
SPARSE DECENTRALIZED PRINCIPAL COMPONENTS ANALYSIS FOR

DIMENSIONALITY REDUCTION

by

NANRUO CHEN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

Master of Engineering in Electrical Engineering

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2016

Copyright c© by Nanruo Chen 2016

All Rights Reserved

To my parents CHEN JUN and CHEN LIQIN

who sacrificed so much for me.

ACKNOWLEDGEMENTS

A lot of people have contributed to the success of my thesis. I learnt a lot from their

guidance which will benefit me in the future.

Firstly, I would like to thank my supervising Professor; Dr. I. D. Schizas for his

mentorship. His advice really helped me a lot in my research.

I also wish to thank Dr. Kamisetty R. Rao and Dr. W. Alan Davis for taking time out

of their busy schedule to serve on my thesis defense committee.

April 21, 2016

iv

ABSTRACT

SPARSE DECENTRALIZED PRINCIPAL COMPONENTS ANALYSIS FOR

DIMENSIONALITY REDUCTION

Nanruo Chen, M.Engr.

The University of Texas at Arlington, 2016

Supervising Professor: Ioannis D. Schizas

Principal components analysis (PCA) is a data compression technology relying on

dimensionality reduction. In a wireless sensor network, the acquired data may be spatially

scattered and include many zero variables, for which a standard PCA approach cannot ac-

count for. To this end, a new algorithm is designed to solve both problems. We combine

sparse principal components analysis (SPCA) and distributed principal components anal-

ysis (DPCA) together to obtain a sparse distributed principal components analysis (SD-

PCA) algorithm. Norm-one regularization along with the alternating direction method of

multipliers (ADMM) is used for SPCA. ADMM is also employed to obtain a distributed

compression algorithm that consists of computationally simple local updating recursions.

Further, inter-sensor communication noise is considered. Numerical tests using both syn-

thetic and real data demonstrate that the novel SDPCA algorithm can be applied in different

siutations and gives a good principal subspace estimation result.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . viii

Chapter Page

1. INTRODUCTION . 1

1.1 Distributed sensor networks . 3

1.2 Principal component analysis . 4

1.3 Previous work . 5

1.4 Distributed principal component analysis 5

1.5 Sparse principal component analysis (SPCA) 6

1.6 Contributions of thesis . 6

1.7 Outline of work . 7

2. A SPARSE DISTRIBUTED PRINCIPAL COMPONENT ANALYSIS FRAME-

WORK . 8

2.1 Problem Statement . 8

2.2 Sparse principal component analysis . 10

2.3 Distributed Principal Component Analysis 13

2.4 Sparse distributed principal component analysis 17

2.5 Online algorithm . 19

2.6 Inter-sensor communication noise . 21

3. NUMERICAL TESTS AND DISCUSSION . 23

3.1 Subspace projection estimation error for different network settings 23

vi

3.2 Subspace projection estimation error for a different number of ADMM it-

erations . 25

3.3 Probability of correctly recovering zero entries in principal subspace 26

3.4 Inter-sensor communication noise . 27

3.5 Real data . 29

3.6 Sparsity versus no sparsity exploitation . 30

4. CONCLUSIONS AND FUTURE DIRECTIONS 32

REFERENCES . 34

vii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Subspace projection estimation error e(t) vs. time index t for r = 1, 2, 3,

where the number of sensors is p = 20 . 24

3.2 Subspace projection estimation error e(t) vs. time index t for r = 1, 2, 3,

where the number of sensors is p = 30 . 24

3.3 Subspace projection estimation error e(t) vs. time index t for r = 1, 2, 3,

where the number of sensors is p = 50 . 25

3.4 Subspace projection estimation error e(t) vs. time index t for r = 1 and

p = 50, while the ADMM number of iterations is set as K = 5, 15, 20 26

3.5 Probability vs. time index when estimating r = 1 principal eigenvector . . . 27

3.6 Subspace projection estimation error e(t) vs. time index t for r = 1 in the

presence of inter-sensor noise and SNR values 12dB, 30dB and 50dB 28

3.7 Subspace projection estimation error e(t) vs. time index t for r = 2 in the

presence of inter-sensor noise and SNR values 15dB, 30dB and 50dB 28

3.8 Subspace projection estimation error e(t) vs. time index t for r = 3 in the

presence of inter-sensor noise and SNR values 18dB, 30dB and 50dB 29

3.9 Subspace projection estimation error e(t) vs. time index t when estimating

r = 1, 2, 3 principal components with real data 30

3.10 Subspace projection estimation error e(t) vs. time index t when estimating

r = 1 eigenvector for λ = 0 (no sparsity) and λ = 0.1 31

viii

CHAPTER 1

INTRODUCTION

A wireless sensor network (WSN) generally refers to a group of sensors which are

deployed in an area for applications such as environmental monitoring, or target tracking

[1]. For example, temperature and pressure monitoring, or movements of animals tracking

[2]. The sensor nodes are connected via wireless radio and have an instrumental role in

the system. A sensor node in a WSN generally has functions such as data collection,

computation, transmission and storage [3]. Sensor nodes use their sensed data to acquire

environmental information and convert it to digital signals. Then, depending on the system

specifications, the sensors do computations on the acquired data before transmission or

storage. Further, sensors communicate with other neighboring sensors, or communicate

with a central fusion center such as a satellite or base station. These sensor nodes also have

storage to preserve the acquired data, as well as software running in them and implementing

various signal processing tasks.

Wireless sensor network have several limations need to be accounted for:

1. Energy is limited

Sensor nodes are quite small, thus can only carry a limited power supply. Sensor

nodes are always distributed in large and complex areas, thus replacing batteries across

a large number of sensors is not a good idea [4]. Energy efficiency is one of the main

challenges in a sensor network.

2. Communcaiton ability is limited

The relation of required energy E and communication distance d is given by

E ∝ dα (1.1)

1

Where α is the coefficient which for wireless communication is α≈2 [5]. This equation

shows that the energy fading will increase with square if the inter-sensor distance increases.

The channel bandwidth is another problem which will limit the communication. The wire-

less communication channel is not wide. Thus information exchanges can not take place at

high rates.

3. Computational ability is limited

The computational ability of sensors is not powerful, but a network of sensors is

more powerful.

Networks of sensors follow different topologies depending on the application at

hand. Main sensor network topologies include fully connected, mesh, bus, star, ring and

tree [6].

1. Fully connected: Each sensor is allowed to communicate directly with all other

sensors. The sensors have both abilities to transmit and receive. This network is quite

reliable due to full connectivity, but it is too complex to be implemented, especially in the

presence of a large number of sensors.

2. Mesh networks: A mesh topology implies that nodes could have different paths

to connect with other sensors which enables robust multi-hop communications. It is highly

robust and more scalable, but will consume high power and have high latencies.

3. Bus topology: In bus networks, each message sent by one sensor can be received

by all the other sensors through a single channel. It is easy to install, but may have serious

congestion, and it is preferred for a small number of sensors.

