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Abstract
Stochastic Reliability Models for a General Server and Related Networks

by Rachel Traylor

There are many types of systems which can be dubbed servers, i.e. a retail checkout counter,

a shipping company, a web server, or a customer service hotline. All of these systems have com-

mon general behavior: requests or customers arrive via a stochastic process, the service times vary

randomly, and each request increases the stress on the server for some interval of time. A general

stochastic model that describes the reliability of a server can provide the necessary information-

for optimal resource allocation and efficient task scheduling, leading to significant cost savings

and improved performance metrics. In this work, we consider several generalizations of existing

stochastic reliability models that incorporate random workloads, load-balancing allocation, and

clustered tasks. The efficiency of the described servers is studied extensively in order to facilitate

the design and implementation of control policies for fast-paced environments such as IT appli-

cations. Finally, a method to determine the reliability of any network of general servers, both

correlated and uncorrelated, is presented.
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Chapter 1

Introduction

There are many types of systems which can be dubbed servers, such as a retail checkout counter,

a shipping company, a web server, or a customer service hotline. All of these systems have com-

mon general behavior. Requests or customers arrive via a stochastic process, the service times vary

randomly, and each request stresses the server if only temporarily. A general stochastic model that

describes the reliability of such a server can provide the necessary information for optimal resource

allocation and efficient task scheduling, leading to significant cost savings for businesses and im-

proved performance metrics[6]. Such topics have been studied in literature for several decades [1,

2, 3, 21].

Much attention was devoted to reliability principles that model software failures and bug fixes,

starting with Jelinski and Moranda in 1972 [11]. The hazard function under this model shows the

time between the ith failure and the i + 1st failure. Littlewood (1980) [17] extended this initial

reliability model for software by assuming differences in error size. [12].

These models have been extended into software testing applications [4, 5, 20] and optimal soft-

ware release times [7, 8, 18, 24]. The explosion of e-commerce and the resulting increase in internet

traffic have led to the development of reliability models for Web applications. Heavy traffic can

overload and crash a server; thus, various control policies for refreshing content and admission of

page requests were created [10, 13, 16, 19, 26].

In particular, Cha and Lee (2011) [9] proposed a stochastic breakdown model for an unreliable

web server whose requests arrive at random times according to a nonhomogenous Poisson pro-

cess and bring a constant stress factor to the system that dissipates upon service completion. The

authors provide a fairly general survival function under any service distribution gW(w), define

server efficiency to measure performance, and illustrate a possible admission control policy due to

an observed property of the server efficiency under a specific numerical example.

Thus far, no extensions of [9] have been proposed. This work generalizes the model put forth

by Cha and Lee in a variety of ways. First, the assumption of constant job stress is relaxed and

replaced by a random variable, and a new survival function and efficiency equation are derived.
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Motivated by the numerical example in [9], the effect of the service distribution on the efficiency

is studied for several key cases: the Erlang, uniform, and Exponential classes. Further extensions

of the single-server model presented herein include multichannel servers under a load-balancing

allocation scheme and under clustered task assignment, and the respective failure distributions

are derived. Futhermore, systems of servers under a random stress environment are studied. The

system survival function for both correlated systems and independent systems are derived, and an

isomorphism with the reliability structure function is established, allowing for a straightforward

procedure to determine the survival function of any system of servers under very few general

assumptions. This work, while suitable for IT applications, is general enough for use in almost any

industry, including logistics, retail, manufacturing, and engineering systems.

The remainder of this chapter provides some preliminary concepts and theorems relating to the

work of the model proposed by Cha and Lee in [9].

Chapter 2 details the first generalization of [9] in which the constant stress assumption is re-

laxed in favor of a general random variable. The survival function and efficiency are derived.

Chapter 3 presents a study on the effect of the service time distribution on the existence of a finite

maximum efficiency for several choice distributions. In particular, it is shown that the exponential

distribution is a poor choice for modeling service life distribution. Chapter 4 extends the single-

server model presented in Chapter 2 to two different instances of a multichannel server. A server

under a load-balancing allocation scheme common in many different scenarios is investigated in

addition to a server whose requests "pick" tasks in clusters (both independently and dependently).

Chapter 5 builds systems of the random stress servers developed in Chapter 2 and shows the iso-

morphism between the conditional survival function of the system and the reliability structure

function, thus providing an immediate and straightforward methodology for obtaining any sys-

tem survival function under the assumptions presented in Chapter 2. Auxiliary lemmas and other

details are given in Appendices A and B.

1.1 Preliminaries

Nonhomogeneous Poisson Process

Definition 1.1 (Nonhomogenous Poisson Process). A counting process {N(t), t ≥ 0} is a

nonhomogenous Poisson process (NHPP) with intensity function λ(t) ≥ 0 if the following hold:

(1) N(0) = 0

(2) {N(t), t ≥ 0} has independent increments

(3) P(N(t + h)− N(t) ≥ 2) = o(h)
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(4) P(N(t + h)− N(t) = 1) = λ(t)h + o(h)

Fact.

P(N(t + s)− N(t) = n) =
e−[m(t+s)−m(t)] (m(t + s)−m(t))n

n!
(1.1)

A NHPP process has independent increments but is no longer stationary; events may be more

likely to occur at certain times than others.

Renewal Theory: Renewal Reward Processes

Definition 1.2 (Renewal Process). Let {Xn : n ∈ N} be a sequence of nonnegative independent random

variables with common distribution F, where Xn is the time between the (n − 1)st and nth event. Let

Sn = ∑n
i=1 Xi, where S0 = 0 be the time of the nth event. Define N(t) = sup{n : Sn ≤ t}. Then

{N(t), t ≥ 0} is called a renewal process

Suppose {N(t), t ≥ 0} is a renewal process, and upon each renewal a reward is received, de-

noted by Rn. {Rn : n ∈ N} are i.i.d. random variables but may depend on the length of the

renewal interval Xn. Thus (Xn, Rn) are i.i.d. Let R(t) = ∑
N(t)
i=1 Rn be the cumulative reward by time

t. We have the following:

Theorem 1.1. Suppose E[Rn] < ∞ and E[Xn] < ∞. Then

(i) R(t)
t

W.P.1−−−→ E[Rn ]
E[Xn ]

as t→ ∞

(ii) E[R(t)]
t → E[Rn ]

E[Xn ]
as t→ ∞

The above are standard facts from renewal theory and may be found, for example, in [23].

Reliability Theory and Survival Analysis

Structure Functions

A system is defined as a collection on n components, each with a binary assumption of failed or

functional.

Definition 1.3 (Component State). The state of component i is denoted xi and is defined by

xi :=


1, component i is functional

0, component i is failed

Definition 1.4 (System State Vector). For n components in a system, each with state xi, the system state

is defined by x = (x1, ..., xn).
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There are 2n possible state vectors x for any particular n−component system. The notion of

order of state vectors is done component-wise. x < y if and only if xi ≤ yi for all i = 1, ..., n and

xi < yi for some i.

Definition 1.5 (Structure Function). The structure function of a system φ : x→ {0, 1} is defined as

φ(x) :=


1, the system is functioning when the state vector is x

0, the system has failed when the state vector is x

Basic Systems and Block Diagrams

b b b1 2 3 n

FIGURE 1.1: Block Diagram-Series System

A series system of n components is functioning if and only if all components are functioning. Thus,

the structure function of a series system is given by

φseries(x) =
n

∏
i=1

xi

The series system is represented in a block diagram, given in Figure 1.1. The block diagram is similar

to a circuit diagram, in that if a path from left to right can be traced through functioning compo-

nents, the system is operational. It should be noted that the block diagram is logical rather than

physical.

b
b
b

1

2

3

n

FIGURE 1.2: Block Diagram-Parallel System

A parallel system of n components functions if and only if at least one component is func-

tioning. It can be defined equivalently by failure, in that a parallel system fails if and only if all

components fail. Using the latter definition, the structure function is given by

φparallel(x) = 1−
n

∏
i=1

(1− xi)
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Definition 1.6 (Minimal Path Set). x is a path set if φ(x) = 1. x is a minimal path set if φ(y) = 0 for

any y < x.

From Leemis (2.2) [15] ,

Theorem 1.2 (Decomposition of Systems into Series/Parallel Subsystems). Let P1, ..., Ps be the mini-

mal path sets for a system. Then

φ(x) = 1−
s

∏
i=1

(
1−∏

j∈Pi

xj

)

Proof. Let αi = ∏j∈Pi
xj. The system fails if and only if no path exists through the system; i.e. all

minimal path sets have failed. Thus

φ(x) = 1−
s

∏
i=1

(1− αi) = 1−
s

∏
i=1

(
1−∏

j∈Pi

xj

)

Lifetime Distribution Representations

Definition 1.7 (Survivor Function). The survivor function, denoted S(t), is the probability the system

lifetime Y exceeds the time t.

S(t) := P(Y ≥ t), t ≥ 0

The lifetime Y also has a pdf f (t) := − dS
dt .

Definition 1.8 (Hazard Function/Breakdown Rate). The hazard function, also called the breakdown

rate function, measures the amount of risk associated with a system at time t. It may also be interpreted as

the instantaneous failure rate.

h(t) :=
f (t)
S(t)

Lemma 1.1. The survivor function S(t) may be expressed in terms of the hazard function h(t):

S(t) = e−
∫ t

0 h(s)ds

Proof.

h(x) :=
f (x)
S(x)

=
−S′(x)

S(x)

Then −h(x) = S′(x)
S(x) . Integrating from 0 to t, ln(S(t)) = −

∫ t
0 h(x)dx.



Chapter 1. Introduction 6

Lemma 1.2 (Expected Lifetime). The expected lifetime Y is given by E[Y] =
∫ ∞

0 S(t)dt.

Proof.

E[Y] =
∫ ∞

0
x f (x)dx

= −
∫ ∞

0
xS′(x)dx

Integrating by parts,

E[Y] = −
(

tS(t)−
∫ ∞

0
S(t)dt

)

Since it is assumed that S(t) t→∞−−→ 0, S(0) = 1, and tS(t) t→∞−−→ 0, the result is immediate.

1.2 Original Model (Cha and Lee [9])

B(t)

t
b b b b b

T1 T1 +W1 T2 T3 T2 +W2

W1 W2

r0(t)

η

η

FIGURE 1.3: Sample Trajectory of Breakdown Rate Process Under Original Model

System Description and Survival Function

Cha and Lee considered a web server wherein each request arrives via a nonhomogenous Poisson

process {N(t) : t ≥ 0} with intensity function λ(t). Each request adds a constant stress η, increas-

ing the breakdown rate for the duration of service. Suppose r0(t) is the breakdown rate of the idle

server. Then the breakdown rate process B(t) is defined as

B(t) := r0(t) + η
N(t)

∑
j=1

1(Tj ≤ t ≤ Tj + Wj)
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where N(t), {Tj}N(t)
j=1 , {Wj}N(t)

j=1 are the random variables that describe the number of arrivals, ar-

rival times, and service times, respectively. It is assumed that {Tj}N(t)
j=1 are independent of each

other Furthermore, {Wj}N(t)
j=1

i.i.d.˜ gW(w) and are mutually independent of all Tj’s.

Under these conditions, Cha and Lee proved the following theorem:

Theorem. Suppose that {N(t), t ≥ 0} is a nonhomogenous Poisson process with intensity function λ(t),

i.e. m(t) ≡
∫ t

0 λ(x)dx. Assuming the conditional survival function is given by

P
(

Y > t
∣∣∣N(t), {Tj}N(t)

j=1 , {Wj}N(t)
j=1

)
= F̄0(t) exp

(
−η

N(t)

∑
j=1

min(Wj, t− Tj)

)

and m(t) has an inverse, the survival function of Y is given by

SY(t) = F̄0(t) exp
(
−η

∫ t

0
exp(−ηw)ḠW(w)m(t− w)dw

)

and the hazard function of Y, denoted r(t), is given by

r(t) = r0(t) + η
∫ t

0
e−ηwḠW(w)λ(t− w)dw

Efficiency of the Server

It is natural to develop some measure of server performance. Cha and Lee measure such perfor-

mance by defining the efficiency, ψ, of the web server as the long-run expected number of jobs

completed per unit time. That is,

ψ := lim
t→∞

E[M(t)]
t

Upon breakdown and rebooting, the server is assumed to be ‘as good as new’, in that perfor-

mance of the server does not degrade during subsequent reboots. In addition, the model assumes

the arrival process after reboot, denoted {N∗(t), t ≥ 0}, is a nonhomogenous Poisson process with

the same intensity function λ(t) as before, and that {N∗(t), t ≥ 0} is independent of the arrival

process before reboot. In a practical setting, this model assumes no ‘bottlenecking’ of arrivals oc-

curs in the queue during server downtime that would cause an initial flood to the rebooted server.

In addition, the reboot time is assumed to follow a continuous distribution H(t) with expected

value ν. This process is a renewal reward process, with the renewal {Rn} = {Mn}, the number of

jobs completed. The length of a renewal cycle is Yn + Hn, where Yn is the length of time the server

was operational, and Hn is the time to reboot after a server crash. Then, by Theorem 1.1,

ψ =
E[M]

E[Y] + ν
(1.2)
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where M is the number of jobs completed in a particular renewal cycle, ν is the mean time to reboot

of the server, and Y is the length of a particular renewal cycle. Then, using (1.2), the following

closed form of the efficiency of a server under all assumptions of Cha and Lee’s model is derived.

Theorem. Suppose {N(t), t ≥ 0} is a nonhomogenous Poisson process with intensity λ(t) ≥ 0. Then the

efficiency is given by

ψ =
1∫ ∞

0 SY(t)dt + ν

[
exp

(
−
∫ t

0
r0(x)dx−

∫ t

0
λ(x)dx + a(t) + b(t)

)
× (r0(t)a(t) + ηa(t)b(t))]

where a(t) =
∫ t

0 e−ηvgW(v)m(t− v)dv, b(t) =
∫ t

0 e−η(t−r)ḠW(t− r)λ(r)dr, ḠW(x) = 1−
∫ x

0 gW(s)ds,

and m(x) =
∫ x

0 λ(s)ds.

Numerical Example and Control Policies

FIGURE 1.4: ψ(λ) under Rayleigh Service Time Distribution

As an illustrative example, Cha and Lee considered the case when λ(t) ≡ λ, r0(t) ≡ r0 = 0.2,

η = 0.01, ν = 1, and gW(w) = we−w2/2 (the PDF of the Rayleigh distribution). As shown in

Figure 1.4, there exists a λ∗ such that ψ(λ) is maximized. Thus one may implement the obvious

optimal control policy for server control to avoid server overload:

(1) If the real time arrival rate λ < λ∗, do not interfere with arrivals.

(2) If λ ≥ λ∗, facilitate some appropriate measure of interference.

Examples of interference for a web server in particular include rejection of incoming requests or

possible re-routing. Cha and Lee give an interference policy of rejection with probability 1− λ∗
λ .

The next chapter presents a generalization of the above model.
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Chapter 2

Server Under Random Stress

Requests

The original model proposed by Cha and Lee (2011) assumed the workload brought by each ran-

dom arrival Tj was a constant η. However, it is unrealistic to assume that each request brings

the same workload to a server. For a web server, requests may vary from simple page views to

many database queries during online commerce. A graphic designer may receive commissions for

a simple web page to a dynamic and interactive site. A bridge has many different weights of foot

or automobile traffic crossing. If we consider a fighter aircraft as a server, each mission may be

viewed as a request having a different stress on the aircraft. An order placed for shipment can

have varying stresses on warehouse inventory. In all these examples, these drastically different

requirements of each arriving customer will strain the server resources in different and random

ways.

In this chapter, the first extension of [9] is presented. The restrictive assumption of constant

stress across all arrivals and all time is relaxed, and it is assumed that the individual stress is a

random variable Hj, independent of other job stresses and arrival times. The survival function

of the server under a random stress environment is derived, and the closed form of the server

efficiency is presented.
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2.1 Survival Function of Server under

Random Stress Environment

Model Assumptions and Random Breakdown Rate Process

B(t)

t
b b b b b

T1 T1 +W1 T2 T3 T2 +W2

W1 W2

r0(t)

H1

H2

H3

−H2

FIGURE 2.1: Sample Trajectory of Breakdown Rate Process under Random Stress
Model

Assume that each job j coming into the server adds a random stressHj to the server for the duration

of its time in the system. Suppose {Hj}N(t)
j=1

i.i.d.∼ H, where WLOG H is a discrete random variable

with a finite sample space S = {ηi : ηi ∈ R+, i = 1, ..., m for m ∈ N} and probability distribution

given by

P(H = ηi) = pi, i = 1, ..., m

The following assumptions from [9] are retained:

(CL1) Requests arrive via a nonhomogenous Poisson Process {N(t), t ≥ 0} with intensity λ(t).

(CL2) Arrival times {Tj}N(t)
j=1 are independent.

(CL3) Service times {Wj}N(t)
j=1 are i.i.d. with pdf gW(w) and mutually independent of all arrival

times.

Then, the random stress breakdown rate (RSBR) process B(t) is given by

B(t) = r0(t) +
N(t)

∑
j=1
Hj1(Tj < t ≤ Tj + Wj), t ≥ 0 (2.1)

Compare the sample trajectory shown in Figure 2.1 to Figure 1.3. The random stress brought

by each request still disappears upon job completion, but the effect on the server is no longer de-

terministic. Thus, for the same set of arrival times and respective completion times, the realization

of the breakdown rate process under the RSBR model has one more element of variation.
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Let Y be the random time to breakdown of the web server given the workload from client

requests. Let T = {Tj}N(t)
j=1 , W = {Wj}N(t)

j=1 , and H = {Hj}N(t)
j=1 , with observed values t = {tj}N(t)

j=1 ,

w = {wj}N(t)
j=1 , and h = {ηij}

N(t)
ij=1 . Then the conditional survival function of the server, given the

arrival process of client requests (N(t)), job stresses (H), service times (W), and arrival times (T) is

SY|N(t),T,W,H(t|n, t,w, h) = e−
∫ t

0 B(x)dx

= F̄0(t)e
−∑

N(t)
j=1 Hi min(Wj ,t−Tj)

where F0(t) = exp
(
−
∫ t

0 r0(x)dx
)

.

