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Abstract 

 
EXPLOITING HIGHER-ORDER STATISTICS IN  

RADAR DATA FOR  

SCATTERING CENTER ISOLATION 

 

Jeffrey Brandon Hall, PhD 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Saibun Tjuatja 

 
Embedded in each observation of a RADAR system is an amalgam of 

scattered signals. An important function of RADAR signal processing is to resolve or 

separate this mixture of target signals.  

Imaging using RADAR data is a well-established area of research. 

Conventional RADAR imaging methods use a two-dimensional Fourier transform to 

back-project RADAR measurements to scattering sources [1]. The Fourier transform 

based imaging techniques have resolution limited by the bandwidth and spatial 

diversity of available data samples. 

Super-resolution methods such as MUSIC overcome the resolution limitation 

by employing an alternate model for the measured data [2]. These techniques are 

capable of enhancing RADAR images through an increase in the resolvability of 

scattering produced at particular spatial locations.  

This research focuses on enhancing RADAR imaging techniques through a 

concept of isolating and localizing scatterers from within a mixture. The isolation step is 

accomplished through the notion of separating signals based on their non-Gaussianity. 
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Finite sized radar targets have non-Gaussian probability densities which enables the 

use of this measure in the distinction of scatterers [3]. The second attractive feature of 

non-Gaussianity as a measure of distinction is that a mixture of sources with non-

Gaussian probabilities tends to Gaussian as the number of independent sources 

increases.  

The approach of this manuscript uses a kurtosis maximization algorithm to 

search for the most non-Gaussian components of a mixture. Once these elements are 

isolated, an attempt is made to generate an accurate localization of the individual 

scatterers through a composite maximum view of the components. 

This research employs simulated and measured RADAR data. The measured 

RADAR data was captured on the turntable ISAR system at the Wave Scattering 

Research center of the University of Texas at Arlington.  

Results show that there is a strong correlation between leptokurtic scattering 

data and the unique scattering centers in the radar field of view. The results of the 

testing, on synthetic target sets, yielded a 52% probability of detection of the known 

scatterers with a localization error of zero in most cases. 
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Chapter 1 Introduction 

RADAR sensing is becoming ubiquitous in modern society. From monitoring 

weather to vehicle collision avoidance, and robot navigation to monitoring climate 

change, applications of radar remote sensing are expanding. 

RADAR signal processing is a rich field of research. Scatter detection and 

interpretation has been an overarching theme of the research in this field for decades. 

It is the intent of this work to expand the domain of knowledge relative to information 

extraction from RADAR scatter. 

Radar scattering localization is a fundamental area of interest in the field of 

remote sensing. Back-projection RADAR imaging is a common method for separating 

and analyzing scattering within radar data. The back-projection technique has an 

inherent irresolution due to Fourier basis which is used to process the data. The 

resolution of Fourier based techniques is limited by the bandwidth of the sampling 

system. Improvement in scattering localization is realized through super-resolution 

techniques, which transcend the diffraction limited Fourier based signal processing. 

The research of this dissertation seeks to test a concept of enhancing the resolution of 

radar imaging techniques through the use of statistical signal processing. 

 

Research Goals 

The key goal in this research is to test the hypothesis that the most non-

Gaussian elements of a scattering mixture are correlated to the scattering centers in 

the observation field.  

A secondary goal of this work is the development of an application to exploit 

the potential correlation with an objective to produce a method of RADAR imaging to 

detect and localize scattering centers within the radar data. 
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High Kurtosis and Scattering Center Correlation 

The hypothesis that the scattering centers with a RADAR observation are 

correlated to the most non-Gaussian elements of the scattered data is rooted in the 

concept that a mixture of sources is more Gaussian than the individual sources making 

up the mixture. The fundamental basis for this concept is the Central Limit Theorem. 

Kurtosis is a fourth-order statistical cumulant which provides a measure of 

Gaussianity. Normalized kurtosis has been employed as a cost function in several well-

known blind source separation (BSS) techniques. This class of techniques is typically 

referred to as Independent Component Analysis (ICA) [4] [5] [6]. A well-known 

algorithm based on this class of techniques, robustICA, will be used to perform 

estimation of the highly kurtotic elements within the scattering mixture. This work 

presents a novel application of this signal processing technique as it relates to the 

physics underlying radar scattering data 

 

Method to Exploit Scattering Kurtosis in RADAR Imaging 

The novel method developed for this research uses the fourth-order statistics 

of the radar data to adapt beamforming weights such that the scattering elements 

which possess the highest non-Gaussianity are emphasized. This work develops an 

innovative application of the well-known Independent Component Analysis algorithm in 

the estimation of the optimal beamforming weights for the separation of high kurtosis 

elements of the RADAR scattering data.  

The results shown in this work establish that there is a strong correlation 

between leptokurtic scattering data and the unique scattering centers in the radar 

observation. This manuscript describes the basis and technique of a novel method for 
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extraction of the leptokurtic elements in RADAR scattering data. This work also 

explores a RADAR imaging technique which exploits the relationship between the 

scattering centers and the leptokurtic elements within the radar data. 

 

Prior Work 

There is ongoing research in advanced RADAR imaging techniques and super-

resolution imaging. In the following sections some of the recent contributions will be 

outlined.  

 

 State of the Art in RADAR Imaging 

In a 2014 article, Ash et al. presented algorithms and models for anisotropic 

scattering. This research was aimed at removing sample space limitations imposed by 

the point scattering model. This new perspective allows for the estimation of scattering 

using up to a full circular aperture in k-space [7].  

In their 2014 article, Çetin et al. highlight the prospect for sparsity based 

techniques in enhancing the capability of SAR systems. Application of the sparse 

model to SAR signal processing has led to a host of advanced image formation 

algorithms [8]  

Multiple Input Multiple Output (MIMO) SAR is an emerging research area which 

shows promise to enhance the performance of SAR systems [9]. The MIMO concept 

expands the capability of digital beamforming on receive to include a set of 

beamformers which are matched to a set of unique separable transmit waveforms. 

Cristallini et al. published an article in 2011 which theorized a super-resolution affect, in 

the range dimension of a SAR image, through the use of a MIMO sensing scheme 

which employs a constellation of SAR platforms [10]. In [9] and [11] reference is made 



16 

to the prospect of application of the MIMO concept to enable single-pass 

interferometric and tomographic SAR as well as allusions to entirely new processing 

schemes enabled by the increase in degrees of freedom. 

 

State of the Art in Super-resolution Imaging 

In their 2012 paper Zhu et al., demonstrated the ability of the SL1MMER 

algorithm to produce super-resolution in the elevation dimension and as a result 

effectively enhance the detection of double bounce scattering. This paper illustrated the 

importance of resolving double bounce scattering in the application of urban 

infrastructure monitoring using tomographic SAR [12]. In their 2012 paper Fischer et al. 

demonstrated the resolution of a linear prediction algorithm applied to data from a W-

band automotive radar in a MIMO configuration [13]. Also in 2012, Mitchell and Tjuatja 

reported a method to estimate the dimension of the signal subspace using a feature 

vector developed from polarimetric measurements [14]. 

 
Contribution of the Proposed Method 

The research detailed in this work adds to the art in the area of RADAR 

imaging. The incorporation of higher-order statistical information in the signal 

processing chain shows the ability to isolate and localize scatterers. This work shows 

that there is a strong correlation between leptokurtic scattering data and the scattering 

centers in the radar observation. The leptokurtic statistics of the RADAR data can be 

used as a contrast during the formation of weights to focus the radar data in the 

direction of each leptokurtic source. Use of the higher-order statistics to focus sub-

aperture radar observations, enables, precise localization of scatterers which enhances 

the interpretability of a RADAR image. 
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In this work, a technique, the Isolated Scatterer Method (ISM), is developed 

which shows some merit in extracting unique scattering centers, however, this 

technique is also shown to be much less effective in the isolation of closely spaced 

scatterers.  
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Chapter 2 RADAR Scattering and Signal Processing Fundamentals 

 
RADAR Scattering Fundamentals 

Radio detection and ranging (RADAR) is a remote sensing modality which 

relies on the use of scattered electromagnetic waves in the radio frequency (RF) 

domain to infer characteristics about a remote target. Central to this sensing modality is 

the scattering of the waves. 

 

Scattering Physical Model 

Scattering of electromagnetic (EM) radiation is produced when a propagating 

EM wave front impinges upon a scatterer. The incident field results in a scattered field 

which is redirected in direction and magnitude according to the geometry and material 

of the scatterer. The scattered fields are the input to RADAR signal processing 

algorithms. It is the purpose of the signal processing algorithms to infer details about 

the objects which have produced the scatter. This section gives an overview of the 

physics that lead to the scattered fields. The intent of this section is to illustrate the 

extent of the assumptions and approximations required for closed from solutions to the 

wave scattering problem and illustrate the combinatorial variety of independent 

scattering mechanisms, which could exist in a non-canonical target. This knowledge 

will also serve as a basis for the assumptions made in the signal modeling and 

processing. 

The relationship between incident and scattered fields is given by equations (1) 

and (2). The superscripts denote the total (t), incident (i), and scattered (s) elements 

of the electric (E) and magnetic (H) fields. Ei and Hi denote the fields in the absence of 

any scatterers [15]. Using a physical optics approximation, which neglects the effects of 
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edges, it is possible to solve for the elements of the fields for a few canonical shapes 

and geometries.  

Et = Ei + Es (1) 

Ht = Hi + Hs (2) 

 

Scattering from finite size objects 

Analytical formulations for scattering from finite-sized objects exist for several 

canonical shapes [15]. These formulations serve as a basis of understanding for 

scattering mechanisms present in a RADAR image. A practical target set would contain 

a diversity of scattering mechanisms of these types.  

Closed form solutions, which describe the scattering for several canonical 

target types, have been developed. However, due to the necessary simplifying 

assumptions, computational complexity and diversity of target shapes their practical 

utility is hindered.  

Some examples of scattering mechanisms for which closed form solutions 

have been developed are a flat plate, a circular cylinder and a sphere. Flat plates are a 

common feature in man-made structures. Buildings, roadways and vehicles all present 

features that resemble flat plates. Circular cylinders occur in many instances of 

practical scattering problems. From cannon barrels to airplane fuselages to tree trunks, 

cylinders appear in many forms for realistic RADAR targets. The conducting sphere is 

also a common target of interest in practical RADAR applications. Because of its 

uniform cross-section over all aspect angles the conducting sphere is often used as a 

reference by which the scattering properties of other targets can be estimated. The 
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measured data taken on the turntable system used in this research has been calibrated 

using the return from a conducting sphere as a reference 

Various simplifying assumptions have allowed for the analytical solution to a 

few canonical scattering cases. These analytical solutions provide information on the 

signal characteristics which are expected from targets of these types. In practice a 

target set will consist of many types and orientations of scatterers and a challenge to 

RADAR signal processing is the separation and interpretation of this variety of 

scatterers. Knowledge of the exact scattering solutions allows the conclusion that 

differing scattering mechanisms produce responses which are unique in the 

wavenumber domain. This enables the assumption that these scattering mechanisms 

can be separated based on processing of the RADAR data in this domain. 

 

Scattering Centers 

Knowledge of the physical scattering models allows for the development of 

signal processing to extract information about the scatterers. In practice, a RADAR 

senses a collection of scatterers of unknown types, distribution and orientation. The 

ambiguity of a practical RADAR targets requires a highly generalized model of the 

scattering. Figure 1 shows a simple illustration to illuminate the idea of multiple 

simultaneous scattering types in a single observation. When considering practical 

scattering it is typical to consider these targets as collections of scattering centers [16] 

[17] [18]. 

Modeling scattering has been a robust area of research for over a century. The 

physical models of EM scatter have largely been based on ray tracing techniques such 

as physical and geometric optics (PO) (GO) [19] [20] [21]. A shortcoming of these 

physical models is that they neglect any scattering which occurs in the shadowed 
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region or by the edges of the target. The Geometric Theory of Diffraction (GTD) is an 

extension of geometric optics which takes into account diffraction which occurs due to 

edges, corners and vertices [22]. This model is more complete in the sense that 

additional scattering information is available, however, it is computationally expensive 

due to the fact that the wave equation must be solved for a larger set of boundary 

conditions which represents the edges of the scattering material.  

In this research, the ray tracing techniques of physical and geometric optics will 

be employed. This choice was made in an attempt to keep the scattering model as 

general as possible so that the methods developed are applicable to generic scattering 

problems. 

The analytical modeling of sources in this research will employ a plane wave 

source incident on a scattering center model with point source characteristics resulting 

in a spherical wave-front from each infinitesimal source. Use of this model will allow for 

analysis of scattering from a pseudo-random field of scatterers with known 

characteristics. 

 

Scattering Statistical Model 

More modern research has focused on using the statistical properties of the 

received signal to enable the extraction of information about the scattering field. The 

statistical moments of the received signal are used to infer characteristics of the target 

ensemble. In practice it is oft proper to consider the collection of scattering centers from 

a statistical perspective. David Middleton authored a seminal series of papers on the 

“Statistical Theory of Reverberation and Similar First-Order Scattered Fields” in 1967 

and 1972 [23] [24] [25] [26]. This work models the stochastic process as a Poisson 

sampling process in which the scattering statistics are influenced by the field of point 
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scatterers as well as properties of the sensor including the sampling scheme of the 

aperture.  

The physical model of scattering has the advantage that it provides a detailed 

picture of the scattering mechanism. However, the main disadvantage is the inability of 

this specialized model to handle the complex geometries, waveforms, and higher-order 

statistics. In Middleton’s quasi-phenomological model, the detailed boundary conditions 

are absorbed into an impulse response which captures the interaction of the incident 

field, the scatterer, and the governing geometry. This type of modeling is an 

intermediate position between the detailed physics of the scattering and the 

macroscopic random function of time which it ultimately processed. 

This research focuses on exploiting the statistical information embedded in the 

ensemble of scattered fields to extract information about constituents of the target. 

Using a quasi-phenomological model the signal statistics are related to the scattering 

mechanisms of the target.  

 
Figure 1: Practical scattering field example 
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Signal Model 

To the first order a radar return is the complex superposition of scattering from 

all objects within the beam of the radar antenna. This can be expressed as the 

superposition of the various scatterers as shown in Equation (3) [27]. 

xi = ∑ aijγj

M

j=1
+ ϵi (3) 

The coefficients aij represent the mixing coefficients for a particular scattering 

center γj for a given radar observation xi with additive noise ϵi. In this study the xi 

values are the radar measurements for a turntable rotation instance which corresponds 

to a look angle with index i. Each γj corresponds to an underlying component in the 

mixture which is a complex value in the frequency domain.  

The resolution of the sensing system is typically large enough that the returns 

from multiple scattering centers are received simultaneously. Within this agglomeration 

there is an inherent irresolution. Depending on the target set, the irresolution prevents 

the separation of closely spaced scatterers or the separation of desired scatter from 

undesired scatter such as that from clutter. This dilemma can be visualized by 

considering the returns in Figure 1. If the scattering source of interest we considered to 

be the center object, it can be seen that the signal of interest is the reflection marked by 

the red arrow originating from this object. From this illustration it can be seen that there 

are multiple scattering elements superimposed into the observed mixture. Those 

elements include the return from the background, double bounce scattering, creeping 

waves, and scattering from nearby objects. These sources are respectively denoted in 

orange, blue, green, and red arrows. This simple illustration gives a sense of the 

complexity present in a practical radar return. This complexity is generally overcome by 

a simplification which treats each resolution cell, within a scattering scene, as a single 
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point source emanating a spherical wave front. This simplified signal model is the 

enabling assumption behind back-projection RADAR imaging techniques. The 

understanding contributed by the signal model shown in (3) allows the use of the novel 

method presented herein to isolate scatterers and extract additional information about 

the scattering field prior to the RADAR imaging. 

 

RADAR Imaging Fundamentals 

The separation of desired scattering from interference is a persistent area of 

research. Increasing the real resolution of a system comes at the cost of technological 

complexity which typically involves an increase in aperture size and bandwidth. In 

RADAR signal processing systems such as Synthetic Aperture RADAR (SAR) and 

Inverse Synthetic Aperture RADAR (ISAR) the amount of target information available is 

increased as the synthetic aperture size is increased. The coherence of a particular 

target signal over the collection parameters, such as angle and frequency, is the 

enabling factor in creating the increased resolution attributable to the synthetic aperture 

systems. Each element of the target scene has a phase and magnitude profile which 

varies as a function of the observation parameters. The synthetic aperture concept 

results in an increased resolution, typically in one dimension such as angle, and 

therefore affords greater success in separation of scattering. 

When observed by the real aperture these target profiles are amalgamated into 

a complex measurement for each of the observations. SAR processing allows the 

phase history, attributable to a particular resolution cell, to be projected back to a 

perceived scatterer location and amplitude. This back-projection allows for the 

formation of a two or three-dimensional intensity image of a target scene. The resulting 

resolution of the target scene image is a function of the bandwidth, both spatial and 
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spectral, of the collection. Thus, the resolution comes at the expense of system 

complexity and longer dwell times. 

 
Imaging Algorithms 

RADAR imaging techniques fall into one of two broad categories, the first being 

those algorithms which are based on the Fourier transform relationship between the 

scattered fields in k-space and the scattering function of the object and the second 

being the class of super-resolution imaging methods based on alternate models of the 

scattering data. 

 
Back-Projection Imaging Algorithms 

For the first class of algorithms, Bojarski’s identity gives the Fourier transform 

relationship between scattered field, Es
̅̅ ̅(kx, ky, kz) and the object reflectivity function, 

Γ(x, y, z),  which is related to the scattering properties of the object [1]. This relationship 

is shown in equation (4). The scattered electric field is a function of a variety of 

parameters. Some of these parameters, such as frequency and polarization, are set by 

the RADAR system. Others, such as the target shape and the material of the object 

being interrogated, are generally unknown. The scattered field can be measured and 

processed in order to estimate the target properties.  

Es
̅̅ ̅(kx, ky, kz) =  ∭Γ(x, y, z)exp (−j(kxx + kyy + kzz)) dxdydz

∞

−∞

 (4) 

As shown in equation (5), the object reflectivity function can be recovered by 

inverse Fourier transform of the measured scattered field. This inversion allows for the 

reconstruction of the source location and magnitude which in turn leads to formation of 

2 and 3-dimesional images of the scattering sources. 
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Γ̅(x, y, z) =  ∭Es
̅̅ ̅(kx, ky, kz)exp (j(kxx + kyy + kzz)) dkxdkydkz

∞

−∞

 (5) 

The reflectivity function, Γ̅, estimated by the back-projection technique is a 

composition of many scattering sources as shown in the signal model shown by 

equation (3). The mixture of returns in a resolution cell results in potential obscuration 

of the signal of interest. The presence of unwanted signals in the return creates a 

challenge in the extraction and interpretation of information from the signal of interest. 

This intent of this research is to explore the extraction of irresolvable target information 

and the application of this information to enhancing the scope of inference for RADAR 

images. 

 
Super-Resolution Imaging Algorithms 

Imaging based on the Fourier transform suffers from several performance 

limitations. The resolution of an image, which is based on the Fourier expansion, is 

limited by the size of the collection aperture. The resolution is inversely proportional to 

the spectral and spatial bandwidth over which the data is sampled. A second key 

limitation is diffraction which results in spectral leakage through the sidelobes of the 

Fourier impulse response [28] [29].  

Super-Resolution systems are those which transcend the diffraction limitation 

imposed by standard optical processing techniques which are based on the Fourier 

transform. There are many forms of super-resolution techniques which are based on 

modern spectral estimation methods such as adaptive sidelobe reduction (ASR), space 

variant apodization (SVA), periodogram, minimum variance method (MVM), reduced 

rank minimum variance method (RRMV M), autoregressive linear prediction (ARLP), 

Pisarenko, eigenvector (EV) / multiple signal classification (MUSIC), Tuft-Kumaresan 
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ARLP (TKARPL) and parametric maximum likelihood (PML). All of these techniques - 

with the exception of ASR and SVA - come at a computational expense relative to the 

Fourier transform method. The majority of these methods employ a model which is 

based on the sample correlation matrix of the data. The treatment of the correlation 

matrix depends on the method, however, the primary objective of the techniques is to 

increase the signal-to-interference ratio (SIR) for the image.  

The MUSIC approach enhances the SIR by separating the signal subspace 

from the interference subspace. This approach to signal processing has been explored 

since the 1970s. Schmidt popularized a general subspace approach in his PhD thesis 

[30] and a subsequent journal paper [2]. His method, called MUSIC, is a general 

approach to determine the parameters of multiple wavefronts, using signals sensed by 

an antenna array. The basic premise of the MUSIC algorithm is to use the orthogonality 

of the signal space eigenvectors to noise space eigenvectors to determine the direction 

and amplitude of the signal vectors using matrix algebra techniques. A key step in the 

application of the MUSIC algorithm is the determination of the Eigen decomposition of 

the correlation matrix [28].  

