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ABSTRACT

TENSOR PRODUCTS OF A FINITE-DIMENSIONAL REPRESENTATION

AND AN INFINITE-DIMENSIONAL REPRESENTATION
FELICIA DEWANAGA, M.Sc.
The University of Texas at Arlington, 2016
Supervising Professor: Dimitar Grantcharov

In this project, we explicitly find the decomposition of the tensor product of a
Verma module Z(A) and the standard module C" of the Lie algebras sl(n), n = 2, 3.
The result provides an explicit description of the translation functor introduced by

Bernstein and Gelfand.
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CHAPTER 1
INTRODUCTION

Lie algebras arise naturally as vector spaces of linear transformations. Their
representations are studied by both mathematicians and theoretical physicists. The
finite-dimensional representations of simple finite-dimensional Lie algebras were clas-
sified by H. Weyl in the early 20th century. One remarkable theorem of H. Weyl states
that every finite-dimensional representation is a direct sum of simple representations.
Another important discovery made by H. Weyl was an explicit way to define these
representations by using tensor products of the natural and the dual to the natural
representations.

The study of the infinite-dimensional representations of Lie algebras emerged
in the 1960’s as an effort to address problems motivated by theoretical physics. Un-
fortunately, there is no analog of Weyl’s theorem for the infinite-dimensional repre-
sentations; namely, there are representations that do not decompose as direct sums
of irreducible ones. Among the infinite-dimensional representations, there is one class
of special interest: representations with highest weight vectors, called also vacuum
vectors.

Tensor products of finite- and infinite-dimensional representations were exten-

sively studied in the last 40 years. Fundamental results have been discovered by J.



Bernstein and S. Gelfand [1], J. Jantzen [3], and G. Zuckerman [4]. In this thesis, we
reprove some of the results using explicit computations for lower rank Lie algebras.
The content of this project is as follows. In Chapter 2, we list some basic defi-
nitions and results for Lie algebras and their representations. In Chapter 3, we prove
explicitly some standard results for tensor products of finite-dimensional represen-
tations of sl(n) and gl(n). In the last chapter we prove our main results: we find
an explicit decomposition of the tensor product of the Verma module Z(\) and the

standard module C" of the Lie algebras sl(n) for n =2 and n = 3.



CHAPTER 2
BACKGROUND MATERIAL

2.1 Definition and examples of Lie Algebras

Definition 2.1.1. A Lie algebra is a vector space L over a field F, together with
a binary operation [.,.] : L x L — L, called the Lie bracket or commutator, which

satisfies the following axioms:

(i) [ax + by, 2] = alx, 2] + by, 2]

[z, ax + by] = a[z, x| + bz, y] (bilinearity) (2.1)
(1) [z, y] = —ly, 2] (skew-symmetry) (2.2)
(@@i) [z, [y, 2] + [y, [2,2]] + [z, [, ¥]] = O (Jacobi identity) (2.3)

for all z,y,z € L.

A subspace K of L is a Lie subalgebra K of L if [z,y] € K, if x,y € K.

2.1.1 Examples

Let V' be a vector space over F. The ring of homomorphism V' — V is denoted
by End(V). When End(V) is given a new operation defined as [z, y] = zy —yx, called
the bracket of x and y, End(V') constitute a Lie algebra over F: the brackets and

linear combinations are again linear transformations from V' to V' and the conditions



2.1 to 2.3 are satisfied. When End(V') has the bracket operation, we write gl(V') for
End(V) to distinguish this algebraic structure from the old associative one.

If a basis of V' is fixed then gl(V) is isomorphic as a vector space to the space
of all n x n matrices over F whenever V' has dimension n. We denote this Lie algebra
consisting square n-dimensional matrices by gl(n, F'), or gl(n) if the F is clear in the
context.

Some further example is the set of endomorphisms of V' (of finite dimension n)
with trace zero, and we denote it by sl(n, F') (which is isomorphic to sl((V')). It is a
fact that Tr(zy) = Tr(yz) and Tr(z + y) = Tr(z) + Tr(y); therefore, sl(n) is a Lie
subalgebra of gl(n).

From now on we fix our ground field to be F = C. It will be convenient to
have at our disposal the following notations: The symbol E;; will denote the matrix
with 1 in the ¢th row and jth column, and 0 elsewhere. We let the symbol e; denote
the single column matrix with 1 in the ¢th row and 0 elsewhere, and the symbol f;

represent the map f; : C* — C such that f;(e;) = ;.

2.2 Cartan subalgebra
Definition 2.2.1. A Cartan subalgebra b of a Lie algebra L is a subalgebra of L
which is nilpotent and self-normalizing.

From now on we fix the following Cartan subalgebras of gl(n) and sl(n). The

Cartan subalgebra bg ) will be the subalgebra of gl(n) consisting of all diagonal



matrices, {h = bi1E11 + ... + bpnEnyn | by € C}. The Cartan subalgebra bg,) will
be the subalgebra of sl(n) consisting of all diagonal matrices in sl(n), i.e. by =
Bgin) N sl(n). We also fix the bases of by, and by to be {Ei1, ..., Epn} and {Eyy —
Esy oy By 1 n1 — Enpn}, respectively.

We define ¢; as the element of h* for which ¢,(E;;) = d;;. Let L, denote
the space {x € L|[hz] = a(h)x Yh € b}, where o € h*. The set of all nonzero
a € b* for which L, # 0 is denoted by A and is called the root system of L. The
elements of A are called the roots of L relative to h. We have a decomposition
of L = @ &@,cn Lo, and we call this the root space decomposition. The set of
roots of sl(n) is A(sl(n),bsmy) = {ei —¢; | 1 <@ # j < n}. The root system
of gl(n) is the same: A(gl(n),bgm) = {e: —¢; | 1 < i # j < n}. The root
decomposition of sl(n) (respectively gl(n)) is hsin) ® D,; Spanc{Ei;} (respectively,
Bat(n) @ @i# Spanc{E;;}). Let Il = {e; —e9,...,en—1 — &, }. We call II the standard
base of A. We have that for every § € A, there are unique integers k, such that
B => koa(a € II). If all k, > 0 (respectively, all k, < 0), we call 8 positive root
relative to II (respectively, negative root) and write § > 0 (respectively < 0). We let
n (respectively, n~) to be the Lie subalgebra of sl(n) and gl(n) spanned by E;;, i < j

Lyandn™ =@, _, L

a<0 —oar

(respectively, Eyj, i > j). Namely, n = @, ,



2.3 Dual to the Cartan subalgebras of gl(n) and sl(n)
There is a natural surjective homomorphism ~ : b;[(n) — f);‘[(n) with kernel
kery = (g1 + ...+ &,). In what follows we will identify by With the space
H= {Zaiei | ZCLZ‘ = O,CLZ‘ S C}
i=1 i=1
through the isomorphism by, /kery — H defined by

n n

. _ D i i
’y(; alaz—l—(sl—l—...—l—en))—Zalaz - (e14 ...+ en).