Survival Function for the RSBR Web Server

Under the RSBR generalization, the survival function of the server is given in the following theo-

rem.

Theorem 2.1 (Survival Function of RSBR Server). Suppose that jobs arrive to a server according to a

nonhomogenous Poisson process {N(t), t ≥ 0} with intensity function λ(t) ≥ 0 and m(t) ≡ E[N(t)] =∫ t
0 λ(x)dx. Let the arrival times {Tj}N(t)

j=1 be independent, and let the service times {Wj}N(t)
j=1

i.i.d.˜ gW(w) be

mutually independent of all arrival times. Assume the random job stressesHj
i.i.d.˜ H. Then

SY(t) = F̄0(t) exp
(
−EH

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

])
(2.2)

where F̄0(t) = exp
(
−
∫ t

0 r0(s)ds
)

.

Proof. Taking the expectation of the conditional survival function (2.2)

SY(t) = F̄0(t)E

[
exp

(
−

N(t)

∑
j=1
Hj min(Wj, t− Tj)

)]

Using the law of total expectation:

E
[

e−∑
N(t)
j=1 Hj min(Wj ,t−Tj)

]
= E

[
E
[

e−∑
N(t)
j=1 Hj min(Wj ,t−Tj)

∣∣∣∣N(t),H
]]

Conditioned on N(t) = n andHj = ηij for some ij ∈ {1, ..., m},

fT1,...,Tn |N(t),H(t1 . . . tn|n, h) = fT1,...,Tn |N(t)(t1, · · · , tn|n)

since the sets H and T are mutually independent.
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Let T′1, ...T′n be i.i.d. random variables with pdf f (x) = λ(x)
m(t) . By Lemma A.1,

fT1,...,Tn |N(t)(t1, · · · , tn|n) = n!
n

∏
j=1

λ(tj)

m(t)
(2.3)

for 0 ≤ t1 ≤ · · · ≤ tn ≤ t. Then

E
[

e−∑
N(t)
j=1 Hj min(Wj ,t−Tj)

∣∣∣∣N(t),H
]
= E

[
e
−∑n

j=1 ηij
min(Wj ,t−Tj)

]
= E

[
e
−∑n

j=1 ηi[j]
min(Wj ,t−T[j])

]

By Lemma A.1 (Appendix A),

E
[

e
−∑n

j=1 ηi[j]
min(Wj ,t−T[j])

]
= E

[
e
−∑n

j=1 ηij′ min(Wj ,t−Tj′ )
]

= E

[
n

∏
j=1

e
−ηij

min(Wj ,t−Tj′ )
]

=
n

∏
j=1

E
[

e
−ηij′ min(Wj ,t−Tj′ )

]

The equalities hold because the elements of W and T are i.i.d., respectively, and are mutually

independent. Now, fix j′; then ηij′ is also fixed. By Lemma A.2 (Appendix A),

E
[

e
−ηij′ min(Wj ,t−Tj′ )

]
=

1
m(t)

(
m(t)− ηij′

∫ t

0
e
−ηij′ wm(t− w)ḠW(w)dw

)
(2.4)

Equation (2.4) is true ∀ j, so

E
[

e−∑
N(t)
j=1 Hj min(Wj ,t−Tj)

∣∣∣∣N(t),H
]
=

n

∏
j=1

1
m(t)

(
m(t)− ηij

∫ t

0
e
−ηij

w
m(t− w)ḠW(w)dw

)
(2.5)

Finally, the expectation of (2.5) over N(t),H1, ...,HN(t) is taken. Denote

hj(t) = m(t)− ηij

∫ t

0
e
−ηij

w
m(t− w)ḠW(w)dw

Denote~i = (i1, ..., in),~i−j = (i1, ..., ij−1, ij+1, ..., in), η~i = (ηi1 , ..., ηin), and

m

∑
in=1
· · ·

m

∑
i2=1

m

∑
i1=1

(·)P(H1 = ηi1)P(H2 = ηi2) · · · P(Hn = ηin) = ∑
~i

(·)P(H = η~i)
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Then

E

[
n

∏
j=1

hj(t)

]
=

∞

∑
n=0

∑
~i

(
n

∏
j=1

1
m(t)

hj

)
P(H = η~i)P(N(t) = n)

=
∞

∑
n=0

1
m(t)n

(
m

∑
i1=1

h1P(H1 = ηi1)

)
∑
~i−1

n

∏
j=2

hjP(H−1 = η~i−1
)P(N(t) = n)

=
∞

∑
n=0

1
m(t)n

n

∏
j=1

(
m

∑
j=1

hjP(Hj = ηij)

)
P(N(t) = n)

=
∞

∑
n=0

1
m(t)n

n

∏
j=1

(
m

∑
j=1

hjP(Hj = ηij)

)
m(t)n

n!
e−m(t)

=
∞

∑
n=0

1
m(t)n

(
n

∏
j=1

EHj [hj]

)
m(t)n

n!
e−m(t)

Let h(t) = m(t) −H
∫ t

0 e−Hwm(t − w)ḠW(w)dw Since Hj
i.i.d.˜ H ∀ j, EHj [hj] = EH[h(t)] for all j.

Thus

∞

∑
n=0

1
m(t)n

(
n

∏
j=1

EHj [hj]

)
m(t)n

n!
e−m(t)

=
∞

∑
n=0

1
m(t)n (EH[h(t)])

n m(t)n

n!
e−m(t)

= e−m(t)
∞

∑
n=0

m(t)n

n!
(EH[h(t)])

n

= e−m(t) exp
(

m(t)− EH

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

])
= exp

(
−EH

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

])

where the third equality uses the Taylor series representation of ex. The compound failure rate

function r(t) is given by

r(t) = − d
dt

ln(SY(t)) = r0(t) + EH

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

]

as defined in 1.1.)

2.2 Efficiency measure of the server under RSBR

Upon server crash, the server must be rebooted. This section gives the server efficiency as defined

in [9]. The following assumptions from the original model are retained:
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(E1) The arrival process after rebooting, {Nrb(t), t ≥ 0}, remains a nonhomogenous Poisson pro-

cess with the same intensity function λ(t), t ≥ 0 as before.

(E2) {Nrb(t), t ≥ 0} is independent of the arrival process of client requests before rebooting.

Hence, {Nrb(t), t ≥ 0} = {N(t), t ≥ 0}, since it retains all the same characteristics as be-

fore.

(E3) The time to reboot the server follows a continuous distribution H(t) with mean ν.

Recall that M(t) is defined as the total number of jobs completed by the server during the time

(0, t]. Also, recall the definition of server efficiency from [9]:

ψ ≡ lim
t→∞

E[M(t)]
t

The efficiency of the server under a random stress environment is given in the following theorem.

Theorem 2.2 (Server Efficiency under Random Stress Environment). Suppose that {N(t) : t ≥ 0}
is a nonhomogenous Poisson process with intensity function λ(t), t ≥ 0. Suppose also the conditions of

Theorem 2.1 and the conditions (E1)-(E3) are met. Then the efficiency of the server is given by

ψ =
1∫ ∞

0 SY(t)dt + ν

{∫ ∞

0
e−
∫ t

0 r0(x)−
∫ t

0 λ(x)dx+EH [a(t)+b(t)](r0(t)EH[a(t)] + EH[Ha(t)b(t)])dt
}
(2.6)

where a(t) =
∫ t

0 e−HvgW(v)m(t− v)dv and b(t) =
∫ t

0 e−H(t−r)ḠW(t− r)λ(r)dr.

Proof. From Theorem 1.1 and Section 1.2, ψ = E[M]
E[Y]+ν

, where Y is the length of time the server is

operational during a particular renewal cycle and ν is the mean time to reboot. By Lemma 1.2,

E[Y] =
∫ ∞

0 SY(t)dt, where SY(t) is the unconditional survival function from Theorem 2.1. There-

fore, the completion of the proof relies on deriving E[M].

M = ∑
N(Y)
j=1 1(Tj + Wj ≤ Y) which may be rewritten as

M =
N(Y)

∑
j=1

1(Rj + Vj ≤ Y)

where {(Rj, Vj)}N(Y)
j=1 may be regarded as a random permutation of {(Tj, Wj)}N(Y)

j=1 due to the mu-

tual independence of {Tj}, {Wj} and the respective i.i.d nature of both. Therefore,

E[M] = E

[
N(Y)

∑
j=1

1(Rj + Vj ≤ Y)

]
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For convenience and clarity, the following notation is introduced:

R = {R1, ..., Rn}, V = {V1, ..., Vn},

H = {H1, ...,Hn}

with observed values

r = {r1, ..., rn}, v = {v1, ..., vn},

h = {ηi1 , ..., ηin}

By Bayes’s Theorem,

fR,V,H,Y,N(r, v, h, t, n) = fY|R,V,H,N(t|r, v, h, n) fR,V,H,N(r, v, h, n)

By Lemma A.3(Appendix A), the conditional distribution fY|R,V,H,N(t|r, v, h, n) is given by

fY|R,V,H,N(t|r, v, h, n) = e
−
∫ t

0 r0(s)ds−∑n
j=1 ηij

min(vj ,t−rj)

(
r0(t) +

n

∑
j=1

ηij1(vj > t− rj)

)
(2.7)

Since allHj ∈ H are i.i.d. and mutually independent of R,V, and N,

fR,V,H,N(r, v, h, n) = fR,V,N(r, v, n) fH(h) = fR,V,N(r, v, n)
n

∏
j=1

P(Hj = ηij)

By Lemma A.4(Appendix A)

fR,V,N(r, v, n) =
1
n!

n

∏
j=1

e
∫ t

0 λ(x)dxλ(rj)gW(vj)

fR,V,H,N(r, v, h, n) =
1
n!

n

∏
j=1

e
∫ t

0 λ(x)dxλ(rj)gW(vj)
n

∏
j=1

P(Hj = ηij) (2.8)

Finally, by multiplying (2.7) and (2.8)

fR,V,H,Y,N(t)(r, v, h, t, n) =
e−
∫ t

0 r0(x)dx−
∫ t

0 λ(x)dx

n!

[
n

∏
j=1

e
−ηij

min(vj ,t−rj)λ(rj)gW(vj)P(Hj = ηij)

]

×
[

r0(t) +
n

∑
j=1

ηij1(vj > t− rj)

]
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Denote v−j = (v1, ..., vj−1, vj+1, ..., vn), r−j = (r1, ..., rj−1, rj+1, ..., rn).

Let
∫~b
~a f (x)dx =

∫ b
a · · ·

∫ b
a

∫ b
a f (x1, ..., xn)dx1 · · · dxn for a, b ∈ R.

E[M] = E

[
N(Y)

∑
j=1

1(Rj + Vj ≤ Y)

]

=
∞

∑
n=1

∫ t

0

 n

∑
j=1

m

∑
ij=1

∫ t

0

∫ t−rj

0

∫ ~t

~0

∫ ~∞

~0
fR,V,H,Y,N(t)(r, v, h, t, n)dv−jdr−jdvjdrj

 dt

=
∞

∑
n=1

∫ ∞

0

1
n!

r0(t)e−
∫ t

0 r0(x)dx−
∫ t

0 λ(x)dxnEH

[∫ t

0

∫ t−r

0
e−HvgW(v)dvλ(r)dr

]

×
{

EH

[∫ t

0

∫ t−r

0
e−HvgW(v)dvλ(r)dr +

∫ t

0
e−H(t−r)ḠW(t− r)λ(r)dr

]}n−1
dt

+
∞

∑
n=1

∫ ∞

0

1
n!

e−
∫ t

0 r0(x)dx−
∫ t

0 λ(x)dx

× n(n− 1)EH

[
H
∫ t

0

∫ t−r

0
e−HvgW(v)dvλ(r)dr

∫ t

0
e−H(t−r)ḠW(t− r)λ(r)dr

]
×
{

EH

[∫ t

0

∫ t−r

0
e−HvgW(v)dvλ(r)dr +

∫ t

0
e−H(t−r)ḠW(t− r)λ(r)dr

]}n−2
dt

Let a(t) =
∫ t

0

∫ t−r
0 e−HvgW(v)dvλ(r)dr. Through a change of variables,

a(t) =
∫ t

0 e−HvgW(v)m(t− v)dv. Let b(t) =
∫ t

0 e−H(t−r)ḠW(t− r)λ(r)dr. Then

E[M] =
∞

∑
n=1

∫ ∞

0

1
(n− 1)!

r0(t)EH[a(t)](EH[a(t) + b(t)])n−1e−
∫ t

0 r0(x)dx−
∫ t

0 λ(x)dxdt

+
∞

∑
n=2

∫ ∞

0

1
(n− 2)!

EH[Ha(t)b(t)](EH[a(t) + b(t)])n−2dt

=
∫ ∞

0
r0(t)e−

∫ t
0 r0(x)−

∫ t
0 λ(x)dxEH[a(t)]

(
∞

∑
n=1

1
(n− 1)!

(EH[a(t) + b(t)])n−1

)
dt

+
∫ ∞

0
e−
∫ t

0 r0(x)−
∫ t

0 λ(x)dxEH[Ha(t)b(t)]

(
∞

∑
n=2

1
(n− 2)!

(EH[a(t) + b(t)])n−2

)
dt

=
∫ ∞

0
r0(t)e−

∫ t
0 r0(x)−

∫ t
0 λ(x)dxEH[a(t)]eEH [a(t)+b(t)]dt

+
∫ ∞

0
e−
∫ t

0 r0(x)−
∫ t

0 λ(x)dxEH[Ha(t)b(t)]eEH [a(t)+b(t)]dt

=
∫ ∞

0
e−
∫ t

0 r0(x)−
∫ t

0 λ(x)dx+EH [a(t)+b(t)] [r0(t)EH[a(t)] + EH[Ha(t)b(t)]] dt (2.9)
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2.3 Remarks and Implications

Note that H was assumed discrete, but the proofs of Theorema 2.1 and 2.2 are unaffected if H is

continuous. Thus the generality of this model is significantly stronger than in [9].

For certain distributions of H, SY(t) has a fairly compact form. Section 4.2 examines the case

where H has a binomial distribution, formed from both independent and dependent Bernoulli

trials. Chapter 3 explores the properties of ψ further under various service distributions.
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Chapter 3

On Server Efficiency

3.1 Motivation

In [9], the authors provide a numerical illustration of the efficiency under the Rayleigh service life

distribution. The Rayleigh distribution has applications in physics, typically when the magnitude

of a vector is related to its directional components [22]. The Rayleigh distribution is a special case

of the Weibull distribution which is widely used in survival analysis, failure analysis, weather

forecasting, and communications [1, 25].

These distributions are not typically used to model service times. The exponential distribu-

tion is the most common due to its memoryless properties, followed by the Erlang and uniform

distributions [2].

The efficiency, ψ, under the Rayleigh distribution example given in [9] and reproduced in Fig-

ure 1.4, assuming a constant intensity λ(t) ≡ λ, shows the existence of a 0 < λ∗ < ∞ such that

ψ(λ) is maximized at λ∗.

This useful feature of ψ(λ) in this case allows for the implementation of a simple control policy

for arrivals to the server to prevent overload: (1) if λ(t) ≤ λ∗, do nothing, and (2) if λ(t) > λ∗,

intercept arrivals in some fashion. Cha and Lee ([9]) choose to interfere by rejecting each arrival

thereafter with probability 1− λ∗
λ .

This binary nature of the control policy would require real-time data on arrival rates for im-

plementation. Numerical simulations under a variety of possible distribution classes, including

convex, concave, exponential, uniform, and Erlang suggest that the mathematical properties of ψ

are heavily influenced by the choice and characteristics of service time distribution gW(w).

In particular, it is of interest to seek sufficient conditions of gW(w) that will guarantee the exis-

tence of a λ∗ that maximizes ψ. This is done for the uniform, compact support, and Erlang classes.

Furthermore, it is shown under certain conditions, not only does the server efficiency lack a maxi-

mum, but ψ increases without bound. This is not representative of real server behavior.
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3.2 Efficiency under Uniform Service Life Distribution

Suppose λ(x) ≡ λ, and suppose r0(x) ≡ r0 = maxx∈(0,∞) r0(x). The efficiency ψ is given in

Section 1.2 for constant η and λ and reproduced here:

ψ(λ) =
1∫ ∞

0 SY(t)dt + ν

[∫ ∞

0
exp (−r0t− λt + a(t) + b(t)) (r0 + b(t))a(t)dt

]
(3.1)

where SY(t) is the survival function of the node, a(t) =
∫ t

0 e−ηvg(v)(t− v)dv,

b(t) =
∫ t

0 e−η(t−r)Ḡ(t− r)dr, g(v) is the pdf of the service time distribution, and

Ḡ(x) = 1−
∫ x

0 g(s)ds.

The following theorem gives sufficient conditions for the uniform distribution and η that guar-

antee the existence of a finite maximum efficiency.

Theorem 3.1. Suppose the service life distribution is given by Uniform(c, d) for some 0 < c < d. Then

if σ > ce−cη√
12φ(−η)(1+η(c+d))+cη−1

where φ(−η) the standard deviation of the service life W, ψ(λ) has a

maximum on (0, ∞) is the moment generating function of a uniform distribution evaluated at −η.

Sketch of proof : The proof will proceed in the following steps.

(i) Note that ψ(0) = 0, and ψ(λ) ≥ 0 ∀ λ ∈ [0, ∞)

(ii) Construct h(λ) ≥ ψ(λ) such that h(λ) λ→∞−−−→ 0

(iii) Then ψ(λ)
λ→∞−−−→ 0. Since ψ(λ) is continuous, and clearly ψ(1) > ψ(0), the existence of the

maximum is established.

