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ABSTRACT

REGULARIZED CANONICAL CORRELATIONS

IN CLUSTERING SENSOR DATA

JIA CHEN, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Ioannis D. Schizas

In many data acquisition applications such as in sensor networks, the acquired sen-

sor measurements contain information about multiple sources placed at different spatial

locations. Such sources could correspond to different e.g., thermal sources or transmit-

ters placed at different locations inside the sensed field. Before applying any statistical

inference task, it is essential to identify which groups of sensors acquire observations that

contain information about the same sources. This is essential to avoid ‘mixing’ obser-

vations that contain information about uncorrelated sources. In this thesis, the goal is to

cluster sensors into different groups based on their source information content about the

field sources and isolate sensors acquiring only noise. Two scenarios are considered in this

thesis, in one of which the number of sources is given to the sensors and in the other sce-

nario, the number of sources is unknown.

Toward this end, for the first scenario, a novel canonical correlation analysis (CCA)

framework equipped with sparsity-inducing norm-one regularization is introduced to iden-

tify correlated sensor measurements and identify informative groups of sensors. It is estab-
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lished that the novel framework is capable to cluster sensors, based on their source content,

correctly (with probability one) even in nonlinear settings and when sources do not over-

lap. Block coordinate techniques (BCD) are employed to derive a centralized algorithm that

minimizes the sparsity-aware CCA framework. The latter framework is reformulated as a

separable optimization program which is tackled in a distributed fashion via the alternating

direction method of multipliers (ADMM). A computationally efficient online distributed

algorithm is further derived that is capable to process sensor data online. Extensive numer-

ical tests corroborate that the novel techniques outperform existing alternatives

Furthermore, in the second scenario where the number of the sources is not available,

two strategies are provided. One strategy is that the traditional canonical correlation anal-

ysis (CCA) framework is equipped with norm-one and norm-two regularization terms in

order to cluster the sensor data while determining the number of field sources. ADMM and

BCD techniques are utilized to derive centralized and distributed algorithms tackling the

proposed regularized CCA framework. The capability of correct clustering of sensors in

the novel regularized CCA algorithm is verified in heterogeneous sensing systems, consist-

ing of sensors with different sensing capabilities, offering flexibility and providing multiple

views of the sensed field by acquiring different types of measurements. The other strategy

is that principal component analysis (PCA) combined with moving-average (MA) filtering

is utilized to eliminate sensing noise variance and extract the number of principal compo-

nents in the sensor data covariance corresponding to the uncorrelated sources. Given the

estimated number of sources, two applications are considered. In the first application, a

novel communication efficient scheme for reconstructing a field sensed by spatially scat-

tered sensors is put forth, which relies on norm-one regularized CCA, PCA, as well as

normalized least mean-square adaptive filtering. In the second application, a multiset CCA

(M-CCA) framework is proposed to uncover information in multiple heterogeneous sensor
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data sets and cluster sensors according to their source content.
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CHAPTER 1

INTRODUCTION

Data analysis has become ubiquitous in the sense that our living environment in-

volves devices that have the ability of sensing and processing data. Fields such as machine

learning, data mining, statistics and so on, rely on the analysis of sensed data and extraction

of information from them. To analyze data sets, it is common to employ clustering, a task

which has not received much attention especially in distributed sensor networks.

1.1 Goals of the Thesis

1.1.1 Homogeneous Sensor Data Clustering

Grouping sensors based on their source information content has been considered for

linear data models and memoryless sources in see e.g., [65] and references therein. In

this dissertation a generalized framework for grouping sensors based on their information

content is put forth which is able to deal with nonlinear settings. Interestingly, sensor

measurements containing information about the same sources are statistically correlated

irrespective of the underlying data model. To exploit such spatial correlations, canonical

correlation analysis (CCA), see e.g., [6,33], is combined with sparsity-inducing regulariza-

tion techniques [70, 87] to obtain a framework that can extract correlated sensor data and

cluster them into groups. The principle of CCA that involves linear extraction of common

features from two data sets, will be applied in time-shifted data sequences to cluster sensors

with similar information content.

