
TOWARDS BETTER USABILITY OF QUERY SYSTEMS FOR MASSIVE

ULTRA-HETEROGENEOUS GRAPHS: NOVEL APPROACHES OF QUERY

FORMULATION AND QUERY SPECIFICATION

by

NANDISH JAYARAM

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2016

Copyright c© by NANDISH JAYARAM 2016

All Rights Reserved

To my

Mother: for all her sacrifices, and always wishing I’d be a “doctor”.

Father: for being my greatest teacher.

ACKNOWLEDGEMENTS

I would like to acknowledge and express my deepest appreciation to my supervising

professor and committee chair, Dr. Chengkai Li. The research in this dissertation would

not have been possible without his constant support and mentoring. I have learned tremen-

dous amount from him during this journey, starting from problem formulation, designing

rigorous solutions, to presenting them to an audience. He has always believed in working

on real-world problems and building practical systems useful to people, and that has left

a huge positive impact on me. His “treat words like gold while writing a research paper”

advice is certainly a tip for life. I will forever be indebted to him for always standing by

me, and I cannot thank him enough for his constant support and encouraging words when

I needed them the most. He has been instrumental in nurturing my research acumen.

I would like to thank my co-supervising professor, Dr. Ramez Elmasri. He has been

extremely kind to me and has encouraged me tremendously. I have been his teaching as-

sistant for several semesters, and that has been a great learning experience for me. I would

also like to thank my other committee members: Dr. Christoph Csallner, Dr. Gautam Das,

and Dr. Xifeng Yan. Dr. Csallner’s candid feedback and positive criticisms during impor-

tant PhD milestones have been extremely helpful in shaping this dissertation. I have always

been amazed by Dr. Das’ ability to explain complex ideas with great ease. His courses on

algorithms laid an important foundation that has helped me greatly in my research projects.

Dr. Yan of UCSB has been an invaluable mentor and collaborator. He has always believed

in my research direction, and his advice on presenting the core ideas of a problem in a re-

search paper has helped me write better. I thank these five incredible mentors for teaching

the most important lesson by example, to exhibit kindness and humility.

iv

I would also like to extend my gratitude to the department of Computer Science and

Engineering at the University of Texas at Arlington, and Dr. Chengkai Li for providing

me with financial supports during my entire graduate studies. Special thanks to Mahesh,

Sidharth and Rohit for helping me build demos of the systems that form an integral part

of this dissertation. I also thank my lab mates Afroza, Fatma, Gensheng, Naffi, Ning and

Sona. Many thanks to my friends Saravanan, Mahesh, Jijo, Mayank, Praveen, Manimala,

Mahashweta, Ramesh, Azade and Rasool for making my Ph.D. memorable. I will espe-

cially cherish having long funny conversations with Mahesh and Jijo. I have always come

out knowing more after my discussions with Saravanan, and his incredible thirst for knowl-

edge is something I wish for.

I would like to convey my heartfelt gratitude to my parents and sister. I still remember

my mother carrying me around for a year when I had broken my leg as a 9-year old kid. Her

love and sacrifices have made me who I am today. My father is one of the smartest, ethical

and hard working people I have known. His determination and ability to develop expertise

in diverse areas such as electronics, structural chemistry and aerospace never ceases to

amaze me! I thank my parents for instilling the importance of knowledge in me. Finally, I

would like to thank my wife Kruthi. She is my best friend and I am extremely lucky to have

her in my life. Her patience in dealing with me is truly a gift. She has made me a better

and a happier person, and her joyfulness is contagious! I thank her parents for raising such

a loving person. This journey would be incomplete without her.

February 12, 2016

v

ABSTRACT

TOWARDS BETTER USABILITY OF QUERY SYSTEMS FOR MASSIVE

ULTRA-HETEROGENEOUS GRAPHS: NOVEL APPROACHES OF QUERY

FORMULATION AND QUERY SPECIFICATION

NANDISH JAYARAM, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Chengkai Li, Ramez Elmasri

There is a pressing need to tackle the usability challenges in querying massive, ultra-

heterogeneous entity graphs which use thousands of node and edge types in recording

millions to billions of entities (persons, products, organizations) and their relationships.

Widely known instances of such graphs include Freebase, DBpedia and YAGO. Applica-

tions in a variety of domains are tapping into such graphs for richer semantics and bet-

ter intelligence. Both data workers and application developers are often overwhelmed by

the daunting task of understanding and querying these data, due to their sheer size and

complexity. To retrieve data from graph databases, the norm is to use structured query

languages such as SQL, SPARQL, and those alike. However, writing structured queries

requires extensive experience in query language, data model and the datasets themselves.

In this dissertation, as an initial step toward improving the usability of query systems for

large graphs, we present two novel and first-of-its-kind systems: Orion and GQBE.

The database community has long recognized the importance of graphical query in-

terface to the usability of data management systems. Yet, relatively little has been done.

vi

Existing visual query builders allow users to build queries by drawing query graphs, but

do not offer suggestions to users regarding what nodes and edges to include. At every step

of query formulation, a user would be inundated with possibly hundreds of or even more

options. We present Orion, a visual query interface that iteratively assists users in query

graph construction by making suggestions using machine learning methods. In its active

mode, Orion suggests top-k edges to be added to a query graph, without being triggered by

any user action. In its passive mode, the user adds a new edge manually, and Orion sug-

gests a ranked list of labels for the edge. Orion’s edge ranking algorithm, Random Decision

Paths (RDP), makes use of a query log to rank candidate edges by how likely they are pre-

dicted to match users’ query intent. Extensive user studies using Freebase demonstrated

that Orion users have a 70% success rate in constructing complex query graphs, a signifi-

cant improvement over the 58% success rate by users of a baseline system that resembles

existing visual query builders. Furthermore, using active mode only, the RDP algorithm

was compared with several methods adapting other machine learning algorithms such as

random forests and naive Bayes classifier, as well as recommendation systems based on

singular value decomposition and class association rules. On average, RDP required only

40 suggestions to correctly reach a target query graph while other methods required 1.5-4

times as many suggestions.

We also propose to query large graphs by example entity tuples, without requiring

users to form complex graph queries. Our system, GQBE (Graph Query By Example),

provides a complementary approach to the existing keyword-based methods, facilitating

user-friendly graph querying. GQBE automatically discovers a weighted hidden maximum

query graph based on input query tuples, to capture a user’s query intent. It then efficiently

finds and ranks the top approximate matching answer graphs and answer tuples. GQBE

also lets users provide multiple example tuples as input, and efficiently uses them to bet-

ter capture the user’s query intent. User studies with Freebase demonstrated that GQBE’s

vii

ranked answer tuple list has a strong positive correlation with the users’ ranking prefer-

ences. Other extensive experiments showed that GQBE has a significantly better accuracy

than other state-of-the-art systems. GQBE was also faster than NESS (one of the compared

systems) for 17 of the 20 queries used in the experiments, and was 3 times faster for 10 of

them.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xiv

Chapter Page

1. INTRODUCTION . 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline . 5

2. AUTO-SUGGESTION BASED VISUAL INTERFACE FOR INTERACTIVE

QUERY CONSTRUCTION . 6

2.1 Introduction . 6

2.2 System Overview . 11

2.2.1 Data Model and Query Model 11

2.2.2 User Interface for Providing Suggestions 12

2.2.3 Candidate Edges . 15

2.3 Ranking Candidate Edges . 16

2.3.1 Baseline Methods . 18

2.3.2 Random Decision Paths (RDP) 19

2.4 Simulating Query Logs . 25

2.5 Experiments . 28

2.5.1 Setup . 28

ix

2.5.2 User Studies . 29

2.5.3 Comparing Candidate Edge Ranking Methods 38

2.5.4 Effectiveness of Query Logs . 41

2.5.5 Parameter Tuning for RDP . 43

3. GRAPH QUERY BY EXAMPLE . 45

3.1 Introduction . 45

3.2 User Interface and Functionality . 48

3.3 Problem Formulation . 51

3.4 Query Graph Discovery . 56

3.4.1 Maximum Query Graph . 56

3.5 Multi-tuple Queries . 60

3.6 Answer Space Modeling . 63

3.6.1 Query Lattice . 63

3.6.2 Answer Graph Scoring Function 65

3.7 Query Processing . 66

3.7.1 Processing One Query Graph 66

3.7.2 Best-first Exploration of Query Lattice 67

3.7.3 Details of the Best-first Exploration Algorithm 70

3.8 Edge Weighting Function . 77

3.8.1 Preprocessing: Reduced Neighborhood Graph 79

3.9 Experiments . 81

3.9.1 Setup . 81

3.9.2 Accuracy Based on Ground Truth 84

3.9.3 Accuracy Based on User Studies 88

3.9.4 Accuracy on Multi-tuple Queries 89

3.9.5 Efficiency Results . 90

x

4. SYSTEMS DESIGN AND IMPLEMENTATION 93

4.1 Orion Design and Implementation . 93

4.2 GQBE Design and Implementation . 97

5. RELATED WORK . 99

5.1 Query Specification . 99

5.2 Visual Query Formulation . 102

5.3 Query Graph Processing . 103

6. FUTURE DIRECTIONS AND CONCLUSIONS 105

6.1 Future Directions . 105

6.2 Conclusions . 107

REFERENCES . 108

BIOGRAPHICAL STATEMENT . 118

xi

LIST OF ILLUSTRATIONS

Figure Page

1.1 An Excerpt of a Heterogeneous Graph . 2

1.2 Query Graph for Example 1 . 3

1.3 Framework for Querying Heterogeneous Graphs 3

2.1 Example Partial and Target Query Graphs 12

2.2 User Interface of Orion . 13

2.3 Random Decision Paths Based Edge Selection 25

2.4 Target Query Graphs of Tasks in Table 2.3 30

2.5 User Studies Efficiency Based on Time: Naive and Orion 34

2.6 User Studies Efficiency Based on Iterations: Orion 36

2.7 User Experience Based on Survey Responses 37

2.8 Efficiency of All Methods: Number of Suggestions 39

2.9 Efficiency of All Methods: Time . 40

2.10 Effectiveness of Query Logs . 41

2.11 Effect of Parameters on RDP (N , τ) . 43

3.1 The Architecture and Components of GQBE 47

3.2 GQBE’s Input Interface . 48

3.3 Interface Displaying Answer Tuples . 49

3.4 Interface Displaying Answer Graphs . 50

3.5 Neighborhood Graph for 〈Jerry Yang, Yahoo!〉 52

3.6 Two Query Graphs in Figure 3.5 . 53

3.7 Two Answer Graphs for Figure 3.6(a) . 54

xii

3.8 Two Answer Graphs for Figure 3.6(b) . 55

3.9 Merging Maximum Query Graphs . 62

3.10 Maximum Query Graph and Query Lattice 64

3.11 Evaluating Lattice in Figure 3.10 (b) . 72

3.12 Recomputing Upper Boundary of Dirty Node FG 76

3.13 Accuracy of GQBE and NESS over all Freebase Queries 86

3.14 Accuracy of GQBE, NESS and EQ over 11 Freebase Queries 87

3.15 Query Processing Time . 90

3.16 Lattice Nodes Evaluated . 91

3.17 Query Processing Time of 2-tuple Queries 92

4.1 Orion System Components . 94

4.2 GQBE System Components . 97

6.1 Framework for Querying Heterogeneous Graphs, with Future Directions . . 106

xiii

LIST OF TABLES

Table Page

2.1 Example Query Log W . 19

2.2 Query Logs Simulated . 28

2.3 Sample Query Tasks From User Studies . 29

2.4 Survey Questions and Options . 31

2.5 Conversion Rates of Naive and Orion . 31

3.1 Queries and Ground Truth Table Size . 84

3.2 Case Study: Top-3 Results for Selected Queries 85

3.3 Accuracy of GQBE on DBpedia Queries, k=10 87

3.4 Pearson Correlation Coefficient (PCC) between GQBE and Amazon MTurk

Workers, k=30 . 88

3.5 Accuracy of GQBE on all 20 Freebase Multi-tuple Queries, k=25 89

3.6 Time for Discovering and Merging MQGs (secs.) 92

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

There is an unprecedented proliferation of large ultra-heterogeneous graph data in

our society today. Graphs are increasingly used to represent complex relationships in

schema-less data such as DBpedia [1], YAGO [2], Freebase [3] and Probase [4]. Given

a large ultra-heterogeneous graph that represents such ubiquitous linked data, being able to

use it by easily querying it is a fundamental problem and a critical task for many graph ap-

plications. Examples of such large graphs include knowledge graphs, that record millions

of entities (e.g., persons, products, organizations) and their relationships. Figure 1.1 is an

excerpt of a heterogeneous graph, in which the edge labeled founded between nodes Jerry Yang

and Yahoo! captures the fact that the person is a founder of the company.

Users and developers are tapping into such large graphs for numerous applications,

including search, recommendation, and business intelligence. Both users and application

developers are often overwhelmed by the daunting task of understanding and using these

graphs. This largely has to do with the sheer size and complexity of such data. As of

March 2012, the Linking Open Data community had interlinked over 52 billion RDF triples

spanning over several hundred datasets. More specifically, the challenges lie in the gap be-

tween complex data and non-expert users. Knowledge graphs are often stored in relational

databases, graph databases and triplestores. In retrieving data from these databases, the

norm is often to use structured query languages such as SQL, SPARQL, and those alike.

However, writing structured queries requires extensive experiences in query language, data

1

Figure 1.1: An Excerpt of a Heterogeneous Graph

model, and a good understanding of particular datasets [5]. If querying “simple” tables is

difficult, aren’t complex graphs harder to query?

Example 1 (Expressing Query Intent) Consider the scenario where a Silicon Valley ana-

lyst is interested in finding various software companies head-quartered in the Silicon Valley,

that were founded by American citizens. Figure 1.2 represents a query graph to capture the

query intent, while the SPARQL query to capture the same query intent is: SELECT ?com-

pany ?founder WHERE { :?founder dbo:founded :?company. :?founder dbo:nationality db:USA.

:?company dbprop:headquartered in db:Silicon Valley.}, where dbo, dbprop and db are various

namespaces used. Clearly, specifying a query even for such a simple query intent requires

users to understand the schema and the data well.

2

Figure 1.2: Query Graph for Example 1

Figure 1.3: Framework for Querying Heterogeneous Graphs

1.2 Contributions

Motivated by the aforementioned usability challenges, in this dissertation we focus

on addressing the problem of improving the query formulation capability of query sys-

tems for large heterogeneous graphs. Figure 1.3 shows the architecture of the proposed

framework. More specifically, we present two different techniques: 1) Orion, a system that

helps schema-agnostic users formulate query graphs specifying their exact query intent.

Orion helps users in the query formulation process by automatically making suggestions

that are ranked by how likely they are predicted to match the user’s query intent. The

query canvas component of Orion shown in Figure 1.3, provides an interactive interface

for users to formulate their query graph in, and 2) GQBE (Graph Query By Example), a

system that supports a new querying paradigm that queries graphs by example entity tu-

ples, instead of query graphs. GQBE lets schema-agnostic users provide example tuples

3

as input to obtain similar answer tuples as output. The query graph discovery component

shown in Figure 1.3 automatically discovers a hidden query graph that tries to capture the

query intent behind the example query tuples. Demonstration systems of Orion and GQBE

that help users query the real-world Freebase data graph can be found at http://idir.

uta.edu/orion and http://idir.uta.edu/gqbe respectively. Demonstration

videos of Orion and GQBE can be found at https://www.youtube.com/watch?v=

80iU5EFTVAk and https://www.youtube.com/watch?v=-uja23CgOrA re-

spectively.

Orion helps users easily formulate exact query graphs. Orion provides a visual in-

terface that enables users to easily construct query graph components. To help schema-

agnostic users specify their exact query intent, Orion operates in active and passive modes.

By default Orion operates in active mode. Based on the partially constructed query graph,

the system automatically suggests top-k new edges that may be relevant to the user’s query

intent, without being triggered by any user actions. The passive mode is triggered when the

user adds new nodes or edges to the partial query graph. For a newly added edge, the sug-

gested edge labels are ranked based on the likelihood of their relevance to the user’s query

intent. The graph in Figure 1.2 can be constructed iteratively with the help of suggestions

made by Orion. To the best of our knowledge, Orion is the first visual query formulation

system that makes ranked suggestions to help users construct exact query graphs.

GQBE [6, 7] is among the first to query ultra-heterogeneous graphs by example entity

tuples. Given a data graph and one or more example query tuples consisting of entities,

GQBE finds similar answer tuples. Suppose the Silicon Valley analyst in Example 1 knows

an example query tuple such as 〈 Jerry Yang, Yahoo! 〉 that satisfies her query intent. The answer

tuples can be 〈 Sergey Brin, Google〉 and 〈 Mark Zuckerberg, Facebook 〉, which are company-founder

pairs. The user need not specify how various entities in the example tuple are related.

4

http://idir.uta.edu/orion
http://idir.uta.edu/orion
http://idir.uta.edu/gqbe
https://www.youtube.com/watch?v=80iU5EFTVAk
https://www.youtube.com/watch?v=80iU5EFTVAk
https://www.youtube.com/watch?v=-uja23CgOrA

Instead, the system discovers a query graph that tries to capture relationships that may be

relevant to the query intent.

Once a query graph is formed, the query processing component shown in Figure 1.3

evaluates the query graph to find the top-k approximately matching answer graphs. The

answer tuples for GQBE are projected from the answer graphs.

1.3 Outline

The overall contribution of this dissertation is to improve the usability of query sys-

tems for large ultra-heterogeneous graphs. The rest of the dissertation elucidates our ap-

proaches towards achieving this goal, and is structured as follows:

• In Chapter 2, we present Orion, an interactive visual query interface that helps schema-

agnostic users construct query graphs, by automatically suggesting new edges to add

to the query graph.

• In Chapter 3, we present GQBE, a system that lets users query large graphs by ex-

ample entitiy tuples. Given an example input tuple of what a user is looking for, the

system finds an underlying query graph to capture the user’s query intent and finds

similar answer tuples.

• In Chapter 4, we discuss the system design and implementation details of Orion and

GQBE. We also discuss some of the lessons learned by us while creating these sys-

tems capable of dealing with large real-world graphs.

• In Chapter 5, we present a literature survey relevant to this dissertation.

• In Chapter 6, we present an overview of some future directions to continue improving

the usability of query systems for massive ultra-heterogeneous graphs, and finally

conclude the contributions made in this dissertation.

5

CHAPTER 2

AUTO-SUGGESTION BASED VISUAL INTERFACE FOR INTERACTIVE QUERY

CONSTRUCTION

2.1 Introduction

The database community has long recognized the importance of graphical query in-

terfaces to the usability of data management systems [8]. Yet, relatively less has been done

and there remains a pressing need for investigation in this area [5, 9]. Nevertheless, a few

important ideas (e.g., Query-By-Example [10]) and systems (e.g., Microsoft SQL Query

Builder) have been developed for querying relational databases [11], web services [12] and

XML [13, 14].

For querying graph data, existing systems [15, 16, 17, 18, 19, 20] allow users to build

queries by visually drawing nodes and edges of query graphs, which can then be translated

into underlying representations such as SPARQL and SQL queries. While focusing on

blending query processing with query formulation [16, 17, 18, 19, 20], existing visual query

builders do not offer suggestions to users regarding what nodes/edges to include into query

graphs. At every step of visual query formulation, after adding a new node or a new edge

into the query graph, a user would need to choose from a list of candidate labels—names

and types for a node or types for an edge. The user, when knowing what label to use, can

search the list of labels by keywords or sift through alphabetically sorted options using

binary search. But, oftentimes the user does not know the label due to lack of knowledge

of the data and the schema. In such a scenario, the user may need to sequentially comb the

option list. Furthermore, the user may not have a clear label in mind due to her vague query

intent.

6

The lack of query suggestion presents a substantial usability challenge when the

graph data require a long list of options, i.e., many different types and instances of nodes

and edges. The aforementioned systems [15, 16, 17, 18, 19, 20] were all deployed on rel-

atively small graphs. The crisis is exacerbated by the proliferation of ultra-heterogeneous

graphs which have thousands of node/edge types and millions of node/edge instances.

Widely-known ultra-heterogeneous graphs include Freebase [3], DBpedia [1], YAGO [2],

Probase [4], and the various RDF datasets in the “linked open data” 1. Users would be bet-

ter served, if graph query builders provided suggestions during query formulation. In fact,

query suggestion has been identified as an important feature-to-have among the desiderata

of next-generation visual query interfaces [21].

This chapter presents Orion, a visual query builder that provides suggestions, itera-

tively, to assist users formulate queries on ultra-heterogeneous graphs. Orion’s graphical

user interface allows users to construct query graphs by drawing nodes and edges onto a

canvas using simple mouse actions. To allow schema-agnostic users to specify their exact

query intent, Orion suggests candidate edge types by ranking them on how likely they will

be of interest to the user, according to their relevance to the existing edges in the partially

constructed query graph. The relevance is based on the correlation of edge occurrences

exhibited in a query log. To the best of our knowledge, Orion is the first visual query for-

mulation system that automatically makes ranked suggestions to help users construct query

graphs. The demonstration proposal for an early prototype of Orion [22] was based on a

subset of the ideas in this chapter.

Orion supports both an active and a passive operation mode. (1) If the canvas contains

a partially constructed query graph, Orion operates in the active mode by default. The

system automatically recommends top-k new edges that may be relevant to the user’s query

1Linking open data. http://www.w3.org/wiki/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData.

7

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

intent, without being triggered by any user actions. Figure 2.2(a) shows the snapshot of a

partially constructed query graph, with nodes and edges suggested in the active mode. The

white nodes and the edges incident on them are newly suggested. The user can select

some of the suggested edges by clicking on them, and a mouse click on the canvas adds

the selected edges to the partial query graph, and ignores the unselected edges. (2) The

passive mode is triggered when the user adds new nodes or edges to the partial query graph

using simple mouse actions. For a newly added node, labels are suggested for its type,

the domain of its type, and its name if the node is to be matched with a specific entity.

The suggested labels are displayed in a pop-up box, as shown in Figure 2.2(b), where type

PERSON is chosen as the label for the node. For a newly added edge, the suggested edge

types are ranked based on their relevance to the user’s query intent. Figure 2.2(c) shows

the ranked suggestions for the newly added edge between the two nodes of types PERSON and

FILM, displayed in a pop-up box.

The query construction process of a user can be summarized as a query session, con-

sisting of positive and negative edges that correspond to edge suggestions accepted and

ignored by the user, respectively. At every step of the iterative process, based on the par-

tially constructed query graph so far and the corresponding query session, Orion’s edge

ranking algorithm—Random Decision Paths (RDP)—ranks candidate edges using a query

log of past query sessions. RDP ranks the candidate edges by how likely they will be of

interest to the user, according to their correlation with the current query session’s edges.

RDP constructs multiple decision paths using different random subsets of edges in the

query session. This idea is inspired by the ensemble learning method of random forests,

which uses multiple decision trees. Entries in the query log that subsume the edges of a

decision path are used to find the “support” score of each candidate edge. For each candi-

date, its support scores over all random decision paths are aggregated into its final score.

Section 2.3.2.2 describes this ranking method in detail. We also implemented several other

8

edge ranking methods by adapting machine learning algorithms such as random forests

(RF) and naı̈ve Bayes classifier (NB), as well as class association rules (CAR) and recom-

mendation systems based on singular value decomposition (SVD). Section 2.3.1 describes

these techniques in detail.

To the best of our knowledge, there exists no publicly available real-world graph

query log in the aforementioned form. Existing visual query builders, possibly due to lack

of users, do not have publicly available logs from their usage either. The DBpedia SPARQL

query benchmark [23] records queries posed by real users through the SPARQL query

interface on DBpedia. This can represent the positive edges in query sessions. However,

this query log may offer little help to Orion, due to two limitations: 1) It is applicable

to DBpedia only and no other data graph, and 2) Only a third of the edge types present in

DBpedia are used in the query log. Hence, in addition to experimenting with this query log,

we also simulated query logs for both Freebase and DBpedia data graphs using Wikipedia.