4. Star topology: In a star topology, each sensor cannot directly communicate with

others. All sensors communicate with a centralized hub (fusion center). The fusion center

will receive information from all sensors. Star topology consumes low power and can be

easily enlarged, but it is not robust when the fusion center fails.

2

5. Ring topology: In a ring network, each sensor can only communicate with two

neighbors, and all of them perform the same function. The speed of communication and

information propagation is slow.

6. Tree topology: The network is divided into several levels. It is a combination of

the star topology and the bus topology. The network uses a fusion center as a root node and

nodes in lower levels propagate information to higher levels. It consumes less power than

other topologies, but is also slow and not reliable.

1.1 Distributed sensor networks

Different from centralized wireless sensor networks, distributed topologies do not

have a central fusion center. In centralized WSNs, if the fusion fails, the whole network

will collapse. Distributed sensor networks are robust, have better data sensing abilities and

also provide backup nodes [7].

Distributed sensor networks have to operate under the following conditions [8]:

1. Due to limited power budget, sensors can only communicate with sensors in their

close vicinity, known as neighboring sensors.

2. The sensed environment may be time-vaying, requiring the sensors to process

information fast and efficiently.

3. Individual nodes may easily fail.

4. There is a requirement for a changing adaptive network topology.

In order to match the aforementioned conditions, the distributed sensor network

should have the following features [9]:

1. A sufficiently large number of sensors is needed for improved accuracy, and ro-

bustness when certain sensors fail.

3

2. The sensor network topology should be dynamic to match the presence of mal-

functioning sensors, or the incorporation of new sensors in the network.

3. The sensors should be able to identify their neighboring sensors and collaborate

with them forming a well-connected network.

1.2 Principal component analysis

Distributed sensor networks are challenged by the limited power buget which can

limit the network’s life span. One way to address the issue of limited energy is to reduce

the dimensionality of the data acquired by sensors before being transmitted to a remote

site. This solution is useful when the network acquires data continuously [10]. To this

end, our goal is to compress the data inside the network using sensors. A data compression

technology applied to wireless sensor networks has the following steps. First, apply a data

compression algorithm. Then, transmit the compressed data to a remote site, and at last

decompress the data and reconstructed it. A lot of research has been performed in data

compression. Here we will focus on principal component analysis (PCA) for compresssing

the data in distributed sensor networks.

Principal component analysis (PCA) is a data compression technology. It can re-

duce the number of observed data variables to a smaller number of principal components

if the variables are highly correlated [11]. The original data will be converted to a set of

uncorrelated entries, after finding the eigenvectors of the data covariance matrix using the

acquired data. This process corresponds to an orthogonal transformation of the original

data into principal components. The first principal component will have the largest eigen-

value and therefore the most information about the data, the second will have the second

largest eigenvalue and so on. Thus, a large number of data can be efficiently represented

by a small number of principal components. Another advantage of principal component

4

analysis is that the noise sensitivity is low [12], such that it can be applied in data denoising

applications.

1.3 Previous work

Centralized PCA has already been developed for different settings, especially in data

aggregation methods [13–15]. But most time in sensor networks, the sensor data can not

be centralized, they are scattered across different sensors. PCA techniques have been de-

veloped for networks assuming that all sensors could connect to a fusion center [16]. But

this method requires highly computational capabilities and communication bandwidth. To

avoid this, decentralized methods are considered. Partially decentralized PCA algorithms

are developed by using local computation or data aggregation [16–19]. But the problem

is that a fusion center is still required for data aggregation. A method relying on the

Karhunen-Loeve transformation is developed in [20], but it still needs a fusion center and

can not converge in some situations. Another method assuming decomposable covariance

matrices is developed in [21]. Distributed algorithms relying on in-network processing

capabilities were developed in [22, 23]. The method in [23] required a fully connected

graph or a special tree structure. The approach in [22] relies on consensus-averaging tech-

niques. To increase the performance and convergence speed, a new algorithm was de-

veloped in [24]. Our main goal is to extend the distributed principal component analysis

algorithm to exploit sparsity in the principal subspace trying of interest.

1.4 Distributed principal component analysis

Different from traditional PCA, distributed principal component analysis schemes

have to be redesigned such that spatially scattered sensors perform the processing. For a

distributed sensor network structure, data will not be collected at a fusion center, thus com-

5

munication between neighboring sensors will be used to estimate the principal covariance

eigenspace. Also, in order to save energy, the sensors will only communicate with their

neighboring sensors in a limited distance. The alternating direction method of multipliers

(ADMM) method will be used here to derive the proposed algorithm.

1.5 Sparse principal component analysis (SPCA)

The principal component analysis framework will be redesigned to solve the sparsity

problem. Oftentimes there will be many zero variables in a set of data, for which standard

PCA cannot account for [25]. For example, in some images, there will be zero variables

in the covariance eigenspace [26]. Futher, if data are properly transformed, say e.g, by the

Discrete Cosine Transform (DCT), then many zeros-valued data entries will appear in the

transformed domain. The presence of many zeroes in the covariance eigenspace will be

used here to design a sparse PCA (SPCA) method that accounts for the zeroes and gives

better estimation accuracy [27].

1.6 Contributions of thesis

The contributions of this thesis include:

1. Utilization of sparsity regularization mechanisms to improve subspace estimation

accuracy compared to standard PCA approaches when sparse signals are involved.

2. Combination of distributed techniques along with norm-one regularization, to

achieve a novel distributed sparse approach that can operate in distributed sensor networks.

3. Develop an algorithm that is robust in the presence of noise, and can efficiently

compress sensor data to save bandwidth and energy.

6

1.7 Outline of work

This research mainly focused on a sparse distributed principal component analysis

algorithm for dimensionality reduction in distributed wireless sensor networks. The back-

ground and motivation of this sparse distributed algorithm will be introduced, including the

introduction of wireless sensor network and principal component analysis. In Chapter 2,

the design of this algorithm will be divided into two parts. Sparsity imposing mechanisms

will be introduced first, while ADMM will be used to solve a decentralized formulation.

Norm-one regularization will be combined with ADMM to devise a pertinent decentral-

ized algorithm. The impact of inter-sensor communication noise will also be considered

in Chapter 2. In Chapter 3, extensive numerical tests on both synthetic and real data will

demonstrate the good performance of the proposed scheme in different scenarios. The per-

formance will be assessed and compared in different situations. Finally, Chapter 4 will

provide some concluding remarks along with future research directions.

7

CHAPTER 2

A SPARSE DISTRIBUTED PRINCIPAL COMPONENT ANALYSIS FRAMEWORK

Estimating the eigenvector subspace of a data covariance matrix is essential in com-

pressing the data acquired across spatially scattered sensors. Futher, the covariance eigen-

vectors when properly transformed, using the DCT transform, contain many zero entries

that can simplify estimation. To this end, the PCA formulation will be expanded here with

a sparsity imposing mechanism, relying on norm-one regularization to find the zero entries

and estimate the nonzero entries. The alternating direction method of multiplies will be

employed to obtain a distributed compression algorithm that consists of computationally

simple local updating recursions. Only neighboring sensors will collaborate and commu-

nicate to solve this complex data compression problem.

