being,

though, the user may find the very rough translation to be of some utility.

8

Figure 2.1. Examples of three signs from the dataset that we use. For each sign, we
show the first, middle, and last frame. Top row: a one-handed sign meaning “bad”.
Middle row: a one-handed sign meaning “badge”, and exhibiting only little motion.
Bottom row: a two-handed sign meaning “abandon”..

2.2.1 Measures of Accuracy

As far as the user is concerned, the system has succeeded on a query sign if the

user has indeed managed to retrieve the sign that was being sought. One possible type

of failure is a situation in which the query sign is not part of the system vocabulary.

For the purposes of this paper we ignore this source of failure, as it does not depend

on the quality of the underlying technology, but simply on the size of the database

corpus.

A second type of failure results when the system ranks the correct match too

low. A user would probably not be willing to view more than the top 10 or 20 signs

from the results, although this may vary across users. If a user is willing to view at

most k results, then the system fails when the correct match is not among those top

k results.

9

Consequently, given a query Q, a key measure of performance is the rank R(Q)

that the system assigns to the correct result for Q. Given an integer k, we define

a boolean measure of success S(Q, k), that is true iff R(Q) ≤ k. The success rate

S(k) over a test set Q of queries is simply the average success rate S(Q, k) over Q.

For notational convenience we also define K(s) to be (loosely) an inverse function of

S: given a desired success rate s, K(s) is the maximum number of results per query

that the user must consider to obtain that success rate, so that K(S(k)) = k. More

formally:

R(Q) = the rank the system assigns to the correct result for Q . (2.1)

S(Q, k) =











1 if R(Q) ≤ k .

0 otherwise .
(2.2)

S(k) = mean{S(Q, k) | Q ∈ Q, where Q is a test set.} . (2.3)

K(s) = the k such that S(k) = s . (2.4)

Even if the user is willing to view K(s) results per query, if the correct match

is ranked at R(Q) < K(s), then the user can stop viewing results as soon as the

user encounters the correct match. Consequently, another meaningful measure of

accuracy is the average number of results that the user needs to consider per query

until encountering the correct result, for a given success rate s. We define that

measure as A(s):

A(s) = mean{R(Q) | (Q ∈ Q) ∧ (R(Q) ≤ K(s))} . (2.5)

10

2.3 Features and Normalization

Let X be a video of a sign. We denote by |X| the number of frames in the

video, and by X(t) the t-th frame of that video, t ranging from 1 to |X|. From sign

X we extract the following location, orientation, and hand appearance features:

• Ld(X, t) and Lnd(X, t): The (x, y) centroid respectively of the dominant hand

and non-dominant hand of the signer at frame t.

• Lδ(X, t): The relative position of the dominant hand with respect to the non-

dominant hand at frame t. Lδ(X, t) = Ld(X, t) − Lnd(X, t).

• Od(X, t) and Ond(X, t): The unit vectors representing the direction of motion

from Ld(X, t − 1) to Ld(X, t + 1) and from Lnd(X, t − 1) to Lnd(X, t + 1).

• Oδ(X, t): The unit vector representing the direction of motion from Lδ(X, t−1)

to Lδ(X, t + 1).

• Hd,s(X), Hd,e(X), Hnd,s(X), and Hnd,e(X): images of the dominant and the non-

dominant hand at the start and end frame of the video.

Each hand appearance image H is preprocessed using the following steps:

1. We start by simply cropping the subwindow H1 corresponding to the bounding

box of the hand.

2. We detect skin in that window, using the method of Jones et al. [26].

3. We set all non-skin pixels in H1 to 0.

4. We create H2 to be the grayscale version of H1.

5. We normalize H2 to have a mean of zero and a standard deviation of 1.

6. We create H3 as a scaled version of H2, so that the longest side of H has length

50.

7. The final image H is a padded version of H3, to make sure that H has an equal

number of rows and columns. Additional rows or columns are added as needed,

11

with values of zero. The padding is applied symmetrically, so that the centroid

of the hand corresponds with the center of the final image H .

For notational convenience, all features referring to the non-dominant hand

(i.e., Lnd, Lδ, Ond, Oδ, Hnd,s, Hnd,e) are set to zero vectors for one-handed signs.

2.3.1 Coordinate System

In defining location features, the choice of coordinate system is important. To

account for differences in translation and spatial scale between the query video and

the matching training videos, we use a face-centric coordinate system. We use the

face detector of Rowley et al. [27] to detect the face of each signer at the first frame

of the sign. The coordinate system is defined so that the center of the face is at the

origin, and the diagonal of the face bounding box has length 1. The same scaling

factor is applied to both the x and the y direction. Features Ld, Lnd, Lδ are all defined

in this normalized coordinate system.

2.3.2 Time Series Length Normalization

Different signers may sign at different speeds. Dynamic Time Warping (DTW),

which we describe in Section 2.4, is a similarity measure that is biased against longer

database matches, and this bias is more noticeable for short queries. To account for

that, we normalize each sequence, so that the length of all sequences is the same

(20 in our experiments). In particular, we resample the sequences of Ld, Lnd, and Lδ

features extracted from each sign, so that each sequence has length 20. Resampling

is done using linear interpolation. As shown in our experiments, this normalization

significantly improves accuracy.

12

2.4 Comparing Trajectories via Dynamic Time Warping

Let X be a video of a sign. We can represent X as a time series (X1, . . . , X|X|),

where each Xt is simply a concatenation of the features extracted at frame t:

Xt = (Ld(X, t), Lnd(X, t), Lδ(X, t), Od(X, t), Ond(X, t), Oδ(X, t)) . (2.6)

As a reminder, features Lnd, Lδ, Ond, Oδ are set to 0 for one-handed signs.

Dynamic Time Warping (DTW) [10] is a commonly used distance measure for

time series. Given two sign videos Q and X, DTW computes a warping path W

establishing correspondences between frames of Q and frames of X:

W = ((q1, x1), . . . , (q|W |, x|W |)) , (2.7)

where |W | is the length of the warping path, and pair (qi, xi) means that frame qi of

Q corresponds to frame xi of X. A warping path must follow two constraints:

• boundary constraints: q1 = 1, x1 = 1, q|W | = |Q|, x|W | = |X|.

• monotonicity and continuity: 0 ≤ qi+1 − qi ≤ 1, 0 ≤ xi+1 − xi ≤ 1.

The cost C(W, Q, X) of a warping path W is the sum of individual local costs

c(Qqi
, Xxi

), corresponding to matching each Qqi
with the corresponding Xxi

:

C(W, Q, X) =

|W |
∑

i=1

c(Qqi
, Xxi

) . (2.8)

As local cost c, we use a weighted linear combination of the individual Euclidean

distances between the six features extracted from the two frames:

c(Qqi
, Xxi

) = f1‖Ld(Q, qi) − Ld(X, xi)‖ + f2‖Lnd(Q, qi) − Lnd(X, xi)‖ +

f3‖Lδ(Q, qi) − Lδ(X, xi)‖ + f4‖Od(Q, qi) − Od(X, xi)‖ + (2.9)

f5‖Ond(Q, qi) − Ond(X, xi)‖ + f6‖Oδ(Q, qi) − Oδ(X, xi)‖

13

In the above equation, ‖ · ‖ stands for the Euclidean norm. In our experiments,

weights fj are optimized using cross-validation on the training set.

The DTW distance DDTW(Q, X) between sign videos Q and X is defined as

the cost of the lowest-cost warping path between Q and X:

DDTW(Q, X) = min
W

C(W, Q, X) (2.10)

The optimal warping path and the distance DDTW(Q, X) can be computed

using dynamic programming, with a time complexity of O(|Q||X|) [10].

2.5 Incorporating Hand Appearance

The DDTW distance measure defined above depends only on the trajectories

of the two hands. At the same time, the appearance of the hand is an important

additional source of information about the identity of a sign. Recognizing handshape

is a challenging task, especially when a hand appears in front of another skin-colored

object such as the other hand or the face. Given the difficulty of this topic, we

have postponed the task of implementing a sophisticated similarity measure for hand

appearance for future work. Instead, in this paper we have opted for the simplest

possible option, which is the Euclidean distance between hand appearance images.

Despite its simplicity, this approach has led to significant improvements in accuracy,

as shown in the experiments.

In particular, we define a distance Dhand(Q, X) between two sign videos Q and

X as follows:

Dhand(Q, X) = ‖Hd,s(Q) − Hd,s(X)‖ + ‖Hd,e(Q) − Hd,e(X)‖ +

‖Hnd,s(Q) − Hnd,s(X)‖ + ‖Hnd,e(Q) − Hnd,e(X)‖ . (2.11)

14

As a reminder (see Section 2.3), each hand image has been preprocessed, by scal-

ing/padding to a canonical size, and removing non-skin pixels.

Combining DDTW and Dhand can be done by simply taking a weighted sum of

the two distances:

D(Q, X) = DDTW(Q, X) + fhandDhand(Q, X) . (2.12)

The weight fhand is chosen by searching over many possible values, so as to

optimize performance on the training data.

2.6 Experiments

Our dataset includes 1,113 distinct sign classes. For each sign class there are

three examples, each from a different user. All sign videos and annotations have been

downloaded from the ASLLVD website [2]. Although the ASLLVD website includes

four synchronized camera views for each sign, only a single frontal view is used for

each sign in our experiments.

The dataset was divided into three groups, each group containing a single exam-

ple from each of the 1,113 classes. Experiments were performed in a user-independent

manner, by ensuring that each signer appeared in only a single group out of those

three groups. Each group was in turn used as the test set, with the other two groups

used as training. All experimental measurements are averaged over the three test

groups. All weights involved in defining the overall distance measure were computed

exclusively from the training data, and thus a different combination of weights was

applied for each test group.

We use the measures of accuracy defined in Section 2.2.1, and in particular

K(s) and A(s), which are respectively the maximum and average number of results

15

that a user must consider for a query in order to encounter the correct result for a

fraction s of all queries.

Since the user indicates at query time whether a sign is one-handed or two-

handed, signs using a different number of hands than the query are not considered

for that query. (For real use cases in the longer term, we will have to allow a small

probability for a canonically 2-handed sign being produced with just 1 hand, and

for a 1-handed sign to be produced with 2 hands.) Signs performed with the left

hand as the dominant hand are replaced by mirrored versions, so that we can treat

all database and query signs as right-handed. These rules have been applied in all

experiments for all methods.

2.6.1 Results

We compare our method to previous methods applied to data from the ASLLVD

dataset, namely to the approach of using motion energy images (MEI) described in

[2], and the DTW-based approach reported in [1]. With respect to the DTW method

of [1], we should note that it corresponds to a stripped-down version of our method,

which only uses the Ld and Lnd features, does not normalize the length of all time

series to a fixed constant, and does not use hand appearance.

Figure 2.2 shows comparative results for the three methods. As measures of

accuracy, we use functions K(s) and A(s) (defined in Section 2.2.1), which are, re-

spectively, the maximum and average number of results per query that a user must

consider in order to encounter the correct result for a fraction s of all queries. Our

method clearly outperforms the two other methods. As an example, the percentage

of queries for which the the correct sign is not included in the top 25 results is, respec-

tively, 66% for MEI, 38.6% for Stefan et al. [1], and 11.9% for our method. Similarly,

the correct sign is successfully included in the top 10 results for only 20.4% of the

16

queries using MEI, for 47.8% of the queries using the method of Stefan et al. [1],

and for 78.4% of queries for our method. For our method, for a success rate of 78.4%

the user needs to consider at most 10, and on average 2.36 results per query, until

encountering the correct result.

In Figure 2.3 we evaluate three different variations of our method: the first

variation, denoted as “DTW without length normalization”, does not use hand ap-

pearance and also does not use the resampling step described in Section 2.3.2, which

normalizes all time series to length 20. The second variation, denoted as DTW, does

not use hand appearance. The third variation, denoted as “DTW + hands”, is the

full method described in this paper, that incorporates information from both DTW

and hand appearance. As see from the results, normalizing all time series to the same

length significantly improves accuracy, and incorporating hand appearance leads to

a noticeable additional improvement.

In terms of running time, the system takes on average about one second to

compare a query video to the 2,226 database videos. Running time was measured on

a PC with an Intel quad-core CPU, running at 2.4GHz, and with 3GB of memory.

Our method has been implemented as a single-threaded application.

2.7 Discussion and Future Work

This chapter has presented a method for helping users look up unknown signs,

using similarity-based retrieval in a database containing examples of signs from a large

vocabulary. In our method, feature vectors are defined based on hand motion and

hand appearance. Similarity between signs is measured by combining dynamic time

warping scores, which are based on hand motion, with Euclidean distances between

hand appearances.

17

There are several research topics that will be interesting to pursue as future

work, with the goal of further improving system performance and the overall user

experience. While in the current system hand detection is only semi-automatic, a

more (or entirely) automated hand detector will significantly enhance the user ex-

perience. Also, while our simple way of using hand appearance led to good results,

there is clearly room for improvement in how we use hand appearance, and that is

another topic that will be interesting to explore. Our current approach of not al-

lowing one-handed signs to be matched with two-handed signs, and of requiring the

user to specify the dominant hand for the query sign, has limitations that need to

be addressed. Finally, although the proposed approach works reasonably well in our

experiments, we believe that more work is needed in order to satisfactorily address

the question of how to learn a good similarity measure for a large vocabulary of signs,

given only one or two training examples per sign.

18

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

worst−case rank K(s) of correct result

S
uc

ce
ss

 r
at

e
s

(a
s

pe
rc

en
ta

ge
 o

f q
ue

rie
s)

Our method
Method of Stefan2009
Motion Energy Images

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

Average−case rank A(s) of correct result

S
uc

ce
ss

 r
at

e
s

(a
s

pe
rc

en
ta

ge
 o

f q
ue

rie
s)

Our method
Method of Stefan2009
Motion Energy Images

Figure 2.2. Comparison of our method, the method described by Stefan et al. in [1],
and the MEI-based method used in [2]. The y-axis corresponds to success rates s.
The x-axis corresponds to values of K(s) on the left, and to values of A(s) on the
right..

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
30

40

50

60

70

80

90

100

worst−case rank K(s) of correct result

S
uc

ce
ss

 r
at

e
s

(a
s

pe
rc

en
ta

ge
 o

f q
ue

rie
s)

DTW + hands
DTW
DTW without length normalization

2 4 6 8 10 12 14
30

40

50

60

70

80

90

100

Average−case rank A(s) of correct result

S
uc

ce
ss

 r
at

e
s

(a
s

pe
rc

en
ta

ge
 o

f q
ue

rie
s)

DTW + hands
DTW
DTW without length normalization

Figure 2.3. Comparison of DTW without length normalization, DTW, and our full
method that combines DTW scores with hand appearance similarity scores. The y-
axis corresponds to success rates s. The x-axis corresponds to values of K(s) on the
left, and to values of A(s) on the right..

19

CHAPTER 3

THE MOVE-SPLIT-MERGE METRIC FOR TIME SERIES

Time series data naturally appear in a wide variety of domains. Chapter 2

has described in detail one such domain, namely recognition of signs in sign lan-

guage videos. Other domains include financial data (e.g. stock values), scientific

measurements (e.g. temperature, humidity, earthquakes), medical data (e.g. elec-

trocardiograms), audio, video, and human activity representations. Large time series

databases can serve as repositories of knowledge in such domains, especially when the

time series stored in the database are annotated with additional information such as

class labels, place and time of occurrence, causes and consequences, etc.

A key design issue in searching time series databases is the choice of a sim-

ilarity/distance measure for comparing time series. In this chapter, we describe a

novel metric for time series, called MSM (move-split-merge). The key idea behind

the MSM metric is to define a set of operations that can be used to transform any

time series into any other time series. Each operation incurs a cost, and the distance

between two time series X and Y is the cost of the cheapest sequence of operations

that transforms X into Y .

The MSM metric uses as building blocks three fundamental operations: Move,

Split, and Merge. A Move operation changes the value of a single point of the time

series. A Split operation splits a single point of the time series into two consecutive

points that have the same value as the original point. A Merge operation merges two

consecutive points that have the same value into a single point that has that value.

Each operation has an associated cost. The cost of the Move operation is the absolute

20

difference between the old value and the new value. The cost of each Split and Merge

operation is equal and set to a constant.

Our main motivation in formulating MSM has been to satisfy, with a single

distance measure, a set of certain desirable properties that no existing method satisfies

fully. One such property is robustness to temporal misalignments. Such robustness

is entirely lacking in methods where time series similarity is measured using the

Euclidean distance [28, 29, 30, 31] or variants [32, 33, 34]. Such methods cannot

handle even the smallest misalignment caused by time warps, insertions, or deletions.

Another desired property is metricity. As detailed in Section 3.2.1.1, metricity

allows the use of an extensive arsenal of generic methods for indexing, clustering, and

visualization, that have been designed to work in any metric space.

Several distance measures based on dynamic programming (DP), while robust

to temporal misalignments, are not metric. Such methods include dynamic time

warping (DTW) [10], constrained dynamic time warping (cDTW) [35], Longest Com-

mon Subsequence (LCSS) [36], Minimal Variance Matching (MVM) [37], and Edit

Distance on Real Sequence (EDR) [38]. All those measures are non-metric, and in

particular do not satisfy the triangle inequality.

Edit Distance with Real Penalty (ERP) [39] is a distance measure for time series

that is actually a metric. Inspired by the edit distance [40], ERP uses a sequence of

“edit” operations, namely insertions, deletions, and substitutions, to match two time

series to each other.

However, ERP has some behaviors that, in our opinion, are counterintuitive.

First, ERP is not translation-invariant: changing the origin of the coordinate system

changes the distances between time series, and can radically alter similarity rankings.

Second, the cost of inserting or deleting a value depends exclusively on the absolute

magnitude of that value. Thus, ERP does not treat all values equally; it explicitly

21

prefers inserting and deleting values close to zero compared to other values. In our

formulation, we aimed to ensure both translation invariance and equal treatment of

all values.

