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ABSTRACT

COMPARATIVE ANALYSIS OF VARIOUS CONTINUOUS

TIME DETERMINISTIC MODELS OF

TUMOR-IMMUNE INTERACTIONS

Robert Paul Childress, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Hristo Kojouharov

Cancer is historically a leading cause of death in the United States. In 2013, cancer

was the second leading cause of death with 584,881 deaths [18]. Having solely been

responsible for 22.5% of all deaths in 2013 alone [18], obtaining as complete an under-

standing as possible of cancer is obviously necessitated. This paper investigates de-

terministic ordinary differential equation models of increasing complexity simulating

avascular tumor growth and interactions with the innate immune response. After first

establishing a baseline of tumor growth resulting from the diffusion of local nutrients

[5], the effects on said growth of the native immune system response, chemotherapy,

immunotherapy, and various combinations of the aforementioned treatment options

and responses are investigated. These efforts focus on increasing the understand-

ing of tumor-immune interactions under various conditions and scenarios in hopes of

identifying the most effective approach in combating similar cancerous tumors.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

Cancer has afflicted mankind and the animal kingdom throughout recorded

history. Evidence has been discovered in fossilized bone tumors, mummified bodies,

and written manuscripts of the time. Effects of the bone cancer osteosarcoma as

well as cancer of the head and neck have been observed in mummified remains [37].

Though the word cancer had not been established yet, the oldest record of cancer

dates back to approximately 3,000 B.C. in ancient Egypt [37]. A textbook on trauma

surgery described eight cases of tumors removed from the breast. Short of brutal

removal, the Egyptians remarked no available treatments for the disease [37]. Those

same feelings of helplessness and frustration remain today for many modern forms of

cancer. With additional research similar to that presented in this paper, perhaps all

iterations of malignant cancer will one day be treatable.

Currently many treatments are available to those with cancer. Though many

courses of treatment are dependent on the type and location of cancer, generally

speaking, the options include surgical removal, radiation, hormone therapy, immunother-

apy, chemotherapy, and targeted therapy [37]. While treatments of cancer were in-

credibly rudimentary and largely ineffective early in history, the treacherous stigma

of cancer is pervasive even in modern society despite the innumerable advances of

medicine. As such many still do not seek out treatment or consult a doctor until it

is too late for successful eradication of the disease.
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The key to increased survivability is accurate and, preferably, early detection.

History notes, however, the unfortunate reality of cancer returning upon cessation

of treatment. With early detection being so important, it begs the question of what

options are available if detection methods and tests determine the prescence of cancer,

either initially or even after a full course of treatment for existing cancer, but the exact

location of the burgeoning tumor is not known. For example, a test might return

conclusive results regarding the existence of cancer cells in the body, but perhaps the

tumor is too infantile to be seen on image screens or the like. In such a situation, the

use of many location-specific treatment options are obviously limited.

Such situations are indicative of avascular tumors, i.e. those which are small

enough to be without a native vascular system within the cancerous growth itself

through which to transport important nutrients but large enough to be problematic

and require treatment. Instead such tumors resude adjacent to a viable nutrient

source, i.e. local blood vessel, from which to diffuse nutrients required for growth [17],

[5]. The aforementioned inherent differences from more mature cancerous growths

demand specific research and methods into the respective treatment of these type

tumors.

1.2 Structure of Paper

Motivated by the differences in treatment methods necessitated by the distinct

attributes and behavior of an avascular tumor, this paper investigates varying treat-

ment models and their respective levels of success. In Chapters 2 through 5, models

are discussed from the simplest, growth-only model to the most complex model ana-

lyzed with multiple models of intermediate complexity along the way.

Each model is introduced and described with its motivating reasoning, interac-

tion diagrams, a brief description of the mechanics at work, respective equation(s),

2



stability analysis of equilibrium points where possible, and graphs of varying nu-

merical simulations. Chapter 5 establishes the most efficient model discussed and

investigates slight variations of that model in hopes of increasing its effectiveness

even more. Discussion is had regarding further and future extensions of this study

and questions to be answered.

1.3 Implementation of Models

Depending on the inherent complexity of each model, some are implemented

in a scaffolded fashion when appropriate. First the foundational model of tumor-

immune interactions is presented, then a drug therapy term is introduced, followed

by an immunotherapy term, and then finally both external treatments are combined

to investigate the overall effects of the respective treatments in that particular model.

Each respective model and submodel is additionally analyzed for stationary points

and corresponding stability. All efforts are conducted with the goal of identifying

either a specific model or class of models which most effectively combats the cancer

tumor.
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CHAPTER 2

TUMOR GROWTH ONLY

2.1 Motivating the Model

The first model presented is a logistical growth model representative of an

avascular tumor unaffected by any immune response, native or external of the body.

This growth model was first presented in 1838 by Pierre François Verhulst [21] as he

was researching population growths and studying the works of Thomas R. Malthus

[29] and his compatriot Adolphe Quetelet [35]. It still remains a popular and accurate

model representing population dynamics. The interaction diagram below provides a

visual representation of the actions portrayed by this respective model.

Figure 2.1: Growth Only Interaction Diagram
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Increasing by the growth rate a0, this model of tumor growth serves as a base-

line of nutrient diffusion-restrained amassment until the tumor reaches its limiting

population of 1
b
, where b represents the inverse maximum population value. One can

easily see as T nears the value of 1
b
, the latter half of the growth term, i.e. (1− bT ),

will tend towards 0 thus ensuring the entire growth expression tends towards 0 and

stops the tumor growth entirely. Putting it all together yields the following single

equation, logistical growth model:

dT

dt
= a0T (1− bT ) (2.1)

2.2 Analysis of the Model

Finding equilibrium points of the model, Equation (2.1) is first set equal to zero

and solved for the variable T .

a0T (1− bT ) = 0 (2.2)

a0T = 0 1− bT = 0 (2.3)

T ∗

0 = 0 T ∗

1 =
1

b
(2.4)

With the two equilibrium points having been found, the stability of each re-

spective point needs establishing. Because the current model is comprised of a single

equation, the stability is found by taking the first derivative of dT
dt

with respect to the

5



variable T and then evaluating that derivative equation at each equilibrium point, T ∗

0

and T ∗

1 . Let T
′ = dT

dt
.

dT ′

dT
= a0T (−b) + a0(1− bT ) (2.5)

= −a0bT + a0 − a0bT (2.6)

= −2a0bT + a0 (2.7)

= −a0(2bT − 1) (2.8)

Evaluating Equation (2.8) at T ∗

0 yields dT ′

dT
= a0. Because a0 represents the

tumor growth rate and a0 > 0, dT ′

dT
(T ∗

0 ) > 0, thus indicating T ∗

0 as unstable. The

tumor cell population is growing away from T ∗

0 = 0.

Evaluating Equation (2.8) at T ∗

1 yields dT ′

dT
= −a0. Because a0 represents the

tumor growth rate and a0 > 0, dT ′

dT
(T ∗

1 ) < 0, thus indicating T ∗

0 as stable. The tumor

cell population is trending towards T ∗

1 = 1
b
.

6



Figure 2.2: Graph of dT ′

dT

Figure (2.4) demonstrates the linear function of the rate of change of the tumor

cell population over time versus the tumor cell population itself, i.e. dT ′

dT
. At T = 0

Equation (2.8) has a value of a0. At T = 1
2b

the same equation has a value of 0. Then

at T = 1
b
the equation has a value of −a0.

2.3 Numerical Simulation

Solving the above model in MATLAB using ode45 with initial values of T0 =

3 × 107 for tumor cell population [24], a0 = 0.13 for tumor cell growth [24], and

b = 2.3 × 10−10 for inverse tumor cell limiting population [24] we see the numerical
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simulation as follows. See Table A.1 for additional information regarding the model’s

initial values and parameter values.
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Figure 2.3: Growth Only

The results of the numerical simulation match those as expected from the sta-

bility analysis previously performed with the appropriately defined initial conditions.

The simulation grows away from T = 0 and tends towards the maximum tumor cell

population value represented by 1
b
where T = 4.35 × 108. The next logical step in

increasing the complexity of the model is to introduce native immune cells via a

competition term with the tumor cells and then observe the effects on the model.

8



CHAPTER 3

TUMOR-IMMUNE I

3.1 Base Model

3.1.1 Motivating the Model

This model represent the first interactions between the growing tumor and the

innate immune system of the host organism. The tumor grows according to the pre-

viously established growth term but is also lessened by the activity of the immune

response, specifically cytotoxic T cells.

Figure 3.1: Tumor-Immune I - Base Model Interaction Diagram

The immune response, represented by L and modeling CTL (cytotoxic T) cells,

is increased at a steady influx rate represented by the variable d but also decreased

as a result of natural decay as represented by the variable f . The tumor cells are

modeled by the same growth term as before but are also decreased by the interactions

9



with the immune system cells as represented by the term −c0TL where c0 is the tumor

cell kill rate [24]. These interactions involve the immune system CTL cells finding

and attacking the tumor cells. This basic tumor-immune system forms the following

two-equation model:

dT

dt
= a0T (1− bT )− c0TL (3.1)

dL

dt
= d− fL (3.2)

3.1.2 Analysis of the Model

Finding equilibrium points of this two-equation model, the simultaneous Equa-

tions (3.1) and (3.2) are first set equal to zero and solved for the respective variables

T and L.

dT

dt
= a0T (1− bT )− c0TL = 0

dL

dt
= d− fL = 0 (3.3)

T [a0(1− bT )− c0L] = 0 fL = d (3.4)

T = 0 a0(1− bT )− c0L = 0 L =
d

f
(3.5)

1− bT =
c0L

a0
(3.6)

bT = 1−
c0L

a0
(3.7)

bT =
a0 − c0L

a0
(3.8)

T =
a0 − c0L

a0b
(3.9)
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Substituting d
f
for L in Equation (3.9) produces the following two equilibrium

points:

T ∗

0 = 0 L∗

0 =
d

f
(3.10)

and

T ∗

1 =
a0f − c0d

a0bf
L∗

1 =
d

f
(3.11)

Let E∗

0 be the first equilibrium point containing L∗

0 and T ∗

0 , and let E∗

1 be the

second equilibrium point containing L∗

1 and T ∗

1 . Having found the two equilibrium

points of the model, the respective stability of E∗

0 and E∗

1 requires establishing. As

such, partial derivatives of each model equation, i.e. Equations (3.1) and (3.2), are

found with respect to each variable T and L. With these partial derivative expres-

sions, the Jacobian of the system is created. Evaluating the Jacobian matrix at each

equilibrium point, respective eigenvalues are then computed. The stability of each

equilibrium point is described by the signs of each pair of resulting eigenvalues. Let

T ′ = dT
dt
, and let L′ = dL

dt
.