The sparsity-aware CCA framework is derived by extending the standard CCA cost

with norm-one regularization coefficients that fully exploit the sparsity present in the sensor

1



data (cross-)covariance matrices. Notice that, in the sensed field, only a few sensors are af-

fected by the uncorrelated sources and the remaining sensors measure the noise. Thus, only

the measurements from the informative sensors sensing the same sources exhibit statistical

correlation, which accounts for the sparsity present in the sensor data (cross-)covariance

matrices. Sparsity is an attribute present in many settings and has been extensively used

in sparse regression, solving under-determined systems of equations as well as matrix de-

compositions into sparse factors [19, 64, 70, 72, 86, 87]. The resulting cost is minimized

using coordinate descend techniques (e.g., [4]). A centralized algorithm is derived first that

is well suited for networks equipped with a fusion center. Then, the alternating direction

method of multipliers (ADMM) (see e.g., [5]) is put forth to formulate the novel sparse

CCA framework as a separable optimization problem, and then combined with coordinate

descent iterations to obtain a totally distributed algorithm that performs sensor cluster-

ing. The resulting distributed algorithm will require information exchanges only between

single-hop neighboring sensors. Online implementations are also developed that allow

real-time processing in settings where sensors are constantly acquiring data. The online

schemes offer a more computationally and communication efficient algorithmic alternative

compared to their batch counterpart, while compromising some sensor-clustering perfor-

mance. For an increasing amount of sensor data it is proved that the sparsity-aware CCA

framework is capable of perfectly clustering sensors into different groups based on their

information (source) content, even in nonlinear settings and when sources do not overlap.

1.1.2 Heterogeneous Sensor Data Clustering

The utilization of sensors with different types of sensing capabilities in heteroge-

neous sensor networks provide different ‘views’ of the sensed field by acquiring differ-

ent types of measurements. However, the sensed data oftentimes are collected in chal-

lenging environments, whose statistical structure is not known and maybe dynamically
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changing with time [60]. The acquired sensor measurements contain information about

different phenomena of interest (with unknown number) such as thermal and/or pollu-

tion sources [41, 49, 68], while other sensor data may just contain noise, e.g., a vehicle

could be sensed by both a thermal sensor due to the heat it produces, as well as a carbon

monoxide sensor due to fuel emissions. Thus, sensor measurements can be clustered into

different groups each of which will contain information about the present field sources. Be-

fore applying any data processing task such as estimation and detection [37] it is essential

to develop techniques to identify and separate these unknown groups of sensor measure-

ments that have the same information content. Such schemes will prevent mixing sensor

measurements with irrelevant information content before applying any statistical inference

task, while further they will identify regions of interest in the sensed field, such as pollution

sources [41, 49], by interpreting the acquired data.

The focus is to match different types of sensor measurement groups based on their

information source content. However, this is challenging due to the absence of sensor

localization information coming from the cost and energy considerations imposed by GPS

equipment, see e.g., [23]. To this end, we develop here an algorithmic framework that has

the ability to both identify, cluster and match different types of sensor data based on their

information content. Clustering and matching of different types of sensor measurements is

extremely useful to learn the sensed field and categorize the data based on the information

they contain.

For the heterogeneous sensor setting, we put forth a new ℓ1-norm and ℓ2-norm reg-

ularized CCA to cluster sensor measurements into different informative groups and find

the unknown number of sources. Different from the ℓ1/ℓ2 mixed norm CCA formulation

in [77] in which each canonical loading is either penalized by ℓ2-norm or ℓ1-norm, here the

proposed regularized CCA framework imposes both group sparsity and entry-wise sparsity

into each canonical loading by proper ℓ1-norm and ℓ2-norm regularization terms.
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1.1.3 Application of Homogeneous Sensor Data Clustering: Field Reconstruction

An efficient central data fusion scheme will be derived to reconstruct the sensor mea-

surements induced by multiple uncorrelated sources present in the field. Toward this end,

a promising framework is proposed that carries out the following three tasks: i) Estimating

the number of field sources; ii) Clustering the sensors based on which sources they are

observing; and iii) Utilizing only the measurements of a few cluster head sensors to recon-

struct all sensors’ measurements at the fusion center (FC). To achieve the first task, moving-

average (MA) filtering [18] is combined with principal component analysis (PCA) [6] to

eliminate sensing noise variance and extract the number of principal components (PCs)

in the sensor data covariance corresponding to the uncorrelated sources. To group sen-

sors in clusters according to their source information, we realize that sensor measurements

containing information about the same sources are statistically correlated. To exploit such

spatial correlations, a norm-one regularized canonical correlation analysis technique [15]

will be used to extract correlated sensor measurements and group them in clusters. PCA

and adaptive filtering will also be utilized to result an improved clustering approach that

groups sensors according to their information content. Normalized least mean squares is

utilized to enable the FC to reconstruct each cluster’s sensor measurements using only data

from a few cluster head sensors that communicate their observations to the FC. Different

from existing source-based clustering techniques [15, 16] the proposed framework is able

to perform accurate clustering even when sensors observe multiple sources. The main idea

is to separate the network into clusters of similar information content and use within each

cluster the data of only one sensor to reconstruct the remaining sensor measurements at the

FC. Such an approach will reduce significantly the number of scalars transmitted from the

sensors to the FC potentially extending the sensors’ lifespan.
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1.1.4 Extension of Heterogeneous Sensor Data Clustering to Multiset Sensor Data

The work of clustering sensor data with two modalities is generalized to cluster more

than two types of sensing measurements. Without giving the number of sources, PCA

(or distributed PCA) is combined with MA filtering to determine the number of sources.