The correlation matrix can be used to model the combination of the signal and 

noise subspaces as shown in equations (6) and (7). In equation (6) the σ0N term 

denotes white clutter and the vector 𝐒 is the sum of L sinusoids originating from spatial 

locations denoted by a set of radial vectors rl. 

X =  σ0N + ∑ σlW(rl)

L

l=1

= σ0N + 𝐒σ (6) 

𝐑 =  σ0
2𝐈 + 𝐒E(σσH)𝐒H = σ0

2𝐈 + 𝐒𝐂𝐒H (7) 

The correlation matrix can now be modeled in terms of its Eigen 

decomposition. The Eigen space is then segregated into two classes. One class 
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containing the Eigen values and vectors which correspond to the L sinusoids in the 

signal subspace and the other class representing the interfering clutter. Formulaically 

this is expressed in (8). Equation (9) shows the equation for the inverted correlation 

matrix as this is the term which will be used to estimate the sources in the MUSIC. 

𝐑 =  ∑ λmVmVm
H

clutter

+ ∑ λmVmVm
H

signal

= ∑ σ0
2VmVm

H

clutter

+ ∑ λmVmVm
H

signal

 (8) 

𝐑−1 = ∑ σ0
−2VmVm

H

clutter

+ ∑ λm
−1VmVm

H

signal

 (9) 

The next step in the MUSIC signal processing algorithm takes advantage of the 

signal to noise subspace orthogonality. Using this assumption, a spatial search through 

the noise subspace can be conducted in which the output produces sharp peaks at 

locations where a signal is estimated to originate. The objective function of this search 

takes the form of equation (10) where W(r) denotes the complex exponential 

associated with of a 2D Fourier transform tuned to a spatial location r. Under the point 

scatterer assumption these unit sinusoids correspond to scattering from that location. 

SMUSIC(r) =
1

WH(r)(∑ σ0
−2VmVm

H)W(r)clutter

 (10) 

 
 

Blind Source Separation Fundamentals 

Blind source separation (BSS) is a rich class within the inverse problem 

domain which seeks to ascertain the constituents of a set of mixtures given only 

observations of the mixtures. There are a number of mathematical methods aimed at 

accomplishing the estimation of mixture components.  

Principal Component Analysis (PCA) is a popular BSS method which 

separates the components by mapping the data in such a way as to sequentially 

maximize the variance of each component. PCA is a member of a set of source 
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separation techniques which employ second order statistics in the process. This class 

of techniques is capable of extracting signals from a set of mixtures which are 

uncorrelated with one another [6]. 

Singular Value Decomposition (SVD) extracts components of a mixture by 

applying a sequence of rotation and scaling such that the resulting data form a 

generalized Eigenvalue Decomposition. The Eigenvalue Decomposition seeks the 

roots of the characteristic polynomial for the observation set (eigenvalue) and 

subsequently solves for an associated set of Eigenvectors which model the data in an 

orthogonal basis [31]. These techniques are based on linear independence according 

to second order statistics.  

Statistical signal processing techniques such as MUSIC and ESPRIT perform 

signal separation through Eigen decomposition of the covariance matrix for a given 

observation set. These techniques therefore perform the separation based on the 

second order statistics of the dataset.  

Independent Component Analysis (ICA) performs source separation based 

independence of the elements of the mixture. ICA is built upon the foundation of the 

central limit theorem which states that  

If a set of signals 𝐬 = (s1, s2, ⋯ , sM) are independent with means 

(μ1, μ2, ⋯ , μM)and variances (σ1
2, σ2

2, ⋯ , σM
2 ) then, for a large number M 

of signals 𝐬 the signal 

x = ∑sj

M

j=1

 (11) 

has a pdf which is approximately Gaussian with mean ∑ μjj and 

variance ∑ σj
2

j . 

This foundation enables the existence of a class of BSS algorithms which seek to 

separate sets of mixtures based on their non-Gaussianity. The premise of the method 
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is that the less Gaussian a signal then the lower the likelihood that it is mixture of 

sources. Given the assumption that the sources are independent of one another, the 

most non-Gaussian signals extracted from a Gaussian mixture of signals must be the 

source signals [6] [32]. 

Independent Vector Analysis (IVA) is an emerging technique for performing 

joint blind source separation (JBSS). IVA is an extension of ICA designed to 

comprehend source correlation among multiple datasets [33] [34]. This technique 

seeks restitution of latent sources as captured in manifold sets. The correlation of the 

underlying sources among the observation sets is taken into account which naturally 

lends the technique to subapertured data collection. 
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Chapter 3 Novel Approach to Scattering Separation 

 
The objective of beamforming in radar data is to extract desired characteristics 

from the data and suppress those which are not germane to the task of developing 

information from the data. Radar signal processing, in general, is devoted to the 

extraction and identification target features. Beamforming of radar data emphasizes 

target features of interest and deemphasizes the noise, clutter and interference which 

is embedded in the radar data. 

The novel method proposed here uses the higher-order statistics of the radar 

data to adapt beamforming weights such that the scattering elements which possess 

the highest non-Gaussianity are isolated. Two common algorithms for weight 

optimization aimed at isolating the highly kurtotic elements from within the data are 

JADE and robustICA [4] [5]. This work employs robustICA in the estimation of the 

optimal beamforming weights for the separation of high kurtosis elements of the 

RADAR scattering data.  

 

Formulation and Application of the New Technique 

Considering a scattering source located at rγ , θγ, ϕγ   the signal model is  

sγ[k, θ, ϕ] =
Γγ ∗ e𝕚∗(k∗rγ ∗cos(θγ−𝜃) sin(ϕγ−𝜙)) ∗ e𝕚∗(k∗rγ ∗sin(θγ−𝜃) sin(ϕγ−𝜙))

(4 ∗ 𝜋 ∗ rγ ∗ cos(θγ − 𝜃) sin(ϕγ − 𝜙) + rγ ∗ sin(θγ − 𝜃) sin(ϕγ − 𝜙))
2 + ϵ[k, θ, ϕ] (12) 

In the first order, radar data for a given set of observation parameters [k, θ, ϕ], 

is a linear mixture of scattering sources at various locations. The signal mixture model 

can be written as in (13). 

μ[k, θ, ϕ]: = ∑ sγ[k, θ, ϕ]

R

γ=1

 (13) 
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In general, beamforming is the weighted superposition of multiple simultaneous 

observations of a signal. For a synthetic aperture radar system a single source and 

receiver which samples data over a discrete set of frequencies and look angles is used 

to acquire the data. To apply a beamforming to this set of data, it is necessary to 

synthetically group the observations to form set of subapertures which is 

commensurate with subsequent signal processing steps. The minimum required set of 

subapertures is dictated by the number of components which are being estimated. For 

instance, if it were desired to isolate N components from within the mixture, this would 

require at least N observations or subapertures of the observation set. The technique 

chosen to accomplish this preprocessing step is grouping of the data into subapertures 

which span a predefined portion of the observation space in terms of line-of-sight angle 

and frequency spectrum.  

To form subapertures, the native k-space radar data is divided into an integer 

number of equal-sized partitions along the wave number and look angle dimensions of 

the data. In the event the number of subaperture divisions, in one or both of the 

dimensions, is not an integer, the remainder of the data in either dimension will be 

excluded from the subapertured data set. Assuming diversity in the azimuthal and 

wavenumber domains, Equations (14) and (15) show how the subapertures are formed 

from the original data. In these equations, the variable T signifies the full dimensional 

measurement data. 

Tsa
i (m, n) = T({θ1, θ2 ⋯θθ̿

P

} , {f1, f2 ⋯f f̿

N

})   

where ∙ ̿  denotes cardinality of the set 

(14) 

Tsa
i  ϵ T ∀ i ϵ {1,2,… ,𝑁𝑃} | Tsa

i ∩ Tsa
j≠i

= { } (15) 
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The subaperture approach applied to the radar data containing signal mixtures 

is shown below. The full data plane for the radar observation is given by (16). Equation 

15 depicts the subapertured data plane for (𝑁𝑃 − 1) subaperture divisions 

𝑋 = [

μ[k1, θ1, ϕ] μ[k1, θ2, ϕ] … μ[k1, θ𝑀 , ϕ]
μ[k2, θ1, ϕ] μ[k2, θ2, ϕ] … μ[k2, θ𝑀 , ϕ]

⋮ ⋮ ⋮ ⋮

μ[k𝐿 , θ1, ϕ] μ[k𝐿 , θ2, ϕ] … μ[k𝐿 , θ𝑀 , ϕ]

] 
(16) 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑋1 =

[
 
 
 
μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ]

μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ]

⋮ ⋮ ⋮ ⋮
μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ] ]

 
 
 

𝑋2 =

[
 
 
 
μ[k⌊𝐿 𝑁⁄ ⌋∗1+1, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗1+1, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗1+1, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ]

μ[k⌊𝐿 𝑁⁄ ⌋∗1+2, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗1+2, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗1+2, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ]

⋮ ⋮ ⋮ ⋮
μ[k⌊𝐿 𝑁⁄ ⌋∗2, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗2, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗2, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ] ]

 
 
 

⋮

𝑋 𝑁 =

[
 
 
 
μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+1, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ]

μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+2, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ]

⋮ ⋮ ⋮ ⋮
μ[k⌊𝐿 𝑁⁄ ⌋∗𝑁, θ⌊𝑀 𝑃⁄ ⌋∗0+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗0+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗1, ϕ] ]

 
 
 

𝑋𝑁+1 =

[
 
 
 
μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗1+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗1+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗0+1, θ⌊𝑀 𝑃⁄ ⌋∗2, ϕ]

μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗1+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗1+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗0+2, θ⌊𝑀 𝑃⁄ ⌋∗2, ϕ]

⋮ ⋮ ⋮ ⋮
μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗1+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗1+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗1, θ⌊𝑀 𝑃⁄ ⌋∗2, ϕ] ]

 
 
 

⋮

𝑋𝑁𝑃 =

[
 
 
 
μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+1, θ⌊𝑀 𝑃⁄ ⌋∗(𝑃−1)+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+1, θ⌊𝑀 𝑃⁄ ⌋∗(𝑃−1)+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+1, θ⌊𝑀 𝑃⁄ ⌋∗𝑃, ϕ]

μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+2, θ⌊𝑀 𝑃⁄ ⌋∗(𝑃−1)+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+2, θ⌊𝑀 𝑃⁄ ⌋∗(𝑃−1)+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗(𝑁−1)+2, θ⌊𝑀 𝑃⁄ ⌋∗𝑃, ϕ]

⋮ ⋮ ⋮ ⋮
μ[k⌊𝐿 𝑁⁄ ⌋∗𝑁 , θ⌊𝑀 𝑃⁄ ⌋∗(𝑃−1)+1, ϕ] μ[k⌊𝐿 𝑁⁄ ⌋∗𝑁, θ⌊𝑀 𝑃⁄ ⌋∗(𝑃−1)+2, ϕ] … μ[k⌊𝐿 𝑁⁄ ⌋∗𝑁, θ⌊𝑀 𝑃⁄ ⌋∗𝑃, ϕ] ]

 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(17) 

The subapertures can then be placed in the block form represented by �̂� . The 

rows of this block matrix are considered separate observations of the signal mixture 

model. This synthetic set of observations can now be used to estimate weights which 

extract the most leptokurtic elements within the mixture. 

𝐗 = [vect{𝑋1} vect{𝑋2} ⋯  vect{𝑋𝑁𝑃}]𝑇 (18) 

Once the sub-apertures are formed, an instantaneous mixture model can be 

written as in (19). 

𝑺 =  𝐖𝐗 (19) 
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The next step in the process is to estimate the location of the leptokurtic 

components of the subaperture observation set 𝐗. This is performed through the use of 

an optimization routine. 

To seek out the most non-Gaussian components of an observed mixture of 

sources, a common method used by several Independent Component Analysis 

algorithms, is to perform an optimization function with kurtosis as the cost function. 

RobustICA is the choice of routines used in this work because of its ability to handle 

complex sources, forego Principal Component Analysis and its computational efficiency 

[5] [35]. The formulation below is the robustICA approach to kurtosis maximization. 

The kurtosis as function of the extraction weights, 𝐰, is shown in (20) 

𝒦(𝐰) =
E{|y|4} − 2E2{|𝑦|2} − |E{𝑦2}|2

E2{|𝑦|2}
 (20) 

RobustICA employs an exact line search using the kurtosis cost function 

shown in (20) and estimating the optimal step size as  

𝜇𝑜𝑝𝑡 = argmax
𝜇

|𝒦(𝒘 + 𝜇𝐠)| (21) 

Where the search direction 𝐠 is given by the gradient of the kurtosis with 

respect to the weights. 

∇w𝒦[w] =
4

E2{(|y|)2}
{E{(|y|)2y∗x} − E{yx}E{y∗2}}

−
(E{y4} − (|E{y∗2}|)2E{y∗x})

E{(|y|)2}
 

(22) 

To reduce the computational expense of the exact line search, Zarzoso and 

Common make use of a polynomial representation of the kurtosis cost function. 

Derivation of the optimal step size polynomial is given in [5].  

Deflationary orthogonalization is used to prevent the development of identical 

weights as the routine traverses the set of leptokurtic sources. This is accomplished by 
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forcing each new set of extracting weights to lie within the orthogonal subspace of 

previously extracted weights which are stored in a matrix 𝐖𝒌 = [𝐰1, 𝐰2, … ,𝐰𝑘−1]. The 

formulation for deflationary orthogonalization and the weight normalization constraint 

are shown in (23) and (24).  

𝐰+ ← 𝐰+ − 𝐖𝒌𝐖𝒌
𝑯𝐰+ (23) 

𝐰+ ←
𝐰+

‖𝐰+‖
 (24) 

Once the matrix 𝐖 has been formed, each of the leptokurtic sources can be 

estimated from the instantaneous linear mixture model (19). Once the desired sources 

of interest have been estimated, the next step is to map the data back to the native k-

space domain to enable RADAR imaging 

The extracted elements are transformed back into the native k-space domain 

through a remapping of the subapertures. The domain of the remapped observation 

matrix 𝐱 formed from each extracted component matches the domain original data with 

the possible exception of any excluded data resulting from the remainder of the 

subaperture process.  

Figure 2 is a block diagram illustration of the signal processing for this 

technique. This includes the division of the k-space domain into subapertures followed 

by the extraction of the highly kurtotic components and finally remapping of the data 

back into the native measurement domain 
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Figure 2: Signal Processing Flow Diagram 

 

Each of the extracted components is remapped to the measurement domain 

and a RADAR image is formed using the discrete Fourier transform  

Γ̅γ(x, y) =  ∑ ∑ ŝγ[k, θ,ϕ]𝑒j(kxx+kyy)

∞

𝑘=−∞

𝜋 2⁄

θ=−𝜋 2⁄

  (25) 

Where kx = 𝑘 sin θ sinϕ, ky = 𝑘 sin θ cosϕ and ϕ is a constant. This equation 

projects the estimated scattering sources ŝγback to the location which is defined by the 

phase history of the extracted source. The sources have now been isolated through 

focusing of the subapertures using kurtosis as a contrast.  

Taking advantage of the assumption that each highly kurtotic element focuses 

to an independent scattering center, an additional signal processing step of picking the 

maximal value in each of the high-kurtosis images is performed. This step is depicted in 

Equation (26). Compilation of the peaks for each of the extracted components allows a 

composite view of the scattering centers to be constructed. 

Kurtosis 
Maximization

Kx

Ky

Kx

Ky

Pre-processing

Data 
Subarrays

Component 
Subarrays
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(𝑥γ, 𝑦γ) = 𝑎𝑟𝑔𝑚𝑎𝑥
[𝑥,𝑦]

|Γ̅γ(𝑥, 𝑦)| (26) 

 

The following chapter of this manuscript critically examines the application of 

this technique to synthetic and measured RADAR imaging data sets. Consideration will 

be given to the accuracy with which this technique can produce an estimate of the 

location of each scattering center within a scene. The subsequent chapters pose an 

examination of the application of the technique under varying noise and scatterer 

configurations in order to characterize the capability and limitation of this proposed 

technique. 

 

Performance Assessment of the Scatter Separation Technique 

A parametric study of the division into subapertures has been performed. 

Increasing numbers of subapertures in the frequency dimension were applied to 

scattering scenes containing a variety of discrete scattering centers. Increasing the 

number of subapertures in a given data dimension provides more degrees of freedom 

for the beamformer. 

Using the simulated scattering data, the proposed technique was applied while 

using various levels of division along the frequency dimension of the RADAR data. The 

results of these various trials have been analyzed to produce an understanding of the 

performance with respect to estimated scattering center location error and the ability of 

the technique to extract all known scatterers. The data is analyzed within the back-

projected image domain which is generated using Equation (25). The scattered electric 

field ŝγ in this equation is the field produced by each of the individual extracted 

components in the estimated isolated scatterer matrix �̂�. 
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Γ̅γ(x, y) = ∑ ∑ ŝγ[k, θ,ϕ]𝑒j(kxx+kyy)

∞

𝑘=−∞

𝜋 2⁄

θ=−𝜋 2⁄

  (27) 

The next step in the signal processing involves taking the location of the peak 

magnitude position of the extracted component in the image domain. This step is based 

on the assumption that each Γ̅γ represents an isolated mechanism within the field of 

scatterers. Therefore the maximum magnitude produce from the application of the 

direction search vectors, 𝑒j(kxx+kyy), is taken to represent the true location of each 

scatterer. The set of peaks developed from the isolated scatterers is combined to form 

a composite view of the positions for the set of extracted scatterers. 

Two metrics were used to quantify the effectiveness of the technique at 

resolving individual scatterers. The first metric is a measure of the location error relative 

to the known theoretical scatterer locations. The formulation for computing the distance 

error is the standard Euclidean distance measure shown in Equation (28). This metric 

is hence forth referred to as Target Location Error (TLE). 

𝜀𝑑𝑖𝑠𝑡 = √(𝑥𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 − 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)2 + (𝑦𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 − 𝑦𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)2 

Where 

{𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝜖 𝑌} = argmin
𝑥𝑘𝑛𝑜𝑤𝑛

(|𝑥𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 − 𝑥𝑘𝑛𝑜𝑤𝑛|) 

And 

{𝑦𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 | 𝑦𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝜖 𝑌} = argmin
𝑦𝑘𝑛𝑜𝑤𝑛

(|𝑦𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 − 𝑦𝑘𝑛𝑜𝑤𝑛|) 

(28) 

The second metric is a measure of the ability of the technique to extract the full 

set of known scatterers within the observation field. This metric is computed as a 

percentage based on the ratio of cardinality of the set of extracted scatterers to the 

cardinality of the set of known scatterers. This represents the probability of detection of 

the set of known scatterers within the scene. 

  



39 

Chapter 4  Results 

 
Scattering Center Isolation Through Kurtosis Maximization  

This section is dedicated to presenting evidence to support the conclusion that 

beamforming based on the fourth order statistical cumulant, kurtosis, is useful in 

extracting individual scattering elements within a scene of scatterers. An application 

based on the composite maximum pixel of each of the extracted components is 

presented as a RADAR imaging technique based on this novel method. This method 

will be referred to as the Isolated Scatterer Method (ISM). 

The data presented here is both synthetic and measured. The synthetic data is 

generated assuming a turntable ISAR measurement system which mimics that of the 

measurement system used to collect the measured data. The data synthesis is 

parameterized such that the collection parameters and target scattering properties can 

be varied. The target set is assumed to be a field of point scatterers that can be placed 

at any range or angle relative to the turntable coordinate system. The center of the 

turntable is the reference for the range, and the first collection angle is the reference for 

the angular term of each scatterer’s polar coordinate. The magnitudes of each of the 

scatterers is another parameter available through the model. Another important 

parameter is the magnitude of the additive white Gaussian noise imparted on the 

synthetic data. Using a combination of the scattering magnitudes and the noise level, 

several SNR cases were realized. The performance of this technique under various 

SNR conditions was explored. 

The effectiveness of the application of this hypothesis was studied over a host 

of conditions as depicted in Table 1. This section of the manuscript will focus on two of 

the test conditions. Excellent performance was realized in the first of these test cases 
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and the second test case produced marginal performance. The intent of the selection of 

these cases is to illustrate views and metrics which were used in this research, as well 

as set some expectation for the practical limitations of this technique. 

Table 1: Study Parameters 

SNR -30 -20 -10 0   

Scatterer Count 2 3 4 5 6 7 

Excess Degrees of Freedom 0 1 2    
 

Test Case 1 

For this test case excellent performance was realized. The metrics used to 

assess performance, which are introduced in this section, are 1) a measure of location 

error, and 2) percentage of scatterers detected. 