2.1 Problem Statement

Consider a sensor network with p sensors, where each sensor can only communicate

with the neighbors within a radius d. Let j be the identifier for each sensor. The neighbors

of sensor j within communication range d are denoted by set Nj . Assuming that the links

between sensors are symmetric, the sensor network can be represented as an undirected

connected graph. The sensor network can be characterized by an adjacency matrix E ∈

Rp×p, where Eij = Eji = 1 for i ∈ Nj and Eji = 0 if i /∈ Nj . The measurements of

each sensor j will be denoted as {xτ (j)}pj=1 (where τ is the time index). The scattered

measurements can be defined as xτ := [xτ (1), . . . , xτ (p)]
T , the vector that contains all

sensor measurements at time instant τ . There is additive zero-mean possibly colored noise

wτ , present in the acquired sensor measurements: xτ=sτ+wτ , where sτ ∈ Rp×1 is the

8

original signal without noise. The signal of interest st in practice is low-dimensional and

can be represented as

sτ = µx +
∑r

ρ=1 πτ,ρus,ρ t = 1, ..., n, (2.1)

where µx is the mean of st, πτ,ρ denotes the zero-mean independent projection coefficients,

and {ux,ρ}rρ=1, is an unknown orthogonal basis of dimension r, while r ≤ p [26].

The covariance matrix of xτ can be written as Σx = Σs + Σw. Assuming that the

original signal sτ and noise wτ are independent, while removing µx, the expression (2.1)

can be written as

x̌τ := Fxτ =
∑r

ρ=1 πτ,ρFus,ρ + Fwτ (2.2)

where F is a proper transformation matrix. Formula (2.2) indicates that the data can be

decomposed according to a linear combination of an orthogonal basis [26]. By choosing

the most significant elements, and removing weak elements, the sensor data can be com-

pressed.

Our main goal in this thesis is to estimate the transformed vectors ǔs,ρ, especially

in the presence of many zero entries (Σs has sparse eigenvectors) by developing a sparse

distributed principal component analysis (SDPCA). Aiming to compress data x, linear di-

mensionality reduction is performed at the encoder by left-multiplying x with a matrix

C ∈ Rr×p, where r ≤ p and r is the subspace dimension. Then after Cx is received at the

decoder, in order to reconstuct x, a matrix B ∈ Rp×r will be left-multiplied with Cx [26].

Because the task is to get a good reconstruction estimate of x, it need to minimize the

mean-square error (MSE), with respect to matrices B and C according to the following

formulation

(Bo,Co) ∈ arg min
B,C

E[‖X−BCX‖2]. (2.3)

9

The formulation in (2.3) has a solution given as Bo=Ux,r, Co=UT
x,r. Then, the formula

(2.3) can be expressed as

Co ∈ arg min
C

E[‖X−CTCX‖2]. (2.4)

Now, because the ensemble covariance matrices are not available, Co and Bo can not

be found. This challenge is resolved by replacing the cost in (2.4) with its sample-averaged

vesion (t + 1)−1 arg minC[‖X −CTCX‖2F]. Then, the cost function in the noiseless case

can be written as

J(Co) = (t+ 1)−1 arg min
C

[‖X−CTCX‖2F] (2.5)

where X := [x0 . . .xt] and t+ 1 denotes the total number of data available.

2.2 Sparse principal component analysis

To exploit the sparsity (many zeroes) in the covariance subspace, norm-one regular-

ization will be used in PCA in (2.4). The cost of PCA in (2.5) is regularized with norm-one

mechanism [26], and it gets the following form

C ∈ arg min
C

(t+ 1)−1[‖X−CTCX‖2F] +
∑q

ρ=1

∑p
j=1 λρ(|C(ρ, j)|), (2.6)

where {λρ}qρ=1 are sparsity-controlling coefficients adjusting the number of zeroes in C.

Since (2.6) is a nonconvex problem and can not be solved efficiently [28], the formulation

(2.6) can be written as

C ∈ arg min
C

(t+ 1)−1[‖X−CTCX‖2F] +
∑q

ρ=1

∑p
j=1 λρ(|Z(ρ, j)|), (2.7)

s. to C = Z.

10

In order to solve (2.7), a Lasso based alternating direction method of multipliers

(ADMM) will be introduced to deal with this problem [28]. After setting yτ = Cxτ for

τ = 0, 1, 2, . . . , t, the cost function of C in (2.7) can be expressed as

J(C) = (t+ 1)−1
∑p

j=1

∑q
ρ=1

∑t
τ=0(xτ (j)−CT

:jyτ,j)
2 +

∑p
j=1

∑q
ρ=1 λρ|Z(ρ, j)|. (2.8)

Further, let Zj = C:j , then the augmented Lagrangian function associated with (2.8) can be

written as

L = (t+ 1)−1
∑p

j=1

∑q
ρ=1

∑t
τ=0(xτ (j)−CT

:jyτ,j)
2 +

∑p
j=1

∑q
ρ=1 λρ|Z(ρ, j)|,

+
∑p

j=1 uT (Zj −C:j) +
∑p

j=1 0.5c‖C:j − Zj‖22 (2.9)

where c is a positive penalty coefficient.

Let κ = 0, 1, . . . , denote the index for a coordinate descent cycle. Then, applying

the Lasso-based ADMM, the problem can be solve by the following updating equation, see

e.g., [28]

C:j(κ+ 1) = arg min(t+ 1)−1
∑t

τ=0(xτ (j)−CT
:j(κ)yτ,j)

2 + uT (κ)(C:j(κ)− Zj(κ))

+0.5c‖C:j(κ)− Zj(κ)‖22, (2.10)

the Z(ρ, j) entry in Z is updated as:

Zρ,j(κ+1) = arg minλρ|Zρ,j(κ)|+uTρ (κ)(Cρ,j(κ+1)−Zρ,j(κ))+0.5c(Cρ,j(κ+1)−Zρ,j(κ))2,

(2.11)

and the multiplier is updated as:

11

u(κ+ 1) = u(κ) + c(C:j(κ+ 1)− Zj(κ+ 1)) (2.12)

Applying first-order optimality conditions with respect to C on (2.2), the following

equation can be obtained

−2yτ,j
[
xτ (j)− (C:j(κ+ 1))Tyτ,j

]
+u(κ)+0.5∗2∗c(C:j(κ+1)−Zj(κ)) = 0. (2.13)

Then, C:j can be updated as

C:j(κ+ 1) = [(t+ 1)−1
∑t

τ=0 2yτ,jy
T
τ,j + cI]−1× [(t+ 1)−1

∑t
τ=0 2yτ,jxτ,j −u + cZj(κ)]

(2.14)

After applying first-order optimality conditions on Z in (2.11), the following equation can

be obtained

λρ|Zρ,j(κ+ 1)|
dZρ,j(κ+1)

− uρ(κ)− c(Cρ,j(κ+ 1)− Zρ,j(κ+ 1)) = 0 (2.15)

Then, Zρ,j can be updated during iteration κ as:

Zρ,j(κ+ 1) = sgn(Cρ,j(κ+ 1) +
u(κ)

c
)× (|Cρ,j(κ+ 1) + u(κ)

c
| − λ

c
)+ (2.16)

where sgn(·) denotes signum function and (·)+ = max(·, 0).