The premise is that the various relationships between entities, implied in the sentences of

Wikipedia articles, represent co-occurring properties that simulate the positive edges in

a query session. Section 2.4 describes various ways of finding such positive edges and

injecting negative edges, in order to simulate query logs. Once Orion is in use, query

sessions collected by it would result in a real-world query log that might be useful to the

community in this line of research.

We conducted extensive user studies over the Freebase data graph, using 30 graduate

students from the authors’ institution, to compare Orion with a baseline system resembling

existing visual query builders. 15 students worked on Orion, and the other 15 on the base-

line system. A total of 105 query tasks were performed by users of each system. It was

observed that Orion users had a 70% success rate in constructing complex query graphs,

significantly better than the 58% success rate of the baseline system’s users. We also con-

ducted experiments on both Freebase and DBpedia data graphs to compare RDP with other

9

edge ranking methods—RF, NB, CAR and SVD. The experiments were executed on the

computing resources of the Texas Advanced Computing Center (TACC), 2 to accommo-

date memory-intensive methods such as RF, SVD and CAR, which required between 40

GB to 100 GB of memory. On average, the other methods required 1.5-4 times more sug-

gestions to complete a query graph, compared to RDP’s 40 suggestions. The wall-clock

time required to complete query graphs by RDP was mostly comparable with that of RF

and NB, and significantly less than that of SVD and CAR. We also performed experiments

to study the effectiveness of the various query logs simulated. RDP attained higher effi-

ciency with the Wikipedia based query log compared to the query logs simulated using

other ways discussed in Section 2.4.

We summarize the contributions of this chapter as follows:

• We present Orion, a visual query builder that helps schema-agnostic users construct query

graphs by making automatic edge suggestions. To the best of our knowledge, none of the

existing visual query builders for graphs offers suggestions.

• To help users quickly construct query graphs, Orion uses a novel edge ranking algorithm,

Random Decision Paths (RDP), which ranks candidate edges by how likely they are to be

relevant to the user’s query intent. RDP is trained using a query log containing past query

sessions.

• There exists no such real-world query logs publicly available. We thus designed several

ways of simulating query logs. Once Orion is in use, the real-world query log collected

by it will become a valuable resource to the community.

• We conducted user studies on the Freebase data graph to compare Orion with a base-

line system resembling existing visual query builders. Orion had a 70% success rate of

constructing complex query graphs, significantly better than the baseline system’s 58%.

2http://www.tacc.utexas.edu.

10

http://www.tacc.utexas.edu

• We also performed extensive experiments comparing RDP with several other machine

learning based methods, on the Freebase and DBpedia data graphs. Other methods re-

quired 1.5–4 times more suggestions than RDP, in order to complete query graphs.

2.2 System Overview

2.2.1 Data Model and Query Model

An ultra-heterogeneous graph Gd, also called the data graph, is a connected, directed

multi-graph with node set V (Gd) and edge set E(Gd). A node is an entity 3 and an edge

represents a relationship between two entities. The nodes and edges belong to a set of node

types TV and a set of edge types TE , respectively. Each node (edge) type has a number of

node (edge) instances. Each node v ∈ V (Gd) has an unique identifier, a name, 4 and one or

more node types vtype(v) ⊆ TV . Each edge e = (vi, vj) ∈ E(Gd), denoting a relationship

from node vi to node vj , belongs to a single edge type etype(e) ∈ TE .

For example, Will Smith and Tom Cruise are instances of node type FILM ACTOR. They are

also instances of node type PERSON. There exist an edge (Tom Cruise, Top Gun) and another edge

(Will Smith, Men in Black) which are both edges of type starring.

The type of an edge constraints the types of the edge’s two end nodes. For instance,

given any edge e = (vi, vj) of edge type STARRING, it is implied that vi is an instance of node

type FILM ACTOR and vj is an instance of node type FILM. In other words, FILM ACTOR∈ vtype(vi)

and FILM ∈ vtype(vj).

Given a data graph, users can specify their query intent through query graphs. The

concept of query graph is in Definition 8. The nodes in a query graph are labeled by either

names of specific nodes or node types. Each answer graph to the query graph is a subgraph

3Atomic values such as integers are not supported in the current version of the system.
4Without loss of generality, we use a node’s name as its identifier in presenting examples, assuming the

names are unique.

11

Figure 2.1: Example Partial and Target Query Graphs

of the data graph and is edge-isomorphic to the query graph. In the answer graph, a node

of the query graph is matched by a node of the specified name or any node of the specified

type. For instance, the query graph in Step 3 of Figure 2.1 finds all Harvard educated film

actors who starred in films featuring Harvard. In Figure 2.1 and other query graphs in this

chapter, the all-capitalized node labels represent node types, while others represent node

names.

Definition 1 (Query Graph) A query graph Gq is a connected, directed multi-graph with

node set V (Gq) that may consist of both names and types, and edge set E(Gq), such that:

• V (Gq) ⊆ TV ∪ V (Gd).

• ∀e ∈ E(Gq), etype(e) ∈ TE .

2.2.2 User Interface for Providing Suggestions

Orion helps users interactively and iteratively grow a partial query graph Gp to a

target query graph Gt. It suggests edges to a user and solicit the user’s response on the

edges’ relevance, in order to obtain a Gt that satisfies the user’s query intent. The query

session ends when either the user is satisfied by the constructed query graph or the user

aborts the process. The goal is to minimize the number of suggestions required to construct

the target query graph.

12

Figure 2.2: User Interface of Orion

Figure 2.1 shows an example sequence of steps to construct a query graph. The

user starts by forming the initial partial query graph Gp consisting of a single node. Step

1 in Figure 2.1 shows one such Gp with a node of type FILM ACTOR. New edges are then

suggested to the user, who can choose to accept some of the suggestions. For instance, step

2 in Figure 2.1 shows the modified partial query graph obtained after adding two edges

(together with two new nodes incident on the edges). Without taking the suggested edges,

the user can also directly add a new node or a new edge. The system provides a ranked list

of suggestions on the label of the new node/edge, for the user to choose from. Step 3 in

13

Figure 2.1 shows the example target query graph obtained after adding the edge featured in

between Harvard and FILM. In general, to arrive at the target query graphGt, the user continues

the aforementioned process iteratively. Figure 2.2(a) shows the user interface of Orion. It

consists of a query canvas where the query graph is constructed. In its active mode, Orion

automatically suggests and displays top-k new edges to add to the partial query graph. In

its passive mode, users use simple mouse actions on the query canvas to add new nodes and

new edges. Orion ranks candidate node and edge labels and displays them using drop-down

lists in pop-up windows as shown in Figures 2.2(b) and (c). Orion also offers dynamic tips

which list all allowable user actions at any given moment of the query construction process,

as shown in Figure 2.2(a).

Active Mode: An Orion user begins the query construction process by adding a

single node into the empty canvas. Once the canvas contains a partial query graph consist-

ing of at least a node, Orion automatically operates in its active mode and suggests top-k

new edges. Each suggested new edge is between two existing nodes or between an existing

node and a new node. Figure 2.2(a) shows a partial query graph comprised of the four dark

nodes and the edges between them. The system suggests top-3 new edges, of which each is

between an existing node (dark color) and a new node (white or light color). The user can

click on some white nodes (which then become light colored, e.g., LOCATION in Figure 2.2(a))

to add them to the query graph, and ignore others. The unselected white nodes are removed

from display with a mouse click on the canvas, and the next set of new suggestions are

automatically displayed. If the user does not want to select any white nodes, a new set of

suggestions can be manually triggered by clicking the “Refresh Suggestions” button on the

query canvas.

Passive Mode: At any moment in the query construction process, a user can add a

node or an edge using simple mouse actions, which triggers Orion to suggest labels for the

newly added node/edge, i.e. it operates in the passive mode. 1) To add a new edge between

14

two existing nodes in the partial query graph, the user clicks on one node and drags their

mouse to the destination node. The possible edge types for the newly added edge are

displayed using a drop-down list in a pop-up suggestion panel, as shown in Figure 2.2(c).

The edge types are ranked by their relevance to the query intent. 2) To add a new node, the

user can click on any empty part of the canvas. A suggestion panel pops up, as shown in

Figure 2.2(b). It assists the user to select either a name or a type for the node. The options in

the two drop-down lists in Figure 2.2(b), one for selecting names and the other for types, are

sorted alphabetically. 5 To help the user find the desired node name or type, the suggestion

panel is organized in a 3-level hierarchy. Node types are grouped into domains. The user

can choose a domain first, followed by a node type in the domain and, if desired, the name

of a specific node belonging to the chosen type. The panel also allows the user to search

for desired node name or type using keywords. Right after the new node is added, it is not

connected to the rest of the partial query graph. Orion makes sure the partial query graph

is connected all the time, except for such a moment. Hence, no other operation is allowed,

until the user adds an edge connecting the newly added node with some existing node, by

using the aforementioned step 1).

2.2.3 Candidate Edges

Orion assists users in query construction by suggesting edge types to add to the partial

query graphGp, in both active and passive modes. In its passive mode, a new edge is drawn

between nodes v and v′ by clicking the mouse on one node and dragging it to the other. The

set of candidate edges in the passive mode, CP , consists of all possible edge types between

v and v′. The set of candidate edges in the active mode, CA, consists of any edge that can

be incident on any node in V (Gp), subject to the schema of the underlying data graph. A

5Orion currently ranks suggested edges by their relevance to users’ query intent, in both active and

passive modes. How to rank node names/types based on query intent is an interesting future direction.

15

candidate edge can be either between two existing nodes in Gp, or between a node in Gp

and a new node automatically suggested along with the edge.

Definition 2 (Incident Edges) Given a data graph Gd, the incident edges IE(v) of a node

v ∈ V (Gd), is the set of types of the edges in E(Gd) that are incident on node v. I.e.,

IE(v) = {etype(e)|e = (v, vi) or e = (vi, v), e ∈ E(Gd)}.

Definition 3 (Neighboring Candidate Edges) Given a partial query graphGp, the neigh-

boring candidate edges NE(v) of any node v ∈ V (Gp), is the set of edge types defined as

follows, depending on if v is a specific node name or a node type (cf. Definition 8):

1) if v ∈ V (Gd),NE(v) = IE(v);

2) if v ∈ TV ,NE(v) =
⋃
{IE(v′)|v′ ∈ V (Gd), v ∈ vtype(v′)}.

When a new edge is added between two nodes v and v′ in passive mode, CP =

NE(v) ∩ NE(v′), and the set of candidate edges in active mode is CA =
⋃

v∈V (Gp)
{e|e ∈

NE(v)}.

Definition 4 (Candidate Edges) Candidate edges C is the set of possible edges that can

be added to the partial query graph Gp at any given moment in the query construction

process.

C=


CP in passive mode

CA in active mode
(2.1)

In Section 2.3 we discuss how to rank candidate edges and thus make suggestions to

users in the query construction process.

2.3 Ranking Candidate Edges

A simple method to rank candidate edges is to order them alphabetically. A more

sophisticated method is to rank them by using statistics such as frequency in the data graph.

Such a method ignores information regarding users’ intent. A query log naturally captures
16

different users’ query intent. It contains past query sessions which indicate what edges

have been used together by users. Such co-occurrence information gives evidence useful

to rank candidate edges by their relevance to the user’s query intent.

In a user’s query session, edges found relevant, accepted and added to the query

graph by the user are called positive edges. In Orion’s active mode, suggested edges that

are not accepted by the user are called negative edges. Both positive and negative edges

play an important role in gauging the user’s query intent, as evidenced by our experiments.

At any given moment in the query formulation process, the set of all positive and negative

edges hitherto forms a query session.

Definition 5 (Query Log and Query Session) A query logW is a set of query sessions. A

query sessionQ is defined as a set of positive and negative edges. TE (cf. Section 3.3) is the

set of all possible positive edges for a data graphGd. The set of all possible negative edges,

denoted TE , is defined as TE = ∪e∈TE
{e}. If an edge e ∈ TE appears as a negative edge

in a query session, it is represented as e. Let T = TE ∪ TE . A query session Q ∈ P(T),

where P(T) is the power set of T .

Table 2.1 shows an example query log containing 8 query sessions, one per line. For

instance, w4 is a query session where the suggested edges artist and title were not accepted

by the user, while edges writer and director were accepted.

Problem Statement: Given a query log W , an ongoing query session Q and a set of

candidate edges C (cf. Equation 2.1), the problem is to rank the edges in C by a scoring

function that captures the likelihood that the user would find them relevant.

In Section 2.3.1, we describe several baseline methods to rank candidate edges us-

ing query logs. In Section 2.3.2 we propose a novel method inspired by random forests.

Section 2.4 discusses several ways of obtaining a query log.

17

2.3.1 Baseline Methods

Several machine learning algorithms can be adapted to rank candidate edges. For

instance, it can be seen as a recommendation problem. One can also use a naı̈ve Bayes

classifier or a random forest based classifier to find the probability that an edge e is the

class associated with the ongoing query session Q, given by P (e|Q). The query log W

can be used to learn such models off-line. We implemented several baseline methods by

adapting random forests (RF) and nave Bayes classifier (NB), as well as class association

rules (CAR) [24] and recommendation systems based on singular value decomposition

(SVD) [25]. Below we provide a brief sketch of these methods.

For RF and NB, we used a modified version of the query log W as the training data.

A query session with t positive edges and t′ negative edges was converted to t training

instances, with a different positive edge as the class of each training instance containing t−

1+t′ attributes. For instance, w1 in Table 2.1 was converted to 〈(education, nationality), (founder)〉

and 〈(founder, nationality), (education)〉, where founder is the class of the first instance and education

the class for the second instance. Multi-class classification models were learnt for RF and

NB, wherein the number of classes equals the number of distinct positive edge types found

in W .

For CAR, W was modified to generate multiple rules. The query sessions in W are

itemsets. For a query session with t positive edges and t′ negative edges, we generated t

association rules. The antecedent (left hand side) of each rule contains t− 1 + t′ attributes,

while the consequent (right hand side) contains exactly one positive edge. For instance,

w1 in Table 2.1 was converted to rules 〈education, nationality → founder〉 and 〈founder, nationality →

education〉. If the antecedent of a rule and the ongoing session Q overlap, the rule’s conse-

quent can be suggested to the user, weighted by the degree of overlap together with the

commonly used measures of support and confidence in association rule mining.

18

Id Query Session

w1 education, founder , nationality
w2 starring, music, director
w3 nationality , education, music, starring
w4 artist , title, writer , director
w5 director , founder , producer
w6 writer , editor , genre
w7 award , movie, director , genre
w8 education, founder , nationality

Table 2.1: Example Query Log W

For SVD, W was converted to a |W | rows × |T | columns matrix. Each element in

the matrix was assigned a value of 0 or 1, based on their occurrence in the corresponding

query session. For example, for query log W in Table 2.1, in the first row of the matrix, the

columns corresponding to education, founder and nationality were set to 1, while the rest were set

to 0.

2.3.2 Random Decision Paths (RDP)

Here we describe random decision paths (RDP), a novel method for measuring the

relevance of a candidate edge. The RDP formulation is motivated by random forests [26].

However, RDP has important differences from the standard definition and application of

random forests, and significantly outperforms standard random forests in our experiments.

2.3.2.1 Motivation: from Random Forests to Random Decision Paths

To better understand the similarities and differences between RDP and random forests,

it is useful to briefly review decision trees and random forests. In a general classification

setting, a decision tree D defines a probability function PD(y|x), where x is a pattern, and

y is the class of that pattern. The decision tree D can also be seen as a classifier that maps

patterns to classes: D(x) = arg maxy P (y|x). The output of tree D on a pattern x is com-

puted by applying to x a test defined at the root of D, and using the result of the test to

direct x to one of the children of the root. Each child of the root is a decision tree in itself,

19

and thus x moves recursively along a path from the root to a leaf, based on results of tests

applied at each node. A leaf node L stores precomputed probabilities PL(y) for each class

y. If pattern x ends up on a leaf L of D, then the tree outputs PD(y|x) = PL(y).

A random forest F is a set of decision trees. A forest F defines a probability PF (y|x),

as the average PD(y|x) over all treesD ∈ F . To construct a random forest, each tree is built

by choosing a random feature to test at each node, until reaching a predetermined number

of trees. The probability values stored at the leaves of each tree are computed using a set

of training patterns, for each of which the true class is known.

Random forests can be applied to our problem, but have certain undesirable prop-

erties. Each pattern is a query session, consisting typically of a few (or a few tens of)

positive and negative edges. The total number of edge types can reach thousands (it equals

5253 in one of our experimental datasets). The test applied at each node of a decision

tree simply checks if a certain edge (positive or negative) is present in the query session.

Since query sessions contain relatively few edges compared to the number of edge types,

for most tests the vast majority of results is a “no”, meaning that the query session does

not contain the edge specified in the test. This leads to highly unbalanced trees, where

the path corresponding to all “no” results gets the majority of training examples, and paths

corresponding to more than 1-2 “yes” results frequently receive no training examples. At

classification time, the input pattern x ends up at the all-no path most of the times, and thus

the class probabilities PD(y|x) do not vary much from the priors P (y) averaged over all

training examples.

Our solution to this problem is mathematically equivalent to constructing a random

forest on the fly, given a query session Q to classify. This random forest is explicitly

constructed to classify Q, and is discarded afterwards; a new forest is built for every Q.

The tests that we use for tree nodes in that forest consider exclusively edges that appear in

Q. This way, the probabilities stored at leaf nodes are computed from training examples

20

that are similar to Q in a sense, as they share at least some edges with Q. This is why we

expect these probabilities to be more accurate compared to the probabilities obtained from

a random forest constructed offline, without knowledge of Q. This expectation is validated

in the experimental results.

At the same time, since we knowQ, constructing full random forests is not necessary,

and we can save significant computational time by exploiting that fact. The key idea is that,

for any decision tree D that we may build, since we know Q, we know the path that Q is

going to take within that tree. Computing the output for any other paths of D is useless,

since D is constructed for the sole purpose of being applied to Q. Therefore, out of every

tree in the random forest, we only need to compute and store a single path. Consequently,

our random forest is reduced to a set of decision paths, and this set is what we call “random

decision paths” (RDP).

2.3.2.2 Formulation of Random Decision Paths

We measure the relevance of a candidate edge e to query session Q, by aggregating

the relevance of e to several different subsets of edges in Q. We estimate the relevance of

an edge e to each such subset of Q using the query log W . We define a support function

supp(e,Qi,W) to estimate the relevance of an edge e to Qi ⊆ Q:

supp(e,Qi,W) =
|{w|w ∈ W , Qi ∪ {e} ⊆ w}|
|{w|w ∈ W , Qi ⊆ w}|

(2.2)

The intuition behind using multiple subsets of Q to measure the relevance of an edge e to

the query session Q, instead of using the entire query session Q alone is the following:

if Q is long, i.e.the query session contains a large number of positive and negative edges,

supp(e,Qi,W) might be equal to 0 for every candidate edge e. This is because it is unlikely

to find any query session in the query log that is a super-set of Q.

21

If P(Q) is the power set of query session Q, we propose to build a set of random

decision paths <, that is: 1) a set of decision paths based only on the edges in query session

Q, and 2) a subset of P(Q) such that |<|� |P(Q)|. We do not attempt to pre-learn a set

of decision paths using query log W that are used to rank edges for any arbitrary query

session (like learning a decision tree or rules for a classification model). Instead, given

a query session Q, we only build random decision paths specific to Q, that measure the

correlation of a candidate edge e with different random subsets of edges in Q. In other

words, we assume the presence of a virtual space of all possible decision paths, but only

instantiate and use a few random paths specific to Q.

Definition 6 (Decision Path) A decision path
−→
O is an ordered sequence of edges, for a set

of edges O.

The positive and negative edges in a query session Q reflect the relevance and irrel-

evance of the edges to the user’s query intent. An example order for the decision path
−→
Q

corresponding to query session Q is the order of the edge suggestion sequence. There can

be several such ordered sequences for a query session. For any query session O ∈ P(T)′,

the number of possible orders are equal to the total number of permutations of O, which

is equal to |O|!. Given the set of all query sessions P(T)′, we define
−−−→
P(T)′ as the set

of all possible decision paths.
−−−→
P(T)′ =

⋃
O∈P(T)′{

−→
Oi|∀i, 1 ≤ i ≤ |O|!}, and |

−−−→
P(T)′| is

prohibitively large in practice.

A decision path
−→
O has a prefix path associated with it. For instance, the prefix of a

decision path
−→
O , denoted by prefix(

−→
O), is the path before adding the last edge that formed

−→
O . If

−→
O = {e1, e2, . . . , ek−1, ek}, then prefix(

−→
O) = {e1, e2, . . . , ek−1}. The support for a

decision path
−→
O is given by count(

−→
O), defined as

W−→
O

= {w|w ∈ W,O ⊆ w}, count(
−→
O) = |W−→

O
| (2.3)

22

For a single edged query session, i.e.if |O|= 1, the support of the corresponding prefix path

count(prefix(
−→
O)) = |W |.

Given the query session Q, we define Q ⊆
−−−→
P(T)′, the set of all decision paths that

can be formed using subsets of edges in Q, whose support is no more than a threshold τ .

More formally,

Q = {
−→
Qi|Qi ⊆ Q, count(

−→
Qi) ≤ τ, count(prefix(

−→
Qi)) > τ} (2.4)

We propose to build a random set of decision paths < ⊆ Q, such that |<|= N ,

consisting of only decision paths that are based on the current query session Q, and whose

support is no more than τ . A random decision path
−→
Qi is grown using edges in Q until

either count(
−→
Qi) ≤ τ , or all the edges in Q are exhausted, whichever comes first. Note that

in case all edges in Q are exhausted before we obtain a path
−→
Qi ∈ Q, then Q = φ. The

final score of an edge e ∈ C for query session Q is given by

score(e) =
1

|<|
×

∑
−→
Qi∈<

supp(e,Qi,W) (2.5)

Algorithm 1 explains the random decision paths based edge ranking algorithm in

detail. Given a set of candidate edges C and a query session Q, we instantiate N random

decision paths (line 2). The next edge of the path is chosen uniformly at random without

replacement from Q (line 7). The new edge chosen in the path is used to obtain a subset

of entries from the query log W . Only those entries in W that contain all the positive and

negative edges in the decision path
−→
Qi are chosen to be present in WQi

(line 6). A decision

path
−→
Qi is grown until WQi

contains no more than τ entries in it (or there are no more

edges to be randomly chosen from in Q). The support for each candidate edge e ∈ C is

computed for each decision path (line 15). The support for each candidate edge is averaged

across all the decision paths and the edges are ranked based on the final score obtained

using Equation 2.5 (line 20).
23

Algorithm 1: Random Decision Paths Based Edge Suggestion
Input: Data graph Gd, Query Log W , candidate edges C, query session Q, number of

random decision paths N , query log subset threshold τ

Output: Ranked list of candidate edges

1 Esugg ← φ, i← 0;

2 while i < N do

3
−→
Qi ← φ;

4 si ← 0;

5 W−→
Qi
←W ;

6 while si < |Q| do

7 erand ← sample without replacement(Q);

8
−→
Qi ←

−→
Qi ∪ {erand};

9 foreach w ∈W−→
Qi

do

10 if erand /∈ w then

11 W−→
Qi
←W−→

Qi
\ {w};

12 if |W−→
Qi
|≤ τ then

13 break;

14 si ← si + 1;

15 foreach e ∈ C do

16 supp(e,Qi,W)← Equation 2.2;

17 Esugg ← Esugg ∪ {(e, supp(e,Qi,W))};

18 i← i+ 1;

19 foreach e ∈ C do

20 score(e)← Equation 2.5;

21 /* Return candidate edges by decreasing order of score(.);*/

24

Figure 2.3: Random Decision Paths Based Edge Selection

Figure 2.3 shows an example of using random decision paths to rank the candidate

edges. If the set of candidate edges is C = {writer , producer , editor} and query session Q

contains edges starring, education, director , nationality, and music,
−−−→
path1 through

−−−→
pathN are examples

of various random decision paths. For instance, decision path
−−−→
path2 consists of edges director

and nationality, which lead to query log subset Wpath2 where |Wpath2|≤ τ . In a decision path
−−−→
pathi, the support for each candidate edge e ∈ C with entry e in Wpathi

is computed. The

support for each candidate across all the decision paths is aggregated to rank edges in C.