Proof. (i) is clear, since all components are nonnegative for all λ. To accomplish (ii), note that∫ ∞
0 SY(t)dt + ν ≥ 0. Thus the construction of h(λ) will focus on dominating the numerator of

ψ(λ) by upper estimates of a(t) and b(t) such that the numerator of h(λ), denoted henceforth as

hN(λ)
λ→∞−−−→ 0.

The uniform distribution is given by g(w) = 1
d−c1(w) for c < d, and

ḠW(w) =


1, w < c

d−w
d−c , c ≤ w < d

0, w > d
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Recall a(t) :=
∫ t

0 e−ηvg(v)(t− v)dv. Plugging in the uniform service life distribution,

a(t) =
1

d− c

∫ t

0
e−ηv1(v)(t− v)dv

=


0, t < c

1
(d−c)η2

[
e−tη + e−cη(tη − cη − 1)

]
, c ≤ t < d

1
(d−c)η2

(
e−dη(1 + dη − tη) + e−cη(tη − cη − 1

)
, t ≥ d

and

da
dt

=


0 t < c

1
(d−c)η

(
−e−ηt + e−cη

)
c ≤ t < d

1
(d−c)η

(
e−cη − e−dη

)
t ≥ d

Then

da
dt
≤


0 t < c

λe−cη

η(d−c) t ≥ c

Thus a(t) may be dominated on (0, ∞) by the piecewise linear

ã(t) =


0 t < c

λe−cη

η(d−c) t t ≥ c

Similarly, b(t) :=
∫ t

0 e−η(t−r)Ḡ(t− r)dr. For the uniform distribution,

Ḡ(t− r) =


0, r < t− d

d−(t−r)
d−c , t− d ≤ r ≤ t− c

1, r > t− c

Then plugging into b(t),

b(t) =
[

0 +
∫ t−c

t−d
e−η(t−r) d− (t− r)

d− c
dr +

∫ t

t−c
e−η(t−r)dr

]
=

[
1
η
+

(e−dη − e−cη)(1 + cη + dη)

(d− c)η2

]

:= B
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The numerator of ψ(λ) is then dominated by the numerator of h(λ), denoted by hN(λ) and given

by

N(λ) =
∫ ∞

0
e−r0t−λt+λã(t)+λB (r0 + λB) λã(t)dt

=
∫ ∞

c
e−r0t−λt+λ e−cη

η(d−c) t+λB
(r0 + λB) λ

(
e−cη

η(d−c)

)
tdt

To guarantee hN(λ) → 0 in λ, it is sufficient for B − c − e−cη

η(d−c) c < 0. The moment generating

function for the uniform distribution is given by φ(x) = exd−exc

x(d−c) , and the standard deviation of a

uniform distribution is given by σ = d−c√
12

B− c− e−cη

η(d−c) c =
1
η
+

(e−dη − e−cη)(1 + η(c + d))
η2(d− c)

− c +
ce−cη

η(d− c)

=
1
η
− φ(−η) · 1 + η(c + d)

η
− c +

ce−cη

η
√

12σ

Then

−φ(−η)(1 + η(c + d)) +
ce−cη

√
12σ

< ηc− 1

ce−cη

√
12σ

< φ(−η)(1 + η(c + d)) + cη − 1

Solving for σ gives

σ >
ce−cη

√
12φ(−η)(1 + η(c + d)) + cη − 1

Numerical simulations suggest that ψ increases without bound for c = 0, d > 1. The following

lemma proves this fact.

Lemma 3.1. Suppose the service life distribution is given by Uniform(0,d), with d > 1. Then ψ increases

without bound.

Proof. The proof is similar to the proof of Theorem 3.1, but in this case, ψ will be bounded from

below by a constructed function h(λ) such that h(λ)→ ∞ in λ.

a(t) =


1

dη2 (tη + e−tη − 1), t ≤ d

1
dη2 (e−dη(1 + dη − tη) + tη − 1), t > d

Then a(t) ≥ t
dη − 1

dη , since a(t) is nonnegative, and da
dt ≤ 1

dη .

b(t) =
∫ t

0
e−η(t−r)Ḡ(t− r)dr =

∫ t

t−d
e−η(t−r)

(
d− (t− r)

d

)
=

1
η
+

e−dη − 1
dη2
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Then the numerator of ψ is bounded below by hN(λ), where

hN(λ) =
∫ ∞

0
e
−r0t−λt+λ

(
t

dη−
1

dη

)
λB
(r0 + λB)λ

(
t

dη − 1
dη

)
dt

It suffices to seek conditions such that B− 1
dη > 0, or equivalently, that

dη − η + e−dη − 1 > 0

Thus d > 1 is sufficient to guarantee that N(λ)→ ∞. Thus for c = 0, d > 1, ψ will increase without

bound.

3.3 Extension of the Uniform Distribution: Compact Support

The ideas and techniques presented in Section 3.2 yield a powerful extension to any service life

distribution with compact support away from 0. Supposing gW(w) has compact support [a, b], it

may be bounded above by a positively scaled uniform distribution. In practice, service times are

finite and nonzero, thus this extension allows for very simple control policies to be implemented

for a much larger class of distributions.

Theorem 3.2. Let gW(w) be the pdf of the service times having compact support [c, d], d > 0. Let m =

maxw gW(w) < ∞, and R = (d − c) be the length of the support. Then ψ(λ) has a maximum if m <

c
Rη+e−bη−e−aη+ηe−aη .

Proof. Let M = m(d− c). Then gW(w) ≤ m1[c,d](w), and

ḠW(w) ≤


M, w ≤ c

M−m(w− c), c ≤ w ≤ d

0, w ≥ d

We construct a function hN(λ) that will bound the numerator of ψ(λ) such that hN(λ) → 0 as

λ→ ∞, just as in the proof of Theorem 3.1.

a(t) ≤


m
η2 (e−tη + e−cη(tη − (cη + 1))), c ≤ t ≤ d

m
η2

(
tη
(

e−cη − e−dη
)
+ e−dη(1 + dη)− e−cη(1 + cη)

)
, t ≥ d
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The above may be bounded one more time by ã(t) = me−ct
η , t ≥ c. Now from the bounds on ḠW(w),

b(t) =
∫ t−c

t−d
e−η(t−r)(M−m((t− r)− c))dr +

∫ t

t−c
Me−η(t−r)dr

=
m
η2

(
Rη + e−dη − e−cηright)

)
:= B

Then

N(λ) =
∫ ∞

c
e−r0t−λt+λã(t)+λB(r0 + ηλB)λã(t)dt

In order for the above to be integrable, me−cc
η < 1, or m < ηecη . Supposing this is true, hN(λ) → 0

if B− c + me−cc
η < 0. Simplifying this in terms of m gives the desired result.

Comments and Illustrations

0.5 1.0 1.5 2.0 2.5 3.0
λ

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

ψ
Increasing Distribution on [2,3]

Efficiency for Increasing Density on [2,3]

FIGURE 3.1: ψ(λ) under gW(w) = 2
5 w1[2,3](w)

Example 3.1. Let gW(w) = 2
5 w1[2,3](w), and let r0 = ν = η = 1. Then m = 6

5 . By Theorem 3.2,

m < 2
e−2+e−3+1 ≈ 1.678. Thus, the existence of a maximum ψ is guaranteed. Figure 3.1 gives the numerical

result with step size of 0.1. The maximum occurs around λ∗ = 0.5.
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ψ
Increasing Distribution on [1,2]

Efficiency for Increasing Density on [1,2]

FIGURE 3.2: ψ(λ) under gW(w) = 2
3 w1[1,2](w)

The condition is rather weak and is only a sufficient condition. As an illustration, consider the

same increasing density shifted to a support of [1, 2]. Thus

gW(w) = 2
3 w1[1,2](w). Retain all other assumptions from Example 3.1. Then

m =
4
3
>

1
e−2 + 1

≈ 0.88

which violates the condition. However, consider Figure 3.2 above. Clearly ψ has a maximum at

approximately λ∗ = 0.8.

The condition given in Theorem 3.2 relies on overestimating gW(w) by a constant. If the vari-

ance σ2
W of gW(w) is large, the maximum of the pdf will decrease and be more comparable to the

rest of the distribution. In these cases, bounding gW(w) by its max m over the support [a, b] will

give a reasonable approximation. However, in the case of a small support and high enough skew

compared to the size and location of the support, much of the mass is concentrated at the right

end of the support, and m will be higher. In these cases, bounding gW(w) by m will result in a

large amount of overestimation, and thus the condition may fail, but ψ still has a maximum. The

numerical example wherein gW(w) = 2
3 w1[1,2](w) illustrates the conservative nature of this type

of estimation.

3.4 Efficiency under Erlang Service Life Distribution

Now suppose g(v) is of the Erlang class but shifted δ > 0 to the right. For motivation, consider

that service times can never be 0 in a practical setting. Then the PDF and the complement of the
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CDF are given by

g(v; k, γ, δ) =


0, 0 ≤ v ≤ δ

γk(v−δ)k−1e−γ(v−δ)

(k−1)! , v ≥ δ;

Ḡ(v; k, γ, δ) =


1, 0 ≤ v ≤ δ

eγ(δ−v) ∑k−1
j=0

γj(v−δ)j

j! , v ≥ δ

(3.2)

Theorem 3.3. Let δ > 0, η > 0. Let α(δ) =
(

γ
γ+η

)k
e−ηδ + γkeγδ(k−1)

(η+γ)k−1 , and 0 < β(δ, η) < 1. If the

service life distribution is of the δ−shifted Erlang class, then ψ(λ) has a maximum in λ on (0, ∞) for δ, η

such that α(δ) + β(δ, η) < 1.

Proof. The proof will proceed using the same steps (i)-(iii) from the proof of Theorem 3.1. By

Lemma A.5,

a(t) =
(

γ

γ + η

)k
e−ηδt +

kγk
(

e−(η+γ)t+γδ − e−ηδ
)

(γ + η)k+1

+
γke−(η+γ)t+γδ

(k− 1)!

k−1

∑
j=1

[
(t− δ)j

(γ + η)k−j+1

(
k!
j!
− (k− 1)!

(j− 1)!

)] (3.3)

Let fa(t) =
k−1
∑

j=1

[
(t−δ)j

(γ+η)k−j+1

(
k!
j! −

(k−1)!
(j−1)!

)]
. Then

a(t) =
(

γ

γ + η

)k
e−ηδt +

kγk
(

e−(η+γ)t+γδ − e−ηδ
)

(γ + η)k+1 ++
γke−(η+γ)t+γδ

(k− 1)!
fa(t)

and

da
dt

=

(
γ

γ + η

)k
e−ηδ − e−(η+γ)t+γδkγk

(γ + η)k − γk(γ + η)e−(η+γ)t+γδ

(k− 1)!
fa(t) +

γke−(η+γ)t+γδ

(k− 1)!
ḟa

≤
(

γ

γ + η

)k
e−ηδ +

γkeγδ(k− 1)
(η + γ)k−1

Thus a(t) ≤ α(δ)t, where α(δ) =
(

γ
γ+η

)k
e−ηδ + γkeγδ(k−1)

(η+γ)k−1 < 1

By Lemma A.6,

b(t) =
1− e−δη

η
+

k−1

∑
j=0

[
γje−ηδ

(γ + η)j+1 − γje−(η+γ)t+ηδ

(
j

∑
i=0

(η + γ)i(t− δ)i

i!

)]
(3.4)
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Now, b(t) t→∞−−→ B(δ, η, γ) where B(δ, η, γ) = 1−e−δη

η +
k−1
∑

j=0

γje−γδ

(η+γ)j+1 .

Let fb(t) := ∑k−1
j=0 γj ∑

j
i=0

(η+γ)i(t−δ)i

i! . Then b(t) may be rewritten as

b(t) = B(δ, γ, η)− e−(η+γ)t+ηδ fb(t)

By Lemma A.7, b(t) is concave. Through straightforward calculus, b′(δ) = 1 and b(t) is only

defined for t ≥ δ.

b

δ

b(t)

t− δ

B(δ, η, γ)

β(δ, η)t

π
4

3π
4θ t

FIGURE 3.3: Construction of Linear Domination of b(t)

Since b(t) is concave, b(t) ≤ t− δ. We seek a domination β(δ, η)t ≥ b(t) such that β(δ, η) < 1,

β(δ, η)t ≥ b(t) ∀ t ≥ 0, and α(δ) + β(δ, η) < 1. To see that at least one such β(δ, η) exists, refer to

Figure 3.3. Let θ be the angle between β(δ, η)t and y = 0. Since b′(δ) = 1, the angle between t− δ

and y = 0 is π
4 . Then the largest angle of the triangle formed by β(δ, η)t, t− δ, and y = 0 is 3π

4 .

Thus θ < π
4 , and therefore there exists a β(δ, η) < 1. To ensure β(δ, η) + α(δ) < 1, choose δ and

corresponding η such that this is true and θ is minimized, while β(δ, η)t ≥ b(t)1.

In summary, we have that a(t) ≤ α(δ)t and b(t) ≤ β(δ, η)t, where β(δ, η)+ α(δ) < 1. Therefore,

hN(λ) =
∫ ∞

0
e−r0t−λt+λ(α(δ)t+β(δ,η)t)(r0 + ηβ(δ, η)t)α(δ)tdt

Denote ξ = 1− α(δ)− β(δ, η). Then

hN(λ) = e−r0t−ξλt(r0 + ηλβ(δ, η)t)λα(δ)tdt

=
α(δ)r2

0λ + λ2(α(δ)r0ξ + 2β(δ, η)η)

(r0 + ξλ)3

λ→∞−−−→ 0

1Note: β(δ, η) will likely have to be determined numerically for specific cases.
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Thus step (ii) is complete, and therefore ψ(λ) has a maximum on (0, ∞) for the η, δ that ensure

β(δ, η) + α(δ) < 1.

3.5 Efficiency under Exponential Distribution

Lambert W-Function

-2 -1 1 2
x

-1.0

-0.5

0.5

Lambert W-Function

FIGURE 3.4: Lambert W-Function for Real Values

The proof of Theorem 3.4 requires the use of the Lambert W−Function, defined as the inverse

function of f (W) = WeW . Figure 3.4 shows the function for W ∈ R. Note that the function is

positive for positive x and negative for negative x.

Suppose g(v) is of the exponential class. That is, g(v) = γe−γv, γ > 0. It will be proven that

under certain conditions on η and γ, an exponential g(v) causes ψ to increase without bound.

Theorem 3.4. Suppose g(v) = γe−γv. Then if 2γ
γ+η > 1 + 2

2
γ +W

(
− γ

γ+η e−2− 2η
γ

) , ψ(λ)
λ→∞−−−→ ∞.

Proof. The proof will proceed via constructing a lower estimate for the numerator of ψ(λ), denoted

NL(λ) such that NL(λ) → ∞. Then the function h(λ) = NL(λ)∫ ∞
0 SY(t)dt+ν

≤ ψ(λ), and h(λ) → ∞, thus

ψ(λ)→ ∞.

To construct NL(λ), lower estimates for a(t) and b(t) will be obtained.

a(t) =
∫ t

0
e−(η+γ)v(t− v)dv =

γt
γ + η

+
γe−t(η+γ)

(η + γ)2 −
γ

(η + γ)2

Now, da
dt ≤

γ
γ+η , and a(t) ≥ 0. Then a(t) ≥ γt

γ+η − 1
(η+γ)

.

Similarly,

b(t) =
∫ t

0
e−(η+γ)(t−r)dr =

1− e−t(η+γ)

η + γ
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b(t) is clearly concave, nonnegative, and b(t) → 1
η+γ ; thus the lower bound for b(t) will be piece-

wise linear.

b(t) ≥


γt

γ+η − 1
(η+γ)

, 0 ≤ t ≤ t0

b(t0), t > t0

where t0 is the point of intersection between b(t) and y(t) = γt
γ+η − 1

(η+γ)
. Solving,

t0 =
2
γ
+

W
(
− γ

γ+η e−2− 2η
γ

)
γ + η

where W(·) is the Lambert W-function described earlier. Thus

NL(λ) =
∫ t0

0
e−r0t−λt+2λ

(
γt

γ+η− 1
(η+γ)

) [
r0 + ηλ

(
γt

γ + η
− 1

(η + γ)

)] [
λγt

γ + η
− 1

(η + γ)

]
dt

+
∫ ∞

t0

e−r0t−λt+λ
(

γt
γ+η− 1

(η+γ)

)
+λb(t0)(r0 + ηλb(t0))

(
λγt

γ + η
− 1

(η + γ)

)
dt

It is sufficient to ensure −t0 +
2γt0
γ+η − 2

(η+γ)
> 0. Then

2γ

γ + η
> 1 +

2
t0(η + γ)

Plugging in t0,
2γ

γ + η
> 1 +

2

2
γ + W

(
− γ

γ+η e−2− 2η
γ

) (3.5)

Thus, γ, η such that (3.5) is met ensure that ψ(λ)→ ∞.

3.6 Extension to Random Stress and Nonconstant Intensity

Theorems 3.1 - 3.4 all assumed constant stress η and constant intensity λ. This section generalizes

the analyses in Sections 3.2- 3.5 for nonconstant intensity and random stress.

The stochastic reliability models in both [9] and Chapter 2 both assumed a

time-dependent intensity λ(t). By setting λ ≡ maxt λ(t), Theorems 3.1- 3.3 provide a conservative

set of conditions under which a maximum efficiency may be obtained. In these cases, ψ is actually

a function of all possible λmax.