=1

2.4 Representations
Definition 2.4.1. A representation of a Lie algebra L is a Lie algebra homomorphism
¢ L — gl(V). We denote this representation by (p, V'), or simply by V.

We shall see that there is an equivalency between representations and modules.
Recall the definition of an L-module.
Definition 2.4.2. A vector space V is a module over a Lie algebra L: if V' is endowed

with an operation L x V' — V., (z,v) — x - v, that satisfies the following:

(1) (ax+by) -v=al(x-v)+bly-v), (2.4)
(17) x-(av+bw) = a(z-v) + bz - w), (2.5)
(1ii) [x,yl-v=x-y-v—y-x-W, (2.6)

forall z,y € L;v,w € V;a,b e C.



We will often write zv for x-v. A representation ¢ : L — gl(V') is viewed as an
L-module through the action z.v = ¢(z)(v). Conversely, given an L-module(V'), we
can define a representation ¢ : L — gl(V') by the action we just defined.

If V is an L-module, then we can make the dual vector space V* an L-module
if we define (z.f)(v) = —f(z.v) for f € V*, v € V, x € L. Axioms 2.4 and 2.5 are

quite easy to check. To check Axiom 2.6, we have

([z.9]- ) = —F(zy]-v)
= —flzry-v—y-z-v)
= —fl@y-v)+fly-z-0)
= (@ fly-v) =y Nlz-v)
= =z fllw)+(z-y-f)v)
= (@ y—y-2) f)v)

We call V* the dual module of V.

2.4.1 Tensor products of representations

Let L be a Lie algebra over C. If V, W are L-modules, let V ® W be the
tensor product of the vector spaces V' and W over C. In order to endow V ® W with
a module structure, we define the action of L on the generators v ® w as follows:

r-(vQw)=zr-v@wW+vRx-w,x € L. It is straightforward to check the conditions



2.4 and 2.5 to construct the tensor product V ® W as an L-module. It follows to

verify Axiom 2.6:

[l’,y](U@U)) = [x,y]v®w+v®[x,y]w
= (zyv—y- ) QuW+v(x-y - w—y-x- W)
= (zy-vu+vRr-y-w) —(y- - vQUWF+VvRY- T W)

= (z-y—y-z)- (veW)

2.4.2 Symmetric and exterior representations

Let 0 : C"®@C" -5 C"@C", > v; @w; — > w; @ v;. Set S*(C") = {u €
C"® C"o(u) = u} and A*(C") = {u € C" ® C"|o(u) = —u}. We have the following
lemma,
Lemma 2.4.3. S?(C") = Spanc{v®@w+w @ v|v,w € C"} and A*>(C") = Spanc{v®
w—w®uvlv,w € C"}. Moreover, S*(C") and A*(C") are gl(n)-representations (and,

hence, sl(n)-representations).

Proof. From the definitions of S?(C") and A?(C"), we have that Spans{v ® v+ w ®
vjv,w € C"} € S*(C") and Spanc{v ® w — w @ v|v,w € C"} C A*(C"). The reverse
inclusions follow by a standard reasoning.

O

We call S%(C") the second symmetric representation and A?(C") second exterior

representation of gl(n) (and of sl(n)).



2.5 Weights and maximal vectors of representations

Let V' be an arbitrary L-module and let h be a Cartan subalgebra of L. Let V'

be a weight module of L, i.e.

V=W,

Ach*

where V), = {v € V|h-v = A(h)v, for every h € h}. We call X a weight of V' if V) # 0.
Also, V) is called a weight space of weight A. A mazimal vector (or a highest weight
vector) of weight A in an L-module V is a nonzero vector v € V' annihilated by all

Ly, a > 0. The weight of a maximal vector is called the highest weight of V.

2.5.1 Finite-dimensional representations of s((2)

In this subsection, let the Lie algebra L denote sl(2) whose basis is {z, y, h} with
[z, y] = h,[h,y] = —2y, [h, 2] = 22. In matrix form, x = Ey, y = FEa1, h = E1; — Eas.
The fixed Cartan subalgebra is h = Spanc{h}. We identify h* with C through the
bijection c(g1 — €2) — 2¢, equivalently, v(ce) — c.

Assume now that V is an irreducible finite-dimensional L-module. Let vy € V)
be a maximal vector; set v_; = 0, v; = (1/i!)y’, vo,i € Z>o. There are equations
relating the elements of the basis of 5l(2) with the vectors v;. The proof of the following

lemma can be found in [2].



Lemma 2.5.1.
h sV = ()\ — 2’i)U¢,
y-v; = (1 + 1)viqq,

I'UZ:(A—Z—I—l)UZ_l,’LZO

Theorem 2.5.2. For arbitrary m > 0, the formulas in Lemma 2.5.1 define an ir-
reducible L-module of L on an m + 1-dimensional vector space over C with basis
(V0, U1, ooey Um), and we call this L-module V (m).

Note that due to the identification h* — C, V(m) = V (y(mey)).

2.5.2  Finite-dimensional representations of sl(n)
Consider now for an arbitrary semisimple Lie algebra L over C. If V is a finite
dimensional L-module, then V is a weight module.