2.4 Simulating Query Logs

All the baseline methods and the random decision paths rely on a query log. But,

to the best of our knowledge, a query log for large graphs is not publicly available, except

25

for a SPARQL query log [23], which is applicable only for the DBpedia data graph. We

thus simulate and bootstrap a query log. We first find correlated positive edges, using three

different methods: 1) using Wikipedia and the data graph, 2) using only the data graph,

and 3) using the aforementioned SPARQL query log. Then negative edges, which indicate

edge suggestions that were not accepted by the user, are injected into the simulated query

sessions. If positive edges e1 and e2 are in query session Qi, and another query session Qj

contains e1 but not e2, then e2 is injected into Qj as a negative edge.

Positive edges using Wikipedia and data graph (WikiPos): Each Wikipedia arti-

cle describes an entity in detail and refers to other Wikiepdia entities by wikilinks. Given

a sentence in a Wikipedia article (or a window of consecutive sentences), the multiple en-

tities mentioned in it can be considered related in some way. We discover the pairwise

relationships between these entities. Our premise is that these co-occurring relationships

simulate the positive edges of a query session. The intuition is that such consecutive sen-

tences describe closely related facts, and an Orion user may also have such closely related

facts as their query intent.

To find co-occurring positive edges, we map entities mentioned in Wikipedia articles

to nodes in the data graph. Data graphs such as Freebase and DBpedia provide a straight-

forward mapping of their nodes to Wikipedia entities. Given a sentence window, all edges

found in the data graph between the mapped entities are approximated to the co-occurring

positive edges of a query session in W . We consider all edges between the mapped entities

in the data graph, while only a subset of these might actually be mentioned in the cor-

responding Wikipedia article. Thus, the co-occurring positive edges identified using this

method might be noisy. We filter out co-occurring positive edges with less support. Every

session in the query log is viewed as an itemset. We use the Apriori algorithm to generate

frequent itemsets, subject to a support ρw. The resulting frequent itemsets thus form query

sessions with only positive edges.

26

Positive edges using the data graph (DataPos): Another way of finding co-

occurring positive edges is to use statistics based on the data graph Gd alone. For every

node v ∈ V (Gd), an itemset is created which includes all edges incident on v in Gd. This

way we converted the graph Gd to |V (Gd)| itemsets. Here too, we apply the Apriori algo-

rithm to find all frequent itemsets using support ρd.

Positive edges using SPARQL query log (SparqlPos): The DBpedia SPARQL

query log [23] contains benchmark queries posed by users on DBpedia through its SPARQL

query interface. We extract co-occurring positive edges using the properties specified in the

WHERE clause of the queries. Since this is a real query log, every set of positive edges

found in each WHERE clause is used as is, without applying any pruning as in WikiPos

and DataPos.

Injecting negative edges to query log (InjectNeg): The aforementioned methods

only generate query sessions with positive edges. But it is crucial to simulate edges that

were not accepted by users, since we must rank candidate edges that are correlated with

both accepted and ignored edges in a query session. A simple, but effective strategy is

used to introduce negative edges into the query logs. Consider a query log which has

only positive edges, as produced by the aforementioned methods. For a query session

w ∈ W , T (w) is defined as the set of node types of end nodes of all edges in w. I.e.,

T (w) = {t|t ∈ TV ,∃e=(u, v) ∈ E(Gd), etype(e) ∈ w s.t. t ∈ vtype(u) or t ∈ vtype(v)}.

The set of negative edges added to w, denoted w, is the set of all edges incident on the

node types in T (w). I.e., w = {e|e=(u, v) ∈ E(Gd), vtype(u) ∈ T (w) or vtype(v) ∈

T (w), etype(e) /∈ w}. The new entry for every w ∈ W consists of w ∪ w, which is then

used as the final query log by the various candidate edge ranking methods in Section 2.3.

27

Query Log Components Used in Query Log Simulation
Freebase DBpedia Wikipedia SPARQL [23]

Wiki-FB Yes - Yes -
Data-FB Yes - - -
Wiki-DB - Yes Yes -
Data-DB - Yes - -
QLog-DB - - - Yes

Table 2.2: Query Logs Simulated

2.5 Experiments

2.5.1 Setup

We conducted user studies on a double quad-core 24 GB memory 2.0 GHz Xeon

server. Furthermore, RDP was compared with other edge ranking algorithms (RF, NB,

CAR and SVD) on the Lonestar Linux cluster of TACC, 6 which consists of five Dell

PowerEdge R910 server nodes, with four Intel Xeon E7540 2.0GHz 6-core processors on

each node, and a total of 1TB memory.

Datasets: We used two large real-world data graphs: the 2011 version of Free-

base [3], and the 2015 version of DBpedia [1]. We pre-processed the graphs to keep only

nodes that are named entities (e.g.Brad Pitt), while pruning out nodes corresponding to con-

stant values such as integers and strings among others. In the original Freebase dataset,

every relationship has an inverse relationship in the opposite direction. For instance, the

relationship director has directed by in the opposite direction. All such edges in the opposite

direction were deleted, since they are redundant. The resulting Freebase graph contains 30

million nodes, 33 million edges, and 5253 edge types. After similar pre-processing, the

DBpedia graph obtained contains 4 million nodes, 12 million edges and 647 edge types.

Query Logs: Table 2.2 lists the various query logs simulated using the techniques

described in Section 2.4. One can find positive edges of a query session using different

methods, and inject negative edges into them using the method InjectNeg in Section 2.4.

We simulated two different query logs for Freebase: Wiki-FB and Data-FB. The positive

6https://portal.tacc.utexas.edu/user-guides/lonestar.

28

https://portal.tacc.utexas.edu/user-guides/lonestar

Query Type Query Task
Easy Find all Basketball players in Chicago Bulls.

Medium Find all award winning films directed by
Steven Spielberg.

Hard
Find all film-actor pairs such that the actor
was born in Israel and studied in Harvard
University.

Table 2.3: Sample Query Tasks From User Studies

edges for Wiki-FB were simulated using both Wikipedia (September 2014 version) and

the Freebase data graph, and the positive edges for Data-DB were simulated using only

the Freebase data graph, by methods WikiPos and DataPos in Section 2.4, respectively.

We simulated three different query logs for DBpedia: Wiki-DB, Data-DB and QLog-DB.

Wiki-DB and Data-DB were simulated via the same approach for Wiki-FB and Data-FB,

except that DBpedia (instead of Freebase) was the data graph. For QLog-DB, the positive

edges were simulated by SparqlPos in Section 2.4.

Systems Compared in User Studies: To verify if Orion indeed makes it easier

for users to formulate query graphs, we conducted user studies with two different user

interfaces: Orion, and Naive. Orion operates in both passive and active modes (cf. Sec-

tion 2.2.2). Naive on the other hand does not make any automatic suggestions and only

lets users manually add nodes and edges on the canvas. The various candidate edges are

sorted alphabetically and presented to the user in a drop down list. This mimics the query

formulation support offered in existing visual query systems such as [20].

Methods Compared for Ranking Candidate Edges: We compared the effective-

ness of Orion’s candidate edge ranking algorithm (RDP) with the baseline methods de-

scribed in Section 2.3.1, including RF, NB, CAR and SVD.

2.5.2 User Studies

User Study Set-up: We conducted an extensive user study with 30 graduate stu-

dents in the authors’ institution. The students neither had any expertise with graph query

29

Figure 2.4: Target Query Graphs of Tasks in Table 2.3

formulation, nor did they have exposure to the data graphs. None of these students were

exposed to this research in any way other than participating in the user study. We con-

ducted A/B testing using the two interfaces, Orion and Naive. The underlying data graph

for both systems was Freebase, and were hosted online on the aforementioned Xeon server.

We arbitrarily chose 15 students to work with Orion, and the other 15 students worked with

Naive. The users of Orion were not exposed to Naive, and vice versa. We created a pool of

21 query tasks, which consisted of three levels of difficulty. 9 queries were easy, 6 queries

were medium and 6 queries were hard. The target query graphs for each easy and medium

query tasks had exactly one and two edges, respectively. The target query graphs for hard

query tasks had at least three and at most 5 edges. Table 2.3 lists one sample query for each

of the three categories. Figures 2.4(a), (b) and (c) depict the target query graphs for the

query tasks listed in Table 2.3.

We created 15 different query sheets, where each consisted of 3 easy, 2 medium and

2 hard query tasks, chosen from the pool of 21 queries designed. Each Orion and Naive user

was given a query sheet as the task set to complete which ensured that users of both systems

worked on the same query tasks. Each user was given an initial 15-minute introduction by

the moderators regarding the data graphs, graph query formulation, and the user interface.

The users then spent 45 minutes working on their respective query sheets. The users were

allowed to ask any clarification questions regarding the tasks during the user study. Each

user was awarded a gift card worth $15.00 for their participation in the user study. Since

30

Likert Scale Score 1 2 3 4 5
Question 1 (Q1):
How well do you think the
query graph formulated by you
captures the required query
intent?

Very Poorly Poorly Adequately Well Very Well

Question 2 (Q2):
How easy was it to use the
interface for formulating this
query?

Very Hard Hard Neither Easy Nor Hard Easy Very Easy

Question 3 (Q3):
How satisfactory was the
overall experience?

Unacceptable Poor Satisfactory Good Excellent

Question 4 (Q4):
The interface provided fea-
tures necessary for easily
formulating query graphs.

Strongly Disagree Disagree Uncertain Agree Strongly Agree

Table 2.4: Survey Questions and Options

System Queries Sample
Size

Conversion
Rate (c) z-value p-value

Orion All 105 cO=0.74 0.92 0.1788Naive cN=0.68
Orion Medium

+ Hard
60 cO=0.70 1.36 0.0869Naive cN=0.58

Table 2.5: Conversion Rates of Naive and Orion

15 users worked on 7 queries each, we obtained a total of 105 responses for both Orion and

Naive.

Survey Form: The users were requested to fill an online survey form at the end

of each query task, thus resulting in 105 different survey form responses for each user

interface. The survey form had four questions: Q1, Q2, Q3 and Q4, as listed in Table 2.4.

Each question had five options, specifying the level of agreement a user could have with

the particular aspect of the interface measured by the question. We assign a score for every

option in each question based on the Likert scale shown in Table 2.4. The least favourable

experience with respect to each question is assigned a score of 1, and the most favoured

experience is assigned a score of 5.

31

2.5.2.1 Efficiency Based on Conversion Rate

Measure: One of the popular metrics used to measure the effectiveness of the sys-

tems compared in A/B testing is conversion rate c, which is the percentage of tasks com-

pleted successfully by users. The conversion rate is defined over a set of Tasks as:

c =

∑
task∈Tasks sim(Gu, Gt)

|Tasks|
(2.6)

where task is a query task assigned to the user, Gu is the corresponding query graph con-

structed by the user, and Gt is the actual target query graph corresponding to task. The

similarity measure sim(Gu, Gt) captures the notion of success, based on how similar Gu

is to Gt. Since we designed the query tasks, the target query graph for each query task

was known to us apriori. The query graph constructed by each user was recorded by the

interface during the user study. Intuitively, the similarity between Gu and Gt is based on

the edge-preserving subgraph isomorphic match between the two graphs. More formally,

sim(Gu, Gt) is defined as:

sim(Gu, Gt) =

maxf

∑
e=(u,v)∈E(Gu)

e′=(f(u),f(v))∈E(Gt)

match(e, e′)

|E(Gt)|
(2.7)

where f : V (Gu)→ V (Gt) is a bijection, and match(e, e′) is a matching function defined

as:

match(e, e′)=


1 if u=f(u), v=f(v), etype(e) = etype(e′)

0 otherwise
(2.8)

Results: Table 2.5 summarizes the conversion rates of Orion and Naive over the set

of all query tasks (easy, medium and hard query tasks), and also over only the medium and

hard query tasks. We observe that Orion has a better conversion rate than Naive in both

scenarios. But, on performing a two sample Z-test with significance level α=0.1, only the

observation that Orion has a better conversion rate than Naive for medium and hard queries
32

is statistically significant. We next describe the hypothesis testing of the two scenarios in

detail.

The conversion rate of Orion, cO, over all the 105 query tasks is 0.74, and the con-

version rate of Naive, cN , for the same set of tasks is 0.68. On average, Orion users had

a higher chance of formulating the correct query graph compared to the Naive users. We

assume that constructing a query graph follows a Bernoulli trial, with the probability of suc-

cessfully constructing the target query graph on Orion and Naive as pO = cO and pN = cN

respectively. Our hypothesis, HA1, is that Orion has a better conversion rate than Naive:

HA1: pO > pN . The null hypothesis H01 is given by H01: pO ≤ pN . For the aforemen-

tioned conversion rates of Orion and Naive, and a sample size of 105, z = 0.92. This results

in a p-value of 0.1788. Since the p-value > α, the null hypothesis cannot be rejected as the

data does not significantly support our hypothesis.

We dive in deeper to investigate if there are scenarios where Orion does perform

better than Naive. The conversion rate of only medium and hard query tasks (which is

equal to a total of 60 query tasks) for Orion is 0.70, and is equal to 0.58 for Naive, i.e.cO =

pO = 0.70 and cN = pN = 0.58. This indicates that Orion users have a better chance of

successfully constructing query graphs with two or more edges, compared to Naive users.

Our new hypothesis, HA2, is that Orion has a better conversion rate than Naive for medium

and hard queries: HA2: pO > pN . The null hypothesis H02 is given by H02: pO ≤ pN . For

the aforementioned conversion rates of Orion and Naive, and a sample size of 60, z = 1.36,

resulting in a p-value of 0.0869. Since the p-value < α, the data significantly supports our

claim that Orion users have a higher chance of successfully constructing complex query

graphs containing two or more edges.

33

0

200

400

600

800

1000

1200

1400

Naïve Orion

T
im

e
p
e
r
q
u
e
ry

(i
n
se
co
n
d
s)

(a) All queries

0

200

400

600

800

1000

1200

1400

1600

Naïve Orion

T
im

e
p
e
r
q
u
e
ry

(i
n
se
co
n
d
s)

(b) Easy queries

0

200

400

600

800

1000

Naïve Orion

T
im

e
p
e
r
q
u
e
ry

(i
n
se
co
n
d
s)

(c) Medium queries

0

200

400

600

800

1000

1200

1400

Naïve Orion

T
im

e
p
e
r
q
u
e
ry

(i
n
se
co
n
d
s)

(d) Hard queries

Figure 2.5: User Studies Efficiency Based on Time: Naive and Orion

2.5.2.2 Efficiency Based on Time

We next measure the time taken by a user to construct the query graph for a given

query task: the time elapsed between the first time a user clicks on the query canvas for a

new query task, to the time the user clicks on the ”Submit” button of the interface. This

was recorded in the background during the user study. Figure 2.5(a) shows the distribu-

tion of the time taken to complete a query task. We observe that half of the 105 query

tasks were completed within 180 seconds by Orion users, while Naive users completed the

34

same number of query tasks within 183.2 seconds. Around 26 query tasks were completed

between 180 to 340.5 seconds, and between 183.24 to 325.7 seconds by Orion and Naive

users respectively. Although, there were a few query tasks that took a long time to be com-

pleted, with a maximum of 1446.3 seconds for Orion users and 1027.8 seconds for Naive

users. We further study the distribution of the time taken to complete query tasks based on

the level of difficulty of the tasks. Figure 2.5(b) compares the time taken for easy query

tasks. We observe that around 23 of the 45 easy queries are completed within 135.5 and

130.3 seconds by Orion and Naive users respectively. Another 12 queries were completed

between 135.5 to 202.3 seconds by Orion users, and between 130.3 to 211.3 seconds by

Naive users. Figure 2.5(c) compares the time taken for medium query tasks. We observe

that around 15 of the 30 medium queries are completed within 188.2 and 224.6 seconds by

Orion and Naive users respectively. Another 7 queries were completed between 188.2 to

349.6 seconds by Orion users, and between 224.6 to 296.2 seconds by Naive users. Finally,

Figure 2.5(d) compares the time taken for hard query tasks. We observe that around 15

of the 30 hard queries are completed within 296.1 and 259.6 seconds by Orion and Naive

users respectively. Another 7 queries were completed between 296.1 to 540.4 seconds by

Orion users, and between 259.6 to 406.4 seconds by Naive users. We observe that despite

the steeper learning curve of Orion due to the superior number of features in it, the time

taken to complete a majority of the query tasks is comparable with that of Naive.

2.5.2.3 Efficiency Based on Number of Iterations

We next measure the effectiveness of Orion using the number of iterations involved

in the query construction process: the number of times a ranked list of edges is presented to

the user. The number of iterations is incremented in one of three ways: 1) the user selects

one or more of the automatically suggested edges in active mode, and clicks on the canvas

to get the next set of suggestions, 2) the user ignores all the suggestions made in active mode

35

0

10

20

30

40

50

60

70

80

90

All Easy Medium Hard

N
u
m
b
e
r
o
f
it
e
r
a
ti
o
n
s

Figure 2.6: User Studies Efficiency Based on Iterations: Orion

and clicks on ”Refresh Suggestions” to get a new set of automatic suggestions, and 3) the

user draws a new edge in passive mode. We do not measure this for Naive since there are no

automatic ranked suggestions made in it. Figure 2.6 shows the distribution of the number

of iterations required to construct query graphs. Overall, Orion users needed no more than

only 13 iterations to complete around 79 of the 105 queries. Half of the easy, medium

and hard queries required no more than 3, 10 and 14 iterations respectively. Another 11

easy queries required between 3 to 7 iterations, while 7 medium and hard queries each

required between 10 to 15.5 and 14 to 23.5 iterations respectively. This indicates that the

features offered by Orion helped users formulate query graphs with few interactions with

the interface.

2.5.2.4 User Experience Results

The user experience results is based on the answers to all the questions in the survey

form by all the users. The overall user experience for each question of an interface is

measured by averaging the score obtained for that question across all the users working on

that interface. Figure 2.7(a) shows the overall user response of all the questions, across all

36

3

3.2

3.4

3.6

3.8

4

4.2

Q1 Q2 Q3 Q4

A
v
e
ra
g
e
Li
k
e
rt
sc
a
le
sc
o
re

Naive Orion

(a) All queries

3

3.2

3.4

3.6

3.8

4

4.2

Q1 Q2 Q3 Q4

A
v
e
ra
g
e
Li
k
e
rt
sc
a
le
sc
o
re

Naive Orion

(b) Easy queries

3

3.2

3.4

3.6

3.8

4

4.2

Q1 Q2 Q3 Q4

A
v
e
ra
g
e
Li
k
e
rt
sc
a
le
sc
o
re Naive Orion

(c) Medium queries

3

3.2

3.4

3.6

3.8

4

4.2

Q1 Q2 Q3 Q4

A
v
e
ra
g
e
Li
k
e
rt
sc
a
le
sc
o
re

Naive Orion

(d) Hard queries

Figure 2.7: User Experience Based on Survey Responses

the 105 users for both Orion and Naive. We observe that Orion users report an improvement

of 0.5 for Q1, 0.2 for Q2, 0.25 for Q3 and 0.3 for Q4 on Likert scale, when compared to

the Naive users.

We further break down the average score over each question based on the difficulty

level of the query task to study the difference in user experience between Orion and Naive

in detail. Figure 2.7(b) shows the average score over only the easy query tasks (a total

of 45 query tasks each for both Orion and Naive), which shows that Orion users had a

better experience than the Naive users w.r.t Q1, while the Naive users had a slightly better

experience than Orion users w.r.t Q2 and Q3. Both the sets of users had similar experience

w.r.t Q4. Figure 2.7(c) shows the average score over only the medium query tasks (a total

of 30 query tasks each for both Orion and Naive), which shows that Orion users had an

37

improvement of 0.4 on Likert scale w.r.tQ1 andQ4 compared to the Naive users. They also

had an improvement close to 0.1 on Likert scale w.r.t bothQ2 andQ3. Finally, Figure 2.7(d)

shows the average score over only the hard query tasks (a total of 30 query tasks each for

both Orion and Naive), which shows that Orion users felt a significant improvement in

the user experience across all four questions. Orion users had an improvement of around

1.0 w.r.t Q1, 0.6 w.r.t Q2, and 0.7 w.r.t both Q3 and Q4. We thus observe that as the

difficulty level of the query graph being constructed increases, the usability of Orion seems

significantly better than Naive’s. Naive users find the system uncomfortable to use when

the target query graph contains two or more edges.

2.5.3 Comparing Candidate Edge Ranking Methods

We next compare the performance of RDP, Orion’s edge ranking algorithm, with

other machine learning algorithms: RF, NB, SVD and CAR. We compared the performance

of these algorithms over two widely used real-world data graphs: Freebase and DBpedia.

We used the Wiki-FB and Wiki-DB query logs for Freebase and DBpedia respectively. We

had to perform these experiments on the TACC machine, because RF has high memory

requirements. For instance, generating a random forest model with 80 trees, using a query

log containing around 100,000 query sessions, requires 55 GB of RAM.

We created multiple target query graphs for each dataset, conforming with the schema

of the underlying data graph. For a given target query graph, the input to each of the al-

gorithms was an initial partial query graph containing exactly one edge in it. The task of

each algorithm was to iteratively suggest exactly one edge at a time, given the partial query

graph. If the edge suggested was present in the target query graph, it was added into the

partial query graph, and recorded as a positive edge. If not, the edge was ignored, and

recorded as a negative edge. The process was stopped either when the partial query graph

was grown completely into the target query graph, or if 200 suggestions were up. For each

38

0

25

50

75

100

125

150

175

RDP RF NB SVD CAR

A
v

e
ra

g
e

 #
 o

f
su

g
g

e
st

io
n

s

p
e

r
q

u
e

ry

(a) Freebase

0

25

50

75

100

125

150

175

RDP RF NB SVD CAR

A
v

e
ra

g
e

 #
 o

f
su

g
g

e
st

io
n

s

p
e

r
q

u
e

ry

(b) DBpedia

Figure 2.8: Efficiency of All Methods: Number of Suggestions

target query graph Gt containing E(Gt) number of edges, we internally converted it into

E(Gt) different instances of target query graphs, each starting with a different-edged initial

partial query graph as input to the algorithms.

We created 43 target query graphs for Freebase, consisting of 6 two-edged query

graphs, 10 three-edged query graphs, 9 four-edged query graphs, 17 five-edged query

graphs and 1 six-edged query graph. These 43 target query graphs were thus converted

to 167 different input instances, creating a query set called Freebase-Queries. We created

33 target query graphs for DBpedia, consisting of 2 three-edged query graphs, 29 four-

edged query graphs, and 2 five-edged query graphs. These 33 target query graphs were

converted to 130 different input instances, creating a query set called DBpedia-Queries.

2.5.3.1 Efficiency Based on Number of Suggestions

For a query graph completion system, we believe an important measure of its effi-

ciency is the number of suggestions required to successfully grow a partial query graph to

its corresponding target query graph. This is because, if a system can help users construct

39

0

25

50

75

100

125

150

175

RDP RF NB SVD CAR

A
v

e
ra

g
e

 t
im

e
 p

e
r

q
u

e
ry

(i
n

 s
e

co
n

d
s)

(a) Freebase

0

100

200

300

400

RDP RF NB SVD CAR

A
v

e
ra

g
e

 t
im

e
 p

e
r

Q
u

e
ry

(i
n

 s
e

co
n

d
s)

(b) DBpedia

Figure 2.9: Efficiency of All Methods: Time

the target query graph with fewer number of suggestions, it indicates that the suggestions

made indeed captured the user’s query intent. Figure 2.8(a) shows the average number of

suggestions required to complete each of the 167 input instances for Freebase. We observe

that RDP significantly outperforms the other methods. RDP requires only 43.5 suggestions

per query graph on average, nearly half the number of suggestions required to complete a

query graph using RF and NB. It also requires only a quarter of the number of suggestions

required to complete a query graph using SVD, while CAR requires 67.8 suggestions. Fig-

ure 2.8(b) shows the average number of suggestions required to complete each of the 167

input instances for DBpedia. We observe that RDP requires 126.6 suggestions on average

to complete a query graph, performing slightly better than NB which requires 134.3 sug-

gestions. RDP also comfortably outperforms RF, SVD and CAR which on average require

164, 150.7 and 157.9 suggestions per query graph respectively.