Next, a M-CCA framework, that is simpler in the sense that no fourth-order polynomial

terms are produced, will be penalized with norm-one terms to implement clustering of

multiple types of sensor data according to their source information. Relying on the BCD

and ADMM technologies, the proposed sparse M-CCA (SM-CCA) scheme is developed

in both centralized and distributed ways, whose capability of correct clustering sensors is

verified through numerical tests.

1.2 Prior Work

CCA is widely used in data analysis to extract the correlated components among two

distinct data sets [6, 33]. CCA-based methods provide promising solutions to blind source

separation [7, 42], detection of diseases [21], and genomic data integration [43] to name

a few. A number of related sparse CCA methods have been proposed. The work in [74]

applies the elastic net penalty, see e.g., [88], into standard CCA and derives an iterative

regression procedure. It exploits the grouping effect from the ridge regression, and the

shrinkage effect from the Lasso, see e.g., [70]. However, it does not optimize a given cost.

In [29], the standard CCA is reformulated as a ℓ1-regularized convex framework using a

least-squares approach. This work focuses on a special scenario where one data set is in

a primal representation (the input space), and another data set is in a dual representation

(the kernel space). This approach is limited by the fact that the canonical vector for the

dual representation must have nonnegative entries. The work in [77] proposes a sparse

CCA scheme based on a forward greedy approach (sequentially picking entries of canon-
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ical vectors), in which upper bounds of the number of non-zero entries in the canonical

vectors are known. An algorithm for obtaining sparse loadings for CCA iteratively was

proposed in [52], while no optimization criterion was specified. The algorithm in [52] was

extended to multiple canonical variables in [22], which performs robust estimation of the

data covariance matrices. In [79], a penalized matrix decomposition with applications in

sparse CCA was developed and the tuning parameters were chosen using cross-validation.

The penalized CCA in [79] is extended to supervised sparse CCA in [81], which makes use

of the measurement outcomes (e.g., the survival time of a patient in genomic research) to

determine whether the canonical loadings obtained here are significant. The work in [20]

extends the penalty in [79] to more general forms, including ℓ1/ℓ2 mixed-norm penalty, or

weighted fusion penalty, see e.g., [36], combined with ℓ1-norm regularization. However,

application of this method requires prior knowledge of the sparsity structure in the canon-

ical loadings. Centralized CCA approaches that work with biomedical data of different

modalities can be found in [21, 67].

The aforementioned sparse CCA methods are generally challenged by the facts that

either i) only consider one pair of canonical variables; or ii) they have prior information

on the sparsity structure of the canonical loadings (vectors); or iii) require applicability of

computationally intensive cross-validation to select the sparsity-controlling coefficients; or

iv) do not use specified optimization criterion; or v) do not consider heterogeneous data

sets from different sensing modalities.

Various approaches have been put forth to solve the problem of clustering data into

different groups which share similar properties. One of the most common algorithms for

data clustering is K-means [38]. K-means finds the optimal centroid points representing

the clusters, and the idea is to allocate every data vector to the cluster which has the most

similar centroid with respect to a predefined distance metric. The limitation in K-means

exists in the fact that the number of clusters should be given. To tackle the latter issue an
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intelligent K-means (iK-means) was proposed in [13], which extracts anomalous patterns

from the data one-by-one to estimate the number of clusters. The existing state-of-the

art clustering algorithms [3, 32, 35, 82] often implicitly assume knowledge of the cluster

shapes or the multiple cluster configurations which are based on the available similarity

measures. Thus, the challenge of applying these clustering approaches in our setting lies

in the fact that the similarity between data entries containing information about the same

source is unknown due to the different modalities of data sets and the unavailability of the

underlying data models.