Examination of this case will begin with a depiction of the performance 

attributable to typical Fourier based radar imaging. Figure 3 is an example of an ISAR 

image formed using the back-projection technique shown by equation (5). The 

synthetic data set used for this image was made up of three isotropic scatterers. The 

locations and orientations were randomly chosen using a uniform distribution 𝒰(0,1) for 

the range and a uniform distribution 𝒰(0,2π) for the angle. The theoretical scattering 

orientations are shown in Figure 3 using colored circles to show the location of the 

point scatterer. This example has an SNR of 0 dB for each scatterer in the complex 

sampled data.  
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Figure 3: ISAR image of synthetic target of 3 scatterers 

 

Examination of the ISAR image reveals three well defined regions of scattering 

near the locations of the synthesized scatterers. Also visible in the image are artifacts 

attributable to noise and sidelobes of the known scatterers. Noise in a radar 

observation is unavoidable and its mitigation has spurred decades of research. The 

sidelobes are another limitation of the diffraction-limited Fourier based imaging. Super-

resolution techniques attempt to apply advanced signal processing to reduce the 

negative impact of noise and sidelobes.  

The next set of images are those formed after application of the beamforming 

weights associated with kurtosis maximization. To create a multiplicity of unique 

beamforming weights, this processing technique requires three observations of the 
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target set. To satisfy this requirement, the original k-space data set was segmented into 

three subapertures in the frequency dimension of the data. These subapertures form 

sectors of annuli of equal widths which span the full angular dimension of the data set.  

The choice of three subapertures is driven by the a-priori knowledge that there 

are three scattering elements contained in the scene. As part of the parametric study 

that accompanied this research a variety of partitioning in the frequency dimension was 

explored. The range of partitioning was dictated by the number of synthetic scatterers 

in the field. A set of subapertures equal in number to the count of synthetic scatterers is 

classified as a having zero “excess degrees of freedom.” The range of excess degrees 

of freedom in this research ranges from zero to two. Cases with excess degrees of 

freedom greater than zero are afforded more data snapshots, or subapertures, than the 

minimum required to localize all of the known scatterers. 

The most desirable outcome for all cases in this study is precise localization of 

all of the known scatterers in the field which amounts to a location error of zero. This 

requires that the exact pixel location of the synthetic scattering location be emphasized 

such that it is the maximum in the scene. Metrics shown in this chapter will illustrate the 

degree to which all of the examined cases meet these criteria.  

Figure 4 shows an ISAR image formed using the weighted complex data 

produced using the technique of this paper. It can be seen that the beamforming 

weights, which yield the highest kurtosis using this data, have emphasized the scatterer 

marked by the cyan circle. The second and third extracted components of high kurtosis 

are shown in Figure 5 and Figure 6 respectively. Figure 5 shows the emphasis of the 

scatterer noted in yellow, and Figure 6 the beamforming technique has favored the 

magenta scatterer.  



43 

In each of the images shown in Figure 4 through Figure 6, the black asterisks 

represent the location of the maximal pixel in the scene. It can be seen from these 

figures that the technique has resulted in the maximization of the magnitude at each of 

the exact locations of the known scatterers. 

 

 

Figure 4: High Kurtosis Scattering Element #1 of 3 
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Figure 5: High Kurtosis Scattering Element #2 of 3 

 
Figure 6: High Kurtosis Scattering Element #3 of 3 
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Another outcome produced by the application of this beamforming technique is 

the de-emphasis of the other two scatterers in the scene. This is more readily 

perceived using the graph in Figure 7. This graph shows the Signal-to-Interference 

Ratio (SIR) which represents the ratio of the power present in the pixel closest to the 

theoretical location of the scatterers to the power present in the rest of the pixels within 

the scene. The normalization reference for each of the scatterers is the power in the 

pixel for the original ISAR image. Examining location of the cyan and the magenta 

points for the second extracted component in this graph, it can be seen that the values 

are negative indicating a reduction in the power within the de-emphasized pixels. The 

nulling of the similar magnitude scatterers by the beamformer serves to increase the 

contrast of the emphasized pixel relative to the rest of the scene.  

Another important observation about the image produced from this component 

is that the sidelobes of the emphasized scatterer also experience an increased gain. 

The elevation of the sidelobes is contrary to the goal of increasing the resolvability of 

the individual scattering elements. Therefore, in the development of the application for 

this theory, an additional processing step was applied. In this step all sidelobes are 

removed through extraction of only the highest magnitude pixel within the scene. The 

output of this processing step is shown in Figure 8. An alternate view of the output from 

this technique is shown in Figure 9 where the composite maximum image is overlaid on 

the original ISAR image. Examination of this view shows utility in drawing attention to 

the true scattering source locations. The resolution of the overlaid composite view of 

the maximums can be made arbitrarily small.  
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Figure 7: Normalized Signal-to-Interference Ratio (SIR)  

 

 
Figure 8: Composite Maximum Image of 3 Extracted Components 
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Figure 9: Composite Maximum Overlaid on Original ISAR Image of 3 Scatterers 

 
Test Case 2 

The following test case illustrates some of the noted deficiencies in the 

proposed approach. This case will examine a field of seven known scatterers. The SNR 

for this example has been set at -20 dB. This example will also have zero excess 

degrees of freedom which implies seven subaperture divisions. 

This examination will begin with a view of the standard ISAR image formed 

from the complete dataset. Figure 10 reveals that the poor SNR has produced an 

image in which it is difficult to distinguish the areas scattering from the elevated 

background noise.  



48 

 

Figure 10: ISAR image of synthetic target of seven scatterers 

 

The next 7 images (Figure 11 through Figure 17) show the images formed from 

the seven highest kurtosis elements of the scattering data. It can be seen from these 

images that the ability of the method to precisely locate the scatterers is poor. In this 

case only two of the seven scatterers is localized with zero location error. This amounts 

to a 29% probability of detection. If the results are considered with some allocation for 

target location error, then the probability of detection increases to 57%. The detected 

locations using the method described in this work have a set of location errors as 

depicted in Figure 20. Each of the detections is associated with the closest known 

scattering location. In the distance error plot the association is depicted by the color of 

the marker for the given detection. The distance error ranges from zero to 0.1 meter for 

this test case. The two scattering centers which, were exactly localized, are noted by 
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the green and white markers. There were duplicate detections associated scatterers 

marked with the green, white, and purple. Of the duplicate detections, some appear to 

be false alarms caused by the noise and sidelobes present in the image. Figure 13 and 

Figure 17 are examples of potential false alarms. Also shown below in Figure 18 is the 

composite maximum image for this trial. Figure 19 shows the composite maximum 

overlaid on the original ISAR image.  

Examination of this test case shows some of the deficiencies in this approach. 

The performance of the proposed method is degraded in lower signal-to-noise ratio 

conditions. Another deficit of the method is the inability of the method to guarantee 

detection of all known scatterers. However, this novel method has been shown to 

produce useful information such as a non-zero probability of detection and precise 

localization even in low SNR conditions. 

 

Figure 11: High Kurtosis Scattering Element #1 of 7 
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Figure 12: High Kurtosis Scattering Element #2 of 7 

 

Figure 13: High Kurtosis Scattering Element #3 of 7 
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Figure 14: High Kurtosis Scattering Element #4 of 7 

 

Figure 15: High Kurtosis Scattering Element #5 of 7 
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Figure 16: High Kurtosis Scattering Element #6 of 7 

 

Figure 17: High Kurtosis Scattering Element #7 of 7 
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Figure 18: Composite Maximum Image of 7 Extracted Components 

 

Figure 19: Composite Maximum Overlaid on Original ISAR Image of 7 Scatterers 
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Figure 20: Distance Errors for 7 Detected Scattering Centers 

 

This section has illustrated that the highly kurtotic elements of a scattering 

mixture have a strong correlation to the individual scattering elements within the 

mixture. This evidence points to an affirmative conclusion for the hypothesis proposed 

by the work. Also shown in this section was the application of the novel beamforming 

technique proposed by this work. The performance of the method was shown to be 

negatively impacted by low signal-to-noise ratio in the radar scattering data.  

The distance error metric was introduced and the method of associating 

detections with known scattering locations was explained. The following sections will 

apply these metrics to all of the permutations of test cases described by the parameters 

in Table 1. 
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Parametric Study of Location Error 

This section of the manuscript is dedicated to examination of the residual 

location error associated with the scattering centers detected through the application of 

a technique based on the hypothesis of this paper. 

The method was tested over 72 test cases defined by all permutations of the 

parameters listed in Table 1. The performance of the technique, with regard to 

localization error, has been assessed. The analysis considered in this section is 

performed under a set of two additional conditions. These conditions are specified by 

the value of the limit applied to maximum allowable target location error (TLE). Beyond 

the parameterized limit chosen for each case, the association between a detected 

scatter and a known scatterer is considered invalid and is thus not considered a 

detection. The set of results below will consider two levels of maximum TLE, 0.075 m 

and 0.025m. The MATLAB for generating the parametric study results is included in 

Appendix A of this manuscript. 

The first two figures below, Figure 21 and Figure 22, show how the target 

location error varies as a function of SNR for the 0.075 m maximum TLE condition. 

Figure 21 incudes a linear least squares model along with the 95% confidence bounds. 

Examination of this figure shows that there is a significant degree of inverse correlation 

between target location error and SNR. The next chart, Figure 22, shows a 

parameterized view of the same data. This chart shows how the relationship between 

TLE and SNR varies for each of the test conditions. This chart also shows that for the -

30 dB SNR test case there are very few detections. Further examination of this will be 

discussed in the next section of this manuscript.  
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Figure 21: Target location error as a function of SNR (TLEmax = 0.075 m) 

 

 

Figure 22:Target location error as a function of SNR (Parameterized) (TLEmax = 0.075 m) 
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The next two figures, Figure 23 and Figure 24, show the relationship between 

TLE and SNR given a maximum allowable TLE of 0.025 m. Examination of Figure 23 

shows that there is some degree of inverse correlation between target location error 

and SNR, however the correlation in this case is not significant to the level of 95% 

confidence. This lack of significance can be determined by the fact that a horizontal 

line, which would represent a correlation of zero, can be drawn between the confidence 

bounds shown on the chart. 

These figures appear to contain very few data points. The apparent lack of 

detections is due to the overlay of multiple data points with zero target location error. 

There are actually 29 data points on this plot. The conclusion that can be drawn from 

the observation of these charts is that the TLE, for a significant portion the data points 

in this study, is zero which indicates that 40% of the test cases produced precise 

localization of known scatterers. The probability of detection for the various test 

conditions is examined in the next section of this manuscript. 

 

Figure 23:Target location error as a function of SNR (TLEmax = 0.025 m) 
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Figure 24: Target location error as a function of SNR (Parameterized) (TLEmax = 0.025 m) 

 

The following set of plots depict the relationship between TLE and excess 

degrees of freedom. The technique put forth in this paper was applied to a variety of 

synthetic scattering targets. The synthetic data which was partitioned into subapertures 

which yielded excess degrees of freedom ranging from 0 to 2. Permutations of the 

various parameters of this study resulted a total of 72 test conditions. The 0.025 m and 

0.075 m conditions are shown in Figure 25 and Figure 26 respectively. For both of the 

allowable TLE conditions there is no significant correlation between target location error 

and excess degrees of freedom. This is significant in the sense that overestimating the 

number of sources to be extracted does not have a significant impact on TLE 

performance. 
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Figure 25: Target location error as a function of excess degrees of freedom (TLEmax = 0.025 m) 

 

 

Figure 26: Target location error as a function of excess degrees of freedom (TLEmax = 0.075 m) 

 
This section has presented the performance of the application, of a technique 

based on the hypothesis of this work, relative to target location error. It was shown that 

a larger allocation of maximum TLE results in a greater number of detections with a 
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larger spread in the location error. It was also shown that when using this technique 

there is a degree of inverse correlation between target location error and SNR. When 

the technique is used with a smaller allocation of maximum allowable TLE, the 

approach produces a detection with a target location error of zero in 58.3% of the test 

cases. This result provides additional evidence for the affirmative conclusion of the 

hypothesis that the high-kurtosis elements within a mixture of scattering data are 

correlated to the scattering centers within the scene.  
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Parametric Study of Probability of Detection 

This section of the paper is directed at characterizing the ability of this 

technique to correctly extract known synthetic scatterers under a variety of signal-to-

noise ratio conditions and excess degrees of freedom. 

The signal processing technique of this paper is applied to a set of synthetic 

data which contains a varying number of scatterers ranging in number from two to 

seven. Each of these data sets are subjected to four noise levels of -30, -20, -10 and 0 

dB. Under each of these noise conditions the data is partitioned into progressively 

greater numbers of subapertures which yield excess degrees of freedom ranging from 

0 to 2. This study examined a total of 72 test conditions. For all of these various 

permutations, the probability of detection metric was computed. The probability of 

detection metric is computed using a hard limit for maximum target location error (TLE). 

Beyond this parameterized limit the association between the detected scatter and the 

known scatterer is assumed to be invalid and is thus not considered a detection. The 

set of results below will consider two levels of maximum TLE, 0.075 m and 0.025m. It 

will be shown that higher precision target localization leads to a lower probability of 

detection due to the tighter association window. 

The first set of results are those for which a 0.075 m maximum allowable TLE 

was assumed. The results of this condition are shown in Figure 27 through Figure 28. 

The first two figures below depict the probability of detection as a function of SNR. 

These charts show that there is significant correlation between the probability of 

detection and SNR. The next pair of charts illustrate the relationship between 

probability of detection and excess degrees of freedom. From this set of plots, it is 

possible to conclude that probability of detection is not a strong function of the number 

of excess degrees of freedom. The lack of correlation between excess degrees of 
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freedom and probability of detection implies that overestimation of the number of 

sources to extract has little impact on the probability of detection performance. 

 

Figure 27: Probability of detection as a function of SNR (TLEmax = 0.075 m) 

 

Figure 28: Probability of detection as a function of SNR (Parameterized) (TLEmax = 0.075 m) 
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Figure 29: Probability of detection as a function of excess degrees of freedom (TLEmax = 0.075 

m) 

 

Figure 30: Probability of detection as a function of excess degrees of freedom (parameterized) 

(TLEmax = 0.075 m) 

 
Figure 31 and Figure 32 show the probability of detection performance under 

the condition of a 0.025 m maximum allowable TLE. These charts maintain the 
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correlation properties of the previous case. The significant difference is the reduction in 

the average probability of detection from the previous case which has an association 

window which is 9 times larger. The condition of 0.075 m TLEmax produced an average 

probability of detection of 40.7% and the 0.025 m TLEmax condition yielded an average 

probability of detection of 26.5%. 

 

Figure 31: Probability of detection as a function of SNR (TLEmax = 0.025 m) 
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Figure 32: Probability of detection as a function of excess degrees of freedom (TLEmax 

= 0.025 m) 

 
This portion of the paper has shown that the application of the hypothesis that: 

high-kurtosis elements of a radar scattering mixture are correlated to the scattering 

centers within the observation field. The application detailed in this paper was tested 

over 72 scenario parameter permutations as well as two performance requirement 

conditions which limited the allowable TLE for scatterer association to 0.075 m and 

0.025 m. The performance of this novel technique was examined with regard to 

probability of detection. For this analysis probability of detection was defined as the 

ratio of detected scatterers with valid associations to the total number of known 

scatterers within the scene. Under these conditions and criteria, the larger allowable 

TLE produced an average probability of detection of 40.7% and the smaller condition 

yielded an average probability of detection of 26.5%. These results are colored by the 

very poor performance in the -30 dB SNR case. Exclusion of the results for this test 
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condition results in an average probability of detection of 52.2% and 33.4% for the 

larger and smaller maximum TLE condition respectively. These results are summarized 

in Table 2. 

Table 2: Summary of Simulated Scattering Results 

  

TLEmax = 0.075 TLEmax = 0.025 

all 

exclude 
(SNR = -

30) all 

exclude 
(SNR = -

30) 

Probability of Detecting No Scatterers 9.72% 12.96% 4.17% 5.56% 

Probability of Detecting All Scatterers 26.39% 7.41% 40.28% 24.07% 

Average Probability of Detection 40.72% 52.18% 26.45% 33.42% 

Probability of Detection with zero TLE 
(inc. duplicate detections) 58.33% 74.07% 58.33% 74.07% 

 

As shown in the previous section, the TLE associated with the valid detections 

exhibited very good performance with a majority of detections resulting in zero error. 

The probability of detection shown here could likely be improved as noted in the Future 

Works section of this manuscript. However, the association probability shown here has 

proven that there is a correlation between high kurtosis elements of radar scattering 

data and the scattering centers within the scene.  
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Performance Comparison to MUSIC for Closely Spaced Scatterers 

This section of the manuscript is dedicated to examining the capability of the 

Isolated Scatterer Method to precisely localize closely spaced scatterers. A comparison 

is made to the performance of the MUSIC algorithm under the same test conditions.  

This numerical experiment simulated five closely spaced scatterers under three 

noise conditions. The set of configurations for the numerical experiments is detailed in 

Table 3. The MATLAB used in the generation of these results can be found in Appendix 

B of this thesis. 

Table 3: Closely Spaced Scatterer Experiment Conditions 

Separation 1.25 2.5 3.75 cm 

SNR 0 -10 -20 dB 

 
A simulation was performed using a 4 GHz collection bandwidth and 32 angle 

samples over the range of -80 to 80 in the azimuthal direction. This results in a null-to-

null resolution of approximately 4.15 cm. Given that ½ of the null-to-null beam width is 

2.075 cm, the two smallest spacing conditions result in irresolution for the scatterers. 

These conditions require super-resolution to separate the scatterers.  

The MUSIC algorithm used for this set of experiments was implemented 

according to the formulations in Chapter 2. For the results shown below, the MUSIC 

algorithm is given the precise number of scatterers. Additional test cases were 

completed the size of the signal subspace was allowed to be greater than the actual 

number of sources. The results from these test cases also support the conclusions 

below. 
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For this set of experiments, the Isolated Scatterer Method is implemented in 

the same manner as the previous set of experiments and is described in Chapter 3. For 

the results shown below, the excess degrees of freedom were constrained to zero. 

The primary metric used in this comparison is the Probability of Detection (Pd) 

with zero Target Location Error (TLE). This metric measures the likelihood of either 

technique to produce precise localization for the present set of scatterers.  

The three figures below give graphical examples of the output from this study. 

Each of these figures contains three images. The top center image is that of a standard 

ISAR image. The bottom left image is the composite maximum view produced using 

the Isolated Scatterer Method. The bottom right image is the image formed using the 

MUSIC algorithm. The three images all contain an overlay of 5 colored circles 

representing the actual location of the synthesized scatterers. 

Figure 33 illustrates these three image types for a scatterer separation of 1.25 

cm. The ISAR image clearly shows that the unique scattering centers are irresolvable 

using this technique. This view of the scattering shows a large region of scattering in 

and around the locations of the 5 point scatterers. The image formed using the ISM 

shows very poor performance of this technique. This results in 20% probability of 

detection with zero TLE. The MUSIC image shows fairly poor performance as well, also 

producing a 20% probability of zero TLE. 
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Figure 33: Closely Spaced Scatterer Results (1.25cm, 0 SNR) 

 

Figure 34 shows a second test condition in which the scatterer are slightly 

further apart at a spacing of 2.5 cm. In this case, the scatterers in the ISAR image are 

still irresolvable. This can again be observed as a region of scattering around the actual 

point scatterers. The MUSIC algorithm has performed better given the wider spaced 

scatterer. The probability of detection with zero TLE is now 60% for the MUSIC 

algorithm. The ISM did not improve and again only achieved 20% for this set of 

conditions. 
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Figure 34: Closely Spaced Scatterer Results (2.50cm, 0 SNR) 

 

For the last of the three examples, the scatterers were set to 3.75 cm. From the 

top image in Figure 35 it can be seen that the scatterers are now resolvable in the 

standard ISAR image. For this case, the MUSIC technique has achieved 100% 

probability of detection with zero TLE while the Isolated Scatterer Method had zero 

successful detections. This drop in performance and the general poor performance for 

ISM could be due to the technique focusing the subapertures on areas of interaction 

among the scatterers. The results show there is clearly an advantage to using MUSIC 

over ISM in the closely spaced scatterer condition. 
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Figure 35: Closely Spaced Scatterer Results (3.75cm, 0 SNR) 

 

Table 4 shows the full set of results for this study. It can be concluded that the 

Isolated Scatterer Method is not well suited for localization of closely spaced scatterers. 