∂T ′

∂T
= a0T (−b) + a0(1− bT )− c)L (3.12)

= −a0(2bT − 1)− c0L (3.13)

∂T ′

∂L
= −c0T (3.14)

∂L′

∂T
= 0 (3.15)

∂L′

∂L
= −f (3.16)

11



Let J be the Jacobian of the system. J0 represents the Jacobian matrix evalu-

ated at the first equilibrium point, E∗

0 .

J =







∂T ′

∂T
∂T ′

∂L

∂L′

∂T
∂L′

∂L






=







−a0(2bT − 1)− c0L −c0T

0 −f






(3.17)

J0 =







a0 −
c0d
f

0

0 −f






(3.18)

The next step in solving for the eigenvalues of J0 is finding the determinant

of the matrix created by the difference J0 − λI, where I is the appropriately sized

identity matrix. The determinant then creates the characteristic equation from which

the eigenvalues can be solved.

J0 − λI =







a0 −
c0d
f

− λ 0

0 −f − λ






(3.19)

det(J0 − λI) = 0 (3.20)

(a0 −
c0d

f
− λ)(−f − λ) = 0 (3.21)

λ1 = −f (3.22)

λ2 = a0 −
c0d

f
(3.23)
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The equilibrium point E∗

0 is stable when both λ1 and λ2 have negative real

parts, i.e. when f > 0 and a0 < c0d
f
. The equilibrium point E∗

0 is unstable when

either λ1 or λ2 has positive real parts, i.e. f < 0 or a0 >
c0d
f
. In a biological context,

f is a decay rate and will always be positive in the scope of this model. Therefore

the stability of E∗

0 depends upon the sign of λ2 and how it may change relative to the

parameter values used in the model.

With λ2 = a0 −
c0d
f
, the equilibrium point E∗

0 will be stable when the tumor

growth rate, a0, is less than the product of the constant influx of immune cells, d, and

the tumor-immune competition coefficient, c0, divided by the immune cell decay rate,

f . Alternatively, E∗

0 will be unstable when the tumor growth rate is greater than the

product of the constant influx of immune cells and the tumor-immune competition

term divided by the immune cell decay rate.

Having found the respective eigenvalues for E∗

0 , the process is repeated for the

second equilibrium point, E∗

1 . Using the same Jacobian matrix, J , from above, J1

represents the Jacobian matrix evaluated at E∗

1 .

13



J =







−a0(2bT − 1)− c0L −c0T

0 −f






(3.24)

J1 =







−a0[2b(
a0f−c0d

a0bf
)− s]− c0d

f
−c0(

a0f−c0d

a0bf
)

0 −f






(3.25)

=







−2a0f+c0d+a0f

f

−c0a0f+c0
2d

a0bf

0 −f






(3.26)

=







−2a0f+c0d+a0f

f

−c0a0f+c0
2d

a0bf

0 −f






(3.27)

As before, the next step in solving for the eigenvalues of J1 is finding its re-

spective determinant. This process then gives rise to the characteristic equation from

which the eigenvalues can be calculated.

J1 − λI =







−2a0f+c0d+a0f

f
− λ −c0a0f+c0

2d

a0bf

0 −f − λ






(3.28)

det(J1 − λI) = 0 (3.29)

(
−2a0f + c0d+ a0f

f
− λ)(−f − λ) = 0 (3.30)

λ1 =
c0d

f
− a0 (3.31)

λ2 = −f (3.32)
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The equilibrium point E∗

1 is stable when both λ1 and λ2 have negative real parts,

i.e. when f > 0 and a0 > c0d
f
. The equilibrium point E∗

1 is unstable when either λ1

or λ2 has positive real parts, i.e. f < 0 or a0 < c0d
f
. As previously mentioned, f is

a decay rate and will always be positive in the scope of this model. Therefore the

sign of λ2 and how it changes relative to the parameter values used in the model

determines the stability of E∗

1 .

The equilibrium point E∗

1 essentially has the opposite behavior as the previous

equilibrium point, E∗

0 : it is stable when the tumor growth rate, a0, is greater than the

product of the constant influx of immune cells, d, and the tumor-immune competition

coefficient, c0, divided by the immune cell decay rate, f . E∗

1 is then unstable when

the tumor growth rate is less than the product of the constant influx of immune cells

and the tumor-immune competition term divided by the immune cell decay rate.

3.1.3 Numerical Simulation

Solving the above model in MATLAB using ode45 with initial values of T0 = 3×

107 for tumor cell population [24], a0 = 0.13 for tumor cell growth [24], b = 2.3×10−10

for inverse tumor cell limiting population [24], c0 = 4.4 × 10−9 as the competition

coefficient between tumor cells and immune system cells [24], d = 7.3 × 106 for the

constant influx rate of immune system cells [24], and f = 0.33 for the decay rate of

immune cells [24], the numerical simulation is as follows. See Table A.1 for additional

information regarding the model’s initial values and parameter values.

The results of the numerical simulation match those as expected from the stabil-

ity analysis previously performed in the chapter with the appropriately defined initial

conditions. The parameter values used (a0 = 0.13, c0 = 4.4 × 10−9, d = 7.3 × 106,

and f = 0.33) correspond to E∗

0 being unstable with eigenvalues λ1 = −f = −0.33
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Figure 3.2: Tumor-Immune I - Base Model

and λ2 = a0 −
c0d
f

= 0.33 thus causing the tumor cell population to increase away

from T = 0. Conversely the parameter values correspond to E∗

1 being stable with

eigenvalues λ1 = −f = −0.33 and λ2 = c0d
f

− a0 = −0.0327 thus causing the tumor

cell population to trend towards T ∗

1 = a0f−c0d

a0bf
= 1.0925× 108.

Investigating the alternative scenario, however, the parameter values are ad-

justed in a way remaining logical to the biological mechanics at hand such that the

stability of the equilibrium points should reverse. The numerical simulation below

reflects this change as the immune cell induction rate increases to d = 7.3× 107.

As evidenced by the graph in Figure (3.3), the stability of the two equilibrium

points reverses. The immune cell induction rate is the only parameter changed, and

it realized an increase to d = 7.3 × 107 from its original value of d = 7.3 × 106.

All of the remaining parameters remain constant to their original values (a0 = 0.13,

c0 = 4.4 × 10−9, and f = 0.33). E∗

0 is now stable with its corresponding eigenvalues
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Figure 3.3: Tumor-Immune I - Base Model

of λ1 = −f = −0.33 and λ2 = a0 −
c0d
f

= −0.8433 causing the tumor cell population

to decrease towards T ∗

0 = 0. E∗

1 is now unstable with its respective eigenvalues of

λ1 = −f = −0.33 and λ2 = c0d
f

− a0 = 0.8433 causing the tumor cell population to

decrease away from T ∗

1 = a0f−c0d

a0bf
= 1.0925× 108.

The next step in the progression of this model is to introduce a chemotherapy

term and investigate its effects on both the tumor cell and immune cell populations.

3.2 Drug Therapy

3.2.1 Motivating the Model

This next model is a variation of the preceeding one in that all the cell in-

teractions remain constant but differs in results as external drugs in the form of

chemotherapy are introduced into the model dynamics. The chemotherapy affects

both the tumor cells and native immune cells albeit at differing rates. That is, the
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chemotherapy has a higher kill rate of tumor cells than immune cells as one would

hope and expect for successful treatment. The chemotherapy is time-dependent,

meaning it is introduced at a constant rate for only so many days before the intake

supply is turned off for protection of the patient. This is a reasonable expectation

since the chemotherapy drugs affect not only the tumor cells but also the immune

cells as previously discussed. The chemotherapy also has a decay rate of its own, so

after a sufficient amount of time post cessation of drug intake, the model returns to

the steady state behavior of the preceeding model involving only basic interactions

between the tumor and native immune system. Despite being time-dependent and

alternating between being active and inactive for a period of time as the model is

implemented, for the purposes of model analysis the drug therapy induction rate is

considered a constant value.

Figure 3.4: Tumor-Immune I - Drug Therapy Interaction Diagram

As seen in the interaction diagram, this model varies only slightly from the

previous one in that chemotherapy terms are now added. All other terms of the es-

tablished tumor and immune cell equations remain. The chemotherapy concentration

18



is represented by the variable C. The drug is introduced via time-dependent function

VC(t). When active, the rate of introduction is a positive constant, and when inac-

tive the rate is zero. The drug decays by a rate represented by the variable p. The

chemotherapy affects both the tumor cells and immune cells at respective kill rates

of MT and ML. These rates, however, decrease in effectiveness as the concentration

of chemotherapy drugs lessens as represented by the 1− e−C term in both tumor and

immune cell equations.

dT

dt
= a0T (1− bT )− c0TL−MT (1− e−C)T (3.33)

dL

dt
= d− fL−ML(1− e−C)L (3.34)

dC

dt
= VC(t)− pC (3.35)

3.2.2 Analysis of the Model

Following the established pattern, the first step in analyzing the model is find-

ing the equilibrium points. This is accomplished by solving the three-equation system

for each variable representing the tumor cells, immune cells, and chemotherapy con-

centration. For purposes of solving the system, the intake function for chemotherapy

is treated as a constant.

dT

dt
= a0T (1− bT )− c0TL−MT (1− e−C)T = 0 (3.36)

dL

dt
= d− fL−ML(1− e−C)L = 0 (3.37)

dC

dt
= VC − pC = 0 (3.38)
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To simplify the analysis of the system, the equations are coded into a MATLAB

script. The time-dependency notation of the drug induction rate, VC , is dropped, and

it is treated as a constant in the calculations. The resulting equilibrium points are as

follows:

T ∗

0 =

−

(

MT − a0 −MT e
−VC

p + c0∗d

f−ML(e
−VC

p −1)

)

a0b
(3.39)

L∗

0 =
d

f −ML(e
−VC

p − 1)
(3.40)

C∗

0 =
VC

p
(3.41)

and

T ∗

1 = 0 (3.42)

L∗

1 =
d

f −ML(e
−VC

p − 1)
(3.43)

C∗

1 =
VC

p
(3.44)

Let E∗

0 be the first equilibrium point containing T ∗

0 , L
∗

0, and C∗

0 , and let E∗

1

be the second equilibrium point containing T ∗

1 , L
∗

1, and C∗

1 . Investigating the stabil-

ity of each equilibrium point again requires a partial derivative to be taken of each

model equation with respect to each of the three main component variables: T , L,

and C. With these partial derivative expressions, the Jacobian of the system is cre-

ated. Evaluating the Jacobian matrix at each equilibrium point E∗

0 and E∗

1 , respective

eigenvalues are then computed. The stability of each equilibrium point is described

by the signs of each group of resulting eigenvalues.