A desired property of any similarity measure is computational efficiency. Mea-

suring the DTW or ERP distance between two time series takes time quadratic to

the sum of lengths of the two time series, whereas linear complexity is achieved by

the Euclidean distance and, arguably, cDTW (if we treat the warping window width,

a free parameter of cDTW, as a constant).

One of our goals in designing a new distance measure was to not significantly

exceed the running time of DTW and ERP, and to stay within quadratic complexity.

The proposed MSM metric is our solution to the problem of satisfying, with

a single measure, the desired properties listed above: robustness to misalignments,

metricity, translation invariance, treating all values equally, and quadratic time com-

plexity. The MSM formulation deviates significantly from existing approaches, such

as ERP and DTW, and has proven quite challenging to analyze. While the proposed

algorithm is easy to implement in a few lines of code (see Figure 3.10), proving that

these few lines of code indeed compute the correct thing turned out to be a non-trivial

task, as shown in Sections 3.3 and 3.4. We consider the novelty of the formulation

and the associated theoretical analysis to be one of the main contributions of this

paper.

For real-world applications, satisfying all the above-mentioned properties would

be of little value, unless the distance measure actually provides meaningful results in

practice. Different notions of what is meaningful may be appropriate for different

domains. At the same time, a commonly used measure of meaningfulness is the

nearest neighbor classification error rate attained in a variety of time series datasets.

We have conducted such experiments using the UCR repository of time series datasets

22

[3]. The results that we have obtained illustrate that MSM performs quite well

compared to existing competitors, such as DTW and ERP, yielding the lowest error

rate in several UCR datasets.

3.1 Defining the MSM Distance

Similar to the edit distance and ERP, MSM uses a set of operations that can

transform any time series to any other time series. The basic operations in the edit

distance and ERP are Insert, Delete, Substitute. MSM also uses the Substitute

operation, we just have renamed it and call it the Move operation. This operation is

used to change one value into another.

Our point of departure from the edit distance and ERP is in handling insertions

and deletions. In the edit distance, all insertions and deletions cost the same. In ERP,

insertions and deletions cost the absolute magnitude of the value that was inserted

or deleted. Instead, we aimed for a cost model where inserting or deleting a value

depends on both that value and the adjacent values. For example, inserting a 10

between two 10s should cost the same as inserting a 0 between two 0s, and should

cost less than inserting a 10 between two 0s.

Our solution is to not use standalone Insert and Delete operations, and instead

to use Split and Merge operations. A Split repeats a value twice, and a Merge merges

two successive equal values into one. In MSM, an Insert is decomposed to a Split

(to create a new element) followed by a Move (to set the value of the new element).

Similarly, a delete is decomposed to a Move (to make an element equal in value to

either the preceding or the following element) followed by a Merge (to delete the

element we just moved). This way, the cost of insertions and deletions depends on

the similarity between the inserted or deleted value and its neighbors.

23

We now proceed to formally define the three basic operations and the MSM

distance. Let time series X = (x1, . . . , xm) be a finite sequence of real numbers xi.

The Move operation, and its cost, are defined as follows:

Movei,v(X) = (x1, . . . , xi−1, xi + v, xi+1, . . . , xm) . (3.1)

Cost(Movei,v) = |v|. (3.2)

In words, operation Movei,v(X) creates a new time series X ′, that is identical to X,

except that the i-th element is moved from value xi to value xi + v. The cost of this

move is the absolute value of v.

The Split operation, and its cost, are defined as:

Spliti(X) = (x1, . . . , xi−1, xi, xi, xi+1, . . . , xm) . (3.3)

Cost(Spliti) = c. (3.4)

Operation Spliti(X) creates a new time series X ′, obtained by taking X and splitting

the i-th element of X into two consecutive elements. The cost of this split is a

nonnegative constant c, which is a system parameter.

The Merge operation acts as the inverse of the Split operation. The Merge

operation is invoked as Mergei(X), and is only applicable if xi = xi+1. Given a time

series X = (x1, . . . , xm), and assuming xi = xi+1:

Mergei(X) = (x1, . . . , xi−1, xi+1, . . . , xm) . (3.5)

Cost(Mergei) = c . (3.6)

Operation Mergei(X) creates a new time series X’, that is identical to X, except that

elements xi and xi+1 (which are equal in value) are merged into a single element. The

cost of a Merge operation is equal to the cost of a Split operation.

24

This is necessary, as we explain in Section 3.1, in order for MSM to be metric

(otherwise, symmetry would be violated).

Figures 3.1 and 3.4 show example applications of Move, Split, and Merge oper-

ations.

We define a transformation S = (S1, . . . , S|S|) to be a sequence of operations,

where |S| indicates the number of elements of S. Each Sk in the transformation S

is some Moveik,vk
, Splitik

, or Mergeik
operation, for some appropriate values for ik

and vk. The result of applying transformation S to time series X is the result of

consecutively applying operations S1, . . . , S|S| to X:

Transform(X, S) = Transform(S1(X), (S2, ..., S‖S‖)) . (3.7)

In the trivial case where S is the empty sequence (), we can define Transform(X, ()) =

X.

The cost of a sequence of operations S on X is simply the sum of costs of the

individual operations:

Cost(S) =

|S|
∑

k=1

Cost(Sk) . (3.8)

Given two time series X and Y , there are infinite transformations S that trans-

form X into Y . An example of such a transformation is illustrated in Figure 3.4.

Using the above terminology, we are now ready to formally define the MSM

distance. The MSM distance D(X, Y) between two time series X and Y is defined to

be the cost of the lowest-cost transformation S such that Transform(X, S) = Y . We

note that this definition does not provide a direct algorithm for computing D(X, Y).

Section 3.4 provides an algorithm for computing the MSM distance between two time

series.

25

10 14 17 12

move

10 14 15 12

original

sequence

result

sequence

example of a Move operation

10 14 17 12

split

10 14 17 17

original

sequence

result

sequence

example of a Split operation

12

10 14 14 12
merge

10 14 12

original

sequence

result

sequence

example of a Merge operation

Figure 3.1. Examples of the Move, Split, Merge operations. .

3.2 Motivation for MSM: Metricity and Invariance to the Choice of Origin

In this section we show that the MSM distance satisfies two properties: metricity

and invariance to the choice of origin. Satisfying those two properties was a key

motivation for our formulation. We also discuss simple examples highlighting how

MSM differs from DTW and ERP with respect to these properties.

3.2.1 Metricity

The MSM distance satisfies reflexivity, symmetry, and the triangle inequality,

and thus MSM satisfies the criteria for a metric distance. In more detail:

Reflexivity: Clearly, D(X, X) = 0, as an empty sequence of operations, incur-

ring zero cost, converts X into itself. If c > 0, then any transformation S that converts

X into Y must incur some non-zero cost. If, for some domain-specific reason, it is

desirable to set c to 0, an infinitesimal value of c can be used instead, to guarantee

reflexivity, while producing results that are practically identical to the c = 0 setting.

Symmetry: Let S be a Move, Split, or Merge operation. For any such S there

exists an operation S−1 such that, for any time series X, S−1(S(X)) = X. In partic-

ular:

• The inverse of Movei,v is Movei,−v.

• Spliti and Mergei are inverses of each other.

26

Any sequence of operations S is also reversible: if S = (S1, . . . , S|S|), then the inverse

of S is S−1 = (S−1
|S| , . . . , S

−1
1). Transform(X, S) = Y if and only if Transform(Y, S−1) =

X.

It is easy to see that, for any operation S, Cost(S) = Cost(S−1). Consequently,

if S is the cheapest (or a tie for the cheapest) transformation that converts X into

Y , then S−1 is the cheapest (or a tie for the cheapest) transformation that converts

Y into X. It readily follows that D(X, Y) = D(Y, X).

Triangle inequality: Let X, Y , and Z be three time series. We need to show

that D(X, Z) ≤ D(X, Y) + D(Y, Z). Let S1 be an optimal (i.e., lowest-cost) trans-

formation of X into Y , so that Cost(S1) = D(X, Y). Similarly, let S2 be an optimal

transformation of Y into Z, so that Cost(S2) = D(Y, Z). Let’s define S3 to be the

concatenation of S1 and S2, that first applies the sequence of operations in S1, and

then applies the sequence of operations in S2. Then, Transform(X, S3) = Z and

Cost(S3) = D(X, Y) + D(Y, Z).

If S3 is the cheapest (or a tie for the cheapest) transformation converting X

into Z, then, D(X, Z) = D(X, Y) + D(Y, Z), and the triangle inequality holds. If S3

is not the cheapest (or a tie for the cheapest) transformation converting X into Z,

then D(X, Z) < D(X, Y) + D(Y, Z), and the triangle inequality still holds.

3.2.1.1 Advantages of Metricity

Metricity distinguishes MSM from several alternatives, such as DTW [10], LCSS

[36], MVM [37], and EDR [38]. Metricity allows MSM to be combined with an ex-

tensive arsenal of off-the-shelf, generic methods for indexing, clustering, and visual-

ization, that have been designed to work in any metric space.

With respect to indexing, metricity allows the use of generic indexing methods

designed for arbitrary metrics (see [41] for a review). Examples of such methods

27

1 2 2 2sequence X: 2

sequence Y: 1

sequence Z:

1 1 1 1 1

2 2 2 2 2

11 1 1

11 1 1 1 1 21 1 1

Figure 3.2. An example where DTW violates the triangle inequality: DTW(X,Y) = 9,
DTW(X,Z) = 0, DTW(Z, Y) = 1. Thus, DTW(X,Z) + DTW(Z, Y) < DTW(X,Y)..

include VP-trees [42] and Lipschitz embeddings [43]. In fairness to competing non-

metric alternatives, we should mention that several custom-made indexing methods

have been demonstrated to lead to efficient retrieval using non-metric time series

distance measures [35, 44, 45].

Another common operation in data mining systems is clustering. Metricity

allows the use of clustering methods that have been designed for general metric spaces.

Examples of such methods include [46, 47, 48].

Metricity also allows for better data visualization in time series datasets. Vi-

sualization typically involves an approximate projection of the data to two or three

Euclidean dimensions, using projection methods such as, e.g., MDS [49], GTM [50], or

FastMap [51]. In general, projections of non-Euclidean spaces to a Euclidean space,

and especially to a low-dimensional Euclidean space, can introduce significant dis-

tortion [43]. However, non-metricity of the original space introduces an additional

source of approximation error, which is not present if the original space is metric.

As an example, suppose that we want to project to 2D the three time series

shown in Figure 3.2, so as to visualize the DTW distances among those three series.

Any projection to a Euclidean space (which is metric) will significantly distort the

non-metric relationship of those three time series. On the other hand, since MSM is

28

metric, the three MSM distances between the three time series of Figure 3.2 can be

captured exactly in a 2D projection.

3.2.1.2 An Example of Non-Metricity in DTW

To highlight the difference between MSM and DTW, Figure 3.2 illustrates an

example case where DTW violates the triangle inequality. In that example, the only

difference between Y and Z is in the last value, as y10 = 1 and z10 = 2. However,

this small change causes the DTW distance from X to drop dramatically, from 9 to

0: DTW (X, Y) = 9, and DTW (X, Z) = 0.

In contrast, in MSM, to transform X into Y , we perform 8 Merge operations, to

collapse the last 9 elements of X into a single value of 2, then a single Move operation

that changes the 2 into a 1, and 8 Split operations to create 8 new values of 1. The

cost of those operations is 16c+1. To transform X into Z, the only difference is that

x10 does not need to change, and thus we only need 7 Merge operations, one Move

operation, and 7 Split operations. The cost of those operations is 14c + 1. Thus,

the small difference between Y and Z causes a small difference in the MSM distance

values: MSM(Y, Z) = 1, MSM(X, Y) = 16c + 1, MSM(X, Z) = 14c + 1.

We should note that, in the above example, constrained DTW (cDTW) would

not exhibit the extreme behavior of DTW. However, cDTW is also non-metric, and

the more we allow the warping path to deviate from the diagonal, the more cDTW

deviates from metric behavior. DTW itself is a special case of cDTW, where the

diagonality constraint has been maximally relaxed.

3.2.2 Invariance to the Choice of Origin

Let X = (x1, . . . , xm) be a time series where each xi is a real number. A

translation of X by t, where t is also a real number, is a transformation that adds t

to each element of the time series, to produce X + t = (x1 + t, . . . , xm + t). If distance

29

measure D is invariant to the choice of origin, then for any time series X, Y , and

any translation t, D(X, Y) = D(X + t, Y + t). The MSM distance is invariant to the

choice of origin, because any transformation S that converts X to Y also converts

X + t to Y + t.

3.2.2.1 Contrast to ERP: Translation Invariance and Equal Treatment of All

Values

Invariance to the choice of origin is oftentimes a desirable property, as in many

domains the origin of the coordinate system is an arbitrary point, and we do not want

this choice to impact distances and similarity rankings. In contrast, the ERP metric

[39] is not invariant to the choice of origin. For the full definition of ERP we refer

readers to [39].

To contrast MSM with ERP, consider a time series X consisting of 1000 consec-

utive values of v, for some real number v, and let Y be a time series of length 1, whose

only value is a v as well. In ERP, to transform X into Y , we need to delete v 999

times. However, the cost of these deletions depends on the value of v: the cost is 0 if

v = 0, and is 999v otherwise. In contrast, in MSM, the cost of deleting v 999 times

(by applying 999 Merge operations) is independent of v. Thus, the MSM distance

is translation-invariant (does not change if we add the same constant to both time

series), whereas ERP is not.

A simple remedy for making ERP translation-invariant is to normalize each

time series so that it has a mean value of 0. However, even in that case, the special

treatment of the origin by ERP leads to insertion and deletion costs that are, in our

opinion, counterintuitive in some cases. Such a case is illustrated in Figure 3.3. In

that example, we define sequence A = (−1, 0, 1, 0,−1). Then, we define sequences B

and C, by copying A and inserting respectively a value of −1 and a value of 0 at the

30

-1 0 1 0sequence A: -1

sequence B: -1

sequence C: 0

-1 0 1 0 -1

-1 0 1 0 -1

Figure 3.3. An example illustrating the different behavior of MSM and ERP. Both se-
quences B and C are obtained by inserting one value at the end of A. According to ERP, A

is closer to C than to B: ERP(A,B) = 1, ERP(A,C) = 0. According to MSM, A is closer
to B than to C: MSM(A,B) = c, MSM(A,C) = 1 + c. .

end. According to ERP, A is closer to C than to B, and actually ERP (A, C) = 0,

because ERP treats 0 (the origin) as a special value that can be inserted anywhere

with no cost. In contrast, according to MSM, A is closer to B, as a single Split

operation of cost c transforms A to B. Transforming A to C requires a Split and a

Move, and costs c + 1.

This difference between MSM and ERP stems from the fact that, in MSM, the

cost of inserting or deleting a value v only depends on the difference between v and

its adjacent values in the time series. Thus, in MSM, inserting a 10 between two

10’s is cheaper (cost = c) than inserting a 10 between two zeros (cost = 10 + c),

and inserting a 10 between two zeros is as expensive (cost = 10 + c) as inserting a

0 between two 10s. On the other hand, ERP treats values differently depending on

how close they are to the origin: inserting a 10 between two 10’s costs the same (cost

= 10) as inserting a 10 between two zeros, and inserting a 10 between two zeros (cost

= 10) is more expensive than inserting a 0 between two 10’s (cost = 0).

3.3 Transformation Graphs and the Monotonicity Lemma

In Section 3.4 we describe an algorithm that computes the MSM distance be-

tween two time series. However, the correctness of that algorithm derives from cer-

31

5 3 7 1

split

hold

5 5 3 7 1

holdholdsplit

dec

4 5 3 7 1

hold hold hold hold

hold

4 5 5 7 1

hold inc hold hold

hold

4 5 7 1

merge
merge hold hold

hold

4 5 7 7

hold hold inc

hold

4 5 7

hold merge
merge

hold

4 5 8

hold inc

hold

4 5 8

hold split

8

split

hold

4 5 8 10

hold hold inc

1. Split1

2. Move1,-1

3. Move3,2

4. Merge2

5. Move4,6

6. Merge3

7. Move3,1

8. Split3

9. Move4,2

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

Figure 3.4. An example of a (non-optimal, but easy-to-visualize) transformation that
converts input time series (5, 3, 7, 1) into output time series (4, 5, 8, 10). We see the effects
of each individual operation in the transformation, and we also see the step-by-step graph
defined by applying this transformation to the input time series..

tain theoretical observations. In this section we lay the theoretical groundwork for

explaining the algorithm of Section 3.4.

3.3.1 Step-By-Step Graphs and Transformation Graphs

For any time series X and any transformation S we can draw what we call a

step-by-step graph, that illustrates the intermediate results and the final result that

we obtain, starting with X, and applying in sequence the operations of transformation

S. An example of such a graph is shown in Figure 3.4. In that figure, X = (5, 3, 7, 1),

32

5 3 7 1

split

inc

5 5 5 7

merge

inc split

dec

4 75

merge
merge merge

8

inc

8

split

8

split

10

inc

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

Figure 3.5. The transformation graph corresponding to the step-by-step graph of Figure
3.4..

and transformation S consists of nine operations, which are shown in detail. The final

result of Transform(X, S) is time series Y = (4, 5, 8, 10).

The step-by-step graph is a directed graph, that is divided into layers. The first

layer corresponds to the input sequence X. Layer k + 1, for k > 0 corresponds to

the result of applying the first k operations of S on X. In intermediate layers, every

node is connected to one or two parent nodes, and one or two children nodes. Every

directed edge has a label that shows how the child node was obtained from the parent

node. There are five types of edge labels:

• HOLD: A HOLD edge indicates that no Move, Split, or Merge operation was

applied to the parent node.

• INC: An INC edge indicates that a Move operation was applied to the parent

node, and that a positive value was added as a result of the move.

• DEC: A DEC edge indicates that a Move operation was applied to the parent

node, and that a a negative value was added as a result of the move.

33

• SPLIT: A Split operation generates two SPLIT edges, going from a parent node

to two children nodes.

• MERGE: A Merge operation generates two MERGE edges, going from two

parents to a common child.