The MUSIC algorithm outperforms in nearly all of the cases. For conditions requiring 

super-resolution the new technique does not show much promise. 
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Table 4: Results of Closely Spaced Scatterer Study 

Probability of 
Zero TLE 
detection 

SNR 

0 -10 -20 

MUSIC ISM MUSIC ISM MUSIC ISM 

Se
p

ar
at

io
n

 

1.25cm 20% 20% 20% 0% 20% 0% 

2.5cm 60% 20% 60% 0% 20% 40% 

3.75cm 100% 0% 100% 0% 60% 20% 
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Application of Method to Measured Data Sets 

The focus of this section is the examination of the results produced when the 

technique is applied to several turntable ISAR measurement data sets. The data sets 

analyzed in this section were gathered using the turntable ISAR system at the Wave 

Scattering Research Laboratory of the University of Texas at Arlington. The target sets 

were interrogated using microwaves in 4-8 GHz frequency range with 801 points. The 

target sets are subjected to a single polarization which is either vertical or horizontal. 

The polarization used for each data set is noted in the description of the target set for 

each of the test cases. A single antenna elevation angle of 60 degrees was used and 

the azimuthal angle was stepped between 0 and 360 degrees in 5 degree increments. 

Figure 36 shows a side view of the measurement setup inside the anechoic chamber. 

 

Figure 36: Photo of Measurement Set-up (Side View) 
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Measurement Data Set 1: Four cylinders in half-asterisk formation 

This first data set is made up of four conductive cylinders in a “half-asterisk” 

formation. To maintain the configuration while performing the rotation of the turntable, 

the entire target set was placed on a template of nonconductive foam. This 

configuration is pictured in Figure 37. Vertical polarization was used to collect data for 

this target set.  

Shown in Figure 38 is a standard ISAR image of the target set. This image has 

been augmented with red lines to give an approximate reference for the position of the 

target in the image. This figure shows a robust area of scattering around the longest 

cylinder in the configuration. Areas of scattering can also be seen in the regions near 

the ends of the three shorter cylinders. The hourglass shape of the scattering region 

around the longest cylinder can be speculated to be multiple bounce scattering caused 

by the interaction of the shorter cylinders with the longer one. The scattering, which is 

produced by a corner reflection, tends to be visible over a range of angles centered 

around the vertex of the corner. This observation will be relevant when considering the 

images formed from the high-kurtosis sources. 
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Figure 37: Photo of Target for Measurement Dataset 1 

 
Figure 38: Standard ISAR Image of Measurement Dataset 1 
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The signal processing technique based on the hypothesis of this paper in 

applied with a range of degrees-of-freedom between three and ten. Below are the eight 

composite maximum images formed from these cases. These are shown in Figure 39 

through Figure 46. The first four of these images show that the technique has produced 

scattering centers localized along the center of the longest cylinder. The last seven 

images of this show scattering centers that have been localized to positions which are 

associated with the middle cylinder of the shorter cylinder set.  

The intersections of the cylinders form a geometry conducive to double bounce 

scattering that is typical of a dihedral corner reflector. This geometry presents a range 

of angles that could result in reflected electric field in the direction of the receiving 

antenna after being reflected from the surface of two adjacent cylinders. The last four 

images in this series show a clustering of estimated scattering centers in areas which 

are likely places for multiple-bounce scattering. The presence of double bounce 

scattering could be a possible explanation for the clustering of the estimated scattering 

centers in these images. Further study of the performance of this technique in under 

multiple bounce scenarios is a potential area of future research.  
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Figure 39: Measured data set 1 results (three degrees-of-freedom) 

 

Figure 40: Measured data set 1 results (four degrees-of-freedom) 
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Figure 41: Measured data set 1 results (five degrees-of-freedom) 

 

Figure 42: Measured data set 1 results (six degrees-of-freedom) 
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Figure 43: Measured data set 1 results (seven degrees-of-freedom) 

 

Figure 44: Measured data set 1 results (eight degrees-of-freedom) 
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Figure 45: Measured data set 1 results (nine degrees-of-freedom) 

 

Figure 46: Measured data set 1 results (ten degrees-of-freedom) 



81 

The application of the concept of this thesis to the first measurement data set 

has shown possibility for extraction dimensional information for a target. The extracted 

scattering centers may yield detail on the length and width of the circular cylinders 

which comprise this complex target. It has also shown promise for the ability of the 

method to extract higher-order scattering such as double bounce. Future research 

should include measurement of a target set whose dimensions and position are more 

precisely known. 

 

Measurement Data Set 2: Two cylinders in T formation 

This data set was comprised of two conductive cylinders laid out in a “T” 

formation. The data for this target was also collected using a vertically polarized wave 

on transmit and receive. A photographic image of the target set is shown in Figure 47. 

Figure 48 is a radar image formed using the standard back projection technique. This 

image has been augmented with lines to mark the approximate location of the cylinders 

in the target.  

The first four images, Figure 49 through Figure 52, show that the technique has 

produced estimated scatterers localized near the intersection of the two cylinders and 

in the region which would correspond to the broadside look angle for the top of the “T”. 

Figure 53 includes detected scattering centers further down on the cylinder 

making up the vertical leg of the “T” shape. Two scattering centers appear to be on 

either side of the vertical cylinder. This ability to detect the width of an object would be 

a particularly useful application of this technique. This aspect could be an extension of 

this study for future research. 

The addition of degrees of freedom in the next three images, Figure 54 through 

Figure 56, add to the clustering of detected scattering centers near the intersection of 



82 

the cylinders.  Also noticeable in these images is the clustering along the position of the 

cylinder which forms the top of the “T”. 

It is not clear why the clustering does not cover as much of the vertical cylinder 

as it does the horizontal cylinder yet there are several points which would be 

associated with the vertical cylinder. 

The application of the technique to this measured data set appears to have 

produced some spatial information which could be used to augment interpretation of 

the standard ISAR image. 

 
Figure 47: Photo of Target for Measurement Data Set 2 
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Figure 48: ISAR Image of Measurement Data Set 2 

 
Figure 49: Measured data set 2 results (three degrees-of-freedom) 
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Figure 50: Measured data set 2 results (four degrees-of-freedom) 

 
Figure 51: Measured data set 2 results (five degrees-of-freedom) 
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Figure 52: Measured data set 2 results (six degrees-of-freedom) 

 
Figure 53: Measured data set 2 results (seven degrees-of-freedom) 
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Figure 54: Measured data set 2 results (eight degrees-of-freedom) 

 
Figure 55: Measured data set 2 results (nine degrees-of-freedom) 
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Figure 56: Measured data set 2 results (ten degrees-of-freedom) 

 

Similar to the results of the first data set, the application of the Isolated 

Scatterer Method has shown possibility for extraction of dimensional and shape 

information from a complex target. It has also shown the potential for extracting double 

bounce scattering. Measurement of a more precisely dimensioned target is need to 

support this conjecture. 

 
Measurement Data Set 3: Three cylinders in a triangle formation with elevated sphere 

This data set was comprised of three conductive cylinders laid out in a triangle 

formation with a 4 in conductive sphere elevated above the triangle. Horizontal 

polarization was applied during the collection of scattering data for this target. A 

photographic image of the target set is shown in Figure 57. Figure 58 is a radar image 

formed using the standard back projection technique. Also shown on this image is a 
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notional view of the target set marked in magenta lines. This augmentation is meant to 

give a frame of reference for the scattering which is visualized in the radar image. 

The ISAR image shows strong scattering at the intersection of the cylinders, at 

the broadside angle of the cylinders and at the location of the center of the sphere. 

There are significant sidelobe artifacts in this image. These artifacts make the 

recognition and interpretation of the true scattering centers difficult. The application of 

the new technique proposed by this paper aids in the interpretability of the radar image. 

Figure 59 through Figure 66 show illustrations of the results of the application of the 

new technique using degrees of freedom which vary from three to ten. The first four 

images in this set show that the technique has localized estimated scattering centers at 

the intersections of the cylinders and at the center of the sphere.  

Figure 63 through Figure 66 reveal scattering centers that have been localized 

close to one another. As with the previous example, it is possible to hypothesize that 

these closely spaced scatterers may represent separate scattering centers 

corresponding to the two sides of the same cylinder. However, the multiplicity of 

scattering center localization which occurs in the region of the center sphere does not 

show enough separation to allow for the localized scattering centers to be from two 

sides of the sphere. 
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Figure 57: Photo of Target for Measurement Data Set 2 

 
Figure 58: ISAR Image of Measurement Data Set 3 
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Figure 59: Measured data set 3 results (three degrees-of-freedom) 

 
Figure 60: Measured data set 3 results (four degrees-of-freedom) 
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Figure 61: Measured data set 3 results (five degrees-of-freedom) 

 
Figure 62: Measured data set 3 results (six degrees-of-freedom) 
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Figure 63: Measured data set 3 results (seven degrees-of-freedom) 

 
Figure 64: Measured data set 3 results (eight degrees-of-freedom) 
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Figure 65: Measured data set 3 results (nine degrees-of-freedom) 

 
Figure 66: Measured data set 3 results (ten degrees-of-freedom) 



94 

The scattering centers detected by the new technique have been localized in 

the regions associated with the centers and intersections of the cylinders as well as the 

center sphere. In some cases, the results show what appears to be separated 

scattering centers for either side a cylinder. If this supposition were to be proven, this 

could yield valuable information with regard to the dimensions of a target. Further 

precision measurements are needed to confirm that the separated scattering centers 

are indeed at locations which would be commensurate with location of the diameter of 

the cylinder. 

Additional application of this technique to measurements from existing RADAR 

systems would enable further testing of the performance. To reduce the number of 

estimated scatterers, it would be possible to apply this technique to a chipped region 

from a large SAR image. Once chipped the section of the SAR image would need to be 

transformed back to the k-space domain for application of this technique. As shown 

above, the original image can be augmented with the scattering centers estimated 

using this new technique. 

Two particularly interesting chipping examples would be a motor vehicle or a 

building with door and window features. A key objective of applying this technique to 

these examples would be to determine if additional dimensional information can be 

gleaned using the Isolated Scatterer Method. 
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Chapter 5 Conclusions and Future Work 

Conclusions 

The research presented here has shown that there is a strong correlation 

between the high-kurtosis elements of radar scattering data and the scattering centers 

that make up the observed scene. The results shown in Chapter 4 reveal that through 

the use of this technique it is possible to isolate individual scattering elements, and 

from these isolated elements an accurate composite view of the scattering scene can 

be formed. The Isolated Scatterer Method (ISM) does show some practical limitations. 

The effectiveness of the technique has dependency on SNR. An activation threshold 

between -30 and -20 dB SNR was identified and localization performance improved as 

the SNR increased above -20 dB. Another known deficiency of the technique is due to 

phase dispersion across the subapertures. This prevents ideal focusing of the 

subapertured data. Also documented in Chapter 4, the performance of this technique 

when applied to closely spaced scatterers was notably poor. Comparison to the MUSIC 

algorithm revealed a clear disadvantage for the Isolated Scatterer Method for the 

closely spaced scatterer condition. 

The application of the novel technique demonstrated in this paper produces a 

viable method for augmentation of SAR/ISAR images through precise localization of 

scattering centers. This novel technique takes advantage of the correlation tested in 

this work. Employing the assumption that leptokurtic elements of radar scattering data 

are correlated to scattering centers, it is reasonable to consider each of the isolated 

high-kurtosis elements as a single scattering center therefore the maximal point within 

the image domain for each of the isolated elements represents the true location of the 

scattering center. Through sequential selection of the maximal points it is possible to 

form a composite image of the scattering scene. Due to the fact that the components 
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have been isolated, the effect of interference, from sidelobes of nearby, strong 

scatterers, is reduced. This application of the newly developed signal processing 

technique has its limitation yet, shows practical utility. 

The technique was tested on synthesized point target under 72 test conditions. 

The technique was also applied to three sets of measurement data collected on the 

turntable ISAR system in the anechoic chamber of the Wave Scattering Research 

Center at the University of Texas at Arlington. 

The results of the testing, on synthetic target sets, yielded a 52% probability of 

detection of the known scatterers. Testing also showed that detected scatterers had a 

high probability of precise localization with 74% probability of detection with zero TLE. 

This result indicates an affirmative conclusion for the tested hypothesis. 

Application of the technique, to the measured data sets in this thesis, offered 

no absolute positional comparison but is included to confirm the technique works on 

measured data with reasonable results. 

This work has confirmed that the leptokurtic elements of a scattering mixture 

have some degree of correlation to the scattering centers in the target set. Also 

presented was a novel signal processing technique which exploits this correlation. 
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Future Works 

Many aspects of this research warrant further exploration. The use of higher 

order statistics in radar signal processing is a valuable extension to the well-known 

statistical signal processing techniques based on the second order cumulant.  

One area of future work should be exploring the application of this technique 

using Independent Vector Analysis (IVA) to extract the high-kurtosis elements. The 

optimization method afforded by this algorithm takes into account the correlation 

among the dataset manifold. An obstacle in the application of this technique is mapping 

of the output of the algorithm to the native k-space domain for imaging. Once this 

obstacle is overcome, the IVA algorithm should afford better performance over the ICA 

technique used here because the algorithm is able to exploit correlation between the 

datasets.  

Another area which warrants expansion is the application of this technique 

using radar imaging methods other than the Fourier back-projection technique. 

Through the use of an imaging method such as MUSIC. 

Further study of the subaperture partitioning particularly in the angle dimension 

is a possible avenue of additional research. Use of overlapped or non-contiguous 

subapertures may hold the potential to increase the probability of detection which 

would yield a more complete set of scattering centers.  

Development of a calibration method to reduce the amount of phase dispersion 

across the sub-apertures is also a worthy extension of this research which could 

improve the performance of the Isolated Scatterer Method. 

Observations stemming from the measurement data sets allude to the 

possibility of the technique to extract multiple bounce scattering. The expansion of the 
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modeled study to include multiple bounce scattering should be an avenue of further 

research. 

An important avenue of further research is measurement of a target set in 

which the locations of the scattering elements are known precisely. High precision 

positional information for a measurement target could provide quantitative proof of the 

hypothesized feature extraction capability of this method. 
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Appendix A 

MATLAB for Parametric Study 

fclose all;clear all;clc;close all 
%%RNG control 
s = RandStream('mt19937ar','Seed',1); 
RandStream.setGlobalStream(s); 
%% set options 
load('colorsDistinct'); 
set(0,'DefaultAxesColorOrder',colors) 
visbility = 'on'; 
total = tic; 
maxRange = 1; % Note larger ranges will require a greater number 

of interpolation points 
nAngSamps = 36; 
baseAngRange = pi; 
angRange = baseAngRange; 
nFreqPoints = 801; 
rAnt = 100; %(m) 
performPCA = 0; 
RCScomp = true; 
randScat = true; 
method = 'o';%{'o','r'} 
plotdBlim = 50; 
completedRunsLog = ''; 
%% Output Base Directory 
%enter the base directory for the output 
outputDirBase = ‘’; 
iHyper = 0; 
%% loops 
tTotal = tic; 
nScatSet = 3;%2:7; 
iSNRSet = 1:4; 
for nScat = nScatSet 
for nAngSA = 1%:nScat+2 
nSASet = nScat:nScat+2; 
for nFreqSA = nSASet; 
nTotalSA = nAngSA*nFreqSA; 
if and(nTotalSA >= (nScat),nTotalSA <= 2*(nScat)) 
for iSNR = iSNRSet 
clear kurt power 
for inIC = nScat:nTotalSA 
skip = false; 
snrS = [0 -20 -10];%[-10:2:10]; 
snr = snrS(iSNR); 
nICextract = inIC; 
algoChoice = 'robustICA'; 
for iBinsSep = 1:3; 
nBinsSet = [0.5 1 2]; 
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nBinsSep = nBinsSet(iBinsSep); 
dateTimeStamp = datestr(now,30); 
if ~RCScomp 
if randScat 
outputDir = 

fullfile(outputDirBase,sprintf('MaxRange%0.2f\\%0.0fAngleSamples

R%0.0fRandomScatLocs\\%0.0fScatterers_%0.0fdBThresh0PhaseRCS\\%0

.0fSNR\\%0.0fICs\\%0.0fAngSA_%0.0fFreqSA\\%s',... 
maxRange,nAngSamps,rAnt,nScat,plotdBlim,snr,nICextract,nAngSA,nF

reqSA,algoChoice)); 

  
else 
outputDir = 

fullfile(outputDirBase,sprintf('MaxRange%0.2f\\%0.0fAngleSamples

R%0.0fControlledScatLocs\\%0.1fbins\\%0.0fScatterers_%0.0fdBThre

sh0PhaseRCS\\%0.0fSNR\\%0.0fICs\\%0.0fAngSA_%0.0fFreqSA\\%s',... 
maxRange,nAngSamps,rAnt,nBinsSep,nScat,plotdBlim,snr,nICextract,

nAngSA,nFreqSA,algoChoice)); 
end 

  
else 
if randScat 
outputDir = 

fullfile(outputDirBase,sprintf('MaxRange%0.2f\\%0.0fAngleSamples

R%0.0fRandomScatLocs\\%0.0fScatterers_%0.0fdBThresh0PhaseRCS\\%0

.0fSNR\\%0.0fICs\\%0.0fAngSA_%0.0fFreqSA\\%s',... 
maxRange,nAngSamps,rAnt,nScat,plotdBlim,snr,nICextract,nAngSA,nF

reqSA,algoChoice)); 
else 
outputDir = 

fullfile(outputDirBase,sprintf('MaxRange%0.2f\\%0.0fAngleSamples

R%0.0fControlledScatLocs\\%0.1fbins\\%0.0fScatterers_%0.0fdBThre

sh0PhaseRCS\\%0.0fSNR\\%0.0fICs\\%0.0fAngSA_%0.0fFreqSA\\%s',... 
maxRange,nAngSamps,rAnt,nBinsSep,nScat,plotdBlim,snr,nICextract,

nAngSA,nFreqSA,algoChoice)); 
end 

  
end 
resFile = fullfile(outputDir,'1_Results.pptx'); 
if exist(resFile,'file') 
iHyper = iHyper + 1; 
prevFile = resFile; 
fprintf('File has been saved: <a 

href="matlab:winopen(''%s'')">%s</a>\n',prevFile,prevFile); 
skip = true; 
else 
skip = false; 
mkdir(outputDir) 
isOpen  = exportToPPTX(); 
if ~isempty(isOpen), 
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% If PowerPoint already started, then close first and then open 

a new one 
exportToPPTX('close'); 
end 
% http://www.mathworks.com/matlabcentral/fileexchange/40277-

exporttopptx 
exportToPPTX('new','Dimensions',[12 6], ... 
'Title','Parametric Study Results', ... 
'Author','JHall', ... 
'Subject','AlgorithmResults', ... 
'Comments','This file has been automatically generated by 

exportToPPTX'); 
% add entry to log of completed runs 
fidLogID = fopen(completedRunsLog,'a'); 
fprintf(fidLogID,'nScat= %0.0f rAnt= %0.1f SNR= %0.0f nAngSamps= 

%0.0f nAngSA= %0.0f nFreqSamps= %0.0f nFreqSA= %0.0f nTotalSA= 

%0.0f Dir= %s\n',... 
nScat,rAnt,snr,nAngSamps,nAngSA,nFreqPoints,nFreqSA,nTotalSA,out

putDir); 
fclose(fidLogID); 
end 
if ~skip 
notesText = sprintf('%0.0f Scatterers\n%0.0f FreqSA\n%0.0f 

AngleSA\nsnr = %0.0f\n %0.0f 

ICs\n%s\n%s',nScat,nFreqSA,nAngSA,snr, 

nICextract,algoChoice,outputDir); 
clc 
fprintf(1,'Output Dir: %s\n',outputDir); 
diary(fullfile(outputDir,'Dairy.txt')) 
%% Initial Set up and options 
fprintf(1,'DTS: %s\n',dateTimeStamp); 
fprintf(1,'filename: %s\n', mfilename); 
%===============================================================

=========== 
%% constants and data collection variables 
%===============================================================