Typically, sensors are limited in terms of communication and computational capabil-

ities. A straightforward approach to collect the information across all sensors to the FC is

to allow each sensor forward its acquired measurements, possibly via multi-hop communi-

cations, to the FC. Such a process can place a heavy operational burden in all sensors due

to the high communication cost. To tackle such a challenge, data aggregation techniques

have become crucial to prolong the overall lifespan of a sensor network. There are four dif-

ferent strategies for data aggregation: i) centralized approaches, ii) in-network aggregation,

iii) tree-based approaches, and iv) cluster-based aggregation [54]. The work in [2] consid-

ers a dynamic spanning-tree approach to minimize the energy consumption by taking into

consideration the data traffic load. Support vector machines are used in [55] to reduce the

redundant data and eliminate false data. An efficient cluster-based data aggregation scheme

for heterogeneous sensor networks was developed in [45], where inter- (intra-) cluster data

aggregation is performed to eliminate redundant data. The cluster-based approach in [57]

uses a context-aware approach to validate data, while intra-cluster and inter-cluster redun-

dancy is eliminated when sensors belong to the same cluster or neighboring clusters, re-

spectively, for the validated data. The work in [63] focuses on the issues of accuracy, traffic

load, redundancy elimination and delay when performing data aggregation, and proposed

a model to address the aforementioned issues.
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In the aforementioned cluster-based approaches, the geographical area is divided into

multiple grid-based clusters, while the cluster heads are elected as those sensors with the

highest energy and largest number of one-hop neighboring sensors, or as the sensors whose

positions are closer to the centroid position of the cluster. Further, there is no basic principle

in deciding the number of clusters needed. There are fundamental differences with the

work proposed here. Specifically, the sensors will be clustered in groups according to their

information content and the sources they sense (possibly multiple). Thus, the clusters here

are formed based on the sensor information content and not according to an ad hoc splitting

of the area monitored. Further, the number of clusters will be determined by the number of

the underlying information sources in the monitored field. Last but not least, the clustering

proposed here is done to facilitate a form of reduction in the number of data transmitted

and achieve accurate reconstruction at the FC.

The field reconstruction problem has been previously addressed in the literature in [8]

under the assumption that the monitored field is spatially governed by known partial differ-

ential diffusion equations. Distributed schemes to reconstruct two-dimensional diffusion

fields are considered in [9]. An interesting work can also be found in [59], where an

optimal dimensionality-reduced approximation method was developed to recover thermal

maps. Based on Bayesian estimation and Kalman filtering, the papers by [50, 62, 80, 84]

consider statistical estimation methods for non-static fields. Algorithms to estimate a single

source’s parameters are studied in [24,40,48] to fully recover the monitored field. The work

in [51] puts forth an algorithm that can successfully reconstruct sensor signals as long as

the field bandwidth is sufficiently small, the field adheres to a one-dimensional model and

the sensor locations are known to the FC. A distributed cluster-based signal reconstruction

for non-bandlimited fields is proposed in [58] by locally adapting the field model. How-

ever, the aforementioned schemes either assume the fields are driven by assumed known

spatiotemporal diffusion equations or statistical models, or only take a single-source into
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consideration. Different from the existing methods, our method is attractive since it does

not require all sensor to communicate with the FC, it does not require knowledge of the

sensors’ positions, it can address settings where the field consists of multiple spatially scat-

tered sources and the sources-to-sensors propagation channels may be multipath. There is

no need to estimate the source signals, and our focus is on reconstructing the field only in

points of interest where sensors are deployed rather than the entire field.

1.3 Advantages of the Proposed Algorithms

Compared to the aforementioned sparse CCA approaches, our proposed regularized

CCA exhibits several advantages: i) treats both the centralized and distributed cases, so it

can be implemented in networks of spatially scattered sensors as well as networks with a

fusion center; ii) the related sparsity-controlling coefficients are selected through a com-

putationally efficient heuristic way; iii) a specific minimization criterion is derived in our

regularized CCA; iv) heterogeneous data sets from two or more than two different modali-

ties are considered; and v) the proposed framework can obtain multiple pairs of canonical

variables.

1.4 Notation

Bold face capital letters, bold face small letters, and normal font letters are respec-

tively used for matrices, vectors and scalars. E(·) denotes expectation, and ∥ · ∥1, ∥ · ∥2,

and ∥ · ∥F denote norm-one, Euclidean norm, and Frobenius norm, respectively. For con-

venience, the same notation may represent different meanings in different chapters, while

it holds the same meaning in the same chapter.
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CHAPTER 2

CCA PRELIMINARIES

2.1 Standard CCA

Canonical Correlation Analysis (CCA) is a widely used method to find correlation

structures in multi-view datasets, see e.g., [6]. There are many different ways to define

CCA. Here we use one of the definitions in [6] since this version is later regularized in

our novel sparse CCA formulations. The following proposition in [6] outlines the CCA

formulation and solution.