Then, updating formulas (2.12), (2.14) and (2.16) are used to form an iterative al-

gorithm to update matrix C, which estimates the sparse covariance subspace. Here, yτ is

treated as a known parameter. The proposed algorithm is tabulated below as Algorithm 1.

Algorithm 1 is a centralized approach that requires full connectivity of all sensors.

So far, we considered y as a known parameter, but in a distributed sensor network setting

a constraint yτ,1 = yτ,2 = . . . = yτ,p should be introduced in (2.7) to ensure all sensors

find consistent estimates of yτ . To satisfy this constraint, the sensors need to communicate
12

Algorithm 1 Sparse Principal Component Analysis
1: Every sensor j gathers t+ 1 measurements {xj(τ)}tτ=0.

2: for κ = 1, 2, . . . do

3: Sensor j updates C:j via (2.14).

4: Updating of Zρ,j via (2.16).

5: Updating of u via (2.12).

6: end for

7: If (‖Cκ+1
:j −Cκ

:j‖2) ≤ ε then stop (for desired tolerance ε).

data with their neighboring sensors. We will introduce a distributed principal component

analysis based on ADMM to deal with this problem in the following section.

2.3 Distributed Principal Component Analysis

Starting with the ensemble covariance matrix whose principal subspace needs to be

estimated. The covariance is given as:

Σx = E[xτx
T
τ]. (2.17)

If the number of data is quite large, equation (2.17) can be approximated as

Σ̂x ≈
1

t+ 1

∑t
τ=0[xτx

T
τ]. (2.18)

Performing eigenvalue decomposition on the covariance matrix gives

Σx = UxΛxU
T
x (2.19)

where Ux ∈ Rp×p is the square matrix whose columns contain the eigenvectors, and Λx

is the diagonal matrix whose diagonal elements are the corresponding eigenvalues. By

principal component analysis, the principal eigenspace Ux,r can be found by estimating the

r principal eigenvectors of the covariance matrix Σx using the gathered sensor data. The
13

problem will be solved in a distributed sensor network. Setting yτ = Cxτ , the formulation

in (2.5) can be written as

{Ĉ, ŷτ} = arg min
C,yτ

(t+ 1)−1
∑t

τ=0 ‖xτ −CTyτ‖22, (2.20)

whose optimal solution corresponds to principal eigenspace of Σ̂x in (2.18), namely Ĉ =

Ûx,r. Applying first-order optimality in (2.20), ŷτ = (ĈĈT)−1Ĉxτ can be obtained. This

means that C should match the equation ĈT (ĈĈT)−1Ĉ = Ûx,rÛ
T
x,r. Then, by singular

value decomposition, Ĉ = UcScV
T
c . Then, it follows that Uc,r = Ûx,rW, where W is an

arbitrary r × r unitary matrix. Thus, Ux,r can be estimated from Ĉ up to a unitary matrix

ambiguity. Next, the cost in (2.20) is split as follows

J(C, {yτ,j}tτ=0) = (t+ 1)−1
∑p

j=1

∑t
τ=0(xτ −CT

:jyτ,j)
2 (2.21)

Introducing the consensus constraint yτ,1 = yτ,2 = . . . = yτ,p, the following minimization

formulation can be obtained [29]:

arg min
C,yτ

(t+ 1)−1
∑p

j=1

∑t
τ=0(xτ −CT

:jyτ,j)
2,

s. to yτ,j = yτ,j′ , j′ ∈ Nj and τ = 0, . . . , t. (2.22)

In order to solve (2.22), the alternating direction method of multipliers (ADMM) will

be employed. Introducing auxiliary variables zj
′

τ,j for j′ ∈ Nj , then the constraints in (2.22)

can be equivalently rewritten as

yτ,j = zj
′

τ,j and yτ,j = zjτ,j′ for j′ ∈ Nj and j 6= j′, j = 1, . . . , p, τ = 0, . . . , t. (2.23)

After considering two more Lagrange multipliers vj
′

τ,j and wj′

τ,j , the augmented La-

grangian function can be written as

L[C, {yτ,j}t,pτ=0,j=1,v,w] = (t+ 1)−1
p∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2

14

+
t∑

τ=0

p∑
j=1

∑
b∈Nj

[
(vj

′

τ,j)
T (yτ,j − zj

′

τ,j) + (wj′

τ,j)
T (yτ,j − zjτ,j′)

]
+ 0.5c

t∑
τ=0

p∑
j=1

∑
j′∈Nj

[
‖yτ,j − yτ,j′‖22

]
,

(2.24)

Let κ = 0, 1, . . . , denote the index for a coordinate descent cycle, and k = 1, . . . , K

indicate the ADMM iteration index within a coordinate cycle. This means the iteration

time for updating C:j is κ, and in each coordinate descent cycle, we also need to update

yτ,j . The number of ADMM iterations in each cycle for updating yτ,j will be K. Thus, the

most up-to-date value of yτ,j is expressed as yτ,j((κ + 1)K). Next, we apply first-order

optimality conditions with respect to C:j and yτ,j . First, applying first-order optimality

conditions with respect to C:j is (2.24), we obtain

−2
∑t

τ=0 yτ,j((κ+1)K)xτ (j)+2
[∑t

τ=0 yτ,j((κ+ 1)K))(yτ,j((κ+ 1)K)))T
]
C:j(k + 1) = 0,

(2.25)

From (2.25), the update for C:j can be obtained as

C:j(κ+ 1) =
[∑t

τ=0 yτ,j((κ+ 1)K)(yτ,j((κ+ 1)K))T
]−1 ×∑t

τ=0 yτ,j((κ+ 1)K)xτ (j).

(2.26)

Then, applying first-order optimality with respect to yτ,j in (2.24) gives

−2(C:j(κ+ 1))
[
xτ (j)− (C:j(κ+ 1))Tyκ+1

τ,j (k + 1)
]

+
∑
j′∈Nj

t∑
τ=0

(vκ+1,j′

τ,j (κ) + wκ+1,j′

τ,j (κ))

+0.5c
∑
j′∈Nj

t∑
τ=0

[
2yκ+1

τ,j (k + 1)− 2yκ+1
τ,j′ (k + 1)

]
= 0.

(2.27)

15

From this, yτ,j can be updated as

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + 2c|Nj|I

]−1
×
[
2C:j(κ+ 1)xτ (j)−

∑
b∈Nj(v

κ+1,j′

τ,j (k) + wκ+1,j′

τ,j (k)) + c
∑

j′∈Nj(z
κ+1,j′

τ,j (k) + zκ+1,j
τ,j′ (k))

]
.