In a step-by-step graph, most edges are typically HOLD edges. Given a step-by-

step graph, we can obtain a significantly more concise graph, called a transformation

graph, by applying the following process:

• Copy the original step-by-step graph.

• Delete all HOLD edges.

• Collapse into a single node any set of nodes that, in the original step-by-step

graph, were connected by a path consisting exclusively of HOLD edges.

Figure 3.5 shows the transformation graph obtained from the step-by-step graph of

Figure 3.4.

The cost of a transformation graph is defined to be the sum of the costs of the

operations appearing in that graph. If a transformation S has G as its transformation

graph, then S and G have the same cost. Similarly, the cost of a path in a transfor-

mation graph is defined to be the sum of the costs of the operations associated with

the edges of the path.

Any step-by-step graph corresponds to one and only one sequence of operations,

because the step-by-step graph imposes a full order on the set of operations appearing

in that graph. On the other hand, a transformation graph imposes only a partial order

on the set of operations appearing in that graph. Given a transformation graph G, a

sequence of operations S has G as its transformation graph if:

• S contains all the operations appearing in G.

• S contains no operation that does not appear in G.

• The order of operations in S respects the partial order defined by G.

34

v

split

vC1 vC2 v
split

v
C3

merge
merge

vP1 P2 v

(a) (b)

ancestors

 of P1

ancestors

of P2

descendants

of C1

descendants

of C3

ancestors

of P1

ancestors

of P2

descendants

of C1
descendants

of C3

P1

P2

Figure 3.6. Editing a transformation graph to delete consecutive SPLIT-MERGE edges.
(a) A local region of a transformation graph, that includes consecutive SPLIT-MERGE
edges. The numerical values stored in nodes P1, P2, C1, C2, C3 must all be equal to the
same real number v. (b) An edited but equivalent version of the region shown in (a). We
note that nodes C1, C2 and C3 have been deleted, P1 is directly connected to what were
the descendants of C1 in (a), and P2 is directly connected to what were the descendants of
C3 in (a). .

For example, in the graph of Figure 3.5, consider the move of the “3” node of

the top layer to a “5”, and the move of the “1” node of the top layer to a “7”. The

order of those two moves is interchangeable. On the other hand, the move of the “1”

node to a “7” must occur before the move of the “7” to an “8”.

3.3.2 The Monotonicity Lemma

Using transformation graphs, we can derive certain claims about transforma-

tions of a time series X into a time series Y . We will use these claims to derive an

efficient algorithm for computing MSM distances.

We define two transformation graphs to be equivalent transformation graphs if

they have the same input time series and output time series. Note that any transfor-

mation graph fully specifies an input time series X, an output time series Y , and a

partially ordered set of operations that converts X into Y.

35

v

merge merge
v v

(a) (b)

vP1 P2

C1

C2 C3

ancestors

 of P1

v

descendants

of C3

ancestors

of P1

ancestors

of P2

descendants

of C2
descendants

of C3

v

ancestors

 of P2

v

descendants

of C2

P1 P2

split split

Figure 3.7. Editing a transformation graph to delete consecutive MERGE-SPLIT edges.
(a) A local region of a transformation graph, that includes consecutive MERGE-SPLIT
edges. The numerical values stored in nodes P1, P2, C1, C2, C3 must all be equal to the
same real number v. (b) An edited but equivalent version of the region shown in (a). We
note that nodes C1, C2 and C3 have been deleted, P1 is directly connected to what were
the descendants of C2 in (a), and P2 is directly connected to what were the descendants of
C3 in (a)..

Proposition 1. Let G be a transformation graph that converts time series X into time

series Y . If G includes any consecutive SPLIT-MERGE edges, we can convert G into

an equivalent transformation graph G′, such that G′ is at least as cheap as G, and G′

contains no consecutive SPLIT-MERGE edges.

Proof: There are two possible local topologies corresponding to consecutive SPLIT-

MERGE edges. The first is the case where the Merge operation directly undoes the

effects of the preceding Split operation. In that case, clearly these two operations

cancel each other out and can be deleted without changing the output of the trans-

formation.

Figure 3.6 illustrates the local topology corresponding to the second case. In

that figure, the numerical values stored in nodes P1, P2, C1, C2, C3 are all equal to

the same value v, because of the definition of the Split and Merge operations. The

consecutive Split and Merge operations have the net effect of converting two consec-

utive v values (stored in nodes P1 and P2) into two consecutive v values (of nodes

36

7 3 7 7

7

merge

inc

 merge

7

merge

7

7

merge

5

 dec

 merge

merge

7 3 7 7

5

 dec inc

5

merge

5

merge
merge

5 7

merge
merge

5

dec

merge

z
i-1

z
i

z
i+1

z
i+2

z
i-1

z
i

z
i+1

z
i+2

Figure 3.8. Left: a local region of a transformation graph that includes a non-monotonic
path, of the form INC-MERGE-MERGE-MERGE-DEC. This region transforms series
(7, 3, 7, 7) into single-element series (5). The cost is 6 + 3c. Right: The result of con-
verting the region shown on the left into an equivalent but monotonic region, with the same
cost 6 + 3c, following the description of Case 1 in the proof of Proposition 3..

C1 and C3), and thus they can be deleted without changing the output of the graph.

By deleting those two operations and editing the local topology as shown in the fig-

ure, we obtain an equivalent transformation graph, that is cheaper than the original

transformation graph by a difference of 2c. �

Proposition 2. Let G be a transformation graph that converts time series X into time

series Y . If G includes any consecutive MERGE-SPLIT edges, we can convert G into

an equivalent transformation graph G′, such that G′ is at least as cheap as G, and G′

contains no consecutive MERGE-SPLIT edges.

Proof: Figure 3.7 illustrates the local topology corresponding to consecutive MERGE-

SPLIT edges. The Merge operation merges two values of v into one, and the Split

operation directly undoes the effects of the preceding Merge operation, by recreating

two values of v. Thus, we can delete both the Merge and the Split operation without

changing the final output of the transformation graph. �

37

7 5 7 7

7

merge

inc

 merge

7

merge

7

7

 merge

3

 dec

 merge

merge

7 5 7 7

 dec

merge

5

5

merge
merge

5 7

merge
merge

5

 dec

merge

3

 dec

z
i-1

z
i

z
i+1

z
i+2

z
i-1

z
i

z
i+1

z
i+2

Figure 3.9. Left: a local region of a transformation graph that includes a non-monotonic
path, of the form INC-MERGE-MERGE-MERGE-DEC. This region transforms series
(7, 5, 7, 7) into single-element series (3). The cost is 6 + 3c. Right: The result of con-
verting the region shown on the left into an equivalent but monotonic region, with the same
cost 6 + 3c, following the description of Case 2 in the proof of Proposition 3. We note that
no INC edges appear in the region on the right..

We define a path of a transformation graph to be a monotonic path if it does not

contain both INC and DEC edges. We define a monotonic transformation graph to be

a transformation graph that only contains monotonic paths. We define a monotonic

transformation to be a transformation whose transformation graph is monotonic.

Proposition 3. Let X and Y be two time series. Let S be a transformation that converts

X into Y . If S is not monotonic, we can convert S into another transformation S′,

that also converts X into Y , is as cheap or cheaper than S, and is monotonic.

Proof: This proposition has a long proof, because we have to cover several different

cases. We can assume that transformation S has already been processed as described

in Propositions 1 and 2, so that there are no consecutive SPLIT-MERGE edges in

the transformation graph. Also, any consecutive INC-DEC edges or DEC-INC edges

are clearly suboptimal, and can be replaced with a single INC or DEC edge. So, we

can ignore such cases from here on.

38

If the transformation graph is not monotonic, it must have a non-monotonic

path. Then, the path must have a subpath, whose one end is an INC edge, the other

end is a DEC edge, and the intermediate edges are either all of type MERGE or

all of type SPLIT (based on Propositions 1 and 2). We will primarily consider the

case where the path is of the form INC-MERGE-. . .-MERGE-DEC, because once we

prove the proposition for that case, the proof for the other cases is straightforward.

Two examples of an INC-MERGE-. . .-MERGE-DEC path and its surrounding local

topology are illustrated in Figures 3.8 and 3.9. We advise the reader to refer to these

examples while reading the remainder of this proof.

Since we can re-order operations in S into any ordering compatible with the par-

tial order imposed by the transformation graph, we choose to use an order in which

the operations specified by the INC-MERGE-. . .-MERGE-DEC path are applied con-

secutively. Let Z = (z1, . . . , zt) be the time series to which the first operation of the

path is applied. In that case, the INC edge corresponds to some operation Movei,v,

for some i and some positive v. This operation moves the i-th element of Z from value

zi to value zi + v. Then, there is a sequence of Merge operations, that merge the i-th

element with l elements zi−l, . . . , zi−1, and with r elements zi+1, . . . , zi+r, which all

have the same value zi + v. It is possible for either l or r to be equal to 0. In Figure

3.8, l = 1, r = 2, zi = 3, v = 4, and zi−1 = zi+1 = zi+2 = 7.

After all the Merge operations have been applied, elements zi−l, . . . , zi+r have

been converted into a single element, with value zi + v. The final DEC edge corre-

sponds to changing value zi + v to a new value zi + v − v′, where v′ is a positive

real number (v′ = 2 in Figure 3.8). The net result of all those operations is merging

elements zi−l, . . . , zi+r of time series Z into a single value zi + v − v′. The overall

cost of all these operations is v + v′ + (l + r) ∗ c, since we do two Move operations

of magnitude v and v′ respectively, and l + r Merge operations. Our task is now to

39

show that we can convert all elements zi−l, . . . , zi+r into a single element with value

zi + v − v′, with less than or equal cost, and without having a non-monotonic path.

We will consider two cases: v ≥ v′, and v < v′.

Case 1: v ≥ v′. Figure 3.8 illustrates an example of this case. Consider replacing

the sequence of operations specified by the INC-MERGE-. . .-MERGE-DEC path with

the following combination of operations:

1. We move zi up to zi + v − v′, with cost v − v′.

2. If l > 0, we merge elements zi−l, . . . , zi−1 into a single element whose value is

zi + v, and we move that single element down to zi + v − v′. The cost of these

operations is (l − 1) ∗ c + v′.

3. If r > 0, we merge elements zi+1, . . . , zi+r into a single element whose value is

zi + v, and we move that single element down to zi + v − v′. The cost of these

operations is (r − 1) ∗ c + v′.

4. We merge the results of steps 1, 2, and 3 into a single element. The cost here

is at most 2 * c, it can be less if l = 0 or r = 0.

Step 4 must take place after steps 1, 2, and 3, whereas the order of steps 1, 2, and 3

is not important. Overall, the total cost of the above four steps is (l + r) ∗ c + v + v′,

which is equal to the cost of the original INC-MERGE-. . .-MERGE-DEC path. In the

special case where l = 0 or r = 0, the total cost becomes (l+r)∗c+v, which is better

than the original cost. At the same time, the local topology resulting from these

changes to the transformation graph includes only monotonic paths. Furthermore,

the resulting transformation is at least as cheap as the original transformation. Figure

3.8 shows an example of this process, the local topology corresponding to the original

INC-MERGE-. . .-MERGE-DEC, and the local topology corresponding to the new

combination of operations.

40

Case 2: v < v′. Figure 3.9 illustrates an example of this case. Consider replacing

the sequence of operations specified by the INC-MERGE-. . .-MERGE-DEC path with

the following combination of operations:

1. If l > 0, we merge elements zi−l, . . . , zi−1 into a single element whose value is

zi + v, and we move that single element down to value zi. The cost of these

operations is (l − 1) ∗ c + v.

2. If r > 0, we merge elements zi+1, . . . , zi+r into a single element whose value is

zi + v, and we move that single element down to value zi. The cost of these

operations is (r − 1) ∗ c + v.

3. We merge zi and the results of steps 1 and 2 into a single element, with value

zi. The cost here is 2 * c, or less if l = 0 or r = 0.

4. We move the result of step 3 down to final value zi + v − v′, with cost v′ − v.

Steps 1 and 2 can take place in any order, but step 3 must be taken after steps 1 and

2, and step 4 after step 3. The cost of these four steps is at most (l + r) ∗ c + v + v′,

so it is not greater than the cost of the original sequence of operations. At the same

time, the local topology resulting from these changes to the transformation graph

includes only monotonic paths. Furthermore, the resulting transformation is at least

as cheap as the original transformation. Figure 3.9 shows an example of this process,

the local topology corresponding to the original INC-MERGE-. . .-MERGE-DEC, and

the local topology corresponding to the new combination of operations.

We can now briefly consider the remaining cases of non-monotonic paths. The

proof for paths of the form form DEC-MERGE-. . .-MERGE-INC is a direct adapta-

tion of the proof we provided for paths of the form INC-MERGE-. . .-MERGE-DEC.

For paths of the form INC-SPLIT-. . .-SPLIT-DEC or DEC-SPLIT-. . .-SPLIT-INC,

we use the fact that, as discussed in Section 3.1 (when demonstrating that MSM is

symmetric), any transformation of X into Y can be inverted, to produce an equal-

41

cost transformation of Y into X. Thus, if, for some transformation S of X into Y ,

the corresponding transformation graph contains a path of the form INC-SPLIT-. . .-

SPLIT-DEC or DEC-SPLIT-. . .-SPLIT-INC, then for the inverse transformation S−1

of Y into X the transformation graph contains a path of the form INC-MERGE-. . .-

MERGE-DEC or DEC-MERGE-. . .-MERGE-INC. We can edit S−1 to remove such

paths, and then invert it again, to obtain a transformation that changes X into Y

and that does not include paths of the form INC-SPLIT-. . .-SPLIT-DEC or DEC-

SPLIT-. . .-SPLIT-INC.

At this point, we have shown that, for any type of non-monotonic path in a

transformation graph, we can edit the graph so that the non-monotonic path is re-

placed with an arrangement of monotonic paths, and we have shown that the edited

graph is equivalent to G and at least as cheap as G. By repeating such edits, we can

convert any transformation graph G into an equivalent, monotonic, and at least as

cheap transformation graph G′, and thus we have concluded the proof of Proposition

3. �

We are now ready to state and prove the monotonicity lemma, which is a key

lemma for describing, in Section 3.4, the algorithm for computing MSM distances.

Proposition 4. (Monotonicity lemma) For any two time series X and Y , there exists

an optimal transformation that converts X into Y and that is monotonic.

Proof: Let S be an optimal transformation that converts X into Y . Let G be the

transformation graph corresponding to applying S to X. If G is not monotonic, we

can convert G to a monotonic graph G′ that is at least as cheap as G (and thus also

optimal), by editing G as described in the proofs of Propositions 1, 2, and 3. Then,

any transformation S compatible with G′ is an optimal and monotonic transforma-

42

tion of X into Y . �

3.4 Computing the MSM Distance

Let X = (x1, . . . , xm) and Y = (y1, . . . , yn) be two time series. Figure 3.10

describes a simple dynamic programming algorithm for computing the MSM distance

between X and Y . For each (i, j) such that 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define

Cost(i, j) to be the MSM distance between the first i elements of X and the first j

elements of Y . This way, the MSM distance between X and Y is simply Cost(m, n).

As the algorithm on Figure 3.10 shows, for i > 1 and j > 1, Cost(i, j) can be

computed recursively based on Cost(i, j−1), Cost(i−1, j), and Cost(i−1, j −1). In

this section we explain why it is correct to define the Cost function in this recursive

manner, and we fully specify how to actually compute the Cost function.

First, we note that Cost(1, 1) is simply the cost of moving x1 to y1, so this is a

trivial case. The interesting case is when i > 1 or j > 1. In that case, we know from

the monotonicity lemma that there exists an optimal monotonic transformation Si,j

converting (x1, . . . , xi) into (y1, . . . , yj). We use notation Gi,j for the transformation

graph corresponding to applying Si,j to X. In Gi,j there is a monotonic path moving

xi to yj. There can be three cases for that path, that we need to analyze separately.

Case 1 (applicable if i > 1 and j > 1): the monotonic path taking xi to yj does

not include any SPLIT or MERGE edges. In that case, without loss of generality, we

can assume that the monotonic path taking xi to yj contains a single INC or DEC

edge. We refer the reader to Figure 3.11 for an example.

Consider the transformation graph G′ that we obtain by removing the INC or

DEC edge connecting xi to yj from transformation graph Gi,j. We show by contradic-

43

function MSM Distance(X, Y)

Inputs:

Time series X = (x1, . . . , xm)
Time series Y = (y1, . . . , yn)

Initialization:
Cost(1, 1) = |x1 − y1|.
For i = 2, . . . , m:

Cost(i, 1) = Cost(i − 1, 1) + C(xi, xi−1, y1)
For j = 2, . . . , n:

Cost(1, j) = Cost(1, j − 1) + C(yj, x1, yj−1)

Main Loop:
For i = 2, . . . , m:

For j = 2, . . . , n:
Cost(i, j) = min{Cost(i − 1, j − 1) + |xi − yj|,

Cost(i − 1, j) + C(xi, xi−1, yj),
Cost(i, j − 1) + C(yj, xi, yj−1)}

Output: The MSM distance D(X, Y) is Cost(m, n).

Figure 3.10. A simple, quadratic-time algorithm for computing the MSM distance between
two time series X = (x1, . . . , xm) and Y = (y1, . . . , yn). Function C, used in computing
values for the Cost array, is defined in Equation 3.9..

tion that G′ defines an optimal transformation of (x1, . . . , xi−1) into (y1, . . . , yj−1). If

G′ is not optimal, then there exists an optimal transformation S1 that has a smaller

cost than G′. If we add a Move operation to the end of S1, that moves xi to yj,

we obtain a transformation that converts (x1, . . . , xi) into (y1, . . . , yj) and that is

cheaper than Si,j, which was assumed to be optimal. Therefore, we have reached a

contradiction.