Proposition 2.5.3. C" = V(y(e1)) and (C*)* = V(y(—¢,))

Proof. Let first us consider C" as a gl(n)-module. Since Ejje; = e; # 0 for j > 1,
e1 is the only maximal vector up to a nonzero scalar multiple. For obtaining the
weight of ey, we need to find A such that h-v = A(h)v for all h € bgy,). Let

h = b11E11 + ...+ bnnEnn Then

b11 0 0 1 bll
0 by 0 ... O 0 0

(b1 By + oo + by B )er = = = bye;.
0 0 by, 0 0

10



We have ¢; as the gl(n)-weight of e;. Now let us consider C" as an sl(n)-
module. Then e; ¢ {a1e1+---+aye,| Y  a; = 0}, the Cartan subalgebra of sl(n). The
sl(n)-weight of e; is y(e1). By Theorem 2.5.2, e; generates an irreducible L-module
V(v(e1)). Therefore, C* = V(vy(e1)).

Let us consider now (C")* as a gl(n)-module. We have (C")* =Cf;®...®Cf,.
We use the action (Ey fi)e; = —fi(Exe;) as discussed in Section 2.4. Then it is an

easy calculation to get

(Enfi)e;=—1for0<k<l<n,i=k, j=I,

(Enfi)e;=0fori#k, j#i, 0<k<l<n.

Therefore, Eyfi(e;) = 0if i =n, k <1 < n, and j,l € [1,n], which leads us to
fn as the only maximal vector up to a nonzero scalar multiple. Now we need to
find its highest weight. By similar reasoning done for C", we have hf, = —b,,fa,
and so —e, is the gl(n)-weight of f,. We also have vy(—¢,) as the sl(n)-weight of
fn- By Theorem 2.5.2, f, generates an irreducible L-module V' (y(—¢,)). Therefore,

C" = V(y(=en)). =

Example 2.5.4. Note that vy(e1) = y(e2) = (g1 — €2)/2. Thus C* = (C?)* as sl(2)-

modules.

11



CHAPTER 3
TENSOR PRODUCTS OF FINITE-DIMENSIONAL REPRESENTATIONS

In this chapter, we establish some explicit results on the decomposition of the
tensor products of finite-dimensional representations of gl(n) and sl(n). That is, for
this chapter, L = gl(n) or L = sl(n) and we consider C™ and the dual vector space
(C™)* as L-modules; then we use tensor products to obtain new representations. In
particular, we express C" ® C" and C" ® (C")* as direct sums of some important

L-modules as shown in Theorem 3.2.1 and 3.2.3.

3.1 Dual to the natural representations of gl(n) and sl(n)

We first discuss when the natural representation V' of gl(n) and sl(n) is iso-
morphic to its dual V*. We note that that V' ~ V* for the Lie algebras sp(2n) and
so(n).

Lemma 3.1.1. Let L = sl(n) and V = C". Then V ~ V* if and only if n = 2.
Proof. Recall that by Proposition 2.5.3, V ~ V(v(e;1)) and V* ~ V(vy(—¢,)). There-

fore V.~ V* if and only if v(e;) = 7(—&,). One can easily check that y(e; +¢,) =0

if and only if n = 2 (see Example 2.5.4). O

Using reasoning similar to the one used in the proof of Proposition 2.5.3, we

can establish the following more general result.

12



Theorem 3.1.2. If X is a dominant integral and if X = A1+ Aogo + ... + A\, then

(V) =V (=AT), where NI = N1 + A\p_162 + ... + MiEn.

3.2 Tensor products of finite-dimensional representations of sl(n)

Theorem 3.2.1. We have the following identity of sl(n)-modules:
C"®C" = S%(C™) @ A*(C™).

Before we prove Theorem 3.2.1, let us present S*(C") and A%(C") as highest
weight modules and let us find their highest weights. We need following proposition,

Proposition 3.2.2. S?(C") = V(y(2¢1)) and A*(C") = V(y(e1 + &2)).

Proof. To find a maximal vector v € S*(C"), we need to find v such that Epv =
Eyv = ... =FE, 1,v=0. It is easy to verity that Fise; ® e; = Fae; ® ey = ... =
E,_1n,e1 ®e; = 0. Therefore, v = e; ® e; is a maximal vector. We now show that all
maximal vectors are scalar multiple of e; ® e;.

By Lemma 2.4.3, it follows that v = ) aijw. Therefore, it is straight-
forward to verify that Fio()_ %w) =...=FE, 1, aijw) =0
implies that all a;;’s are equal to 0 except for a;; (for more explicitness, see 3.1 below
for similar work). Thus, up to a nonzero scalar multiple, e; ® e; is the only max-
imal vector in S*(C"). Since h(e; ® 1) = 2by1(e; ® e1), the highest weight of the
sl(n)-module S?(C") is y(2¢1). Thus S?(C") = V (v(2¢1)).

e;®e;—e;e;

By Lemma 2.4.3, v is of a form ) a; 5

. It is straightforward to check

that El2(z aijw) = ... = n—l,n(z aijw) =0 1mphes that all (lm”S
13



are equal to 0 except for a;s. Thus v = M is the only maximal vector

for A>(C") up to a scalar multiple. Then h(9E2-28L) — by 4 byy. Therefore,

A%(C™) = V(y(e1 + &2)). [
We are now ready to prove Theorem 3.2.1.

Proof. Let (ey,e€a, ...,€,) be a basis of C* . Thus the basis of C"* @ C" consists of n?

vectors e; ® ej. Let w be an arbitrary vector in C" ® C". Then w is a vector of a

form ) a;je; ® e;. To find a maximal vector w of C* ® C", we need Ejpw = Eyzw =

.= E,_1,w =0 to hold. We will use a system with n? unknowns as follows:
0= Elgw

= E12(Z a;ie;  e;)
= Eio(a1261 ® ex + agees @ €2 + ... + ap2e, @ €9
(3.1)
“+ ag1€9 & e+ a93€2 & €3 + ...+ agpea & €n>

= a12€1 X e1 + ag9eq (%9 €9 + Q9969 X e1 + aszses (%9 e1+ ...+ ape, & €1

—|—(Z2161 ®€1 +a2361 ®€3+ ...—l—(lgnel ®€n

14



Since e, ® ¢; and e, ® e are linearly independent whenever k # r or | # s, we have

a1 + ag1 = 0,a;0 = ag; =0, forn >4 > 2.