(2.28)

The two Lagrange multipliers vj
′

τ,j and wj′

τ,j can be updated by the following recursive

updates:

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + c[yκ+1
τ,j (k)− zκ+1,j′

τ,j (k)], (2.29)

wκ+1,j′

τ,j (k) = wκ+1,j′

τ,j (k − 1) + c[yκ+1
τ,j (k)− zκ+1,j′

τ,j (k)], (2.30)

In order to update zκ+1,j′

τ,j (k), first-order optimality conditions need to be applied with

respect to zκ+1,j′

τ,j (k) which gives

zκ+1,j′

τ,j (k + 1) = arg min
zj

′
τ,j

[La(yj′ ,v,w,yj(k + 1))]

= arg min
zj

′
τ,j

[

p∑
j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j(k + 1))2

+
∑
j′∈Nj

t∑
τ=0

[
(vκ+1,j′

τ,j)T (yτ,j(k + 1)− zj
′

τ,j) + (wκ+1,j′

τ,j)T (yτ,j(k + 1)− zjτ,j′)
]

+0.5c
∑
j′∈Nj

t∑
τ=0

[
‖yτ,j(k + 1)− zj

′

τ,j‖22 + ‖yτ,j(k + 1)− zjτ,j′‖
2
2

]
, (2.31)

differentiating with respect to zj
′

τ,j , the following equation can be obtained

−(vκ+1,j′

τ,j (k) + wκ+1,j
τ,j′ (k))

−c(yτ,j(k + 1)− zκ+1,j′

τ,j (k + 1) + yτ,j′(k + 1)− zκ+1,j′

τ,j (k)) = 0, (2.32)

16

then

2czκ+1,j′

τ,j (k)− c(yτ,j′(k + 1) + yτ,j(k + 1)) = vκ+1,j′

τ,j (k) + wκ+1,j
τ,j′ (k). (2.33)

Thus, the update for zκ+1,j′

τ,j is given as

zκ+1,j′

τ,j (k + 1) =0.5[yκ+1
τ,j (k + 1) + yκ+1

τ,j′ (k + 1)] + 0.5c−1[vκ+1,j′

τ,j (k) + wκ+1,j′

τ,j (k)],

(2.34)

Equation (2.34) gives the update for zκ+1,j′

τ,j (k + 1). If we initialize v0,j′

τ,j (0) =

w0,j
τ,j′(0), it will result vκ,j

′

τ,j (k) = wκ,j
τ,j′(k), then using (2.34) into (2.32) gives the multi-

plier update

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + c(yκ+1
τ,j (k)− 0.5

[
yκ+1
τ,j (k + 1) + yκ+1

τ,j′ (k + 1)
]
), (2.35)

from which it follows that vκ+1,j′

τ,j (k) can be updated as:

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + 0.5c(yκ+1
τ,j (k)− yκ+1

τ,j′ (k)). (2.36)

Futher, because wκ+1,j′

τ,j (k) = −vκ+1,j
τ,j′ (k), (2.34) in (2.28) gives the updating equation

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + 2c|Nj|I

]−1
×
[
2C:j(κ+ 1)xτ (j)−

∑
j′∈Nj(v

κ+1,j′

τ,j (k)− vκ+1,j
τ,j′ (k))

+c
∑

j′∈Nj(y
κ+1
τ,j (k) + yκ+1

τ,j′ (k))
]
. (2.37)

After that, using (2.26),(2.36) and (2.37) to form the distributed PCA algorithm, tabulated

as Algorithm 2.

2.4 Sparse distributed principal component analysis

In order to complete the sparse distributed principal component analysis algorithm,

the sparse principal component analysis (SPCA) algorithm in Section 2.2 and the dis-
17

Algorithm 2 Distributed Principal Component Analysis [29]

1: Lagrange multipliers {vκ,j
′

τ,j (−1)}j′∈Nj , sensor local estimates yκ+1
τ,j (0) , and variables yκ+1

τ,j′ (0)

are randomly initialized.

2: Every sensor j gathers t+ 1 measurements {xj(τ)}tτ=0.

3: for κ = 1, 2, . . . do

4: Each sensor j updates C:j(κ+ 1) ∈ Rr×1 via (2.26).

5: for k = 1, 2, . . . ,K do

6: Sensor j updating the multipliers {vκ,j
′

τ,j (k)}j′∈Nj using (2.36).

7: Sensor j receiving the consensus variables from all its neighbors in the subset Nj and

estimates yκ+1
τ,j (k + 1) using (2.37).

8: end for

9: If (‖Ĉκ+1
:j − Ĉκ

:j‖2) ≤ ε then stop (for desired tolerance ε).

10: end for

tributed principal component analysis (DPCA) algorithm in Section 2.3 will be combined.

In this new algorithm, yτ,j in SPCA will be updated using the DPCA part, while the formula

(2.26) in DPCA responsible for updating C:j will be replaced by the SPCA part. Thus, the

updating recursions for sparse distributed PCA (SDPCA) are given next

C:j(κ+ 1) = [
∑t

τ=0 2yτ,jy
T
τ,j + cI]−1× [(t+ 1)−1

∑t
τ=0 2yτ,jxτ,j −u + cZj(κ)], (2.38)

whereas the ρ entry of vector Zj(κ) is valued as:

Zρ,j(κ+ 1) = sgn(Cρ,j(κ+ 1) +
u(κ)

c
)× (|Cρ,j(κ+ 1) + u(κ)

c
| − λ

c
)+, (2.39)

further the multipliers are updated as:

u(κ+ 1) = u(κ) + c ∗ (C:j(κ+ 1)− Zj(κ+ 1)) (2.40)

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + 0.5c(yκ+1
τ,j (k)− yκ+1

τ,j′ (k)), (2.41)
18

while the principal components vector at sensor j is given as

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + 2c|Nj|I

]−1
×
[
2C:j(κ+ 1)xτ (j)−

∑
j′∈Nj(v

κ+1,j′

τ,j (k)− vκ+1,j
τ,j′ (k))

+c
∑

j′∈Nj(y
κ+1
τ,j (k) + yκ+1

τ,j′ (k))
]
, (2.42)

The algorithm summarized in (2.38)-(2.42) is tabulated as Algorithm 3.

Algorithm 3 Sparse Distributed Principal Component Analysis

1: Lagrange multipliers {vκ,j
′

τ,j (−1)}j′∈Nj ,sensor local estimates yκ+1
τ,j (0) , variables yκ+1

τ,j′ (0) , Zj

and u are randomly initialized.

2: Every sensor j gathers t+ 1 measurements {xj(τ)}tτ=0.

3: for κ = 1, 2, . . . do

4: Each sensor j updates C:j(κ+ 1) ∈ Rr×1 via (2.38).

5: Sensor j updates {Zρ,j(κ+ 1)} using (2.39).

6: Sensor j updates the multipliers u(κ+ 1) using (2.40).