Consequently, if Case 1 holds, we obtain an optimal transformation Si,j by

adding a move operation (moving xi to yj) to an optimal transformation converting

44

8 10 5 4

inc

9 9 4

9

merge

x
1

x
2

x
3

x
4

y
1

15

x
5

dec dec

merge

4

merge

merge

2

dec

2

split

2

split

12

dec

y
2

y
3

y
4

G’

 transforms

(x
1
, x

2
, x

3
, x

4
) into

 (y
1
, y

2
, y

3
)

monotonic path

 that moves

x
5
 to y

4
and

contains no splits

or merges

Figure 3.11. An example of Case 1 for an optimal monotonic transformation graph Gi,j .
Gi,j maps (x1, . . . , xi) to (y1, . . . , yj). In Case 1, Gi,j is obtained from an optimal transfor-
mation graph G′ mapping (x1, . . . , xi−1) to (y1, . . . , yj−1), by adding to G′ a Move operation
that moves xi to yj. In the example shown here, i = 5 and j = 4. .

(x1, . . . , xi−1) into (y1, . . . , yj−1). It follows readily that, if Case 1 holds, Cost(i, j) =

Cost(i − 1, j − 1) + |xi − yj|.

Case 2 (applicable if i > 1): in the monotonic path moving xi to yj, the first

non-move operation is a Merge. In the transformation graph Gi,j, that first Merge

operation creates a node M with two parents. One of those parents, that we call Pi,

has xi as an ancestor. The other parent, that we call Pi−1, has xi−1 as an ancestor.

There is a path passing through Pi−1 and M that connects xi−1 to yj. There is another

path passing through Pi and M that connects xi to yj. Since the transformation is

monotonic, the value v stored at node M must be between xi−1 and yj, and also

between xi and yj . Figure 3.12 illustrates three examples, with the position of node

M indicated.

For Case 2, there are three subcases that we need to address. An example for

each subcase is shown in Figure 3.12.

45

8 5

inc

10 4

x
1

x
2

y
1

dec

G’

 transforms

(x
1
, x

2
) into

 (y
1
, y

2
, y

3
)

4

split

4

split

y
2

y
3

1

dec

8 5 9

inc

10

4

x
1

x
2

x
3

y
1

dec

G
3,3

 transforms

(x
1
, x

2
, x

3
) into

 (y
1
, y

2
, y

3
)

4

split

4

split

y
2

y
3

1

dec

5

5

merge
merge

18 8

inc

20

x
1

x
2

y
1

dec

G’

 transforms

(x
1
, x

2
) into

 (y
1
, y

2
)

y
2

4

x
1

x
2

x
3

G
3,2

 transforms

(x
1
, x

2
, x

3
) into

 (y
1
, y

2
)

18 8

inc

20

y
1

dec

y
2

4

1

4

4

merge

18 8

inc

20

x
1

x
2

y
1

dec

G’

 transforms

(x
1
, x

2
) into

 (y
1
, y

2
)

y
2

4

x
1

x
2

x
3

G
3,2

 transforms

(x
1
, x

2
, x

3
) into

 (y
1
, y

2
)

18 8

inc

20

y
1

dec

5

5

5

merge

merge

dec

y
2

4

Subcase 2.1 Subcase 2.2 Subcase 2.3

inc

merge

dec

Node M Node M Node M

Figure 3.12. Examples of the three subcases of Case 2 for an optimal monotonic transfor-
mation graph Gi,j. Gi,j maps (x1, . . . , xi) to (y1, . . . , yj). In Case 2, Gi,j is obtained from
an optimal transformation graph G′ mapping (x1, . . . , xi−1) to (y1, . . . , yj). Subcase 2.1:
the value of xi is not between the value of xi−1 and the value of yj , and xi is closer to xi−1

than to yj. In the example for Subcase 2.1, i = 3 and j = 3. In Subcase 2.2, the value
of xi is not between the value of xi−1 and the value of yj, and xi is closer to yj than to
xi−1. In the example for Subcase 2.2, i = 3 and j = 2. In Subcase 2.3, the value of xi is
between the value of xi−1 and the value of yj. In the example for Subcase 2.3, i = 3 and
j = 2. Note that, in this example, in the optimal transformation from (x1, x2) to (y1, y2),
x2 moves directly from value 8 to value 4. In the optimal transformation from (x1, x2, x3)
to (y1, y2), x2 moves first to an intermediate value of 5, that allows a merge with x3, and
then to value 4..

• Subcase 2.1: the value of xi is not between the value of xi−1 and the value of

yj, and xi is closer to xi−1 than to yj. Then, xi first moves to value xi−1, and

then merges.

46

• Subcase 2.2: the value of xi is not between the value of xi−1 and the value of yj,

and xi is closer to yj than to xi−1. Then, xi first moves to value yj, and then

merges.

• Subcase 2.3: the value of xi is between the value of xi−1 and the value of yj. In

that case, xi merges immediately with a value along the monotonic path that

moves xi−1 to yj.

In all three subcases, by removing the one or two operations linking xi with

node M from the transformation graph Gi,j, we obtain a transformation graph G′

that converts (x1, . . . , xi−1) into (y1, . . . , yj). As in Case 1, we can show that if G′ is

suboptimal, then Gi,j is suboptimal (which is a contradiction). Consequently, G′ is

optimal, and if Case 2 holds then Cost(i, j) = Cost(i − 1, j) + C(xi, xi−1, yj), where

C(xi, xi−1, yj) is defined as follows:

C(xi, xi−1, yj) =











c if xi−1 ≤ xi ≤ yj or xi−1 ≥ xi ≥ yj

c + min(|xi − xi−1|, |xi − yj|) otherwise
(3.9)

In Figure 3.12, for Subcase 2.3 in particular, we should note that the trans-

formation graph obtained by removing the Merge operation from the bottom graph

is not identical to the top graph. However, both graphs have equal cost. The only

difference is that in the top graph xi−1 moves directly from a value of 8 to a value of

4, and in the bottom graph xi−1 moves first to an intermediate value of 5, and then

to the final value of 4.

Case 3 (applicable if j > 1): in the monotonic path moving xi to yj, the first

non-move operation is a Split. We omit the details here, but the analysis for this case

is a direct adaptation of the analysis for Case 2. In summary, in Case 3 we can obtain

from transformation graph Gi,j an optimal transformation graph G′ that converts

(x1, . . . , xi) into (y1, . . . , yj−1), so that Cost(i, j) = Cost(i, j − 1) + C(yj, xi, yj−1).

47

0 50 100 150 200 250 300 350 400 450
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
MSM alignment

time

va
lu

e

0 50 100 150 200 250 300 350 400 450
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
cDTW alignment

time

va
lu

e

0 50 100 150 200 250 300 350 400 450
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
DTW alignment

value

tim
e

Figure 3.13. An example, from the Yoga dataset, of a query that MSM classifies correctly
whereas cDTW and DTW classify incorrectly, due to time shift. The query series is shown
in blue. Its nearest neighbor according to MSM (which belongs to the same class) is shown
in red. The alignments computed by MSM (left), cDTW (middle), and DTW (right) are
shown via links connecting corresponding elements. .

Based on the above considerations, the algorithm on Figure 3.10 checks which

of the three cases leads to a cheaper transformation of (x1, . . . , xi) into (y1, . . . , yj).

The cost of the transformation corresponding to each case is computed in a few

operations, using the already computed values for Cost(i, j − 1), Cost(i − 1, j), and

Cost(i− 1, j − 1). The algorithm for computing MSM distances is fairly simple, and

can be implemented in a few lines of code.

Computing Cost(i, j) takes constant time for each (i, j). Therefore, the time

complexity of computing the MSM distance is O(mn). The O(mn) complexity is

the same as the time complexity of DTW (without the diagonality constraint [35])

and ERP. The Euclidean distance, in contrast, has linear time complexity O(m), and

n = m in that case. Constrained DTW [35], that utilizes the diagonality constraint,

also has linear time complexity if we consider that the radius around the diagonal

does not depend on the length of the time series.

3.5 Experiments

We compare MSM to cDTW, DTW, ERP, and the Euclidean distance, based on

the 1-nearest neighbor classification error rate attained on the 20 time series datasets

48

available on the UCR time series archive [3]. We should note that, while the UCR

time series website shows results on 22 datasets, only 20 of those datasets are publicly

available, and those are the 20 datasets that we have used. A note on the website

indicates that two of those datasets (namely, the “Car” and “Plane” datasets) are

still not publicly available.

The MSM algorithm has one free parameter, namely c, the cost of every Split

and Merge operation. For each of the 20 datasets, the value for c was chosen from

the set {0.01, 0.1, 1, 10, 100}, using leave-one-out cross-validation on the training set.

It is important to emphasize that c was not optimized based on results on the test

data. Overall we have found it fairly straightforward to pick a value for c by simply

trying those five values on the training data.

We should note that considering a lot of possible values for c could slow down

the training phase significantly, as a separate cross-validation measurement must be

obtained for each individual value. In our experiments, MSM produced competitive

error rates while considering only five widely-spaced values (differing by factors of 10)

for c. Considering only five widely-spaced values demonstrates that no careful fine

tuning of c was needed to obtain good results.

Tables 3.2 shows the error rate for each method on each dataset and the sta-

tistical significance (p-value) of the results. The p-value specifically measures the

statistical significance of the difference between the top two methods for each data

set.

Table 3.1 shows characteristics of each dataset, the parameter values used by

MSM and cDTW for that dataset.

We note that for each method there are some datasets where that method is

at least as accurate as the other four methods. MSM produces lower error rates

than its competitors in 10 datasets. Each of DTW and ERP produces the lowest

49

error rate in two datasets. In the remaining six datasets, two or more methods tie

for lowest error rate. Table 3.3 shows, for each competitor of MSM, the number

of datasets where MSM produces respectively better accuracy, equal accuracy, and

worse accuracy compared to the competitor.

Our primary goal in these experiments has been to demonstrate that MSM has

competitive performance on 1-nearest neighbor classification, compared to cDTW,

DTW, and ERP. We are not making a claim that MSM is a fundamentally more

accurate measure than cDTW, DTW, or ERP. Our interpretation of the results is

that all these methods are valuable, and any one of them may outperform the other

methods in a new dataset. At the same time, MSM has some attractive theoretical

properties that DTW or ERP do not have.

A natural question to ask is how to determine which of these methods to use on

a new dataset. A simple answer to that question is to simply evaluate all methods on

the training set (using leave-one-out cross-validation), and choose the method with

the lowest error rate. We have tried that approach, and we show the results on the

rightmost two columns of Table 3.2. If two or more methods tied on the training

set, we show the average test error of those methods. We tried two variants: in the

CV+MSM variant, we chose for each dataset the best out of all five methods. In the

CV-MSM variant we excluded MSM from consideration.

In those results, CV+MSM matched the best error rate in 12 datasets and CV-

MSM matched the best error rate (excluding MSM) in 11 datasets. In head-to-head

comparison with each of the individual methods they included, both CV+MSM and

CV-MSM gave better results in more datasets than they gave worse results. Both

CV+MSM and CV-MSM had lower average error rates than any of the individual

methods that they included. Thus, these results demonstrate that cross-validation is a

good way to choose automatically which method to use in each dataset. Furthermore,

50

we note that CV+MSM had a lower error rate than CV-MSM in 10 datasets, and

higher error rate in only three datasets. This result further illustrates the advantages

of considering MSM as an alternative to DTW and ERP in practical applications.

In Figures 3.13, 3.14 and 3.15 we illustrate some specific examples where MSM

gives better or worse accuracy compared to its competitors. These examples help

build some intuition about how the behavior of different methods can influence clas-

sification results.

Figure 3.13 shows an example where MSM classifies the query correctly, whereas

cDTW and DTW give the wrong answer. The main difference between the query

and its MSM-based nearest neighbor is time shift, which causes mismatches at the

beginning and the end of the sequences. MSM erases (via small moves and merges)

the mismatched points with relatively low cost. In DTW, the cost of matching the

extra points prevents this training object from being the nearest neighbor of the

query. The time shift affects cDTW even more severely, as the warping window is

too small to compensate for the shift.

Figure 3.14 shows another example where the query is classified correctly by

MSM, and incorrectly by cDTW and DTW. Here, the query contains a valley between

times 80 and 100, and that valley is not matched well by the query’s MSM-based

nearest neighbor. MSM “collapses” the mismatched valley to a single point with

relatively low cost. In DTW, the cost of matching elements of the training object to

points in that valley is large enough to prevent this training object from being the

nearest neighbor of the query.

Figure 3.15 shows a case where MSM gives the wrong answer, whereas cDTW,

DTW and ERP give the right answer. For that query, we show both its MSM-based

nearest neighbor (denoted as D), which belongs to the wrong class, as well as its

MSM-based nearest neighbor (denoted as S) among training examples of the same

51

class as the query. The main difference between the query and D is a peak and a

valley that the query exhibits between time 200 and time 250. This difference gets

penalized by DTW, cDTW, and ERP, and thus, according to those measures the

query is closer to S than to D. On the other hand, the MSM distance between the

query and D is not affected much by the extra peak and valley of the query. Thus,

according to MSM, the query is closer to D than to S.

Figures 3.14 and 3.15 indicate that MSM penalizes extra peaks and valleys less

severely than cDTW, DTW, and ERP. This may be a desirable property in data

where such extra peaks and valleys appear due to outlier observations. We simulated

this situation in the following experiment: for each test example of each of the 20

UCR datasets, we modified that example by adding an extra peak. The width of the

peak was 10 elements, and the height of the peak was chosen randomly and uniformly

between 0 and 80. Two examples of this modification are shown on Figure 3.16. We

measured the error rates of MSM and its competitors on this modified dataset. We

note that the training examples were not modified, and thus the free parameters

chosen via cross-validation for MSM and cDTW remained the same.

Due to lack of space, the table of error rates for this experiment is provided

as supplementary material. The summary of those results is that, while the average

error rates of all methods increase, MSM suffers significantly less than its competitors.

MSM gives lower error rate than cDTW, DTW, and the Euclidean distance on all 20

datasets. Compared to ERP, MSM does better on 16 datasets, worse in 3 datasets,

and ties ERP in 1 dataset.

Finally, Table 3.4 compares the efficiency of MSM to that of its competitors.

As expected, the Euclidean distance and cDTW are significantly faster than MSM,

DTW, and ERP. In all datasets the running time for MSM was between 0.97 and 2

times the running time of DTW and ERP. Running times were measured on a PC

52

with 64-bit Windows 7, an Intel Xeon CPU running at 2GHz, 4GB of RAM, and

using a single-threaded implementation.

3.6 Discussion

This chapter has described MSM, a novel metric for time series, that is based

on the cost of transforming one time series into another using a sequence of individual

Move, Split, and Merge operations. MSM has the attractive property of being both

metric and invariant to the choice of origin, whereas DTW is not metric, and ERP

is not invariant to the choice of origin. These properties may make MSM a more

appealing choice, compared to existing alternatives, in various domains. Metricity, in

particular, allows the use of a large number of existing tools for indexing, clustering

and visualization, that have been designed to work in arbitrary metric spaces.

We have presented a quadratic-time algorithm for computing the MSM distance

between two time series. A large part of the paper has been dedicated to explaining

the algorithm and proving its correctness. At the same time, despite the relatively

complex proof, the actual algorithm is quite short and easy to implement, as shown

on Figure 3.10, and on the implementations we have posted online.

Experiments on all 20 datasets available at the UCR time series archive [3]

demonstrate that, in ten of the 20 datasets, MSM produces lower nearest neighbor

classification error rate than constrained DTW, unconstrained DTW, ERP, and the

Euclidean distance. The fact that MSM gave the best accuracy in several datasets

supports the conclusion that MSM is a method worth being aware of and experiment-

ing with, in domains where practitioners currently use DTW or ERP. The attractive

theoretical properties of MSM are an additional factor that can make MSM an ap-

pealing choice, compared to existing alternatives.

53

Table 3.1. Information on the 20 UCR datasets that we have used in these experi-
ments. For each dataset, the table shows the number of classes, the number of training
objects, the number of test objects, the length of each sequence in the dataset, the
value of c used by MSM on that dataset, and the length of the warping window (as
specified in [3]) used by cDTW on that dataset.

class train. test seq. MSM cDTW
Dataset num. size size length c param.

Coffee 2 28 28 286 0.01 3
CBF 3 30 900 128 0.1 11
ECG 2 100 100 96 1 0

Synthetic 6 300 300 60 0.1 6
Gun Point 2 50 150 150 0.01 0
FaceFour 4 24 88 350 1 2

Lightning-7 7 70 73 319 1 5
Trace 4 100 100 275 0.01 3
Adiac 37 390 391 176 1 3
Beef 5 30 30 30 0.1 0

Lightning-2 2 60 61 637 0.01 6
OliveOil 4 30 30 570 0.01 1

OSU Leaf 6 200 242 427 0.1 7
SwedishLeaf 15 500 625 128 1 2

Fish 7 175 175 463 0.1 4
FaceAll 14 560 1690 131 1 3
50words 50 450 455 270 1 6

Two Patterns 4 1000 4000 128 1 4
Wafer 2 1000 6174 152 1 1
Yoga 2 300 3000 426 0.1 2

average

54

Table 3.2. 1-nearest neighbor classification error rates attained by MSM, constrained DTW
(denoted as cDTW), unconstrained DTW (denoted as DTW), ERP, and the Euclidean dis-
tance, on each of the 20 datasets in the UCR repository of time series datasets [3]. The last
row indicates the average error rate over all 20 datasets. We also show, for each dataset, the
statistical significance(p-value) of the difference between the two best-performing methods
for that dataset. The last two columns show the results of the CV+MSM and CV-MSM
hybrid methods, described in the text, where the distance measure used for each dataset is
the one that minimizes training error.

p CV CV
Dataset MSM cDTW DTW ERP Euclid. value +MSM -MSM

Coffee 0.236 0.179 0.179 0.25 0.25 0.5 0.179 0.179
CBF 0.012 0.004 0.003 0.003 0.148 0.5 0.006 0.003
ECG 0.11 0.12 0.23 0.13 0.12 0.3285 0.117 0.12

Synthetic 0.027 0.017 0.007 0.037 0.12 0.2076 0.007 0.007
Gun Point 0.06 0.087 0.093 0.04 0.087 0.1595 0.078 0.087
FaceFour 0.057 0.114 0.17 0.102 0.216 0.0224 0.057 0.114

Lightning-7 0.233 0.288 0.274 0.301 0.425 0.2476 0.288 0.288
Trace 0.07 0.01 0 0.17 0.24 0.1599 0 0
Adiac 0.384 0.391 0.396 0.379 0.389 0.3276 0.384 0.379
Beef 0.5 0.467 0.5 0.5 0.467 0.5 0.467 0.467

Lightning-2 0.164 0.131 0.131 0.148 0.246 0.5 0.131 0.131
OliveOil 0.167 0.167 0.133 0.167 0.133 0.5 0.167 0.167

OSU Leaf 0.198 0.384 0.409 0.397 0.483 < 0.0001 0.198 0.384
SwedishLeaf 0.104 0.157 0.21 0.12 0.213 0.0703 0.104 0.157

Fish 0.08 0.16 0.167 0.12 0.217 0.0448 0.08 0.16
FaceAll 0.189 0.192 0.192 0.202 0.286 0.2243 0.189 0.197
50words 0.196 0.242 0.31 0.281 0.369 0.01 0.196 0.242

Two Patterns 0.001 0.0015 0 0 0.09 0.5 0.0003 0
Wafer 0.004 0.005 0.02 0.011 0.005 0.2249 0.008 0.011
Yoga 0.143 0.155 0.164 0.147 0.17 0.2207 0.143 0.155

average 0.147 0.164 0.179 0.175 0.234 0.140 0.162

55

Table 3.3. We indicate the number of UCR datasets for which MSM produced better,
equal, or worse accuracy compared to ERP, and also compared to DTW.