If the job stresses are random, as in Theorem 2.2, the above sections may still be utilized. As-

sume the sample space for H is compact and nonnegative. The efficiency is given by Theorem 2.2
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and reproduced here:

ψ =
1∫ ∞

0 SY(t)dt + ν

{∫ ∞

0
e−
∫ t

0 r0(x)−
∫ t

0 λ(x)dx+EH [a(t)+b(t)](r0(t)EH[a(t)] + EH[Ha(t)b(t)])dt
}
(3.6)

WLOG, again suppose the sample space ofH is discrete, given by {η1, ..., ηm}with respective prob-

abilities pi, i = 1, ..., m. Now suppose all mass is concentrated at η[m]. Let am(t) = λ
∫ t

0 e−ηmvg(v)(t−
v)dv, and bm(t) = λ

∫ t
0 e−ηm(t−r)ḠW(t− r)dr. Then, the following are true:

(a) EH[a(t) + b(t)] ≤ am(t) + bm(t)

(b) EH[a(t)] ≤ am(t)

(c) EH[Ha(t)b(t)] ≤ ηmam(t)bm(t)

Thus, by replacing the expectations in (a) - (c) with their respective upper bounds in Theorems 3.1

- 3.3, analyses of the efficiency for the uniform, compact support, and Erlang classes may proceed

as previously detailed. These estimates are conservative but sufficient.

For an exponential service life distribution and random stress, create a lower bound for the ex-

pectations in (a) - (c) by concentrating all mass at η[1]. Then the conditions in Theorem 3.4 guarantee

an explosion for the exponential distribution.
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3.7 Implications and Numerical Illustrations
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(B) gW(w) ∼ Uniform[10,11]
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ψ Efficiency for Uniform[1,500]

(C) gW(w) ∼ Uniform[1,500]
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(D) gW(w) ∼ Uniform[0,2]

FIGURE 3.5: ψ(λ) under Various Uniform Service Distributions

gW(w) σ2 µ Approximate Range of ψ Approximate λ∗

Uniform[1,2] 1/12 1.5 (0, 0.012) 1.3

Unform[10,11] 1/12 10.5 (0, 2× 10−11) 0.1

Uniform[1,500] 499/12 250.5 (0, 3× 10−5) 1.6

TABLE 3.1: Comparison of Various Uniform Service Distributions
and Resulting Effects on ψ

For the uniform service distribution, both the variance of gW(w) and the location of the support af-

fect the efficiency itself. Figure 3.5 shows ψ(λ) for various uniform distributions as an illustration.

In all four cases, r0 = ν = η = 1. The variance of a uniform distribution is given by σ2 = d−c
12 . With

the exception of Figure 3.5(d), which illustrates the explosion of ψ when the distribution has posi-

tive mass at 0, Table 3.1 compares possible values of ψ for different Uniform distributions. Notice

that while the variance σ2 does affect the range of ψ by several orders of magnitude, the location of

the support has a much more powerful effect. Thus, if all service times are equally likely, a server
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is less efficient if it is consistently but mildly slow (Uniform[10,11]) compared to an inconsistent

server (Uniform[1,500]).
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(A) gW(w) = 2x
3 1[1,2](x)
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(B) gW(w) = 2x
5 1[2,3](x)
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(C) gW(w) = 2x
5002−11[1,500](x)

FIGURE 3.6: ψ(λ) under Various Increasing Service Densities.

gW(w) σ2 µ Approximate Range of ψ Approximate λ∗

2x
3 1[1,2](x) ≈ 0.0802 ≈ 1.56 (0, 7× 10−3) .75

2x
5 1[2,3](x) ≈ 0.0822 ≈ 2.53 (0, 7× 10−4) 0.5

2x
5002−11[1,500](x) ≈ 13888.5 333.35 (0, 1.3× 10−7) 1.4

TABLE 3.2: Comparison of Various Increasing Compact Service
Densities and Resulting Effects on ψ

As an illustration of a distribution on compact support, consider the class of increasing densities

gW(w) = cx1[a,b](x). Several examples are given in Figure 3.6 and Table 3.2. For both compact

supports of length 1, the variance is approximately the same, but the mean changes, producing an

order of magnitude decrease in efficiency. Compared to the compact support of length 499, with

a much larger mean, the efficiency decreases by 3 orders of magnitude. Notice, however, that the

decline after the maximum is much less sharp.
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(B) Erlang(9,1)
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(C) gW(w) ∼ Rayleigh(1)

FIGURE 3.7: ψ(λ) under Various Erlang and Rayleigh Service Distributions

gW(w) σ2 µ Approximate Range of ψ Approximate λ∗

Erlang(2,1) 2 2 (0, 0.7) 9

Erlang(9,1) 9 9 (0, 4× 10−6) 0.5

Rayleigh(1) (4− π)/2
√

π/2 (0, 0.9) 8

TABLE 3.3: Comparison of Various Erlang and Rayleigh
Service Distributions and Resulting Effects on ψ

Figure 3.7 gives two examples of ψ under an Erlang distribution. Notice the change in the

efficiency as the mean increases. Here, since λ = 1, σ2 = µ, so the mean likely has the largest effect

on ψ.

Comparing all examples in Figures 3.5- 3.7, the Rayleigh(1) service distribution imposes the

highest maximum efficiency, followed closely by the Erlang(2,1) service distribution, with the Uni-

form[1,2] service distribution following. λ∗ under the Erlang(2,1) service distribution is larger than

for the Rayleigh(1) service distribution, indicating that a server whose service times follow the for-

mer distribution can handle a larger arrival intensity before its efficiency begins to decline than the

latter.

The means for the Rayleigh(1), Erlang(2,1), and Uniform[1,2] distributions are similar, as shown

in Tables 3.1 and 3.3, but the Uniform[1,2] distribution has equal probability of any service time in
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its support with large negative excess kurtosis. It is posulated that kurtosis, skew, and variance

play large roles in the behavior and range of ψ. Compare the efficiency under the Erlang(2,1)

service distribution with the efficiency under the Erlang(9,1) service distribution. Not only is the

mean much lower for the Erlang(2,1) distribution, but the distribution is more strongly positive-

skewed than the Erlang(9,1). Thus, more mass is concentrated at the left side of the distribution,

indicating that the service times are more often shorter.

Finally, to note the effect of the typical stress level η on the range of ψ, compare Figure 1.4

with Figure 3.6(c). The service distribution and all other quantities remain the same, but Cha and

Lee’s numerical example set η = 0.01, whereas Figure 3.6(c) shows ψ under η = 1. The range of

ψ decreases by two orders of magnitude with a 100 fold increase in η, with the shape remaining

similar. In addition, the location of the maximum λ∗ also inversely varies by the same magnitude.

Studying the efficiency under various service distributions aids not only in deciding when to

implement a server intervention, but also aids in evaluating the performance of various servers

given their service times.
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Chapter 4

Extensions of the Single Server Model

4.1 Load Balancing Allocation for a Multichannel Server

Model Description

Previously, we had assumed that a web server functions as a single queue that attempts to process

jobs as soon as they arrive. These jobs originally brought a constant stress η to the server, with the

system stress reducing by η at the completion of each job.

Now, suppose we have a server partitioned into K channels. Denote each channel as Qk, k =

1, ..., K. Jobs arrive via a nonhomogenous Poisson process with rate λ(t). Upon arrival, each job

falls (or is routed) to the channel with the shortest queue length. If all queue lengths are equal or

multiple channels have the shortest length, the job will enter one of the appropriate queues with

equal probability.

We retain the previous notation for the baseline breakdown rate, or hazard function. This is

denoted by r0(t) and is the hazard function under an idle system. We also retain the assumption

that the arrival times T are independent. In addition, the service times W are i.i.d. with distribution

GW(w). We assume that all channels are serving jobs at the same time, i.e. a job can be completed

from any queue at any time. We do not require load balancing for service. In other words, any

queue can empty with others still backlogged. We also retain the FIFO service policy for each

queue.

Since we have now "balanced", or distributed, the load of jobs in the server, not all jobs will

cause additional stress to the system. Suppose all jobs bring the same constant stress η upon arrival.

Under load balancing, we will define the additional stress to the system as η maxk |Qk|. Figure 4.1

shows an example server with current stress of 4η.
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FIGURE 4.1: Partitioned Server with Load Balancing

Examples

Due to the dynamic nature of arrival times, allocation to queues, and service times, we have many

possible configurations of jobs at any point in time. Therefore, the allocation scheme adds an

additional layer of variation to the service times and order of service. The placement of jobs in the

various queues (and thus the order of service and service times) is wholly dependent on all arrival

times and service times of the prior arrivals. The following examples illustrate the effect on the

workload stress added to the system in various scenarios.

b b

b

Q1 Q2

1 2

3

(A) Queue Configuration

t

Stress

r0

T1 T2 tobs

η

T3

η

(B) Breakdown Rate Process Trajectory

FIGURE 4.2: Example 4.1

Example 4.1. Suppose for simplicity we have 2 channels. Suppose at the time of observation of the system,

3 jobs have arrived and none have finished. WLOG, suppose job 3 fell into Q1. See Figure 4.2a. The stress

to the system at t = tobs is r0(tobs) + 2η, as shown in Figure 4.2b.

Note in example 4.1 that Job 2 does not add any additional stress to the system. Job 1 sees an

empty queue upon arrival, and maxK |QK| = 1 when it falls into any particular queue. Job 2 arrives

as Job 1 is still being processed, and thus the placement of Job 1 forces Job 2 into the empty channel.

Since maxK |QK| is still 1, the stress to the system doesn’t change. Job 3 arrives as Jobs 1 and 2 are

in service, and thus its choice of queue is irrelevant due to the configuration of the two queues at
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T3. Regardless of which queue Job 3 falls into, maxK |QK| = 2. Thus the arrival of Job 3 increases

the breakdown rate by η again.

The next example shows the change in system stress Job 1 from Example 4.1 when one job has

finished processing before T3.

b b

Q1 Q2

3 2

(A) Queue Configuration

t

Stress

r0

T1 T2 tobs

η

T3T1 +W1

(B) Breakdown Rate Process Trajectory

FIGURE 4.3: Example 4.2

Example 4.2. Consider the same two-channel system from Example 4.1. However, now suppose WLOG

that T3 < T1 + W1. In other words, service for Job 1 was completed before Job 3 arrived. Hence Job 3 will

fall into the opposite queue as Job 2. The stress to the system at the time of observation would be r0(t) + η.

See Figures 4.3a and 4.3b.

In this scenario, the workload due to Job 3 does not contribute any additional stress to the

server. Also observe that upon completion of Job 1, the workload stress to the server does not

decrease, as Job 2 still resides in the system and is being served.

Contrast this behavior with the breakdown rate process given in Chapter 2. In the single-

channel, single-server model described in both [9] and Section 2.1, each job adds stress to the

server upon arrival. Under the load balancing allocation scheme, the additional stress to the server

depends on the arrival and service times of all prior jobs. From a stochastic perspective, this break-

down rate process has full memory.

The examples above illustrate that maxK |QK| depends on the intersection of the intervals Ij =

[Tj, Tj + Wj], j = 1, ..., N(t). The next section details the methodology to obtain the configuration

of jobs in the server at time t by deccomposition of
⋃N(t)

j=1 Ij into disjoint atoms and derives the

stochastic breakdown rate process under the load balancing allocation scheme.

Breakdown Rate Process and Conditional Survival Function

Let ε = (ε1, ..., εN(t)) be a N(t)−tuple whose components ε j = {∅, c}, where ∅ denotes the empty

set, and c denotes the complement of the set. Let E = {ε : ε j = {∅, c}} denote the set of all possible



Chapter 4. Extensions of the Single Server Model 37

ε, excepting ε = (c, ..., c). Then by Lemma A.8 (Appendix A),

N(t)⋃
j=1

Ij =
⋃
ε∈E

N(t)⋂
j=1

I
ε j
j (4.1)

Remark: ∩N(t)
j=1 I

ε j
j indicates which jobs are still in the server at time t. The union is disjoint; thus

only one ε will describe the server configuration at any given time t. For example, if 3 jobs have

arrived to the server at time tobs, |E| = 3× 2− 1 = 5. These may be enumerated:

·I1 ∩ I2 ∩ I3 · Ic
1 ∩ I2 ∩ I3

·Ic
1 ∩ Ic

2 ∩ I3 · Ic
1 ∩ I2 ∩ Ic

3

·I1 ∩ Ic
2 ∩ Ic

3

As an illustration, refer to Example 4.1. All three jobs are in the system at t = tobs (that is, none

have completed service), and thus tobs ∈ I1 ∩ I2 ∩ I3. Expanding, tobs ∈ [T1, T1 +W1], [T2, T2 +W2],

and [T3, T3 + W3].

Compare the case with that of Example 4.2. In this case, three jobs have arrived at t = tobs, but

Job 1 has finished by tobs. Thus tobs 6∈ I1, but since Jobs 2 and 3 are still in the system, tobs ∈ I2 ∩ I3.

Thus tobs ∈ Ic
1 ∩ I2 ∩ I3.

Now, since the additional workload stress to the server is a multiple of η maxK |QK|, it remains

to derive the appropriate multiplier that accounts for the number of jobs that contribute additional

stress to the system. Let n = ∑
N(t)
j=1 1(ε j = ∅|ε j ∈ ε) for a particular ε, and let αε be the multi-

plier that indicates the number of jobs that contribute stress η to the system. Under [9] and the

generalization in Section 2.1, every uncompleted job in the system contributes stress, thus αε = n.

Under the load balancing scheme, αε = b n+1
K c, where K is the number of channels in the server.

This is due to the allocation scheme’s attempts to evenly distribute jobs across channels. Thus, for

Example 4.1, n = 3, and K = 2, meaning αε = 2, as illustrated in Figure 4.2b and for Example 4.2,

αε = b 3+1
2 c = 1, as in Figure 4.3b.

Then, the stochastic breakdown rate process under the load balancing allocation scheme is

given by

B(t) = r0(t) + η ∑
ε∈E

αε1
I

ε1
1 ∩Iε2

2 ∩I
εN(t)
N(t)

(t)

Under this expression, only one indicator function will be nonzero at any given point in time,

since all atoms are disjoint. Now, Iε1
1 ∩ Iε2

2 ∩ ... ∩ I
εN(t)
N(t) may be expressed as one interval [Lε, Rε],
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where

Lε = max
(
{Tj : ε j = ∅}N(t)

j=1

)
Rε = min

(
{Tj + Wj : ε j = ∅}N(t)

j=1 , {Tj : ε j = c}N(t)
j=1

)

Thus, for a server with K channels under a load balancing routing scheme with all jobs bringing

constant stress η, the breakdown rate process B(t) may be expressed as

B(t) = r0(t) + η ∑
ε∈E

αε1[Lε ,Rε ](t) (4.2)

Thus, the conditional survival function under the load balancing scheme is given by

SY|T,W,N(t)(t|t,w, n) = e−
∫ t

0 B(s)ds

= ¯F0(t) exp

(
−η

∫ t

0
∑
ε∈E

αε1[Lε ,Rε ](s)ds

)

= F̄0(t) exp

(
−η ∑

ε∈E
αε min(t− Lε, Rε)

)

Remarks

Finding the survival function of the single-channel environment relied on the independence of the

set of arrival times and service times. From (4.1), the independence is clearly lost. As noted before,

the random breakdown process has full memory, and thus is completely dependent upon the entire

trajectory up to t = tobs.

4.2 Clustered Tasks in a Multichannel Server

Customer 1

Customer 2
Customer 3

Task 1 Task 2 Task 3 Task 4

λ(t)

FIGURE 4.4: Illustration of Clustered Tasks in a Multichannel Server

The previous multichannel server model in Section 4.1 implicitly assumed each job comes with

one task, and all channels are identical in their ability to serve any task brought by a job. A classic
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illustration is a block of registers at a retail establishment. Each customer will survey the length of

the various queues at each register before choosing the shortest queue. Viewing each of these sep-

arate registers as a channel in a single server under these conditions gave rise to the load balancing

allocation model detailed in the previous section. This section presents a different interpretation of

a multichannel, single-server model.

Suppose a server has multiple channels Q1, ..., QK, but each channel serves a different type of

task. A customer arrives to the server and may select any number from 0 to K tasks for the server

to perform. Said customer will select each possible task j with probability pj. Figure 4.4 illustrates

an example of such a situation in which three customers visit the server and each customer picks

a different number and set of tasks at random. A customer is considered fully serviced (i.e. the job

is complete) upon completion of the last task belonging to that particular customer.

Model Assumptions

The following mathematical assumptions are made for the multichannel server with clustered

tasks:

(i) Customers arrive to the server with K channels via a nonhomogenous Poisson process (NHPP)

with intensity λ(t).

(ii) The breakdown rate of the idle server is given by r0(t).

(iii) Each channel corresponds to a different task the server can perform.

(iv) The selection of each task is a Bernoulli random variable with probability pk. Thus the number

of tasks selected by each customer is a binomial random variable.

(v) The workload stress to the server is a constant multiple η of the number of tasks requested

by the customer, i.e. the additional stress is given by ηN, where N is the number of tasks

requested.

(vi) The PDF of each channel’s service time is given by gi(w), i = 1, ..., K. Since the customer’s

service is not complete until all requested tasks have finished, the service life distribution for

the customers is given by maxi Gi(w).

Under these assumptions, this model is a special interpretation of the random stress environ-

ment developed in Chapter 2. In this case, the random workload stress is ηN, where N is a binomial

random variable, and the service life distribution GW(w) = max
i

Gi(w), which may be easily ob-

tained through the mathematical properties of order statistics. Two variations are considered in

this section: independent channels and correlated channels.
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Independent Channels in a Clustered Task Server

Suppose the selection probabilities for each task in the server are identical, that is, p1 = p2 = . . . =

pK = p. Then N ∼ Bin(K, p). Using Theorem 2.1, the survival function of the multichannel server

is given in the following theorem:

Theorem 4.1 (Survival Function of Multichannel Server with Clustered Tasks and Independent

Channels). Suppose conditions (i)-(vi) above are satisfied. In addition, assume p1 = p2 = . . . = pK = p.

Then the survival function of the server is given by

SY(t) = F̄0(t) exp
(
−Kη

[
e−ηt (1− p + pe−ηt)K−1 − p(1− p)K−1

] ∫ t

0
m(t− w)ḠW(w)dw

)

where m(x) =
∫ x

0 λ(s)ds, F̄0(t) = e−
∫ t

0 r0(s)ds, ḠW(w) = 1− GW(w), and GW(w) = max
i

Gi(w).