0 = FExw
= E23(Z a;je; @ e;) = Eas(aize; @ e3 + agges ® €3 + ... + apze, @ eg
+azies @ €1 + agrez ® eg + ... + azpez  ey)
= 1361 & ez + a3 @ €y + aszea @ €3 + aszes @ e + ... + apze, @ e3

+CL31€2 ® e + a32€9 X eqg + a34€2 Xeq+ ... + a3n€a X e,.

By linear independence, a;3 = az; =0, forn >¢ >3 and i = 1.
Repeating the same steps for Esyw = 0, ..., E,,_1 ,w = 0 as above, we get that
the only nonzero a;;’s are a1, ai2, and ag; with aja + ag = 0. By substituting all the

values of the a;;’s in ) a;;e; ® e; = w, this means that

e1®ex + e & eq
5 )

w = ajiéx (%9 e1 + a6 & €2 — A21€2 %) €1 — Q1161 X e+ 2@12

But we have seen e; ® e; and ©82Fe284 are also maximal vectors in S?(C") and
in A?(C"), respectively. So we conclude that C* @ C" is the direct sum of the two

irreducible sl(n)-modules S?(C") and A?(C"). O

Theorem 3.2.3. We have the following isomorphism of sl(n)-modules and gl(n)-
modules:

C"® (C")* ~gl(n).

Hence, C" @ (C")* = sl(n) & C as sl(n)-modules.

15



Proof. Let (e, es,...,e,) be a basis of C", and (fi, fo, ..., fn) be a basis of (C")* .
Thus the basis of C* ® (C")* consists of n? vectors e; ® f;. If w is an arbitrary vector
in C" ® (C™)*, then by similar work in the Equation 3.1 above in this proof, a;; = 0
for all (i,7) except for (i,7) = (1,n),(1,1),(2,2),...,(n,n) where (1,1) = (2,2) =
.. = (n,n). Then w = ajpe; @ f, + ar1e1 @ fi + aznes @ fo + ... + appen, @ fr, =
a1pe1 ® fr+a1(e1 @ fi+..+e,® fr).

Thus maximal vectors in C"® (C")* are a;,e1 ® f, and a11(e1 @ fi+..+e, @ fn).

To find the highest weight, we let h = b;1 E1q + ... + by Enyn. Then

h<ain61®fn) = ainh€1®fn+ainel®hfn = ainb1161®fn+ainel®bnnfn = (bll_bnn)ainel®fn-

Thus the weight of a;,e; ® f,, is €1 — €,. With similar reasoning, the weight of
ai1(er ® f1+..+e, @ f,) is 0.
Thus C" ® (C")* ~ V(e; —¢e,) ® V(0) as sl(n)-modules. In fact, sl(n) =

V(e1 — €y), and, obviously, V(0) = C. O

16



CHAPTER 4

TENSOR PRODUCTS OF A FINITE-DIMENSIONAL REPRESENTATION AND

AN INFINITE-DIMENSIONAL REPRESENTAION OF sl(n)

4.1 The case of sl(2)

Given an arbitrary scalar A\ € C, let Z(\) be a vector space over C with a
countably infinite basis (vg, v1,vs,...). Using Lemma 2.5.1, we define an action of
L =5sl(2) on Z(\). Then as one easily checks, Z(\) becomes an (infinite-dimensional)
s[(2)-module. This module is called the Verma module of highest weight . In this
section, we study the tensor product Z(\) ® C2 We know that this tensor product of
a finite-dimensional representation and an infinite-dimensional representation of sl(2)
is an s[(2)-module of the underlying vector spaces, as described in Chapter 2. We
will see that the decomposition of Z(\) ® C? is much more complicated than the one
of C? ® C? and C? ® (C?)* obtained in the previous chapter.

We use the same methods as before — we find the maximal vectors of the infinite-
dimensional representation Z(\) ® C? of s[(2). We first note that Z(\) ® C? has a
basis consisting of the vectors v; ® e;, 4 > 0, j = 1,2.

Lemma 4.1.1. The module Z(\) @ C* has mazimal vectors of weight \+1 and \—1.

Moreover, if My = Spanc{E}, (vo®e1)|k € Z>o} and My = Spanc{E}, (vi ®e; — My ®

17



e2)|k € Zso}, then My and My are submodules of Z(\) @ C* of highest weights X + 1

and A — 1, respectively.

Proof. Let v =" a;;v; ® e; (finite sum) be an arbitrary vector in Z(\) ® C% Recall

that Ej = z, and that v is a maximal vector of Z(\) ® C? if z - v = 0. Therefore:

0 = Ep Zaz‘jvi ® e,
= Zaijx-vi®ej+2aijvi®x~ej
- Zaij()\ —i+ 1) ®ej+ ZaiQUi @ ey
= a1 A=1+1Dvy®e+an(A—2+1)y®e; 4+ +ap(A—k+ 1)1 ®ey
+ajp(A =14 1)vg ® eg + ag(A =2+ vy @ ea+ -+ - + ara(A — k + 1)vg_1 ® eg

+agaVy @ €1 + a19V1 K €1 + a99V9 K €1 + ... + apov; K e;.

Then by the linear independence of the vectors v; ® e;, we see that

—(111()\> = ap2 a12(>\) =0

—ag (N) = ajg ag(A—1)=0

—&31()\) = 22 agg()\ — 2) = O
_akl(/\ - (k - 1)) = ag2 akg()\ - (k) - 1)) = 0.

We proceed with two cases depending on .
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Case 1: If A ¢ {0,1,2,3,...}

a1 = Qg = a3z = ... = Az =0

= a91 = A31 = Qy1 = ... = A1 =

This gives us that a;; = 0, V(4,j), except for (,7) = (0,1),(1,1),(0,2) such that

_all()\) = ap2-

Substituting all the a;;’s, we have

V= Qo1 ®e1 + a1101 Q er + apty X ea

= anv ®er +a1(vy ® ey — Avg ® ey).