MSM better Tie MSM worse
MSM vs. cDTW 13 1 6
MSM vs. DTW 12 1 7
MSM vs. ERP 13 2 5

MSM vs. Euclidean 18 0 2

Table 3.4. Runtime efficiency comparisons. For each dataset, in the MSM time column,
the time it took in seconds to compute all distances from the entire test set to the entire
training set. In the rightmost four columns we show the factor by which MSM was slower

than each of cDTW, DTW, ERP, and the Euclidean distance.

MSM cDTW DTW ERP Euclidean
Dataset time (sec) factor factor factor factor

Coffee 1.59 13.25 1.49 1.42 159
CBF 16.05 3.77 1.51 1.61 94.41
ECG 2.88 3.56 1.55 1.46 48

Synthetic 10.89 8.71 1.51 1.35 36.3
Gun Point 4.14 10.89 1.48 1.18 103.5
FaceFour 9.59 17.76 1.99 0.97 479.5

Lightning-7 14.17 14.61 1.56 1.15 472.33
Trace 30.89 1.98 1.38 1.74 514.83
Adiac 103.33 2.52 1.28 1.03 178.16
Beef 6.11 2.54 1.14 0.97 611

Lightning-2 51.62 2.76 1.28 1.23 1720.67
OliveOil 8.83 1.89 1.04 1.03 883

OSU Leaf 259.16 2.94 1.27 1.09 959.85
SwedishLeaf 125.31 10.55 1.38 1.16 113.92

Fish 183.3 2.28 1.17 1.06 1018.33
FaceAll 491.56 12.89 1.25 1.28 111.46
50words 323.13 3.13 1.3 1.07 359.03

Two Patterns 2348.1 9.33 1.6 1.56 157.91
Wafer 3281.24 11.05 1.51 1.18 148
Yoga 4606.48 2.43 1.25 1.07 988.52

min 1.890 1.040 0.970 36.300
max 17.760 1.990 1.740 1,720.670

median 3.665 1.380 1.170 268.595
average 6.942 1.397 1.231 457.886

56

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3
MSM alignment

time

va
lu

e	

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3
DTW alignment

time

va
lu

e

Figure 3.14. An example from the Swedish Leaf dataset, where MSM does better than
DTW. The query series is shown in blue. Its nearest neighbor according to MSM is shown in
red, and belongs to the same class as the query. For MSM (left) and and DTW (right), the
alignment between the red and the blue series is shown via links connecting corresponding
elements. .

0 50 100 150 200 250 300

−1.5
−1

−0.5
0

0.5
1

1.5

time

va
lu

e

S: same−class NN of Q according to MSM
Q: query

0 50 100 150 200 250 300

−1.5
−1

−0.5
0

0.5
1

1.5

time

va
lu

e

D: NN of Q according to MSM
Q: query

Figure 3.15. An example from the Trace dataset where MSM does worse than DTW and
ERP. On the left, we show in blue Q, a query series, and in red S, the nearest neighbor
(according to MSM) of Q among training examples of the same class as Q. On the right,
we show in blue the same query Q, and in red we show D, the overall nearest neighbor
(according to MSM), which belongs to a different class. .

0 50 100 150 200 250 300
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

time

va
lu

e

noisy
original

0 50 100 150 200 250 300
−2
−1

0
1
2
3
4
5
6

time

va
lu

e

noisy
original

Figure 3.16. Two examples of a peak added to time series. In blue we show the original
time series. The modified version is the same as the original time series, except for a small
region (shown in red) of 10 values, where we have added a peak. .

57

CHAPTER 4

REDUCING JOINTBOOST-BASED MULTICLASS CLASSIFICATION TO

PROXIMITY SEARCH

Many real-world applications involve recognizing a very large number of classes,

a number that can range from thousands to millions. Examples of such applications

include biometrics-based identification (based on faces and/or fingerprints), hand and

human body pose classification, speech and sign language recognition, and generic

object recognition using computer vision. An important problem in such domains is

designing recognition methods that are scalable and that achieve efficient runtime in

the presence of such a large number of classes.

Large margin methods, such as boosting [52, 53] and support vector machines

(SVMs) [54], have been very successful in recent years in various pattern recognition

domains. A common way to apply such methods to multiclass problems is to train a

one-versus-all (OVA) classifier for each class [55, 56]. However, a major bottleneck of

such approaches is that, given a new pattern to classify, all OVA classifiers must be

applied to that pattern, so as to identify the OVA classifier that yields the strongest

response. This leads to time complexity that is linear to the number of classes, which

can lead to prohibitively large classification times in large multiclass domains with

thousands or millions of classes.

JointBoost [56] is a method that has recently attracted significant attention

in the vision community. In JointBoost, the OVA classifiers are trained jointly, and

are forced to share features. In practice, this typically leads to both higher accuracy

and faster classification time. Higher accuracy is obtained because the impact of

58

each feature is evaluated simultaneously on multiple OVA problems, thus making the

estimate of that impact more reliable than if measured only on a single OVA problem.

Faster classification time is obtained because the total number of unique features that

need to be extracted from an input image is drastically reduced, as features are shared

among multiple classifiers.

Although JointBoost drastically improves feature extraction time, the time com-

plexity of classifying an input image with JointBoost is still linear to the number of

classes, as is the case with other OVA methods based on boosting or SVMs. As

the number of classes becomes large, feature extraction time becomes a negligible

part of total classification time, and most of the time is spent on computing the re-

sponse of each OVA classifier. A key contribution of this thesis, as described in this

chapter, is showing that, given a pattern to classify using JointBoost, identifying the

strongest-responding OVA classifier for that pattern can be treated as a proximity

search problem, and more specifically as a nearest neighbor search problem in a vec-

tor space. This result allows us to use a vast array of vector indexing methods, e.g.,

[57, 58, 41, 59, 60], so as to improve classification time.

To demonstrate the computational advantage that can be obtained by reduc-

ing JointBoost classification to nearest neighbor search, we have implemented and

evaluated a simple, easy-to-use vector indexing method based on principal compo-

nent analysis (PCA). In our experiments, the proposed method achieves a speedup

of two orders of magnitude over standard JointBoost classification, in a hand pose

recognition system where the number of classes is close to 50,000, with negligible loss

in classification accuracy. Our method also yields promising results in experiments

on the widely used FRGC-2 face recognition dataset, where the number of classes is

535.

59

4.1 Related Work

Large margin methods, such as boosting methods [52, 53] and support vector

machines (SVMs) [54], have been widely used in recent years. Large margin methods

are appealing because of their good generalization properties and their state-of-the-

art performance in many applications (e.g., [56]). The standard strategy for applying

large margin methods to a multiclass problem is to decompose the multiclass problem

into a set of binary problems [55, 56].

Different types of multiclass-to-binary decompositions can be defined using

error-correcting output codes [55, 61]. The most commonly used decompositions are

into all-pairs problems, where a classifier is trained to discriminate between each pair

of classes, or into one-vs.-all (OVA) problems, where, for each class, an OVA classifier

is trained to discriminate between that class and all other classes. To classify a query,

typically all binary classifiers are applied on the query pattern. An exception is the

the DAGSVM method [62], that uses the all-pairs scheme but requires a number of

classifier evaluations that is linear, not quadratic, to the number of classes.

One way to achieve classification time sublinear to the number of classes is to

decompose the multiclass problem into a sublinear number of binary problems. In

theory, recognizing n classes can be decomposed to log2 n binary problems. However,

such sublinear decompositions are rarely used because they define binary problems

with unnatural and hard-to-learn class boundaries, leading to low classification ac-

curacy. OVA and all-pairs decompositions, on the other hand, lead to more natural

binary classification boundaries, and this explains the popularity of those decompo-

sitions in practice.

While OVA and all-pairs methods are frequently used in practice [63, 64, 56], the

time complexity of those methods is at least linear to the number of classes. Linear

60

complexity means that these methods are hard to scale to problems with a very large

number of classes. Torralba, et al. [56] propose the JointBoost method for speeding

up classification time. In JointBoost, the OVA models share weak classifiers among

them. While sharing weak classifiers has improved both accuracy and efficiency in

the experiments of [56], in JointBoost it is still the case that all OVA classifiers are

applied to each pattern at runtime. Our method can be applied on top of JointBoost

and significantly reduce classification time, as shown in the experiments.

In ClassMap [63], OVA classifiers and patterns are embedded into a common

vector space, where the strongest responding OVA classifier for each pattern can be

found more efficiently. ClassMap can be applied on top of more general large-margin

methods, whereas the method proposed in this paper is designed for JointBoost-based

OVA classifiers. On the other hand, the mapping proposed in this paper is lossless,

and preserves information as to which OVA classifier gives the strongest response for

a pattern; ClassMap does not guarantee preserving such information.

Some additional methods have been proposed for speeding up specific large mul-

ticlass problems. Efficient articulated pose estimation is achieved in [65] by combining

hierarchical classifiers into a tree structure. Hierarchical template matching has been

used for pedestrian detection [66] and articulated pose estimation [67]. Articulated

pose can also be treated as a multidimensional regression problem, and estimators

can be trained that directly map observations into vectors from a continuous pose

space [68, 69]. However, many domains (e.g., face recognition) do not lend them-

selves readily either to hierarchical decomposition or to regression-based estimation.

In contrast, our method can readily be applied in any domain where JointBoost is

applicable, and thus is significantly more general than the above-mentioned domain-

specific approaches.

61

4.2 Review: Multiclass Recognition Using JointBoost

Let X be a space of patterns, and Y be a finite set of class labels. Every pattern

X ∈ X has a class label L(X) ∈ Y. In JointBoost [56], for each class y ∈ Y a boosted

classifier Hy : X → R is trained to discriminate between patterns of class y and all

other patterns. Classifier Hy is of the following form:

Hy =

d
∑

m=1

αy,mhm + ky , (4.1)

where each hm is a weak classifier with weight αy,m, and ky is a class-specific constant

that gives a way to encode a prior bias for each class y [56]. We should also note that,

in JointBoost, weights αy,m are constrained to be either 1 or 0 (depending on whether

Hy is using weak classifier hm or not), but the method proposed in this paper does

not use that constraint, and can be applied regardless of the possible values for αy,m.

Higher (more positive) responses Hy(Q) indicate higher confidence that the true

class label L(Q) of pattern Q is y. To classify a query Q ∈ X, we evaluate Hy(Q) for

all y ∈ Y, and classify Q as belonging to the class y for which Hy(Q) is maximized.

More specifically, if we denote as H(Q) the output of the multiclass classifier H for

pattern Q, H(Q) is defined as:

H(Q) = argmaxy∈Y
Hy(Q) . (4.2)

At runtime, given a pattern Q to classify, the standard approach is to apply

all OVA classifiers Hy, and identify the y such that Hy gives the strongest response.

Clearly, this approach has complexity linear to the number of classes. Our goal in this

paper is to show that the strongest-responding classifier Hy can be found efficiently,

using vector search methods, without needing to evaluate Hy(Q) for all y. This topic

is addressed in the next sections.

62

4.3 Reduction to Nearest Neighbor Search

The core observation underlying our method is that, for JointBoost-based multi-

class recognition, both test patterns and OVA classifiers can be represented as vectors,

specifying points on the surface of a hypersphere. Finding for a test pattern Q the

strongest-responding OVA classifier Hy can be done by doing nearest neighbor search

on those points.

In particular, we will map both OVA classifiers and test patterns into a (d+2)-

dimensional vector space, where d is the number of weak classifiers that are used to

define the OVA classifiers. We denote by V (Q) and V (Hy) respectively the vectors

corresponding to test pattern Q and OVA classifier Hy. In defining this mapping, we

will explicitly ensure that all resulting vectors have the same norm. Ensuring that all

V (Hy) and V (Q) have the same norm will be used in reducing the problem of finding

the winning OVA classifier for each Q to the problem of finding the nearest neighbor

of V (Q) among all V (Hy).

We begin by defining the vector V (Hy) corresponding to each OVA classifier

Hy:

V (Hy) = (αy,1, . . . , αy,d, ky, cy) . (4.3)

In the above equation, αy,m and ky are the weights and class-bias terms used in

Equation 4.1, and cy is a class-specific quantity that ensures that all V (Hy) have the

same Euclidean norm.

Quantity cy can be determined as follows: first, we need to identify what the

maximum norm of any V (Hy) would be if we set all cy to zero:

Nmax =

√

√

√

√maxy∈Y[(
d

∑

m=1

α2
y,m) + k2

y] . (4.4)

63

Then, we define cy as:

cy =

√

√

√

√N2
max − [(

d
∑

m=1

α2
y,m) + k2

y] . (4.5)

By defining cy this way, it can easily be verified that the Euclidean norm of every

V (Hy) is equal to Nmax.

Now we can define the vectors corresponding to test patterns. In particular,

given a pattern Q ∈ X, we define an auxiliary vector Vorig(Q), and the vector of

interest V (Q), as follows:

Vorig(Q) = (h1(Q), . . . , hd(Q), 1, 0) , (4.6)

V (Q) =
NmaxVorig(Q)

‖Vorig(Q)‖
, (4.7)

(4.8)

where ‖V ‖ denotes the Euclidean norm of V , and hm are the weak classifiers used in

Equation 4.1.

Using these definitions, Equation 4.2 can be rewritten as follows:

H(Q) = argmaxy∈YHy(Q) (4.9)

= argmaxy∈Y(Vorig(Q) · V (Hy)) (4.10)

= argmaxy∈Y
(V (Q) · V (Hy)) , (4.11)

where V1 ·V2 denotes the dot product between vectors V1 and V2. To justify the above

lines, we first observe that the (d+2)-th coordinate of V (Hy), which is set to cy, does

not influence Vorig(Q) ·V (Hy), since the (d+2)-th coordinate of each Vorig(Q) is set to

zero. Therefore, it can be easily verified that, for all Hy, Hy(Q) = Vorig(Q) · V (Hy).

Also, since V (Q) is just a scaled version of Vorig(Q), the same Hy that maximizes

Vorig(Q) · V (Hy) also maximizes V (Q) · V (Hy).

64

We will now take one additional step, to show that maximizing the dot product

between V (Hy) and V (Q) is the same as minimizing the Euclidean distance between

V (Hy) and V (Q). That can be easily shown, by using the fact that both V (Q) and

V (Hy) are vectors of norm Nmax, because the dot product and the Euclidean distance

for vectors of norm Nmax are related as follows:

‖V (Q) − V (Hy)‖
2 = 2N2

max − 2(V (Q) · V (Hy)) . (4.12)

The above equation can be easily derived as follows:

‖V (Q) − V (Hy)‖
2 = (4.13)

= (V (Q) − V (Hy)) · (V (Q) − V (Hy)) (4.14)

= (V (Q) · V (Q)) + (V (Hy) · V (Hy)) − (4.15)

2(V (Q) · V (Hy)) (4.16)

= 2N2
max − 2(V (Q) · V (Hy)) , (4.17)

using the fact that (V (Q) · V (Q)) = (V (Hy) · V (Hy)) = N2
max.

By combining this result with that of Equation 4.11, it follows readily that:

H(Q) = argminy∈Y
(‖V (Q) − V (Hy)‖) . (4.18)

This result means that, given a test pattern Q, finding the strongest-responding OVA

classifier Hy is reduced to finding the nearest neighbor of V (Q) among all vectors

V (Hy). The next section describes how to use that fact for speeding up multiclass

recognition.

4.4 A Simple Vector Indexing Scheme

So far we have established that, in order to classify via JointBoost a test pattern

Q, it suffices to find the nearest neighbor of V (Q) among all vectors V (Hy). Clearly,

65

vectors V (Hy) can be computed off-line and stored in a database. The importance

of reducing JointBoost-based classification to nearest neighbor search is that a vast

array of vector indexing methods can be used to speed up this search, such as, e.g.,

the methods in [57, 58, 41, 59, 60].

In order to illustrate the computational savings that can be obtained by treating

JointBoost-based classification as a nearest neighbor search problem, we have imple-

mented a simple and easy-to-use vector indexing method that is based on principal

component analysis (PCA) [70]. Since the set of vectors V (Hy) is computed off-line,

we can use those vectors for an additional off-line step, where PCA is used to identify

the principal components of those vectors and the corresponding projection matrix Φ.

Given a test pattern Q, its vector V (Q) can be projected to Φ(V (Q)) online, and then

Φ(V (Q)) can be compared to the projections Φ(V (Hy)) of the vectors corresponding

to classifiers Hy.