Let T ′ = dT
dt
.
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∂T ′

∂T
= −a0(2bT − 1)− c0L−MT (1− e−C) (3.45)

∂T ′

∂L
= −c0T (3.46)

∂T ′

∂C
= −MTTe

−C (3.47)

Let L′ = dL
dt
.

∂L′

∂T
= 0 (3.48)

∂L′

∂L
= −f −ML(1− e−C) (3.49)

∂L′

∂C
= −MLLe

−C (3.50)

Let C ′ = dC
dt
.

∂C ′

∂T
= 0 (3.51)

∂C ′

∂L
= 0 (3.52)

∂C ′

∂C
= −p (3.53)

Let J be the Jacobian of the system. J0 represents the Jacobian matrix evalu-

ated at the first equilibrium point, E∗

0 .
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J =













∂T ′

∂T
∂T ′

∂L
∂T ′

∂C

∂L′

∂T
∂L′

∂L
∂L′

∂C

∂C′

∂T
∂C′

∂L
∂C′

∂C













(3.54)

J =













−a0(2bT − 1)− c0L−MT (1− e−C) −c0T −MTTe
−C

0 −f −ML(1− e−C) −MLLe
−C

0 0 −p













(3.55)

Wanting again to simplify the evaluation of the Jacobian matrix J at the first

equilibrium point E∗

0 , the calculations and substitutions are performed in MATLAB

to not only find J0 but also the subsequent eigenvalues. As such, the eigenvalues of

J0 are as follows:

λ1 = −p (3.56)

λ2 = ML(e
−

VC
p − 1)− f (3.57)

λ3 = {symbolic expression is of excessive length} (3.58)

While the first two eigenvalues are expressed in a simple symbolic form, the

third eigenvalue is a complex expression involving many terms. For succinctness the

entire third eigenvalue expression is omitted.

Presented above is an interesting situation. The model is no longer autonomous

as the variable VC representing the drug therapy induction rate is time dependent.
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This particular facet of the model creates two different situations on which to perform

analysis: one when the drug therapy is active with VC having a positive, non-zero

constant value and another when the drug therapy is inactive and VC is zero.

Analyzing first the stability of the situation where the drug therapy is active,

it is plainly seen that λ1 will always be negative because p is the chemotherapy

decay rate, and p > 0 in this model. The sign of λ2 will always be negative due

to the e−
VC
p − 1 expression in the first term. Because VC and p have already been

established as being both positive, e−
VC
p < 1 thus forcing e−

VC
p −1 < 0. The resulting

negative value multiplied onto ML, where ML > 0 always in this model, subtracted

by the parameter f , the immune cell death rate where f > 0 for the entire model,

will always result in a negative overll evaluation for the second eigenvalue. Because

the first two eigenvalues proved negative, the stability of E∗

0 when the drug therapy

is active is decided by the third eigenvalue. Unfortunately λ3 contains an expression

proving difficult to analyze symbolically, and very likely the parameter values are

necessary to make the expression more useful.

Since no absolute conclusion is reached after analyzing the symbolic expres-

sions, the parameter values are substituted to calculate numerical expressions of the

eigenvalues. Utilizing MATLAB to aid in the calculations, the following values are

used: a0 = 0.13 [24], b = 2.3 × 10−9 [24], c0 = 4.4 × 10−9 [24], d = 7.3 × 106 [24],

f = 0.33 [24], ML = 0.6 [24], MT = 0.9 [24], p = 6.4 [24], and VC = 1 [24]. These

model parameters for when the chemotherapy is active yield the following eigenvalues:

λ1 = −6.4000 (3.59)

λ2 = −0.3300 (3.60)

λ3 = 1.1262 (3.61)
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As expected, the first and second eigenvalues are negative, but the third eigen-

value is positive. This is a logical result, however, since the two equilibrium points,

E∗

0 and E∗

1 , differ only in values for T , and this first equilibrium point, E∗

0 , contains

the non-zero expression for T , the tumor cell population. The expectation is that an

effective drug therapy would cause the tumor population to decrease towards zero as

opposed to being ineffective and seeing the tumor cell population continue towards a

non-zero stable population. As such, E∗

0 is an unstable equilibrium point when the

chemotherapy is active (VC = 1).

Analyzing the stability of the second situation where the drug therapy is inactive

(VC = 0), the updated value of the drug therapy induction rate significantly simplifies

the eigenvalue expressions to the following:

λ1 = −p (3.62)

λ2 = −f (3.63)

λ3 =
−2da20b

2 + fa20b− fa0c0 + dc20
a0bf

(3.64)

It is still easily seen that the first eigenvalue will remain negative since p > 0

for the entire model. The second eigenvalue, however, is now significantly easier to

analyze in its current symbolic state due to VC = 0. The new value of VC causes

the entire first term of the expression to go to 0, leaving only the −f in the entire

expression. The second eigenvalue again follows in the footsteps of the first and is

easily seen to always be negative since f represents the immune cell death rate and
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f > 0 for the entire model. With both of the first two eigenvalues being negative,

the stability of E∗

0 when VC = 0 is determined again by the sign of the third eigen-

value. Despite having been simplified greatly, the resulting symbolic expression is

still inconclusive with regard to its eventual sign and effect on the overall stability of

E∗

0 .

Returing to numerical results of the eigenvalues to indicate the stability, the

same model parameters as before are substituted save for VC = 0 to indicate the drug

therapy is inactive. MATLAB yields the following eigenvalues:

λ1 = −6.4000 (3.65)

λ2 = −0.3300 (3.66)

λ3 = −0.3639 (3.67)

The first and second eigenvalues are again negative just as projected in the pre-

ceeding analysis. This time, however, the third eigenvalue is also negative indicating

E∗

0 to be stable when the chemotherapy is inactive (VC = 0). This is once again a log-

ical result since without the drug therapy the tumor cells will continue to proliferate

up to the non-zero stable population level of the respective equilibrium point.

Having established the stability of the first equilibrium point, E∗

0 , for both

cases of drug therapy, the focus now shifts to investigating the same situations for

the second equilibrium point, E∗

1 . Starting with the original Jacobian matrix J ,

evaluating J at E∗

1 yields the matrix J1. MATLAB is used again to simplify the

evaluations and substitutions in finding J1 and its related eigenvalues. As such, the

eigenvalues corresponding to E∗

1 are as follows:
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λ1 = −p (3.68)

λ2 = ML(e
−
VC

p
− 1)− f (3.69)

λ3 = {symbolic expression is of excessive length} (3.70)

Just as with the symbolic eigenvalues for E∗

0 , while the first two eigenvalues

are expresed in a simple symbolic form, the third eigenvalue is a complex expres-

sion involving many more terms. With brevity in mind, the entire third eigenvalue

expression is again omitted.

With the time-dependent variable VC still present in the expressions, the model

remains non-autonomous. This again creates two different situations on which to

perform analysis: one when the drug therapy is active with VC having a positive,

non-zero constant value and another when the drug therapy is inactive and VC is

zero.

Analyzing first the situation when the drug therapy is active, the first two

eigenvalue expressions are identical to those previously seen with regards to E∗

0 with

the drug therapy active. The symbolic analysis thus remains the same, and the first

two eigenvalues are expected to return negative values once the parameter values

are substituted. With the third eigenvalue’s symbolic expression being overly large,

any symbolic analysis is difficult and encourages the use of MATLAB to arrive at

a numerical result. Therefore, the same parameter values used before (including

VC = 1 to indicate the active chemotherapy) are substituted into the three eigenvalue

expressions for the E∗

1 equilibrium point.
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λ1 = −6.4000 (3.71)

λ2 = −0.4168 (3.72)

λ3 = −0.0107 (3.73)

All eigenvalues corresponding to E∗

1 with the drug therapy active returned a

negative result, indicating E∗

1 is a stable equilibrium point. This follows logical rea-

soning since the E∗

1 equilibrium point contains T ∗

1 = 0. An effective drug therapy

should force the tumor cell population to decrease towards 0, and this treatment

accomplishes that goal.

Looking back at the E∗

1 eigenvalue symbolic expressions for the second situation

where the drug therapy is inactive and VC = 0, the symbolic expressions do simplify

in nature similar to that which occured for the E∗

0 eigenvalue expressions.

λ1 = −p (3.74)

λ2 = −f (3.75)

λ3 =
a0f − 2a0bd

f
(3.76)

= a0 −
2a0bd

f
(3.77)

The first two eigenvalue expression simplified identically to the first two of the

corresponding situation for E∗

0 , but the third expression simplified even further than

before. The third expression again dictates the stability of E∗

1 when the chemother-
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apy is inactive due to the first two expressions always being negative as previously

discussed. Thus E∗

1 will be stable if a0 < 2a0bd
f

(or in a more simplified version

f < 2bd) and the third eigenvalue expression then goes negative. Alternatively, E∗

1

will be unstable if a0 >
2a0bd
f

(or in a more simplified version f > 2bd) and the third

eigenvalue expression then turns positive. However, because the conditional inequal-

ity for the third eigenvalue expression contains b, the reciprocal maximum tumor cell

population level, i.e. a very small number, the other parameters will likely not have

such magnitude so as to overcome the effects of b. Therefore the third eigenvalue

expression is very likely to remain positive and cause E∗

1 to become unstable when

the drug therapy ceases. To verify these results, the same parameter values as have

been used before along with VC = 0 for the inactive drug therapy are substituted into

the expressions.

λ1 = −6.4000 (3.78)

λ2 = −0.3300 (3.79)

λ3 = 0.1168 (3.80)

As suspected, the third eigenvalue resulted in a positive value and caused E∗

1

to be unstable when the drug therapy is inactive. This again makes sense from a

biological perspective as without the drug therapy to decrease the tumor cell popu-

lation count further than what the native immune system can accomplish, there is

nothing to keep the tumor cell population from increasing to the maximum stable

population allowed. That tumor cell behavior corresponds with the equilibrium point

E∗

1 containing T ∗

1 = 0 being unstable.
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3.2.3 Numerical Simulation

Three simulations are run to examine the two aforementioned scenarios where

the drug therapy is either always active or always inactive as well as to simulate a

realistic implementation of the drug therapy that sees the drugs alternating between

being active and inactive for a time before remaining inactive for the remaining du-

ration of the simulation.