Thus, ag1vg ® e; and a11(v; ® €1 — Avg ® e3) are maximal vectors of Z(\) ® C2 More
precisely, the space of maximal vectors is Spanc{v; ® e; — Avy ® ea,v9 ® €1}. Then
we find the highest weights:

Let h = F1; — FEg. Since h- (vg®e1) = h-vg®e; +vg®@h-e; = (A+ 1)vy ® ey,
the sl(2) weight of vy ® e; is A + 1. With similar reasoning, we have the weight of
V] ®e; — A\vug ® ez to be A — 1. By Theorem 2.5.2, there exists an s[(2)-submodule
of Z(\) ® C? spanned by {E} (vy ® e1)|k € Z>o} with highest weight A + 1, and an
5[(2)-submodule spanned by {E5 (v; ® e; — Mg @ eg)|k € Zso} with highest weight
A — 1. The first module is M;, while the second one is M.

Case 2: If A € Z>, then the system of unknown a;;’s in Lemma 4.1.1 gives us:
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For A\ =0

a21 = 12,
(o2 = Q22 = A3z = ... = apz = 0,
az1 = Q41 = Q51 = =ap =0
For A =1
—a11 = G2,
ag1 = 422,
Q12 = A3y = Qg2 = ... = ap2 = 0,
41 = Ax1 —a61:...—ak1:0.
For A =2
—2a11 = apg,
aq1 = a3z,
12 = Qo2 = Qg2 = A52 = ... = gz = 0,
a1 = as1 = gy = ay; = ... = ag; = 0.

Repeating these steps, we see that for A € Z>,,

agy = —iag
A24x1 = Q1402
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Therefore, a;; = 0, V(i, j) except ag1, Go2, @11, A2421, G1472, 1421, Where age =
—Aaq1, Ga1x1 = G1452. Therefore, v = ap1vo®eq+a11(v1®e; —Avp®@es) +asyr 1 (VoA ®
€1+ V14a ® €2) + a14x1(v14x @ €1), and the maximal vector space is the span of the
set {v] ® 61 — A\vg ® e9,U9 ® €1,Va4) ® €1 + V1) @ €9,V14) @ e1}. However, the
vector vy ® e; + viy) ® e is generated by vy ® ey, while v1.) ® ey is generated
by v; ® e; — Avg ® ey. Since these maximal vectors are the same ones in Case 1,
we conclude that M; and M, are submodules of Z(\) ® C? with their corresponding
highest weights as in Case 1. However, these submodules are definitely not irreducible,

since each has two linearly independent maximal vectors. O]
Theorem 4.1.2. If A\ # —1, then ZA\) @ C* ~Z(A+1)® Z(\ —1).

Proof. By Lemma 4.1.1, the tensor product Z(\) ® C? contains sl(2)-submodules M;
and M, of highest weights A+ 1 and A\ — 1, respectively. To prove the isomorphism in
the statement of the theorem, we will check that M; ~ Z(A+1) and My ~ Z(A—1).
Then we will check whether Z(\) ® C? = Z(A + 1) & Z(A — 1) as vector spaces, by
verifying that Z(A\) @ C?2 = Z(A+ 1)+ Z(A—1) and that Z(A+1) and Z(\ — 1) have
trivial intersection.

In M, = Spanc{wy = E% (v ® e1) | k € Z>o}, repeated application of the

formula w,, = E% (vo ® e1), Vn € {0,1,...,k} and induction on k, we observe that

wr = k(v ® €1 + vp_1 ® eg). (4.1)
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Similarly, with My = Spanc{u, = Fj (vi®@e1 —Avg®e2) | k € Z>o}, we observe
that,

up = (k4 Dok @ 1 + kl(k — N ® es. (4.2)

Now we need to verify that the action of s[(2) on M; is given by the formulas in
Lemma 2.5.1 to prove that Ml ~ Z()\+ 1) Let h = E11 — EQQ,{C = E127 and Yy = E21.

Note that

h-w, = K(h-vyQe+vp@h-e1+h-vp_1 Qe+ vp_1@h-ey
= Kl((AN=2k)v,®@e1+vp®@er + (AN—2k+2)vp_1 ® ea — vp_1 @ €9)

Similarly,

yrwg = kly-up®@e+tup@y-e1+y vp-1Qeg+ U1 QY- e
= EN((k+ 1)vks ® e + v ® ea + kv, @ e3)
= Kkl(k+1)(vks1 ®e1 + v @ eg)

= Wk+1,

and also,

rowp = Kz vy ®@e+ 0 @21+ 051 Qeg+Up_1 QT - €3
= K((A=k+ D1 ®@e1+AN—k+2)vp_ 2@ e+ vp_1 eyq)
= ]{?!(/\—k—f-Q)(Uk_l®61+’Uk_2®€2)

= kE(A+1)—k+ Dwg_.
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Then, we see that ¢ : My — Z(A+1) is an isomorphism of sl(2)-modules, where

¢ : wy — klv,. The proof is as follows:

y-o(wp) = y- (klug)
= kly- (vx)
= Kk + Dvpgs
= (k+ D)l
= d(wis)

= oy - wg).

Analogously

v glwp) = x- (k)
— K- ()
— (A4 1—k+ Dkl
— kA —k+2)(k— 1l
= k(A =k +2)¢(wr1)
= G(k(A =k + 2)wp_1)

= ¢(x-wy)

The relation h - ¢(wy) = ¢(h - wy) is easy to show. It is also easy to show that ¢ is
linear and bijective. Therefore, ¢ is an isomorphism of s[(2)-modules. So we have

My ~ Z(X +1). By similar reasoning, we can prove that My ~ Z(A — 1).
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Now we want to show that Z(\) ® C* = Z(A+1) & Z(\ — 1) as vector spaces.
To show the sum of vector space: Let v = > a;;v; ® ¢; € Z(A) ® C2. Then

expanding the series, we have

v = Z a;V; X €;
= o1V @ €1 + apvy @ e+ anvy @ e + -+ ap vy @ ey
+ ap2vy ® €2 + G12U1 & €9 + AooVs K €9 + -+ + ARk K €9
= D bi(il(vi®e+visi®e))+ Y (i + Do ® e +il(i — Mv; @ e3)