7: for k = 1, 2, . . . ,K do

8: Sensor j updates the multipliers {vκ,j
′

τ,j (k)}j′∈Nj using (2.41).

9: Sensor j receives the consensus variables from all its neighbors and estimates yκ+1
τ,j (k+1)

using (2.42).

10: end for

11: If (‖Ĉκ+1
:j − Ĉκ

:j‖2) ≤ ε then stop (for desired tolerance ε).

12: end for

2.5 Online algorithm

The above algorithm summarized in (2.38)-(2.42) is a batch algorithm and needs

large computational power and storage. In practical applications, sensors constantly ac-
19

quire new data which needs increasing memory, communication and computational re-

quirements. As time progresses, the algorithm summarized in (2.38)-(2.42) may not be

operational. To deal with this problem, an online algorithm is obtained that is computa-

tionally efficient and memory efficient. To this end, we introduce the following updating

recursions that are adaptive in nature. This means that at every time when t increases, there

is no need to calculate everything from ’scratch’, we just rely on the most recent updates

and newly acquired data to obtain the following updates:

Ct+1
:j (κ+1) = [

∑t
τ=0 2yτ,j(K)yTτ,j(K)+cI]−1×[

∑t+1
τ=0 2yτ,j(K)xτ,j−ut+1(κ)+cZt+1

j (κ)]

(2.43)

Zt+1
ρ,j (κ+ 1) = sgn(Ct+1

ρ,j (κ+ 1) +
ut+1(κ)

c
)× (|

Ct+1
ρ,j (κ+ 1) + ut+1(κ)

c
| − λ

c
)+. (2.44)

ut+1(κ+ 1) = ut+1(κ) + c ∗ (Ct+1
:j (κ+ 1)− Zt+1

:j (κ+ 1)) (2.45)

The principal component vectors are updated at sensor j as:

yt+1,j(k + 1) =
[
2C:j(t+ 1)(C:j(t+ 1))T + 2c|Nj|I

]−1
× [2C:j(t+ 1)xt+1(j)

−
∑

j′∈Nj(v
j′

t+1,j(k)− vjt+1,j′(k) + c
∑

j′∈Nj(yt+1,j(k) + yt+1,j′(k))], (2.46)

while the Lagrange multipliers are obtained as:

vj
′

t+1,j(k) = vj
′

t+1,j(k − 1) + 0.5c[yt+1,j(k)− yt+1,j′(k)], k = 1, . . . , K and j′ ∈ Nj.

(2.47)

20

To obtain an online processing algorithm, we set Mx,t=
∑t

τ=0 yτ,j(K)yTτ,j(K) and

mxy,t=
∑t

τ=0 yτ,j(K)xτ,j used in (2.43). These quantities can be updates as:

Mx,t = Mx,t−1 + yτ,j(K)yTτ,j(K), (2.48)

mxy,t = Mxy,t−1 + yτ,j(K)xτ,j (2.49)

Applying (2.48) (2.49) in (2.43), when updating Ct+1
:j (κ + 1), the sensor j does not

require storing all data history, and can be updated in an adaptive fashion. The algorithm

summarized in (2.43)-(2.47) is tabulated as Algorithm 4.

2.6 Inter-sensor communication noise

In this section, considering the impact of inter-sensor communication noise. Inter-

sensor noise affects the information exchanged between sensors. Information is received

from sensors j′ ∈ Nj when sensor j updates variables vj
′

t+1,j(k) and yt+1,j′(k). For ex-

ample, in (2.47), to update vj
′

t+1,j , the sensor j needs to acquire variables yt+1,j′(k) from

its neighbors j′ ∈ Nj . Also in (2.46), the variables vjt+1,j′(k) and yt+1,j′(k) need to be

acquired. Then, when sensor j acquires variables vjt+1,j′(k) and yt+1,j′(k), in the presence

of communication noise, it will receive vjt+1,j′(k) +ζj
t+1,j′(k) and yt+1,j′(k) +ηj

t+1,j′(k),

where ζj
t+1,j′(k) and ηj

t+1,j′(k) correspond to zero-mean communication noise contami-

nating the link from sensor j′ to j. Then (2.46) and (2.47) can be written as

yt+1,j(k + 1) =
[
2C:j(t+ 1)(C:j(t+ 1))T + 2c|Nj|I

]−1
×[2C:j(t+ 1)xt+1(j)−

∑
j′∈Nj(v

j′

t+1,j(k)

−(vjt+1,j′(k) + ζj
t+1,j′(k)) + c

∑
j′∈Nj(yt+1,j(k) + yt+1,j′(k) + ηj

t+1,j′(k))], (2.50)

21

Algorithm 4 Adaptive Sparse Distributed Principal Component Analysis

1: Lagrange multipliers {vj
′

0,j(−1)}j′∈Nj ,sensor local estimates yκ+1
0,j (0) , variables yκ+1

0,j′ (0) ,

Z0
j (0) and u0(0) are randomly initialized.

2: Every sensor j gathers t+ 1 measurements {xj(τ)}tτ=0.

3: for t = 0, 1, 2, . . . do

4: for κ = 1, 2, . . . ,K do

5: Each sensor j updates Ct+1
:j (κ+ 1) ∈ Rr×1 via (2.38).

6: Sensor j updates {Zt+1
ρ,j (κ+ 1)} using (2.39).

7: Sensor j updates the multipliers ut+1(κ+ 1) using (2.40).

8: end for

9: Initialize yt+1,j(0) = C:j(t+ 1)xτ (j) and vt+1(0) = vt(K)

10: for k = 1, 2, . . . ,K do

11: Sensor j updates the multipliers {vj
′

t+1,j(k)}j′∈Nj using (2.41).

12: Sensor j receives the consensus variables from all its neighbors and estimates yt+1,j(k+1)

using (2.42).

13: end for

14: If (‖Ĉt
:j − Ĉt

:j‖2) ≤ ε then stop (for desired tolerance ε).

15: end for

vj
′

t+1,j(k) = vj
′

t+1,j(k − 1) + 0.5c[yt+1,j(k)− (yt+1,j′(k) + ηj
t+1,j′(k))], k = 1, . . . , K

(2.51)

The effect of communication noise will be tested on the performance of the algo-

rithm. It will be seen in Chapter 3 that the proposed framework is robust in the presence of

noise.

22

CHAPTER 3

NUMERICAL TESTS AND DISCUSSION

In this chapter, the performance of the sparse distributed principal component anal-

ysis algorithm developed in Chapter 2 will be tested. The online algorithm will be used to

estimate different numbers of principal components, under different numbers of sensors to

demonstrate that the novel algorithms are able to work for different network sizes. Differ-

ent numbers of training data will be used to show the accuracy rate. Futher, inter-sensor

noise will be applied to demonstrate the robustness of the proposed technique different

from existing alternatives. Finally, real data corresponding to CO2 levels measured in an

area will be used to advocate the flexibility and accuracy of the proposed scheme.