=========== 
light_speed = 2.997925e008; 
f_start = 4e9; 
f_stop = 8e9; 
nFreqPoints = 801; 
phi = linspace(0,angRange-angRange/nAngSamps,nAngSamps);%(rad) 

azimuth angle of the antenna/turntable 
step = (f_stop - f_start) / (nFreqPoints); 
f = linspace(f_start, f_stop, nFreqPoints); 
lambda = light_speed ./ f; 
%wavenumber 
k = 2*pi ./ lambda; 
depression = 45; 
elevation = depression; 
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stamp = datestr(now); 
fprintf(1,'Date Time Stamp: %s\n',stamp); 
fprintf(1,'Elevation Angle: %0.1f\n',elevation); 
fprintf(1,'Max Range: %0.1f\n',maxRange); 
markerColor = [0 0 0]; 
markerSize = 25; 
markerLineWidth = 1.75; 
if randScat 
zoomLims =[... 
-.5 .5; 
-.5 .5]; 
else 
zoomLims =[... 
0.4 0.6; 
-0.1 0.1]; 
end 
fprintf('Per Sample SNR = %0.2f\n',snr); 
%% Interpolation 
kx = (k' * (sind(90-elevation) .* cos(phi))); 
ky = (k' * (sind(90-elevation) .* sin(phi))); 
rangeRes = -light_speed / (4*(f_stop-f_start)); 
if angRange == 2*pi 
rStep = light_speed./(2*f_stop).*(cosd(elevation)); 
rStepX = 0.5*pi./(max(kx(:)) - min(kx(:))); 
rStepY = 0.5*pi./(max(ky(:)) - min(ky(:))); 
elseif and(pi/2 < angRange,angRange <= pi) 
rStepY = light_speed./(2*(f_stop-f_start)).*cosd(elevation); 
rStepX = 0.5*rStepY; 
else 
rStepY = light_speed./(2*(f_stop-f_start)).*cosd(elevation); 
rStepX = rStepY; 
end 
Nsamps = 2^11; 
%Axes 
xR = -((0:(Nsamps-1)) * rStepX - (Nsamps)/2 * rStepX); 
yR = -((0:(Nsamps-1)) * rStepY - (Nsamps)/2 * rStepY); 

  
if randScat 
s = RandStream('mt19937ar','Seed',1); 
RandStream.setGlobalStream(s); 
aTall = (2*rand(1,100)-1) * pi; 
aTnQ = aTall(1:nScat); 
rTall = rand(1,100) * maxRange; 
rTnQ = rTall(1:nScat); 
rTnQ(rTnQ <= 1/(4*pi)) = 1/(4*pi); 
xTnQ = (rTnQ.*cos(aTnQ)); 
yTnQ = (rTnQ.*sin(aTnQ)); 
else 
%the two lines below are to set 
%deterministic locations for two scaterers 
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angDeterm = zeros(nScat,1); 
rDetMin = maxRange/2; 
for iXX = 1:nScat 
xTnQ(iXX) = (rDetMin + (iXX-

1)*nBinsSep*rStepX)*cos(angDeterm(iXX)); 
yTnQ(iXX) = (rDetMin + (iXX-1)*nBinsSep*0)*sin(angDeterm(iXX)); 
end 
end 
quantizeBins = 0; 
if quantizeBins 
xT = round(xTnQ / (rStepX)) *(rStepX); 
yT = round(yTnQ / (rStepY)) *(rStepY); 
else 
xT = xTnQ; 
yT = yTnQ; 
end 
rT = hypot(xT,yT); 
aT = atan2(yT,xT); 
[XR YR] = meshgrid(xR,yR); 
yPixSize = abs(mean(diff(yR))); 
xPixSize = abs(mean(diff(xR))); 
xScat = zeros(1,nScat); 
yScat = zeros(1,nScat); 
for iScat = 1:nScat 
% find closest points 
[minDistX(iScat), xScat(iScat)]  = min(abs(xR - xT(iScat))); 
[minDistY(iScat), yScat(iScat)]  = min(abs(yR - yT(iScat))); 
minDist(iScat) = hypot(minDistX(iScat),minDistY(iScat)); 
end 
pixMismatch = 

(minDist./hypot(abs(mean(diff(xR))),abs(mean(diff(yR))))); 
pixMismatch = pixMismatch ./ max(pixMismatch); 
% Range Normalization 
dTheory= (rT)./sind(elevation); 
RangeNormalization = abs(1./(4 *pi*dTheory)); 
RCS = 1./((RangeNormalization)); 
RCS = RCS./max(RCS); 
if ~RCScomp 
RCS = ones(1,nScat); 
end 
%% Model Scattering 
strFormat = [repmat('%0.4f ',1,numel(RCS)-1) '%0.4f (dB)\n']; 
fprintf(1,sprintf('Scatter Magnitude 

Theoretical:%s',strFormat),20*log10(RCS)); 
strFormat = ['Scatter Phase Angles Theoretical:' repmat('%0.4f 

',1,numel(RCS)-1) '%0.4f (deg)\n']; 
fprintf(strFormat,180/pi*angle(RCS)); 
fprintf(1,'Dynamic Range of Plots: %0.1f (dB)\n',plotdBlim); 
if randScat 
zoomLims =[... 
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-(max(rT)+.1) max(rT)+.1; 
-(max(rT)+.1) max(rT)+.1]; 
else 
zoomLims =[... 
(max(rT)-.1) max(rT)+.1; 
-0.1 0.1]; 
end 
zoomLimsExpanded = 5 *zoomLims; 
[target, scatFunction]  = 

simulateTurntableISAR('nFreq',nFreqPoints,... 
'fstart',f_start,'fstop',f_stop,'theta',pi/2-elevation * 

pi/180,... 
'nScatterers',nScat,'r', rT,'a',aT ,'RCS',RCS,'dsnr',-snr,... 
'rAnt',rAnt,'phi',phi,'outputdir', 

outputDir,'lambda',lambda,'k',k); 
[r, c] = size(target); 
targetWeighted = target; 

  
%% K-Space Generation and polar to rectangular interpolation 
%===============================================================

=========== 
%Create K-Space Indexes 
%===============================================================

=========== 
[F, PHI] = meshgrid(f,phi); 
theta = elevation*pi/180; 
f_span = (f_stop - f_start); 
rStept = light_speed.*cosd(elevation)./(f_span); 
%% Input Data Characteristics 
kurt.Input.Full = kurtosis(real(targetWeighted(:))); 
power.Input = 20*log10(sum(abs(targetWeighted(:)))); 
%% 2D interpolation of full data set 
tInterp = tic; 
x = transpose(kx); 
y = transpose(ky); 
v = targetWeighted; 
%rectangular grid 
Xmin = min(x(:)); 
Xmax = max(x(:)); 
Ymin = min(y(:)); 
Ymax = max(y(:)); 
xi = linspace(Xmin, Xmax, Nsamps); 
yi = linspace(Ymin, Ymax, Nsamps); 
[XF, YF] = meshgrid(xi,yi); 
interpType = 'linear'; 
extrapType = 'none'; 
FF = 

scatteredInterpolant((x(:)),(y(:)),v(:),interpType,extrapType); 
ZIF = FF((XF),(YF)); 
ZIF(isnan(ZIF)) = 0; 
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ZIF(isinf(ZIF)) = 0; 
Inner = sqrt(XF.^2 + YF.^2) < min(k).* sin(pi/2-theta); 
Outer = sqrt(XF.^2 + YF.^2) > max(k).* sin(pi/2-theta); 
ZIF(Inner) = 0; 
ZIF(Outer) = 0; 
fprintf(1,'Interpolation Time = %0.2f\n',toc(tInterp)); 
%% ISAR Image of Original data 
target_xformF = ifftshift(ifft2((ZIF))); 
power.ZIF= sum(abs(ZIF(:)).^2); 
power.xform = sum(squeeze(abs(target_xformF(:))).^2); 
dataO = 20*log10(abs(target_xformF)); 
maxValO = max(dataO(:)); 
targetQuads = floor(aT/(pi/2)); 
fprintf(1,'RCS compensation: %0.0f',RCScomp); 
magScatOrigdB = zeros(1,nScat); 
angScatOrigRad = zeros(1,nScat); 
scatter2BGOrigdB = zeros(1,nScat); 
scatter2ClutterOrigdB = zeros(1,nScat); 
cluserDimOver2 = 0; 
extractedAOI = 

zeros(nScat,2*cluserDimOver2+1,2*cluserDimOver2+1); 
cluserDimOver2Expand = 5; 
extractedAOIExpand = 

zeros(nScat,2*cluserDimOver2Expand+1,2*cluserDimOver2Expand+1); 
% findindices within zoomlims 
logicalXlim = and(xR >= zoomLims(1),xR <= zoomLims(3)); 
logicalYlim = and(yR >= zoomLims(2),yR <= zoomLims(4)); 
valMaxOriginaldB = max((dataO(:))); 
[rowLocMaxOriginal, columnLocMaxOriginal] = find((dataO) == 

valMaxOriginaldB); 
max2BGOrigdB = 

20*log10(abs(target_xformF(rowLocMaxOriginal,columnLocMaxOrigina

l))... 
./ (sum(sum(abs(target_xformF(logicalXlim,logicalYlim)))) - 

abs(target_xformF(rowLocMaxOriginal,columnLocMaxOriginal)))); 
formString = repmat(' %0.4f',1,nScat-1); 
formStringInteger = repmat(' %0.0f',1,nScat-1); 
formString = strcat(formString,' %0.4f\n'); 
formStringInteger = strcat(formStringInteger,' %0.4f\n'); 
fprintf(1,sprintf('\nOriginal Scatter X location: 

%s',formString),xT); 
fprintf(1,sprintf('Original Scatter Y location: 

%s',formString),yT); 
for iScat = 1:nScat 
[minDistX(iScat), xScat(iScat)]  = min(abs(xR - xT(iScat))); 
[minDistY(iScat), yScat(iScat)]  = min(abs(yR - yT(iScat))); 
minDist(iScat) = hypot(minDistX(iScat),minDistY(iScat)); 
extractedAOIYExpand(iScat,:) = yScat(iScat)-

cluserDimOver2Expand:yScat(iScat)+cluserDimOver2Expand; 



106 

extractedAOIXExpand(iScat,:) = xScat(iScat)-

cluserDimOver2Expand:xScat(iScat)+cluserDimOver2Expand; 
extractedAOIExpand(iScat,:,:) = 

target_xformF(extractedAOIYExpand(iScat,:),... 
extractedAOIXExpand(iScat,:)); 
[magScatOrigdB(iScat), locScatOrig(iScat)] = 

max(20*log10(abs(extractedAOIExpand(iScat,:)))); 
[locScatOrigY(iScat) locScatOrigX(iScat)] = 

find(squeeze(20*log10(abs(extractedAOIExpand(iScat,:,:)))) == 

magScatOrigdB(iScat)); 
scatter2BGOrigdB(iScat) = 

20*log10(max(abs(extractedAOIExpand(iScat,:)))... 
./ (sum(sum(abs(target_xformF(logicalXlim,logicalYlim)))) - 

max(abs(extractedAOIExpand(iScat,:))))); 
angScatOrigRad(iScat) = 

mean(angle(extractedAOIExpand(iScat,locScatOrig(iScat)))); 
locScatOrigXM(iScat) = 

xR(extractedAOIXExpand(iScat,locScatOrigX(iScat))); 
locScatOrigYM(iScat) = 

yR(extractedAOIYExpand(iScat,locScatOrigY(iScat))); 
end 
fprintf(1,sprintf('Adjusted Scatter X location: 

%s',formString),xT); 
fprintf(1,sprintf('Adjusted Scatter Y location: 

%s',formString),yT); 
max2ScatRatioOriginal = valMaxOriginaldB - magScatOrigdB; 
formString = repmat(' %0.4f',1,nScat-1); 
formString = strcat(formString,' %0.4f\n'); 
fprintf(1,sprintf('\nScatters to BG ratio 

Original:%s',formString),scatter2BGOrigdB(:)); 
fprintf(1,'Max to BG ratio Original: %0.4f\n',max2BGOrigdB); 
fprintf(1,'Max Value Original: %0.4f\n',valMaxOriginaldB); 
fprintf(1,'Max Location Original: Row %0.0f, Col %0.0f\n',... 
rowLocMaxOriginal,columnLocMaxOriginal); 
fprintf(1,sprintf('Scatters Magnitude 

Original:%s',formString),magScatOrigdB(:)); 
fprintf(1,sprintf('Scatters Phase Angle 

Original%s',formString),angScatOrigRad(:)); 
h = figure('Name','ISAR 

Image','NumberTitle','off','visible',visbility); 
whitebg(h,'k') 
imagesc(xR,yR,dataO);shading interp 
title(sprintf('Original Data Image \n kurt = %0.4f ::: Power = 

%0.4f (dB)',kurt.Input.Full,power.Input)) 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
caxis([maxValO-plotdBlim maxValO]); 
colorbar('location','SouthOutside') 
hold on 
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for iMark = 1:nScat 
scatter(xT(iMark),yT(iMark),'SizeData',markerSize,... 
'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 
if regexp(scatFunction,'wAngular') 
line([xT(iMark),xT(iMark)+maxRange/10*cos(scatterBeamDirs(iMark)

-scatterBeamWidths(iMark)/2)],... 
    [yT(iMark),... 
    yT(iMark)+maxRange/10*sin(scatterBeamDirs(iMark)-

scatterBeamWidths(iMark)/2)],... 
    'LineWidth',markerLineWidth,'color',1-colors(iMark,:)) 
line([xT(iMark),xT(iMark)+maxRange/10*cos(scatterBeamDirs(iMark)

+scatterBeamWidths(iMark)/2)],... 
    [yT(iMark),... 
    

yT(iMark)+maxRange/10*sin(scatterBeamDirs(iMark)+scatterBeamWidt

hs(iMark)/2)],... 
    'LineWidth',markerLineWidth,'color',1-colors(iMark,:)) 
end 
end 
hold off 
set(h,'visible','on') 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
set(h,'InvertHardcopy','off') 
saveas(h,fullfile(outputDir,'ImageOrigISAR.fig')); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',h,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(h) 
%% Create Subapertures 
entryCount = 0; 
outputFlag = true; 
for nAnglesPerSA = floor(size(target,1)/nAngSA)%1:8 
fprintf(1,'\nNumber of Sensors per SA: %0.1f\n',nAnglesPerSA); 
fprintf(1,'Number of Angle SAs: %0.1f\n',nAngSA); 
nFreqPerSA = floor(c/nFreqSA); 
fprintf(1,'Number of Freq  per SAs: %0.1f\n',nFreqPerSA); 
fprintf(1,'Number of Freq SAs: %0.1f\n',nFreqSA); 
iMaxFreq =  nFreqSA* nFreqPerSA; 
fprintf(1,'BW of Freq SAs: %0.0f MHz\n',step * nFreqPerSA / 

1E6); 
fprintf(1,'Total Number of SAs: %0.1f\n',nTotalSA); 
iMaxAng =  nAngSA* nAnglesPerSA; 
targetSubSet = zeros(nTotalSA,nAnglesPerSA*nFreqPerSA); 
nAngsOut = nAnglesPerSA * nAngSA; 
nFreqsOut = nFreqPerSA * nFreqSA; 
SACount = 0; 
entryCount = entryCount+1; 
iFreq = zeros(nFreqSA,nFreqPerSA); 
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for iterAng = 1:nAngSA 
for iF = 1:nFreqSA 
    fIX = 1:nFreqSA; 
    iterFreq = fIX(iF); 
    SACount = SACount + 1; 
    % Continuous sampling 
    iAng = nAnglesPerSA*(iterAng - 1)+1:nAnglesPerSA*iterAng; 
    iFreq(iF,:) = nFreqPerSA*(iterFreq - 

1)+1:nFreqPerSA*iterFreq; 
    targetSubSetTemp = target(iAng,iFreq(iF,:)); 
    targetSubSet(SACount,:) = targetSubSetTemp(:); 
    kurt.Input.SA(SACount) = 

kurtosis(real(targetSubSetTemp(:))); 
end 
end 
%% RobustICA 
tol = 1e-2;     % termination threshold parameter 
max_it = 1e5;   % maximum number of iterations per independent 

component 
if outputFlag 
outputFlag = false; 
%negative kurtSign extracts subgaussian components, 
%positive kurtSign extracts superGaussian components, 
%zero does not extract components 
kurtSign = zeros(1, nTotalSA); 
kurtSign(1:nICextract) = 1; 
stringFormat = strcat('kurtSign:  ', repmat('%0.0f 

',1,nTotalSA), ' \n'); 
fprintf(1,stringFormat,kurtSign); 
end 

  
if performPCA 
if entryCount ==1 
    fprintf(1,'Perform PCA is on\n'); 
end 
else 
if entryCount ==1 
    fprintf(1,'Perform PCA is off\n'); 
end 
end 
if entryCount ==1 
fprintf(1,'Method is %s\n',method); 
end 
% http://www.i3s.unice.fr/~zarzoso/robustica.html 
[algo, shat, A, iter, W] = robustica((targetSubSet), kurtSign, 

tol,... 
max_it, performPCA, method, 0, [], 0,entryCount); 
%% Remap subapertures 
for nIC=nICextract 
fprintf(1,'Number of "ICs": %0.1f\n',nIC); 
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reCompose = zeros(nICextract, iMaxAng,iMaxFreq); 
reComposeWeighted = zeros(nIC, iMaxAng,iMaxFreq); 
Yprime = zeros(nTotalSA,nFreqPerSA * nAnglesPerSA); 
%% Remap data to k space 
for iIC = 1:nICextract 
    temp = zeros(size(shat)); 
    temp(iIC,:) = shat(iIC,:); 
    Yprime = temp; 
    SACount=0; 
    for iterAng = 1:nAngSA 
        for  iF = 1:nFreqSA 
            iterFreq = fIX(iF); 
            SACount = SACount + 1; 
            % Continuous sampling 
            iAng = nAnglesPerSA*(iterAng - 

1)+1:nAnglesPerSA*iterAng; 
            iFreq(iF,:) = nFreqPerSA*(iterFreq - 

1)+1:nFreqPerSA*iterFreq; 
            reCompose(iIC,iAng,iFreq(iF,:)) =  ... 
                

reshape(Yprime(SACount,:),nAnglesPerSA,nFreqPerSA); 
        end 
    end 
    kurt.Output(iIC) = 

kurtosis(real(reCompose(iIC,reCompose(iIC,:)~=0))); 
    power.Output(iIC) = 20*log10(sum(abs(reCompose(iIC,:)))); 
    reComposeWeighted(iIC,:,:) = squeeze(reCompose(iIC,:,:)); 
end 
sumICsFreqDomain = squeeze(sum(real(reComposeWeighted),1)); 
kurt.SumICs = kurtosis(sumICsFreqDomain(:)); 
power.SumICs = 20*log10(sum(abs(reComposeWeighted(:)))) - 

10*log10(size(reComposeWeighted,1)); 

  
fprintf(1,'Kurtosis of input data: %0.4f\n',kurt.Input.Full); 
stringFormat = strcat('Kurtosis of output data:  ', 

repmat('%0.4f ',1,nTotalSA), ' \n'); 
fprintf(1,stringFormat,kurt.Output); 
fprintf(1,'Kurtosis of sum of the output data: %0.4f 

(dB)\n',kurt.SumICs); 

  
fprintf(1,'Power of input data: %0.4f (dB)\n',power.Input); 
stringFormat = strcat('Power of output data:  ', repmat('%0.4f 

',1,nTotalSA), ' (dB)\n'); 
fprintf(1,stringFormat,power.Output); 
fprintf(1,'Power of sum of the output data: %0.4f 

(dB)\n',power.SumICs); 

  
%% Plot ICs 
upsampleRatio = 1; 
upsampleRatioFFT = 2; 
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xRuS = -((0:(Nsamps*upsampleRatio-1)) * rStepX - 

(Nsamps*upsampleRatio)/2 * rStepX); 
yRuS = -((0:(Nsamps*upsampleRatio-1)) * rStepY - 