40

0

25

50

75

100

125

150

175

200

Wiki-FB Data-FB

N
u

m
b

e
r

 o
f

su
g

g
e

st
io

n
s

p
e

r
q

u
e

ry

(a) Freebase

0

25

50

75

100

125

150

175

200

Wiki-DB Data-DB QLog-DB

A
v

e
ra

g
e

 #
 o

f
su

g
g

e
st

io
n

s

p
e

r
q

u
e

ry

(b) DBpedia

Figure 2.10: Effectiveness of Query Logs

2.5.3.2 Efficiency Based on Time

We next compare the efficiency of the various methods over the time required to

grow the initial partial query graph to its corresponding target query graph. Figure 2.9(a)

compares the average time required to complete a query task by each of the algorithms

over Freebase. RDP, NB and RF significantly outperform SVD and CAR. RDP requires

7.7 seconds, slightly higher than NB’s 3.9 seconds, and better than RF’s 11.8 seconds per

query, which is commendable especially since both random forest and Bayesian classifiers

are extremely efficient once the models are learnt. Figure 2.9(b) compares the average time

required to complete a query task by each of the algorithms over DBpedia. SVD and CAR

are inefficient requiring 250.2 and 444.2 seconds per query respectively. NB requires 5.9

seconds, which is faster than both RF and RDP that require 26.7 and 119.7 seconds per

query respectively.

2.5.4 Effectiveness of Query Logs

We compare the effectiveness of the various query logs listed in Table 2.2. We use

RDP as the algorithm for edge suggestion, and the number of suggestions required to grow

41

the initial partial query graph to the target query as the measure of effectiveness of the

query logs. Freebase-Queries and DBpedia-Queries, described in Section 2.5.3, were the

sets of queries used to compare the various Freebase and DBpedia query logs respectively.

Query Logs for Freebase: Figure 2.10(a) shows the distribution of the number

of suggestions required to complete a query task using Wiki-FB and Data-FB query logs.

We observe that 83 of the 167 input instances needed no more than 26 edge suggestions

with the Wiki-FB query log, while it required at most 65 edge suggestions to complete the

same number of queries using the Data-FB query log. Around 42 more input instances

required between 26 to 47 suggestions with Wiki-FB, while it required between 65 to 200

suggestions with Data-FB. This indicates that the query log simulated using Wikipedia

and the Freebase data graph using WikiPos described in Section 2.4 is of superior quality

compared to the one simulated using only the Freebase data graph. This suggests that

positive edges established based on the context of human usage of the relationships is better

than the positive edges established using only the data graph.

Query Logs for DBpedia: Figure 2.10(b) shows the average number of edge sug-

gestions required to process the 130 different DBpedia input instances, using each of the

three aforementioned query logs for DBpedia. We first observe that QLog-DB performs

poorly compared to the other two query logs. This is because the DBpedia SPARQL query

log is not comprehensive enough and is limited in the variety of relationships captured,

making it ineffective. The second interesting observation we make is the algorithm re-

quires 120.3 suggestions on average using Data-DB, while it requires 126.6 suggestions

with Wiki-DB. Data-DB performs slightly better than Wiki-DB due to the fact that DBpe-

dia is a high quality data graph generated using the info-boxes in Wikipedia pages. The sets

of positive edges in Wiki-DB are simulated using the text in Wikipedia and the DBpedia

data graph. The two query logs are thus highly similar to each other, unlike the case in

42

40

60

80

100

120

(1,1) (2,2) (4,4) (8,8) (10,10) (25,25)

A
v

e
ra

g
e

 #
 o

f

su
g

g
e

st
io

n
s

p
e

r
q

u
e

ry RDP RDP-noneg

(a) Freebase

120

130

140

150

160

170

180

(1,1) (2,2) (4,4) (8,8) (10,10) (25,25)

A
v

e
ra

g
e

 #
 o

f

su
g

g
e

st
io

n
s

p
e

r
q

u
e

ry RDP RDP-noneg

(b) DBpedia

Figure 2.11: Effect of Parameters on RDP (N , τ)

Freebase where we could see a significant difference between the performance of Wiki-FB

and Data-FB.

2.5.5 Parameter Tuning for RDP

We finally study a variation of RDP, and the effect of N and τ , the two parameters

used in RDP. As described in Section 2.3.2.2, given a query session Q, RDP builds N

different random decision paths. Each random decision path is grown incrementally, un-

til either the support for the path is no more than a threshold τ , or if all edges in Q are

exhausted. While building a random decision path, RDP considers both the positive and

negative edges. To study if considering the negative edges indeed helps in better identify-

43

ing the user’s query intent, we create a variation of RDP, called RDP-noneg, which does

not include any negative edges in the random decision paths. Figures 2.11(a) and 2.11(b)

compare the average number of suggestions required to complete each query graph with

different values of N and τ , for Freebase and DBpedia queries respectively. In both the

cases, we observe that the average number of suggestions required per query decreases as

we increase the number of random decision paths, and the threshold τ . It saturates after

we reach around 10 for both N and τ in RDP. Figures 2.11(a) and 2.11(b) also compare

the average number of suggestions required to complete the query graphs using RDP and

RDP-noneg. With the best parameter values ofN = 25 and τ = 25, RDP requires 44.2 sug-

gestions while RDP-noneg requires 60.9 suggestions in Freebase. RDP also requires fewer

suggestions in DBpedia with 128.5 suggestions compared to 141.5 suggestions required

by RDP-noneg. We observe that RDP significantly outperforms its variation RDP-noneg,

indicating that considering negative edges in query sessions is indeed helpful.

44

CHAPTER 3

GRAPH QUERY BY EXAMPLE

3.1 Introduction

Large ultra-heterogeneous knowledge graphs are ubiquitous and content-rich. But

the sheer size and complexity of these graphs make it difficult for users to query them. In

this chapter we present GQBE (Graph Query by Example), a system that queries knowledge

graphs by example entity tuples instead of graph queries or structured query languages.

Given a data graph and a query tuple consisting of entities, GQBE finds similar answer

tuples. Consider the data graph in Figure 1.1 and a scenario where a Silicon Valley business

analyst wants to find entrepreneurs who founded technology companies head-quartered

in California. Suppose she knows an example query tuple such as 〈Jerry Yang, Yahoo!〉 that

satisfies her query intent. Entering such an example tuple to GQBE is simple, especially

assisted by user interface tools such as auto-completion in identifying the exact entities

in the data graph. The answer tuples can be 〈Steve Wozniak, Apple Inc.〉 and 〈Sergey Brin, Google〉,

which are founder-company pairs. If the query tuple consists of 3 or more entities (e.g.,

〈Jerry Yang, Yahoo!, Sunnyvale〉), the answers will be similar tuples of the same cardinality (e.g.,

〈Steve Wozniak, Apple Inc., Cupertino〉).

GQBE is among the first to query knowledge graphs by example entity tuples. There

are several challenges in building GQBE. Below we provide a brief overview of our ap-

proach in tackling these challenges. The ensuing discussion refers to the system architec-

ture and components of GQBE, as shown in Figure 3.1.

(1) With regard to query semantics, since the input to GQBE is a query tuple instead

of an explicit query graph, it must derive a hidden query graph based on the query tuple,

45

to capture the user’s query intent. GQBE’s query graph discovery component (Section 3.4)

fulfills this requirement and the derived graph is termed a maximum query graph (MQG).

The edges in MQG, weighted by several frequency-based and distance-based heuristics,

represent important “features” of the query tuple to be matched in answer tuples. More

concretely, they capture how entities in the query tuple (i.e., nodes in a data graph) and

their neighboring entities are related to each other. Answer graphs matching the MQG are

projected to answer tuples, which consist of answer entities corresponding to the query

tuple entities. GQBE further supports multiple query tuples as input which collectively

better capture the user intent.

(2) With regard to answer space modeling (Section 3.6), there can be a large space

of approximate answer graphs (tuples), since it is unlikely to find answer graphs exactly

matching the MQG. GQBE models the space of answer tuples by a query lattice formed

by the subsumption relation between all possible query graphs. Each query graph is a

subgraph of the MQG and contains all query entities. Its answer graphs are also subgraphs

of the data graph and are edge-isomorphic to the query graph. Given an answer graph, its

entities corresponding to the query tuple entities form an answer tuple. Thus the answer

tuples are essentially approximate answers to the MQG. For ranking answer tuples, their

scores are calculated based on the edge weights in their query graphs and the match between

nodes in the query and answer graphs.

(3) The query lattice can be large. To obtain top-k ranked answer tuples, the brute-

force approach of evaluating all query graphs in the lattice can be prohibitively expensive.

For efficient query processing (Section 3.7), GQBE employs a top-k lattice exploration

algorithm that only partially evaluates the lattice nodes in the order of their corresponding

query graphs’ upper-bound scores.

We summarize the contributions of this chapter as follows:

46

Figure 3.1: The Architecture and Components of GQBE

• For better usability of knowledge graph querying systems, we propose a novel approach

of querying by example entity tuples, which saves users the burden of forming explicit

query graphs.

• The query graph discovery component of GQBE derives a hidden maximum query graph

(MQG) based on input query tuples, to capture users’ query intent. GQBE models the

space of query graphs (and thus answer tuples) by a query lattice based on the MQG.

• GQBE’s efficient query processing algorithm only partially evaluates the query lattice to

obtain the top-k answer tuples ranked by how well they approximately match the MQG.

• We conducted extensive experiments and user study on the large Freebase and DBpe-

dia datasets to evaluate GQBE’s accuracy and efficiency (Section 3.9). The comparison

with a state-of-the-art graph querying framework NESS[27] and an exemplar query sys-

47

Figure 3.2: GQBE’s Input Interface

tem EQ [28] shows that GQBE is over twice as accurate as NESS and EQ. GQBE also

outperforms NESS on efficiency in most of the queries.

3.2 User Interface and Functionality

GQBE provides several features that aid in convenient query experience: 1) a simple

search box for entering example entity tuple, 2) auto completion of entity names that helps a

user find the exact entity she is typing for, 3) provision to provide multiple example tuples,

4) display of the query graph discovered by the system for capturing user intent, and 5)

display of a ranked list of answer tuples with their corresponding answer graphs that justify

the ranking. The rest of this section provides the details.

GQBE features a simple keyword-based input interface (Figure 3.2), in which a user

enters example tuples of entities known to her. For instance, in Figure 3.2, the user is in

the middle of typing Sergey Brin. GQBE offers auto completion, powered by Freebase API.

Specifically, when the user partially enters the name of an entity (“Sergey b” in Figure 3.2),

GQBE shows a list of suggested entities whose names match the keywords. Hovering the

mouse pointer over one suggested entity (Sergey Brin in Figure 3.2) will bring out a summary

48

Figure 3.3: Interface Displaying Answer Tuples

of the entity from its corresponding Freebase page. This summary can be used to resolve

ambiguity among multiple entities with similar names.

Deriving user intent based on a single example entity tuple is a hard task. GQBE

allows multiple example tuples to better capture the user intent. As shown in Figure 3.2,

the user has entered the first tuple 〈Jerry Yang, Yahoo!〉 and is in the middle of entering the

second tuple 〈Sergey Brin, Google〉. More example tuples can be entered by clicking the ‘+‘ sign

preceding the first entered tuple. Entered tuples can also be altered by directly changing

the keywords in the corresponding search boxes.

Once the user provides example tuples and clicks the “Submit” button, GQBE’s back-

end query processor kicks in. It discovers the MQG, a hidden weighted query graph, to

capture the user’s query intent. GQBE evaluates the MQG to find similar answer graphs

and corresponding answer tuples, and ranks them by how well they match the input tuples

(details in Section 3.7). Figure 3.3 shows the result interface displaying the ranked answer

tuples. The user can further explore the entities in the answer tuples by clicking on them

49

Figure 3.4: Interface Displaying Answer Graphs

which opens their corresponding Freebase pages in new Web browser windows. GQBE as-

sists the user in understanding the rationale behind the answer tuples and their ranking. To

this end, the MQG is displayed on the right-hand side of the screen that helps the user find

out if her query intent was captured or not, as shown in Figure 3.3. One can also view the

answer graphs corresponding to the ranked answer tuples by selecting the check-box be-

fore the answer tuples of interest, and clicking on the “Render Graphs” button as shown in

Figure 3.4. A score indicating how well the answer tuple matches the example query tuple

is also displayed with the answer graphs. For instance, Figure 3.4 shows the answer graphs

and the corresponding scores of 〈John Ousterhout, Electric Cloud〉 and 〈Ashwin Navin, BitTorrent Inc.〉 an-

swer tuples.

50

3.3 Problem Formulation

GQBE runs queries on knowledge data graphs. A data graph is a directed multi-

graph G with node set V (G) and edge set E(G). Each node v∈V (G) represents an entity

and has a unique identifier id(v). 1 Each edge e=(vi, vj)∈E(G) denotes a directed relation-

ship from entity vi to entity vj . It has a label, denoted as label(e). Multiple edges can have

the same label. The user input and output of GQBE are both entity tuples, called query

tuples and answer tuples, respectively. A tuple t=〈v1, . . . , vn〉 is an ordered list of entities

(i.e., nodes) in G. The constituting entities of query (answer) tuples are called query (an-

swer) entities. Given a data graphG and a query tuple t, our goal is to find the top-k answer

tuples t′ with the highest similarity scores scoret(t
′).

We define scoret(t
′) by matching the inter-entity relationships of t and that of t′. The

best matches for individual entities in t may not form the best match for the query tuple t

as a whole. It is thus imperative to form a query graph involving the entities of the query

tuple and other neighboring relationships and entities. These neighboring relationships and

entities are important “features” that might be of interest to users. Thus scoret(t
′) entails

matching two graphs constructed from t and t′, respectively.

To this end, we define the neighborhood graph for a tuple, which is based on the

concept of undirected path. An undirected path is a path whose edges are not necessarily

oriented in the same direction. Unless otherwise stated, we refer to undirected path simply

as “path”. We consider undirected path because an edge incident on a node can represent

an important relationship with another node, regardless of its direction. More formally, a

path p is a sequence of edges e1, . . . , en and we say each edge ei ∈ p. The path connects

two nodes v0 and vn through intermediate nodes v1, . . . , vn−1, where either ei=(vi−1, vi) or

1Without loss of generality, we use an entity’s name as its identifier in presenting examples, assuming

entity names are unique.

51

Figure 3.5: Neighborhood Graph for 〈Jerry Yang, Yahoo!〉

ei=(vi, vi−1), for all 1≤i≤n. The path’s length, len(p), is n and its endpoints, ends(p), are

{v0, vn}. There is no undirected cycle in a path, i.e., v0, . . . , vn are all distinct.

Definition 7 The neighborhood graph of query tuple t, denoted Ht, is the weakly con-

nected subgraph2 of data graph G that consists of all nodes reachable from at least one

query entity by an undirected path of d or less number of edges (including query entities

themselves) and the edges on all such paths. The path length threshold, d, is an input

parameter. More formally, the nodes and edges in Ht are defined as follows:

V (Ht) = {v|v ∈ V (G) and ∃p s.t. ends(p)={vi, v} where vi ∈ t, len(p) ≤ d};

E(Ht) = {e|e ∈ E(G) and ∃p s.t. ends(p)={vi, v} where vi ∈ t, len(p) ≤ d, and

e ∈ p}.
2A directed graph is weakly connected if there exists an undirected path between every pair of vertices.

52

Example 2 (Neighborhood Graph) Given the data graph in Figure 1.1, Figure 3.5 shows

the neighborhood graph for query tuple 〈Jerry Yang, Yahoo!〉 with path length threshold d=2.

The nodes in dark color are the query entities.

Intuitively, the neighborhood graph, by capturing how query entities and other enti-

ties in their neighborhood are related to each other, represents features of the query tuple

that are to be matched in query answers. It can thus be viewed as a hidden query graph

derived for capturing user’s query intent. We are unlikely to find query answers that ex-

actly match the neighborhood graph. It is however possible to find exact matches to its

subgraphs. Such subgraphs are all query graphs and their exact matches are approximate

answers that match the neighborhood graph to different extents.

Figure 3.6: Two Query Graphs in Figure 3.5

Definition 8 A query graph Q is a weakly connected subgraph of Ht that contains all the

query entities. We use Qt to denote the set of all query graphs for t, i.e., Qt={Q|Q is a

weakly connected subgraph of Ht s.t. ∀v ∈ t, v ∈ V (Q)}.

53

Figure 3.7: Two Answer Graphs for Figure 3.6(a)

Continuing the running example, Figure 3.6 shows two query graphs for the neigh-

borhood graph in Figure 3.5.

Echoing the intuition behind neighborhood graph, the definitions of answer graph/tuple

are based on the idea that an answer tuple is similar to the query tuple if their entities par-

ticipate in similar relationships in their neighborhoods.

Definition 9 An answer graph A to a query graph Q is a weakly connected subgraph of

G that is edge-isomorphic to Q. Formally, there exists a bijection f :V (Q)→V (A) such

that:

• For every edge e = (vi, vj) ∈ E(Q), there exists an edge e′ = (f(vi), f(vj)) ∈ E(A)

such that label(e) = label(e′);

• For every edge e′ = (ui, uj) ∈ E(A), there exists e = (f−1(ui), f
−1(uj)) ∈ E(Q) such

that label(e) = label(e′).

For a query tuple t=〈v1, . . . , vn〉, the answer tuple in A is tA=〈f(v1), . . . , f(vn)〉. We also

call tA the projection of A.

54

Figure 3.8: Two Answer Graphs for Figure 3.6(b)

We use AQ to denote the set of all answer graphs of Q. We note that a query graph

(tuple) trivially matches itself, therefore is not considered an answer graph (tuple).

Example 3 (Answer Graph and Answer Tuple) Figure 3.7 and Figure 3.8 each show

two answer graphs for query graphs Figure 3.6(a) and Figure 3.6(b), respectively. The

answer tuples in Figure 3.7 are 〈Steve Wozniak, Apple Inc.〉 and 〈Sergey Brin, Google〉. The answer

tuples in Figure 3.8 are 〈Bill Gates, Microsoft〉 and 〈Sergey Brin, Google〉.

The set of answer tuples for query tuple t are {tA|A∈AQ,

Q∈Qt}. The score of an answer t′ is given by:

scoret(t
′) = max

A∈AQ,Q∈Qt

{scoreQ(A)|t′ = tA} (3.1)

The score of an answer graph A (scoreQ(A)) captures A’s similarity to query graph Q. Its

equation is given in Section 3.6.2.

The same answer tuple t′ may be projected from multiple answer graphs, which can

match different query graphs. For instance, Figures 3.7(b) and 3.8(b), which are answers

to different query graphs, have the same projection—〈Sergey Brin, Google〉. By Equation (3.1),

55

the highest score attained by the answer graphs is assigned as the score of t′, capturing how

well t′ matches t.

3.4 Query Graph Discovery

3.4.1 Maximum Query Graph

The concept of neighborhood graph Ht (Def. 7) was formed to capture the features

of a query tuple t to be matched by answer tuples. Given a well-connected large data graph,

Ht itself can be quite large, even under a small path length threshold d. For example, using

Freebase as the data graph, the query tuple 〈Jerry Yang, Yahoo!〉 produces a neighborhood graph

with 800K nodes and 900K edges, for d=2. Such a largeHt makes query semantics obscure,

because there might be only few nodes and edges in it that capture important relationships

in the neighborhood of t.

GQBE’s query graph discovery component constructs a weighted maximum query

graph (MQG) fromHt. The MQG is expected to be drastically smaller thanHt and capture

only important features of the query tuple. It is worth noting that a small and plausible

MQG can be a Steiner tree connecting all the query entities. But it will fail to capture

features that are not on any simple path between a pair of query entities. We thus need

a more comprehensive, yet small MQG. We now define MQG and discuss its discovery

algorithm.

Definition 10 The maximum query graphMQGt, given a parameterm, is a weakly con-

nected subgraph of the neighborhood graph Ht that maximizes total edge weight
∑

e w(e)

while satisfying (1) it contains all query entities in t and (2) it hasm edges. The importance

of an edge e in Ht, given by its weight w(e), is defined in Section 3.8.

Two challenges exist in finding MQGt by directly going after the above definition.

First, a weakly connected subgraph of Ht with exactly m edges may not exist for an arbi-

56

trary m. A trivial value of m that guarantees the existence of the corresponding MQGt is

|E(Ht)|, because Ht is weakly connected. This value could be too large, which is exactly

why we aim to make MQGt substantially smaller than Ht. Second, even if MQGt exists

for an m, finding it requires maximizing the total edge weight, which is a hard problem as

given in Theorem 1.

Theorem 1 The decision version of finding the maximum query graph MQGt for an m is

NP-hard.

Proof We prove the NP-hardness by reduction from the NP-hard constrained Steiner net-

work (CSN) problem [29]. Given an undirected connected graph G1 = (V,E) with non-

negative weight w(e) for every edge e ∈ E, a subset Vn ⊂ V , and a positive integer m,

the CSN problem finds a connected subgraph G′ = (V ′, E ′) with the minimum total edge

weight, where Vn ⊆ V ′ and |E ′| = m. The polynomial-time reduction from the CSN prob-

lem to MQG problem is by transforming G1 to G2, where each edge e in G1 is given an

arbitrary direction and a new weight w′(e) = W − w(e), where W =
∑

e∈E w(e). There

are two important observations here: (1) the edge directions do not matter for the MQG

problem as we only look for a weakly connected subgraph; and therefore, one can add

arbitrary edge directions while constructing G2 from G1. (2) Given an instance of the CSN

problem, W =
∑

e∈E w(e) is constant, and also W ≥ w(e) for all e ∈ E. Therefore, the

new edge weights w′(e) = W − w(e) are non-negative numbers. Now, let Vn be the query

tuple for the MQG problem. The maximum query graph MQGVn found from G2 provides

a CSN in G1. This is because maximizing
∑

e∈MQGVn
w′(e) is equivalent to minimizing∑

e∈MQGVn
w(e), which is the objective function for the CSN problem. This completes the

proof.

Based on the theoretical analysis, we present a greedy method (Alg. 2) to find a

plausible sub-optimal graph of edge cardinality close to a given m. The value of m is

empirically chosen to be much smaller than |E(Ht)|. Consider edges of Ht in descending

57

Algorithm 2: Discovering the Maximum Query Graph
Input: neighborhood graph Ht, query tuple t, an integer r

Output: maximum query graph MQGt

1 m← r
|t|+1 ; V (MQGt)← φ; E(MQGt)← φ; G ← φ;

2 foreach vi ∈ t do

3 Gvi ← use DFS to obtain the subgraph containing vertices (and their incident edges) that

connect to other vj in t only through vi;

4 G ← G ∪ {Gvi};

5 Gcore ← use DFS to obtain the subgraph containing vertices and edges on undirected paths

between query entities;

6 G ← G ∪ {Gcore};

7 foreach G ∈ G do

8 step← 1; s1 ← 0; s← m;

9 while s > 0 do

10 Ms ← the weakly connected component found from the top-s edges of G that contains

all of G’s query entities;

11 if Ms exists then

12 if |E(Ms)| = m then break;

13 if |E(Ms)| < m then

14 s1 ← s;

15 if step = −1 then break;

16 if |E(Ms)| > m then

17 if s1 > 0 then

18 s← s1; break;

19 s2 ← s; step← −1;

20 s← s+ step;

21 if s = 0 then s← s2;

22 V (MQGt)← V (MQGt) ∪ V (Ms);

23 E(MQGt)← E(MQGt) ∪ E(Ms);

58

order of weight w(e). We use Gs to denote the graph formed by the top s edges with

the largest weights, which itself may not be weakly connected. We use Ms to denote the

weakly connected component (a maximum subgraph where an undirected path exists for

every pair of vertices) of Gs containing all query entities in t, if it exists. Our method finds

the smallest s such that |E(Ms)|=m (Line 12). If such an Ms does not exist, the method

chooses s1, the largest s such that |E(Ms)|<m. If that still does not exist, it chooses s2, the

smallest s such that |E(Ms)|>m, whose existence is guaranteed because |E(Ht)|>m. For

each s value, the method employs a depth-first search (DFS) starting from a query entity in

Gs, if present, to check the existence of Ms (Line 10).