Proof. Since p1 = . . . = pK = p, the number of tasks selected by any particular customer N ∼
Bin(K, p). Then theH from Theorem 2.1 is given byH = ηN. Thus

SY(t) = F̄0(t) exp
(
−EH

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

])

In this case,

E
[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

]
= E

[
ηN

∫ t

0
e−ηNwm(t− w)ḠW(w)dw

]
=

K

∑
n=0

[
ηn
∫ t

0
e−ηnwm(t− w)ḠW(w)dw

]
· P(N = n)

=
K

∑
n=0

[
ηn
∫ t

0
e−ηnwm(t− w)ḠW(w)dw

] (
K
n

)
pn(1− p)K−n

= η
∫ t

0
m(t− w)ḠW(w)

(
K

∑
n=0

ne−ηnw
(

K
n

)
pn(1− p)K−n

)
dw

Now,

K

∑
n=0

ne−ηnw
(

K
n

)
pn(1− p)K−n =

K

∑
n=0

K!
(K− n)!n!

ne−ηnw pn(1− p)K−n

=
K

∑
n=0

K(K− 1)!
(n− 1)!(K− 1− (n− 1))!

e−ηnw pn(1− p)K−n

=
K

∑
n=0

K
(

K− 1
n− 1

)
e−ηnw pn(1− p)K−n
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Making a change of indices, let j = n− 1. Then

K

∑
n=0

K
(

K− 1
n− 1

)
e−ηnw pn(1− p)K−n = K

K−1

∑
j=0

(
K− 1

j

)
pj+1(1− p)K−(j+1)e−η(j+1)w

Note the above resembles a scaled and shifted moment generating function of a binomial random

variable. Let X ∼ Bin(K− 1, p). Then

K
K−1

∑
j=0

(
K− 1

j

)
pj+1(1− p)K−(j+1)e−η(j+1)w = K

(
E
[
e−η(X+1)t

]
− P(X = 0)

)
= K

(
e−ηtE

[
e−ηXt − p(1− p)K−1

])
= K

(
e−ηt [1− p + pe−ηt]K−1 − p(1− p)K−1

)

Thus,

SY(t) = F̄0(t) exp
(
−Kη

[
e−ηt (1− p + pe−ηt)K−1 − p(1− p)K−1

] ∫ t

0
m(t− w)ḠW(w)dw

)

Correlated Channels in a Cluster Server

Now suppose the server tasks are correlated, in that the selection of one particular task may af-

fect the selection of any or all of the other tasks. Thus the channels are a sequence of dependent

Bernoulli random variables. The construction of dependent Bernoulli random variables is given

in [14], and a summary is given.

Dependent Bernoulli Random Variables and the Generalized Binomial Distribution

Korzenwioski [14] constructs a sequence of dependent Bernoulli random variables using a binary

tree that distributes probability mass over dyadic partitions of [0,1]. Let 0 ≤ δ ≤ 1, 0 < p < 1, and

q = 1− p. Then define the following quantities:

q+ := q + δp p+ := p + δq

q− := q(1− δ) p− := p(1− δ)
(4.3)

The quantities in (4.3) satisfy the following conditions:

q+ + p− = q− + p+ = q + p = 1

qq+ + pq− = q, qp− + pp+ = 1
(4.4)
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FIGURE 4.5: Construction of Dependent Bernoulli Random Variables

Figure 4.5 shows the construction shows the dependencies. The following examples using coin

flips illustrate the effect of the dependency coefficient δ:

Example 4.3 (δ = 1). For δ = 1, q+ = q + p = 1, q− = 0, p+ = p + q = 1, and p− = 0. Supposing the

first coin flip ε1 = 1. Then every successive εi will also be 1. Similarly if ε1 = 0. Thus the result of the first

coin flip completely determines the outcomes of all the rest.

Example 4.4 (δ = 0). For δ = 0, q+ = q− = q, and p+ = p− = p. Thus, the first coin flip (and all

subsequent ones) have no effect on the ones that follow.

Example 4.5 (δ = 1
4 ). Suppose p = q = 1

2 . Then p+ = q+ = 5
8 , and p− = q− = 3

8 . Then the subsequent

outcomes εi, i ≥ 2 are more likely to match the outcomes of ε1 than not.

Now suppose p = 1
4 , q = 3

4 . Then p+ = 7
16 ,p− = 3

16 , q+ = 13
16 , and q− = 9

16 . In this example of an

unfair coin, the dependency coefficient δ still attempts to skew the results following the first coin flip in favor

of the outcome of ε1. However, the dependency here heightens the effect of ε1 = 0 on subsequent flips, and

cannot overcome the discrepancy between the probability of success and failure to skew εi, i ≥ 2 in favor of a

1 following the outcome of ε1 = 1.

Using these dependent Bernoulli random variables, [14] presents a Generalized Binomial Dis-

tribution for identically distributed but dependent Bernoulli random variables.

Generalized Binomial Distribution

Let X = ∑n
i=1 εi, where εi, i = 1, ..., n are identically distributed Bernoulli random variables with

probability of success p and dependency coefficient δ. Then

P(X = k) = q
(

n− 1
k

)
(p−)k(q+)n−1−k + p

(
n− 1
k− 1

)
(p+)k−1(q−)n−1−(k−1) (4.5)
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Survival Function of Correlated Channels in a Cluster Server

Suppose the selection of tasks may be modeled by the dependent Bernoulli random variables given

in the previous section. That is, suppose the customer selects Tasks 1-K in sequence, and the selec-

tion or rejection of Task 1 affects all subsequent tasks by a dependency coefficient δ. From [14], the

correlation between task selections εi, ε j is given by

ρ = Cor(εi, ε j) =


δ, i = 1; j = 2, ..., K

δ2, i 6= j; i, j ≥ 2
(4.6)

This illustrates the dependency of Tasks 2-K on the outcome of Task 1, and notes that while

Tasks 2-K are still correlated with each other, the dependency is much lower. In a similar fashion

to the independent channel server, the survival function is derived.

Theorem 4.2 (Survival Function of Multichannel Server with Clustered Tasks and Dependent Chan-

nels). Suppose conditions (i)-(vi) above are satisfied. In addition, suppose the selection of channels 1− K

are determined by identically distributed Bernoulli random variables with dependency coefficient δ as defined

in [14]. Then the survival function of the server is given by

SY(t) = F̄0(t) exp
(
−η

∫ t

0
m(t− w)ḠW(w)S(w)dw

)
(4.7)

where m(x) =
∫ x

0 λ(s)ds, and

S(w) =
K

∑
n=0

e−ηnw
K−n−1

∑
j=0

(
K− 1

n− 1, j, K− 1− n− j

)
pK−1−j(1− p)j+1δK−1−n−j(1− δ)n

+
K

∑
n=0

ne−ηnw
n−1

∑
i=0

(
K− 1

K− 1− n, i, n− 1− i

)
pi+1(1− p)K−nδn−1−j(1− δ)K−n−j

Proof. By Theorem 2.1,

SY(t) = F̄0(t) exp
(
−E

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

])
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Similar to the proof of Theorem 4.1, H = ηX, where this time X has the generalized binomial

distribution given in (4.5). Then

E
[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

]
=

K

∑
x=0

[
ηx
∫ t

0
e−ηxwm(t− w)ḠW(w)dw

]
P(X = x)

=
K

∑
x=0

ηx
[∫ t

0
e−ηxwm(t− w)ḠW(w)dw

] [
q
(

K− 1
x

)
(p−)x(q+)K−1−x

]

+
K

∑
x=0

ηx
[∫ t

0
e−ηxwm(t− w)ḠW(w)dw

] [
p
(

K− 1
x− 1

)
(p+)x−1(q−)K−x

]
= η

∫ t

0
m(t− w)ḠW(w)(S1(w) + S2(w))dw

where S1(w) = ∑K
x=0 xe−ηxwq(K−1

x )(p−)x(q+)K−1−x

and S2(w) = ∑K
x=0 xe−ηxw p(K−1

x−1)(p+)x−1(q−)K−x. Using the definitions given in (4.3),

S1(w) =
K

∑
x=0

xe−ηxw(1− p)
(

K− 1
x

)
(p− δp)x(1− p + δp)K−1−n

=
K

∑
x=0

xe−ηxw(1− p)
(

K− 1
x

)
px(1− δ)x

K−1−x

∑
j=0

(
K− 1− x

j

)
(1− p)j(δp)K−1−x−j

Now, x(K−1
x )(K−1−x

j ) = (K−1)!
(x−1)!j!(K−1−x−j)! = ( K−1

x−1,j,K−1−x−j). Then

S1(w) =
K

∑
x=0

e−ηxw
K−x−1

∑
j=0

(
K− 1

x− 1, j, K− 1− x− j

)
(1− p)j+1(1− δ)xδK−1−x−j pK−1−j

Similarly,

S2(w) =
K

∑
x=0

xe−ηxw p
(

K− 1
x− 1

)
(p + δ(1− p))x−1((1− p)(1− δ))K−x

=
K

∑
x=0

xe−ηxw p(1− δ)K−x(1− p)K−x
x−1

∑
i=0

(
x− 1

i

)
pi(1− δ)iδx−1−i

=
K

∑
x=0

xe−ηxw
x−1

∑
i=0

x
(

K− 1
K− 1− x, i, x− 1− i

)
pi+1δx−1−i(1− δ)K−x+i(1− p)K−x

Clearly S(w) = S1(w) + S2(w)
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Chapter 5

Systems of Servers under a Random

Stress Environment

5.1 Systems of Correlated Servers

N1(t) +NC(t)

N3(t) +NC(t)

N4(t) +NC(t)

N2(t) +NC(t)

1

2

3 4

FIGURE 5.1: Logical Topology for a Hypothetical System with Correlated Traffic
Streams

Chapter 2 presented a dynamic model for a single server under a random stress environment.

In many applications, particularly retail and manufacturing, servers are organized into networks.

Each server forms a node in the network, and the performance of each server affects the health

of the network as a whole. In addition to the physical layout of the network, every system of

components has a logical topology, or reliability topology.

It is common in the analysis of system reliability to employ structure functions which define the

system state as a function of the component states. These structure functions give the system state

(with a binary assumption of working or failed) as a function of component states [15]. Denote xi as

the state of component i. Then

xi :=


0, if i has failed

1, if i is working
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Then the structure function of a system with n components is given by

φ(x) =


0, if the system has failed when in state x

1, if the system is working when in state x

where x = (x1, ..., xn) is known as the state vector.

The reliability topology of the network is given in a reliability block diagram (RBD), which

shows the logical arrangement of the network. The existence of a “path" through the RBD equates

to φ(x) = 1, where the path is traversed through the systems as nodes are operational; that is,

xi = 1. (See Section 1.1.)

As an example, refer to Figure 5.1. In this particular system, if either of Nodes 3 or 4 fails, then

no path exists through the diagram. However, if only one of Nodes 1 or 2 fails, with both of Nodes

3 and 4 operational, then a path exists through the system. Thus the network is operational if any

of the following sets of nodes are operational: {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}. In this system, Nodes 1

and 2 are in parallel. The subsystem formed by Nodes 1 and 2, and Nodes 3 and 4 are all in series.

Consider a system with multiple nodes such that the external traffic goes to each node indi-

vidually. Many systems in retail and manufacturing follow this model. For example, instead of

viewing a series of checkout registers as a G/G/K queueing system, the system may be inter-

preted as a parallel logical topology of K nodes with separate but correlated traffic streams to each

node. A manufacturing system in which each manufacturing site is responsible for assembling a

portion of a widget may have separate shipments of raw materials arriving to each location.

In each of these examples, the separate traffic streams are certainly correlated. The arrivals to

each node will be modeled by a nonhomogenous Poisson processes (NHPP), as in Chapter 2, with

the introduction of a correlator process that will ensure all nodes are correlated but conditionally

independent.

Let {N1(t) : t ≥ 0}, {N2(t) : t ≥ 0}, . . . , {NK(t) : t ≥ 0} and a correlator process {Nc(t) : t ≥ 0}
be mutually independent nonhomogenous Poisson processes (NHPPs) with intensities λi(t), i =

1, ..., K and λc(t), respectively. Now suppose there are K components (or queues) in this system,

denoted Q`,c, ` = 1, ..., K such that the arrival processes {N`,c(t) : t ≥ 0}, ` = 1, ..., K are given by

N`,c(t) = N`(t) + Nc(t).

By Lemma A.9, the sum of n independent NHPPs remains a NHPP. Thus, since {N`}K
`=1 and

{Nc(t)} are mutually independent, and N`(t) = N`(t) + Nc(t) is a NHPP, E[N`,c(t)] = λ`(t) +

λc(t).

The covariance of Ni and Nj is given by

Cov(Ni,c,Nj,c)(t) = E[Nqi Nqj ]− E[Nqi ]E[Nqj ] = λc(t)
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and the correlation between Ni,c and Nj,c is thus given by

ρNi,c ,Nj,c(t) =
Cov(Ni,c,Nj,c)

σNi,c σNj,c

=
λc(t)√

(λi(t) + λc(t))(λj(t) + λc(t))

Survival Function of System with Two Correlated Nodes

Series System

Suppose two nodes Q`,1 and Q`,2 are arranged in series with arrival processes N1(t) = N1(t) +

Nc(t) and N2(t) = N2(t) + Nc(t). Let the NHPPs {N` : t ≥ 0}, ` = 1, 2 and c have arrival times

{Tj`}
N`(t)
j`=1 , service times {Wj`}

N`(t)
j`=1 , and stresses {Hj`}

N`(t)
j`=1 as in Chapter 2. Assume that all stresses

Hj`
i.i.d.∼ H. In addition, all service times regardless of node are i.i.d. with distribution GW(w) and

pdf gW(w). Let the baseline breakdown rate for Q`,c be r0`,c(t). Jobs in both queues add stress to

the server until completion. Then for Q`,c, the breakdown rate process for each node is given by

B`,c(t) = r0`,c(t) +
N`(t)

∑
j`=1
Hj`1(Tj` ≤ t ≤ Tj` + Wj`) +

Nc(t)

∑
jc=1
Hjc1(Tjc ≤ t ≤ Tjc + Wjc) (5.1)

The system survives past time t if and only if both Q1,c and Q2,c survive past time t. Let Yi,c, i =

1, 2 be the random length of the node lifetime under workload (or renewal cycle if the node can be

rebooted) Qi,c, i = 1, 2, and YS the system life under workload.

Q1,c and Q2,c are conditionally independent under {Nc(t) : t ≥ 0}, {Tjc = tjc}
Nc(t)
jc=1 , {Wjc =

wjc}
Nc(t)
jc=1 , and {Hjc = ηijc

}Nc(t)
jc=1 . Thus

P (YS > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= P
(

Y1,c > t ∩Y2,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1

)
=

2

∏
i=1

P
(

Yi > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1

)
(5.2)

By Lemma A.10,

P ( Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= F̄0`,c(t) exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)

× exp
(
−EH

[
H
∫ t

0
exp(−Hw)m`(t− w)ḠW(w)dw

])
(5.3)
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where F̄0`,c = exp
(
−
∫ t

0 r0(x)dx
)

. Thus from (5.2),

P (Ys > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= F̄01,c(t)F̄02,c(t) exp

(
−2

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)

× exp
(
−EH

[
H
∫ t

0
(m1(t− w) + m2(t− w)) exp(−Hw)ḠW(w)dw

])
(5.4)

The unconditional survival function for the two-component correlated series system is given in

the following theorem.

Theorem 5.1. Let {N1(t) : t ≥ 0}, {N2(t) : t ≥ 0}, and {Nc(t) : t ≥ 0} be independent NHPPs with

intensities λ1(t), λ2(t), and λc(t), respectively. Suppose all arrival times {Tjα}
Nα(t)
jα=1 , α = 1, 2; c are inde-

pendent. Let all service times {Wjα}
Nα(t)
jα=1 , α = 1, 2; c be i.i.d. with pdf gW(w) and distribution Gw(w) and

mutually independent of all arrival times. Let all stresses {Hjα}
Nα(t)
jα=1 , α = 1, 2; c be i.i.d. with distribution

H as given in Theorem 2.1, and mutually independent of arrival times and service times. Suppose we have a

system of two components (Q1,c and Q2,c) arranged logically in series, where each component has a arrival

process Ni(t) = Ni(t) + Nc(t), i = 1, 2. Then the survival function of the system SYs(t) is given by

SYs(t) = F̄01(t)F̄02(t) exp
(
−EH

[
H
∫ t

0
(m1(t− w) + m2(t− w)) exp(−Hw)ḠW(w)dw

])
× exp

(
−2EH

[
H
∫ t

0
exp(−2Hw)mc(t− w)Ḡw(w)dw

])
(5.5)

Proof. The proof is analogous to the proof of Theorem 2.1. In particular, the conditional survival

function is given by

SYs(t) = E
[

E
[

P (Ys > t
∣∣∣Nz(t), {Tjc}

Nz(t)
jc=1 , {Wjc}

Nz(t)
jc=1 , {Hjc}

Nz(t)
jc=1 ) ]

∣∣∣Nc(t), {Hjc}
Nc(t)
jc=1

]
= F̄01(t)F̄02(t) exp

(
−EH

[
H
∫ t

0
(m1(t− w) + m2(t− w)) exp(−Hw)ḠW(w)dw

])
× E

[
E

[
exp

(
−2

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc) )

∣∣∣∣∣Nc(t), {Hjc}
Nc(t)
jc=1

]]

To obtain the survival function, the above expectation is obtained in a similar manner as in the

proof of Theorem 2.2, replacing theHjc with 2Hjc to immediately see the given result.