(Nsamps*upsampleRatio)/2 * rStepY); 
target_xformFIC = 

zeros(nIC,Nsamps*upsampleRatioFFT,Nsamps*upsampleRatioFFT); 
scatter2BGICsdB = zeros(nIC,nScat); 
Scat2Back = zeros(nIC,nScat); 
magScatICsdB = zeros(nIC,nScat); 
angScatICsRad = zeros(nIC,nScat); 
Scat2BackNorm = zeros(nIC,nScat); 
scatter2ClutterICsdB = zeros(nIC,nScat); 
scatter2ClutterICsdBNorm = zeros(nIC,nScat); 
extractedAOIICs = 

zeros(nIC,nScat,2*cluserDimOver2+1,2*cluserDimOver2+1); 

  
clear ikurtSort 
[valkurtSort, ikurtSort] = sort(kurt.Output,'descend'); 
max2ScatRatioICs = zeros(nIC,nScat); 
max2BGICsdB = zeros(nIC,1); 
rowLocMaxIC = zeros(nIC,1); 
columnLocMaxIC = zeros(nIC,1); 
valMaxICdB = zeros(nIC,1); 
diffScat = zeros(nScat,nIC,nAngsOut,nFreqsOut); 

  
distMeasPixX = zeros(nIC,nScat); 
distMeasPixY = zeros(nIC,nScat); 
distMeasPixXY = zeros(nIC,nScat); 
distMeasMeterXY = zeros(nIC,nScat); 
mindistMeter = zeros(nIC,1); 
closestScatIndex = zeros(nIC,1); 

  
for iIC = 1:nIC 
    iSelect = iIC; 
    rangeRes = -light_speed / (4*(f_stop-f_start)); 
    rangeResProj = -light_speed / (4*(f_stop-f_start)) / 

cos((theta - pi/2) * 180/pi); 
    %% 2D interpolation of ICs 
    x = 

transpose(kx(1:size(reComposeWeighted,3),1:size(reComposeWeighte

d,2))); 
    y = 

transpose(ky(1:size(reComposeWeighted,3),1:size(reComposeWeighte

d,2))); 
    v = squeeze(reComposeWeighted(iSelect,:,:)); 
    %rectangular grid 
    xiuS = linspace(min(xi),max(xi),upsampleRatio*numel(xi)); 
    yiuS = linspace(min(yi),max(yi),upsampleRatio*numel(yi)); 
    [XF, YF] = meshgrid(xiuS,yiuS); 
    interpType = 'linear'; 
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    extrapType = 'none'; 
    FF = 

scatteredInterpolant(x(:),y(:),v(:),interpType,extrapType); 
    ZIF = FF(XF,YF); 
    ZIF(isnan(ZIF)) = 0; 
    ZIF(isinf(ZIF)) = 0; 
    Inner = sqrt(XF.^2 + YF.^2) < min(k).* sin(theta); 
    Outer = sqrt(XF.^2 + YF.^2) > max(k).* sin(theta); 
    ZIF(Inner) = 0; 
    ZIF(Outer) = 0; 
    %% 
    upsampleRatioFFT = 2; 
    target_xformFIC = 

zeros(nIC,Nsamps*upsampleRatioFFT,Nsamps*upsampleRatioFFT); 
    nfftColIC = upsampleRatioFFT*size(ZIF,2); 
    nfftRowIC = upsampleRatioFFT*size(ZIF,1); 
    target_xformFIC(iIC,:,:) = 

ifftshift(ifft2(ifftshift(ZIF),nfftRowIC,nfftColIC)); 
    data = 20*log10(abs(squeeze(target_xformFIC(iIC,:,:)))); 
    maxVal = max(data(:)); 
    %find peaks in the IC data 
    valMaxICdB(iIC) = max(data(:)); 
    [rowLocMaxIC(iIC), columnLocMaxIC(iIC)] = find(data == 

valMaxICdB(iIC)); 
    xRuS = -((0:(Nsamps*upsampleRatioFFT-1)) * 

rStepX/upsampleRatioFFT... 
        - ((Nsamps-1)*upsampleRatioFFT)/2 * 

rStepX/upsampleRatioFFT); 
    yRuS = -((0:(Nsamps*upsampleRatioFFT-1)) * 

rStepY/upsampleRatioFFT... 
        - ((Nsamps)*upsampleRatio*upsampleRatioFFT)/2 * 

rStepY/upsampleRatioFFT); 
    % check power levels 
    power.reComposeWeighted(iIC) = 

sum(abs(reComposeWeighted(iSelect,:)).^2); 
    power.ZIFIC(iIC)= sum(abs(ZIF(:)).^2); 
    power.RecomposeScaled(iIC) = 

sum(abs(reComposeWeighted(iSelect,:)).^2)/(numel(Yprime(:)) 

/(Nsamps^2)); 
    power.xformIC(iIC) = 

sum(squeeze(abs(target_xformFIC(iIC,:))).^2); 
    %% peal picking 
    valMaxICdB(iIC) = max(data(:)); 
    [rowLocMaxIC(iIC), columnLocMaxIC(iIC)] = find(data == 

valMaxICdB(iIC)); 
    upsampleRatioFFT = 2; 
    xRuS = -((0:(Nsamps*upsampleRatioFFT-1)) * 

rStepX/upsampleRatioFFT... 
        - (Nsamps*upsampleRatioFFT)/2 * 

rStepX/upsampleRatioFFT); 
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    yRuS = -((0:(Nsamps*upsampleRatioFFT-1)) * 

rStepY/upsampleRatioFFT - 

(Nsamps*upsampleRatio*upsampleRatioFFT)/2 * rStepY/2); 
    hIC = figure('Name','ISAR Image of 

ICs','NumberTitle','off','visible','on'); 
    whitebg(hIC,'k') 
    imagesc(xRuS,yRuS,data);shading interp 
    xlabel('Down Range Distance (m)'); 
    ylabel('Cross Range Distance (m)') 
    colormap('parula') 
    caxis([maxVal-plotdBlim 

maxVal]);colorbar('location','SouthOutside') 
    hold on 
    scatter(xRuS(columnLocMaxIC(iIC)), 

yRuS(rowLocMaxIC(iIC)),ones(size(rowLocMaxIC(iIC))),'SizeData',m

arkerSize,... 
        

'Marker','x','LineWidth',markerLineWidth,'MarkerEdgeColor',[0 0 

0],'MarkerFaceColor',[0 0 0]); 
    for iMark = 1:nScat 
        scatter(xT(iMark),yT(iMark),'SizeData',markerSize,... 
            

'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark+1,:)) 
    end 
    hold off 
    title(sprintf('Image of IC # %0.0f of %0.0f \n Kurt = %0.4f 

::: Power = %0.4f (dB)::: %s',... 
        

iIC,nIC,kurt.Output(iSelect),power.Output(iSelect),algo),... 
        'interpreter','none') 
    set(gca,'XLim',zoomLims(1,:)) 
    set(gca,'YLim',zoomLims(2,:)) 
    set(hIC,'InvertHardcopy','off') 
    

saveas(hIC,fullfile(outputDir,sprintf('ImageIC%0.0fOF%0.0f.png',

iIC,nIC))); 
    slideNum = exportToPPTX('addslide'); %#ok<NASGU> 
    exportToPPTX('addpicture',hIC,'Scale','maxfixed'); 
    exportToPPTX('addnote',notesText); 
    delete(hIC) 
    %% examine miss distance 
    for iScat = 1:numel(xT) 
        extractedAOIICs(iIC,iScat,:,:) = target_xformFIC(iIC,... 
            yScat(iScat)-

cluserDimOver2:yScat(iScat)+cluserDimOver2,... 
            xScat(iScat)-

cluserDimOver2:xScat(iScat)+cluserDimOver2); 
        [magScatICsdB(iIC,iScat), locScatICs(iIC,iScat)] = 

max(20*log10(abs(extractedAOIICs(iIC,iScat,:)))); 
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        scatter2BGICsdB(iIC,iScat) = 

20*log10(max(abs(extractedAOIICs(iIC,iScat,:)))... 
            .*  power.ZIF / power.ZIFIC(iIC) ... 
            ./ 

(sum(sum(abs(target_xformFIC(iIC,logicalXlim,logicalYlim)))) - 

max(abs(extractedAOIICs(iIC,iScat,:))))); 
        angScatICsRad(iIC,iScat) = 

(angle(extractedAOIICs(iIC,iScat,locScatICs(iIC,iScat)))); 
    end 
    Scat2Back(iIC,:) = scatter2BGICsdB(iIC,:); 
    Scat2BackNorm(iIC,:) = scatter2BGICsdB(iIC,:)- 

scatter2BGOrigdB; 
    max2BGICsdB(iIC) = 

20*log10(abs(target_xformFIC(iIC,rowLocMaxIC(iIC), 

columnLocMaxIC(iIC)))... 
        .*  power.ZIF / power.ZIFIC(iIC) ... 
        ./ 

(sum(sum(abs(target_xformFIC(iIC,logicalXlim,logicalYlim)))) - 

abs(target_xformFIC(iIC,rowLocMaxIC(iIC), 

columnLocMaxIC(iIC))))); 
    max2ScatRatioICs(iIC,:) = valMaxICdB(iIC) - 

magScatICsdB(iIC,:); 
    formString = repmat(' %0.4f',1,nScat-1); 
    formString = strcat(formString,' %0.4f\n'); 
    fprintf(1,sprintf('\nScatters to BG ratio 

IC%%0.0f:%s',formString),iIC,scatter2BGICsdB(iIC,:)); 
    fprintf(1,'Max to BG ratio IC%0.0f: 

%0.4f\n',iIC,max2BGICsdB(iIC)); 
    fprintf(1,'Max Value IC%0.0f: %0.4f\n',iIC,valMaxICdB(iIC)); 
    fprintf(1,'Max Location IC%0.0f: Row %0.0f, Col %0.0f\n',... 
        iIC,rowLocMaxIC(iIC),columnLocMaxIC(iIC)); 
    fprintf(1,sprintf('Scatters Magnitude (dB) 

IC%%0.0f:%s',formString),iIC,magScatICsdB(iIC,:)); 
    fprintf(1,sprintf('Scatters Phase Angle (Rad) 

IC%%0.0f:%s',formString),iIC,angScatICsRad(iIC,:)); 
    % gauge distance 
    % between maximum pixel 
    % and the known 
    % locations of the 
    % scatterers in the 
    % scene 
    distMeasPixX(iIC,:) = 

bsxfun(@minus,columnLocMaxIC(iIC),xScat); 
    distMeasPixY(iIC,:) = bsxfun(@minus,rowLocMaxIC(iIC),yScat); 
    distMeasPixXY(iIC,:) = 

hypot(distMeasPixX(iIC,:),distMeasPixY(iIC,:)); 
    distMeasMeterXY(iIC,:) = 

hypot(bsxfun(@minus,xRuS(columnLocMaxIC(iIC)),xR(xScat)),... 
        bsxfun(@minus,xRuS(rowLocMaxIC(iIC)),xR(yScat))); 
end 
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for iIC = 1:nIC 
    [mindistMeter(iIC), closestScatIndex(iIC)] = 

min(distMeasMeterXY(iIC,:)); 
    fprintf(1,sprintf('\nMinimum Miss Distance (M) 

IC%%0.0f:%s',formString),iIC,mindistMeter(iIC,:)); 
    fprintf(1,sprintf('Closest Known Scatterer 

IC%%0.0f:%s',formStringInteger),iIC,closestScatIndex(iIC,:)); 
end 

  
% Plot Image of the max of all ICs 
dataMaxs = ones(Nsamps,Nsamps) * 20*log10(eps); 
for iMax = 1:numel(rowLocMaxIC) 
    dataMaxs(rowLocMaxIC(iMax), columnLocMaxIC(iMax)) = 0; 
end 
hICm = figure('Name','ISAR Image of max of 

ICs','NumberTitle','off','visible',visbility); 
whitebg(hICm,'k') 
imagesc(xR,yR,dataMaxs);shading interp 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
caxis([-plotdBlim 0]);colorbar('location','SouthOutside') 
hold on 
for iMark = 1:nScat 
    scatter(xT(iMark),yT(iMark),'SizeData',markerSize,... 
        

'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 
end 
hold off 
title(sprintf('Image of Maxs of %0.0f ICs\n%s ::: SNR = 

%0.1f',... 
    nIC,algo,snr),... 
    'interpreter','none') 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
set(hICm,'InvertHardcopy','off') 
saveas(hICm,fullfile(outputDir,sprintf('ImageMaxsICs%0.0f.fig',n

IC))); 
slideNum = exportToPPTX('addslide'); %#ok<NASGU> 
exportToPPTX('addpicture',hICm,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(hICm) 

  
% Overlay Image of the max of 
% all ICs on original ISAR 
hICmO = figure('Name','ISAR Image of max of ICs 

Overlay','NumberTitle','off','visible',visbility); 
whitebg(hICmO,'k') 
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imagesc(xR,yR,dataO);shading interp 
hold on 
scatter(xRuS(columnLocMaxIC), 

yRuS(rowLocMaxIC),ones(size(rowLocMaxIC)),'SizeData',markerSize,

... 
    

'Marker','x','LineWidth',markerLineWidth,'MarkerEdgeColor',[0 0 

0],'MarkerFaceColor',[0 0 0]); 
hold off 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
caxis([maxValO-plotdBlim 

maxValO]);colorbar('location','SouthOutside') 
hold on 
for iMark = 1:nScat 
    scatter(xT(iMark),yT(iMark),'SizeData',markerSize,... 
        

'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 

  
end 
hold off 
title(sprintf('Image of Maxs of %0.0f ICs Overlaid on Original 

ISAR Image\n%s ::: SNR = %0.1f',... 
    nIC,algo,snr),... 
    'interpreter','none') 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
set(hICmO,'InvertHardcopy','off') 
saveas(hICmO,fullfile(outputDir,sprintf('ImageMaxsICs%0.0fOverla

y.fig',nIC))); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',hICmO,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(hICmO) 
end 
end 
hMissD=figure('visible','on'); 
plot(1,mindistMeter(1),'Marker','o','Color',colors(closestScatIn

dex(1),:)) 
hold on 
for iIC = 2:nIC 
plot(iIC,mindistMeter(iIC),'Marker','o','Color',colors(closestSc

atIndex(iIC),:)) 
end 
hold off 
maxMissError = 

max(abs(min(mindistMeter)),abs(max(mindistMeter)))*1.1; 
axis([0 nIC+1 -maxMissError maxMissError+eps]) 
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set(gca,'XTick',0:nIC+1) 
titleText = sprintf('Distance Error ::: %s',algo); 
title(titleText,'interpreter','none');xlabel('Extracted 

Independent Component'); 
ylabel('Distance Error (M)'); 
whitebg(hMissD,'k') 
set(hMissD,'InvertHardcopy','off'); 
saveas(hMissD,fullfile(outputDir,sprintf('MissD.png'))); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',hMissD,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(hMissD) 
fprintf(1,'\npower of original kspace = 

%0.4f\n',10*log10(power.ZIF)); 
fprintf(1,'power of sum of IC kspace = 

%0.4f\n',10*log10(sum(power.ZIFIC))); 
fprintf(1,'Input power = %0.4f (dB)\n',power.Input); 
fprintf(1,'power of sum of IC kspace = %0.4f 

(dB)\n',10*log10(sum(10.^(power.Output./10)))); 
% count the number of misses 
nMisses = sum(max2ScatRatioICs~=0,2); 
fprintf(1,'Total Processing Time: %0.4f\n',toc(tTotal)); 
newFile = exportToPPTX('save',fullfile(outputDir,'1_Results')); 
exportToPPTX('close') 
iHyper = iHyper +1; 
hyperLinks{iHyper} = sprintf('<a 

href="matlab:winopen(''%s'')">%s</a>\n',newFile,newFile); 
fprintf('File has been saved: <a 

href="matlab:winopen(''%s'')">%s</a>\n',newFile,newFile); 

  
%% Save selected variables 
save(fullfile(outputDir,'Variables'),'angScatICsRad','angScatOri

gRad','hyperLinks',... 
'kurt','magScatICsdB','magScatOrigdB','max2BGICsdB','max2BGOrigd

B','max2ScatRatioICs',... 
'max2ScatRatioOriginal','notesText','outputDir','Scat2Back','Sca

t2BackNorm',... 
'scatter2BGICsdB', 'scatter2BGOrigdB', 'scatter2ClutterICsdB', 

'scatter2ClutterICsdBNorm',... 
'valMaxICdB','valMaxOriginaldB','power',... 
'rowLocMaxIC', 'columnLocMaxIC','xScat','yScat',... 
'distMeasMeterXY', 'distMeasPixX', 'xPixSize', 

'distMeasPixY','locScatOrigXM','locScatOrigYM',... 
'yPixSize','mindistMeter','closestScatIndex',... 
'nMisses','xT','yT','rT','aT','W','A') 

  
end 
end 
end 
end 
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end 
end 
end 
end 
diary('off') 
toc(tTotal) 

 

function [target, scatFunction]  = 

simulateTurntableISAR(varargin) 
% 'nScatterers' 
% 'r' %  vector of scatterer location relative to center of 

turntable 
% 'a' % vector of scatterer angle relative 0 
% 'RCS' % vector of scattering magnitudes for scatterers 
% 'rAnt' % antenna location relative to center of the turntable 
% 'aAnt' % antenna angle relative to zero 
% 'theta' % depression angle of the antenna 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 
% Default values for optional parameters 
% All 
nScatterers       = 3; 
theta             = 120*pi/180;         %(deg2rad) depression 

angle of the antenna 
r                 = [.2 .4 .1];         %(m) 
a                 = [0 pi pi/2];        %(rad) 
RCS               = [0 0 0];            %(dB) 
rAnt              = 50;                 %(m) radius to antenna 
aAnt              = 1;                  %(rad) angle to antenna 
phi               = linspace(0,2*pi-2*pi/72,72);%(rad) azimuth 

angle of the antenna/turntable 
addNoise          = 1; 
dSNR              = 10;                %(dB) 
RMSnoisePhase     = 0 * pi/180;        %(deg2rad) 
fStart            = 4e9;                %(Hz) 
fStop             = 20e9;               %(Hz) 
nFreq             = 256; 
% Read the optional parameters 
scatFunction = mfilename('fullpath'); 
fprintf(1,'Scattering Model: %s\n',scatFunction); 
if (rem(length(varargin),2)==1) 
error('Optional parameters should always go by pairs'); 
else 
for i=1:2:(length(varargin)-1) 
if ~ischar (varargin{i}), 
error (['Unknown type of optional parameter name (parameter' ... 
' names must be strings).']); 
end 
% change the value of parameter 
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switch lower (varargin{i}) 
case 'nscatterers' 
nScatterers = varargin{i+1}; 
case 'r' 
r = varargin{i+1}; 
case 'a' 
a = varargin{i+1}; 
case 'rcs' 
RCSini = varargin{i+1}; 
case 'rant' 
rAnt = varargin{i+1}; 
case 'aant' 
aAnt = varargin{i+1}; 
case 'theta' 
theta = varargin{i+1}; 
case 'phi' 
phi = varargin{i+1}; 
case 'addnoise' 
addNoise = varargin{i+1}; 
case 'dsnr' 
RMSnoiseAmpdB = varargin{i+1}; 
case 'rmsnoisephase' 
dSNR = varargin{i+1}; 
case 'fstart' 
fStart = varargin{i+1}; 
case 'fstop' 
fStop = varargin{i+1}; 
case 'nfreq' 
nFreq = varargin{i+1}; 
case 'outputdir' 
OutputDir = varargin{i+1}; 
case 'k' 
k = varargin{i+1}; 
case 'lambda' 
lambda = varargin{i+1}; 
otherwise 
% Hmmm, something wrong with the parameter string 
error(['Unrecognized parameter: ''' varargin{i} '''']); 
end; 
end; 
end 

  

  
fid = fopen(fullfile(OutputDir,'Setup.txt'),'w+'); 

  
strFormat = ['r:\t\t' repmat('%0.4f ',1,numel(r)-1) '%0.4f 

(m)\n']; 
fprintf(fid, strFormat,r) ; 
strFormat = ['a:\t\t' repmat('%0.4f ',1,numel(a)-1) '%0.4f 

(rad)\n']; 
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fprintf(fid, strFormat,a) ; 
strFormat = ['RCS:\t\t' repmat('%0.4f ',1,numel(RCSini)-1) 

'%0.4f (dB)\n']; 
fprintf(fid, strFormat,20*log10(RCSini)) ; 
strFormat = ['scatterphaseangles:\t\t' repmat('%0.4f 

',1,numel(RCSini)-1) '%0.4f (deg)\n']; 
fprintf(fid, strFormat,180*pi*angle(RCSini)) ; 
strFormat = ['rAnt:\t\t' repmat('%0.4f ',1,numel(rAnt)-1) '%0.4f 

(m)\n']; 
fprintf(fid, strFormat,rAnt) ; 
strFormat = ['aAnt:\t\t' repmat('%0.4f ',1,numel(aAnt)-1) '%0.4f 

(rad)\n']; 
fprintf(fid, strFormat,aAnt) ; 
strFormat = ['theta:\t' repmat('%0.4f ',1,numel(theta)-1) '%0.4f 

(rad)\n']; 
fprintf(fid, strFormat,theta) ; 
strFormat = ['phi:\t\t' repmat('%0.4f ',1,numel(phi)-1) '%0.4f 

(rad)\n']; 
fprintf(fid, strFormat,phi) ; 
strFormat = ['addNoise:\t' repmat('%0.4f ',1,numel(addNoise)-1) 

'%0.4f (ul)\n']; 
fprintf(fid, strFormat,addNoise) ; 
strFormat = ['dSNR:\t\t' repmat('%0.4f ',1,numel(dSNR)-1) '%0.4f 

(dB)\n']; 
fprintf(fid, strFormat,RMSnoiseAmpdB) ; 
strFormat = ['fStart:\t' repmat('%0.4f ',1,numel(fStart)-1) 

'%0.4f (GHz)\n']; 
fprintf(fid, strFormat,fStart/1E9) ; 
strFormat = ['fStop:\t' repmat('%0.4f ',1,numel(fStop)-1) '%0.4f 

(GHz)\n']; 
fprintf(fid, strFormat,fStop/1E9) ; 
strFormat = ['nFreq:\t' repmat('%0.4f ',1,numel(nFreq)-1) '%0.4f 