The Ms found by this method may be unbalanced. Query entities with more neigh-

bors in Ht likely have more prominent representation in the resulting Ms. A balanced

graph should instead have a fair number of edges associated with each query entity. There-

fore, we further propose a divide-and-conquer mechanism to construct a balanced MQGt.

The idea is to break Ht into n+1 weakly connected subgraphs. One is the core graph,

which includes all the n query entities in t and all undirected paths between query enti-

ties. Other n subgraphs are for the n query entities individually, where the subgraph for

entity vi includes all entities (and their incident edges) that connect to other query entities

only through vi. The subgraphs are identified by a DFS starting from each query entity

(Lines 4-6 of Alg. 2). During the DFS from vi, all edges on the undirected paths reaching

any other query entity within distance d belong to the core graph, and other edges belong

to vi’s individual subgraph. The method then applies the aforementioned greedy algorithm

to find n+1 weakly connected components, one for each subgraph, that contain the query

entities in corresponding subgraphs. Since the core graph connects all query entities, the

n+1 components altogether form a weakly connected subgraph of Ht, which becomes the

final MQGt. For an empirically chosen small r as the target size of MQGt, we set the

target size for each individual component to be r
n+1

, aiming at a balanced MQGt.

59

The greedy approach described in Alg. 2 makes a best effort at pruning unimportant

features and finding an MQG that captures the user intent, by ensuring that only highly

weighted edges are present in the MQG. Ability to capture the user intent well depends on

how good the edge weighting function w(e) is in assigning high weights to edges that are

intended by users.

Complexity Analysis of Alg. 2 In the aforementioned divide-and-conquer method, if on

average there are r′= |E(Ht)|
n+1

edges in each subgraph, finding the subgraph by DFS and sort-

ing its r′ edges takes O(r′ log r′) time. Given the top-s edges of a subgraph, checking

if the weakly connected component Ms exists using DFS requires O(s) time. Suppose

on average c iterations are required to find the appropriate s. Let m= r
n+1

be the aver-

age target edge cardinality of each subgraph. Since the method initializes s with m, the

largest value s can attain is m+c. So the time for discovering Ms for each subgraph is

O(r′ log r′+c×(m+c)). For all n+1 subgraphs, the total time required to find the final

MQGt is O((n+1) × (r′ log r′+c×(m+c))). For the queries used in our experiments on

Freebase, given an empirically chosen small r=15, s�|E(Ht)| and on average c=22.

3.5 Multi-tuple Queries

The query graph discovery component derives a user’s query intent from input query

tuples. For that, a single query tuple might not be sufficient. While the experiment results

in Section 3.9 show that a single-tuple query obtains excellent accuracy in many cases,

the results also exhibit that allowing multiple query tuples often help in improving query

answer accuracy. It is because important relationships commonly associated with multiple

tuples express the user intent more precisely. Suppose a user provides two query tuples—

〈Jerry Yang, Yahoo!〉 and 〈Steve Wozniak, Apple Inc.〉. The entities in both tuples share common prop-

erties such as places lived in San Jose and headquartered in a city in California, as Figure 1.1 shows.

60

This might indicate the user is interested in finding people from San Jose who founded

technology companies in California.

Given a set of tuples T , GQBE finds top-k answer tuples similar to T collectively.

To accomplish this, one approach is to discover and evaluate the maximum query graphs

(MQGs) of individual query tuples. The scores of a common answer tuple for multiple

query tuples can then be aggregated. This has two potential drawbacks: (1) Our concern

of not being able to well capture user intent still remains. If k is not large enough, a good

answer tuple may not appear in enough individual top-k answer lists, resulting in poor

aggregated score. (2) It can become expensive to evaluate multiple MQGs.

We approach this problem by producing a merged and re-weighted MQG that cap-

tures the importance of edges with respect to their presence across multiple MQGs. The

merged MQG is then processed by the same method for single-tuple queries. GQBE em-

ploys a simple strategy to merge multiple MQGs. The individual MQG for a query tu-

ple ti=〈vi1, vi2, . . . , vin〉∈T is denoted Mti . A virtual MQG M ′
ti

is created for every Mti

by replacing the query entities vi1, v
i
2, . . . , v

i
n in Mti with corresponding virtual entities

w1, w2, . . . , wn in M ′
ti

. Formally, there exists a bijective function g:V (Mti)→V (M ′
ti

) such

that (1) g(vij)=wj and g(v)=v if v /∈ti, and (2) ∀e=(u, v)∈E(Mti), there exists an edge

e′=(g(u), g(v)) ∈E(M ′
ti

) such that label(e)=label(e′); ∀e′=(u′, v′)∈E(M ′
ti

), ∃e =(g−1(u′),

g−1(v′))∈E(Mti) such that label(e)=label(e′).

The merged MQG, denoted MQGT , is produced by including vertices and edges

in all M ′
ti

, merging identical virtual and regular vertices, and merging identical edges that

bear the same label and the same vertices on both ends, i.e.,

V (MQGT) =
⋃

ti∈T
V (M ′

ti
) and E(MQGT) =

⋃
ti∈T

E(M ′
ti

).

The edge cardinality of MQGT might be larger than the target size r. Thus Alg. 2 (Sec-

tion 3.4.1) is also used to trim MQGT to a size close to r. In MQGT , the weight of an

61

Figure 3.9: Merging Maximum Query Graphs

edge e is given by c ∗ wmax(e), where c is the number of M ′
ti

containing e and wmax(e) is

its maximum weight among all such M ′
ti

.

Complexity Analysis of Merging Multiple MQGs In comparison to evaluating a single-

tuple query, the extra overhead in handling a multi-tuple query includes creating multiple

MQGs, which is |T | times the average cost of discovering an individual MQG, and merging

them, which is linear in the total edge cardinality of all MQGs.

Example 4 (Merging Maximum Query Graphs) Let Figures 3.9 (a) and (b) be the Mti

for query tuples 〈Steve Wozniak, Apple Inc.〉 and 〈Jerry Yang, Yahoo!〉, respectively. Figure 3.9(c) is

the merged MQGT . Note that entities Steve Wozniak and Jerry Yang are mapped to w1 in their

respective M ′
ti

(not shown, for its mapping from Mti is simple) and are merged into w1 in

MQGT . Similarly, entities Apple Inc. and Yahoo! are mapped and merged into w2. The two

founded edges, appearing in both individual Mti and sharing identical vertices on both ends

(w1 and w2) in the corresponding M ′
ti

, are merged in MQGT . Similarly the two places lived

edges are merged. However, the two headquartered in edges are not merged, since they share

only one end (w2) in M ′
ti

. The edges nationality and education, which appear in only one Mti ,

are also present in MQGT . The number next to each edge is its weight.

62

3.6 Answer Space Modeling

Since it is unlikely to find exactly matching answer graphs to the discovered MQG,

approximate matches have to be found. Given the maximum query graph MQGt for t, we

thus model the space of possible query graphs by a lattice. We further discuss the scoring

of answer graphs by how they match query graphs.

3.6.1 Query Lattice

The query latticeL is a partially ordered set (poset) (QGt,≺), where≺ represents the

subgraph-supergraph subsumption relation and QGt is the subset of query graphs (Def. 8)

that are subgraphs of MQGt, i.e., QGt={Q|Q ∈ Qt and Q � MQGt}. The top element

(root) of the poset is thus MQGt. When represented by a Hasse diagram, the poset is a

directed acyclic graph, in which each node corresponds to a distinct query graph in QGt.

Thus we shall use the terms lattice node and query graph interchangeably. The children

(parents) of a lattice node Q are its subgraphs (supergraphs) with one less (more) edge, as

defined below.

Children(Q) = {Q′|Q′ ∈ QGt, Q′ ≺ Q, |E(Q)|−|E(Q′)|=1}

Parents(Q) = {Q′|Q′ ∈ QGt, Q ≺ Q′, |E(Q′)|−|E(Q)|=1}

The leaf nodes of L constitute of the minimal query trees, which are those query

graphs that cannot be made any simpler and yet still keep all the query entities connected.

A query graph Q is a minimal query tree if none of its subgraphs is also a query graph. In

other words, removing any edge from Q will disqualify it from being a query graph—the

resulting graph either is not weakly connected or does not contain all the query entities.

Note that such a Q must be a tree.

Example 5 (Query Lattice and Minimal Query Tree) Figure 3.10(a) shows a maximum

query graph MQGt, which contains two query entities in shaded circles and five edges

63

Figure 3.10: Maximum Query Graph and Query Lattice

F,G,H,L, and P . Its corresponding query lattice L is in Figure 3.10(b). The root node

of L, denoted FGHLP , represents MQGt itself. The bottom-most nodes, F and HL, are

the two minimal query trees. Each lattice node is a subgraph of MQGt. For example, the

node FG represents a query graph with only edges F and G. Note that there is no lattice

node for GLP since it is not a valid connected query graph.

The construction of the query lattice, i.e., the generation of query graphs correspond-

ing to its nodes, is integrated with its exploration. In other words, the lattice is built in a

“lazy” manner—a lattice node is not generated until the query algorithm (Section 3.7) must

evaluate it. The lattice nodes are generated in a bottom-up way. A node is generated by

adding exactly one appropriate edge to the query graph for one of its children. The gener-

ation of bottom nodes, i.e., the minimal query trees, is described below.

By definition, a minimal query tree can only contain edges on undirected paths be-

tween query entities. Hence, it must be a subgraph of the weakly connected component Ms

found from the core graph described in Section 3.4.1. To generate all minimal query trees,

our method enumerates all distinct spanning trees of Ms by the technique in [30] and then

prune them. Specifically, given one such spanning tree, all non-query entities (nodes) of

64

degree one along with their edges are deleted. The deletion is performed iteratively until

there is no such node. The result is a minimal query tree. Only distinct minimal query trees

are kept. Enumerating all spanning trees in a large graph is expensive. However, in our

experiments on the Freebase dataset, the MQGt discovered by the approach in Section 3.4

mostly contains less than 15 edges. Hence, the Ms from the core graph is also empirically

small, for which the cost of enumerating all spanning trees is negligible.

3.6.2 Answer Graph Scoring Function

The score of an answer graph A (scoreQ(A)) captures A’s similarity to the query

graph Q. It is defined below and is to be plugged into Equation (3.1) for defining answer

tuple score.

scoreQ(A) = s score(Q) + c scoreQ(A)

s score(Q) =
∑

e∈E(Q)

w(e)

c scoreQ(A) =
∑

e=(u,v)∈E(Q)
e′=(f(u),f(v))∈E(A)

match(e, e′)

(3.2)

In Equation (3.2), scoreQ(A) sums up two components—the structure score of Q

(s score(Q)) and the content score for A matching Q (c scoreQ(A)). s score(Q) is the

total edge weight of Q. It measures the important structure in MQGt that is captured by Q

and thus byA. c scoreQ(A) is the total extra credit for identical nodes among the matching

nodes in A and Q given by f—the bijection between V (Q) and V (A) as in Def. 9. For

instance, among the 6 pairs of matching nodes between Figure 3.6(a) and Figure 3.7(a),

the identical matching nodes are USA, San Jose and California. The rationale for the extra credit

is that although node matching is not mandatory, the more nodes are matched, the more

similar A and Q are.

65

The extra credit is defined by the following function match(e, e′). Note that it

does not award an identical matching node excessively. Instead, only a fraction of w(e)

is awarded, where the denominator is either |E(u)| or |E(v)|. (E(u) are the edges incident

on u in MQGt.) This heuristic is based on that, when u and f(u) are identical, many of

their neighbors can be also identical matching nodes.

match(e, e′)=



w(e)
|E(u)| if u=f(u)

w(e)
|E(v)| if v=f(v)

w(e)
min(|E(u)|,|E(v)|) if u=f(u), v=f(v)

0 otherwise

(3.3)

3.7 Query Processing

GQBE’s query processing component takes MQGt (Section 3.4) and the query lat-

tice L (Section 3.6) and finds answer graphs matching the query graphs in L. Before we

discuss how L is evaluated (Section 3.7.2), we introduce the storage model and query plan

for processing one query graph (Section 3.7.1).

3.7.1 Processing One Query Graph

The abstract data model of knowledge graph can be represented by the Resource

Description Framework (RDF)—the standard Semantic Web data model. In RDF, a data

graph is parsed into a set of triples, each representing an edge e=(u, v). A triple has the form

(subject, property, object), corresponding to (u, label(e), v). Among different schemes of

RDF data management, one important approach is to use relational database techniques to

store and query RDF graphs. To store a data graph, we adopt this approach and, particularly,

the vertical partitioning method [31]. This method partitions a data graph into multiple two-

column tables. Each table is for a distinct edge label and stores all edges bearing that label.

66

The two columns are (subj, obj), for the edges’ source and destination nodes, respectively.

For efficient query processing, two in-memory search structures (specifically, hash tables)

are created on the table, using subj and obj as the hash keys, respectively. The whole data

graph is hashed in memory by this way, before any query comes in.

Given the above storage scheme, to evaluate a query graph is to process a multi-

way join query. For instance, the query graph in Figure 3.10(a) corresponds to SELECT

F.subj, F.obj FROM F,G,H,L,P WHERE F.subj=G.subj AND F.obj=H.subj AND F.subj=L.subj AND

F.obj=P.subj AND H.obj=L.obj. We use right-deep hash-joins to process such a query. Consider

the topmost join operator in a join tree for query graph Q. Its left operand is the build

relation which is one of the two in-memory hash tables for an edge e. Its right operand

is the probe relation which is a hash table for another edge or a join subtree for Q′=Q−e

(i.e., the resulting graph of removing e from Q). For instance, one possible join tree for the

aforementioned query is G./(F./(P./(H./L))). With regard to its topmost join operator,

the left operand is G’s hash table that uses G.subj as the hash key, and the right operand is

(F./(P./(H./L))). The hash-join operator iterates through tuples from the probe relation,

finds matching tuples from the build relation, and joins them to form answer tuples.

3.7.2 Best-first Exploration of Query Lattice

Given a query lattice, a brute-force approach is to evaluate all lattice nodes (query

graphs) to find all answer tuples. Its exhaustive nature leads to clear inefficiency, since we

only seek top-k answers. Moreover, the potentially many queries are evaluated separately,

without sharing of computation. Suppose query graphQ is evaluated by the aforementioned

hash-join between the build relation for e and the probe relation for Q′. By definition, Q′ is

also a query graph in the lattice, if Q′ is weakly connected and contains all query entities.

In other words, in processing Q, we would have processed one of its children query graph

Q′ in the lattice.

67

Algorithm 3: Best-first Exploration of Query Lattice
Input: query lattice L, query tuple t, and an integer k

Output: top-k answer tuples

1 lower frontier LF ← leaf nodes of L; Terminate← false;

2 while not Terminate do

3 Qbest ← node with the highest upper-bound score in LF ;

4 AQbest
← evaluate Qbest; (Section 3.7.1)

5 if AQbest
=∅ then

6 prune Qbest and all its ancestors from L;

7 recompute upper-bound scores of nodes in LF ; (Alg. 4)

8 else

9 insert Parents(Qbest) into LF ;

10 if top-k answer tuples found [Theorem 3] then Terminate←true ;

We propose Alg. 3, which allows sharing of computation. It explores the query lattice

in a bottom-up way, starting with the minimal query trees, i.e., the bottom nodes. After a

query graph is processed, its answers are materialized in files. To process a query Q, at

least one of its children Q′=Q−e must have been processed. The materialized results for

Q′ form the probe relation and a hash table on e is the build relation.

While any topological order would work for the bottom-up exploration, Alg. 3 em-

ploys a best-first strategy that always chooses to evaluate the most promising lattice node

Qbest from a set of candidate nodes. The gist is to process the lattice nodes in the order

of their upper-bound scores and Qbest is the candidate with the highest upper-bound score

(Line 3). If processing Qbest does not yield any answer graph, Qbest and all its ancestors

are pruned (Line 6) and the upper-bound scores of other candidate nodes are recalculated

(Line 7). The algorithm terminates, without fully evaluating all lattice nodes, when it has

68

obtained at least k answer tuples with scores higher than the highest possible upper-bound

score among all unevaluated nodes (Line 10).

Complexity Analysis of Alg. 3 Joins are used to evaluate the lattice nodes. Minimal

query trees might require multiple joins and other lattice nodes require a single join each.

In evaluating the latter, if on average, the number of answer graphs for a lattice node is j,

the time to evaluate a node by joining the answers of its child node and the new edge added

to form the node is O(j). If |Le| is the actual number of lattice nodes evaluated, the worst

case scenario of query processing is O(|Le|×j). In practice, due to the pruning power of

the best-first exploration technique, |Le|� |L|. For the queries used in our experiments

on Freebase, on average only 8% of |L| is evaluated. The average number of answers to

a lattice node, j, is 6500. Thus, the time to evaluate a single lattice node has a significant

role in the total query processing time. Therefore, the query processing time is not only

dependent on the size of MQGt, but also on the join cardinality involving the edges.

For an arbitrary query graph Q, its upper-bound score is given by the best possible

score Q’s answer graphs can attain. Deriving such upper-bound score based on scoreQ(A)

in Equation (3.2) leads to loose upper-bound. scoreQ(A) sums up the structure score of Q

(s score(Q)) and the content score for A matching Q (c scoreQ(A)). While s score(Q)

only depends on Q itself, c scoreQ(A) captures the matching nodes in A and Q. Without

evaluating Q to get A, we can only assume perfect match(e, e′) in Equation (3.2), which

is clearly an over-optimism. Under such a loose upper-bound, it can be difficult to achieve

an early termination of lattice evaluation.

To alleviate this problem, GQBE takes a two-stage approach. Its query algorithm first

finds the top-k′ answers (k′>k) based on the structure score s score(Q) only, i.e., the al-

gorithm uses a simplified answer graph scoring function scoreQ(A) = s score(Q). In the

second stage, GQBE re-ranks the top-k′ answers by the full scoring function Equation (3.2)

and returns the top-k answer tuples based on the new scores. Our experiments showed the
69

best accuracy for k ranging from 10 to 25 when k′ was set to around 100. Lesser values of

k′ lowered the accuracy and higher values increased the running time of the algorithm. In

the ensuing discussion, we will not further distinct k′ and k.

3.7.3 Details of the Best-first Exploration Algorithm

(1) Selecting Qbest

At any given moment during query lattice evaluation, the lattice nodes belong to

three mutually-exclusive sets—the evaluated, the unevaluated and the pruned. A subset of

the unevaluated nodes, denoted the lower-frontier (LF), are candidates for the node to be

evaluated next. At the beginning, LF contains only the minimal query trees (Line 1 of

Alg. 3). After a node is evaluated, all its parents are added to LF (Line 9). Therefore, the

nodes in LF either are minimal query trees or have at least one evaluated child:

LF = {Q| Q is not pruned,Children(Q)=∅ or

(∃Q′ ∈ Children(Q) s.t. Q′ is evaluated)}.

To choose Qbest from LF , the algorithm exploits two important properties, dictated

by the query lattice’s structure.

Property 1 If Q1 ≺ Q2, then ∀A2 ∈ AQ2 , ∃A1 ∈ AQ1 s.t. A1 ≺ A2 and tA1=tA2 .

Proof If there exists an answer graph A2 for a query graph Q2, and there exists another

query graph Q1 that is a subgraph of Q2, then there is a subgraph of A2 that corresponds

to Q1. By Definition 9, that corresponding subgraph of A2 is an answer graph to Q1. Since

the two answer graphs share a subsumption relationship, the projections of the two yield

the same answer tuple.

Property 1 says, if an answer tuple tA2 is projected from answer graph A2 to lattice

node Q2, then every descendent of Q2 must have at least one answer graph subsumed

by A2 that projects to the same answer tuple. Putting it in an informal way, an answer

70

tuple (graph) to a lattice node can always be “grown” from its descendant nodes and thus

ultimately from the minimal query trees.

Property 2 If Q1≺Q2, then s score(Q1)<s score(Q2).

Proof If Q1 ≺ Q2, then Q2 contains all edges in Q1 and at least one more. Thus the

property holds by the definition of s score(Q) in Equation (3.2).

Property 2 says that, if a lattice node Q2 is an ancestor of Q1, Q2 has a higher struc-

ture score. This can be directly proved by referring to the definition of s score(Q) in

Equation (3.2).

For each unevaluated candidate node Q in LF , we define an upper-bound score,

which is the best score Q’s answer tuples can possibly attain. The chosen node, Qbest, must

have the highest upper-bound score among all the nodes in LF . By the two properties, if

evaluating Q returns an answer graph A, A has the potential to grow into an answer graph

A′ to an ancestor node Q′, i.e., Q≺Q′ and A≺A′. In such a case, A and A′ are projected

to the same answer tuple tA=tA′ . The answer tuple always gets the better score from A′,

under the simplified answer scoring function scoreQ(A) = s score(Q), which Alg. 3

adopts as mentioned in Section 3.7.2. Hence, Q’s upper-bound score depends on its upper

boundary— Q’s unpruned ancestors that have no unpruned parents.The upper boundary

of a node Q in LF , denoted UB(Q), consists of nodes Q′ in the upper-frontier (UF) that

subsume or equal to Q:

UB(Q) = {Q′| Q′ � Q,Q′ ∈ UF},

where UF are the unpruned nodes without unpruned parents:

UF={Q| Q is not pruned,@Q′ � Q s.t. Q′ is not pruned}.

71

Figure 3.11: Evaluating Lattice in Figure 3.10 (b)

The upper-bound score of a node Q is the maximum score of any query graph in its

upper boundary:

U(Q) = max
Q′∈UB(Q)

s score(Q′) (3.4)

Example 6 (Lattice Evaluation) Consider the lattice in Figure 3.11(a) where the lightly

shaded nodes belong to the LF and the darkly shaded node belongs to UF . At the be-

ginning, only the minimal query trees belong to the LF and the maximum query graph

belongs to the UF . If HL is chosen as Qbest and evaluating it results in matching answer

graphs, all its parents (GHL, HLP and FHL) are added to LF as shown in Figure 3.11(b).

The evaluated node HL is represented in bold dashed node.

(2) Pruning and Lattice Recomputation

A lattice node that does not have any answer graph is referred to as a null node. If

the most promising node Qbest turns out to be a null node after evaluation, all its ancestors

are also null nodes based on Property 3 below which follows directly from Property 1.

Property 3 If AQ1 = ∅, then ∀Q2 � Q1, AQ2 = ∅.

Proof Suppose there is a query node Q2 such that Q1 ≺ Q2 andAQ1 = ∅, whileAQ2 6= ∅.

By Property 1, for every answer graph A in AQ2 , there must exist a subgraph of A that

belongs to AQ1 . This contradiction completes the proof.

72

Algorithm 4: Recomputing Upper-bound Scores
Input: query lattice L, null node Qbest, and lower-frontier LF

Output: U(Q) for all Q in LF

1 foreach Q ∈ LF do

2 NB ← φ; // set of new upper boundary candidates of Q.

3 foreach Q′ ∈ UB(Q) ∩ UB(Qbest) do

4 UB(Q)← UB(Q) \ {Q′};

5 UF ← UF \ {Q′};

6 V (Q′′)← V (Q′);

7 foreach e ∈ E(Qbest) \ E(Q) do

8 E(Q′′)← E(Q′) \ {e};

9 find Qsub, the weakly-connected component of Q′′, containing all query entities;

10 NB ← NB ∪ {Qsub};

11 foreach Qsub ∈ NB do

12 if Qsub ⊀ (any node in UF or NB) then

13 UB(Q)← UB(Q) ∪ {Qsub}, UF ← UF ∪ {Qsub};

14 recompute U(Q) using Equation (3.4);

Based on Property 3, when Qbest is evaluated to be a null node, Alg. 3 prunes Qbest

and its ancestors, which changes the upper-frontier UF . It is worth noting that Qbest itself

may be an upper-frontier node, in which case only Qbest is pruned. In general, due to

the evaluation and pruning of nodes, LF and UF might overlap. For nodes in LF that

have at least one upper boundary node among the pruned ones, the change of UF leads to

changes in their upper boundaries and, sometimes, their upper-bound scores too. We refer

to such nodes as dirty nodes. The rest of this section presents an efficient method (Alg. 4)

to recompute the upper boundaries, and if changed, the upper-bound scores of the dirty

nodes.