PCA can easily be used within a filter-and-refine retrieval framework [43]: given

a user-defined integer parameter p, filter-and-refine works as follows:

• Input: A test pattern Q, and its vector representation V (Q).

• Filter step: Compute the projection Φ(V (Q)) to the lower-dimensional space,

and find the nearest neighbors of Φ(V (Q)) among the set of all Φ(V (Hy)). Keep

the top p nearest neighbors, where p is a user-defined parameter, as mentioned

above.

• Refine step: For each of the top p nearest neighbors, compute Hy(Q).

• Output: Return the Hy yielding the strongest response Hy(Q), among the Hy’s

evaluated during the refine step.

As long as d′ ≪ d (where d′ is the number of dimensions of Φ(V (Q)), and d

is the number of weak classifiers), the filter step is significantly faster than simply

66

applying all Hy to Q. At the refine step we do evaluate some classifiers Hy, but, if

p ≪ d, these classifiers are only a small subset of the entire set of OVA classifiers.

4.4.1 Guarantees of Accuracy

We should note that the simple filter-and-refine method outlined above does

not guarantee achieving the same accuracy as brute-force search. In other words,

it does not guarantee that the Hy retrieved at the refine step will be truly the one

that we would have identified if we had simply evaluated Hy(Q) for all y. However,

our filter-and-refine method can be easily modified to guarantee achieving the same

accuracy as brute-force search.

More specifically, we can utilize the fact that PCA is a contractive mapping,

meaning that the Euclidean distance between Φ(V (Q)) and Φ(V (Hy)) is guaranteed

to be not greater than the Euclidean distance between V (Q) and V (Hy). When

the filter step estimates distances based on a contractive mapping, it is well-known

that the refine step can be defined in a way that guarantees finding the true nearest

neighbor. Details on that topic can be found at [43]. In our experiments we found

that, although we use a filter-and-refine version that does not guarantee finding the

nearest neighbor 100% of the time, the accuracy that we obtained in practice was so

high that it was not worth implementing a more complicated version.

We should note that a large variety of vector and metric indexing methods also

guarantee finding the correct nearest neighbor, e.g., the methods in [59, 60, 42]. Such

methods can easily be integrated into the filter step of our method.

4.5 Classification Time Complexity

Given a test pattern Q, the time that it takes to classify Q using the proposed

method can be decomposed to the following costs:

67

• Weak classifier cost: The cost of computing hm(Q) for each weak classifier hm.

This takes time O(d), where d is the number of weak classifiers. For JointBoost,

it is empirically observed in [56] that d tends to increase logarithmically with

the number of classes, so this time cost should become a negligible fraction of

total time as the number of classes increases.

• Projection cost: The cost of computing the PCA projection Φ(V (Q)). If Φ

projects from d + 2 dimensions to d′ dimensions, this takes time O(d2), and

becomes a negligible fraction of total time as the number of classes increases,

assuming that, as mentioned earlier, d scales logarithmically with the number

of classes.

• Filter cost: The cost of measuring Euclidean distances between Φ(V (Q)) and

Φ(V (Hy)) for each Hy. This takes time O(d′|Y|), where |Y| is the number

of classes. This is still linear to the number of classes, but we can obtain a

big constant factor of savings if d′ ≪ d. We should also note that several

methods exist for sublinear nearest neighbor search in vector spaces, including

the popular LSH method [58], and such methods can be easily integrated into

our method to achieve time sublinear to the number of classes.

• Refine cost: The cost of evaluating Hy(Q) for each Hy selected at the filter step.

This takes time O(dp), where p is the number of classifiers Hy selected at the

filter step. As shown in our experiments, typically p ≪ |Y|, so the refine cost is

much smaller than simply evaluating Hy(Q) for each Hy.

4.6 Experiments

The datasets used in our experiments were generated from two original datasets:

a dataset of hand images, where the task is to estimate the handshape and the 3D

68

orientation, and the Face Recognition Grand Challenge (FRGC) Version 2 dataset [71]

of 2D face images. Using these datasets, we compare the proposed method to brute-

force search, which is the standard way of classifying patterns using OVA classifiers,

not only for JointBoost, but in general for methods based on boosting and support

vector machines [55, 64]. We also compare our method with ClassMap [63], a method

that can be used to speed up OVA-based classification. We only used ClassMap

embeddings trained using AdaBoost, as specified in [63], because these embeddings

were shown in [63] to outperform other versions of ClassMap embeddings.

4.6.1 Datasets

4.6.1.1 The Hand Dataset

This dataset contains hand images of 81 basic hand shapes defined in American

Sign Language (ASL). There are 30 different out-of-plane view angles for each shape,

and 20 in-plane rotations for each out-of-plane view, for a total of 81 × 30 × 20 =

48,600 hand pose classes. The training examples used for each class were 150 synthetic

images, generated using Poser 5 [72].

For each synthetic hand image, cluttered background from random real im-

ages was added to the regions outside the hand silhouette. From each hand image,

a histogram-of-oriented-gradient (HOG) feature vector [73] of dimension 2,025 was

extracted. The image was normalized to 48 by 48 pixels, which was divided into cells

of size 6 by 6, with neighboring cells overlapping by half. For each cell, nine edge

orientation bins were evenly spaced between 0 to 180 degrees. Bins in each cell were

normalized with the surrounding 3 by 3 cells. All the bins from all the cells were

vectorized into a feature vector of 2025 feature components for a hand sample. Each

weak classifier hm is a feature stump, completely specified by parameters fm and tm,

69

that checks whether the fm-th HOG feature is greater than tm or not. JointBoost

selected 3,000 weak classifiers after training on this dataset.

For evaluation, we used a synthetic test set, disjoint from the training set, and

consisting of 281 synthetic hand images (chosen randomly among images from all

48,600 classes). In addition to the synthetic hand images, we also used a second test

set of 992 real hand images, collected from 7 subjects and with cluttered background.

Because of the difficulties in visually estimating the 3D hand orientation on an image,

we assigned to each hand image three different class labels (out of the 48,600 possible

class labels). Each of those three class labels corresponded to the same handshape

and a 3D orientation within 30 degrees of the manually labeled orientation. The

classification result is considered correct iff it is equal to one of those three labels.

4.6.1.2 The Face Dataset

This dataset contains all 2D face images in the FRGC-2 dataset [71], amounting

to 36817 face images from 535 subjects (i.e., 535 classes). The original resolution of

the face images was either 1704 × 2272, or 1200 × 1600. All images were converted

to gray images and normalized to 100 by 100 pixels. A PCA space was learned from

4,000 uniformly sampled training faces of all the subjects. The features of face images

were their projections on the top 2,509 PCA components, which accounts for 99.9% of

the variance. JointBoost selected 10,000 weak classifiers after training on this dataset.

Each weak classifier hm is a feature stump, completely specified by parameters fm

and tm, that checks whether the fm-th PCA dimension is greater than tm or not. For

evaluation, we used 300 face images, that were chosen randomly, and excluded from

the training set.

70

50 100 150 200 250 300 350
0.4

0.5

0.6

0.7

0.8

0.9

Results on synthetic hands

 speedup factor

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Brute Force
OVA−VS
ClassMap

Figure 4.1. Accuracy vs. speed-up factor obtained by the proposed OVA-VS method,
ClassMap, and brute force, on the test set of synthetic hand images. The brute force
accuracy, which is a single value equal to 90.75%, is shown as a horizontal line..

100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Results on real hands

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
OVA−VS
ClassMap

Figure 4.2. Accuracy vs. speed-up factor obtained by the proposed OVA-VS method,
ClassMap, and brute force, on the test set of real hand images. The brute force
accuracy, which is a single value equal to 4.9%, is shown as a horizontal line..

4.6.2 Results

Performance is measured in terms of speed-up factor with respect to brute force,

and classification accuracy. The speed-up factor is the ratio between classification

time using our method (or ClassMap) and classification time using brute-force search.

By definition, brute force achieves a speed-up factor of 1. For the proposed method,

the parameters that need to be chosen are d′, i.e., the dimensionality of the lower-

dimensional PCA space, and p, i.e., the number of OVA classifiers to be evaluated at

the refine step. To reduce the number of free parameters to one, we decided to set

for our method, in all experiments, p = nd′

d
, where n is the number of classes. This

71

1 2 3 4 5 6
0.6

0.65

0.7

0.75

0.8

0.85

Results on the FRGC−2 data

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
OVA−VS
ClassMap

Figure 4.3. Accuracy vs. speed-up factor obtained by the proposed OVA-VS method,
ClassMap, and brute force, on the test images of the FRGC-2 face dataset. The brute
force accuracy, which is a single value equal to 87.0%, is shown as a horizontal line..

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0.85

Results on the FRGC−2 data, excluding projection cost

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
OVA−VS
ClassMap

Figure 4.4. Accuracy vs. speed-up factor (ignoring the projection cost of OVA-VS and
ClassMap) obtained by the proposed OVA-VS method, ClassMap, and brute force,
on the test images of the FRGC-2 face dataset. The brute force accuracy, which is a
single value equal to 87.0%, is shown as a horizontal line..

constraint is a simple choice that forces the filter and the refine step to have the same

running time. The PCA projection matrix, for each dataset, was computed based

solely on the vectors V (Hy) of the OVA classifiers obtained for each dataset.

In presenting the results we refer to the proposed method as OVA-VS, an

acronym for OVA-based classification using vector search.

4.6.2.1 Results on the Synthetic Hands Dataset

Figure 4.1 compares the performance of the proposed OVA-VS method, ClassMap,

and brute-force search on the test set of 281 synthetic hand images. In Figure 4.1,

72

we plotted a single performance curve for OVA-VS, obtained by constraining d′ and

p as specified above, and varying d′. In contrast, for ClassMap, we plotted a family

of curves, each curve corresponding to a different embedding dimensionality, ranging

from 1 to 90 dimensions, and to varying p. The single OVA-VS curve corresponds

to much better accuracy vs. efficiency trade-offs than any of the results obtained for

ClassMap. As a highlight, OVA-VS gave a speed-up factor of 120 over brute-force

search for a classification accuracy of 90.75% (equal to that of brute-force search),

whereas ClassMap gave a speed-up factor of only 29 for that accuracy. OVA-VS

yielded this result for d′ = 12 and p = 194.

Figure 4.2 shows results for the test set of 992 real hand images. Once again,

the single OVA-VS curve corresponds to much better accuracy vs. efficiency trade-

offs than any of the results obtained using different dimensionality and p parameters

for ClassMap. OVA-VS gave a speed-up factor of 290 over brute-force search for a

classification accuracy of 6.85%. The highest accuracy obtained for ClassMap was

5.3%, for a speedup factor of 105. We note that both ClassMap and OVA-VS attained

accuracies higher than brute-force search for the real images. This is a somewhat

curious result, that was also reported in the original ClassMap paper [63]. Intuitively,

the lower-dimensional projection of OVA-VS and embedding of ClassMap can be seen

as new features extracted from the output of the weak classifiers, and according to our

results these new features lead to higher accuracy than the original weak classifiers.

Additionally, on the real hand images, OVA-VS yields an accuracy of 5.35%, still

slightly better than that of brute force search, for a speedup factor of 365. ClassMap

produces accuracies better than or equal to that of brute force search only for speedup

factors less than or equal to 127.

It is worth noting that, even using brute force, classification accuracy drops

significantly from 90.75% for the synthetic test images to 4.9% for the real hand

73

images. The relatively low accuracy for the real hand images simply reflects the

difficulty of estimating hand pose from a single image, due to the very large number

of possible classes. Since there are 48,600 classes, a classification accuracy of 4.9% is

still 2381 times higher than the accuracy of a random classifier. We should also note

that even with this accuracy, the proposed hand pose estimation system can be useful

for initializing a hand tracker based on particle filtering, where temporal integration

can be used to significantly improve overall tracking accuracy.

4.6.2.2 Results on the FRGC-2 Dataset

Figure 4.3 plots the results attained with the proposed OVA-VS method, ClassMap,

and brute force on the FRGC-2 dataset. We note that for an accuracy of 84.2%, which

is 2.8% lower than that of brute-force search, OVA-VS achieved a speedup factor of

only 1.6. As seen on the same figure, ClassMap achieved a speedup of 3.0 for the

same accuracy of 84.2%, and a speedup of 1.8 for an accuracy of 87%, which is equal

to the accuracy of brute-force search.

The main reason for the relatively small improvement in classification time

attained by both OVA-VS and ClassMap is the relatively small number of classes

in this dataset: only 535, compared to the 48,600 classes of the synthetic hands

dataset. As a result, generating a single dimension of a PCA projection, or a single

dimension of a ClassMap embedding, are operations that incur 1/535 of the cost of

brute-force search, compared to 1/48600 for the hands dataset. In other words, the

relatively small number of classes makes the projection cost defined in Section 4.5

more pronounced. As discussed in Section 4.5, the projection cost for our method

becomes negligible as the number of classes becomes large, and this is also true for

ClassMap.

74

Figure 4.4 plots classification accuracy vs. speedup factor, but ignores, in

computing running times, the projection cost of generating PCA projections and

ClassMap embeddings for the queries. This curve is representative of the perfor-

mance we could expect if we had a much larger number of classes, that would make

the projection costs negligible. In that case we see that the proposed OVA-VS method

performs better than ClassMap, obtaining, for example, a speedup factor of 12.9 for

a classification accuracy of 86.0%. For that same accuracy, ClassMap gives a speedup

factor of 4.6.

The results that exclude the projection cost are promising, and indicate that we

can expect significant classification time improvements from using our method in face

recognition domains with tens of thousands of classes or even more. Unfortunately,

we are not aware of any publicly available face dataset with such a large number of

classes. To the best of our knowledge, no public dataset of 2D face images contains

more classes than the FRGC-2 dataset, while still providing a sufficient number of

training examples per class to learn OVA classifiers. While several important ap-

plications require face recognition in the presence of tens of thousands of classes or

more (especially in homeland security and surveillance domains), security and privacy

concerns make it difficult for such datasets to be made publicly available.

4.6.2.3 Summary of results

On both synthetic and real hand images, the proposed OVA-VS method sig-

nificantly outperformed ClassMap and led to speedups of two orders of magnitude

compared to brute force with no losses in classification accuracy. On the face dataset,

the performance of OVA-VS was hampered by the projection cost, which was rela-

tively high due to the relatively small number (535) of classes. When we excluded

the projection cost from the overall running time, to get a picture of the expected

75

performance when the number of classes reaches 10000 or more, OVA-VS again sig-

nificantly outperformed ClassMap, and gave speedups of over one order of magnitude

compared to brute force, with very little reduction (from 87% to 86%) in classification

accuracy.

4.7 Discussion

We have shown that multiclass recognition using JointBoost can be reduced,

at runtime, to a nearest neighbor search problem in a vector space. This reduction

allows the use of a wide array of vector indexing methods for speeding up multiclass

recognition. In our experiments, we have shown that a very simple indexing method,

that uses PCA to select a few candidate nearest neighbors, works very well in practice

and achieves, for the hands dataset, speedups of two orders of magnitude with no loss

in classification accuracy, compared to brute-force search. Our method outperforms

ClassMap in the hands dataset, and if we ignore the projection cost (which would

be negligible if we had a significantly larger number of classes), our method also

outperforms ClassMap on the faces dataset.

In comparing our method with ClassMap, it is worth noting that ClassMap

defines a lossy vector representation of OVA classifiers Hy and patterns Q. Therefore,

if VCM is the vector mapping defined by ClassMap, the nearest neighbor of VCM(Q)

among all VCM(Hy) is not guaranteed to correspond to the Hy maximizing Hy(Q). In

contrast, the method proposed in this paper defines a lossless vector representation,

where the nearest neighbor always corresponds to the strongest-responding classifier.

We should emphasize that, instead of PCA, any other vector indexing method

can also be integrated in the filter step of the proposed method. Several vector index-

ing methods guarantee finding the correct nearest neighbor for each query. Using such

76

methods for the filter step of our algorithm guarantees that classification accuracy

using our method will always equal that of brute-force search.

Naturally, an interesting topic for future exploration is to try a larger number

of vector indexing methods, in order to identify methods that tend to work well in

practice within the proposed framework. Also, as the proposed method is only appli-

cable to JointBoost-based classification, it will be interesting to investigate whether

similar methods can also be designed for other types of large margin classifiers, such

as support vector machines. Progress in this area can lead to a broader theory of how

to integrate database indexing methods with general large margin methods, so as to

achieve scalable classification time complexity in domains with a very large number

of classes.

77

CHAPTER 5

DIMENSIONALITY REDUCTION FOR EFFICIENT SEARCH IN PROTEIN

SEQUENCES

This chapter focuses on the problem of efficiently searching a large database

of strings in order to find the ones most similar to a given query string, under the

edit distance. More specifically, we are interested in the special case where the query

string is long (hundreds of letters or longer). An application that can benefit from

progress on this topic is similarity search in biological databases (where each string

is the encoding of a protein or a DNA sequence). Another potential application is

searching databases of literature or code, to identify possible cases of plagiarism.

However, in our discussion we will limit ourselves to the problem of searching protein

databases.

In particular we are interested in finding, for a specific query string Q and range

δ, all the database strings whose distance from Q is less than δ. For convenience, we

typically express δ as a percentage of the query length Q. For example, if the query

length is 1000 and δ = 15%, we want to retrieve all database strings whose distance

from Q is less than or equal to 150.

Evaluating the similarity between two strings under the edit distance is compu-

tationally expensive, as it takes time linear to the product of the lengths of the two

strings. A common framework for speeding up similarity searches is the filter-and-

refine approach. For each query, the filter step has a fast, but less accurate, way of

identifying a small set of candidate objects from the database. The refine step per-

78

forms expensive similarity evaluations to determine which of the candidates match

the desired search.

The distribution of pairwise distances between long protein strings has low

variance, meaning that such distances are very likely to have values relatively close to

a certain mean distance. This property, which is a manifestation of the well-known

curse of dimensionality, makes tree-like index structures ([76], [77]), which prune the

search space using the triangle inequality, ineffective for this problem. Alternative

methods can use an index structure (e.g., q-gram inverted lists [74]) or a simpler

similarity measure (e.g., alphabet reduction [75]).