(ul)\n']; 
fprintf(fid, strFormat,nFreq) ; 
fprintf(fid, 'OutputDir: %s\n',OutputDir) ; 
fclose(fid); 
%% Measurment Specifics 
nPhi = size(phi,2); 
%% Table/Scatterer Geometry 
fVoltage = 1; %0 for power 1 for voltage 
if fVoltage 
cal = transpose(exp(-1j*k*rAnt/cos(theta)) .* ... 
1./(4*pi*rAnt/cos(theta))); 
else 
cal = transpose(exp(-1j*k*rAnt/cos(theta)) .* ... 
1.^2./(4*pi*(rAnt/cos(theta)).^2)); 
end 
randPhase = exp(1j*rand(1,nScatterers) * 2* pi); 
for iX = 1:nPhi 
d= sqrt(rAnt^2 + r.^2 - 2 .* rAnt .* r .* cos(a - phi(iX)))... 
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./sin(theta); 
RCS = RCSini; 
if addNoise 
if fVoltage 
noiseamp = mean(abs(cal)) * 10^(RMSnoiseAmpdB/20)/sqrt(2) ; % 

(the sqrt(2) accounts for real+imaginary powers) 
else 
noiseamp = mean(abs(cal)) * 10^(RMSnoiseAmpdB/10)/sqrt(2) ;  
end 
N = noiseamp*(randn(nFreq,1)+1j*randn (nFreq,1)); 
if fVoltage  
targetRaw(:,iX) =  

sum(bsxfun(@times,randPhase,bsxfun(@times,RCSini,... 
bsxfun(@times,exp(-1j*transpose(k)*(d)),... 
1./(4*pi*abs(d))))),2)... 
+ N; 
else 
targetRaw(:,iX) =  sum(bsxfun(@times,RCSini,... 
exp(-1j*transpose(k)*d) .* (transpose(lambda).^2 * 

(1./(4*pi*d.^2)))),2)... 
+ N; 
end 
realizedSNR(iX) = 20*log10(max(abs(sum(bsxfun(@times,RCSini,... 
bsxfun(@times,exp(-1j*transpose(k)*(d)),... 
1./(4*pi*abs(d)))),2)))... 
./mean(abs(N))/nScatterers); 
else 
if fVoltage 
targetRaw(:,iX) =  sum(bsxfun(@times,RCSini,... 
exp(-1j*transpose(k)*d) .* ((transpose(lambda) * 

(1./(4*pi*d))))),2); 
else 
targetRaw(:,iX) =  sum(bsxfun(@times,RCSini,... 
exp(-1j*transpose(k)*d) .* ((transpose(lambda.^2) * 

(1./(4*pi*d.^2))))),2); 
end 
end 
target(:,iX) = (targetRaw(:,iX)) ./ (cal); 
end 
fprintf(1,'Realized SNR: 

%0.2f\n',20*log10(mean(10.^(realizedSNR/20)))); 

  
target = (transpose(target)); 
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Appendix B 

MATLAB for ISM / MUSIC Comparison 

% MUSIC Versus IsolatedScattererPeakPicking 
clear all; close all; clc 

 
%% RNG control 
s = RandStream('mt19937ar','Seed',1); 
RandStream.setGlobalStream(s); 
%% target 
%target parameters 
nScats = 3; 
separSet =[0.025 .050 0.075]/2; 
for iSep =1:numel(separSet) 
separ = separSet(iSep); 
maxDist = separ * (nScats-1)/2; 
xscat=linspace(-maxDist,maxDist,nScats); 
yscat=zeros(1,nScats);%maxDist*(rand(1,nScats)-1);% 
ascat=ones(1,nScats); 
zscat=zeros(1,nScats); 
snrS = [0 -10 -20]; 
%% Plot Options 
visbility = 'on'; 
load('colorsDistinct'); 
set(0,'DefaultAxesColorOrder',colors) 
zoomLims = [-maxDist*2 maxDist*2;-maxDist*2 maxDist*2]; 
markerColor = [0 0 0]; 
markerSize = 25; 
markerLineWidth = 1.75; 
%% Output Base Directory 
%enter the base directory for the output 
outputDirBase = ‘’; 
iHyper = 0; 
%% loops 
for nAngSA = 1 
nSASet = nScats:nScats+2; 
for nFreqSA = nSASet; 
nTotalSA = nAngSA*nFreqSA; 
for iAlgo = 2 
for iSNR = 1:numel(snrS) 
SNR = snrS(iSNR); 
for inIC = nTotalSA;%nScats:nTotalSA 
RandStream.setGlobalStream(s); 
%% Data collection parameters 
minfre=4e9; 
maxfre=8e9; 
minphi=-80 * pi/180; 
maxphi=80 * pi/180; 
nPhi=32; 
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nFreq = 801; 
theta = 45 * pi/180; 

  
phi = linspace(minphi,maxphi,nPhi); 
freq = linspace(minfre,maxfre,nFreq); 
nphi = length(phi); 
nfreq = length(freq); 
SOL=3e8; 
Beta=(2*pi*freq/SOL)*sin(theta); 
lambda=SOL./(2*pi*freq); 
[F, PHI] = meshgrid(freq,phi); 
f_span = (maxfre-minfre); 
fstep = f_span / (nFreq); 
Res.SR = SOL / (2*f_span); 
Res.projected = Res.SR/cos(theta); 

  

  
%% Configure output 
outputDir = 

fullfile(outputDirBase,sprintf('Sep%0.2fcm\\%0.0fScatterers\\%0.

0fSNR\\%0.0fICs\\%0.0fAngSA_%0.0fFreqSA',... 
separ*1E2,nScats,SNR,inIC,nAngSA,nFreqSA)); 
%power point 
resFile = fullfile(outputDir,'1_Results.pptx'); 
if exist(resFile,'file') 
iHyper = iHyper + 1; 
prevFile = resFile; 
fprintf('File has been saved: <a 

href="matlab:winopen(''%s'')">%s</a>\n',prevFile,prevFile); 
skip = true; 

  
else 
skip = false; 
mkdir(outputDir) 
isOpen  = exportToPPTX(); 
if ~isempty(isOpen), 
% If PowerPoint already started, then close first and then open 

a new one 
exportToPPTX('close'); 
end 
% http://www.mathworks.com/matlabcentral/fileexchange/40277-

exporttopptx 
exportToPPTX('new','Dimensions',[12 6], ... 
'Title','MUSIC Compare Results', ... 
'Author','JHall', ... 
'Subject','AlgorithmResults', ... 
'Comments','This file has been automatically generated by 

exportToPPTX'); 
end 
if ~skip 
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notesText = sprintf('%0.0f Scatterers\n%0.0f FreqSA\n%0.0f 

AngleSA\nsnr = %0.0f\n %0.0f ICs\n%s',nScats,nFreqSA,nAngSA,SNR, 

inIC,outputDir); 
clc 
dateTimeStamp = datestr(now,30); 
fprintf(1,'Output Dir: %s\n',outputDir); 
diary(fullfile(outputDir,'Dairy.txt')) 
fprintf(1,'DTS: %s\n',dateTimeStamp); 
fprintf(1,'filename: %s\n', mfilename); 
fprintf('Per Sample SNR = %0.2f\n',SNR); 
%% Model Data Collection 
[target, kxspace, kyspace] = ... 
simulateISAR(-xscat, -yscat, zscat, ascat, phi(:),freq(:), 

SOL,theta,nfreq,nphi,nScats,SNR); 
%                         figure;imagesc(angle(target)); 
%% Resolutions and axes                  
rStepY = SOL./(2*f_span).*cos(theta); 
rStepX = 0.5*rStepY; 
Nsamps = 2^10; 
Res.projectedInterp = Res.projected * nFreq/Nsamps; 
xR = -((0:(Nsamps-1)) * rStepX - (Nsamps)/2 * rStepX); 
yR = -((0:(Nsamps-1)) * rStepY - (Nsamps)/2 * rStepY); 
rStept = SOL.*cosd(theta)./(f_span); 
tRange = (nFreq) * rStept; 
xRt = linspace(0,-tRange,nFreq); 
xRt = xRt - mean(xRt); 
[Range, Angle] = meshgrid(phi*180/pi,xRt); 
%% ISAR Image 
tInterp=tic; 
x = (kxspace); 
y = (kyspace); 
v = target; 
%rectangular grid 
Xmin = min(x(:)); 
Xmax = max(x(:)); 
Ymin = min(y(:)); 
Ymax = max(y(:)); 
xi = linspace(Xmin, Xmax, Nsamps); 
yi = linspace(Ymin, Ymax, Nsamps); 
[XF, YF] = meshgrid(xi,yi); 
interpType = 'linear'; 
extrapType = 'none'; 
FF = 

scatteredInterpolant((x(:)),(y(:)),v(:),interpType,extrapType); 
ZIF = FF((XF),(YF));% 
ZIF(isnan(ZIF)) = 0; 
ZIF(isinf(ZIF)) = 0; 
Inner = sqrt(XF.^2 + YF.^2) < min(Beta); 
Outer = sqrt(XF.^2 + YF.^2) > max(Beta); 
ZIF(Inner) = 0; 
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ZIF(Outer) = 0; 
fprintf(1,'Interpolation Time = %0.2f\n',toc(tInterp)); 
target_xformF = ifftshift(ifft2((ZIF))); 
dataO = 20*log10(abs(target_xformF)); 
maxValO = max(dataO(:)); 
power.ZIF= sum(abs(ZIF(:)).^2); 

  
%annalyze original position error 
magScatOrigdB = zeros(1,nScats); 
angScatOrigRad = zeros(1,nScats); 
scatter2BGOrigdB = zeros(1,nScats); 
scatter2ClutterOrigdB = zeros(1,nScats); 
cluserDimOver2 = 0; 
extractedAOI = 

zeros(nScats,2*cluserDimOver2+1,2*cluserDimOver2+1); 
%generate expanded region to find where scatterers occur in 

original ISAR image 
cluserDimOver2Expand = 5; 
extractedAOIExpand = 

zeros(nScats,2*cluserDimOver2Expand+1,2*cluserDimOver2Expand+1); 
% findindices within zoomlims 
logicalXlim = and(xR >= zoomLims(1),xR <= zoomLims(3)); 
logicalYlim = and(yR >= zoomLims(2),yR <= zoomLims(4)); 

  
valMaxOriginaldB = max((dataO(:))); 
[rowLocMaxOriginal, columnLocMaxOriginal] = find((dataO) == 

valMaxOriginaldB); 
max2BGOrigdB = 

20*log10(abs(target_xformF(rowLocMaxOriginal,columnLocMaxOrigina

l))... 
./ (sum(sum(abs(target_xformF(logicalXlim,logicalYlim)))) - 

abs(target_xformF(rowLocMaxOriginal,columnLocMaxOriginal)))); 

  
formString = repmat(' %0.4f',1,nScats-1); 
formStringInteger = repmat(' %0.0f',1,nScats-1); 
formString = strcat(formString,' %0.4f\n'); 
formStringInteger = strcat(formStringInteger,' %0.4f\n'); 
fprintf(1,sprintf('\nOriginal Scatter X location: 

%s',formString),xscat); 
fprintf(1,sprintf('Original Scatter Y location: 

%s',formString),yscat); 
for iScat = 1:nScats 

  
% find closest points 
[minDistX(iScat), xScat(iScat)]  = min(abs(xR - xscat(iScat))); 
[minDistY(iScat), yScat(iScat)]  = min(abs(yR - yscat(iScat))); 
minDist(iScat) = hypot(minDistX(iScat),minDistY(iScat)); 
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extractedAOIYExpand(iScat,:) = yScat(iScat)-

cluserDimOver2Expand:yScat(iScat)+cluserDimOver2Expand; 
extractedAOIXExpand(iScat,:) = xScat(iScat)-

cluserDimOver2Expand:xScat(iScat)+cluserDimOver2Expand; 
extractedAOIExpand(iScat,:,:) = 

target_xformF(extractedAOIYExpand(iScat,:),... 
extractedAOIXExpand(iScat,:)); 

  
[magScatOrigdB(iScat), locScatOrig(iScat)] = 

max(20*log10(abs(extractedAOIExpand(iScat,:)))); 
[locScatOrigY(iScat) locScatOrigX(iScat)] = 

find(squeeze(20*log10(abs(extractedAOIExpand(iScat,:,:)))) == 

magScatOrigdB(iScat)); 
scatter2BGOrigdB(iScat) = 

20*log10(max(abs(extractedAOIExpand(iScat,:)))... 
./ (sum(sum(abs(target_xformF(logicalXlim,logicalYlim)))) - 

max(abs(extractedAOIExpand(iScat,:))))); 
angScatOrigRad(iScat) = 

mean(angle(extractedAOIExpand(iScat,locScatOrig(iScat)))); 

  

  
locScatOrigXM(iScat) = 

xR(extractedAOIXExpand(iScat,locScatOrigX(iScat))); 
locScatOrigYM(iScat) = 

yR(extractedAOIYExpand(iScat,locScatOrigY(iScat))); 

  
end                     
max2ScatRatioOriginal = valMaxOriginaldB - magScatOrigdB; 
%% make ISAR Image 
h = figure('Name','ISAR 

Image','NumberTitle','off','visible','on'); 
whitebg(h,'k') 
imagesc(xR,yR,dataO);shading interp 
title(sprintf('ISAR Image ::: SNR = %0.0f\nScatterer Separation 

= %0.2f cm',SNR,separ*100)) 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
plotdBlim = 50; 
caxis([maxValO-plotdBlim maxValO]); 
colorbar('location','SouthOutside')  
hold on 
for iMark = 1:nScats 
scatter(xscat(iMark),yscat(iMark),'SizeData',markerSize,... 
'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 

  
end 
hold off    
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set(h,'visible','on') 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
saveas(h,fullfile(outputDir,'ImageOrigISAR.fig')); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',h,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(h) 
%% MUSIC          
% decimate the data to 27 x 32 
targetD=target(1:29:nfreq,:); 
kyspaceD = kyspace(1:29:nfreq,:); 
kxspaceD = kxspace(1:29:nfreq,:); 
[~,REslab]=corrmtx(targetD(:),length(targetD(:))-1,'modified'); 
Res.Music = maxDist/4; 
xvec=([zoomLims(1,1):Res.Music:zoomLims(1,2)]); 
yvec=([zoomLims(2,1):Res.Music:zoomLims(2,2)]); 
tmusic = tic; 
[M10]=MUSIC2D_JH(REslab, nTotalSA, yvec, xvec, kyspaceD(:), 

kxspaceD(:)); 
fprintf(1,'MUSIC Time = %0.2f\n',toc(tmusic)); 
dataM = 20*log10(abs(M10)); 
maxValM = max(dataM(:)); 
%% make MUSIC image 
h = figure('Name','MUSIC 

Image','NumberTitle','off','visible','on'); 
whitebg(h,'k') 
imagesc(xvec,yvec,dataM);shading interp 
title(sprintf('MUSIC Image ::: Signal Subspace Dim = %0.0f ::: 

SNR = %0.0f\nScatterer Separation = %0.2f 

cm',nTotalSA,SNR,separ*100)) 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
colorbar('location','SouthOutside') 
hold on 
for iMark = 1:nScats 
scatter(xscat(iMark),yscat(iMark),'SizeData',markerSize,... 
'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 
end 
hold off 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
saveas(h,fullfile(outputDir,'ImageMUSIC.fig')); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',h,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(h) 
%% Record peaks of MUSIC image 



127 

% find closest points 
for iScat = 1:nScats 
[minDistX_MUSIC(iScat), xScat_MUSIC(iScat)]  = min(abs(xvec - 

xscat(iScat))); 
[minDistY_MUSIC(iScat), yScat_MUSIC(iScat)]  = min(abs(yvec - 

yscat(iScat))); 
minDist_MUSIC(iScat) = 

hypot(minDistX_MUSIC(iScat),minDistY_MUSIC(iScat)); 
end 
tempO = dataM; 
yPixSizeMUSIC = Res.Music; 
xPixSizeMUSIC = Res.Music; 
rowLocMax_MUSIC = zeros(nTotalSA,1); 
columnLocMax_MUSIC = zeros(nTotalSA,1); 
distMeasPixX_MUSIC = zeros(nTotalSA,nScats); 
distMeasPixY_MUSIC = zeros(nTotalSA,nScats); 
distMeasPixXY = zeros(nTotalSA,nScats); 
distMeasPixXY_MUSIC = zeros(nTotalSA,nScats); 
mindistMeter_MUSIC = zeros(nTotalSA,1); 
closestScatIndex_MUSIC = zeros(nTotalSA,1); 
distMeasMeterXY_MUSIC = zeros(nTotalSA,nScats); 
for iIc = 1:nTotalSA 
[tempMag tempIx] = nanmax(tempO(:)); 
[rowLocMax_MUSIC(iIc),columnLocMax_MUSIC(iIc)] = find(tempO == 

tempMag); 
tempO(tempIx) = nan; 
distMeasPixX_MUSIC(iIc,:) = 

bsxfun(@minus,columnLocMax_MUSIC(iIc),xScat_MUSIC); 
distMeasPixY_MUSIC(iIc,:) = 

bsxfun(@minus,rowLocMax_MUSIC(iIc),yScat_MUSIC); 
distMeasPixXY_MUSIC(iIc,:) = 

hypot(distMeasPixX_MUSIC(iIc,:),distMeasPixY_MUSIC(iIc,:)); 
distMeasMeterXY_MUSIC(iIc,:) = 

hypot(distMeasPixX_MUSIC(iIc,:)*xPixSizeMUSIC,... 
distMeasPixY_MUSIC(iIc,:)*yPixSizeMUSIC); 
[mindistMeter_MUSIC(iIc), closestScatIndex_MUSIC(iIc)] = 

min(distMeasMeterXY_MUSIC(iIc,:)); 
end 
%% Image overlay of MUSIC peaks 
hMmO = figure('Name','ISAR Image of max of ICs 

Overlay','NumberTitle','off','visible',visbility); 
whitebg(hMmO,'k') 
imagesc(xvec,yvec,dataM);shading interp 
hold on 
scatter(xvec(columnLocMax_MUSIC), 

yvec(rowLocMax_MUSIC),ones(size(rowLocMax_MUSIC)),'SizeData',mar

kerSize,... 
'Marker','x','LineWidth',markerLineWidth,'MarkerEdgeColor',[0 0 

0],'MarkerFaceColor',[0 0 0]); 
hold off 
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xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
plotdBlimMUSIC = 20; 
colorbar('location','SouthOutside')                          
hold on 
for iMark = 1:nScats 
scatter(xscat(iMark),yscat(iMark),'SizeData',markerSize,... 
'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 
end 
hold off  
title(sprintf('Image of %0.0f MUSIC peaks overlaid on original 

MUSIC Image\nSNR = %0.1f ::: Scatterer Separation = %0.2f 

cm',... 
inIC,SNR,separ*100), 'interpreter','none')  
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
set(hMmO,'InvertHardcopy','off') 
saveas(hMmO,fullfile(outputDir,sprintf('ImageMaxs%0.0fMUSICOverl

ay.fig',inIC))); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',hMmO,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(hMmO) 
%% Make Subapertures 
nAnglesPerSA = floor(size(target,2)/nAngSA); 
nFreqPerSA = floor(size(target,1)/nFreqSA); 
fprintf(1,'\nNumber of Sensors per SA: %0.1f\n',nAnglesPerSA); 
fprintf(1,'Number of Angle SAs: %0.1f\n',nAngSA); 
fprintf(1,'Number of Freq  per SAs: %0.1f\n',nFreqPerSA); 
fprintf(1,'Number of Freq SAs: %0.1f\n',nFreqSA); 
iMaxFreq =  nFreqSA* nFreqPerSA; 
fprintf(1,'BW of Freq SAs: %0.0f MHz\n',fstep * nFreqPerSA / 