Solving the chemotherapy model in MATLAB using ode45 with initial values

of T0 = 3 × 107 for tumor cell population [24], a0 = 0.13 for tumor cell growth

[24], b = 2.3 × 9−10 for the reciprocal maximum tumor cell population level [24],

c0 = 4.4×10−9 as the competition coefficient between tumor cells and immune system

cells [24], d = 7.3 × 106 for the constant influx rate of immune system cells [24],

f = 0.33 for the decay rate of immune cells [24], VC = 1 for the chemotherapy influx

rate [24], p = 6.4 for the chemotherapy decay rate [24], MT = 0.9 for the tumor cell

kill rate by the chemotherapy [24], and ML = 0.6 for the immune cell kill rate by

the chemotherapy [24], the first two graphs represent the simulations where the drug

therapy is always active (VC = 1) and then always inactive (VC = 0), respectively.

See Table A.1 for additional information regarding the model’s initial values and

parameter values.
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Figure 3.5: Tumor-Immune I - Drug
Therapy Always Active
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Figure 3.6: Tumor-Immune I - Drug
Therapy Always Inactive

With the drug therapy always on, the tumor cells decrease linearly towards

T ∗

1 = 0, confirming E∗

0 as unstable and E∗

1 as stable. When the drug therapy is

always inactive, the tumor cell population grows identically to the Tumor-Immune I -

Base Model and increases to T ∗

0 = a0f−c0d

a0bf
= 1.0925×108, thus confirming E∗

0 as stable

and E∗

1 as unstable. The next simulation demonstrates a more likely implementation

of the drug therapy instead of always being either active or inactive for the entire

simulation.
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Figure 3.7: Tumor-Immune I - Drug Therapy

It is easy to identify when the chemotherapy is active in the model (the first

portion of the model up to approximately day 40) versus when the chemotherapy is

inactive (the remainder of the model). The oscillations during the active stage of drug

therapy are due to the treatment going through a cycle of being active for one day

and then inactive for the next four days. This cycle repeats a total of nine times, thus

seeing the patient receive the last dose of drug therapy on day 40. Because the drug

therapy is eventually inactive for the remainder of the simulation, the tumor cells do

continue to multiply and grow towards the E∗

0 equilibrium point since a prior model

has shown the innate immune system not capable of sufficiently suppressing tumor

growth on its own. While the method used in this model is successful in delaying

the eventual growth of the tumor, it, too, is not sufficient in keeping the tumor cell
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population at low levels, thus motivating the need for a slightly more complex model

introduced in the next chapter.
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CHAPTER 4

TUMOR-IMMUNE II

4.1 Base Model

4.1.1 Motivating the Model

The following model increases the complexity by adding a third substance into

the model before any external terms, i.e. chemotherapy or immunotherapy, are in-

terjected. This third substance, IL− 2, aids in increasing the native immune system

response to the tumor site by providing extra stiumulation to the influx of CTL

immune cells. [24]

Figure 4.1: Tumor-Immune II - Base Model Interaction Diagram

With the additon of IL − 2 to the model, the only changes from the Basic

Tumor-Immune I model previously seen are the IL − 2 equation as well a single

33



positive term in the immune cell equation modeling the increase in immune response

as a result of the IL− 2 presence. This immune cell response is increased by a term

involving the variables L and I2 for the CTL immune cells and IL− 2 concentration,

respectively, multiplied by an interaction coefficient, e. The IL − 2 concentration is

increased by the ratio of the tumor cell population and that same population plus a

constant represented by l. This term is then multiplied by a coefficient g controlling

the overall influx. The IL−2 concentration is then lessened by two interaction terms

with the immune cells and tumor cells. These two terms contain respective interaction

coefficients of j and k. No changes occur in the tumor cell equation, but, as expected,

a change in the behavior of the cell population does occur as the model plays out

from the greater concentration of immune cells at the tumor location.

dT

dt
= a0T (1− bT )− c0TL (4.1)

dL

dt
= d+ eLI2 − fL (4.2)

dI2

dt
=

gT

T + l
− jLI2 − kTI2 (4.3)

4.1.2 Analysis of the Model

Finding equilibrium points of this three-equation model, the simultaneous Equa-

tions (4.1), (4.2), and (4.3) are first set equal to zero and solved for the variables T ,

L, and I2.

dT

dt
= a0T (1− bT )− c0TL = 0 (4.4)

dL

dt
= d+ eLI2 − fL = 0 (4.5)

dI2

dt
=

gT

T + l
− jLI2 − kTI2 = 0 (4.6)
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Four potential equilibrium points result from solving the above system: two

solutions are real, and the other two solution are complex. The complex solutions are

not considered as applicable equilibrium points for this system. The first real solution

is hand-calculated at the following:

T ∗

0 = 0 (4.7)

L∗

0 =
d

f
(4.8)

I2
∗

0 = 0 (4.9)

The second real solution has a complex symbolic expression and is not explicitly

expressed. Numerical expressions for this equilibrium point follows at a later point

in the analysis.

Let E∗

0 be the first equilibrium point where T ∗

0 = 0, L∗

0 = d
f
, and I2

∗

0 = 0. To

then find the stability of this equilibrium point, partial derivatives of each original

model equation are found with respect to each model variable.

Let T ′ = dT
dt
.

∂T ′

∂T
= a0(1− Tb)− Ta0b− Lc0 (4.10)

∂T ′

∂L
= −Tc0 (4.11)

∂T ′

∂I2
= 0 (4.12)

Let L′ = dL
dt
.
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∂L′

∂T
= 0 (4.13)

∂L′

∂L
= I2e− f (4.14)

∂L′

∂I2
= Le (4.15)

Let I ′2 =
dI2
dt
.

∂I ′2
∂T

=
g

T + l
− I2k −

Tg

(T + l)2
(4.16)

∂I ′2
∂L

= −I2j (4.17)

∂I ′2
∂I2

= −Lj − Tk (4.18)

Let J be the Jacobian of the system. J0 represents the Jacobian matrix evalu-

ated at the first equilibrium point, E∗

0 .

J =













∂T ′

∂T
∂T ′

∂L
∂T ′

∂I2

∂L′

∂T
∂L′

∂L
∂L′

∂I2

∂I′
2

∂T

∂I′
2

∂L

∂I′
2

∂I2













(4.19)

J =













a0(1− Tb)− Ta0b− Lc0 −Tc0 0

0 I2e− f Le

g

T+l
− I2k − Tg

(T+l)2
−I2j −Lj − Tk













(4.20)

J0 =













a0 −
c0d
f

0 0

0 −f de
f

g

l
0 −dj

f













(4.21)
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Having found J0, the associated eigenvalues are calculated from the character-

istic equation resulting from the determinant of J0.

J0 − λI =













a0 −
c0d
f

− λ 0 0

0 −f − λ de
f

g

l
0 −dj

f
− λ













(4.22)

det(J0 − λ ∗ I) = 0 (4.23)

−
(f + λ)(dj + fλ)(c0d− a0f + fλ)

f 2
= 0 (4.24)

λ1 = −f (4.25)

λ2 = −
dj

f
(4.26)

λ3 =
a0f − c0d

f
(4.27)

= a0 −
c0d

f
(4.28)

The equilibrium point E∗

0 will be stable when all three eigenvalues have negative

real parts and then unstable when all three eigenvalues have real parts with mixed

signs. λ1 will always be negative because f represents the immune cell death rate and

f > 0 for the entire model. λ2 will always be negative as well because d represents

the immune cell induction rate, j represents the rate of consumption of IL − 2 by

the CTL immune cells, and f again represents the immune cell death rate. All three
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parameters are always positive in this model (d, j, f > 0). Thus the stability of E∗

0 is

determined by λ3. The equilibrium point E∗

0 will be stable when the tumor growth

rate, a0, is less than the product of the constant influx of immune cells, d, and the

tumor-immune competition coefficient, c0, divided by the immune cell decay rate, f .

Alternatively, the E∗

0 will be unstable when the tumor growth rate is greater than the

product of the constant influx of immune cells and the tumor-immune competition

term divided by the immune cell decay rate. This particular eigenvalue has appeared

in previous model analyses, and as such the expectation is its behavior will match

that seen before of being positive. E∗

0 is then expected to be unstable. This result is

verified in the numerical simulations below.

Looking at the second real equilibrium point, because its symbolic expression

is complex, MATLAB is employed to evaluate the numerical expression of the second

equilibrium point. Using the parameter values of a0 = 0.13 [24], b = 2.3× 10−10 [24],

c0 = 4.4×10−9 [24], d = 7.3×106 [24], e = 9.9×10−9 [24], f = 0.33 [24], g = 1.6×107

[24], j = 3.3 × 10−9 [24], k = 1.8 × 10−8 [24], and l = 3 × 106 [24] MATLAB arrives

at the following numerical result for the second equilibrium point. See Table A.1 for

additional information regarding the model’s initial values and parameter values.

T ∗

1 = 1.6657× 105 (4.29)

L∗

1 = 2.9534× 107 (4.30)

I2
∗

1 = 8.3665× 106 (4.31)

Thus let E∗

1 be the second equilibrium point containing T ∗

1 = 1.6657 × 105,

L∗

1 = 2.9534 × 107, and I2
∗

1 = 8.3665 × 106. Finding the eigenvalues associated
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with this equilibrium point follows the same process as before but differs in that the

expressions will not be symbolic but rather will match the numerical nature of the

equilibrium point values above. Using the same Jacobian matrix, J , as before, the

numerical values of E∗

1 are substituted into J to create J1. Finding the determinant

of J1 to then solve the resulting characteristic equation yields the following numerical

eigenvalues from MATLAB:

λ1 = −0.2172 (4.32)

λ2 = −0.0652 + 0.0181ı (4.33)

λ3 = −0.0652− 0.0181ı (4.34)

Because all three eigenvalues have negative real parts, the second equilibrium

point E∗

1 is determined to be stable. The following numerical simulation will confirm

this stability when using the respective initial values for model parameters and cell

populations.