Our main contribution is defining an informative embedding of the strings into

a new space, in which distances can be measured orders of magnitude faster. The

embedding is based on appearances of a few substrings among the protein strings.

In particular we select a set of codewords, and for each protein string we generate a

new string that shows the occurrences of these codewords in the original string. Such

a representation captures the similarity information since similar strings are more

likely to have common substrings. The distance between the embedded objects is

highly informative regarding the distance between the original strings. At the same

time, the embedding maps each string into a much shorter string (assuming some

appropriate choices in defining the embedding), so that computing distances in the

embedded space is much faster.

5.1 Related Work

One method for speeding up string comparisons is alphabet reduction ([75]).

Essentially groups of letters are collapsed to one symbol (for example all the odd

letters of the alphabet are replaced by a 1 and all the even letters are replaced by

79

a 0). Promising results are reported in [75], using that method in conjunction with

reference-based embeddings. However, alphabet reduction does not reduce the length

of the strings, and thus it takes similar time to compute the distance between two

strings, regardless of whether we have reduced the alphabet or not. In contrast, the

method proposed here drastically reduces the length of the strings, thus dramatically

speeding up the computation of approximate distances.

Q-gram methods([74]) are based on the idea that if two sequences have a certain

degree of similarity they must share a minimum number of subsequences (q-grams).

In the off-line step the occurrence of each q-gram in each of the database objects

is recorded in an inverted list. For a query search, all the q-grams of that query

are extracted and their corresponding inverted lists are used to identify the database

objects that share a minimum number of q-grams with the query. Next a refine step

is performed to identify which of the candidates match the search requirements. This

method is guaranteed to always return all of the objects that match the search criteria.

One of the differences between this method and ours is that we do not use all of the

possible substrings and that we preserve some of the location/ordering information

from the original strings.

The actual implementation that we have used for Q-grams is from the publicly

available Flamingo Package, [78]. That package uses a smart implementation of the

edit distance that stops the building of the matrix if it can be easily determined that

the distance will be larger than the required threshold. Such quick determinations can

be obtained using letter counting, and also using partial distance estimates computed

by building the lower and upper half of the distance matrix separately.

Another indexing method ([79]) uses a set of reference objects and the triangle

inequality. The distances from the reference objects to the query and to the database

objects are used in conjunction with the triangle inequality to determine if a database

80

object is certainly within the required similarity range (that is it should be part of the

search result), certainly outside of it (excluded from the search result) or a possible

candidate. The resulting candidates are then evaluated using the edit distance and

the search result set is updated. This method is also exact, rendering all the objects

that match the search criteria. Its efficiency depends on the pruning power of the

distances to the reference objects and is thus hindered by the low variance in the

distribution of pairwise distances.

5.2 Method Description

Our method can be seen as a dimensionality reduction (DR) method. A specific

implementation of our method is given in Figure 5.1. For each query we identify, in a

greedy way, a set E of codewords, consisting of the the top t most frequent substrings

of length 2. The set of codewords has the property that there is no pair of strings

that have overlapping suffix-prefix (that is, for any two strings R, S ∈ E, no prefix

of R is a suffix of S, and no prefix of S is a suffix of R). Next we embed the query

and the database according to the occurrence of these codewords, as follows. Each

codeword is assigned a corresponding new letter, a sequence is parsed from left to

right, and as soon as one of the codewords is found it is replaced by its corresponding

letter. All the other parts of the original sequence are deleted. Thus, the resulting

string is significantly shorter than the original string. For example, the embedding of

string babfcde according to the codeword set E = {ab, cd} (where ab is mapped to 1

and cd is mapped to 2) is 12.

In the target space of the embedding, we perform brute-force search for embed-

ded database strings that are within a certain range of the embedding of the query

string. The range δ′ that we use in the target space depends on δ, i.e. the range that

81

the user has specified in the original space, and is equal to δf , where f is a scaling

factor greater than one. For example, if δ = 15% and f = 2, then δ′ = 30%. δ′

is higher than δ to account for the cases where the distance in the embedded space

is a higher percentage of the embedded query. This can easily happen because the

embedded query and database strings are drastically shorter than the original strings.

While we expect similar strings to map to similar embedded strings, the loss of in-

formation incurred by the embedding can lead to higher distances as percentages of

query length. Good values for f can be estimated in a straight-forward manner, us-

ing a training set of queries. This training set can be chosen as a subset from the

database, or alternatively we can use randomly generated strings.

The candidates identified using the filter step are then refined in the original

space.

Input:
Query sequence Q ∈ X.
Database set S ⊂ X.
Search range δ.
Number of codewords, t .
Adjustment scale factor for the target space f .

Output:
Result set, N ⊂ S, of database objects within the search range.

1. Find the top t most frequent codewords of Q, E.
2. Embed Q according to E.
3. d = ⌊|Q| ∗ δ⌋
4. For each X ∈ S:

(Length Filter) If abs(X − Q) > d:
reject X.

Else:
Embed X according to E: x = E(X)
If D(x, q) ≤ δ · |q| · f , then X is a candidate. Refine the search:

If D(X, Q) ≤ δ · |Q|, add X to the result set, N.

Figure 5.1. Dimensionality Reduction Search Algorithm.

82

5.2.1 Theoretical Analysis

Definition 1. A set of codewords E is a set of strings such that, for any strings R, S ∈

E, no prefix of R is a suffix of S, and no prefix of S is a suffix of R.

Theorem 1. (Contractiveness) Let X, Y be two strings, and E be a set of codewords as

defined above. Let x and y be the E-embeddings of X and Y . Then D(X, Y) ≥ D(x, y).

Proof: Let T (X, Y) be an optimal matching between X and Y . We represent X and

Y as a sequence of matching and non-matching subsequences. The non-matching

subsequences can be empty. In particular X = N1P1N2P2 . . . NmPmNm+1 and Y =

N ′
1P

′
1N

′
2P

′
2 . . . N ′

mP ′
mN ′

m+1. The P subsequences represent the parts of the strings

that are perfectly one-to-one matched: Pi = P ′
i 6= ∅ for all 1 ≤ i ≤ m. The N

subsequences represent the remaining pieces of the strings. For any Ni, N
′
i pair, at

most one of the substrings can be empty. They are matched using insertion, deletion

and substitution. In this optimal matching, the cost of matching the P sequences is

zero. Therefore the cost of the match is: D(X, Y) =
∑m+1

i=1 max{|Ni|, |N
′
i|}.

Now we distinguish two cases:

1. The codewords do not cross the boundaries between N and P sequences. In

this case let x = n1p1 . . . pnnm+1, y = n′
1p

′
1 . . . p′nn

′
m+1 be a representation that

remembers the original matching. That is ni are the pairs extracted from Ni and

so on for all the other subsequences (P, P ′, N ′). Let t(x, y) be a matching, in the

embedded space, that matches ni with n′
i and pi with p′i for all 1 ≤ i ≤ m + 1.

The cost of matching the (p, p′) pairs is zero since they are identical (they

were created from identical pairs (P, P ′)). Since the embedding is based on

non-overlapping pairs, for all i, |ni| ≤ |Ni|/2. The cost to match (n, n′) pairs is

cost(t(x, y)) =

m+1
∑

i=1

max{|ni|, |n
′
i|} =

m+1
∑

i=1

max{
|Ni|

2
,
|N ′

i |

2
} =

83

1

2

m+1
∑

i=1

max{|Ni|, |N
′
i |} ≤

D(X, Y)

2
.

Since t(x, y) is not necessarily the optimal matching we have:

D(x, y) ≤ cost(t(x, y)) ≤
D(X, Y)

2
.

2. The codewords do cross some boundaries between N and P . This case can be

eliminated by not allowing codewords to have overlapping suffixes or overlapping

prefixes. In the embedded string, assign the pairs that cross boundaries to

the non-matching segments. Each pair is replaced by a letter and there was

at least one letter in the non-matching sequence of the original string that

was mismatched. Thus the cost of matching the non-matching pieces in the

embedded string is at most equal to that of matching them in the original

string:

D(x, y) ≤ cost(t(x, y)) ≤ D(X, Y).

�

Proposition 5. The conditions for a legal set of codewords E from Definition 1 are

necessary for proving that the embedding is contractive (in particular for satisfying

the property that one change in the original string should generate at most one change

in the embedded version of the string).

Proof: Proof by contradiction: . Let E = {ca, ac} and X = eaca. The E-embedding

of X is x = 2 (only ac is found). Let Y = caca. The E-embedding of Y is y = 11.

The lower bound property is not satisfied: D(X, Y) = 1 � 2 = D(x, y). �

84

5.3 Experiments

5.3.1 Datasets

For our experiments we use data from the UniProt dataset ([80]) of protein

sequences. It has 530264 strings over an alphabet of 25 letters. The protein strings

have variable length ranging from 2 to 35213. For our experiments, we have used

a dataset that uses a total of 28155 sequences (100 for test, 100 for validation and

27955 for the database). The set of 28155 sequences we have used consists of all

sequences in the UniProt dataset that have lengths between 801 and 1600. All 3

sets (test, validation, database) are disjoint, and membership in each dataset was

randomly assigned.

5.3.2 Methods

In the experiments we compare our method with other methods that have been

proposed in the literature for this problem. In particular, the methods that we eval-

uate are the following.

• Dimensionality reduction (DR): our method, as described in this chapter.

• Reference-based embedding: the method described in [79], that uses distances

to reference objects, and the triangle inequality, to quickly identify a small set of

candidate matches. For this method we have built a new index for each search

range.

• Q-Grams: the method described in [74], that uses inverted indexes of q-gram

occurrences to quickly identify candidate matches. We use Flamingo Package

code, [78], that the authors of [74] have made publicly available.

85

We compare our method with Q-grams and the reference-based embeddings.

For each method we report that cost as a percentage of the brute force cost and the

runtime. Our method is not exact and thus we also report the recall percentage there.

5.3.3 Evaluation Measures

• Retrieval accuracy: Here we measure, out of all the database objects that are

within the desired range from the query, the percentage that are successfully

retrieved by the system. When we report cumulative results on a set of queries,

we sum up the total number of correct results that the system retrieves and

we divide it by the total number of correct results that should be retrieved.

Reference-based embeddings and Q-grams are exact methods, and they guar-

antee an accuracy of 100%. Our method does not guarantee 100% accuracy

and thus it is important to document the accuracy that our method actually

achieves at each experiment.

• Runtime: The actual average runtime per query that it takes for each method

to produce results, measured over our set of 100 test queries. Runtimes were

measured on a 2GHz Intel Xeon (QuadCore, but our experiments used a single

core) with 4GB of RAM, under Windows 7.

• Retrieval cost estimate: One limitation of measuring efficiency using running

times is that those times can depend significantly on particular aspects of the

hardware, such as memory, cache size, bus speed and so on. Running times

also depend on the efficiency of the implementation, compiler optimizations

and choice of programming language. As an alternative platform-independent

measure, we use a more theoretical estimate, where we try to use worse-case

estimates for our method and best-case estimates for the competitors. We

86

believe that these numbers help obtain a clearer picture of the efficiency that

our method achieves compared to the competitors.

Our measure of retrieval efficiency is reported as a percentage of brute-force

search. Brute-force has to compute entries on dynamic programming tables.

If |Q| denotes the length of the query and |X| denotes the sum of lengths of

database strings, then the number of entries that must be computed in these

dynamic programming tables is |Q| ∗ |X|. Since all methods we evaluate have

a refine step, we measure, at each experiment, a quantity that we denote as

x′, which is the sum of lengths of all database strings that are considered at

the refine step. Fraction x′/|X| is a lower bound of the computational cost of a

method, as a percentage of brute-force. It is a lower bound because it does not

take into account the cost of any processing outside the refine step (such as the

cost of the filter step).

For Q-grams and reference-based embeddings we report x′/|X| as our estimate

of retrieval efficiency. As noted above, this is a favorable method for those

methods, as it ignores all cost outside of the refine step.

For our method we add to x′/|X| two additional quantities: an estimate of

the embedding cost and an estimate of the filter cost. For the embedding cost

we consider every letter of the embedded database strings to cost as much as

computing an entry in a dynamic programming table. For the filter cost, the

computation is more straightforward, as the filter step measures edit distances

in the embedded space. We simply count the total number of entries in the

dynamic programming tables computed during the filter step. So, overall, the

efficiency of our method is measured in units of dynamic programming table

entries, and we simply divide that cost by the cost of brute-force.

87

To report the retrieval efficiency over a set of queries, we simply report the

average of the retrieval efficiencies, x′/|X|, attained for the individual queries.

5.3.4 Implementation Choices

5.3.4.1 Dimension Reduction Method

To implement our method we need to make certain choices. Here we document

the choices we have made and the process for making those choices.

• Length of codewords: Here we have only considered codewords of length two.

As we obtained, in our opinion, satisfactory results, we did not consider longer

codewords.

• Number of codewords: We have experimented with using two, three, and four

codewords. Most of the times four codewords worked better in our validation

set, so that is the setting we have used in our results on the test set, unless

otherwise specified.

• Scaling factor, f : As a reminder, the scaling factor f is used in equation δ′ = fδ,

where δ is the user-specified search range, and δ′ is the search range that our

system uses in the embedded space. Larger values of f , bring accuracy closer

to 100%, but also bring the search cost closer to the cost of brute force search.

To choose f for each experiment, we used our validation set, and we identified

the smallest value of f that produced over 99% retrieval accuracy. The reason

we chose 99% was that we wanted close to 100% accuracy, but at the same

time we did not want the value of f to be determined by a few query outliers.

Obviously, while the chosen value of f produces 99% accuracy on the validation

set, we still need to measure the actual retrieval accuracy obtained by those

88

values on the test set. As the results show, the accuracy obtained on the test

set does not differ much from the accuracy obtained on the validation set.

5.3.4.2 Q-Grams Method

For Q-grams, we made the following choices in our experiments:

• We used the DivideSkip merging algorithm because it was reported as being the

most efficient one in [74] and it also performed better in a few initial experiments

with our datasets.

• We used a filter tree with a length filter and fan of 10 for 4-grams. We ran

experiments for δ = .2 (since this was the first more challenging search range

for this method) with q-gram lengths between 2 and 7. We have found 4 to be

the optimal value. We have also experimented with different fanout values, but

they did not seem to make a difference.

5.3.4.3 Reference-Based Embedding

We have used 3000 random sample objects from the database for references, but

we have excluded the cost of computing the embedding and filtering the results in the

reported cost of this method. Both the theoretical cost and the runtime presented in

this chapter include only the refine step.

5.3.5 Results

The brute force runtime in the implementation of our method was 298.72 sec-

onds per query. Our method was implemented in Java. The brute force runtime for

Q-grams (with all the optimizations mentioned in section 5.1) was 248.13 seconds per

query.

89

Table 5.1 shows the retrieval cost estimate, as defined in section 5.3.3, for all

methods, for searches within ranges 5%, 10%, 15%, 20%, 20% and 30% of the query

length. We note that our method achieves significantly lower costs than the com-

petitors for δ = 25% and δ = 30%. For values of δ between 5% and 20%, q-grams

are actually more efficient. We also note that, while our method does not guarantee

100% retrieval accuracy (which the competitors do guarantee), the actual accuracy

obtained does not fall below 99% and is actually measured at 100% for most of the

cases.

Table 5.2 shows the runtimes for all methods, again for searches within ranges

5%, 10%, 15%, 20%, 20% and 30% of the query length. The results here closely re-

semble the retrieval cost results, except that our method almost ties q-grams for

δ = 20%. Q-grams produce the best results for δ values of 5%, 10%, 15%, and our

method produces the best results for δ = 25% and δ = 30%.

Table 5.3 shows, for our method, for each search range, the cost and runtime

as reported in the previous tables, and also the scale factor f and resulting δ′ search

range in the embedded space.

Table 5.4 shows details for the reference-based embedding method. In particu-

lar, for different search ranges, we show the retrieval cost, the percentage of database

objects that were pruned using the embedding, and the runtime (with parameters

m = k = 2000 chosen randomly as discussed in section 5.3.4) The embedding cost

reflects computing the distances between the query and the 2000 reference objects

and it is 7.15% of the brute force cost.

Finally, Table 5.5 shows the difference in length between the original query and

database strings and their embedded versions. We note that, on average, embedded

queries were about 20 times shorter than the original queries, and that the embed-

ded database strings were about 50 times shorter than the original database strings.

90

Table 5.1. Retrieval cost estimate (as defined in 5.3.3) for all methods. Parameter δ

indicates the distance range (expressed as a fraction of query length) within which we want
to retrieve database matches.

δ Retrieval Dimensionality Reference-based Q-grams
accuracy reduction embedding

5% 100% 0.1272% 0.4848% 0.0076%
10% 100% 0.1513% 3.3781% 0.0144%
15% 100% 0.1770% 6.1162% 0.0213%
20% 100% 0.2285% 9.4995% 0.1207%
25% 99.14% 0.4179% 13.1420% 77.9949%
30% 100% 6.9830% 17.4084% 80.6616%

Table 5.2. Runtimes (as defined in 5.3.3) for all methods. Parameter δ indicates the
distance range (expressed as a fraction of query length) within which we want to retrieve
database matches. All runtimes are reported in seconds.

δ Retrieval Dimensionality Reference-based Q-grams
accuracy reduction embedding

5% 100% 0.14 1.52 0.05
10% 100% 0.24 10.35 0.09
15% 100% 0.35 18.82 0.14
20% 100% 0.48 29.32 0.47
25% 99.14% 0.82 40.47 139.37
30% 100% 10.95 53.59 190.71

The fact that the embedded queries are not shortened by as large a factor as the

database strings is expected; the embedding used for every query (and that is applied

to the database, so as to process that query) is query-specific, and identifies the most

frequently occurring codewords in the query.

5.4 Discussion and Future Work

The experimental results demonstrate that, for higher values of δ, our method

produces significantly lower costs and runtimes than the competitors. One price that

we pay with our method, compared to the competitors, is the loss of guarantee of

91

Table 5.3. Experimental results for dimensionality reduction. The number of codewords is
4. δ′ is the search range used in the embedded space: δ′ = δ · scale.