Proposition 1. Let X be a p1 vector-valued variate with mean µx and covariance matrix

Σx and Y be a p2 vector-valued variate with mean µy and covariance matrix Σy. Denote

Σxy and Σyx as the cross-covariance matrices between X and Y. Suppose Σx and Σy are

nonsingular. The D ∈ Rq×p1 , E ∈ Rq×p2 , and µ ∈ Rq×1 with DΣxD
T = I, EΣyE

T = I,

and q ≤ min(p1, p2) that minimize

E{[EY −DX− µ]T [EY −DX− µ]} (2.1)

are given by

D = UT
1Σ

−1/2
x , E = UT

2Σ
−1/2
y , (2.2)

and

µ = Eµy −Dµx, (2.3)

where the columns of U1 are the q principal eigenvectors of Σ−1/2
x ΣxyΣ

−1
y ΣyxΣ

−1/2
x ,

while the columns of U2 are the q principal eigenvectors of Σ−1/2
y ΣyxΣ

−1
x ΣxyΣ

−1/2
y .
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The above proposition reveals that the goal of CCA is to find matrices D and E

to maximize the correlation of linear combinations DX and EY. Each row of DX or

EY is called one canonical variable, and the canonical variables are orthogonal to each

other. The coefficients for the linear combinations, saying the rows of D and E, are called

canonical vectors. The correlation between the canonical variables are called canonical

correlations.

2.2 Literature Review of Sparse CCA

Recently, sparse representation technology is becoming increasingly popular and im-

portant in wide areas, for instance, machine learning [14,17,77], signal processing [64,65],

and pattern recognition [34, 56, 76]. Sparsity inducing CCA is also attractive in theoretical

studies [77,79] and practical applications, for example, gene expression [25,74,75,77] and

in image classification [89]. As studied in [30], sparse CCA is formulated by represent-

ing two data sets in both primal and dual forms. This formulation minimizes the number of

features in both primal and dual projections and maximizes the correlation between the two

variable sets. By applying ridge penalization and elastic net penalization to the standard

CCA, an iterative regression is proposed in [75] to identify candidate genes for incorpora-

tion in the pathway completing gene-expression networks. A forward greedy approach is

introduced in [77], which deals with the variables sequentially. This algorithm reduces the

computational complexity and also copes with high dimensional data through considering

regularized covariance matrices. The latter method only considers sparse canonical vari-

ates for the first dimension, and is limited by the requirement of available number of zero

entries in the canonical vectors.
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2.3 Regularized CCA

Inspired by related centralized sparse decomposition approaches [64, 72, 87], along

with the aforementioned existing sparse CCA alternatives, we construct a flexible regu-

larization in CCA. When the known number of canonical variates (number of sources) is

known, the ℓ1 norm is used to penalize the canonical vectors, and while given the prior

knowledge of the specified number of canonical variates both ℓ1 and ℓ2 will be utilized

to regularize the canonical vectors. Different from all the existing applications of sparse

CCA, we exploit a new application field in clustering data for sensor networks. Unlike the

aforementioned sparse CCA algorithms, our regularized CCA is done in both a central-

ized manner and distributed fashion, where the processing is carried out across spatially

scattered sensors via collaboration of neighboring units.
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CHAPTER 3

HOMOGENEOUS DATA CLUSTERING

3.1 Problem Formulation

Consider a connected ad hoc network of p sensors which communicate only with

neighboring sensors that are located within their transmission range. Let Nj denotes sen-

sor j’s single-hop neighbors for j = 1, 2, ..., p. The p sensors monitor a field, which

is formed by M spatially uncorrelated zero-mean sources, denoted as the r × 1 vectors,

sm(t), while m = 1, 2, ...,M and r ≪ p. The sources are assumed stationary and not

necessarily white, thus they may exhibit temporal memory. Each sensor j acquires scalar

measurements {xj(t)} during time instances t = 0, 1, . . . Each sensor measurement con-

tains information about a subset (possibly one) of the M field sources. Thus, every sensor

may contain information about a few of the M sources since they are located at differ-

ent spatial positions. The sensor measurements adhere to the following generic nonlinear

model

xj(t) =
∑M

m=1 hm,j(sm(t)) + wj(t) (3.1)

where hm,j(·) is a random scalar nonlinear mapping from Rr to R1, which will be negligible

when sensor j is sufficiently far from source m (can be thought of as an attenuation factor)

while wj(t) denotes white sensing noise with zero-mean.

Let χ(t) := [x1(t) . . . xp(t)]
T contain the measurements acquired across all sensors.

As different sensors are affected by different sources, different entries in χ(t) contain in-

formation of different sources. Let Sm denote the subset of entries of χ(t) that contain

information about source sm(t), and let S0 denote the subset of sensors whose measure-

ments do not contain information about any of the sources, e.g., they contain just noise.
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For example consider a network consisting p = 12 sensors that observe a field with M = 2

sources, namely s1(t) and s2(t).