Parallel System

Now suppose the same conditions (1)-(4) are retained but the network is in parallel rather than

series. In this case, the system fails only if both components fail. Thus, conditioning on the entire
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{Nc} process, both Q1,c and Q2,c are now independent, and

P ( Ys < t
∣∣∣Nc(t), {Tzj}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

=
2

∏
`=1

P ( Y`,c < t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

Hence, the conditional survival function of the parallel system is given by

P ( Ys > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= 1− P ( Ys < t
∣∣∣Nc(t), {Tzj}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

=
2

∑
`=1

P ( Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

−
2

∏
`=1

P ( Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

Using Lemma A.10(Appendix A),

P ( Ys > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= F̄01(t) exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc

)
exp

(
−EH[H

∫ t

0
e−Hwm1(t− w)ḠW(w)dw]

)

+ F̄02(t) exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc

)
exp

(
−EH[H

∫ t

0
e−Hwm2(t− w)ḠW(w)dw]

)

+ F̄01(t)F̄02(t) exp

(
−2

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc

)

× exp
(
−EH[H

∫ t

0
(m1(t− w) + m2(t− w))e−HwḠW(w)dw]

)
(5.6)

Now we may find SYS(t) for the parallel system in the same manner as the series system. Then,

denoting f r,q
H (t) = qH

∫ t
0 e−qHwmr(t− w)Ḡw(w)dw, where r = {1, ..., K, c} and q ∈N.

P(Ys > t) = F̄01(t) exp
(
−EH[ f 1,1

H (t) + f c,1
H (t)]

)
+ F̄02 exp

(
−EH[ f 2,1

H (t) + f c,1
H (t)]

)
− F̄01(t)F̄02(t) exp

(
−EH[ f 1,1

H (t) + f 2,1
H (t)]

)
exp

(
−EH

[
f c,2
H (t)

])
(5.7)

Generalization to Systems of K Components

The systems in the prevous subsections are generalized to K components, all with the same cor-

relator process Nc. Thus we now have components Q1,c, ..., QK,c with arrival processes N`,c(t) =

N`(t) + Nc(t), ` = 1, ..., K.
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Survival Function of Series System with K Correlated Components

The conditional survival function for a system with K correlated nodes, all correlated by the same

process Nc(t) is a straightforward generalization of (5.4) and is given by

P (Ys > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

=

(
K

∏
`=1

F̄`,c

)
exp

(
−K

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)

× exp

(
−EH

[
H
∫ t

0

(
K

∑
`=1

m`(t− w)

)
exp(−Hw)ḠW(w)dw

])
(5.8)

and thus the unconditional survival function for a series system of K correlated components is

given by

SYs(t) =

(
K

∏
`=1

F̄`,c

)
exp

(
−EH

[
H
∫ t

0

(
K

∑
`=1

m`(t− w)

)
exp(−Hw)ḠW(w)dw

])

× exp
(
−KEH

[
H
∫ t

0
exp(−KHw)mc(t− w)Ḡw(w)dw

])
(5.9)

Survival Function of Parallel System with K Correlated Components

For a system with K components in parallel, note again that the systems fails if and only if ev-

ery component fails. Let ξ`,c(t) = P (Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 ). Then the

conditional survival function for the K-component parallel system is given by

P (YS > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 ) = 1−

K

∏
`=1

(1− ξ`,c(t))

Denote ξ = (ξ1,c, ..., ξK,c), 1 as the K−tuple of 1’s. Then

1−
K

∏
`=1

(1− ξ`,c(t)) = 1− ∑
ν≤1

(
1
ν

)
(−1)1−νξ1−ν

= 1−
1

∑
s1=0
· · ·

1

∑
sK=0

(−1)1−s1 ξ1−s1
1,c · · · (−1)1−sK ξ1−sK

K,c (5.10)

Let S = {s = (s1, ..., sK) : s` = 0, 1} denote all possible combinations of s in the terms of (5.10).

Let Lσ = {` : s` = 0 in sσ, sσ ∈ S}. Then we may express (5.10) in the following way:

1−
K

∏
`=1

(1− ξ`,c(t)) = 1− ∑
s∈S

(−1)sξs (5.11)
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Using Lemma A.10,

ξs =

(
∏
`∈Lσ

F̄0`,c(t)

)
exp

(
−EH

[
H
∫ t

0

(
∑
Lσ

m`(t−w)

)
e−HwḠW(w)dw

])

× exp

(
−|Lσ|

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)
(5.12)

Thus, in a similar fashion to Theorem 5.1, the survival function for a system of K correlated

components in parallel is given by

SYs(t) = 1− ∑
s∈S

(−1)sE[ξs]

= 1− ∑
s∈S

(−1)s

(
∏
`∈Lσ

F̄0`,c(t)

)
exp

(
−EH

[∫ t

0
ḠW(w)

(
He−Hw ∑

`∈Lσ

[m`(t− w)]

+ |Lσ|He−|Lσ |Hwmc(t− w)
)])
(5.13)

Selected Additional System Architectures and a Generalized Method for

Obtaining System Survival Functions

This section extends the same principle of multiple nodes with one correlator process to other

selected logical system architectures. As a brief example, the structure function of the series system

with K components is given by φseries(x) = ∏K
`=1 x`. Replacing the binary x` by the conditional

survival function

P
(

Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1

)
for each component given by Lemma A.10, the conditional survival function for the series system

given in (5.8) is completely analogous to the structure function φ.

The structure function for a parallel system is given by φparallel(x) = 1−∏K
`=1(1− x`) which

may be expanded into the form of (5.10). Thus, using similar logic, the conditional survival func-

tion of a parallel system is analogous to the structure function of a parallel system. Therefore, for

both a series and parallel system, the binary state variable x` and the conditional survival function

for node ` may be viewed to be in a one-to-one correspondence of sorts. Thus, the system survival

function is isomorphic to the system structure function for both series and parallel systems. Since

every logical system architecture can be written either as a series system comprised of parallel sub-

systems or a parallel system comprised of series subsystems, we only need the structure function
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expressed as a linear combination of powers of x`, ` = 1, ..., K in order to obtain the system survival

function.

In the subsequent subsections, a selection of other logical system architectures provides exam-

ples illustrating the above method.

Bridge System

FIGURE 5.2: Block Diagram of a Bridge Structure

Figure 5.2 gives the logical block diagram for a system with a bridge-style reliability. Some

communications networks may use a bridge system when there are alternative ways of connecting

devices such as telephones or computers. The bridge system provides many possible ways to

“complete the circuit" for relatively few components compared to a parallel system with higher

reliability than a series system.

As before, each node still has its own arrival process; thus the diagram given above is logical

and reveals the various combinations of working components required for the system to work. It

can be easily seen that the system survives past time t if any one of the following sets of components

all survive past t:

{1, 3, 5} {1, 4} {2, 3, 4} {2, 5}

We may give an equivalent block diagram of the bridge system using repeated components in

Figure 5.3.

FIGURE 5.3: Alternative Representation of a Bridge Structure
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Then the structure function may be easily derived using prior knowledge of series and parallel

systems by breaking the above diagram into a parallel system of series subsystems. Therefore,

φ(x) = 1− (1− x1x3x5)(1− x1x4)(1− x2x3x4)(1− x2x5)

Expanding the above and replacing x` by P(Y` > t|Nc(t), {Hjc}, {Tjc}, {Wjc}) one may derive

the conditional survival function for the bridge system. Let Sjc = ∑
Nc(t)
jc=1 Hjc min(Wjc , t− Tjc), and

let f r,q
H (t) = qH

∫ t
0 e−qHwmr(t− w)Ḡw(w)dw, where r = {1, ..., 5, c} and q ∈ N. Let f i1;i2;...;in

H (t) =

∑n
j=1 f

ij ,1
H (t), and let F̄α

0m;n
(t) = F̄α

0m
(t)F̄α

0n
(t). Then

P(YS > t|Nc(t), {Hjc}, {Tjc}, {Wjc})

= e−2Sjc
[

F̄01;4(t) exp
(
−EH

[
f 1;4
H (t)

])
+ F̄02;5(t) exp

(
−EH

[
f 2;5
H (t)

])]
+ e−3Sjc

[
F̄01;3;5(t) exp

(
−EH

[
f 1;3;5
H (t)

])
+ F̄02;3;4(t) exp

(
−EH

[
f 2;3;4
H (t)

])]
− e−4Sjc

[
F̄01;2;4;5(t) exp

(
−EH

[
f 1;2;4;5
H (t)

])]
− e−5Sjc

[
F̄01;3;5(t) exp

(
−EH

[
f 1;3;5
H (t)

])
+ F̄2

01
(t)F̄03;4;5(t) exp

(
−EH

[
2 f 1,1
H (t) + f 3;4;5

H (t)
])

+ F̄2
02
(t)F̄03;4;5(t) exp

(
−EH

[
2 f 2,1
H (t) + f 3;4;5

H (t)
])

+ F̄2
04
(t)F̄01;2;3(t) exp

(
−EH

[
2 f 4,1
H (t) + f 1;2;3

H (t)
])

+ F̄2
05
(t)F̄01;2;3(t) exp

(
−EH

[
2 f 5,1
H (t) + f 1;2;3

H (t)
])]

− e−6Sjc
[

F̄2
03
(t)F̄01;2;4;5(t) exp

(
−EH

[
2 f 3,1
H (t) + f 1;2;4;5

H (t)
])]

+ e−7Sjc
[

F̄2
01;5

(t)F̄02;3;4(t) exp
(
−EH

[
2 f 1;5
H (t) + f 2;3;4

H (t)
])

+ F̄01;3;5(t)F̄2
02;4

(t) exp
(
−EH

[
2 f 2;4;5
H (t) + f 1;3

H (t)
])

+ F̄01;4;5(t)F̄2
02;3

(t) exp
(
−EH

[
2 f 2;3;5
H (t) + f 1;4

H (t)
])]

+ e−8Sjc
[

F̄2
01;3;4

(t)F̄02;5(t) exp
(
−EH

[
2 f 1;3;4;5
H (t) + f 2,1

H (t)
])]

− e−9Sjc
[

F̄2
01;2;3;4

(t)F̄05(t) exp
(
−EH

[
2 f 1;2;3;4
H (t) + f 5,1

H (t)
])]

(5.14)

We may use the linearity of expectation to simply replace e−qSjc by exp
(

EH
[

f q,c
H
])

in (5.14) to

obtain SYS(t) for the bridge system. While not completely tractable, the survival function is given

in closed form and illustrates a general technique wherein we may use the expansion of a structure

function in order to derive the conditional survival function for any system where all components

are correlated by one process {Nc(t)}. This conditional survival function will always be linear

in e−qSjc , and thus the unconditional survival function may be easily obtained using the already
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well-developed method. We illustrate this with another example.

k-of-n System

The k-of-n system has n nodes in parallel of which k must be functioning in order for the system

to remain functioning. This is a generalization of the series system (n-of-n) and the parallel system

(1-of-n). The structure function of a k-of-n system is given by

φ(x) = 1−
n

∏̀
j=1;

j=1,...,k;
`1<...<`k

(
1−

k

∏
j=1

x`j

)
(5.15)

By replacing `j with the appropriate conditional survival function for component ` and expand-

ing (5.15), we may again arrive at the system survival function conditioned upon {Nc(t) : t ≥ 0}.
Because this system may also be expressed as a parallel system of series subsystems, the condi-

tional survival function will again be linear in e−qSjc and thus the linearity of expectation allows

for straightfoward computation of the system survival function.

FIGURE 5.4: Block Diagram of 2-of-3 System

Example 5.1 (2-of-3 system). Figure 5.4 gives the logical block diagram for a 2-of-3 system. Thus, using

(5.15), the structure function for the 2-of-3 system is given by

φ(x) = 1− (1− x1x2)(1− x1x3)(1− x2x3)

=
2

∑
i=1

3

∑
j=i+1

xixj −
3

∑
i=1

j,k 6=i

x2
i xjxk +

3

∏
i=1

x2
i (5.16)

Using the technique described in Section 5.1, one may arrive at the unconditional survival function of

the 2-of-3 system:
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SYS(t) = exp
(
−EH[ f c,2

H (t)]
) [ 2

∑
i=1

3

∑
j=i+1

F̄0i (t)F̄0j(t) exp
(
−EH[ f i,1

H (t) + f j,1
H (t)]

)]

× exp
(
−EH[ f c,4

H (t)]
)  3

∑
i=1

j,k 6=i

F̄2
0i
(t)F̄0j(t)F̄0k (t) exp

(
−EH

[
2 f i,1
H (t) + f j,1

H (t) + f k,1
H (t)

])
+ exp

(
−EH[ f c,6

H (t)]
)( 3

∏
`=1

F̄2
0`(t)

)
exp

(
−EH

[
2

3

∑
`=1

f `,1
H (t)

])
(5.17)
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Chapter 6

Conclusion and Future Research

The growth of dynamic and complex servers and the associated networks necessitates general

and adaptable reliability models for a variety of business concerns, including failure prediction,

resource allocation, network architecture, and control policy design and implementation. Cha and

Lee [9] created a fairly general dynamic model that accounted for nonhomogenous arrival times

and any generic service time distribution. This work generalized [9] in several ways. In Chapter 2,

the constant stress assumption was relaxed, and a model was created in which customers to a

server can stress the server according to a distributionH with finite expectation. Cha and Lee also

defined a performance measure of the server, ψ, called the server efficiency. ψ measured the long-

term average number of jobs completed during a server renewal cycle, where a renewal cycle is

defined as a server lifetime plus the reboot time after a crash. They provided a numerical example

of ψ under constant stress η, constant intensity λ, and Rayleigh service time distribution. In this

scenario, ψ had a global maximum at λ∗. Chapter 3 studied the efficiency ψ further, and explored

the effect of service time distribution on the efficiency for the uniform, compact support, Erlang,

and exponential classes. Sufficient conditions were derived in all but the exponential case that

guaranteed the existence of a maximum ψ. The conditions derived are quite restrictive, in that

failing to meet the condition does not imply ψ lacks a maximum. Numerical examples were given

that illustrate this.

In addition, it was proven that for gW(w) = Uniform[0, b], b > 0, and under certain conditions

on the exponential class, ψ increases without bound. This is antithetical to actual server behav-

ior; the contradiction likely stems from gW(w) having positive mass at 0. This would imply a

job can be serviced in exactly 0 time with positive probability, which is impossible, as is a server

with monotonically increasing efficiency for ever-increasing arrival rates. This contradictory be-

havior lends legitimacy to the model in that it behaves as it should under appropriate service time

distributions, and gives nonsensical results for inappropriate distributions. Since the exponential

distribution in particular is commonly used to model service times to due favorable mathematical

properties such as memorylessness, the analysis in Chapter 3 provides a powerful justification for
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the abandonment of its use as a service distribution. Future research in this area would include the

strengthening of sufficient conditions for the existence of a maximum in ψ, in addition to proving

the postulation that ψ will never have a maximum if gW(w) has any positive mass at 0.

Chapter 4 considered additional extensions to the RSBR model from Chapter 2 to two different

multi-channel cases. First, since many applications (particularly retail and logistics), experience

load-balancing allocation to queues or channels, whether forced or natural, we presented the con-

ditional survival function of a server under this allocation scheme. This allocation scheme causes

the set of service intervals {Ij = [Tj, Tj + Wj]} and the total server stress to become completely de-

pendent. Thus, the breakdown rate process has full memory and lacks any level of independence.

Future research would include deriving upper and lower estimates for the survival function of the

server under a load-balancing allocation scheme.

Another extension considered in Chapter 4 was a clustered-task multichannel server in which

customers arrive to a server and select 0 to N possible tasks. The selection of each task j is a

Bernoulli random variable, and the set of Bernoulli random variables {εj : j = 1, ..., N} may or

may not be correlated. Both cases were considered, and the survival function given for both. In

the case of uncorrelated Bernoulli random variables, the number of possible tasks selected by a

customer is a standard Bin(N, p) distribution, and the corresponding server survival function has

a pleasantly compact form. The correlated case was also considered wherein the Bernoulli random

variables were constructed via the method in [14], and the corresponding survival function was

presented.

Chapter 5 described the construction of networks of RSBR servers when the arrival processes

to each server (or node) are correlated by a correlator process {Nc(t) : t ≥ 0}. The conditional

survival function for a series system and parallel system of K components was derived; since every

system may be written as a parallel system of series subsystem with repeated components, and the

conditional survival function of the system is isomorphic to the structure function of the system,

the conditional survival function of any system may be determined in a straightforward manner.

In addition, due to the conditionally independent nature of the nodes, the conditional survival

function is linear in the correlator process and thus the survival function of any system may be

obtained using the linearity of expectation and the strategy in the proof of Theorem 2.1.

Future research in the direction of Chapter 5 will include the addition of multiple correlator

processes, creating a “correlation topology" in addition to the logical topology. The interaction

between such topologies may prove not only mathematically interesting but may also aid in the

design and modeling of highly sophisticated dynamic networks.

In addition, one can look at a hybrid stochastic server in which the stress distribution H is

nonconstant in time. This approach would encompass many situations in which the workload



Chapter 6. Conclusion and Future Research 58

itself, regardless of any change in arrival traffic, can vary with time. One possible scenario would be

a warehouse with retail inventory. Orders for shipment would be the analogue to server requests,

and the stress to the server (the warehouse in this case) would be the items and quantities ordered.

Holiday seasons may cause a temporary shift in the order size, and thus the entire distribution of

H may change seasonally.