= W+ u,

where w is in My = Spanc{k!(vy ® €1 + vx_1 ® €3) | k € Z>o} and u is in My =
Spang{(k+1)vp 1 ®e1+El(k—N)v,®eq | k € Zso}. To show that Z(A+1)NZ(A—1) =
0, it is sufficient to show that they intersect trivially on each weight space. Hence we
need to check if w1 = (i4+1)!(v;11®e1+v1®e2) and u; = (i+1)lv 1 ®eq+il (i—N)v1 Req
are linearly independent. Suppose that w;;; = cu;. Without loss of generality, let

c¢ = 1. Then it implies that
(t+D)!=d(i—N) & i+1=1—M\ & A= —1.
In other words, w;;1 = u; if and only if A = —1. Thus, the result holds. O

Theorem 4.1.3. Let A be an sl(2)-weight.
(a) Z(N) is simple if and only if X & Z>g.
(b) If A € Zsy, there is a nonsplit exact sequence of sl(2)-modules

05 ZA-2) 520 S V(\) =0
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Proof. The proof of this theorem is standard. See for example §7 of [2]. In the case

A = 0, the theorem can be proven using tensor products, see Remark 4.1.6. O]

4.1.1 The module Z(—1) ® C?

We have seen earlier in this section that in order to show that Z(\) ® C? is
a direct sum of Z(A + 1) and Z(A — 1), the later vector spaces M; and M, must
intersect trivially, and the latter fails when A # —1. Tt remains to describe Z(\) @ C?
when A = —1. For the rest of this subsection, we will assume that A = —1, and later
show that the s[(2)-module Z(—1) ® C? does not split, namely Z(—1) ® C? does not
contain nonzero submodules A and B such that Z(—1) @ C? = A® B.

Theorem 4.1.4. There is a short exact sequence of sl(2)-modules

0— M = Z(-1)®@C* = M| -0,

where My ~ Z(0) and M is isomorphic to the module My defined in Lemma 4.1.1.

In particular, M| ~ Z(-2).

Proof. Let Z(—1) ® C?/M; = M] be a Spanc{v; ® e; + My, v; ® ea + My | i € Z>o},
where, as usual, the v;’s and the ¢;’s are bases of Z(—1) and C?, respectively. We

claim that the set {vy ® es + My, v ® es + My, ...} is a basis of M. Proof of the
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claim: We know from Equation (4.1), M; = Spanc{k!(vy ®e1 +vp_1 ®e2) | k € Z>o}.
Therefore, in M
Elvg @ e +vp1 ®ex+ My = My =0+ M

= kl(vy®e +vp_1 ®ey € My

= e+ M =—v_1 ey + M

= M| = Spanc{vy @ e3 + M, | k € Z>o}.

Assume now that:
ao(vo ® ea + My) + ar(vy @ eg + My) + ... + ag(vp ® e + M) = 0.
Therefore:  agvg @ €3 + a1v1 @ €9 + ... + apvr @ eo € M,
= QoU) R ey + a1 K es 4+ ...+ apvp K eg =

b()(’U() ® 61) + bl(Ul ® (&) + Vo ® 62) —I— e —f- bk+1(k’ + ]-)!(Uk—i—l ® €1 + Vi ® 62).

By the linear independence of the set of all vectors v; ® e;, ¢ > 0, j = 1,2, in

Z(—1) ® C?, we then have

It implies {vy ®ea+ M, | k € Z>o} is linearly independent. The claim is proved.
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Now we want to prove that Z(—1) ® C?/Z(0) is isomorphic to Z(—2). Since
M, ~Z(A+1) = Z(0) and My ~ Z(A—1) = Z(—2), as proven in Theorem 4.1.2, it is
sufficient to show that M| ~ My, where M, is Spanc{(k+ 1)!(vp11 ® e +vp®es | k €
Z>o} from Equation (4.2).

Let ¢ : My — M{ be amap via (i+1)(v;41 Q€1 +v;®es) — v;®ea+ M. It is not
difficult to check that ¢ is linear, bijective and satisfy the definition of homomorphism

of L-modules. The result holds. O

Corollary 4.1.5. Let My, My, M| be the modules defined in Lemma 4.1.1 and Theo-
rem 4.1.4.

(a) We have the following nonsplit exact sequence of sl(2)-modules:
0= M5 Z2(-1)eC2S% M —o0.
(b) We have the following nonsplit exact sequence of sl(2)-modules:
0— My 5 M, S M, — 0

where M} = Spangc{wy + Ms}.

Proof. (a) We have that {v; ® e;;v; @ esli € Zso} is a basis of Z(—1) ® C? and
from the proof of Theorem 4.1.4, {v; ® eo + M;|i € Z>¢} is a basis of M]. Let
{ug,u1,...} be a basis of M, ¥ denote the map u; — v; ® e1, and ¢ denote the map
V; @ eg > v; ® eg + My, v; ® eg — 0. Then the map 1) is injective and ¢ is surjective.
The image of the map ¢ equals the span of {v; ® e;|i € Z>(} which is also the kernel

of ¢. Thus, the sequence given in (a) is exact. It is nonsplit because there is no
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nonzero s[(2)-module homomorphism 1 of M] into Z(—1) ® C? such that ¢n = 0.
The latter follows from the fact that if such a nonzero homomorphism 7 exists, then
1 maps the highest weight vector vy ® es + M; of M| to zero.

(b) Recall M; = Spanc{wy = kl(vi ® €1 + vp_1 @ e2)|k € Zxo} and My =
Spanc{ur = (k + Dvgy ® e + kl(E — Mg @ eslk € Zsp} from Equations (4.1) and
(4.2). In the proof of Theorem 4.1.2, we noted that w;y1 = w; for all i € Zsg if
and only if A = —1. So w; = wug,wy = uy, and so on. Then Spanc{wy,ws,...} C
Spanc{wo, wy, ...} € Z(—1) ® C%

It is easy to check that {wy = k!(vi ® €1 +vk_1 ®e2)|k € Z>o} is linearly independent.
So M, has a basis {wy,ws, ...}, while M; has a basis {wp, wy,...}.