3.1 Subspace projection estimation error for different network settings

We consider the number of sensors in the sensor network as p=20,30 or 50. These

sensors will be randomly distributed in the area [0×1]× [0×1]. The communication range

distance for each sensor is d = 0.25 units. Each sensor collects t = 1000 observations. The

number of ADMM iterations is set at K = 20. Other parameters are set at c = 1 and λ =

0.1 (for r = 1 eigenvector), λ = [0.1, 0.01] (for r = 2 eigenvectors), λ = [0.1, 0.09, 0.01]

(for r = 3 eigenvectors). Here, monitoring how the subspace projection estimation error

e(t) := ‖CT (t)(C(t)CT (t))−1C(t) − Ux,rU
T
x,r‖2F ,where ‖ · ‖F is the Frobenius norm,

behaves for an increasing number of data. In order to get an average error value, we will

run the algorithm for 100 Monte Carlo runs.

Figure 3.1, 3.2, and 3.3 compare the performace of SDPCA with respect to the error

e(t) for a different number of principal components r = 1, 2, 3 and different numbers of

23

0 200 400 600 800 1000

100

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

r=1
r=2
r=3

r=3

r=2

r=1

Figure 3.1. Subspace projection estimation error e(t) vs. time index t for r = 1, 2, 3, where
the number of sensors is p = 20.

0 100 200 300 400 500 600 700 800 900 1000
10−2

10−1

100

101

Iteration time

av
er

ag
e

er
ro

r

r=1
r=2
r=3

r=2

r=1

r=3

Figure 3.2. Subspace projection estimation error e(t) vs. time index t for r = 1, 2, 3, where
the number of sensors is p = 30.

24

0 200 400 600 800 1000
10−2

10−1

100

101

Iteration time

av
er

ag
e

er
ro

r

r=1
r=2
r=3

r=3

r=2

r=1

Figure 3.3. Subspace projection estimation error e(t) vs. time index t for r = 1, 2, 3, where
the number of sensors is p = 50.

sensors p = 20, 30, 50. It can be seen that in different situations, the error e(t) will decrease

and become steady when sensors obtain more and more observations. It also shows that

for different principal components r, e(t) is not affected by the number of principal com-

ponents r. However, when the number of sensors increases to p = 50, estimating r = 1

eigenvector is easier than estimating r = 3 eigenvectors.

3.2 Subspace projection estimation error for a different number of ADMM iterations

Here, the number of sensors is set as p = 50. Then, we test the error achieved by

SDPCA e(t) for different number of ADMM iterations, namely K = 5, 15, 20. The error

e(t) is plotted versus the number of measurements t. Other parameters will be set as p = 50,

c = 1, λ = 0.1. 100 Monte Carlo iterations are executed to obtain the average value of e(t).

Figure 3.4 shows that asK increases, the estimation performance of SDPCA improves, and

25

0 200 400 600 800 1000

10−0.9

10−0.7

10−0.5

10−0.3

10−0.1

100.1

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

K=5
K=15
K=20

K=5

K=15

K=20

Figure 3.4. Subspace projection estimation error e(t) vs. time index t for r = 1 and p = 50,
while the ADMM number of iterations is set as K = 5, 15, 20.

decreases as t increases.

3.3 Probability of correctly recovering zero entries in principal subspace

In this test, the zero entries in estimated C and true subspace Ux,r will be compared.

If C is correct, then C will have zero entries in the same place as Ux,r. The entries in C

and Ux,r may not be exactly zero, thus we use thresholding. When the elements are smaller

than a desired tolerance, then they will be set to zero. Also, other parameters will be set as

p = 50, c = 1 and λ = 0.1. Figure 3.5 indicates that as more observations are acquired

the probability of correctly recovering zero entries increases.

26

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of data t

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 s

up
po

rt

Figure 3.5. Probability vs. time index when estimating r = 1 principal eigenvector.

3.4 Inter-sensor communication noise

Here, the inter-sensor noise is considered for different signal-to-noise ration (SNR)

values and setting the number of sensors to p = 50, parameters c = 1 and λ = 0.1 (for

r = 1 eigenvector),λ = [0.1, 0.01] (for r = 2 eigenvectors), λ = [0.1, 0.09, 0.01] (for r = 3

eigenvectors).

Figures 3.6,3.7 and 3.8 obviously show that lower noise during communication will

allow SDPCA to get a better performance. It can be seen that there may exist a tolerance

for SNR. If the SNR is bigger than the tolerance, the inter-sensor noise will not affect the

performance too much. This is to be contrasted with existing PCA approaches that in the

presence of communication noise always diverge.

27

0 200 400 600 800 1000
10−2

10−1

100

101

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

SNR=12dB
SNR=30dB
SNR=50dB

SNR=12dB

SNR=30dB

SNR=50dB

Figure 3.6. Subspace projection estimation error e(t) vs. time index t for r = 1 in the
presence of inter-sensor noise and SNR values 12dB, 30dB and 50dB.

0 200 400 600 800 1000

100

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

SNR=15dB
SNR=30dB
SNR=50dB

SNR=15dB

SNR=30dB

SNR=50dB

Figure 3.7. Subspace projection estimation error e(t) vs. time index t for r = 2 in the
presence of inter-sensor noise and SNR values 15dB, 30dB and 50dB.

28

0 200 400 600 800 1000

100

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

SNR=18dB
SNR=30dB
SNR=50dB

SNR=30dB

SNR=18dB

SNR=50dB

Figure 3.8. Subspace projection estimation error e(t) vs. time index t for r = 3 in the
presence of inter-sensor noise and SNR values 18dB, 30dB and 50dB.

3.5 Real data

A set of data showing the CO2 levels from The Berkeley Atmospheric CO2 Obser-

vation Network [30]. The set of data is coming from 28 sites and each one will have 1728

observations. The data are normalized to zero-mean and unit corvariance before process-

ing. The parameters will be set at c = 1 and λ = 0.1 (for r = 1 eigenvector),λ=[0.1,0.01]

(for r = 2 eigenvectors), λ=[0.1,0.09,0.01] (for r = 3 eigenvectors)

Similar to the case of using synthetic data, DSPCA works efficiently even for real

data with the performance improving as the number of data increases.

29

0 200 400 600 800 1000 1200 1400 1600 1800
10−3

10−2

10−1

100

101

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

r=1
r=2
r=3

r=3

r=2

r=1

Figure 3.9. Subspace projection estimation error e(t) vs. time index t when estimating
r = 1, 2, 3 principal components with real data .

3.6 Sparsity versus no sparsity exploitation

The value of λ is a parameter which should be carefully selected. Here, we compare

with λ = 0 and λ = 0.1 in the real data used earlier. Other parameters are c = 1, r = 1 and

K = 20.

Figure 3.10 depicts that the proposed SDPCA performs much better than standard

PCA which does not exploit sparsity (λ = 0). Thus, the proposed framework has the

potential to use the zeros present in the principal eigenspace and achieve better performance

than standard PCA (λ = 0, no sparsity).