A possible extension to the clustered-task mulichannel server with correlated tasks detailed in

Chapter 4 would be to consider a nonconstant δ. The dependency coefficient in [14] is constant as

the binary tree is built, but can be generalized to be a function of the level in the tree. As a contrived

example, consider a group of people debating a joint restaurant location. The 6th person’s response

to a particular choice will be much more influenced by the previous answers than the 2nd. The

reliability of a clustered-task multichannel server will likely change significantly under this even

more generalized binomial distribution.
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Appendix A

Auxiliary Lemmas

A.1 Chapter 2

Lemma A.1 (Conditional Joint Distribution of Arrival Times). Let {N(t)} be a nonhomgenous Pois-

son process describing the arrivals of client requests to the web server, and let T1, ...Tn be the arrival times

of the client requests. Then, given N(t) = n, the conditional joint distribution of T1, ...Tn, denoted

fT1,...Tn |N(t)=n(t1, ...tn) has distribution equal to the joint distribution of the order statistics T′[1], ...T′[n],

where T′1, ...T′n are i.i.d. with pdf f (x) = λ(x)
m(t) . The pdf is given by

fT1,...Tn |N(t)=n(t1, ...tn|n) =
n!

m(t)

n

∏
i=1

λ(ti), 0 ≤ t1 ≤ ... ≤ tn ≤ t

Proof. Let N(t) = n, and let 0 < t1 < ... < tn < t. Let hi, i = 1, .., n be small enough such that

ti + hi < ti+1 ∀ i = 1, .., n − 1. Denote Ai as the event that the server sees exactly 1 arrival in

[ti, ti + hi], and B be the event that no events arrive outside the set

U := [0, t1] ∪ [t1, t1 + h1] ∪ [t2, t2 + h2] ∪ ...∪ [tn, tn + hn] ∪ [tn + hn, t]. Then

P(ti ≤ Ti ≤ ti + hi, i = 1, ..., n|N(t) = n) =
P(A1 ∩ A2 ∩ ...∩ An ∩ B)

P(N(t) = n)

From (1.1) in the preliminaries, P(N(t) = n) = e−m(t)m(t)n

n! . For each i = 1, .., n

P(ti ≤ Ti ≤ ti + hi) = P(N(ti + hi)− N(ti) = 1)

= e−(m(ti+hi)−m(ti))(m(ti + hi)−m(ti))
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The next step is the calculation of P(B). The complement of the set U can be broken into the disjoint

intervals [0, t1], [t1 + h1, t2], ...[ti + hi, ti+1], ...[tn + hn, t] By items (1) - (4) in the definition of a NHPP,

P(B) = P[N(t)− N(tn + hn) = 0]P[N(t1)− N(0) = 0]
n−1

∏
i=1

P[N(ti+1)− N(ti + hi) = 0]

= e−m(t1)e−(m(t)−m(tn+hn))
n−1

∏
i=1

e−(m(ti+1)−m(ti+hi))

= exp

(
−
[

m(t) +
n

∑
i=1

m(ti)−
n

∑
i=1

m(ti + hi)

])

Now, again using (2) in the definition, and simplifying,

P(ti ≤ Ti ≤ ti + hi, i = 1, ..., n|N(t) = n) =
n

∏
i=1

P(ti ≤ Ti ≤ ti + hi)

= n!
n

∏
i=1

m(ti + hi)−m(ti)

m(t)

Letting hi → 0 ∀ i,

fT1,...Tn |N(t)=n(t1, ...tn|n) = n!
n

∏
i=1

λ(ti)

m(t)

Lemma A.2 (Expectation of e
−ηij′ min(Wj ,t−Tj′ )).

E
[

E
[

e
−ηij′ min(Wj ,t−T′j )

∣∣∣∣Wj

]]
=

1
m(t)

(
m(t)− ηij′

∫ t

0
e
−ηij′ wm(t− w)ḠW(w)dw

)

Proof. Two cases must be considered: (1) w ≤ t and (2) w > t. For w ≤ t,

E
[

e
−ηij

min(Wj ,t−T′j )|Wj = w
]
=
∫ t−w

0
e
−ηij

w λ(x)
m(t)

dx +
∫ t

t−w
e
−ηij

(t−x) λ(x)
m(t)

dx

= e
−ηij

w m(t− w)

m(t)
+ e
−ηij

t
∫ t

0
e

ηij
x λ(x)

m(t)
dx

For w > t,

E
[

e
−ηij

min(Wj ,t−T′j )|Wj = w
]
= e
−ηij

t
∫ t

0
e

ηij
x λ(x)

m(t)
dx
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Therefore,

EW

[
e
−ηij

min(Wj ,t−T′j )
]
= EW

[
E
[

e
−ηij

min(Wj ,t−T′j )
∣∣∣∣Wj = w

]]
=

1
m(t)

(∫ t

0
e
−ηij

w
m(t− w)gW(w)dw

+ e
−ηij

t
∫ t

0

∫ t

t−w
e

ηij
x
λ(x)dxgW(w)dw (∗)

+ ḠW(t)e
−ηij

t
∫ t

0
e

ηij
x
λ(x)dx

)

Focusing on (∗), we make the change of variables w = t− x and change the order of intergration,

yielding a new second term.

=
1

m(t)
(
∫ t

0
e
−ηij

w
m(t− w)gW(w)dw

+ e
−ηij

t
∫ t

0
e

ηij
x
λ(x)

∫ t

t−x
gW(w)dwdx

+ ḠW(t)e
−ηij

t
∫ t

0
e

ηij
x
λ(x)dx)

Combining the second and third terms:

=
1

m(t)

(∫ t

0
e
−ηij

w
m(t− w)gW(w)dw

+ e
−ηij

t
∫ t

0
e

ηij
x
λ(x)Ḡw(t− x)dx

)

Changing variables again in the second term, using w = t− x, we get

=
1

m(t)

(∫ t

0
e
−ηij

w
m(t− w)gW(w)dw

+
∫ t

0
e
−ηij

w
λ(t− w)Ḡw(w)dw

)

Integrating the first term by parts, we get

=
1

m(t)

([
−e
−ηij

w
m(t− w)Ḡw(w)

]∣∣∣t
0

−
∫ t

0
(ηij e

−ηij
w

m(t− w) + e−ηwλ(t− w))ḠW(w)dw

+
∫ t

0
e
−ηij

w
λ(t− w)Ḡw(w)dw

)
=

1
m(t)

(
m(t)− ηij

∫ t

0
e
−ηij

w
m(t− w)ḠW(w)dw

)
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Lemma A.3 (Conditional distribution of Renewal Cycle Length). The conditional distribution

fY|R,V,H,N(t|r, v, h, n) is given by

fY|R,V,H,N(t|r, v, h, n) = exp

(
−
∫ t

0
r0(s)ds−

n

∑
j=1

ηij min(vj, t− rj)

)

×
(

r0(t) +
n

∑
j=1

ηij1(vj > t− rj)

)

Proof. Denote the condition C = {R = r,V = v,H = h, N(t) = n}. Then

fY|C(t|c) = lim
∆t→0

1
∆t

(P(Y > t|C = c)− P(Y > t + ∆t|C = c)) (A.1)

From (2.2),

P(Y > t|C = c) = exp

(
−
∫ t

0
r0(s)ds−

n

∑
j=1

η
ij
j min(vj, t− rj)

)

Recall that B(s) = r0(s) + ∑
N(t)
j=1 1(Rj ≤ s ≤ Rj + Vj). We now derive P(Y > t + ∆t|C = c).

Let Ak = {N(t + ∆t) − N(t) = k} be the event such that k requests arrived between t and

t + ∆t. From the definition of a nonhomogenous Poisson process [23],

P(A0) = 1− λ(t)∆t + o(∆t) = e−(m(t+∆t)−m(t))

P(A1) = λ(t)∆t + o(∆t) = (m(t + ∆t)−m(t))e−(m(t+∆t)−m(t))

...

P(Ak) =
(m(t + ∆t)−m(t))k

k!
e−(m(t+∆t)−m(t))

for k ≥ 2. By the Law of Total Probability,

P(Y > t + ∆t|C = c) =
∞

∑
k=0

P(Y > t + ∆t|C ∩ Ak)P(Ak) (A.2)

We look at each fixed k and show that the terms for k ≥ 2 are of o(∆k). For k = 0,

P(Y > t + ∆t|C ∩ A0)P(A0) = e−
∫ t+∆t

0 B(s)ds(1− λ(t)∆t + o(∆t))

= e−
∫ t

0 B(s)dse−
∫ t+∆t

t B(s)ds(1− λ(t)∆t + o(∆t))
(A.3)
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∫ t+∆t

t
B(s)ds =

∫ t+∆t

t
r0(s)ds +

(
n

∑
j=1

η
ij
j 1(vj > t− rj)

)
∆t

= r0(t) + o(∆t) +

(
n

∑
j=1

η
ij
j 1(vj > t− rj)

)
∆t

Using the fact that e−x+o(x) = 1− x + o(x) for small x,

e−
∫ t+∆t

t B(s)ds = 1−
(

r0(t) +
n

∑
j=1

η
ij
j 1(vj > t− rj)

)
∆t + o(∆t)

Substituting into (A.3),

P(Y > t + ∆t|C ∩ A0)P(A0) =

[
e−
∫ t

0 B(s)ds1−
(

r0(t) +
n

∑
j=1

η
ij
j 1(vj > t− rj)

)
∆t + o(∆t)

]

[1− λ(t)∆t + o(∆t)]

= e−
∫ t

0 B(s)ds

(
1− [r0(t) +

n

∑
j=1

η
ij
j 1vj>t−rj ]∆t− λ(t)∆t + o(∆t)

)
(A.4)

Now, for k = 1, we must contend with the arrival of one request in [t, t + ∆t] in addition to the n

fixed arrivals given by C. Call this arrival t1, with corresponding time to completion w1. We then

have two cases:

(1) t1 + w1 < t + ∆t, that is, the request arrives and is serviced before t + ∆t, or

(2) t1 + w1 > t + ∆t. In this case, the service time is greater than ∆t.

With both of these cases, the failure rate increases by an η
nit1
t1

for a time smaller than ∆t, which we

will denote as ∆1(t). Then

∆1(t) =


w1, t1 + w1 < t + ∆t

t + ∆t− t1, t1 + w1 > t + ∆t

In what follows we apply previous arguments to calculate P(Y > t + ∆t|C ∩ A1)P(A1). Now,

exp
(
−
∫ t+∆t

t
B(s)ds

)
= exp

(
−r0(t) +

[
n

∑
j=1

η
ij
j 1(vj > t− rj)

]
∆t + η

it1
t1

∆1t + o(∆t)

)

The above simplifies to

exp
(
−
∫ t+∆t

t
B(s)ds

)
= 1− [r0(t) +

n

∑
j=1

η
ij
j 1(vj > t− rj)]∆t + η

it1
t1

∆1t + o(∆t)
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Now,

P(Y > t + ∆t|C ∩ A1)P(A1) = e−
∫ t

0 B(s)ds

([
1−

[
r0(t) +

n

∑
j=1

η
ij
j 1(vj > t− rj)

]
∆t

+η
it1
t1

∆1t + o(∆t)

]
[λ(t)∆t + o(∆t)]

)

= e−
∫ t

0 B(s)ds (λ(t)∆t + o(∆t)) (A.5)

Combining (A.5) with (A.4),

1

∑
k=0

P(Y > t + ∆t|C ∩ Ak)P(Ak) = e−
∫ t

0 B(s)ds

(
1− (r0(t) +

n

∑
j=1

η
ij
j 1vj>t−rj)∆t

)
+ o(∆t) (A.6)

For k ≥ 2, we will now show that the contribution to (A.2) is negligible. Using similar notation

established in the case of k = 1,

P(Y > t + ∆t|C ∩ Ak) = e−
∫ t

0 B(s)ds

[
1− [(r0(t) +

n

∑
j=1

η
ij
j 1vj>t−rj)∆t +

k

∑
l=1

η
itl
tl

∆lt] + o(∆t)

]

Now, we see that ∀ k ≥ 2,

P(Y > t + ∆t|C ∩ Ak) ≤ e−
∫ t

0 B(s)ds

and hence

∞

∑
k=2

P(Y > t + ∆t|C ∩ Ak)P(Ak) ≤ e−
∫ t

0 B(s)ds
∞

∑
k=2

P(Ak)

= e−
∫ t

0 B(s)ds(1− P(A0)− P(A1))

= e−
∫ t

0 B(s)dso(∆t)

Therefore,

P(Y > t + ∆t|C) = e−
∫ t

0 B(s)ds

(
1− (r0(t) +

n

∑
j=1

η
ij
j 1vj>t−rj)∆t

)
+ o(∆t)

Now, we see that

1
∆t

(P(Y > t|C = c)− P(Y > t + ∆t|C = c)) = e−
∫ 1

0 B(s)ds

(
r0(t) +

n

∑
j=1

η
ij
j 1vj>t−rj +

o(∆t)
∆t

)

Then, letting ∆t→ 0,

fY|R,V,H,N(t|r, v, h, n) =

{
exp

(
−
∫ t

0
r0(s)ds−

n

∑
j=1

η
ij
j min(vj, t− rj)

)}(
r0(t) +

n

∑
j=1

η
ij
j 1vj>t−rj

)
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Lemma A.4 (Joint PDF of R,V, N).

fR,V,N(t)(r, v, n) =
1
n!

exp
(
−
∫ t

0
λ(s)ds

) n

∏
j=1

λ(rj)gW(vj)

Proof. LetW = (W1, ..., Wn) be the service times under the condition that N(t) = n, and letW =

w = (w1, ..., wn). Let (r[1], ..., r[n]) be the ordered vector of r. There are n! possible orderings of r.

Now, P(r[i] ≤ R[i] ≤ r[i] + hi) for some hi > 0, i = 1, ..., n is given by

P(r[i] ≤ R[i] ≤ r[i] + hi) = e−(m(r[i]+hi)−m(r[i])(m(r[i] + hi)−m(r[i]))

We may see that the joint distribution of R is identical to the distribution of the order statistics of

R:

fR,N(t)(r, n) =
1
n!

n

∏
j=1

λ(rj) exp
(
−
∫ t

0
λ(s)ds

)
R,V are mutually independent. Therefore,

fR,V,N(t)(r, v, n) =
1
n!

exp
(
−
∫
)t

0λ(s)ds
) n

∏
j=1

λ(rj)gW(vj)

A.2 Chapter 3

Lemma A.5 (a(t) under δ−shifted Erlang distribution).

a(t) =
(

γ

γ + η

)k
e−ηδ(t− δ) +

kγk
(

e−(η+γ)t+γδ − e−ηδ
)

(γ + η)k+1

+
γke−(η+γ)t+γδ

(k− 1)!

k−1

∑
j=1

[
(t− δ)j

(γ + η)k−j+1

(
k!
j!
− (k− 1)!

(j− 1)!

)]

Proof.

a(t) =
∫ t

0
e−ηvg(v)(t− v)dv

=
∫ t

δ

1
(k− 1)!

e−(η+γ)v+δγγk(v− δ)k−1(t− v)dv

=
γkeδγ

(k− 1)!

∫ t

δ
e−(η+γ)v(v− δ)k−1(t− v)dv
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Let C = (η + γ). Splitting the integral,

a(t) =
γkeδγ

(k− 1)!

[
t
∫ t

δ
e−Cv(v− δ)k−1dv−

∫ t

δ
e−Cvv(v− δ)k−1dv

]

Making a change of variables, let x = v− δ, then v = x + δ, dx = dv, and 0 < x < t− δ. Thus

a(t) =
γkeδγ

(k− 1)!

[
t
∫ t−δ

0
e−C(x+δ)xk−1dx−

∫ t−δ

0
e−C(x+δ)(x + δ)xk−1dx

]
=

γkeδγ

(k− 1)!

[
[te−Cδ

∫ t−δ

0
e−Cxxk−1dx− e−Cδ

∫ t−δ

0
e−Cxxkdx− δe−Cδ

∫ t−δ

0
e−Cxxk−1dx

]
=

γkeδγ

(k− 1)!

[
(t− δ)e−Cδ

∫ t−δ

0
e−Cxxk−1dx− e−Cδ

∫ t−δ

0
e−Cxxkdx

]

One may see via induction that
∫ w

0 e−Cxxpdx = −e−Cx

Cp+1 ∑
p
j=0

p!Cjxj

j!

∣∣∣w
x=0

. Thus,

(t− δ)e−Cδ
∫ t−δ

0
e−Cxxk−1dx = (t− δ)e−Cδ

 −e−Cx

Ck

k−1

∑
j=0

(k− 1)!Cjxj

j!

∣∣∣∣∣
t−δ

x=0


= (t− δ)e−Cδ

[
(k− 1)!

Ck − e−C(t−δ)

Ck

k−1

∑
j=0

(k− 1)!Cj(t− δ)j

j!

]

=
(k− 1)!e−Cδ

Ck (t− δ)− e−Ct

Ck

k−1

∑
j=0

(k− 1)!Cj(t− δ)j+1

j!

Similarly,

−e−Cδ
∫ t−δ

0
e−Cxxkdx =

e−Ct

Ck+1

k

∑
j=0

(
k!cj(t− δ)j

j!

)
− e−Cδk!

Ck+1

Thus

a(t) =
γkeδγ

(k− 1)!

[
(k− 1)!e−Cδ

Ck (t− δ)− e−Cδk!
Ck+1 + e−Ct

(
k!

Ck+1 +
k−1

∑
j=1

[
(t− δ)j

Ck−j+1

(
k!
j!
− (k− 1)!

(j− 1)!

)])]

=

(
γ

γ + η

)k
e−ηδ(t− δ)− ke−ηδγk

(γ + η)k+1 +
γke−(η+γ)t+γδ

(k− 1)!

k−1

∑
j=1

[
(t− δ)j

(γ + η)k−j+1

(
k!
j!
− (k− 1)!

(j− 1)!

)]
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Lemma A.6 (b(t) under shifted Erlang distribution).

b(t) =
1− e−δη

η
+

k−1

∑
j=0

[
γje−ηδ

(γ + η)j+1 − γje−(η+γ)t+ηδ

(
j

∑
i=0

(η + γ)i(t− δ)i

i!

)]

Proof.

b(t) :=
∫ t

0
e−η(t−r)Ḡ(t− r)dr

From (3.2),

Ḡ(t− r) =


1, 0 ≤ t− r < δ

eγ(δ−(t−r)) ∑k−1
j=0

γj(t−r−δ)j

j! , t− r ≥ δ

=


1, 0 ≤ t− δ ≤ r ≤ t

eγ(δ−(t−r)) ∑k−1
j=0

γj(t−r−δ)j

j! , 0 ≤ r ≤ t− δ

(A.7)

Then

b(t) =
∫ t−δ

0
eδγ−(η+γ)(t−r)

k−1

∑
j=0

γj(t− r− δ)j

j!
dr +

∫ t

t−δ
e−η(t−r)dr

=
k−1

∑
j=0

(∫ t−δ

0
eδγ−(η+γ)(t−r) γj(t− r− δ)j

j!
dr
) (A.8)

Fix j. Then

∫ t−δ

0
eδγ−(η+γ)(t−r) γj(t− r− δ)j

j!
dr =

γjeδγ

j!