4.1.3 Numerical Simulation

Using the parameter values of a0 = 0.13 for tumor cell growth [24], b = 2.3 ×

10−10 for inverse tumor cell limiting population [24], c0 = 4.4×10−9 as the competition

coefficient between tumor cells and immune system cells [24], d = 7.3 × 106 for the

constant influx rate of immune system cells [24], e = 9.9 × 10−9 for the immune cell

proliferation rate induced by IL − 2 [24], f = 0.33 for the decay rate of immune

cells [24], g = 1.6 × 107 for the rate of antigen introduction [24], j = 3.3 × 10−9

for rate of consumption of IL − 2 by the immune cells [24], k = 1.8 × 10−8 for the
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rate of inactivation of IL − 2 molecules by way of interacting with tumor cells [24],

l = 3 × 106 for the half-saturation constant [24], and the initial tumor population

of T0 = 3 × 107, initial immune cell population of L0 = 2.3 × 10−9, and initial

IL − 2 molecule concentration of I20 = 2.4 × 107, MATLAB produces the following

simulation. See Table A.1 for additional information regarding the model’s initial

values and parameter values.
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Figure 4.2: Tumor-Immune II - Base Model

The observed numerical results match that which is expected from the model

analysis. The first equilibrium point, E∗

0 is indeed unstable in the simulation as con-

firmed by substituting the appropriate parameters define above into the expressions

for λ1, λ2, and λ3 of E∗

0 .
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λ1 = −0.33 (4.35)

λ2 = −0.73 (4.36)

λ3 = 0.33 (4.37)

λ1 and λ2 are negative as projected in the analysis, and λ3 is positive and

thus makes E∗

0 unstable as suggested by the tumor cell population behavior in the

previous simulation. E∗

1 is also confirmed to be stable as previosly indicated by the

numerical results of its eigenvalues. The next simulation will further test the stability

analysis of the equilibrium points by instead increasing the immune cell induction

rate parameter, d, from 7.3× 106 to 7.3× 107 and keeping all other parameters and

initial values the same. This simulation should realize different behavior in the tumor

cell population.

The tumor cell population in Figure (4.3) decreases to a minimum level with the

changing of the single parameter. This simulation stops once the tumor cell popula-

tion reaches the minimum level around day 25 and confirms the switching of stability

of both equilibrium points, E∗

0 and E∗

1 , to be stable and unstable, respectively.
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Figure 4.3: Tumor-Immune II - Base Model

4.2 Drug Therapy

4.2.1 Motivating the Model

The next iteration in this class of model builds upon the previous one by taking

into account the effects of chemotherapy. IL− 2, however, is not directly affected by

the drug therapy unlike the tumor and immune cells.
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Figure 4.4: Tumor-Immune II - Drug Therapy Interaction Diagram

Just as in a prior model class and type, only the tumor cells and immune cells

react to the presence of the chemotherapy. The drugs have the same time-dependant

induction rate and decay rate as before, and the tumor cell kill rate and immune cell

kill rate is identical to what was previously seen as well. Despite no change in the

chemotherapy’s immune cell kill rate, this model should prove more effective than

even the chemotherapy model from the Tumor-Immune I drug therapy model due to

the effects of IL− 2 bringing in more immune cells at the onset.

dT

dt
= a0T (1− bT )− c0TL−MT (1− e−C)T (4.38)

dL

dt
= d+ eLI2 − fL−ML(1− e−C)L (4.39)

dC

dt
= VC(t)− pC (4.40)

dI2

dt
=

gT

T + l
− jLI2 − kTI2 (4.41)
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4.2.2 Analysis of the Model

Finding equilibrium points of this four-equation model, the simultaneous Equa-

tions (4.38), (4.39), (4.40), and (4.41) are first set equal to zero and solved for the

variables T , L, C, and I2.

dT

dt
= a0T (1− bT )− c0TL−MT (1− e−C)T = 0 (4.42)

dL

dt
= d+ eLI2 − fL−ML(1− e−C)L = 0 (4.43)

dC

dt
= VC(t)− pC = 0 (4.44)

dI2

dt
=

gT

T + l
− jLI2 − kTI2 = 0 (4.45)

In finding the equilibrium points of this model, one symbolic equilibrium point

expression is found and one numerical equilibrium point is found by substituting in the

applicable parameter values of the model [24]. Two additional numerical equilibrium

points are discovered but are complex valued. As such those two equilibrium points

are discarded as not being applicable. The first equilibrium point, E∗

0 , is comprised

of the following points:
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T ∗

0 = 0 (4.46)

L∗

0 =
d

ML(1− e−
VC
p ) + f

(4.47)

C∗

0 =
VC

p
(4.48)

I2
∗

0 = 0 (4.49)

The second equilibrium point, E∗

1 , is comprised of the following points:

T ∗

1 = 1.6657× 105 (4.50)

L∗

1 = 2.9534× 107 (4.51)

C∗

1 = 8.3665× 106 (4.52)

I2
∗

1 = 0 (4.53)

To establish the stability of these two equilibrium points, the partial differential

equations of each original model equation are calculated with respect to each model

variable, T , L, C, and I2. The partial differential equations are then used to form

the Jacobian matrix, J , of the system.

Let T ′ = dT
dt
.
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∂T ′

∂T
= MT (e

−C − 1)− Lc0 − a0(Tb− 1)− Ta0b (4.54)

∂T ′

∂L
= −Tc0 (4.55)

∂T ′

∂C
= −

MTT

eC
(4.56)

∂T ′

∂I2
= 0 (4.57)

Let L′ = dL
dt
.

∂L′

∂T
= 0 (4.58)

∂L′

∂L
= I2e− f +ML(e

−C − 1) (4.59)

∂L′

∂C
= −

MLL

eC
(4.60)

∂L′

∂I2
= Le (4.61)

Let C ′ = dC
dt
.

∂C ′

∂T
= 0 (4.62)

∂C ′

∂L
= 0 (4.63)

∂C ′

∂C
= −p (4.64)

∂C ′

∂I2
= 0 (4.65)

Let I ′2 =
dI2
dt
;
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∂I ′2
∂T

=
g

T + l
− I2k −

Tg

(T + l)2
(4.66)

∂I ′2
∂L

= −I2j (4.67)

∂I ′2
∂C

= 0 (4.68)

∂I ′2
∂I2

= −Lj − Tk (4.69)

Let J be the Jacobian of the system. J0 represents the Jacobian matrix evalu-

ated at the first equilibrium point, E∗

0 .

J =



















∂T ′

∂T
∂T ′

∂L
∂T ′

∂C
∂T ′

∂I2

∂L′

∂T
∂L′

∂L
∂L′

∂C
∂L′

∂I2

∂C′

∂T
∂C′

∂L
∂C′

∂C
∂C′

∂I2

∂I′
2

∂T

∂I′
2

∂L

∂I′
2

∂C

∂I′
2

∂I2



















(4.70)

Due to the length and complexity of the expressions, both J and J0 with the

respective substituted expressions and values are omitted.

Finding the eigenvalues of E∗

0 requires the determinant of J0 and then solving

the resulting characteristic equation for λ. MATLAB produces the resulting eigen-

values:
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λ1 = −p (4.71)

λ2 = ML(e
−

VC
p − 1)− f (4.72)

λ3 = −
dj

ML + f −MLe
−

VC
p

(4.73)

λ4 = {symbolic expression is of excessive length} (4.74)

Most of the eigenvalues have simple symbolic expressions, but λ4 has a lengthy

symbolic expression and as such is omitted. Similar to before, due to the presence

of the VC term being active and then inactive at varying times during the model im-

plementation, there are two situations to analyze. The first situation finds the drug

therapy active, i.e. VC is a positive constant. When this occurs, the λ1 remains neg-

ative due to p being the chemotherapy decay rate and p > 0 for the entire model. λ2

has a sign dependent on the difference between the remaining portion of the difference

between the two ML, immune cell kill rate by chemotherapy, and f , the immune cell

death rate. This is due to the e−
VC
p term being a multiplier on ML of at least 1. The

sign of λ3 is dependent on the sum between the difference of ML and itself with a

multiplier dictated by the e−
VC
p term and then f again. The sign of this denominator

in λ3 dictates the sign as the numerator will always remain negative with both d,

immune cell induction rate, and j, rate of consumption of IL − 2 by immune cells,

always being positive in this model. The sign of λ4 is evaluated numerically with its

complex symbolic expression. Using the values of the aforementioned parameters, the

following are the numerical values of the four eigenvalues when the drug therapy is

active, i.e. VC = 1:
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λ1 = −6.4000 (4.75)

λ2 = −0.0578 (4.76)

λ3 = −0.4168 (4.77)

λ4 = −0.0773 (4.78)

With all four eigenvalues negative, E∗

0 is considered stable when the drug ther-

apy is active. The next situation dictates the stability of E∗

0 when the drug therapy

is inactive (VC = 0). The matrices J and J0 remain the same, but with the simplicity

offered by VC = 0 the symbolic expressions for the four eigenvalues are substantially

less complex:

λ1 = −p (4.79)

λ2 = −f (4.80)

λ3 = −
dj

f
(4.81)

λ4 =
a0f − c0d

f
(4.82)

= a0 −
c0d

f
(4.83)

λ1, λ2, and λ3 have negative signs since all of the parameters in those expres-

sions, d, f , j, and p stay positive the entire model. The stability of E∗

0 when the drug

therapy is inactive is thus decided by λ4. Fortunately this exact expression is recur-

ring in the various analyses performed, and it has expected behavior of being positive.
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Using values of the aforementioned parameters, the following are the numerical values

of the four eigenvalues when the drug therapy is inactive:

λ1 = −6.4000 (4.84)

λ2 = −0.3300 (4.85)

λ3 = −0.0730 (4.86)

λ4 = 0.0327 (4.87)

As expexted the sign of λ4 is positive and thus makes E∗

0 unstable when the

drug therapy is inactive. The numerical results at the end of this section confirm

the results of the analysis. Turning to the second equilibrium point, E∗

1 , the same

Jacobian matrix, J , is used to first substituate the values of E∗

1 to then find J1. The

determinant of J1 is next computed, and the subsequent characteristic equation is

solved to produce the following eigenvalues:

λ1 = −6.4000 (4.88)

λ2 = −0.1020 (4.89)

λ3 = −0.8757 (4.90)

λ4 = −0.9528 (4.91)

With all four eigenvalues having negative real parts, E∗

1 is established as stable.

Because VC = 0 when E∗

1 is computed due to being inactive for most of the model
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duration, it is now known for E∗

1 to be stable when the chemotherapy is inactive. The

following numerical simulation will confirm the results of the analysis for E∗

1 .