73

Consider all the pairs 〈Q,Q′〉 such that Q is a dirty node in LF , and Q′ is one of

its pruned upper boundary nodes. Three necessary conditions for a new candidate upper

boundary node of Q are that it is (1) a supergraph of Q, (2) a subgraph of Q′ and (3) not a

supergraph of Qbest. If there are q edges in Qbest but not in Q, we create a set of q distinct

graphs Q′′. Each Q′′ contains all edges in Q′ except exactly one of the aforementioned

q edges (Line 8 in Alg. 4). For each Q′′, we find Qsub which is the weakly connected

component of Q′′ containing all the query entities (Lines 9-10). Lemma 1 and 2 show that

Qsub must be one of the unevaluated nodes after pruning the ancestor nodes of Qbest from

L.

Lemma 1 Qsub is a query graph and it does not belong to the pruned nodes of lattice L.

Proof Qsub is a query graph because it is weakly connected and it contains all the query

entities. Suppose Qsub is a newly generated candidate upper boundary node from pair

〈Q,Q′〉 and Qsub belongs to the pruned nodes of lattice L. This can happen only if: 1)

it is a supergraph of the current null node Qbest or 2) it is an already pruned node. The

former cannot happen since the construction mechanism ofQsub proposed ensures that it is

not a supergraph of Qbest. the latter implies that Qsub was the supergraph of an previously

evaluated null node (orQsub itself was a null node). In this case, sinceQsub ≺ Q′,Q′ would

also have been pruned and thus could not have been part of the upper-boundary. Hence

〈Q,Q′〉 cannot be a valid pair for recomputing the upper boundary if Qsub is pruned. This

completes the proof.

Lemma 2 Q � Qsub.

Proof Based on Alg. 4, Q′′ is the result of deleting one edge fromQ′ and that edge does not

belong to Q. Therefore, Q is subsumed by Q′′. By the same algorithm, Qsub is the weakly

connected component of Q′′ that contains all the query entities. Since Q already is weakly

connected and contains all the query entities, Qsub must be a supergraph of Q.

74

If Qsub (a candidate new upper boundary node of Q) is not subsumed by any node

in the upper-froniter or other candidate nodes, we add Qsub to UB(Q) and UF (Lines 11-

13). Finally, we recompute Q’s upper-bound score (Line 14). Theorem 2 justifies the

correctness of the above procedure.

Theorem 2 If AQbest
= ∅, then Alg. 4 identifies all new upper boundary nodes for every

dirty node Q.

Proof For any dirty node Q, its original upper boundary UB(Q) consists of two sets of

nodes: (1) nodes that are not supergraphs of Qbest and thus remain in the lattice, (2) nodes

that are supergraphs of Qbest and thus pruned. By definition of upper boundary node, no

upper boundary node of Q can be a subgraph of any node in set (1). So any new upper

boundary node of Q must be a subgraph of a node Q′ in set (2). For every pruned upper

boundary node Q′ in set (2), the algorithm enumerates all (specifically q) possible children

of Q′ that are not supergraphs of Qbest but are supergraphs of Q. For each enumerated

graph Q′′, the algorithm finds Qsub—the weakly connected component of Q′′ containing all

query entities. Thus all new upper boundary nodes of Q are identified.

Example 7 (Recomputing Upper Boundary) Consider the lattice in Figure 3.12(a) where

nodes HL and F are the evaluated nodes and the lightly shaded nodes belong to the new

LF . If node GHL is the currently evaluated null node Qbest and FGHLP is Q′, let FG

be the dirty node Q whose upper boundary is to be recomputed. The edges in Qbest that

are not present in Q are H and L. A new upper boundary node Q′′ contains all edges in

Q′ excepting exactly either H or L. This leads to two new upper boundary nodes, FGHP

and FGLP, by removing L and H from FGHLP, respectively. Since FGHP and FGLP do

not subsume each other and are not subgraphs of any other upper-frontier node, they are

now part of UB(Q) and the new UF . Figure 3.12(b) shows the modified lattice where the

pruned nodes are disconnected. FHLP is another node in UF that is discovered using dirty

nodes such as FL and HLP.

75

Figure 3.12: Recomputing Upper Boundary of Dirty Node FG

(3) Termination

After Qbest is evaluated, its answer tuples are {tA|A ∈ AQbest
}. For a tA projected

from answer graph A, the score assigned by Qbest to A (and thus tA) is s score(Qbest),

based on scoreQ(A) = s score(Q)—the simplified scoring function adopted by Alg. 3. If

tA was also projected from already evaluated nodes, it has a current score. By Equation 3.1,

the final score of tA will be from its best answer graph. Hence, if s score(Qbest) is higher

than its current score, then its score is updated. In this way, all found answer tuples so

far are kept and their current scores are maintained to be the highest scores they have

received. The algorithm terminates when the current score of the kth best answer tuple

so far is greater than the upper-bound score of the next Qbest chosen by the algorithm, by

Theorem 3.

Theorem 3 Suppose tk is the current kth best answer tuple and scoret(tk) > U(Qbest). If

lattice evaluation is terminated, then scoret(tk) > s score(Q) for any unevaluated query

graph Q.

Proof Suppose, upon termination, there is an unevaluated query graphQ such that scoret(tk)

≤ s score(Q) This implies that there exists some node in the lower-frontier LF , whose

upper-bound score is at least s score(Q) and is thus greater than scoret(tk). This is a

contradiction to the termination condition scoret(tk) > U(Qbest).

76

Complexity Analysis of Alg. 4

The query graphs corresponding to lattice nodes are represented using bit vectors

since we exactly know the edges involved in all the query graphs. The bit corresponding

to an edge is set if its present in the query graph. Identifying the dirty nodes, null upper

boundary nodes and building a new potential upper boundary node using a pair of nodes

〈Q,Q′〉, can be accomplished using bit operations and each step incurs O(|E(MQGt)|)

time. Finding the weakly connected component of a potential upper boundary using DFS

takes O(|E(Q′)|) time. If Ln is the set of all null nodes encountered in the lattice and there

are Dp such pairs for every null node and q is the average number of potential new upper

boundary nodes created per pair, the worst case time complexity of recomputing the upper-

frontier is O(|Ln|×Dp × q × |E(MQGt)|). Our experimental results show low average

values of |Ln|, Dp and q with |Ln| being only 1% of |L|, Dp around 8 and q around 9.

In practice, our upper-frontier recomputation algorithm quickly computes the dynamically

changing lattice.

3.8 Edge Weighting Function

The definition of MQGt (Def. 10) depends on edge weights. There can be various

plausible weighting schemes. Any edge weighting function that reflects the importance of

edges can be used and our system is capable of adopting any such function. We next present

the weighting function used in our implementation, which is based on several heuristic

ideas.

The weight of an edge e in the neighborhood graph Ht, w(e), is proportional to its

inverse edge label frequency (ief(e)) and inversely proportional to its participation degree

(p(e)), given by

w(e) = ief(e) / p(e) (3.5)

77

Inverse Edge Label Frequency Edge labels that appear frequently in the entire data graph

G are often less important. For example, edges labeled founded (for a company’s founders)

can be rare and more important than edges labeled nationality. We capture this by the inverse

edge label frequency.

ief(e) = log (|E(G)| / #label(e)) (3.6)

where |E(G)| is the number of edges in G, and #label(e) is the number of edges in G with

the same label as e.

Participation Degree The participation degree p(e) of an edge e=(u, v) is the number of

edges in G that share the same label and one of e’s end nodes. Formally,

p(e) = | {e′=(u′, v′) | label(e)=label(e′), u′=u ∨ v′=v} | (3.7)

Participation degree p(e) measures the local frequencies of edge labels—an edge is

less important if there are other edges incident on the same node with the same label. For

instance, employment might be a relatively rare edge globally but not necessarily locally to a

company. Specifically, consider the edges representing the employment relationship between

a company and its many employees and the edges for the board member relationship between

the company and its few board members. The latter edges are more significant.

Note that ief(e) and p(e) are precomputed offline, since they are query-independent

and only rely on the data graph G.

In discovering MQGt from Ht by Alg. 2, the weights of edges in Ht are defined

by Equation (3.5) which does not consider an edge’s distance from the query tuple. The

rationale behind the design is to obtain a balanced MQGt which includes not only edges

incident on query entities but also those in the larger neighborhood. For scoring answers

by Equation (3.2) and Equation (3.3), however, our empirical observations show it is im-

perative to differentiate the importance of edges in MQGt with respect to query entities,

78

in order to capture how well an answer graph matches MQGt. Edges closer to query enti-

ties convey more meaningful relationships than those farther away. Hence, we define edge

depth (d(e)) as follows. The larger d(e) is, the less important e is.

Edge Depth The depth d(e) of an edge e=(u, v) is its smallest distance to any query entity

vi ∈ t, i.e.

d(e) = min
vi∈t

min
u,v
{dist(u, vi),dist(v, vi)} (3.8)

Here, dist(., .) is the shortest length of all undirected paths in MQGt between the two

nodes.

In summary, GQBE uses Equation (3.5) as the definition of w(e) in weighting edges

in Ht. After MQGt is discovered from Ht by Alg. 2, it uses the following Equation (3.9)

as the definition of w(e) in weighting edges in MQGt. Equation (3.9) incorporates d(e)

into Equation (3.5). The answer graph scoring functions Equation (3.2) and Equation (3.3)

are based on Equation (3.9).

w(e) = ief(e) / (p(e)× d2(e)) (3.9)

Several other factors can be considered for the weighting function. For instance,

one can leverage a query log, if available, to give higher weights to edges that are used

more often by other users. A comprehensive comparison of various weighting functions is

an interesting future study to pursue. Nevertheless, given a better weighting function, the

proposed algorithms can better capture the user intent. We next discuss a heuristic to prune

edges that are deemed unimportant.

3.8.1 Preprocessing: Reduced Neighborhood Graph

Alg. 2 focuses on discovering MQGt from Ht. The neighborhood graph Ht may

have clearly unimportant edges. As a preprocessing step, GQBE removes such edges from

79

Ht before applying Alg. 2. The reduced size of Ht not only makes the execution of Alg. 2

more efficient but also helps prevent clearly unimportant edges from getting into MQGt.

Consider the neighborhood graphHt in Figure 3.5, based on the data graph excerpt in

Figure 1.1. Edge e1=(Jerry Yang, Stanford) and label(e1)=education. Two other edges labeled edu-

cation, e2 and e3, are also incident on node Stanford. The neighborhood graph from a complete

real-world data graph may contain many such edges for people graduated from Stanford

University. Among these edges, e1 represents an important relationship between Stanford and

query entity Jerry Yang, while other edges represent relationships between Stanford and other

entities, which are deemed unimportant with respect to the query tuple.

We formalize the definition of unimportant edges as follows. Given an edge e=(u, v) ∈

E(Ht), e is unimportant if it is unimportant from the perspective of its either end, u or v,

i.e., if e ∈ UE(u) or e ∈ UE(v). Given a node v ∈ V (Ht), E(v) denotes the edges

incident on v in Ht. E(v) is partitioned into three disjoint subsets—the important edges

IE(v), the unimportant edges UE(v) and the rest—defined as follows:

IE(v)=

{e ∈ E(v) | ∃vi∈t, p s.t. e∈p, ends(p)={v, vi}, len(p)≤d};

UE(v)=

{e ∈ E(v) | e/∈IE(v),∃e′∈IE(v) s.t. label(e)=label(e′),

(e=(u, v) ∧ e′=(u′, v)) ∨ (e=(v, u) ∧ e′=(v, u′))}.

An edge e incident on v belongs to IE(v) if there exists a path between v and any query

entity in the query tuple t, through e, with path length at most d. For example, edge e1 in

Figure 3.5 belongs to IE(Stanford). An edge e belongs to UE(v) if (1) it does not belong to

IE(v) (i.e., there exists no such aforementioned path) and (2) there exists e′ ∈ IE(v) such

that e and e′ have the same label and they are both either incoming into or outgoing from

v. By this definition, e2 and e3 belong to UE(v) in Figure 3.5, since e1 belongs to IE(v).

In the same neighborhood graph, e4 is in neither IE(v) nor UE(v).

80

All edges deemed unimportant by the above definition are removed from Ht. The

resulting graph may not be weakly connected anymore and may have multiple weakly

connected components. Theorem 4 states that one of the components—called the reduced

neighborhood graph, denotedH ′t—contains all query entities in t. In other words, H ′t is the

largest weakly connected subgraph of Ht containing all query entities and no unimportant

edges. Alg. 2 is applied on H ′t to produce MQGt.

Theorem 4 Given the neighborhood graph Ht for a query tuple t, the reduced neighbor-

hood graph H ′t always exists.

Proof We prove by contradiction. Suppose that, after removal of all unimportant edges,

Ht becomes a disconnected graph, of which none of the weakly connected components

contains all the query entities. The deletion of unimportant edges must have disconnected

at least a pair of query entities, say, vi and vj . By Def. 7, before removal of unimportant

edges,Ht must have at least a path p of length at most d between vi and vj . By the definition

of unimportant edges, every edge e=(u, v) on p belongs to both IE(u) and IE(v) and thus

cannot be an unimportant edge. However, the fact that vi and vj become disconnected

implies that p consists of at least one unimportant edge which is deleted. This presents a

contradiction and completes the proof.

3.9 Experiments

3.9.1 Setup

This section presents our experiment results on the accuracy and efficiency of GQBE.

The experiments were conducted on a double quad-core 24 GB memory 2.0 GHz Xeon

server.

Datasets: We used two large real-world knowledge graphs— the 2011 versions of Free-

base [3] and DBpedia [1]. We preprocessed the graphs so that the kept nodes are all named

81

entities (e.g.Stanford University) and abstract concepts (e.g.Jewish people). In the Freebase graph,

every edge is associated with an redundant back edge in the opposite direction. For in-

stance, the back edge of founded is labeled founded by. All back edges were removed. We

also removed administrative edges such as created by and those nodes having constant or nu-

merical values. The resulting Freebase graph contains 28M nodes, 47M edges, and 5, 428

distinct edge labels. The DBpedia graph contains 759K nodes, 2.6M edges and 9, 110

distinct edge labels.

Methods Compared: GQBE was compared with a Baseline, NESS [27] and exemplar

queries [28] (EQ). We implemented all the methods except EQ. For EQ, queries used in

our experiments were provided to the authors of [28] who executed them on their system

and shared the results with us.

NESS is a graph querying framework that finds approximate matches of query graphs

with unlabeled nodes which correspond to query entity nodes in MQG. Note that, like other

systems, NESS must take a query graph (instead of a query tuple) as input. Hence, we

feed the MQG discovered by GQBE as the query graph to NESS. For each node v in the

query graph, a set of candidate nodes in the data graph are identified. Since, NESS does

not consider edge-labeled graphs, we adapted it by requiring each candidate node v′ of

v to have at least one incident edge in the data graph bearing the same label of an edge

incident on v in the query graph. The score of a candidate v′ is the similarity between the

neighborhoods of v and v′, represented in the form of vectors, and further refined using an

iterative process. Finally, one unlabeled query node is chosen as the pivot p. The top-k

candidates for multiple unlabeled query nodes are put together to form answer tuples, if

they are within the neighborhood of p’s top-k candidates.

EQ proposes the concept of exemplar queries [28] which is similar to the paradigm

of GQBE. However, EQ does not provide a definitive way of discovering query graph given

an exemplar query tuple. Therefore, we provided the MQG discovered by GQBE as the

82

query graph to the authors of [28], who then executed the MQG on EQ and shared the eval-

uation results with us. Similar to NESS, EQ also captures the neighborhood information of

each node in the data graph and indexes it. It iteratively picks nodes from the query graph

and finds all similar candidate nodes in the data graph, while keeping only those candidates

of each query node that also preserve the edges in the query graph with other nodes’ candi-

dates. It mandates all answer graphs to be edge preserving isomorphic matches to the query

graph for the query tuple. This precludes their system from finding approximate answers

to the query graph. These answer graphs are then ranked by the similarity of the nodes in

the query graph and their corresponding nodes in the answer graphs.

Baseline explores a query lattice in a bottom-up manner and prunes ancestors of null

nodes, similar to the best-first method (Section 3.7). Baseline . However, differently, it

evaluates the lattice by breadth-first traversal instead of in the order of upper-bound scores.

There is no early-termination by top-k scores, as Baseline terminates when every node is

either evaluated or pruned.

Queries and Ground Truth: Two groups of queries are used on the two datasets, respec-

tively. The Freebase queries F1 and F6 are from Wikipedia tables such as http://en.wik-

ipedia.org/wiki/List of English football club owners. The remaining Freebase queries are based on tables

obtained as a result of either constructing structured queries over Freebase, or pre-defined

Freebase tables such as http:// www.freebase.com/view/computer/programming language

designer?instances. The DBpedia queries D1– D8 are based on DBpedia tables such as the val-

ues for property is dbpedia-owl:author of on page http://dbpedia.org/page/Microsoft. Each such table is a

collection of tuples, in which each tuple consists of one, two, or three entities. For each

table, we used one or more tuples as query tuples and the remaining tuples as the ground

truth for query answers. All the 28 queries and their corresponding table sizes are sum-

marized in Table 3.1. They cover diverse domains, including people, companies, movies,

sports, awards, religions, universities and automobiles.

83

Query Query Tuple Table Size
F1 〈Donald Knuth, Stanford University, Turing Award〉 18
F2 〈Ford Motor, Lincoln, Lincoln MKS〉 25
F3 〈Nike, Tiger Woods〉 20
F4 〈Michael Phelps, Sportsman of the Year〉 55
F5 〈Gautam Buddha, Buddhism〉 621
F6 〈Manchester United, Malcolm Glazer〉 40
F7 〈Boeing, Boeing C-22〉 89
F8 〈David Beckham, A. C. Milan〉 94
F9 〈Beijing, 2008 Summer Olympics〉 41
F10 〈Microsoft, Microsoft Office〉 200
F11 〈Jack Kirby, Ironman〉 25
F12 〈Apple Inc, Sequoia Capital〉 300
F13 〈Beethoven, Symphony No. 5〉 600
F14 〈Uranium, Uranium-238〉 26
F15 〈Microsoft Office, C++〉 300
F16 〈Dennis Ritchie, C〉 163
F17 〈Steven Spielberg, Minority Report〉 40
F18 〈Jerry Yang, Yahoo!〉 8349
F19 〈C〉 1240
F20 〈TomKat〉 16
D1 〈Alan Turing, Computer Scientist〉 52
D2 〈David Beckham, Manchester United〉 273
D3 〈Microsoft, Microsoft Excel〉 300
D4 〈Steven Spielberg, Catch Me If You Can〉 37
D5 〈Boeing C-40 Clipper, Boeing〉 118
D6 〈Arnold Palmer, Sportsman of the year〉 251
D7 〈Manchester City FC, Mansour bin Zayed Al Nahyan〉 40
D8 〈Bjarne Stroustrup, C++〉 964

Table 3.1: Queries and Ground Truth Table Size

Sample Answers: Table 3.2 only lists the top-3 results found by GQBE for 3 queries (F1,

F18, F19).

3.9.2 Accuracy Based on Ground Truth

We measured the accuracy of GQBE and NESS based on the ground truth. The

accuracy of a system is its average accuracy on a set of queries. The accuracy on a single

query is captured by three widely-used measures [32], as follows.

• Precision-at-k (P@k): the percentage of the top-k results that belong to the ground truth.

• Mean Average Precision (MAP): The average precision of the top-k results is AvgP=∑k
i=1 P@i × reli

size of ground truth , where reli equals 1 if the result at rank i is in the ground truth and 0

otherwise. MAP is the mean of AvgP for a set of queries.

84

Query Tuple Top-3 Answer Tuples
〈D. Knuth, Stanford, V. Neumann Medal〉

〈Donald Knuth, Stanford, Turing Award〉 〈J. McCarthy, Stanford, Turing Award〉
〈N. Wirth, Stanford, Turing Award〉

〈David Filo, Yahoo!〉
〈Jerry Yang, Yahoo!〉 〈Bill Gates, Microsoft〉

〈Steve Wozniak, Apple Inc.〉
〈Java〉

〈C〉 〈C++〉
〈C Sharp〉

Table 3.2: Case Study: Top-3 Results for Selected Queries

• Normalized Discounted Cumulative Gain (nDCG): nDCGk= DCGk

IDCGk
, where DCGk is the

cumulative gain of the top-k results, and IDCGk is the cumulative gain for an ideal ranking

of the top-k results. DCGk=rel1+
∑k

i=2
reli

log2(i)
, i.e., it penalizes a system if a ground truth

result is ranked low.

Figure 3.13 shows these measures for different values of k over all Freebase queries

for GQBE and NESS. GQBE has high accuracy. For instance, its P@25 is over 0.8 as

evident in Figure 3.13(a) and nDCG at top-25 is over 0.9 as shown in Figure 3.13(c). For

13 of the 20 queries, either the P@25 was 1, or when the ground-truth size was less than 25,

the AvgP was 1 (indicating that all answers in the ground-truth were ranked higher than any

other answer). The absolute value of MAP is not high, merely because Figure 3.13(b) only

shows the MAP for at most top-25 results, while the ground truth size (i.e., the denominator

in calculating MAP) for many queries is much larger. Moreover, GQBE outperforms NESS

substantially, as its accuracy in all three measures is almost always twice as better. This is

because GQBE finds approximate matches to the query graph while giving priority to query

entities and important edges in the MQG. NESS on the other hand gives equal importance

to all nodes and edges except the pivot. Furthermore, the way NESS handles edge labels

does not explicitly require answer entities to be connected by the same paths between query

entities.

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

P
re

c
is

io
n

-a
t-

K

Top-K

GQBE NESS

(a) P@k

 0

 0.1

 0.2

 0.3

 0.35

 10 15 20 25

M
A

P

Top-K

GQBE NESS

(b) MAP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

n
D

C
G

Top-K

GQBE NESS

(c) nDCG

Figure 3.13: Accuracy of GQBE and NESS over all Freebase Queries

Figure 3.14 compares the measures for GQBE, NESS and EQ, on different values

of k. Only 11 of the 20 Freebase queries (F3, F5, F6, F7, F10, F11, F14, F15, F16, F17 and

F18) were considered in this experiment, since the authors of EQ were unable to produce

answer tuples to other query graphs we provided. EQ performs weakly on these 11 queries.

Furthermore, on 7 of the 11 queries, EQ was unable to return more than 5 answer tuples.

This is because EQ finds answer graphs that are exact matches to the query graph structure,

and as query graphs get bigger, finding such edge-preserving isomorphic answer graphs

becomes less likely. On the contrary, GQBE finds approximate matches too and thus has a

better recall and accuracy than EQ. This also highlights the fact that the initial query graph

provided to EQ plays a crucial role in its accuracy. Both NESS and EQ rely on finding the

best matches for individual entities in the query tuple, and then integrating them to form

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

P
re

c
is

io
n

-a
t-

K

Top-K

GQBE NESS EQ

(a) P@k

 0

 0.1

 0.2

 0.3

 0.35

 10 15 20 25

M
A

P

Top-K

GQBE NESS EQ

(b) MAP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

n
D

C
G

Top-K

GQBE NESS EQ

(c) nDCG

Figure 3.14: Accuracy of GQBE, NESS and EQ over 11 Freebase Queries

Query P@k nDCG AvgP Query P@k nDCG AvgP
D1 1.00 1.00 0.20 D2 1.00 1.00 0.04
D3 1.00 1.00 0.03 D4 0.80 0.94 0.19
D5 0.90 1.00 0.08 D6 1.00 1.00 0.04
D7 0.90 0.98 0.22 D8 1.00 1.00 0.01

Table 3.3: Accuracy of GQBE on DBpedia Queries, k=10

the answer tuples. As mentioned in Section 3.3, best matches for individual entities may

not form the best match for the query tuple as a whole. This is attested by the results we

present here.

Table 3.3 further shows the accuracy of GQBE on individual DBpedia queries at

k=10. It exhibits high accuracy on all queries, including perfect precision in several cases.