1E6);  
fprintf(1,'Total Number of SAs: %0.1f\n',nTotalSA); 
iMaxAng =  nAngSA* nAnglesPerSA; 
clear targetSubSet targetSubSetTemp 
SACount = 0; 
for iterAng = 1:nAngSA 
for iF = 1:nFreqSA 
fIX = 1:nFreqSA; 
iterFreq = fIX(iF); 
SACount = SACount + 1; 
iAng = nAnglesPerSA*(iterAng - 1)+1:nAnglesPerSA*iterAng; 
iFreq = nFreqPerSA*(iterFreq - 1)+1:nFreqPerSA*iterFreq; 
avgAngle(SACount) = mean(phi(iAng)); 
avgBeta(SACount) = mean(Beta(iFreq)); 
targetSubSetTemp = (target(iFreq,iAng)); 
targetSubSet(SACount,:) = targetSubSetTemp(:); 
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end 
end 
%% RobustICA 
tol = 1e-2;     % termination threshold parameter 
max_it = 1e5;   % maximum number of iterations per independent 

component 
kurtSign = zeros(1, nTotalSA); 
kurtSign(1:nTotalSA) = 1; 
performPCA = 0; 
algoChoice = 'robustICA'; 
method = 'o';%{'o','r'} 
entryCount = 1; 
% robustICA -> X : observed signals (one row per signal, one 

column per sample) 
% http://www.i3s.unice.fr/~zarzoso/robustica.html 
[algo, shat, A, iter, W] = robustica(targetSubSet, kurtSign, 

tol,... 
max_it, performPCA, method, 0, [], 0,entryCount); 
for nIC=inIC%nIC = nTotalSA%nAnglesPerSA-1; % This allows 

examination over various nIC 
%% Remap data to k space 
fprintf(1,'Number of "ICs": %0.1f\n',nIC); 
reCompose = zeros(nIC, iMaxAng, iMaxFreq); 
Yprime = zeros(nTotalSA,nFreqPerSA * nAnglesPerSA); 
for iIC = 1:inIC     
temp = zeros(size(shat)); 
temp(iIC,:) = shat(iIC,:); 
Yprime = temp; 
nAngsOut = nAnglesPerSA * nAngSA; 
nFreqsOut = nFreqPerSA * nFreqSA; 
SACount=0; 
% look for highest weight subaperture 
[val loc] = max(abs(W),[],1); 
for iterAng = 1:nAngSA 
    for  iF = 1:nFreqSA 
        iterFreq = fIX(iF); 
        SACount = SACount + 1; 
        % Continuous sampling 
        iAng = nAnglesPerSA*(iterAng - 

1)+1:nAnglesPerSA*iterAng; 
       iFreq = nFreqPerSA*(loc(iIC) - 1)+1:nFreqPerSA*loc(iIC); 
        reCompose(iIC,iAng,iFreq) =  ... 
            

transpose(reshape(Yprime(iIC,:),nFreqPerSA,nAnglesPerSA)); 
    end 
end 

  
kurt.Output(iIC) = 

kurtosis(real(reCompose(iIC,reCompose(iIC,:)~=0))); 
power.Output(iIC) = 20*log10(sum(abs(reCompose(iIC,:)))); 
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end 
reComposeWeighted = permute(reCompose,[1 3 2]);                     
%% output some stats 
sumICsFreqDomain = squeeze(sum(real(reComposeWeighted),1)); 
kurt.SumICs = kurtosis(sumICsFreqDomain(:)); 
power.SumICs = 20*log10(sum(abs(reComposeWeighted(:)))) - 

10*log10(size(reComposeWeighted,1)); 
                            stringFormat = strcat('Kurtosis of 

output data:  ', repmat('%0.4f ',1,nTotalSA), ' \n'); 
fprintf(1,stringFormat,kurt.Output); 
fprintf(1,'Kurtosis of sum of the output data: %0.4f 

(dB)\n',kurt.SumICs); 
                            stringFormat = strcat('Power of 

output data:  ', repmat('%0.4f ',1,nTotalSA), ' (dB)\n'); 
fprintf(1,stringFormat,power.Output); 
fprintf(1,'Power of sum of the output data: %0.4f 

(dB)\n',power.SumICs); 

  
%% Plot ICs 
upsampleRatio = 1; 
upsampleRatioFFT = 1; 
cluserDimOver2 = 0; 

  
xRuS = -((0:(Nsamps*upsampleRatio-1)) * rStepX - 

(Nsamps*upsampleRatio)/2 * rStepX); 
yRuS = -((0:(Nsamps*upsampleRatio-1)) * rStepY - 

(Nsamps*upsampleRatio)/2 * rStepY); 
target_xformFIC = 

zeros(nIC,Nsamps*upsampleRatioFFT*upsampleRatio,Nsamps*upsampleR

atioFFT*upsampleRatio); 
scatter2BGICsdB = zeros(nIC,nScats); 
Scat2Back = zeros(nIC,nScats); 
magScatICsdB = zeros(nIC,nScats); 
angScatICsRad = zeros(nIC,nScats); 
Scat2BackNorm = zeros(nIC,nScats); 
scatter2ClutterICsdB = zeros(nIC,nScats); 
scatter2ClutterICsdBNorm = zeros(nIC,nScats); 
extractedAOIICs = 

zeros(nIC,nScats,2*cluserDimOver2+1,2*cluserDimOver2+1); 

  
clear ikurtSort 
[valkurtSort, ikurtSort] = sort(kurt.Output,'descend'); 
max2ScatRatioICs = zeros(nIC,nScats); 
max2BGICsdB = zeros(nIC,1); 
rowLocMaxIC = zeros(nIC,1); 
columnLocMaxIC = zeros(nIC,1); 
valMaxICdB = zeros(nIC,1); 
diffScat = zeros(nScats,nIC,nAngsOut,nFreqsOut); 
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distMeasPixX = zeros(nIC,nScats); 
distMeasPixY = zeros(nIC,nScats); 
distMeasPixXY = zeros(nIC,nScats); 
distMeasMeterXY = zeros(nIC,nScats); 
mindistMeter = zeros(nIC,1); 
closestScatIndex = zeros(nIC,1); 
%% 
for iIC = 1:nIC 
iSelect = iIC; 
%% 2D interpolation of ICs 
upsampleRatio = 1; 
iAng = nAnglesPerSA*(iterAng - 1)+1:nAnglesPerSA*iterAng; 
x = 

(kxspace(1:size(reComposeWeighted,2),1:size(reComposeWeighted,3)

)); 
y = 

(kyspace(1:size(reComposeWeighted,2),1:size(reComposeWeighted,3)

)); 
v = squeeze(reComposeWeighted(iSelect,:,:)); 
%rectangular grid 
xiuS = linspace(min(xi),max(xi),upsampleRatio*numel(xi)); 
yiuS = linspace(min(yi),max(yi),upsampleRatio*numel(yi)); 
[XF, YF] = meshgrid(xiuS,yiuS); 
interpType = 'linear'; 
extrapType = 'none'; 
FF = scatteredInterpolant(x(:),y(:),v(:),interpType,extrapType); 
ZIF = FF(XF,YF); 
ZIF(isnan(ZIF)) = 0; 
ZIF(isinf(ZIF)) = 0; 
Inner = sqrt(XF.^2 + YF.^2) < min(Beta); 
Outer = sqrt(XF.^2 + YF.^2) > max(Beta); 
ZIF(Inner) = 0; 
ZIF(Outer) = 0; 
%% upsample image of ICs 
upsampleRatioFFT = 4; 
target_xformFIC = 

zeros(nIC,Nsamps*upsampleRatio*upsampleRatioFFT,Nsamps*upsampleR

atio*upsampleRatioFFT); 
Res.projectedInterpUS = Res.projectedInterp * 

1/upsampleRatioFFT;      
nfftColIC = upsampleRatio*upsampleRatioFFT*Nsamps;%*size(ZIF,2); 
nfftRowIC = upsampleRatio*upsampleRatioFFT*Nsamps;%*size(ZIF,1); 
target_xformFIC(iIC,:,:) = 

ifftshift(ifft2(ifftshift(ZIF),nfftRowIC,nfftColIC));  
data = 20*log10(abs(squeeze(target_xformFIC(iIC,:,:)))); 
maxVal = max(data(:)); 
%find peaks in the IC data 
valMaxICdB(iIC) = max(data(:)); 
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[rowLocMaxIC(iIC), columnLocMaxIC(iIC)] = find(data == 

valMaxICdB(iIC)); 
xRuS = -(0:(Nsamps*upsampleRatio*upsampleRatioFFT-1)) * 

rStepX/(upsampleRatio*upsampleRatioFFT)... 
    + Nsamps/2 * rStepX; 
yRuS = -(0:(Nsamps*upsampleRatio*upsampleRatioFFT-1)) * 

rStepY/(upsampleRatio*upsampleRatioFFT)... 
    + Nsamps/2 * rStepY; 
% check power levels 
power.reComposeWeighted(iIC) = 

sum(abs(reComposeWeighted(iSelect,:)).^2); 
power.ZIFIC(iIC)= sum(abs(ZIF(:)).^2); 
power.RecomposeScaled(iIC) = 

sum(abs(reComposeWeighted(iSelect,:)).^2)/(numel(Yprime(:)) 

/(Nsamps^2)); 
power.xformIC(iIC) = 

sum(squeeze(abs(target_xformFIC(iIC,:))).^2); 
%find peaks in the IC data 
valMaxICdB(iIC) = max(data(:)); 
[rowLocMaxIC(iIC), columnLocMaxIC(iIC)] = find(data == 

valMaxICdB(iIC));    
end 

  
end 
indexOfNonZero = reComposeWeighted(iSelect,:)~=0; 
%% examine miss distance 
%find peak pixel location 
scatter2BGOrigdB(iScat) = 

20*log10(max(abs(extractedAOIExpand(iScat,:)))... 
./ (sum(sum(abs(target_xformF(logicalXlim,logicalYlim)))) - 

max(abs(extractedAOIExpand(iScat,:))))); 
% findindices within zoomlims 
logicalXlim = and(xR >= zoomLims(1),xR <= zoomLims(3)); 
logicalYlim = and(yR >= zoomLims(2),yR <= zoomLims(4)); 
%find the magnitude of the scatterers in the ICs 
for iScat = 1:numel(xscat) 
[minDistX(iScat), xScat(iScat)]  = min(abs(xR - xscat(iScat))); 
[minDistY(iScat), yScat(iScat)]  = min(abs(yR - yscat(iScat))); 
cluserDimOver2Expand = 5; 
extractedAOIExpand = 

zeros(nScats,2*cluserDimOver2Expand+1,2*cluserDimOver2Expand+1); 
extractedAOIYExpand(iScat,:) = yScat(iScat)-

cluserDimOver2Expand:yScat(iScat)+cluserDimOver2Expand; 
extractedAOIXExpand(iScat,:) = xScat(iScat)-

cluserDimOver2Expand:xScat(iScat)+cluserDimOver2Expand; 
extractedAOIExpand(iScat,:,:) = 

target_xformF(extractedAOIYExpand(iScat,:),... 
extractedAOIXExpand(iScat,:)); 

  
extractedAOIICs(iIC,iScat,:,:) = target_xformFIC(iIC,... 
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yScat(iScat)-cluserDimOver2:yScat(iScat)+cluserDimOver2,... 
xScat(iScat)-cluserDimOver2:xScat(iScat)+cluserDimOver2); 

  
[magScatICsdB(iIC,iScat), locScatICs(iIC,iScat)] = 

max(20*log10(abs(extractedAOIICs(iIC,iScat,:)))); 
scatter2BGICsdB(iIC,iScat) = 

20*log10(max(abs(extractedAOIICs(iIC,iScat,:)))... 
.*  power.ZIF / power.ZIFIC(iIC) ... 
./ (sum(sum(abs(target_xformFIC(iIC,logicalXlim,logicalYlim)))) 

- max(abs(extractedAOIICs(iIC,iScat,:))))); 
angScatICsRad(iIC,iScat) = 

(angle(extractedAOIICs(iIC,iScat,locScatICs(iIC,iScat)))); 
end 
Scat2Back(iIC,:) = scatter2BGICsdB(iIC,:); 
Scat2BackNorm(iIC,:) = scatter2BGICsdB(iIC,:)- scatter2BGOrigdB; 

  

  
max2BGICsdB(iIC) = 

20*log10(abs(target_xformFIC(iIC,rowLocMaxIC(iIC), 

columnLocMaxIC(iIC)))... 
.*  power.ZIF / power.ZIFIC(iIC) ... 
./ (sum(sum(abs(target_xformFIC(iIC,logicalXlim,logicalYlim)))) 

- abs(target_xformFIC(iIC,rowLocMaxIC(iIC), 

columnLocMaxIC(iIC))))); 

  
max2ScatRatioICs(iIC,:) = valMaxICdB(iIC) - magScatICsdB(iIC,:); 

  
formString = repmat(' %0.4f',1,nScats-1); 
formString = strcat(formString,' %0.4f\n'); 
fprintf(1,sprintf('\nScatters to BG ratio 

IC%%0.0f:%s',formString),iIC,scatter2BGICsdB(iIC,:)); 
fprintf(1,'Max to BG ratio IC%0.0f: 

%0.4f\n',iIC,max2BGICsdB(iIC)); 
fprintf(1,'Max Value IC%0.0f: %0.4f\n',iIC,valMaxICdB(iIC)); 
fprintf(1,'Max Location IC%0.0f: Row %0.0f, Col %0.0f\n',... 
iIC,rowLocMaxIC(iIC),columnLocMaxIC(iIC)); 
fprintf(1,sprintf('Scatters Magnitude (dB) 

IC%%0.0f:%s',formString),iIC,magScatICsdB(iIC,:)); 
fprintf(1,sprintf('Scatters Phase Angle (Rad) 

IC%%0.0f:%s',formString),iIC,angScatICsRad(iIC,:)); 

  
for iIC = 1:nIC 
% gauge distance 
% between maximum pixel 
% and the known 
% locations of the 
% scatterers in the 
% scene 
distMeasPixX(iIC,:) = bsxfun(@minus,columnLocMaxIC(iIC),xScat); 
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distMeasPixY(iIC,:) = bsxfun(@minus,rowLocMaxIC(iIC),yScat); 
distMeasPixXY(iIC,:) = 

hypot(distMeasPixX(iIC,:),distMeasPixY(iIC,:)); 
distMeasMeterXY(iIC,:) = 

hypot(bsxfun(@minus,xRuS(columnLocMaxIC(iIC)),xR(xScat)),... 
bsxfun(@minus,xRuS(rowLocMaxIC(iIC)),xR(yScat))); 
[mindistMeter(iIC), closestScatIndex(iIC)] = 

min(distMeasMeterXY(iIC,:)); 
fprintf(1,sprintf('\nMinimum Miss Distance (M) 

IC%%0.0f:%s',formString),iIC,mindistMeter(iIC,:)); 
fprintf(1,sprintf('Closest Known Scatterer 

IC%%0.0f:%s',formStringInteger),iIC,closestScatIndex(iIC,:)); 
end 
fprintf(1,'\n'); 
% Plot Image of the max of all ICs 
dataMaxs = ones(Nsamps*upsampleRatioFFT,Nsamps*upsampleRatioFFT) 

* 20*log10(eps); 
for iMax = 1:numel(rowLocMaxIC) 
dataMaxs(rowLocMaxIC(iMax), columnLocMaxIC(iMax)) = 0; 
end 
hICm = figure('Name','ISAR Image of max of 

ICs','NumberTitle','off','visible',visbility); 
whitebg(hICm,'k') 
imagesc(xRuS,yRuS,dataMaxs);shading interp 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
caxis([-plotdBlim 0]);colorbar('location','SouthOutside') 
hold on 
for iMark = 1:nScats 
scatter(xscat(iMark),yscat(iMark),'SizeData',markerSize,... 
'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 

  
end 
hold off 
title(sprintf('Image of Maxs of %0.0f ICs ::: SNR = 

%0.1f\nScatterer Separation = %0.2f cm',nIC,SNR,separ*100), 

'interpreter','none') 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
set(hICm,'InvertHardcopy','off') 
saveas(hICm,fullfile(outputDir,sprintf('ImageMaxsICs%0.0f.fig',n

IC))); 
slideNum = exportToPPTX('addslide'); %#ok<NASGU> 
exportToPPTX('addpicture',hICm,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(hICm) 
% Overlay Image of the max of 
% all ICs on original ISAR 
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hICmO = figure('Name','ISAR Image of max of ICs 

Overlay','NumberTitle','off','visible',visbility); 
whitebg(hICmO,'k') 
imagesc(xR,yR,dataO);shading interp 
hold on 
scatter(xRuS(columnLocMaxIC), 

yRuS(rowLocMaxIC),ones(size(rowLocMaxIC)),'SizeData',markerSize,

... 
'Marker','x','LineWidth',markerLineWidth,'MarkerEdgeColor',[0 0 

0],'MarkerFaceColor',[0 0 0]); 
hold off 
xlabel('Down Range Distance (m)'); 
ylabel('Cross Range Distance (m)') 
colormap('parula') 
caxis([maxValO-plotdBlim 

maxValO]);colorbar('location','SouthOutside') 
hold on 
for iMark = 1:nScats 
scatter(xscat(iMark),yscat(iMark),'SizeData',markerSize,... 
'Marker','o','LineWidth',markerLineWidth,'MarkerEdgeColor',1-

colors(iMark,:)) 
end 
hold off 
title(sprintf('Image of Maxs of %0.0f ICs Overlaid on Original 

ISAR Image ::: SNR = %0.1f\nScatterer Separation = %0.2f 

cm',nIC,SNR,separ*100), 'interpreter','none') 
set(gca,'XLim',zoomLims(1,:)) 
set(gca,'YLim',zoomLims(2,:)) 
set(hICmO,'InvertHardcopy','off') 
saveas(hICmO,fullfile(outputDir,sprintf('ImageMaxsICs%0.0fOverla

y.fig',nIC))); 
slideNum = exportToPPTX('addslide'); 
exportToPPTX('addpicture',hICmO,'Scale','maxfixed'); 
exportToPPTX('addnote',notesText); 
delete(hICmO) 

  
%% close power point 
newFile = exportToPPTX('save',fullfile(outputDir,'1_Results')); 
exportToPPTX('close') 
iHyper = iHyper +1; 
hyperLinks{iHyper} = sprintf('<a 

href="matlab:winopen(''%s'')">%s</a>\n',newFile,newFile); 
fprintf('File has been saved: <a 

href="matlab:winopen(''%s'')">%s</a>\n',newFile,newFile); 
%% Output Variables 

  
save(fullfile(outputDir,'Variables'),'angScatICsRad','angScatOri

gRad','hyperLinks',... 
'kurt','magScatICsdB','magScatOrigdB','max2BGICsdB','max2BGOrigd

B','max2ScatRatioICs',... 
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'max2ScatRatioOriginal','notesText','outputDir','Scat2Back','Sca

t2BackNorm',... 
'scatter2BGICsdB', 'scatter2BGOrigdB', 'scatter2ClutterICsdB', 

'scatter2ClutterICsdBNorm',... 
'valMaxICdB','valMaxOriginaldB','power',... 
'rowLocMaxIC', 

'columnLocMaxIC','xScat','yScat','rowLocMax_MUSIC','columnLocMax

_MUSIC',... 
'distMeasMeterXY', 'distMeasPixX', 

'distMeasPixY','locScatOrigXM','locScatOrigYM',... 
'distMeasPixXY_MUSIC', 'distMeasPixX_MUSIC', 

'distMeasPixY_MUSIC',... 
'mindistMeter','closestScatIndex','mindistMeter_MUSIC','closestS

catIndex_MUSIC',... 
'xscat','yscat','W','A','avgBeta','avgAngle') 
end 
end 
end 
end 
end 
end 
end 

 
function [Es, kxspace, kyspace] = simulateISAR(xscat, yscat, 

zscat, ascat,... 
phi, freq, SOL,theta,nfreq,nphi,nScats,SNR) 
kxspace= (2*pi.*freq./SOL) * sin(theta)*sin(phi') ; 
kyspace= (2*pi.*freq./SOL) * sin(theta)*cos(phi') ; 
if isinf(SNR) 
Es= zeros(nfreq,nphi); 
else 
noiseamp = 10^(-SNR/20)/sqrt(2) ; % (the sqrt(2) accounts for 

real+imaginary powers) 
Es = noiseamp*(randn(nfreq,nphi)+1j*randn (nfreq,nphi)); 
end 
for iphi=1:nphi 
for ifreq=1:nfreq   
k=[kxspace(ifreq,iphi) kyspace(ifreq,iphi) 0]; 
for m=1:nScats 
r=[xscat(m) yscat(m) zscat(m)]; 
Es(ifreq,iphi)=Es(ifreq,iphi)+ascat(m)*exp(-2j*k*r.'); 
end 
end 
end 

 

 
function [ M Mflip ] = MUSIC2D_JH( R, scats, xvec, yvec, 

kxspace, kyspace ) 
[~,~,v]=svd(R); 
Vn=v(:,scats+1:end); 
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[~,P]=size(Vn); 
den=zeros(length(xvec),length(yvec)); 
for x=1:length(xvec) 
for y=1:length(yvec) 
r=[xvec(x) yvec(y)]; 
ab = exp(-2j*(kxspace'*r(1)+ kyspace'*r(2))); 
b=ab(:); 
for m=1:P 
den(x,y)=den(x,y)+(abs(conj(b')*Vn(:,m)))^2; 
end 
end 
end 
M=1./den; 
Mflip =rot90(flipud(M.'),1); 
end 
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