4.2.3 Numerical Simulation

Three simulations are run to examine the two aforementioned scenarios where

the drug therapy is either always active or always inactive as well as to simulate a

realistic implementation of the drug therapy that sees the drugs alternating between

being active and inactive before remaining inactive for the remaining duration of the

simulation. The drug therapy is active once every five days for a total of nine doses.

Using the parameter values of a0 = 0.13 [24], b = 2.3×10−10 [24], c0 = 4.4×10−9

[24], d = 7.3 × 106 [24], e = 9.9 × 10−9 [24], f = 0.33 [24], g = 1.6 × 107 [24],

j = 3.3 × 10−9 [24], k = 1.8 × 10−8 [24], l = 3 × 106 [24], p = 6.4 [24], MT = 0.9

[24], and ML = 0.6 [24], and the initial tumor population of T0 = 3 × 107 [24],

initial immune cell population of L0 = 2.3 × 10−9 [24], and initial IL − 2 molecule

concentration of I20 = 2.4 × 107 [24], the first two graphs represent the simulations

where the drug therapy is always active VC = 1 and then always inactive VC = 0,

respectively. See Table A.1 for additional information regarding the model’s initial

values and parameter values.
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Figure 4.5: Tumor-Immune II - Drug
Therapy - Always Active
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Figure 4.6: Tumor-Immune II - Drug
Therapy - Always Inactive

With the drug therapy always on, the tumor cells decrease linearly towards

T ∗

0 = 0, confirming E∗

0 stable. The tumor cell levels reach sufficiently low levels around

day 170, thus halting the simulation. When the drug therapy is always inactive, the

tumor cell population identically follows the population levels of the Tumor-Immune II

- Base Model and settles at T = a0f−c0d

a0bd
= 1.6657×105, thus confirming E∗

0 as unstable

and E∗

1 as stable at this point in the model. The next simulation demonstrates a more

likely implementation of the drug therapy as the chemotherapy is administered in a

time-dependent manner.

Just as in the Tumor-Immune I - Drug Therapy model, it is easy to identify in

Figure (4.7) when the chemotherapy is active as opposed to when the chemotherapy

is inactive. The oscillations during the active stage occur because the treatment is

going through a cycle of being active for one day and then inactive for the next four

days. This cycle repeats a total of nine times, thus seeing the patient receive the last

dose of drug therapy on day 40. Because the drug therapy is eventually inactive for

the remainder of the simulation, the tumor cells do continue to multiply and grow
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Figure 4.7: Tumor-Immune II - Drug Therapy

towards a stable population level. While the method used in this model is much

more successful in initially combating the tumor cells and even shrinking the tumor

to a level unseen with the prior models, it still cannot keep decreasing the tumor cell

population to continually lower levels, thus motivating the investigation into further

models.

4.3 Immunotherapy

4.3.1 Motivating the Model

This particular model is incredibly similar in motivation to the immediately

preceeding model in that the base model of this class is modified only by adding

in an external stimulus. Instead of chemotherapy, however, this model implements

immunotherapy to boost the IL−2 concentration near the tumor’s location and thus

increase the innate immune response.

53



Figure 4.8: Tumor-Immune II - Immunotherapy Interaction Diagram

A time-dependent function simulates an induction rate of the boosted IL − 2

concentration to accompany the naturally occuring influx of IL− 2. The decay rate

and interaction coefficient with the immune cell variable, L, remain the same. This

model aims to be more efficient at combating the tumor with increased immune cell

populations as a result of increased IL− 2 concentrations at the tumor location.

dT

dt
= a0T (1− bT )− c0TL (4.92)

dL

dt
= d+ eLI2 − fL (4.93)

dI2

dt
= VI2(t) +

gT

T + l
− jLI2 − kTI2 (4.94)
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4.3.2 Analysis of the Model

Finding equilibrium points of this three-equation model, the simultaneous Equa-

tions (4.92), (4.93), and (4.94) are first set equal to zero and solved for the variables

T , L, and I2.

dT

dt
= a0T (1− bT )− c0TL = 0 (4.95)

dL

dt
= d+ eLI2 − fL = 0 (4.96)

dI2

dt
= VI2(t) +

gT

T + l
− jLI2 − kTI2 = 0 (4.97)

When performing calculations to find the equilibrium points of this model,

one symbolic expression is found, one real numerical expression, and two complex

numerical expressions. As before, the two complex expressions are discarded for not

being applicable in this model. The symbolic expression is fully analyzed, and the

numerical expression is numerically analyzed as much as possible. Let E∗

0 represent

the first equilibrium point with the following values:

T ∗

0 = 0 (4.98)

L∗

0 =
VI2e+ dj

fj
(4.99)

I2
∗

0 =
VI2f

VI2e+ dj
(4.100)

Using the appropriate model parameters of a0 = 0.13 [24], b = 2.3× 10−10 [24],

c0 = 4.4×10−9 [24], d = 7.3×106 [24], e = 9.9×10−9 [24], f = 0.33 [24], g = 1.6×107
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[24], j = 3.3×10−9 [24], k = 1.8×10−8 [24], l = 3×106 [24], MATLAB arrives at the

following for the numerical representation of the second equilibrium. Let E∗

1 represent

the second equilibrium point with the following values. See Table A.1 for additional

information regarding the model’s initial values and parameter values.

T ∗

1 = 1.6657× 105 (4.101)

L∗

1 = 2.9534× 107 (4.102)

I2
∗

1 = 8.3665× 106 (4.103)

Adhering to the usual process previously established in prior sections, finding

the stability of E∗

0 first requires the partial derivatives of each model equation taken

with respect to the model variables T , L, and I2.

Let T ′ = dT
dt
.

∂T ′

∂T
= −Lc0 − a0(Tb− 1)− Ta0b (4.104)

∂T ′

∂L
= −Tc0 (4.105)

∂T ′

∂I2
= 0 (4.106)

Let L′ = dL
dt
.
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∂L′

∂T
= 0 (4.107)

∂L′

∂L
= I2e− f (4.108)

∂L′

∂I2
= Le (4.109)

Let I ′2 =
dI2
dt
;

∂I ′2
∂T

=
g

T + l
− I2k −

Tg

(T + l)2
(4.110)

∂I ′2
∂L

= −I2j (4.111)

∂I ′2
∂I2

= −Lj − Tk (4.112)

Let J be the Jacobian of the system. J0 represents the Jacobian matrix evalu-

ated at the first equilibrium point, E∗

0 .

J =













∂T ′

∂T
∂T ′

∂L
∂T ′

∂I2

∂L′

∂T
∂L′

∂L
∂L′

∂I2

∂I′
2

∂T

∂I′
2

∂L

∂I′
2

∂I2













(4.113)

J =













−Lc0 − a0(Tb− 1)− Ta0b −Tc0 0

0 I2e− f Le

g

T+l
− I2k − Tg

(T+l)2
−I2j −Lj − Tk













(4.114)

J0 =













a0 −
c0(VI2

e+dj)

fj
0 0

0
VI2

ef

VI2
e+dj

− f
e(VI2

e+dj

fj

g

l
−

VI2
fk

VI2
e+dj

−
VI2

fj

VI2
e+dj

−
VI2

e+dj

f













(4.115)
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Finding the eigenvalues of E∗

0 requires the determinant of J0 and then solving

the resulting characteristic equation for λ. Unfortunately the symbolic expressions

for each respective eigenvalue become very lengthy and thus prevent further symbolic

analysis. Numerical results, however, are still attainable and indicate the stability of

the first equilibrium point, E∗

0 . The parameter values of a0 = 0.13 [24], b = 2.3×10−10

[24], c0 = 4.4 × 10−9 [24], d = 7.3 × 106 [24], e = 9.9 × 10−9 [24], f = 0.33 [24],

g = 1.6 × 107 [24], j = 3.3 × 10−9 [24], k = 1.8 × 10−8 [24], l = 3 × 106 [24], and

VI2 = 10 × 106 [24] are substituted into the eigenvalue expressions via MATLAB

and produce the following numerical results of the eigenvalues. See Table A.1 for

additional information regarding the model’s initial values and parameter values.

λ1 = −0.3673 (4.116)

λ2 = −0.2188 + 0.2743ı (4.117)

λ3 = −0.2188− 0.2743ı (4.118)

Each calculated eigenvalue results in having negative real parts, thus indicating

E∗

0 containing T ∗

0 = 0 is stable when the immunotherapy is active. This is a logical

conclusion when the immunotherapy is an effective treatment. Otherwise the tumor

cells would continue to trend towards a substantially large non-zero level of population

rendering the immunotherapy useless. The above results, however, are only when the

immunotherapy is active. Performing the same calculations with the same parameter
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set as before via MATLAB when the immunotherapy is inactive, i.e. VI2 = 0, yields

the next set of eigenvalues:

λ1 = −0.3300 (4.119)

λ2 = 0.0327 (4.120)

λ3 = −0.0730 (4.121)

Having mixed signs for each respective real part of the eigenvalues makes E∗

0 un-

stable when the immunotherapy is inactive, confirming the logical notion of continued

tumor existence when the immunotherapy treatment ceases. The stability or insta-

bility of E∗

0 suggested by the above analyses is confirmed in numerical simulations at

the end of the current section.

Revisiting the numerical representation of the second equilibrium point, E∗

1 ,

the same Jacobian matrix is used to begin the process of establishing the stability of

E∗

1 . Substituing the numerical values of E∗

1 and appropriate parameters as previously

noted into J creates the matrix J1 of which the determinant is taken and characteristic

equation solved to then find the respective eigenvalues.

λ1 = −0.2171 (4.122)

λ2 = −0.0653 + 0.0175ı (4.123)

λ3 = −0.0653− 0.0175ı (4.124)
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Because E∗

1 is represented only by numerical values and not a symbolic represen-

tation, there are no variables, namely VI2 , to modulate for further investigation of any

changes in stability upon activation or inactivation of external treatments. Because

the immunotherapy is only temporarily active, E∗

1 is calculated with the treatment

inactive, i.e. VI2 = 0, and thus is classified as being stable by the above eigenval-

ues having all negative real parts. With T ∗

1 = 1.6657 × 105 and the immunotherapy

treatment inactive, the result of this stability analysis is expected and confirmed in

the following numerical simulations.