87

Query PCC Query PCC Query PCC Query PCC
F1 0.79 F2 0.78 F3 0.60 F4 0.80
F5 0.34 F6 0.27 F7 0.06 F8 0.26
F9 0.33 F10 0.77 F11 0.58 F12 undefined
F13 undefined F14 0.62 F15 0.43 F16 0.29
F17 0.64 F18 0.30 F19 0.40 F20 0.65

Table 3.4: Pearson Correlation Coefficient (PCC) between GQBE and Amazon MTurk Workers,
k=30

3.9.3 Accuracy Based on User Studies

We conducted an extensive user study through Amazon Mechanical Turk (MTurk,

https://www.mturk.com/mturk/) to evaluate GQBE’s accuracy on Freebase queries, measured by

Pearson Correlation Coefficient (PCC). For each of the 20 queries, we obtained the top-

30 answers from GQBE and generated 50 random pairs of these answers. We presented

each pair to 20 MTurk workers and asked for their preference between the two answers

in the pair. Hence, in total, 20, 000 opinions were obtained. We then constructed two

value lists per query, X and Y , which represent GQBE and MTurk workers’ opinions,

respectively. Each list has 50 values, for the 50 pairs. For each pair, the value in X is

the difference between the two answers’ ranks given by GQBE, and the value in Y is the

difference between the numbers of workers favoring the two answers. The PCC value for

a query is (E(XY) − E(X)E(Y))/(
√

E(X2)− (E(X))2
√

E(Y 2)− (E(Y))2). The value

indicates the degree of correlation between the pairwise ranking orders produced by GQBE

and the pairwise preferences given by MTurk workers. The value range is from −1 to 1.

A PCC value in the ranges of [0.5,1.0], [0.3,0.5) and [0.1,0.3) indicates a strong, medium

and small positive correlation, respectively [33]. PCC is undefined, by definition, when X

and/or Y contain all equal values.

Table 3.4 shows the PCC values for F1-F20. Out of the 20 queries, GQBE attained

strong, medium and small positive correlation with MTurk workers on 9, 5 and 3 queries,

respectively. Only query F7 shows no correlation. Note that PCC is undefined for F12

88

Query Tuple1 Tuple2 Combined (1,2) Tuple3 Combined (1,2,3)
P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP P@k nDCG AvgP

F1 0.36 0.76 0.32 0.36 1.00 0.50 0.12 0.38 0.02 0.36 0.73 0.22 0.12 0.49 0.02
F2 0.76 1.00 0.79 0.00 0.00 0.00 0.80 1.00 0.80 0.12 0.70 0.05 0.80 1.00 0.91
F3 0.76 0.85 1.00 0.76 0.85 1.00 0.72 0.82 1.00 0.76 0.85 1.00 0.68 0.79 1.00
F4 0.32 0.73 0.09 0.40 0.65 0.08 1.00 1.00 0.45 1.00 1.00 0.04 1.00 1.00 0.48
F5 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04
F6 0.24 0.89 0.16 0.28 0.89 0.18 0.40 0.87 0.16 0.36 0.98 0.22 0.12 0.94 0.07
F7 1.00 1.00 0.28 1.00 1.00 0.28 1.00 1.00 0.28 1.00 1.00 0.28 1.00 1.00 0.29
F8 0.92 0.79 0.20 1.00 1.00 0.27 0.96 0.98 0.24 0.48 0.86 0.08 1.00 1.00 0.27
F9 0.68 0.72 0.23 0.56 0.66 0.17 0.80 0.86 0.35 1.00 1.00 0.62 1.00 1.00 0.66
F10 1.00 1.00 0.12 1.00 1.00 0.12 1.00 1.00 0.12 1.00 1.00 0.12 1.00 1.00 0.13
F11 0.96 0.97 1.00 0.32 0.50 0.29 0.72 0.82 0.78 0.00 0.00 0.00 0.36 0.55 0.41
F12 1.00 1.00 0.08 1.00 1.00 0.08 0.96 0.88 0.07 0.36 0.39 0.01 0.96 0.88 0.07
F13 1.00 1.00 0.04 1.00 1.00 0.04 1.00 1.00 0.04 0.00 0.00 0.00 1.00 1.00 0.04
F14 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.97 1.00 1.00 1.00 1.00 0.92 0.95 1.00
F15 1.00 1.00 0.08 0.56 0.48 0.02 1.00 1.00 0.08 1.00 1.00 0.08 1.00 1.00 0.08
F16 1.00 1.00 0.15 1.00 1.00 0.15 1.00 1.00 0.15 1.00 1.00 0.15 1.00 1.00 0.15
F17 0.32 1.00 0.33 0.64 0.83 0.25 0.32 1.00 0.32 0.56 0.84 0.23 0.68 1.00 0.46
F18 1.00 1.00 0.01 1.00 1.00 0.01 1.00 1.00 0.01 1.00 1.00 0.01 1.00 1.00 0.01
F19 1.00 1.00 0.02 1.00 1.00 0.02 1.00 1.00 0.02 1.00 1.00 0.02 1.00 1.00 0.02
F20 0.52 0.68 0.86 0.52 0.68 0.86 0.52 0.68 0.92 0.52 0.68 0.86 0.52 0.68 1.00

Table 3.5: Accuracy of GQBE on all 20 Freebase Multi-tuple Queries, k=25

and F13, because all the top-30 answer tuples have the same score and thus the same rank,

resulting in all zero values in X , i.e., GQBE’s list.

3.9.4 Accuracy on Multi-tuple Queries

We investigated the effectiveness of the multi-tuple querying approach (Section 3.5).

We experimented with up to three example tuples for each query: Tuple1 refers to the query

tuple in Table 3.1, while Tuple2 and Tuple3 are two tuples from its ground truth. Table 3.5

shows the accuracy of top-25 GQBE answers for the three tuples individually, as well as for

the first two and three tuples together by merged MQGs, which are denoted Combined(1,2)

and Combined(1,2,3), respectively. The results show that, in most cases, Combined(1,2)

had better accuracy than individual tuples and Combined(1,2,3) further improved the accu-

racy. In the aforementioned single-tuple query experiment (A), 13 of the 20 queries attained

perfect precision. The ground truth size of queries F1, F2, F3, F11, F14 and F20 is less than

or equal to 25. Therefore, the P@k and nDCG values of these queries is lesser than 1, in

spite of a complete recall. A value of 1 of the AvgP values of the corresponding entries

89

indicates that all the tuples from the ground truth were ranked higher than any other answer

tuple.

1

10

100

1000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

Q
u

e
ry

 P
ro

ce
ss

in
g

 T
im

e
 (

se
cs

.)

Query

GQBE NESS Baseline

12 13 18 10 8 10 8 12 8 8 11 9 7 11 8 9 9710 7# edges

in MQG

Figure 3.15: Query Processing Time

3.9.5 Efficiency Results

We compared the efficiency of GQBE, NESS and Baseline on Freebase queries. The

total run time for a query tuple is spent on two components—query graph discovery and

query processing. We did not include EQ in this comparison since the system configuration

on which the authors of [28] executed the queries was different from ours. Figure 3.15

compares the three methods’ query processing time for each Freebase query, in logarithmic

scale. The edge cardinality of the MQG for each query is shown below the corresponding

query id. The query cost does not appear to increase by edge cardinality, regardless of the

query method. For GQBE and Baseline, this is because query graphs are evaluated by joins

and join selectivity plays a more significant role in evaluation cost than number of edges.

NESS finds answers by intersecting postings lists on feature vectors. Hence, in evaluation

cost, intersection size matters more than edge cardinality. GQBE outperformed NESS on

17 of the 20 queries and was more than 3 times faster in 10 of them. It finished within

90

0

40

80

120

160

200

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

#
 o

f
La

tt
ic

e
 N

o
d

e
s

E
v

a
lu

a
te

d

Query

GQBE Baseline
840

12 13 18 10 8 10 8 12 8 8 11 9 7 11 8 9 7 9710# edges

in MQG

Figure 3.16: Lattice Nodes Evaluated

10 seconds on 17 queries. However, it performed very poorly on F4 and F19, which have

10 and 7 edges respectively. This indicates that the edges in the two MQGs lead to poor

join selectivity. Baseline clearly suffered, due to its inferior pruning power compared to

the best-first exploration employed by GQBE. This is evident in Figure 3.16 which shows

the numbers of lattice nodes evaluated for each query. GQBE evaluated considerably less

nodes in most cases and at least 2 times less on 11 of the 20 queries.

MQG discovery precedes lattice evaluation and is shared by all three methods. Col-

umn MQG1 in Table 3.6 lists the time spent on discovering MQG for each Freebase query.

The time varies across individual queries, depending on the sizes of query tuples’ neigh-

borhood graphs. Compared to the values shown in Figure 3.15, the time taken to discover

an MQG in average is comparable to the time spent in evaluating it.

Figure 3.17 shows the distribution of GQBE’s query processing time, in logarithmic

scale, on the merged MQGs of 2-tuple queries in Figure 3.5, denoted by Combined(1,2).

It also shows the distribution of the total time for evaluating the two tuples’ MQGs indi-

vidually, denoted Tuple1+Tuple2. Combined(1,2) processes 10 of the 20 queries in less

than a second while the fastest query for Tuple1+Tuple2 takes a second. This suggests that

91

Query MQG1 MQG2 Merge Query MQG1 MQG2 Merge
F1 73.141 73.676 0.034 F2 0.049 0.029 0.006
F3 12.566 4.414 0.024 F4 5.731 7.083 0.024
F5 9.982 2.522 0.079 F6 6.082 4.654 0.039
F7 0.152 0.107 0.007 F8 10.272 2.689 0.032
F9 62.285 2.384 0.041 F10 2.910 5.933 0.030
F11 59.541 65.863 0.032 F12 1.977 0.021 0.006
F13 9.481 5.624 0.034 F14 0.038 0.015 0.004
F15 0.154 5.143 0.021 F16 54.870 6.928 0.057
F17 60.582 69.961 0.041 F18 58.807 75.128 0.053
F19 0.224 0.076 0.003 F20 0.025 0.017 0.002

Table 3.6: Time for Discovering and Merging MQGs (secs.)

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

Q
u

e
ry

 P
ro

ce
ss

in
g

 T
im

e
 (

se
cs

.)

Combined (1,2) Tuple1+Tuple2

Figure 3.17: Query Processing Time of 2-tuple Queries

the merged MQGs gave higher weights to more selective edges, resulting in faster lattice

evaluation. Meanwhile, these selective edges are also more important edges common to

the two tuples, leading to improved answer accuracy shown in Figure 3.5. Table 3.6 further

shows the time taken to discover MQG1 and MQG2, along with the time for merging them.

The latter is negligible compared to the former.

92

CHAPTER 4

SYSTEMS DESIGN AND IMPLEMENTATION

We describe the design and implementation of both Orion and GQBE in this chapter.

We discuss about the programming languages used for the implementation of both the

front-end and back-end of the two systems, along with the design decisions made to help

scale the systems to work with the large real-world Freebase data graph.

4.1 Orion Design and Implementation

As described in Chapter 2, Orion has an interactive graphical user interface. Orion’s

GUI consists of a query canvas that the user constructs the query graph in, as shown in

Figure 2.2. Orion offers several features to help schema-agnostic users query large hetero-

geneous graphs, such as: 1) hierarchically displaying node labels as domains, types and

entities (as shown in Figure 2.2 (b)), 2) efficient keyword search to help users search for

a node label, and 3) editing a node’s assigned value. As mentioned in Section 2.2.2, new

candidate edges based on active or passive events, are ranked and presented to the user on

the interactive query canvas, as shown in Figure 2.2 (a) and (c) respectively.

Figure 4.1 shows the overall architecture of Orion’s implementation. The query can-

vas is created using Scalable Vector Graphics (SVG), which is an XML-based vector image

format ideal for interactive graphics. The rest of the GUI is implemented using Javascript,

which interacts with the back-end server using RESTful [34] APIs. The Javascript also cap-

tures information regarding the partially constructed query graph, along with the rejected

edges in the background. GUI requests corresponding to selecting/editing node values are

neither active nor passive events, but are features to improve the usability of Orion. These

93

Figure 4.1: Orion System Components

requests are directed to the Node Label Search Module of the back-end. GUI requests cor-

responding to active or passive events send the partially constructed graph and the rejected

graph as input parameters to the Ranking Module of the back-end. The back-end is imple-

mented in core Java. Both the node label search, and the ranking modules use pre-computed

indexes to efficiently cater to multiple client requests occurring simultaneously.

Indexes for Node Label Search: File based indexes are utilized to help users effi-

ciently select labels for a node. The pop-up box in Figure 2.2 (b) contains three drop-down

lists, one each for domain, type and entity. If a domain value is selected, users can view all

types and entities of the selected domain in the type drop-down list and entity drop-down

list respectively. If no domain value is selected, all types and entities can be viewed in their

corresponding drop-down lists. Similarly, if a type is selected under the type drop-down

list, all entities of the selected type can be viewed under the entity drop-down list. One

94

can also perform a keyword search to find types and entities using the Type Search and

Entity Search boxes respectively. The keyword search is also based on the aforementioned

filter-based mechanism, i.e., if a domain value is selected, then type keyword-search and

entity keyword-search are contained to those specific to the selected domain only, and if a

type value is selected, the entity keyword-search is contained to the entities of the selected

type only.

In order to help users navigate through the node labels hierarchically using the drop-

down lists, we create several index files: 1) a domain-specific comma-separated file which

stores a domain ID and type string in each row, such that the type belongs to the corre-

sponding domain, 2) a domain-specific comma-separated file that stores a domain ID and

entity string, such that the entity belongs to the corresponding domain, 3) a type-specific

comma-separated file that stores the type ID followed by an entity string, such that the en-

tity belongs to the corresponding type. All these files are first sorted by the first ID column,

followed by the second string column. We perform binary search on these files over the

first column, to list all sorted strings stored in the second column.

We create several inverted index files for efficient keyword search: 1) a type-specific

comma-separated file that stores the type string followed by the corresponding type ID,

used to search a type based on the keyword specified in the Type Search box, 2) an entity-

specific comma-separated file that stores the entity string followed by the corresponding

entity ID, used to search an entity based on the keyword specified in the Entity Search box.

We maintain five copies of the entity-specific inverted index file. The first file is sorted on

the first word of the entity string, the second file sorted on the second word, third file sorted

on the third word, fourth file sorted on the fourth word, and the fifth file sorted on the fifth

word of the entity string. Each of these files contains only those rows that have sufficient

number of words in the corresponding entity string. White spaces are considered to be the

delimiter between words. These auxiliary files are created to find an entity label even if the

95

keyword search string is not at the beginning of the entity label. The keyword search is first

performed on the first file, followed by the second, third, fourth and the fifth files, using

binary search on the corresponding sorted word column of the entity string. This order of

search ensures that the row that matches the keyword search string at the beginning of the

label is ranked higher than the match that appears at a later part of the string. The IDs

stored in the second column of each of the five files is also used to ensure the same entity

string is not matched multiple times when searching across the five files.

We create file-based indexes instead of in-memory indexes for the node label search

feature to handle the scale of the underlying Freebase data graph. Storing the string values

of around 30 million entities, 5253 types, hundreds of domains, and their corresponding

integer IDs easily amounts to several tens of giga-bytes. With less than 30 GB of memory

at our disposal, we use these file-based indexes, which work efficiently due to the binary

search that is performed to search these files.

Indexes for Ranking Candidate Edges: We create an in-memory index to effi-

ciently find all potential candidate edges given a partially constructed query graph. We

pre-process the data graph to find the set of neighboring edges defined in Def. 3, for every

vertex type in Freebase data graph. We use a in-memory hash-map to store all neighboring

edges corresponding to each vertex type. The vertex types form the keys of the hash-map,

and the value, which represents a set of edges, is stored in a hash-set. This helps us to

efficiently find all candidate edges for a given vertex type. This is also useful in passive

mode, where the user draws an edge between two specific nodes. If the two nodes are

vertex types, an intersection between their corresponding hash-sets of neighboring edges

results in the potential candidate edges to be ranked.

96

Figure 4.2: GQBE System Components

4.2 GQBE Design and Implementation

As described in Chapter 3, GQBE users can query large heterogeneous graphs using

example tuples. The input interface of GQBE is shown in Figure 3.2, where a user enters the

example query tuple in the provided search box. Users can also provide multiple example

tuples as input to the system, using the ‘+’ button before the search box. The results are

displayed as a table in the left, and the maximum query graph automatically discovered by

GQBE is displayed on the right, as shown in Figure 3.4. Answer graph corresponding to an

answer tuple can also be viewed using the Render Graphs button.

Figure 4.2 shows the overall architecture of GQBE’s implementation. The GUI is

implemented using Javascript and PHP, while the MQG and answer graphs are rendered

97

using SVG. The keyword auto-complete functionality in GQBE’s search box is powered by

Freebase API, and the back-end server is implemented in core Java. Given an input query

(one or more example query tuples), the PHP code validates the input, and first checks the

Result Cache for the result. If the result is found in the cache, it fetches it directly from

there and displays it. If not, the query tuple is passed as a parameter to the Query Engine

in the back-end server, which processes the query request.

Query Engine: The query engine has two main components: the Query Graph

Discovery and the Query Processing modules. We store the cleaned Freebase data graph

considered in GQBE in an in-memory two-level hash-map that requires 18 GB of memory.

The query graph discovery module finds the MQG as described in Section 3.4, and the

approximately matching answer graphs are found using the techniques described in Sec-

tion 3.7. The query processing module evaluates a query lattice to find the top-k answer

tuples. In order to evaluate the lattice efficiently, we maintain two in-memory hash-maps

for each edge type in Freebase. For all instances e = (subj, obj) of an edge type, of its

two corresponding hash-maps, one stores subj and obj as the keys and values respectively,

while the other hash-map stores obj and subj as the keys and values respectively. These are

used to perform quick joins while evaluating the query lattice, as described in Section 3.7.1.

Every time a lattice node is evaluated, the result corresponding to that lattice node is ma-

terialized into a file for future use. We create temporary binary files to materialize these

intermediate results for efficient disk-based reading and writing.

The answer tuples and their corresponding answer graphs obtained after the lattice

evaluation are all stored in a temporary file. These files are then read by the PHP code of

the GUI, which creates a JSON object that is returned back to the GUI’s Javascript code for

rendering the results. The result files are then copied to the Result Cache, which is used to

return results quickly, if the same query is made by another user.

98

CHAPTER 5

RELATED WORK

5.1 Query Specification

Substantial progress has been made on query mechanisms that help users construct

query graphs or even do not require explicit query graphs. Such mechanisms include key-

word search (e.g., [35]), keyword-based query formulation [36], natural language ques-

tions [37], interactive and form-based query formulation [38, 39], and visual interface for

query graph construction [16, 17]. Little has been done on comparison across these graph

query mechanisms. While a usability comparison of these mechanisms and the querying

paradigms proposed in Orion and GQBE is beyond the scope of this dissertation, we note

that they all have pros and cons and thus complement each other.

The paradigm of query-by-example (QBE) has a long history in relational databases

[10]. Its simplicity and improved user productivity make QBE an influential database

query language. By proposing to query knowledge graphs by example tuples in GQBE,

our premise is that the QBE paradigm will enjoy similar advantages on graph data. The

technical challenges and approaches are vastly different, due to the fundamentally different

data models.

Keyword-based methods are attractive mainly due to the success they have enjoyed

over textual data. But using keyword-based methods over graph data is less intuitive. For

instance, a Silicon Valley business analyst interested in finding entrepreneurs who founded

technology companies head-quartered in California has to articulate query keywords, “tech-

nology companies head-quartered in California and their founders”. Not only may the an-

alyst find it challenging to clearly articulate the query, but also a query system might not

99

return accurate answers, since it is non-trivial to precisely separate these keywords and

correctly match them with entities, entity types and relationships. This has been verified

through our own experience on a keyword-based system adapted from SPARK [40]. In

contrast, a GQBE user only needs to know the names of some entities in example tuples,

without having to specify how exactly the entities are related. On the other hand, keyword-

based querying is more adequate when a user does not know a few sample answers with

respect to her query.

In the literature on graph query, the input to a query system in most cases is a struc-

tured query, which is often graphically presented as a query graph or pattern. The query

graphs and patterns are formed by using structured query languages. For instance, Path-

Sim [41] finds the top-k similar entities that are connected to a query entity, based on a

user-defined meta-path semantics in a heterogeneous network. In [42], given a query graph

as input, the system finds structurally isomorphic answer graphs with semantically similar

entity nodes. In contrast, GQBE only requires a user to provide an entity tuple, without

knowing the underlying schema.

Lim et al. [43] use example tuples to find similar tuples in database tables that are

coupled with ontologies. They do not deal with graph data and example entity tuples. [44]

provides a theoretical aspect of the example-driven query specification problem. Users are

provided with answer tuples, and feedback on the relevance of each answer tuple is used

to refine the query. This work only deals with a special class of quantified boolean queries

called qhorn.

The goal of set expansion is to grow a set of objects starting from seed objects. Exam-

ple systems include [45, 46, 47, 48], and the now defunct Google Sets and Squared services

(http://en.wikipedia.org/wiki/List_of_Google_products). Chang et

al. [49] identify top-k correlated keyword terms from an information network given a set of

terms, where each term can be an entity. These systems, except [49], do not operate on data

100

http://en.wikipedia.org/wiki/List_of_Google_products

graphs. Instead, they find existing answers within structures such as HTML tables and lists.

Further, except Google Squared and [48], they all take a set of individual entities as input.

Wang and Cohen developed the SEAL system that uses random walk to rank the candidate

entities for set expansion [45, 46, 47]. He et. al. proposed SEISA, a system that ranks the

candidate set as a whole based on relevance and coherence [50]. Ghahramani et al. used

the Bayesian inference for set expansion [51]. Later, Jindal et. al. proposed an inference

method that also considers negative examples [52]. The problem of finding the top-k cor-

related terms given a set of homogeneous entities in an information network was studied in

[49]. GQBE is different from these set expansion works, since we allow the users to enter

multiple heterogeneous entities in a seed tuple. We then capture the relationships between

the entities in a seed tuple, and identify a ranked list of other tuples with similar entities and

relationships. GQBE is more general in that each query tuple contains multiple entities. It

is unrealistic to find web tables that can cover all possible queries, especially for queries

involving multiple entities. Moreover, knowledge graphs and web tables complement each

other in content. One does not subsume the other.

Several works [53, 54] identify the best subgraphs/paths in a data graph to describe

how several input nodes are related. The query graph discovery component of GQBE is

different in important ways– (1) The graphs in [53, 54] have many different types of entities

and relationships, but the paths discovered by their techniques only connect the input nodes.

REX [54] has the further limitation of allowing only two query entities. Differently, the

maximum query graph in GQBE allows multiple query entities and also includes edges

incident on individual query entities. (2) GQBE uses the discovered query graph to find

answer graphs and answer tuples, which is not within the focus of the aforementioned

works.

The concept of exemplar queries proposed in [28] is similar to the querying paradigm

proposed in GQBE. However, these two studies are different in fundamental ways. First,

101

[28] does not provide a definitive way of discovering query graph given an exemplar query

tuple, while we define a heuristic-based approach to identify a maximum query graph that

tries to capture the user intent. Our detailed experimental analyses attest that the query

graph has a direct impact on the quality of the results found. Second, the query processing

algorithm in [28] mandates all answer graphs to be edge preserving isomorphic matches to

the query graph for the example tuple. This precludes their system from finding approxi-

mate answers to the query graph, which is evident in our experiments where [28] suffers

when compared to GQBE. We also observe that in several cases where query graphs are

large, there might not be any edge preserving isomorphic matches. Lastly, GQBE allows

multiple example tuples which helps users to better communicate their intent, while [28]

provides no such provision.

Recently, Yu et. al. proposed a query-driven graph querying method [42]. However,

they assume the existence of a fixed schema, which is not always available for entity-

relationship graphs. The absence of schema makes the problem addressed by GQBE very

challenging.

5.2 Visual Query Formulation

The unprecedented proliferation of linked data and large, heterogeneous graphs has

sparked extensive interest in building knowledge-intensive applications. The usability chal-

lenges in building such applications is widely recognized—declarative query languages

such as SPARQL present a steep learning curve, as forming queries requires expertise in

these languages and knowledge of data schema. To tackle the challenges, a number of al-

ternate querying paradigms for graph data have been proposed recently, including keyword

search [55, 56], query-by-example [6, 7, 43, 57], natural language query [58], and faceted

browsing [59, 60, 61].