δ (%) Recall (Accuracy) Cost (%BF) Runtime (seconds) Scale δ’ (%)
5% 100% 0.1272% 0.14 3.6 18.00%
10% 100% 0.1513% 0.24 3.5 35.00%
15% 100% 0.1770% 0.35 2.7 40.50%
20% 100% 0.2285% 0.480 2.2 44.00%
25% 99.14% 0.4179% 0.82 1.9 47.50%
30% 100% 6.9830% 10.950 1.9 57.00%

Table 5.4. Experimental results for reference-based embeddings competitor method. The
embedding cost is 7.15% of the brute-force cost, and is not included in the reported cost.
The reference objects were chosen randomly from the database objects. No optimization
was performed (m = k = 2000). When a query is presented, each database object is
evaluated based on the k = 2000 triangle inequalities.

δ Cost Pruned Runtime
5% 0.49% 99.51% 1.52
10% 3.38% 96.62% 10.35
15% 6.12% 93.88% 18.82
20% 9.50% 90.5% 29.32
25% 13.14% 86.86% 40.47
30% 17.41% 82.59% 53.59

Table 5.5. The average length of test and database sequences in the original space and
in the embedded spaces produced by dimensionality reduction using the top 4 codewords
(DR-4). The % columns show the ratio between the new size and the original size (e.g. in
DR-4% first row, 5.08% = 51.09/1036.07 * 100).

data original DR-4 DR-4%
test 1036.07 51.09 5.08%

database 1035.97 21.02 2.03%

92

100% retrieval accuracy. At the same time, we believe that this price can be an

acceptable trade-off in several domains, given the significant runtime savings that our

method achieves.

It will be interesting to explore directions for improving the performance of our

method. One approach may be to implement multiple filter steps, in place of the

single filter step that our method uses. These filter steps can be applied in sequence,

so that each filter step is applied only on the candidates selected by the previous step,

and each filter step does somewhat more work(e.g., by using more codewords) than

the previous step, so as to prune away some more candidates.

93

CHAPTER 6

DISCUSSION AND CONCLUSIONS

This thesis described methods for similarity search in multimedia databases. We

have illustrated the different types of uses that such search can have, with applications

such as sign language recognition, time series analysis, face recognition, and search

in biological databases.

The fundamental problems in similarity search are accuracy and efficiency. Ac-

curacy may refer to how well results agree with human judgment, or with how well

an efficient approximation preserves the information of the slower method that it

approximates. The thesis has proposed two methods, for two different domains that

improve retrieval accuracy, by producing results that are more in line with human

expectations. For sign language recognition, we have proposed a similarity measure

that produces good results for the target application of looking up the meaning of

individual signs. For time series analysis, we have proposed the MSM metric, which in

several public datasets produces better nearest neighbor classification accuracy than

existing alternatives.

With respect to improving retrieval efficiency, the thesis has proposed two meth-

ods that significantly improve efficiency in two target domains. One method, focuses

on the topic of speeding up recognition of a large number of classes. A main contribu-

tion there has been to actually show that under certain conditions, multiclass recogni-

tion, becomes mathematically equivalent to similarity-based search. This equivalence

allows the use of off-the-shelf existing similarity indexing methods to speed-up mul-

ticlass recognition.

94

Finally, for the problem of searching biological databases of strings, we have

proposed a dimensionality reduction method, that significantly speeds up similarity

searches under the edit distance for strings with length of several hundred characters

or more. Our method is based on mapping such strings to much shorter representa-

tions, based on occurrences of a small number of codewords. The proposed method is

simple to implement, outperforms existing competitors, and gives particularly good

results for edit distance ranges between 10% and 25% of the query length, where

existing methods typically break down.

While the proposed four methods have extended the state of the art in their

respective target domains, there are still important challenges remaining in the broad

area of similarity search of multimedia databases.In many cases, such as sign language

recognition, our state-of-the-art similarity measures still fall significantly short of

human accuracy. Furthermore, the complexity of searching very large databases,

remains prohibitive for several interesting applications, such as searching the World

Wide Web for images and video of interest. We hope that the contributions made

in this thesis move the state of the art somewhat closer, to addressing the important

challenges that lie ahead. We are also interested in exploring, in future work, some

of these remaining challenges.

95

REFERENCES

[1] A. Stefan, H. Wang, and V. Athitsos, “Towards automated large vocabulary

gesture search,” in Conference on Pervasive Technologies Related to Assistive

Environments (PETRA), 2009.

[2] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, Q. Yuan, and A. Thangali,

“The American Sign Language lexicon video dataset,” in IEEE Workshop on

Computer Vision and Pattern Recognition for Human Communicative Behavior

Analysis (CVPR4HB), 2008.

[3] E. Keogh, “The UCR time series data mining archive.

http://www.cs.ucr.edu/ eamonn/tsdma/index.html,” 2006. [Online]. Avail-

able: http://www.cs.ucr.edu/∼eamonn/TSDMA/index.html

[4] H. Wang, A. Stefan, S. Moradi, V. Athitsos, C. Neidle, and F. Kamangar, “A

system for large vocabulary sign search,” in Workshop on Sign, Gesture and

Activity (SGA), 2010.

[5] A. Stefan, V. Athitsos, and G. Das, “The Move-Split-Merge metric for time

series,” IEEE Transactions on Knowledge and Data Engineering (TKDE), ac-

cepted in March 2012, to appear.

[6] A. Stefan, V. Athitsos, Q. Yuan, and S. Sclaroff, “Reducing JointBoost-based

multiclass classification to proximity search,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2009.

[7] R. A. Tennant and M. G. Brown, The American Sign Language Handshape Dic-

tionary. Washington, DC: Gallaudet U. Press, 1998.

96

[8] H. Lane, R. J. Hoffmeister, and B. Bahan, A Journey into the Deaf-World. San

Diego, CA: DawnSign Press, 1996.

[9] J. Schein, At home among strangers. Washington, DC: Gallaudet U. Press,

1989.

[10] J. B. Kruskal and M. Liberman, “The symmetric time warping algorithm: From

continuous to discrete,” in Time Warps. Addison-Wesley, 1983.

[11] B. Bauer, H. Hienz, and K.-F. Kraiss, “Video-based continuous sign language

recognition using statistical methods.” in International Conference on Pattern

Recognition, 2000, pp. 2463–2466.

[12] P. Dreuw, T. Deselaers, D. Keysers, and H. Ney, “Modeling image variability in

appearance-based gesture recognition,” in ECCV Workshop on Statistical Meth-

ods in Multi-Image and Video Processing, 2006, pp. 7–18.

[13] T. Starner and A. Pentland, “Real-time American Sign Language recognition

using desk and wearable computer based video,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1371–1375, 1998.

[14] C. Vogler and D. N. Metaxas, “Parallel Hidden Markov Models for American Sign

Language recognition,” in IEEE International Conference on Computer Vision

(ICCV), 1999, pp. 116–122.

[15] Y. Cui and J. Weng, “Appearance-based hand sign recognition from intensity

image sequences.” Computer Vision and Image Understanding, vol. 78, no. 2,

pp. 157–176, 2000.

[16] Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visual event detection using

volumetric features,” in IEEE International Conference on Computer Vision

(ICCV), vol. 1, 2005, pp. 166–173.

97

[17] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hid-

den conditional random fields for gesture recognition.” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), vol. 2, 2006, pp. 1521–1527.

[18] T. Kadir, R. Bowden, E. Ong, and A. Zisserman, “Minimal training, large lexi-

con, unconstrained sign language recognition,” in British Machine Vision Con-

ference (BMVC), vol. 2, 2004, pp. 939–948.

[19] J. Zieren and K.-F. Kraiss, “Robust person-independent visual sign language

recognition.” in Iberian Conference on Pattern Recognition and Image Analysis

(IbPRIA), vol. 1, 2005, pp. 520–528.

[20] C. Valli, Ed., The Gallaudet Dictionary of American Sign Language. Washing-

ton, DC: Gallaudet U. Press, 2006.

[21] H. Cooper and R. Bowden, “Learning signs from subtitles: A weakly supervised

approach to sign language recognition,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2009, pp. 2568–2574.

[22] A. Farhadi, D. A. Forsyth, and R. White, “Transfer learning in sign language,” in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

[23] A. Bobick and J. Davis, “The recognition of human movement using temporal

templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), vol. 23, no. 3, pp. 257–267, 2001.

[24] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as space-

time shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 12, pp. 2247–2253, 2007.

[25] G. Yao, H. Yao, X. Liu, and F. Jiang, “Real time large vocabulary continu-

ous sign language recognition based on OP/Viterbi algorithm,” in International

Conference on Pattern Recognition, vol. 3, 2006, pp. 312–315.

98

[26] M. Jones and J. Rehg, “Statistical color models with application to skin de-

tection,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1999, pp. I:274–280.

[27] H. Rowley, S. Baluja, and T. Kanade, “Rotation invariant neural network-based

face detection,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 1998, pp. 38–44.

[28] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence match-

ing in time-series databases.” in ACM International Conference on Management

of Data (SIGMOD), 1994, pp. 419–429.

[29] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by wavelets,” in

IEEE International Conference on Data Engineearing (ICDE), 1999, pp. 126–

133.

[30] Y. Moon, K. Whang, and W. Han, “General match: a subsequence matching

method in time-series databases based on generalized windows.” in ACM Inter-

national Conference on Management of Data (SIGMOD), 2002, pp. 382–393.

[31] Y. Moon, K. Whang, and W. Loh, “Duality-based subsequence matching in

time-series databases.” in IEEE International Conference on Data Engineering

(ICDE), 2001, pp. 263–272.

[32] T. Argyros and C. Ermopoulos, “Efficient subsequence matching in time series

databases under time and amplitude transformations.” in International Confer-

ence on Data Mining, 2003, pp. 481–484.

[33] D. Rafiei and A. O. Mendelzon, “Similarity-based queries for time series data.”

in ACM International Conference on Management of Data (SIGMOD), 1997,

pp. 13–25.

99

[34] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shirato, and D. R. Kaeli,

“Subsequence matching on structured time series data.” in ACM International

Conference on Management of Data (SIGMOD), 2005, pp. 682–693.

[35] E. Keogh, “Exact indexing of dynamic time warping,” in International Confer-

ence on Very Large Databases (VLDB), 2002, pp. 406–417.

[36] M. Vlachos, D. Gunopulos, and G. Kollios, “Discovering similar multidimensional

trajectories,” in IEEE International Conference on Data Engineering (ICDE),

2002, pp. 673–684.

[37] L. Latecki, V. Megalooikonomou, Q. Wang, R. Lakämper, C. Ratanamahatana,

and E. Keogh, “Elastic partial matching of time series,” in European Conference

on Principles of Data Mining and Knowledge Discovery (PKDD), 2005, pp. 577–

584.

[38] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for moving

object trajectories,” in ACM International Conference on Management of Data

(SIGMOD), 2005, pp. 491–502.

[39] L. Chen and R. T. Ng, “On the marriage of lp-norms and edit distance,” in

International Conference on Very Large Databases (VLDB), 2004, pp. 792–803.

[40] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals,” Soviet Physics, vol. 10, no. 8, pp. 707–710, 1966.

[41] G. R. Hjaltason and H. Samet, “Index-driven similarity search in metric spaces,”

ACM Transactions on Database Systems (TODS), vol. 28, no. 4, pp. 517–580,

2003.

[42] P. Yianilos, “Data structures and algorithms for nearest neighbor search in gen-

eral metric spaces,” in ACM-SIAM Symposium on Discrete Algorithms, 1993,

pp. 311–321.

100

[43] G. Hjaltason and H. Samet, “Properties of embedding methods for similarity

searching in metric spaces,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), vol. 25, no. 5, pp. 530–549, 2003.

[44] M. Morse and J. Patel, “An efficient and accurate method for evaluating time

series similarity,” in ACM International Conference on Management of Data

(SIGMOD), 2007, pp. 569–580.

[45] Y. Sakurai, M. Yoshikawa, and C. Faloutsos, “FTW: fast similarity search under

the time warping distance,” in Principles of Database Systems (PODS), 2005,

pp. 326–337.

[46] N. Brisaboa, O. Pedreira, D. Seco, R. Solar, and R. Uribe, “Clustering-based

similarity search in metric spaces with sparse spatial centers,” in SOFSEM

2008: Theory and Practice of Computer Science, ser. Lecture Notes in Com-

puter Science, V. Geffert, J. Karhumaki, A. Bertoni, B. Preneel, P. Navrat, and

M. Bielikova, Eds. Springer Berlin / Heidelberg, 2008, vol. 4910, pp. 186–197.

[47] V. Ganti, R. Ramakrishnan, J. Gehrke, A. L. Powell, and J. C. French, “Cluster-

ing large datasets in arbitrary metric spaces,” in IEEE International Conference

on Data Engineering (ICDE), 1999, pp. 502–511.

[48] P. Indyk, “A sublinear time approximation scheme for clustering in metric

spaces,” in Proceedings of Annual Symposium on Foundations of Computer Sci-

ence (FOCS), 1999, pp. 154–159.

[49] I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and Appli-

cations. Springer, 2005.

[50] C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM: The generative topo-

graphic mapping,” Neural Computation, vol. 10, no. 1, pp. 215–234, 1998.

101

[51] C. Faloutsos and K. I. Lin, “FastMap: A fast algorithm for indexing, data-mining

and visualization of traditional and multimedia datasets,” in ACM International

Conference on Management of Data (SIGMOD), 1995, pp. 163–174.

[52] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a sta-

tistical view of boosting,” Annals of Statistics, vol. 28, no. 2, pp. 337–374, 2000.

[53] R. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated

predictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[54] V. Vapnik, The nature of statistical learning theory. Springer-Verlag New York,

Inc., 1995.

[55] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to binary: a

unifying approach for margin classifiers,” Journal of Machine Learning Research,

vol. 1, pp. 113–141, 2000.

[56] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features for mul-

ticlass and multiview object detection,” IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), vol. 29, no. 5, pp. 854–869, 2007.

[57] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional spaces:

Index structures for improving the performance of multimedia databases,” ACM

Computing Surveys, vol. 33, no. 3, pp. 322–373, 2001.

[58] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via

hashing,” in International Conference on Very Large Databases (VLDB), 1999,

pp. 518–529.

[59] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The A-tree: An index

structure for high-dimensional spaces using relative approximation,” in Interna-

tional Conference on Very Large Databases (VLDB), 2000, pp. 516–526.

102

[60] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces,” in International

Conference on Very Large Databases (VLDB), 1998, pp. 194–205.

[61] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-

correcting output codes,” Journal of Artificial Intelligence Research, vol. 2, pp.

263–286, 1995.

[62] J. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGS for multiclass

classification,” in NIPS, 2000, pp. 547–553.

[63] V. Athitsos, A. Stefan, Q. Yuan, and S. Sclaroff, “ClassMap: Efficient multiclass

recognition via embeddings,” in IEEE International Conference on Computer

Vision (ICCV), 2007.

[64] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” Journal of

Machine Learning Research, vol. 5, pp. 101–141, 2004.

[65] E. J. Ong and R. Bowden, “A boosted classifier tree for hand shape detection,”

in Face and Gesture Recognition, 2004, pp. 889–894.

[66] D. Gavrila and V. Philomin, “Real-time object detection for “smart“ vehicles,”

in IEEE International Conference on Computer Vision, 2001, pp. 87–93.

[67] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla, “Hand pose esti-

mation using hierarchical detection.” in ECCV Workshop on Human Computer

Interaction, 2004, pp. 105–116.

[68] A. Agarwal and B. Triggs, “Recovering 3D human pose from monocular images,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1,

pp. 44–58, 2006.

[69] T. E. de Campos and D. W. Murray, “Regression-based hand pose estimation

from multiple cameras,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 1, 2006, pp. 782–789.

103

[70] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

[71] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,

J. Marques, J. Min, and W. Worek, “Overview of the face recognition grand

challenge,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2005, pp. 947–954.

[72] Poser 5 Reference Manual, Curious Labs, Santa Cruz, CA, August 2002.

[73] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2005, pp. 886–893.

[74] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for approx-

imate string searches,” International Conference on data Engineering (ICDE),

2008.

[75] P. Papapetrou, V. Athitsos, G. Kollios, and D. Gunopulos, “Reference-based

alignment in large sequence databases,” Proceedings of the Very Large Database

Endowment (PVLDB), vol. 2, no. 1, pp. 205–216, 2009.

[76] C. Traina, A. J. M. Traina, B. Seeger, and C. Faloutsos, “Slim-trees: High perfor-

mance metric trees minimizing overlap between nodes,” International Conference

on Extending Database Technology (EDBT), pp. 51–65, 2000.

[77] M. R. Vieira, C. Traina, F. J. T. Chino, and A. J. M. Traina, “Dbm-tree: A

dynamic metric access method sensitive to local density data,” Brazilian Sym-

posium on Databases (SBBD), pp. 163–177, 2004.

[78] A. Behm, R. Vernica, S. Alsubaiee, S. Ji, J. Lu, L. Jin, Y. Lu, and C. Li, “UCI

Flamingo Package 4.0,” http://flamingo.ics.uci.edu/releases/4.0/, 2010.

[79] J. Venkateswaran, D. Lachwani, T. Kahveci, and C. Jermaine, “Reference-based

indexing of sequence databases,” in International Conference on Very Large

Databases (VLDB), 2006, pp. 906–917.

104

[80] http://www.ebi.ac.uk/uniprot/.

105

BIOGRAPHICAL STATEMENT

Alexandra Stefan was born in Bucharest, Romania, in 1979. She received her

B.S. degree in Computer Science and Mathematics from the University of Bucharest,

in 2002. She received her M.A. in Computer Science from Boston University in 2008,

and her Ph.D. degree in Computer Science from the University of Texas at Arlington

in 2012. Her research areas are computer vision, pattern recognition, and data mining,

with focus on applications in gesture and sign language recognition.

106