4.3.3 Numerical Simulation

This model is highlighted by the inclusion of the external immunotherapy term,

VI2 , in the third model equation as previously listed. The first simulation below is

when the immunotherapy treatment is active (VI2 = 10× 106) for the entire duration

of the model.
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Tumor−Immune II − Base Model
Tumor−Immune II − Immunotherapy

Figure 4.9: Tumor-Immune II - Immunotherapy Always Active

The simulation matches the results of the analysis in that the tumor cell pop-

ulation decreases uniformly to a minimum level and confirms the stable condition of

E∗

0 with the constant activation of the immunotherapy. Once the tumor cell levels

are sufficiently low around day 50, the simulation halts. The next simulation runs

the opposite condition, i.e. immunotherapy always inactive (VI2 = 0).
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Tumor−Immune II − Base Model
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Stable Tumor Cell Population

Figure 4.10: Tumor-Immune II - Immunotherapy Always Inactive

This second simulation again matches the results of the respective analysis in

that the tumor cell population exactly matches the behavior of the tumor cell pop-

ulation in the Tumor-Immune II - Base Model and stabilizes at T ∗

1 = 1.6657 × 105

thus confirming the stability of E∗

1 and instability of E∗

0 when the immunotherapy

is inactive. The next simulation utilizes the proscribed administration of the im-

munotherapy treatment with a 10 MU/day dose with four days active per dose on a

10-day cycle. That is, the 10 MU/day dose is maintained for four days and then turns

inactive to allow the therapy to decay at its own specified rate for the remaining six

days of the cycle. There are four doses total before the immunotherapy stays inactive

for the rest of the model time period.

The immunotherapy treatment proves to be substantially more effective than

the chemotherapy treatment over the same initial timeframe. However, just as with
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Figure 4.11: Tumor-Immune II - Immunotherapy

the drug therapy, once the immunotherapy turns inactive, the tumor cells do return

to the stable state of the base model. The next model investigates the behavior of

the tumor cell population when both treatments are combined concurrently.

4.4 Combined Drug Therapy and Immunotherapy

4.4.1 Motivating the Model

The final model of this class and of this discussion takes the Tumor-Immune II -

Base Model and combines the efforts of both the chemotherapy and immunotherapy.

Because both external stimuli are independent of each other, combining the two

should ideally stack their respective abilities at tumor cell eradication.
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Figure 4.12: Tumor-Immune II - Drug Therapy and Immunotherapy Interaction Di-
agram

All of the respective parameters, functions, and coefficients related to the previ-

ous two models are identical in this aggregate model. Because neither the chemother-

apy nor immunotherapy is directly affected by the other, this model successfully

implements both simultaneously to investigate their combined effects on the tumor

cells.

dT

dt
= a0T (1− bT )− c0TL−MT (1− e−C)T (4.125)

dL

dt
= d+ eLI2 − fL−ML(1− e−C)L (4.126)

dC

dt
= VC(t)− pC (4.127)

dI2

dt
= VI2(t) +

gT

T + l
− jLI2 − kTI2 (4.128)
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4.4.2 Analysis of the Model

Finding equilibrium points of this four-equation model, the simultaneous Equa-

tions (4.125), (4.126), (4.127), and (4.128) are first set equal to zero and solved for

the variables T , L, C, and I2.

dT

dt
= a0T (1− bT )− c0TL−MT (1− e−C)T = 0 (4.129)

dL

dt
= d+ eLI2 − fL−ML(1− e−C)L = 0 (4.130)

dC

dt
= VC(t)− pC = 0 (4.131)

dI2

dt
= VI2(t) +

gT

T + l
− jLI2 − kTI2 = 0 (4.132)

In calculating the equilibrium points of this model, one symbolic expression,

one real numerical expression, and two complex numerical expressions are found. The

numerical equilibrium points are calculated by substituting the appropriate parameter

values [24] into the expressions. As before, the two complex expressions are discarded

for not being applicable in this model. The symbolic expression is fully analyzed,

and the numerical expression is numerically analyzed as much as possible. Let E∗

0

represent the first equilibrium point with the following values:

T ∗

0 = 0 (4.133)

L∗

0 =
dj + eVI2

j(f +ML(1− e−
VC
p ))

(4.134)

C∗

0 =
VC

p
(4.135)

I2
∗

0 =
VI2(f +ML(1− e−

VC
p ))

dj + eVI2

(4.136)
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The second equilibrium point, E∗

1 , is comprised of the following points:

T ∗

1 = 1.6657× 105 (4.137)

L∗

1 = 2.9534× 107 (4.138)

C∗

1 = 8.3665× 106 (4.139)

I2
∗

1 = 0 (4.140)

Establishing the stability of each equilibrium point first requires the partial

derivatives of each model equation taken with respect to each model variable (T, L, C, and I2).

The Jacobian matrix, J , is then formed from these partial derivative expressions.

Let T ′ = dT
dt
.

∂T ′

∂T
= MT (e

−C − 1)− Lc0 − a0(Tb− 1)− Ta0b (4.141)

∂T ′

∂L
= −Tc0 (4.142)

∂T ′

∂C
= −

MTT

eC
(4.143)

∂T ′

∂I2
= 0 (4.144)

Let L′ = dL
dt
.
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∂L′

∂T
= 0 (4.145)

∂L′

∂L
= I2e− f +ML(e

−C − 1) (4.146)

∂L′

∂C
= −

MLL

eC
(4.147)

∂L′

∂I2
= Le (4.148)

Let C ′ = dC
dt
.

∂C ′

∂T
= 0 (4.149)

∂C ′

∂L
= 0 (4.150)

∂C ′

∂C
= −p (4.151)

∂C ′

∂I2
= 0 (4.152)

Let I ′2 =
dI2
dt
;

∂I ′2
∂T

=
g

T + l
− I2k −

Tg

(T + l)2
(4.153)

∂I ′2
∂L

= −I2j (4.154)

∂I ′2
∂C

= 0 (4.155)

∂I ′2
∂I2

= −Lj − Tk (4.156)

Let J be the Jacobian of the system. Focusing on the first equilibrium point,

J0 represents the Jacobian matrix evaluated at the first equilibrium point, E∗

0 .
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(4.157)

Due to the length of the expressions, both J and J0 with the respective substi-

tuted expressions and values are omitted. Finding the eigenvalues of E∗

0 requires the

determinant of J0 and then solving the resulting characteristic equation for λ. These

expressions are similarly complex and lengthy and are thus omitted in their symbolic

form. It should be noted, however, this system is also non-autonomous as all the

previous ones containing either the time-dependent chemotherapy or immunotherapy

term. As such, multiple computations of eigenvalues are necessitated to investigate

the stability of E∗

0 when either or both of the drug therapy and immunotherapy pa-

rameters (VC and VI2 , respectively) are either active or inactive. Using the remainder

of the applicable parameter set [24] and setting both chemotherapy and immunother-

apy treatments as active (VC = 1 and VI2 = 10 × 106 [24]), MATLAB produces the

resulting eigenvalues:

λ1 = −6.4000 (4.158)

λ2 = −0.3940 (4.159)

λ3 = −0.1884 + 0.2959ı (4.160)

λ4 = −0.1884− 0.2959ı (4.161)
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With all four eigenvalues having negative real parts, E∗

0 containing T ∗

0 = 0

is determined to be stable when both the drug therapy and immunotherapy terms

are active. Repeating the eigenvalue calculations but with the drug therapy active

(VC = 1) and immunotherapy inactive (VI2 = 0), MATLAB returns the following

eigenvalues:

λ1 = −6.4000 (4.162)

λ2 = −0.0578 (4.163)

λ3 = −0.4168 (4.164)

λ4 = −0.0773 (4.165)

All four eigenvalues again have negative real parts thus indicating once more E∗

0

as being stable when the drug therapy is active and the immunotherapy is inactive.

This is a logical conclusion since the chemotherapy is effective at combating the tumor

cells and lowering the over all tumor cell population albeit not as efficiently as the

immunotherapy. The next set of eigenvalue calculations is performed when the drug

therapy is inactive (VC = 0) and the immunotherapy is active (VI2 = 10 × 106).

MATLAB returns the following eigenvalues:

λ1 = −6.4000 (4.166)

λ2 = −0.3673 (4.167)

λ3 = −0.2188 + 0.2743ı (4.168)

λ4 = −0.2188− 0.2743ı (4.169)
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All of the eigenvalues have negative real parts once more thus indicating the

stability of E∗

0 when the drug therapy is inactive and immunotherapy is active. This

is a logical conclusion as previous models saw the immunotherapy treatment as being

quite effective at reducing the tumor cell population. The final eigenvalue calculation

for the first equilibrium point finds both drug therapy and immunotherapy inactive.

MATLAB produces the following eigenvalues:

λ1 = −6.4000 (4.170)

λ2 = −0.3300 (4.171)

λ3 = 0.0327 (4.172)

λ4 = −0.0730 (4.173)

The last scenario with both drug therapy and immunotherapy inactive finds

the first equilibrium point E∗

0 as unstable, and the tumor cells growing away from

T ∗

0 = 0. With no external treatments applied, the tumor cells overwhelm the innate

immune system and stabilize to a non-zero population level.

Efforts now focus on the second equilibrium point, E∗

1 , to determine its respec-

tive stability. Because E∗

1 is realized only through numerical calculations, no external

treatment parameters are available to change for additonal investigation. Because

these treatments are inactive for the majority of the model and when the model is

found to stabilize far into the time duration of the model, the treatment parameters

are set equal to zero in the calculation of the equilibrium point. The treatment pa-
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rameters are also treated as constants in the partial derivative expressions and thus

fall out of the expressions very quickly in that process. As such, only one set of eigen-

values is available for E∗

1 , and the following eigenvalues represent the situation where

both chemotherapy and immunotherapy are inactive. Using the appropriate param-

eter values [24] along with VC = 0 and VI2 = 0, MATLAB produces the following

eigenvalues:

λ1 = −6.4000 (4.174)

λ2 = −0.1020 (4.175)

λ3 = −0.8756 (4.176)

λ4 = −0.9528 (4.177)

With all four eigenvalues having negative real parts, E∗

1 is stable, and the tumor

cell population tends towards T ∗

1 = 1.6657 × 105. All of the above analysis results

are confirmed in the following section through various numerical simulations of the

different model scenarios discussed.