∫ t−δ

0
e−(η+γ)(t−r)(t− r− δ)jdr

Make a change of variables. Let x = t− r. Then −dx = dr, r = t− x, and δ < x < t. Then

γjeδγ

j!

∫ t−δ

0
e−(η+γ)(t−r)(t− r− δ)jdr = −γjeδγ

j!

∫ t

δ
e−(η+γ)x(x− δ)jdx

Make one more change of variables. Let y = x− δ. Then dy = dx, x = y + δ, and 0 < y < t− δ.

Now,

−γjeδγ

j!

∫ t

δ
e−(η+γ)x(x− δ)jdx = −γjeδγ−(η+γ)δ

j!

∫ t−δ

0
e−(η+γ)yyjdy

=
γje−ηγ

j!

[
e−(η+γ)(t−δ)

(η + γ)j+1

j

∑
i=0

(
j!
i!
(η + γ)i(t− δ)i

)
− j!

(η + γ)j+1

]
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Then

b(t) =
k−1

∑
j=0

[
γje−γδ

(η + γ)j+1 − γje−(η+γ)t+γδ
j

∑
i=0

(η + γ)i(t− δ)i

i!

]
+

1− e−δη

η

Lemma A.7. b(t) is concave.

Proof. This will be shown via the standard second derivative test, and is straightforward compu-

tation.

b̈ = e−(η+γ)t+γ+δ
[
−(η + γ)2 fb(t) + 2(η + γ) ḟb − f̈b

]
(A.9)

where fb(t) = ∑k−1
j=0 γj ∑

j
i=0

(η+γ)i(t−δ)i

i! .

fb(t) = 1 +
k−1

∑
j=1

γj
j

∑
i=0

(η + γ)i(t− δ)i

i!

= 1 + γ
1

∑
i=0

(η + γ)i(t− δ)i

i!
+ γ2

2

∑
i=0

(η + γ)i(t− δ)i

i!

+ . . . + γk−1
k−1

∑
i=0

(η + γ)i(t− δ)i

i!

(A.10)

Next,

ḟb(t) =
k−1

∑
j=1

γj
j

∑
i=1

i(η + γ)i(t− δ)i−1 (A.11)

and

f̈b(t) =
k−1

∑
j=2

γj
j

∑
i=2

i(i− 1)(η + γ)i(t− δ)i−2 (A.12)

It is sufficient to show that 2(η + γ) ḟb < (η + γ)2 fb(t) + f̈b(t) ∀ t ∈ (0, ∞)

2(η + γ) ḟb(t)− (η + γ)2 fb(t)− f̈b(t)

=
k−1

∑
j=0

γj

[
j

∑
i=0

(
2 · (i + 1)−

(
(i + 2)(i + 1) +

1
i!

))
(η + γ)i+2(t− δ)i

]

≤ 0 for t ≥ δ

A.3 Chapter 4

Lemma A.8 (Decomposition of a Union of Events into Disjoint Atoms). Let A1, ..., An be events. Let

F = {∅, c}, Cn = {c, . . . , c︸ ︷︷ ︸
n

}, and En = (F ×n F) \ Cn, where ×n denotes the n−fold cross product. Let
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ε = (ε1, ..., εn) ∈ En denote the n−tuple where εi ∈ F.

n⋃
i=1

Ai =
⋃

ε∈En

n⋂
i=1

Aεi
i

Proof. First, it will be shown that En+1 = [(En ∪ Cn)× F] \ Cn+1.

En+1 = (F×n F) \ Cn+1

= ([F×n F]× F) \ Cn+1

= [(En ∪ Cn)× {∅, c}] \ Cn+1

Now, it remains to be shown that the tuples ε ∈ En account for all atoms of ∪n
i=1 Ai. Consider

n = 2. Then E2 = {(∅, c), (c, ∅), (∅, ∅)}. Then

(A1 ∩ Ac
2) ∪ (Ac

1 ∩ A2) ∪ (A1 ∩ A2)

= (A1 \ A2) ∪ (A2 \ A1) ∪ (A1 ∩ A2)

= (A1 ∪ (A1 ∩ A2)) \ (A2 \ (A1 ∩ A2)) ∪ (A2 \ A1)

= [A1 ∪ (A1 ∩ A2) ∪ (A2 \ A1)] \ [A2 \ (A1 ∩ A2) \ (A2 \ A1)]

= (A1 ∪ A2) \∅

= A1 ∪ A2

Now assume for k ≤ n,
⋃n

i=1 Ai =
⋃

ε∈En

⋂n
i=1 Aεi

i . Letting Y = [(En−1 ∪ Cn−1)× {∅, c}] \ Cn

n⋃
i=1

Ai =

[
n−1⋃
i=1

Ai

]⋃
An

Now, εn ∈ {∅, c}. Thus,

n⋃
i=1

Ai =
⋃
ε∈Y

n⋂
i=1

Aεi
i

=
⋃

ε∈En

n⋂
i=1

Aεi
i
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A.4 Chapter 5

Lemma A.9. Let {Ni(t) : t ≥ 0}n
i=1 be independent nonhomogeneous Poisson processes with intensities

λi(t), i = 1, ..., n. Let N(t) = ∑n
i=1 Ni(t) is a nonhomogeneous Poisson process with intensity λ(t) =

∑n
i=1 λi(t)

Proof. The proof will proceed via induction. As a base case, let n = 2. It suffices to show that

N(0) = 0, and

P(N(t + s)− N(t) = n) =
exp (−(m(t + s)−m(t))) [m(t + s)−m(t)]n

n!

where m(t) = m1(t) + m2(t) and mi(t) =
∫ t

0 λi(s)ds. Clearly, N(0) = N1(0) + N2(0) = 0 +

0 = 0. Now, since {N1(t)}, {N2(t)} are independent, we may find the distribution of {N(t)} via

convolution. Thus,

P(N(t + s)− N(t) = n)

= P((N1 + N2)(t + s)− (N1 + N2)(t)) = n)

= P(N1(t + s) + N2(t + s)− N1(t)− N2(t) = n)

=
n

∑
x=0

P([N1(t + s)− N1(t) = x] ∩ [N2(t + s)− N2(t) = n− x])

=
n

∑
x=0

P(N1(t + s)− N1(t) = x)P(N2(t + s)− N2(t) = n− x)

=
1
n!

e−(m1+m2)(t+s)−(m1+m2)(t)(m1(t + s)−m1(t) + m2(t + s)−m2(t))n

=
e−(m1+m2)(t+s)−(m1+m2)(t)

n!
((m1 + m2)(t + s)− (m1 + m2)(t))n

=
e−(λ1+λ2)(s)(λ1 + λ2)(s))n

n!

(A.13)

Now, assume that Nκ(t) = ∑k
i=1 Ni(t) is a NHPP with intensity λ(t) = ∑k

i=1 λi(t). Then let

N(t) = Nκ(t) + Nk+1(t), where {Nk+1(t)} is a NHPP with intensity λk+1(t). Then using the same

procedure as above, we see that

P(N(t + s)− N(t) = n) =
e−(∑k+1

i=1 λi)(s)
[(

∑k+1
i=1 λi

)
(s)
]n

n!

and thus the sum of nonhomogeneous Poisson processes remains a NHPP.
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Lemma A.10. Under the condition that Nc(t) = nc,Hjc = ηijc
, i ∈ {1, ..., m}, jc = 1, ..., nc, we have that

P (Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= F̄0`,c exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)
exp

(
−EH

[
H
∫ t

0
e−Hwm`(t− w)ḠW(w)dw

])

where m`(x) =
∫ x

0 λ`(s)ds.

Proof. As in the proof of Theorem 2.2, we have that

P (Y` > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 , N`(t), {Tj`}

N`(t)
j`=1 , {Wj`}

N`(t)
j`=1 , {Hj`}

N`(t)
j`=1 )

= exp
(
−
∫ t

0
B`(t)

)
= F̄01(t) exp

(
−

N`(t)

∑
j`=1
Hj` min(Wj` , t− Tj`)−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)

= F̄01(t) exp

(
−

N`(t)

∑
j`=1
Hj` min(Wj` , t− Tj`)

)
exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)
(A.14)

Now,

P ( Y`,c > t
∣∣∣Nc(t), {Tjc}

Nc(t)
jc=1 , {Wjc}

Nc(t)
jc=1 , {Hjc}

Nc(t)
jc=1 )

= EN`,{Hj`
}

[
F̄0`,c(t) exp

(
−

N`(t)

∑
j`=1
Hj` min(Wj` , t− Tj`)

)
exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)]

= F̄0`,c exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)
EN`,{Hj`

}

[
exp

(
−

N`(t)

∑
j`=1
Hj` min(Wj` , t− Tj`)

)]

But this case reduces to the previous RSBR case, and hence we have

= F̄0`,c exp

(
−

Nc(t)

∑
jc=1
Hjc min(Wjc , t− Tjc)

)
exp

(
−EH

[
H
∫ t

0
e−Hwm(t− w)ḠW(w)dw

])
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Appendix B

Relevant Code

B.1 Generate Numerical Approximation for ψ(λ)

Uniform Distribution

The following is a sample of Mathematica code which generates a numerical approximation for

ψ(λ) under the service density of the uniform distribution on the interval [10,11].

(∗ Numerical Investigation of efficiency for Uniform Distribution ∗)

(∗ Declare the necessary constants \[Eta], r0, and \[Nu] ∗)

\[Eta] = 1;

r0 = 1;

\[Nu] = 1;

(∗ First, we take care of the denominator. Denote the integral by S. Then

S is broken into the three parts defined by Sa[t], Sab[t,a,b], and Sb[t,a,b] ∗)

(∗ For t < a ∗)

Sa[t_] := Integrate[Exp[−\[Eta]∗w]∗(t − w), {w, 0, t}]

(∗ For a <= t <= b ∗)

Sab[t_, a_, b_] := Integrate[Exp[−\[Eta]∗w]∗(t − w), {w, 0, a}] +

Integrate[Exp[−\[Eta]∗w]∗((b − w)/(b − a))∗(t − w), {w, 0, t}]

(∗For t > b ∗)

Sb[t_, a_, b_] := Integrate[Exp[−\[Eta]∗w]∗(t − w), {w, 0, a}] +

Integrate[Exp[−\[Eta]∗w]∗((b − w)/(b − a))∗(t − w), {w, a, b}]
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(∗ Now we handle the numerator. ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−− a(t)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗For t < a, a(t) = 0. For a <= t < b ∗)

Aab[t_, a_, b_] := (1/(b − a))∗Integrate[Exp[−\[Eta]∗v]∗(t − v), {v, a, t}]

(∗For t > b∗)

Ab[t_, a_, b_] := (1/(b − a))∗Integrate[Exp[−\[Eta]∗v]∗(t − v), {v, a, b}]

(∗−−−−−−−−−−−−−−−−−−−−−−−−END a(t)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−b(t)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

b[t_, a_, b_] :=

Integrate[Exp[−\[Eta]∗(t − r)]∗((b − (t − r))/(b − a)), {r, t − b, t − a}]

+ Integrate[Exp[−\[Eta]∗(t − r)], {r, t − a, t}]

(∗−−−−−−−−−−−−−−−−−−−−−−−− END b(t)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗ Create the loop for various values of \[Lambda] ∗)

Clear[psi];

psi = {};

For[\[Lambda] = 0, \[Lambda] < 0.5, \[Lambda] += 0.05,

Num = NIntegrate[Exp[−r0∗t − \[Lambda]∗t + \[Lambda]∗Aab[t, 10, 11]

+ \[Lambda]∗b[t, 10, 11]]∗(r0 + \[Eta]∗\[Lambda]∗b[t, 10, 11])

∗\[Lambda]∗Aab[t, 10, 11], {t, 10, 11}]

+ NIntegrate[Exp[−r0∗t − \[Lambda]∗t + \[Lambda]∗Ab[t, 10, 11]

+ \[Lambda]∗b[t, 10, 11]]∗(r0 + \[Eta]∗\[Lambda]∗b[t, 10, 11])

∗\[Lambda]∗ Ab[t, 10, 11], {t, 11, Infinity}];

Den = NIntegrate[Exp[−r0∗t − \[Eta]∗\[Lambda]∗Sa[t]], {t, 0, 10}]

+ NIntegrate[Exp[−r0∗t − \[Eta]∗\[Lambda]∗Sab[t, 10, 11]], {t, 10, 11}]

+ NIntegrate[Exp[−r0∗t − \[Eta]∗\[Lambda]∗Sb[t, 10, 11]], {t, 11, Infinity}];
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AppendTo[psi, Num/(Den + \[Nu])]

]

lamb = Range[0, .45, .05]

ListLinePlot[Transpose[{lamb, psi}],

AxesLabel −> {"\[Lambda]", "\[Psi]"}]

Increasing Density on Compact Support

g[w_] := (2/3)∗w

(∗Define parameters ∗)

\[Eta] = 1

\[Nu] = 1

r0 = 1

(∗Calculate Denominator. ∗)

SP0[t_] := Integrate[Exp[−\[Eta]∗w]∗(t − w), {w, 0, t}]

SP1[t_] := Integrate[Exp[−\[Eta]∗w]∗((4 − w^2)/3)∗(t − w), {w, 1, t}]

SP2[t_] := Integrate[Exp[−\[Eta]∗w]∗((4 − w^2)/3)∗(t − w), {w, 1, 2}]

(∗ Numerator ∗)

Na1[t_] := Integrate[Exp[−\[Eta]∗v]∗(g[v] )∗(t − v), {v, 1, t}]

Na2[t_] := Integrate[Exp[−\[Eta]∗v]∗(g[v] )∗(t − v), {v, 1, 2}]

Nb[t_] := Integrate[Exp[−\[Eta]∗(t − r)], {r, t − 1, t}] +

Integrate[

Exp[−\[Eta]∗(t − r)]∗((4 − (t − r)^2)/3), {r, t − 2, t − 1}]

(∗ Loop ∗)

Clear[psi]
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psi = {}

lamb = Range[0, 2.9, .1]

For[\[Lambda] = 0, \[Lambda] < 3, \[Lambda] += .1,

Num = NIntegrate[

Exp[−r0∗t − \[Lambda]∗t + \[Lambda]∗Na1[t] + \[Lambda]∗

Nb[t]]∗(r0 + \[Eta]∗\[Lambda]∗Nb[t])∗\[Lambda]∗Na1[t], {t, 2,

3}] + NIntegrate[

Exp[−r0∗t − \[Lambda]∗t + \[Lambda]∗Na2[t] + \[Lambda]∗

Nb[t]]∗(r0 + \[Eta]∗\[Lambda]∗Nb[t])∗\[Lambda]∗Na2[t], {t, 3,

Infinity}];

Den = NIntegrate[

Exp[−r0∗t]∗Exp[−\[Eta]∗\[Lambda]∗SP0[t]], {t, 0, 2}] +

NIntegrate[Exp[−r0∗t]∗Exp[−\[Eta]∗\[Lambda]∗SP1[t]], {t, 2, 3}] +

NIntegrate[

Exp[−r0∗t]∗Exp[−\[Eta]∗\[Lambda]∗SP2[t]], {t, 3, Infinity}];

AppendTo[

psi, Num/(Den + \[Nu])]

]

points = Transpose[{lamb, psi}]

ListLinePlot[points, AxesLabel −> {"\[Lambda]", "\[Psi]"},

PlotLabel −> "Increasing Distribution on [1,2]"]

Rayleigh Service Distribution

(∗ Efficiency Calculation for Rayleigh Distribution ∗)

In[5]:= $Assumptions = t > 0

r0 = 1

\[Eta] = 1

(∗Define parameters ∗)

\[Eta] = 1

\[Nu] = 1

r0 = 1

(∗Calculate Denominator. ∗)

In[9]:= SP0[t_] := Integrate[Exp[−\[Eta]∗w]∗(t − w), {w, 0, t}]
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SP1[t_] :=

Integrate[

Exp[−\[Eta]∗w]∗
SurvivalFunction[RayleighDistribution[1], w]∗(t − w), {w, 0, t}]

(∗ Numerator ∗)

Na1[t_] :=

Integrate[

Exp[−\[Eta]∗v]∗PDF[RayleighDistribution[1], v]∗(t − v), {v, 0, t}]

Nb[t_] :=

Integrate[

Exp[−\[Eta]∗(t − r)]∗

SurvivalFunction[RayleighDistribution[1], t − r], {r, 0, t}]

\[Nu] = 1

Clear[psi]

psi = {}

lamb = Range[0, 49, 1]

For[\[Lambda] = 0, \[Lambda] < 50, \[Lambda] += 1,

Num = NIntegrate[

Exp[−r0∗t − \[Lambda]∗t + \[Lambda]∗Na1[t] + \[Lambda]∗

Nb[t]]∗(r0 + \[Eta]∗\[Lambda]∗Nb[t])∗\[Lambda]∗Na1[t], {t, 0,

Infinity}] ;

Den = NIntegrate[

Exp[−r0∗t]∗Exp[−\[Eta]∗\[Lambda]∗SP0[t]], {t, 0, 0}] +

NIntegrate[

Exp[−r0∗t]∗Exp[−\[Eta]∗\[Lambda]∗SP1[t]], {t, 0, Infinity}] ;

AppendTo[

psi, Num/(Den + \[Nu])]

]

points = Transpose[{lamb, psi}]

ListLinePlot[points, AxesLabel −> {"\[Lambda]", "\[Psi]"},

PlotLabel −> "Efficiency for Rayleigh(1) Distribution"]
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