Assume that sensors S4, S5, S6, S7 sense source s1(t), sensors S8, S9, S10 acquire

measurements that are influenced by source s2(t), while sensors S1, S2, S3, S11, S12 just

observe noise or irrelevant data. Thus, S0 = {1, 2, 3, 11, 12}, S1 = {4, 5, 6, 7} and

S2 = {8, 9, 10}. The union of the sensor clusters {Sm}Mm=1 contains all entries of χ(t).

This chapter aims at solving the problems: P1) identifying the noninformative sensors and

informative sensors; and P2) clustering the entries ofχ(t) in groups Sm where the members

of the same group contain information about the same source (within some ambiguity on

the source identity). Toward this end, a novel distributed framework combining canonical

correlation analysis (CCA) with norm-one regularization is proposed.

Given training data {x(t),y(t)} ∈ Rpf×1 for t = {0, ..., N −1} the CCA framework

can be used to linearly extract common features from x(t) and y(t), see e.g., [6, Chpt. 10].

The training sequences that are going to be considered here are formed as

x(t) =
[
χT (t− 1),χT (t− 2), ...,χT (t− f)

]T
(3.2)

y(t) =
[
χT (t),χT (t+ 1), ...,χT (t+ f − 1)

]T
(3.3)

where the positive integer f denotes the memory length. Note that x(t) in (3.2) represents

the past of χ(t), and y(t) spans the future and present of the sensor measurements in χ(t)

with respect to time instant t. Both super-vectors x(t) and y(t) each of length p · f contain

the information of the field sources summarized in s(t) := [sT1 (t), . . . , s
T
M(t)]T . Thus, s(t)

can be viewed as the ‘common’ features present in both x(t) and y(t) and can be extracted

by finding matrices E,D ∈ Rq×p·f with q ≤ p · f that can be found via the minimization

problem, see e.g., [6, 33, Chpt. 10]:

(D̆, Ĕ) = arg min(N−1)
∑N−1

t=0 ∥Ey(t)−Dx(t)− m̂∥22 (3.4)

s.to DΣ̂xD
T = I and EΣ̂yE

T = I,
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where Σ̂x and m̂x correspond to the sample-average estimates of the covariance and mean

of x(t), respectively. These estimates can be evaluated as Σ̂x := N−1
∑N−1

t=0 (x(t) −

m̂x)(x(t) − m̂x)
T , and m̂x := N−1

∑N−1
t=0 x(t). Further, I is the identity matrix of

proper dimensions. The covariance Σ̂y of y(t) can be defined in a similar way, while

m̂ := Em̂y −Dm̂x.

The entries of the vectors Ĕy(t) and D̆x(t), can be viewed as estimates of the sources

sm(t) that are present in both x(t) and y(t). Consider the 12-sensor example mentioned

earlier, where M = 2 scalar sources (r = 1) are sensed, while f = 1 in forming x(t)

and y(t) in (3.2). Recall that only entries {4, 5, 6, 7} in χ(t) contain information about

s1(t), whereas entries {8, 9, 10} contain information about s2(t) and the remaining just

contain noise. Thus, when forming D1:x(t) and E1:y(t), the first rows D1: and E1: can

zero-out irrelevant entries in x(t) and y(t) respectively without affecting the estimation

performance. Specifically, entries {4, 5, 6, 7} in x(t) and y(t) will contain information

about s1(t). Thus, the rows E1: and D1: can be selected such that they have nonzero entries

only in positions {4, 5, 6, 7}, while the rest 8 entries can be set to zero (sparsity). Similarly,

E2: and D2: can have nonzero entries only in positions {8, 9, 10} which correspond to the

entries of the y(t) and x(t) vectors that contain information about s2(t). The remaining

entries in y(t),x(t) contain only noise and can be eliminated by setting the corresponding

entries in the two rows of E and D equal to zero. Thus, by inducing proper sparsity

patterns in the rows of E and D and recovering their corresponding supports (nonzero

entries’ indices) someone can identify which entries in χ(t) acquire information about the

same source and perform clustering. Traditional CCA as described in (3.4) is not capable

to produce zero entries in E or D. Toward this end, we put forth a ℓ1-regularized CCA

framework, which induces proper sparsity patterns in each row of E and D.
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3.2 ℓ1−Regularized Canonical Correlations

In order to isolate noninformative entries in χ(t) and identify the source-informative

groups of entries within χ(t), here norm-one regularization is incorporated in the standard