Let ¢ denote the map w; — w;, and ¢ denote the natural projection w; — w; + M.
Clearly, ¢ is injective and ¢ is surjective. The image of ¥ is My C M, and the kernel

of ¢ is also M,. Thus, we have the exact sequence. It is nonsplit because there is no

nontrivial s[(2)-module homomorphism of M) into M;. O

Remark 4.1.6. We note that part (b) of the last corollary is in fact equivalent to
Theorem 4.1.3 (b) for A = 0. In this way, we have a tensor product proof of the case
A = 0 of that theorem.

Corollary 4.1.7. For any A\ € C, the module Z(\) ® C* has a filtration whose

subquotients are isomorphic to Z(A — 1) and Z(A+ 1).
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4.2 The case of sl(3) and gl(3)

In this section, we work with L = sl(3). The results automatically transfer to
the Lie algebra gl(3). We fix the basis of bgs) to be hy = Eyy — Eay, hy = Eyy — Ess.
The basis of sl(3) is hy, he, together with all E;; (i # j).

Let A = A\ie1 + Aaga + Azez be an element of b;‘[(g). In particular, A\;, Ay, A3 € C
are such that >\, = 0. The Verma module Z(\) is defined as the tensor product
U(sl(3)) ®uman) Cx, where U(a) denotes the universal enveloping algebra of a, and
C, is the one dimensional (h @ n)-module Cv defined by (h + n)v = A(h)v.

The Verma module Z(\) has a standard basis: Z(\) = Spanc{E5 EL,Efiv|k, l,m €

Z>o}. By definition:
hl UV = ()\1 — )\2)1}, h2 U = ()\2 — >\3)U, E12 U = E13 U = E23 v =0. (43)

Lemma 4.2.1. The module Z(\) @ C* has mazimal vectors of gl(3) weight v(A+e1),

V(A +¢e2), and y(\ +€3).

Proof. We look for maximal vectors ) . u; ® e; such that u; is a linear combination
of EY ELETv for small k,[,m. We first notice that v ® e; is a maximal vector of

Z()\) (%9 (C3 because E12U = E13U = E23U = 0 and E12€1 = E13€1 = E23€1 =0
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forces v ® e; to be a maximal vector. We next look at maximal vectors of the form

Av® ey + BEyv ® ey.

E12(Av®es + BEqv®e1) = AEjpv® ey + Av® Ejges + BE19Fyv ® eq
+BE»v ® Ergeq
= Av®e;+ BEyFEiov® e + B[E1pFEy]v® e
= Av®ei+BAM —X)v®e; =0

Also,

EQg(AU ® ey + BEyv® 61) = AEQgU X eq + Av ® Faseq + BEyEov ® e
+BEyv @ Eaey

= BE21E23’U & €1 + B[EQgEgl]U X €1 = 0.

Case 1: If Ay = A\y #0and B = —1, then A = A; — 5. Then Av ® e5 + BEy©jv ® ey =
(A1 — X2)v ® €5 — Fy1v ® €7 is a maximal vector.

Case 2: If /\1 —)\2 =0and B = 1, then A = 0. Then AU®€2+BE21U®€1 = E21U®61

is a maximal vector.

Now we find the weight of (A} — A2)v ® €5 — E91v ® ey,

hi((A1 — A)v ® ea — Eyjv ® ey)
= (M = A)hv®@es + (A — A)v @ hieg — hiEynv @ er — Eyv @ hiey
=M =) ®e— (M — )v® ey — Eyyhiv @ e; — [hEy]v ® e1 — Exjv ® e

30



=M= X)WRe— A —M)v®ey— (A — X)) Eaiv ® e; — 2E5nv @ ey — Eyv ® e

=M —A—1A —)v®es— (A — A —1)Env® e

=M =X —1)((M —X)v® ey — Eyv®eyq).

Similarly, ho((A — X2)v ® €2 — Eqyv ® €1) = (Ao — A3 + 1) (A1 — X2)v ® €2 — E91v ®

e1), hi(Eqv®er) = (M —A—1)Eynov®er, and hy(Eyv®er) = (Aa—A3+1)Eynv®e;.
Since the weight of (A; —A)v®es — Esjv®eq is (a161 + azea +azez) (A — A)v ®

ey — Es1v ® e1) such that > a; = 0, then we have

(CL1€1 + ases + a3€3)h1 = )\1 — )\2 — 1,

(CL151 + ageq + a,3€3)h2 = )\2 — )\3 + 1.

This implies that

a; —ag = A — Ay — 1,
az—agz/\z—)\3+1,

Wherea1+ag+a3:0;2)\i:0.

We solve for a;’s: a1 = A\ — %,CZQ = Xy + §7a3 = A3 — %

Recall v : h;[(g) — By Where v 1 A+ (a181 + ages +azes) — (A +a; — %)51 +
(A2 +as — %)52 + (A3 +as — %)ageg, where |a| = ), a;. We easily compute that the
s(3)-weight of the maximal vector Esv ® e; is (A + e2). Hence, the sl(3)-weight of

()\1 — )\2)1} & eg — E21U X e is also ’7(/\ + 82).
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Now we look at maximal vector of the form Av ® e3 + BE330 ® ey + CE310 ®

e1 + DEy E3v ® ep. By similar calculation as in the previous maximal vector case,

we have:
E12(Av ® e3 + BE32v @ ey + CE31v ® €1 + DEy E3ov ® ey)
= BE3jv® e — CE3v® ey + DA — \y)E32v ® €1 + DFE32v ® e
=B—-C+DMN—-X+1)=0.
Furthermore,

E23<AU (029 €3 + BEgQU & €9 + CEgl’U X €1 + DE21E321) & 61) =0
= A+ B — A3) =0,C + DAy — A3) =0
We let for simplicity D = —1. Then C = Ay — A3, B =C — DA\ — X+ 1) =

/\2 — )\3 + ()\1 — /\2 + ].) = /\1 — )\3 + ]_, and A = —()\1 - /\3 + ].)(/\2 — )\3) Thus, we

obtain
u=—(AN=XA3+1)(Aa—A3)v®e3+ (A1 —A3+1) E50®e0+ (Mg —A3) E310Qe1 — Fa1 F320®e4
is a maximal vector with sl(3)-highest weight (A + €3). O
Theorem 4.2.2. Define