4.4.3 Numerical Simulation

As seen in the preceding analyses, this model is a combination of methods

previously implemented individually from each other. Both drug therapy and im-

munotherapy are administered together to investigate the combined efforts and effects

of both treatments on the tumor cell population. The first simulation sees both the

chemotherapy and immunotherapy as being active (VC = 1 and VI2 = 10× 106).
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Tumor−Immune II − Base Model
Tumor−Immune II − Chemo. and Immuno.

Figure 4.13: Tumor-Immune II - Both Drug Therapy and Immunotherapy Active

With both treatments always active, the tumor cell population quickly declines

to a minimum. The simulation confirms the stability of E∗

0 when both treatments

are active as the tumor cell population does indeed tend towards T ∗

0 = 0. The next

simulation finds the drug therapy active but the immunotherapy inactive.

72



0 50 100 150 200 250
10

−5

10
0

10
5

10
10

Time (t), days

C
e

ll 
C

o
n

ce
n

tr
a

tio
n

s

 

 
Tumor−Immune II − Base Model
Tumor−Immune II − Chemo. and Immuno.

Figure 4.14: Tumor-Immune II - Only Drug Therapy Active

With only the drug therapy active the entire duration of the model, the tumor

cell population does decrease to a minimum level but takes a significantly longer

amount of time to do so. This simulation confirms the stability of E∗

0 even with

only one treatment active as seen in the analysis. The next simulation has the drug

therapy now inactive and the immunotherapy active.
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Tumor−Immune II − Base Model
Tumor−Immune II − Chemo. and Immuno.

Figure 4.15: Tumor-Immune II - Only Immunotherapy Active

Because the immunotherapy is such a more efficient method at independently

combating the cancer cells, this simulation finds the tumor cell population decreasing

to a minimum level at a rate very similar to that seen when both treatments were

active. Again, this simulation confirms the stability of E∗

0 when the immunotherapy

is active as seen in the analysis in the previous subsection. The next simulation sees

both treatments as inactive.
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Stable Tumor Cell Population

Figure 4.16: Tumor-Immune II - Both Drug Therapy and Immunotherapy Inactive

With both treatments being inactive, the tumor cell population follows the path

previously seen in the Tumor-Immune II - Base Model as it stabilizes at a level of

T ∗

1 = 1.6657 × 105, thus confirming the instability of E∗

0 and stability of E∗

1 when

both treatments are inactive. The last simulation is more realistic as the treatments

are returned to their time-dependent state as opposed to being either always active

or always inactive.
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Figure 4.17: Tumor-Immune II - Drug Therapy and Immunotherapy

As seen in the graph of tumor cell population, the simultaneous efforts of

both the chemotherapy and immunotherapy when administered as originally intended

proved to be better than any previous effort at decreasing the tumor cells during the

time in which treatments are active. However, once the treatments turn inactive, the

tumor cell population rises yet again to the same stable level observed in the Tumor-

Immune II - Base Model simulation. Therefore, while the combined efforts prove to

be the most successful, one concurrent dose of each treatment does not decrease the

tumor cell population to such levels so as to be considered an overall successful treat-

ment. Further investigation into the manipulation of these treatments is required to

find the optimal combination with which to combat the given tumor cell population.

76



CHAPTER 5

RESULTS AND CONCLUSIONS

5.1 The Best Model and Implementation

Outside of the growth-only model of the tumor cells, this paper discusses two

main types of models with subsequent respective iterations and variations. These

models range from a basic two-equation interaction model with eventual chemother-

apy terms to a three-equation model with eventual chemotherapy, immunotherapy,

and subsequent combined terms.

This last variety of model, Tumor-Immune II with drug therapy and immunother-

apy, proved to be the most effective at combating the tumor cells present in the host.

However, the initial model only ran a simulation of that model with single rounds

of chemotherapy and immunotherapy. Obvious realistic treatment options include

multiple rounds of either or both supplementary regimens. The limiting nature of a

single round of external therapy is seen in the effects on the tumor cells: the tumor

cell population eventually returned to the same stable level as in the Tumor-Immune

II base model where no external treatments were applied. This level of tumor cell

population is not an acceptable value and would hardly classify this model to be

realistically worthwhile with its present mode of implementation.

The literature claims the most effective treatment to be chemotherapy followed

immediately by immunotherapy [24]. This claim is investigated by modulating the

order, frequency, and duration of the chemotherapy and immunotherapy treatments

while monitoring the tumor cell and immune cell levels to determine which combina-
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tion of treatments results in an acceptable implementation of the model as defined

by the respective cell populations. Generally speaking, the overall goal is to min-

imize the tumor cell population while simultaneously maximizing the immune cell

population within the parameters of the model. As seen in the model analysis, the

chemotherapy obviously affects both types of cells, hence the need to find the balance

between treatments.

5.2 Further Implementations

5.2.1 Single Dose Models
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Figure 5.1: Tumor-Immune II - Base
Model
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Figure 5.2: Tumor-Immune II - Concur-
rent Treatments

By observing the simulations, it is easily seen that while each model has varying

results, none of them achieve a substantially low level of tumor cells for a sizable length

of time. Interestingly enough, the immune cell population counts are very similar

among all simulations with cyclical patterns in population levels only occurring during
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Figure 5.3: Tumor-Immune II - Drug
Therapy then Immunotherapy
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Figure 5.4: Tumor-Immune II - Im-
munotherapy then Drug Therapy

the immunotherapy treatment. Once all treatments end, the immune cell population

stabilizes to levels observed with the Tumor-Immune II - Base Model.

Figures (5.2) and (5.4) resulted in very similar results, with the model described

by Figure (5.4) being more effective at maintaining lower levels of tumor cells for a

longer period of time (≈ 50 days). Figure 5.3 demonstrates what could be considered

the worst performance of these three variations with respect to time as the lowest

concentration of tumor cells was not realized until approximately 100 days after ex-

ternal treatment began. Ironically, this is the order of treatments described in [24] as

being the most effective. This was, however, but one single dose of each treatment.

Simulations below demonstrate the effectiveness of multiple doses in varying orders.

5.2.2 Multiple Dose Models

The first multiple dose model in Figure (5.5) finds two concurrent treatments

implemented back to back. That is, the drug therapy and immunotherapy is admin-

istered together until each treatment ends, and then another identical treatment of
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Figure 5.5: Tumor-Immune II - Two
Concurrent Doses of Drug Therapy and
Immunotherapy
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Figure 5.6: Tumor-Immune II - Two
Doses Each, Drug Therapy then Im-
munotherapy

both therapies is started immediately after the first. While the model shows this

to be the most effective option, the reality of such a course of action is rather in-

hibitory. The immune cells did not deviate substantially from the stable level of of

the Tumor-Immune II - Base Model, but that cannot be the only litmus test of a

viable treatment option. Chemotherapy affects many more aspects of a host’s life

and is difficult on the patient in general. While any potentially undesireable side af-

fects of the immunotherapy are not discussed in the literature germane to this work,

one must consider the negative aspects of successive rounds of drug therapy and not

consider the first multiple dose model as a possible treatment option.

Taking into account the possible side effects on the host unaccounted for by the

simulations, the second model in Figure (5.6) demonstrates one round of drug therapy

followed immediately by a round of immunotherapy. Once the immunotherapy is

finished, a second dose of drug therapy is administered followed immediately once

again by a second round of immunotherapy. The immune cells oscillate around the
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Figure 5.7: Tumor-Immune II - Two Doses Each, Immunotherapy then Drug Therapy

steady state level of the base model depending on the activation or inactivation of

the immunotherapy treatment.

The final simulated model in Figure (5.7) is motivated similarly to the second

simulation. That is, the model attempts to mitigate any possible side effects of

one external treatment or the other by alternating both of them for the course of

two doses each such that only one therapy is active at a time. This time, however,

finds the immunotherapy administered first followed by the chemotherapy. While

the minimum amount of tumor cells does not fall as low as the second model, this

minimum is reached approximately 30 days prior to the minimum attained in the

second model. Observing the behavior of the models with respect to the tumor cell

population levels along with fluctuations in immune cell counts, the final simulation

represented by Figure (5.7) appears to be the most efficient with regard to the order
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of therapies. This contradicts what is claimed in the literature [24], but the respective

article making that claim only administered a single round of each specific therapy.

5.3 Future Investigations

Despite having observed a plausible solution to this specific tumor cell popu-

lation, much more research is obviously necessitated in this field as more and more

biological information becomes available about the variety of different tumors and how

they react, different treatments and therapies and how efficient they are, and how the

innate system continues to react to not only the tumor but also the treatment options,

etc. One such area of interest is that of tumor vaccine treatment [24] [42] as well as

additional immunotherapy involving a separate substance called TGF−β [42]. There

exists recent research into these two topics, but the interesting question remains of

combining those treatment options alongside the ones discussed in this paper. This

area of interest could also be expanded by investigating and designing a cellular au-

tomata model to take into account not only the temporal effects of the model but also

the spatial aspects as well. Designing any of the aforementioned models as stochastic

instead of being purely deterministic is also a potential area of interest to perhaps

better investigate the true dynamics of the tumor and its environment in the host

system.
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APPENDIX A

TABLES OF IMPORTANT VALUES
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Table A.1: Values to Model Coefficients

Coefficient Units Value Description Source

a0 day−1 0.13 tumor growth rate [24]

b cells−1 2.3× 10−9 reciprocal carrying capacity [24]

c0 cells−1 day−1 4.4× 10−9 tumor cell kill rate by immune cells [24]

d cells day−1 7.3× 106 CTL immune cell induction rate [24]

e cells−1 day−1 9.9× 10−9 CTL proliferation rate induced by IL-2 [24]

f day−1 0.33 CTL immune cell death rate [24]

g unit day−1 1.6× 107 antigen presentation [24]

j cells−1 day−1 3.3× 10−9 rate of consumption of IL-2 by CTL [24]

k cells−1 day−1 1.8× 10−8 inactivation of IL-2 molecules [24]

l cell 3× 106 half-saturation constant [24]

ML day−1 0.6 CTL immune cell kill rate via chemotherapy [24]

MT day−1 0.9 tumor cell kill rate via chemotherapy [24]

p day−1 6.4 decay rate of chemotherapy [24]

VC dose day−1 1 chemotherapy induction rate [24]

VI2 MU day−1 10× 106 immunotherapy induction rate [24]

Table A.2: Values to Various Initial Cell Populations

Variable Value Description Source

T0 3× 107 Tumor Cells [24]
L0 2.25× 107 CTL Immune Cells [24]
C0 0 Chemotherapy Drug Concentration [24]
I20 2.4× 107 IL− 2 molecules [24]
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