CCA formulation in (3.4). The idea of utilizing norm-one to induce sparsity is well estab-

lished in the literature, see e.g., [64, 70, 79, 87]. Pertinent sparse E and D matrices can be

obtained using the sparsity-inducing CCA (S-CCA) formulation

(D̂, Ê) = arg minD,EN
−1

∑N−1
t=0 ∥Ey(t)−Dx(t)− m̂∥22

+
∑q

ρ=1λE,ρ∥ET
ρ:||1 +

∑q
ρ=1 λD,ρ∥DT

ρ:||1

+ υ∥EΣ̂yE
T − I||2F + ε∥DΣ̂xD

T − I||2F (3.5)

where Eρ: and Dρ: correspond to the ρth row of E and D respectively. The sparsity-

controlling coefficients λE,ρ and λD,ρ assume positive values and control the number of

zero entries in Eρ: and Dρ:, respectively. Further, the positive penalty coefficients v and ε

entailed in the last two terms in (3.5) are applied to forbid D̂, Ê to be zero matrices, while

facilitating the applicability of block coordinate descent techniques that will be utilized to

derive centralized and distributed algorithms that tackle (3.5).

3.2.1 Centralized S-CCA (CS-CCA)

We first consider a centralized setting where a fusion center can gather all sensor

measurements. Note that the cost in (3.5) is nonconvex with respect to (w.r.t.) D and

E. We come around this challenge by utilizing a block coordinate descent (BCD) solver,

see e.g., [4, 71]. Specifically, the cost is minimized w.r.t. one entry of D (or E), while

keeping fixed the remaining entries of D (or E) to their most up-to-date values. During

each coordinate descent cycle all the entries of D and E will be updated.

Notice that the last two terms in (3.5) will produce fourth-order polynomial terms

in the cost function when trying to minimize the latter cost w.r.t. a single entry of D or
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E while fixing the remaining entries. To simplify the process of solving (3.5), we fix the

second D and E in the last two terms of (3.5), respectively, to their most up-to-date value

during the τ th coordinate descent cycle, namely D̂τ−1 and Êτ−1. Specifically, given the

estimates D̂τ−1 and Êτ−1 in the beginning of coordinate cycle τ , the minimization problem

which is used to estimate the current updates of D and E at iteration τ can be formulated

as

(D̂τ , Êτ ) = arg minD,EN
−1

∑N−1
t=0 ∥Ey(t)−Dx(t)− m̂∥22

+
∑q

ρ=1λE,ρ∥ET
ρ:||1 +

∑q
ρ=1 λD,ρ∥DT

ρ:||1

+ υ∥EΣ̂y(Ê
τ−1)T − I||2F + ε∥DΣ̂x(D̂

τ−1)T − I||2F (3.6)

which will enable the derivation of closed-form and simple to implement iterates for the

entries of D and E as will be detailed early on. To facilitate applicability of coordinate

descent iterations, the cost in (3.6) can be rewritten w.r.t. D (while keeping E fixed)

D̂τ = arg minDN
−1∥Êτ−1Y −DX∥22 (3.7)

+
∑q

ρ=1 λD,ρ∥DT
ρ:||1 + ε∥DΣ̂x(D̂

τ−1)T − I||2F

where X := [x(0)− m̂x, ...,x(N − 1)− m̂x] and Y := [y(0)− m̂y, ...,y(N − 1)− m̂y]

are pf × N matrices that contain the past and present/future data vectors in (3.2) and (3),

shifted to zero mean.

Coordinate descent is applied in (3.6) (or equivalently (3.7) since E is fixed) to split

the task of minimizing the cost in (3.7) into qpf scalar minimization subproblems, corre-

sponding to each of the entries of the matrix D. Specifically, the problem in (3.7) is mini-

mized w.r.t. one entry of D, say D(α, β), while fixing matrix E as well as the qpf − 1 re-

maining entries of matrix D to their most recent updates. Then, the scalar update D̂τ (α, β)

can be obtained as the following minimization problem

17



D̂τ (α, β) = arg mind∥ψ
τ
α,β − dhτα,β∥22 + λD,α|d| (3.8)

+ ∥ψ̆
τ

α,β − dh̆τα,β∥22, for α = 1, ..., q, β = 1, ..., pf (3.9)

in which,

ψτ
α,β := N−0.5([Êτ−1Y]α: −

∑β−1
ℓ=1 D̂

τ (α, ℓ)Xℓ: −
∑pf

ℓ=β+1 D̂
τ−1(α, ℓ)Xℓ:)

hτα,β := N−0.5(Xβ:) (3.10)