M, = Spanc{E5ELEY(v®e)lk,l,m € Zso},

M, = SpanC{EglEéQE;{(()\l — M) ® ey — Eyyv®ey) + M|k, l,m € Z>o},

M; = SpanC{EflEéQE:?}(—(/\l — A+ 1A= A3)v®e3+ (A — A3+ 1)E30 ® e

+()\2 — )\3)E311J ® e — E21E32U X 61) + M1|k3, l, m & Zzo}
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1. My is a submodule of Z(\) @ C* and My ~ Z(y(\ +&1)).
2. M} and M} are submodules of M| = Z(\) ® C3/M; and M} ~ Z(v(\ + &3))
and M} ~ Z(y(\ +€3)).
3. M{ = M} & M.
Proof. 1. By Lemma 4.2.1 and Theorem 2.5.2, there exists an sl(3)-submodule M;
of Z(\) ® C* with highest weight y(\ + &1). To prove that M; ~ Z(y(\ + 1)), we
first recall that the identities (4.3) hold for v ® ey with y(A+e1) = (A1 + 2)e1 + (A2 —

%)52 + (A3 — %)53:

h1~(v®61):h1~v®el+v®h1-el
:<)\1—)\2)U®61+U®€1
=M —X+1)vRe
2 1
=(>\1+§—()\2—§))U®617
ho-(V@er) =hy-v®er+v®@hy e
= ()\2—)\3)1}@61
= (A — M) ®e,
1 1

= ()\2—5—@3—5))716961-

The identities E1o-v®e; = Eipa-v® e = Fia - v ® e; = 0 follow from the fact that

v ® e is a maximal vector. Then we look at the map

®: M — Z(y(\+¢e1)), E5 ELET (v®e)) — ES ELENY
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where v’ is a vector of weight y(\ + ¢1). It is not difficult to check that & is an
isomorphism of sl(3)-modules.

2. Since My and M3 are gl(3)-submodules and sl(3)-submodules of of Z(\) ®
C3, by Lemma 4.2.1 and Theorem 2.5.2, it is obvious that M} and M} are gl(3)-
submodules and sl(3)-submodules of M| = Z(\) ® C3/M;,. Similarly in part 1 of this
proof, we prove that M} ~ Z(y(A+e3)), by verifying that the identitites (4.3) hold for

((/\1 —/\2)’U®62—E21’U®61>+M1 with ’7(/\+62) = ()\1—%)€1+(/\2+§)€2+<)\ —%)531

hi- (M = A)v @ es — Exjo @ eq) + M) =
hy - (M —A)v®@ey+ M) —hy - (Exv®e + M) =
(M = A)hy-v®es + M) + (A — Xo)v @ hy - eo + M)
—(h1 - (Eqv) @ e1 + My) — (Exjv @ hy - e + My) =
(A= A)h1-v®ex+ My) + (M — A)v ® hy - €3 + M)
—([h1, BsrJv @ e1 + My) — (Eythy v ®@ey + My) — (Exv @ hy - eq + M) =
(M —A)?v®eg+ M) — (A — A2)v ® eg + M)
—((AM1 = A)Env®e; + M) — (Exo @ e + M) =
A=A —1D((M = )v®ey — Exyv®er) + M) =

()\1 - % - ()\2 + %))((()\1 - )\2)7) & ey — E21U & 61) + M1>;
similarly,

hy - (A= X)v®ey — oo ®er) + M) =

()\2 + % — ()\1 - %))((()\1 — )\2)7) & ey — EZIU & 61) + Ml);
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Eis- (M — X))o ® eg — Eqjv ® e1) + M)
=Fi5- (M —X)v®es+ M) — Eig - (Eyv ® ey + My)
= (M = A)E12-v®ex + M)+ (A — X)v ® Eg - e + M)
—(E12 - (Eyv) ® eq + My) — (Eo1v ® Eig - €1 + M)
= (M = A)E12-v®ex + M)+ (A — X)v ® Evg - g + M)
—([Ehr2, EarJv @ e1 + My) — (Egi(Erg - v) @ €3 + My) — (Egv @ Eyg - eq + M)
= (M = A)v®@ey + M) — (hy-v®er + M)

= (()\1 — )\2)?] & €1 + Ml) — (()\1 — )\2)'0 X e+ Ml) = 0,

and similarly,

Eiz-((M—X)v®es— Exqu®e)+ M) = 0

Eos- (M —X)v®ey— Eyjo®ey) + M) = 0

as needed. Then, like in the first case, we obtain Mj ~ Z(~(\ +&3)). With the same
reasoning, M3 ~ Z(y(\ + €3)).

3. Let t € M be an arbitrary vector. Then we can say that t = Y ay . E5 Elel (v®
e1) + My, k,l,m € Zso. The expansion of the series t = > ag;mEn ELER (v ® eq)
is equal to the Y- w = (3 bkym EH ELER (M — A2)v ® e3 — Eyv @ e1) + M) and
u= (3 crumES ELER(—(M = A3+ 1) (M — A)v®@es+ (A — A3+ 1) Esqv @ eg + (Ay —

A3)E310 ® €1 — Eajesov ® e1) + My, k,l,m € Zsy. But w € M and v € M}. Thus
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M/ = M, + M,

Now let w and u be arbitrary vectors in MJ and Mj, respectively. Let

w =Uu
= w—u =) bumESELER (M — A\)v® ey — Eyv @ er) + M)
~(D crimES BB ES (= (A = Az + DA = Aa)v ® e
+(A — A3+ 1)E30 ® e
+(A2 = A3) E3iv ® e1 — Enegov @ e1) + My (4.4)

Using linear independence arguments, Equation (4.4) implies that bg;,,, = 0 and
Chim = 0,VEk,[,m € Zso. Then 0 = w = u € MjN M;, and M) intersects with M}

trivially. Thus the result holds. [l

Corollary 4.2.3. For any \ € f):[(3), the module Z(\) ® C* has a filtration whose

subquotients are isomorphic to Z(y(A+¢€1), Z(y(A+€2)), and Z(y(X + €3)).
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