102

Visual query builders [16, 17, 18, 19, 20] provide an intuitive and simple approach

to query formulation. Most of these systems deal with querying a graph database and not a

single large graph, except [20, 16]. Firstly, it is unclear how to directly apply the techniques

proposed by systems that deal with graph databases to a single large graph. This is because,

their solutions work best on a data model with many small graphs, rather than a single large

graph. Secondly, these systems do not assist the user in query formulation by automatically

suggesting the new top-k relevant edges.

QUBLE [20] and GRAPHITE [16] provide visual query interfaces for querying a sin-

gle large graph. But, they focus on efficient query processing, and only facilitate query

graph formulation by giving options to quickly draw various components of the query

graph. Instead of recommending query components that a user might be interested in,

they alphabetically list all possible options for node labels (which may be extended to edge

labels similarly). They also deal with smaller data graphs. For instance, the graph con-

sidered by QUBLE contains only around 10 thousand nodes with 300 distinct node labels,

and they do not consider edge labels. Orion, on the other hand, considers large graphs such

as Freebase, which has over 30 million distinct node labels and 5 thousand distinct edge

types. With such large graphs, it is impractical to expect users to browse through all options

alphabetically to select the most appropriate edge to add to a query graph. Ranking these

edges by their relevance to the user’s query intent is a necessity, a feature offered in Orion.

5.3 Query Graph Processing

There are many studies on approximate/inexact subgraph matching in large graphs,

e.g., G-Ray [62], TALE [63] and NESS [27]. GQBE’s query processing component is dif-

ferent from them on several aspects. (1) GQBE only requires to match edge labels and

matching node identifiers is not mandatory. This is equivalent to matching a query graph

103

with all unlabeled nodes and thereby significantly increases the problem complexity. Only

a few previous methods (e.g., NESS [27]) allow unlabeled query nodes. (2) In GQBE, the

top-k query algorithm centers around query entities—the weighting function gives more

importance to edges closer to query entities and the minimal query trees mandate the pres-

ence of entities corresponding to query entities. On the contrary, previous methods give

equal importance to all nodes in a query graph, since the notion of query entity does not

exist there. Our empirical results show that this difference makes NESS produce less ac-

curate answers than GQBE. (3) Although the query relaxation DAG proposed in [64] is

similar to GQBE’s query lattice, the scoring mechanism of their relaxed queries is different

and depends on XML-based relaxations.

The subgraph matching problem identifies all the occurrences of a query graph in

the target graph. In bio-informatics, exact and approximate subgraph matching have been

extensively studied, e.g., PathBlast [65], SAGA [66], NetAlign [67], IsoRank [68]. There

have been significant studies on inexact subgraph matching in large graphs. Tong et al.

[62] proposed the best-effort pattern matching, which aims to maintain the shape of the

query. Tian et al. [63] proposed an approximate subgraph matching tool, called TALE, with

efficient indexing. There are other works on inexact subgraph matching. An incomplete list

(see [69] for surveys) includes homomorphism based subgraph matching [70], edge-edit-

distance based subgraph indexing [71], subgraph matching in billion node graphs [72],

regular expression based graph pattern matching [73], unbalanced ontology matching [74],

sample-driven schema matching [75], bisimulation-based graph pattern matching [76], and

neighborhood similarity based graph querying [27]. The approximate query processing

module of GQBE is different from all these works, because we require to match only the

query edge labels, but query node labels need not be matched. This is equivalent to match-

ing of a query graph with all unlabeled nodes, and thereby increases the complexity of the

problem significantly.

104

CHAPTER 6

FUTURE DIRECTIONS AND CONCLUSIONS

6.1 Future Directions

In this dissertation we presented a framework to improve the usability of query

systems for large ultra-heterogeneous graphs. We presented two novel methods to help

schema-agnostic users specify query intents easily. We also presented efficient ways to

find approximately matching answer graphs to a given query graph. Orion and GQBE are

capable of helping users query Freebase, a large real-world knowledge graph. They are

designed to help users query other such knowledge graphs too, so long as the data graph

is preprocessed to follow the specified data model. Nevertheless, we believe several future

directions of research can be pursued to improve the effectiveness of this framework.

Figure 6.1 shows an extension of the dissertation framework shown in Figure 1.3.

Finding a user’s query intent with as little information as possible is a difficult problem.

One possible way to alleviate this problem is to seek feedback from the user regarding the

relevance of the answers presented, using the Feedback Module shown in Figure 6.1. For

Orion, user feedback can be obtained for the answer graphs of the query graph constructed.

Since the user is unaware of the underlying schema, the user may not be completely certain

of the exact edges and nodes to add in the query graph. The user’s feedback regarding the

relevance of answer graphs may be useful in finding and ranking candidate edges better.

For GQBE, a user can mark the relevance of the top-k answer tuples obtained, which can

then be used to refine the MQG that was automatically discovered. The user feedback may

be useful in better capturing the user’s query intent.

105

Figure 6.1: Framework for Querying Heterogeneous Graphs, with Future Directions

The current version of Orion is not integrated with the query processing module of

Figure 6.1. This is an important problem to address to make Orion available for the public.

Another interesting problem to address with regard to efficient query processing in Orion,

is to find exactly matching answer graphs to the partial query graph at every intermediate

step of the query construction process. This would not only help schema-agnostic users

better understand the query graph they are constructing, but can also be used by Orion’s

edge suggestion algorithm to better rank the candidate edges.

GQBE has two important components, and potential bottlenecks. The first is to cap-

ture the users’ query intent correctly in the MQG. This is especially difficult since the only

context information GQBE receives is the entities of an example tuple. The other compo-

nent is to efficiently process the query graph to find the top-k answer tuples. One of the

avenues to better capture an user’s query intent is the aforementioned method of obtaining

user feedback regarding the relevance of answer tuples. The other avenue is to weight edges

based on query logs that capture users’ interests, rather than only the data graph statistics as

used in GQBE. GQBE can be further improved by having a more efficient query processing

module. GQBE’s current query processing module does not use a distributed environment

to evaluate the query lattice. The edge labels form an integral part of finding good matches

106

in GQBE, which has to be taken into consideration while designing a distributed algorithm

for GQBE’s approximate query processing problem. We believe that a distributed algo-

rithm to find approximate matches, based on edge-preserving structural isomorphism, is a

challenging and promising direction to pursue to improve the system’s response time.

6.2 Conclusions

The principal contribution of this dissertation is improving the usability of query

systems for large ultra-heterogeneous graphs. Querying such graphs is a difficult task, since

existing graph query systems and paradigms are either difficult to use or cannot be used to

formulate exact queries. In this dissertation, as an initial step towards achieving our goal,

we propose two novel, first-of-its-kind systems: 1) Orion, an interactive visual interface

that helps users construct query graphs by automatically suggesting relevant edges to add

in active mode, or by ranking labels for explicitly added edge types in passive mode, and 2)

GQBE, that supports a new querying paradigm that queries such graphs by example entity

tuples, without the user having to form query graphs.

The importance of ultra-heterogeneous graphs cannot be stressed enough in the fu-

ture, since they are ubiquitous, content-rich and can be an invaluable source of information.

We believe that the techniques presented in this dissertation is a successful initial step to-

wards helping schema-agnostic users easily query large ultra-heterogeneous graphs. We

also hope that this dissertation would inspire new threads of research in the area of query

systems for large graphs, leading to more sophisticated systems that can better capture

users’ query intents.

107

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DBpedia: A

Nucleus for a Web of Open Data,” in Proceedings of the 6th International The Seman-

tic Web and 2nd Asian Conference on Asian Semantic Web Conference (ISWC/ASWC),

2007, pp. 722–735.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of Semantic Knowl-

edge,” in Proceedings of the 16th International Conference on World Wide Web

(WWW), 2007, pp. 697–706.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A Collabo-

ratively Created Graph Database for Structuring Human Knowledge,” in Proceedings

of the 2008 ACM SIGMOD International Conference on Management of Data (SIG-

MOD), 2008, pp. 1247–1250.

[4] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A Probabilistic Taxonomy for Text

Understanding,” in Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data (SIGMOD), 2012, pp. 481–492.

[5] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C. Yu,

“Making Database Systems Usable,” in Proceedings of the 2007 ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD), 2007, pp. 13–24.

[6] N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri, “GQBE: Querying

Knowledge Graphs by Example Entity Tuples,” in IEEE 30th International Confer-

ence on Data Engineering (ICDE), 2014, pp. 1250–1253.

108

[7] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying Knowledge Graphs by

Example Entity Tuples,” In IEEE Transactions on Knowledge and Data Engineering

(TKDE), vol. 27, no. 10, pp. 2797–2811, 2015.

[8] P. A. Bernstein et al., “Future Directions in DBMS Research - The Laguna Beach

Participants,” SIGMOD Record, pp. 17–26, 1989.

[9] D. Abadi et al., “The Beckman Report on Database Research,” SIGMOD Record, pp.

61–70, 2014.

[10] M. M. Zloof, “Query-by-example: The Invocation and Definition of Tables and

Forms,” in Proceedings of the 1st International Conference on Very Large Data Bases

(PVLDB), 1975, pp. 1–24.

[11] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, “A Graphical Query Language Support-

ing Recursion,” Proceedings of the 1987 ACM SIGMOD International Conference on

Management of Data (SIGMOD), vol. 16, no. 3, pp. 323–330, 1987.

[12] M. Petropoulos, A. Deutsch, and Y. Papakonstantinou, “Interactive Query Formula-

tion over Web Service-accessed Sources,” in Proceedings of the 2006 ACM SIGMOD

International Conference on Management of Data (SIGMOD), 2006, pp. 253–264.

[13] D. Braga, A. Campi, and S. Ceri, “XQBE (XQuery By Example): A Visual Interface

to the Standard XML Query Language,” Proceedings of the ACM Transactions on

Database Systems (TODS), vol. 30, no. 2, pp. 398–443, 2005.

[14] M. Petropoulos, Y. Papakonstantinou, and V. Vassalos, “Graphical Query Interfaces

for Semistructured Data: The QURSED System,” Proceedings of the ACM Transac-

tions on Internet Technology (TOIT), vol. 5, no. 2, pp. 390–438, 2005.

[15] H. Blau, N. Immerman, and D. Jensen, “A Visual Query Language for Relational

Knowledge Discovery,” Tech. Rep., 2001.

[16] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-Rad,

“GRAPHITE: A Visual Query System for Large Graphs,” in Workshops Proceedings

109

of the 8th IEEE International Conference on Data Mining (ICDM), 2008, pp. 963–

966.

[17] C. Jin, S. S. Bhowmick, X. Xiao, J. Cheng, and B. Choi, “GBLENDER: Towards

Blending Visual Query Formulation and Query Processing in Graph Databases,” in

Proceedings of the 2010 ACM SIGMOD International Conference on Management of

Data (SIGMOD), 2010, pp. 111–122.

[18] H. H. Hung, S. S Bhowmick, B. Q. Truong, B. Choi, and S. Zhou, “QUBLE: Blending

Visual Subgraph Query Formulation with Query Processing on Large Networks,” in

Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data (SIGMOD), 2013, pp. 1097–1100.

[19] S. S. Bhowmick, B. Choi, and S. Zhou, “VOGUE: Towards A Visual Interaction-

aware Graph Query Processing Framework,” in Proceedings of the Sixth Biennial

Conference on Innovative Data Systems Research (CIDR), 2013.

[20] H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, and S. Zhou, “QUBLE: Towards

Blending Interactive Visual Subgraph Search Queries on Large Networks,” Proceed-

ings of the VLDB Endowment (PVLDB), vol. 23, no. 3, pp. 401–426, 2014.

[21] S. S. Bhowmick, “DB ./ HCI: Towards Bridging the Chasm between Graph Data

Management and HCI,” in Proceedings of the 25th International Conference on

Database and Expert Systems Applications, (DEXA), 2014, pp. 1–11.

[22] N. Jayaram, S. Goyal, and C. Li, “VIIQ: Auto-suggestion Enabled Visual Interface

for Interactive Graph Query Formulation,” Proceedings of the VLDB Endowment

(PVLDB), vol. 8, no. 12, pp. 1940–1943, 2015.

[23] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “DBpedia SPARQL Bench-

mark: Performance Assessment with Real Queries on Real Data,” in Proceedings

of the 10th International Conference on The Semantic Web - Volume Part I (ISWC),

2011, pp. 454–469.

110

[24] B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and Association Rule Mining,”

in Proceedings of the Fourth International Conference on Knowledge Discovery and

Data Mining (KDD), 1998, pp. 80–86.

[25] X. Su and T. M. Khoshgoftaar, “A Survey of Collaborative Filtering Techniques,”

Advances in Artificial Intelligence (AAI), vol. 2009, pp. 421 425:1–421 425:19, 2009.

[26] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[27] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao, “Neighborhood Based

Fast Graph Search in Large Networks,” in Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data (SIGMOD), 2011, pp. 901–912.

[28] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar Queries: Give

Me an Example of What You Need,” Proceedings of the VLDB Endowment (PVLDB),

vol. 7, no. 5, pp. 365–376, 2014.

[29] Z. Li, S. Zhang, X. Zhang, and L. Chen, “Exploring the Constrained Maximum Edge-

weight Connected Graph Problem,” Acta Mathematicae Applicatae Sinica, vol. 25,

pp. 697–708, 2009.

[30] H. N. Gabow and E. W. Myers, “Finding All Spanning Trees of Directed and Undi-

rected Graphs,” SIAM Journal of Computing (SICOMP), vol. 7, no. 3, pp. 280–287,

1978.

[31] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable Semantic Web

Data Management Using Vertical Partitioning,” in Proceedings of the 33rd Interna-

tional Conference on Very Large Data Bases (PVLDB), 2007, pp. 411–422.

[32] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information Retrieval.

NY, USA: Cambridge University Press, 2008.

[33] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 1988.

[34] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Ar-

chitectures,” Ph.D. dissertation, 2000.

111

[35] M. Kargar and A. An, “Keyword Search in Graphs: Finding R-cliques,” Proceedings

of the VLDB Endowment (PVLDB), vol. 4, no. 10, pp. 681–692, 2011.

[36] J. Pound, I. F. Ilyas, and G. Weddell, “Expressive and Flexible Access to Web-

extracted Data: A Keyword-based Structured Query Language,” in Proceedings of the

2010 ACM SIGMOD International Conference on Management of Data (SIGMOD),

2010, pp. 423–434.

[37] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and G. Weikum,

“Deep Answers for Naturally Asked Questions on the Web of Data,” in Proceedings

of the 21st International Conference on World Wide Web (WWW), 2012, pp. 445–449.

[38] E. Demidova, X. Zhou, and W. Nejdl, “FreeQ: An Interactive Query Interface for

Freebase,” in Proceedings of the 21st International Conference on World Wide Web

(WWW), 2012, pp. 325–328.

[39] M. Jarrar and M. D. Dikaiakos, “A Query Formulation Language for the Data Web,”

IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 24, no. 5, pp.

783–798, 2012.

[40] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-k Keyword Query in Relational

Databases,” in Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data (SIGMOD), 2007, pp. 115–126.

[41] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta Path-Based Top-K

Similarity Search in Heterogeneous Information Networks,” Proceedings of the VLDB

Endowment (PVLDB), vol. 4, pp. 992–1003, 2011.

[42] X. Yu, Y. Sun, P. Zhao, and J. Han, “Query-driven Discovery of Semantically Similar

Substructures in Heterogeneous Networks,” in Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), 2012,

pp. 1500–1503.

112

[43] L. Lim, H. Wang, and M. Wang, “Semantic Queries by Example,” in Proceedings of

the 16th International Conference on Extending Database Technology (EDBT), 2013,

pp. 347–358.

[44] A. Abouzied, D. Angluin, C. Papadimitriou, J. M. Hellerstein, and A. Silberschatz,

“Learning and Verifying Quantified Boolean Queries by Example,” in Proceedings of

the 32nd symposium on Principles of database systems (PODS), 2013, pp. 49–60.

[45] R. C. Wang and W. W. Cohen, “Language-Independent Set Expansion of Named En-

tities Using the Web,” in Proceedings of the 2007 Seventh IEEE International Con-

ference on Data Mining (ICDM), 2007, pp. 342–350.

[46] ——, “Iterative Set Expansion of Named Entities Using the Web,” in Proceedings of

the 2008 Eighth IEEE International Conference on Data Mining (ICDM), 2008, pp.

1091–1096.

[47] ——, “Character-level Analysis of Semi-Structured Documents for Set Expansion,”

in Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing, (EMNLP), 2009, pp. 1503–1512.

[48] R. Gupta and S. Sarawagi, “Answering Table Augmentation Queries from Unstruc-

tured Lists on the Web,” Proceedings of the VLDB Endowment (PVLDB), vol. 2, no. 1,

pp. 289–300, 2009.

[49] L. Chang, J. X. Yu, L. Qin, Y. Zhu, and H. Wang, “Finding Information Nebula over

Large Networks,” in Proceedings of the 20th ACM International Conference on In-

formation and Knowledge Management (CIKM), 2011, pp. 1465–1474.

[50] Y. He and D. Xin, “SEISA: Set Expansion by Iterative Similarity Aggregation,” in

Proceedings of the 20th International Conference on World Wide Web (WWW), 2011,

pp. 427–436.

[51] S. Verma and E. R. H. Jr., “Coupled Bayesian Sets Algorithm for Semi-supervised

Learning and Information Extraction,” in European Conference on Machine Learning

113

and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD),

vol. 7524, 2012, pp. 307–322.

[52] P. Jindal and D. Roth, “Learning from Negative Examples in Set-Expansion,” in 11th

IEEE International Conference on Data Mining (ICDM), 2011, pp. 1110–1115.

[53] G. Kasneci, S. Elbassuoni, and G. Weikum, “MING: Mining Informative Entity Re-

lationship Subgraphs,” in Proceedings of the 18th ACM Conference on Information

and Knowledge Management (CIKM), 2009, pp. 1653–1656.

[54] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon, “REX: Explaining Relationships

Between Entity Pairs,” Proceedings of the VLDB Endowment (PVLDB), vol. 5, no. 3,

pp. 241–252, 2011.

[55] H. He, H. Wang, J. Yang, and P. S. Yu, “BLINKS: Ranked Keyword Searches on

Graphs,” in Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data (SIGMOD), 2007, pp. 305–316.

[56] E. Demidova, X. Zhou, and W. Nejdl, “Efficient Query Construction for Large Scale

Data,” in Proceedings of the 36th International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR), 2013, pp. 573–582.

[57] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar Queries: Give

Me an Example of What You Need,” Proceedings of the VLDB Endowment (PVLDB),

vol. 7, no. 5, pp. 365–376, 2014.

[58] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and G. Weikum,

“Natural Language Questions for the Web of Data,” in Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and Computa-

tional Natural Language Learning (EMNLP-CoNLL), 2012, pp. 379–390.

[59] M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciuska, and D. Zheleznyakov,

“Faceted Search over Ontology-Enhanced RDF Data,” in Proceedings of the 23rd

114

ACM International Conference on Conference on Information and Knowledge Man-

agement (CIKM), 2014, pp. 939–948.

[60] E. Oren, R. Delbru, and S. Decker, “Extending Faceted Navigation for RDF Data,” in

5th International Semantic Web Conference, Athens, GA, USA, November 5-9, 2006,

2006.

[61] M. Hildebrand, J. van Ossenbruggen, and L. Hardman, “/facet: A Browser for Het-

erogeneous Semantic Web Repositories,” in Proceedings of the 5th International Se-

mantic Web Conference, (ISWC), 2006, pp. 272–285.

[62] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast Best-effort Pattern

Matching in Large Attributed Graphs,” in Proceedings of the 13th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), 2007,

pp. 737–746.

[63] Y. Tian and J. M. Patel, “TALE: A Tool for Approximate Large Graph Matching,” in

Proceedings of the 2008 IEEE 24th International Conference on Data Engineering

(ICDE), 2008, pp. 963–972.

[64] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman, “Structure and

Content Scoring for XML,” in Proceedings of the 31st International Conference on

Very Large Data Bases (PVLDB), 2005, pp. 361–372.

[65] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker, “Path-

BLAST: A Tool for Alignment of Protein Interaction Networks,” Nucleic Acids Re-

search, vol. 32, pp. 83–88, 2004.

[66] Y. Tian, R. C. Mceachin, C. Santos, D. J. States, and J. M. Patel, “SAGA: A Subgraph

Matching Tool for Biological Graphs,” Bioinformatics/computer Applications in The

Biosciences, vol. 23, pp. 232–239, 2007.

115

[67] Z. Liang, M. Xu, M. Teng, and L. Niu, “NetAlign: A Web-based Tool for Comparison

of Protein Interaction Networks,” Bioinformatics, vol. 22, no. 17, pp. 2175–2177,

2006.

[68] R. Singh, J. Xu, and B. Berger, “Global Alignment of Multiple Protein Interaction

Networks with Application to Functional Orthology Detection,” Proceedings of the

National Academy of Sciences (PNAS), vol. 105, no. 35, pp. 12 763–12 768, 2008.

[69] B. Gallagher, “Matching Structure and Semantics: A Survey on Graph-Based Pattern

Matching,” Association for the Advancement of Artificial Intelligence (AAAI), 2006.

[70] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu, “Graph Homomorphism Revisited for

Graph Matching,” Proceedings of the VLDB Endowment (PVLDB), vol. 3, no. 1, pp.

1161–1172, 2010.

[71] S. Zhang, J. Yang, and W. Jin, “SAPPER: Subgraph Indexing and Approximate

Matching in Large Graphs,” Proceedings of the VLDB Endowment (PVLDB), vol. 3,

no. 1-2, pp. 1185–1194, 2010.

[72] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient Subgraph Matching on

Billion Node Graphs,” Proceedings of the VLDB Endowment (PVLDB), vol. 5, no. 9,

pp. 788–799, 2012.

[73] P. Barceló, L. Libkin, and J. L. Reutter, “Querying Graph Patterns,” in Proceedings of

the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS), 2011, pp. 199–210.

[74] Q. Zhong, H. Li, J. Li, G. Xie, J. Tang, L. Zhou, and Y. Pan, “A Gauss Function

Based Approach for Unbalanced Ontology Matching,” in Proceedings of the 2009

ACM SIGMOD International Conference on Management of Data (SIGMOD), 2009,

pp. 669–680.

116

[75] L. Qian, M. J. Cafarella, and H. V. Jagadish, “Sample-driven Schema Mapping,” in

Proceedings of the 2012 ACM SIGMOD International Conference on Management of

Data (SIGMOD), 2012, pp. 73–84.

[76] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing Topology in Graph Pattern

Matching,” Proceedings of the VLDB Endowment (PVLDB), vol. 5, no. 4, pp. 310–

321, 2011.

117

BIOGRAPHICAL STATEMENT

Nandish Jayaram was born in Bengaluru (Bangalore), India. He received his Bache-

lor’s degree in Computer Science and Engineering from Visveswaraiah Technological Uni-

versity, India, in 2005. He then received his Masters’ degree in Information Technology

from the International Institute of Information Technology, Bangalore, in 2007. He worked

as a senior software engineer for three years at Novell, before starting his doctoral research

at the University of Texas at Arlington in 2010. His current research interests include

searching and querying large graphs, graph query formulation, graph query processing,

and machine learning. During his doctoral research, he visited IBM Research Lab as a re-

search intern in summer 2013. He also interned at HP Labs during the summer and fall of

2014. He has also served as a Graduate Teaching Assistant and Graduate Research Assis-

tant in the department of Computer Science and Engineering at the University of Texas at

Arlington from 2010 to 2016. He is the recipient of VLDB 2015 Prof. Ram Kumar Memo-

rial Fellowship. He is also the recipient of the STEM Fellowship from 2013 till 2016, and

the Extended GTA Fellowship from 2010 till 2013 at the University of Texas at Arlington.

Following the completion of his Ph.D., Nandish Jayaram will begin working at Pivotal as

a Member of Technical Staff 3 in Palo Alto, USA.

118