30

0 200 400 600 800 1000 1200 1400 1600 1800
10−3

10−2

10−1

100

101

Number of data t

A
ve

ra
ge

 e
rr

or
 e

(t
)

λ=0

λ=0.1

λ=0

λ=0.1

Figure 3.10. Subspace projection estimation error e(t) vs. time index t when estimating
r = 1 eigenvector for λ = 0 (no sparsity) and λ = 0.1.

31

CHAPTER 4

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis focused on developing a sparse distributed principal components analysis

algorithm (SDPCA). The main goal is to improve upon existing compression technolo-

gies relying on dimensionality reduction. The design of the algorithm was divided into

two parts, one is a sparsity utilization component and the other is a distributed mecha-

nism. Then, we combined these two parts together to obtain the SDPCA algorithm. Norm-

one regulation along with the alternating direction method of multipliers were employed.

Simple local updating recursions were obtained that are robust in the presence of noise.

Different numerical tests were applied in different situations, like different sizes of sen-

sor networks, different ADMM iterations and different noise SNR settings. Both synthetic

data and real data were applied in the tests. These tests demonstrated that the novel algo-

rithm can be effectively applied in different situations and gives good principal subspace

estimation results.

Future directions involve the following research tasks:

1. Develop adaptive algorithms for time-varying covariance matrices. So far, the

algorithm designed is relying on a stationary covariance matrix. But sometimes the covari-

ance matrix is dynamic, thus it is necessary to find a way to track the changing eigenvectors

and perform adaptive compression.

2. Denoising. In this algorithm, we only considered the inter-sensor noise, but the

sensing noise may also have effects in data processing. A low sensing SNR may result in

poor estimation performance. Denoising techniques relying on sparse distributed PCA will

be devised.

32

3. Heterogeneous sensor networks. Oftentimes sensing systems acquire more than

one types of measurements. These different type of data may be correlated with each other.

Techniques to use and process heterogeneous data, while performing compression can be

considered in future research.

33

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer

networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] S. Prasanna and S. Rao, “An overview of wireless sensor networks applications and

security,” International Journal of Soft Computing and Engineering (IJSCE), ISSN,

pp. 2231–2307, 2012.

[3] I. Stojmenovic, Handbook of sensor networks: Algorithms and architectures. John

Wiley & Sons, 2005, vol. 49.

[4] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless

sensor networks,” in INFOCOM 2002. Twenty-First Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3. IEEE,

2002, pp. 1567–1576.

[5] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption model for

wireless sensor network devices,” in Sensor and Ad Hoc Communications and Net-

works, 2006. SECON’06. 2006 3rd Annual IEEE Communications Society on, vol. 1.

IEEE, 2006, pp. 286–295.

[6] S. Sharma, D. Kumar, and K. Kishore, “Wireless sensor networks-a review on topolo-

gies and node architecture,” International Journal of Computer Sciences and Engi-

neering, vol. 1, no. 2, pp. 19–25, 2013.

[7] M. M. Zanjireh and H. Larijani, “A survey on centralised and distributed cluster-

ing routing algorithms for wsns,” in Vehicular Technology Conference (VTC Spring),

2015 IEEE 81st. IEEE, 2015, pp. 1–6.

34

[8] M. Haenggi, “Distributed sensor networks: a cellular nonlinear network perspective,”

International journal of neural systems, vol. 13, no. 06, pp. 405–414, 2003.

[9] A. Bharathidasan and V. A. S. Ponduru, “Sensor networks: An overview,” in IEEE

INFOCOM, vol. 4, 2002.

[10] Y.-C. Wang, “Data compression techniques in wireless sensor networks,” Pervasive

Computing, New York: Nova Science Publishers, Inc, 2012.

[11] D. D. Suhr, “Principal component analysis vs. exploratory factor analysis,” SUGI 30

proceedings, vol. 203, p. 230, 2005.

[12] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and A. Hooman, “An

overview of principal component analysis,” Journal of Signal and Information Pro-

cessing, vol. 4, no. 3B, p. 173, 2013.

[13] D. R. Brillinger, Time Series: Data Analysis and Theory. Expanded Edition, Holden

Day, 1981.

[14] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigen-

values of the expectation of a random matrix,” J. Math. Anal. Applicat., vol. 106,

no. 1, pp. 69–84, 1985.

[15] B. Yang, “Projection approximation subspace tracking,” IEEE Trans. on Sig. Process-

ing, vol. 43, no. 1, pp. 95–107, 1995.

[16] Z. jian Bai, R. H. Chan, and F. T. Luk, “Principal component analysis for distributed

data sets with updating,” in In Proceedings of International workshop on Advanced

Parallel Processing Technologies (APPT, 2005.

[17] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson, “Distributed clustering using

collective principal component analysis,” Knowledge and Information Systems, vol. 3,

p. 2001, 1999.

[18] H. Qi, T. wei Wang, and J. D. Birdwell, “Global principal component analysis for

dimensionality reduction in distributed data mining,” 2004.

35

[19] Y. L. Borgne, S. Raybaud, and G. Bontempi, “Distributed principal component anal-

ysis for wireless sensor networks,” Sensors, vol. 8, no. 8, pp. 4821–4850, 2008.

[20] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The distributed karhunen–loeve trans-

form,” Information Theory, IEEE Transactions on, vol. 52, no. 12, pp. 5177–5196,

2006.

[21] Z. Meng, A. Wiesel, and A. O. Hero, “Distributed principal component analysis on

networks via directed graphical models,” in in Proc. of IEEE Intl. Conf. on Acoust.,

Speech and Sig. Proc, March 2012, pp. 2877 –2880.

[22] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace estimation in

wireless sensors networks,” IEEE Journal of Sel. Topics in Sig. Proc., vol. 5, no. 4,

pp. 725–738, 2011.

[23] A. Bertrand and M. Moonen, “Distributed adaptive estimation of covariance matrix

eigenvectors in wireless sensor networks with application to distributed PCA,” Inter-

nal Report KU Leuven ESAT-SCD, 2013.

[24] I. D. Schizas and A. Aduroja, “A distributed framework for dimensionality reduction

and denoising,” Signal Processing, IEEE Transactions on, vol. 63, no. 23, pp. 6379–

6394, 2015.

[25] Q. Zhao, D. Meng, and Z. Xu, “Robust sparse principal component analysis,” Science

China Information Sciences, vol. 57, no. 9, pp. 1–14, 2014.

[26] I. D. Schizas and G. B. Giannakis, “Covariance eigenvector sparsity for compression

and denoising,” Signal Processing, IEEE Transactions on, vol. 60, no. 5, pp. 2408–

2421, 2012.

[27] O. Yilmaz and A. N. Akansu, “Quantization of eigen subspace for sparse representa-

tion,” IEEE Transactions on Signal Processing, vol. 63, no. 14, pp. 3576–3585, 2015.

36

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations

and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[29] A. Aduroja, I. D. Schizas, and V. Maroulas, “Distributed principal components anal-

ysis in sensor networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on. IEEE, 2013, pp. 5850–5854.

[30] http://beacon.berkeley.edu/Sites.aspx.

37