ψ̆
τ

α,β := ε0.5(Iα: −
∑β−1

ℓ=1 D̂
τ (α, ℓ)[Σ̂x(D̂

τ−1)T ]ℓ: −
∑pf

ℓ=β+1 D̂
τ−1(α, ℓ)[Σ̂x(D̂

τ−1)T ]ℓ:)

h̆τα,β := ε0.5[Σ̂x(D̂
τ−1)T ]β: (3.11)

where Mα: (or [M]α:) and M:ℓ correspond to the αth row and ℓth column of matrix M,

respectively. Further, the minimization problem in (3.8) can be rewritten as

D̂τ (α, β) = arg mind∥ψ
τ

α,β
− dhτα,β∥22 + λD,α|d| (3.12)

where ψτ

α,β
:= [ψτ

α,β, ψ̆
τ

α,β]
T and hτα,β := [hτα,β, h̆

τ
α,β]

T . The minimization problem (3.12)

corresponds to a scalar sparse regression problem. After applying the Karush-Kuhn-Tucker

(KKT) conditions (see, e.g., [4]), and using Lemma 1 in [64] it turns out that

D̂τ (α, β) = F(ψτ

α,β
,hτα,β, 0, 0, λD,α) (3.13)

where F(p1,p2, p3, p4, λ) := sgn(pT1 p2 + p3) (3.14)

× (max
(
0,

(∣∣∣∣ pT1 p2 + p3
∥p2∥22 + p4

∣∣∣∣− (
λ

2(∥p2∥22 + p4)

)))
Similarly, we can obtain the update Êτ (α, β) after fixing the remaining entries of matrix

E to their most recent updates, and set D to D̂τ−1 in (3.5). Then, the update Êτ (α, β) is

Êτ (α, β) = F(ψ̄τ
α,β, h̄

τ
α,β, 0, 0, λE,α) (3.15)
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where ψ̄τ
α,β and h̄τα,β are similar to ψτ

α,β
and hτα,β , respectively, after doing the following

substitutions: Y → X, X → Y, Êτ−1 → D̂τ−1, D̂τ → Êτ , D̂τ−1 → Êτ−1, Σ̂x → Σ̂y,

and ε→ υ. The CS-CCA algorithm steps are:

Step 1) Initialize Ď(0) and Ě(0) randomly.

Step 2) For the τ th coordinate descent, update D̂τ (α, β) and Êτ (α, β) via (3.13) and (3.15)

for α = 1, ..., q and β = 1, . . . , f .

Step 3) If the S-CCA cost reduction in the current descent is larger than a pre-specified

threshold go back to Step 2), otherwise exit and return D̂ = D̂τ and Ê = Êτ .

Proposition 2: Let D∗ and E∗ indicate a stationary point of (3.5). As the coordinate

cycles τ go to infinity, the updates D̂τ and Êτ obtained from (3.13) and (3.15) in S-CCA

will satisfy ∥D̂τ −D∗∥F ≤ δ(ε) and ∥Êτ − E∗∥F ≤ δ(ε), where limε→0δ(ε) = 0, and ε is

the parameter in (3.5).

The result of Proposition 2 (proved in Appendix A) indicates that the iterates D̂τ (α, β)

and Êτ (α, β) can be brought arbitrarily close to a stationary point in (3.5) by selecting a

sufficiently small ε in (3.5), since as ε goes to zero, distance δ(ε) will go to zero. Inter-

estingly, although the original CCA cost in (6) is approximated by (7) to simplify the al-

gorithmic implementation and complexity, the algorithmic iterates D̂τ (α, β) and Êτ (α, β)

are capable to approach a stationary point of the CCA cost in (6) arbitrarily close.

3.2.2 Distributed S-CCA (DS-CCA)

The centralized S-CCA scheme in Sec. 3.2.1 was developed under the assumption

that the sequences x(t), y(t) in (3.2) and (3) are available at a central fusion center, which

forms the updates D̂τ and Êτ . Here no central fusion center exists while sensors collect in-

formation in a distributed way and they are able to communicate only with their single-hop

neighbors. A distributed algoithm is proposed, in which sensor j will update the subma-
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trices Dj ∈ Rq×f and Ej ∈ Rq×f that contain the columns of D and E respectively with

indices j, p+ j, 2p+ j, . . . , (f − 1)p+ j, i.e.,

Dj := [D:j,D:p+j,D:2p+j, ..,D:(f−1)p+j]

Ej := [E:j,E:p+j,E:2p+j, ...,E:(f−1)p+j].

Further, let x(t, j) and y(t, j) correspond to the f×1 subvectors of x(t)−m̂x and y(t)−m̂y

which are obtained after keeping their entries with indices j, p+ j, 2p+ j, . . . , (f −1)p+ j.

After noticing that Dx(t) =
∑p

i=1Dix(t, i) and Ey(t) =
∑p

i=1Eiy(t, i), then (3.5) can

be reformulated as

arg minD,EN
−1

∑N−1
t=0 ∥

∑p
i=1Eiy(t, i)−

∑p
i=1Dix(t, i)||22

+
∑p,q

i=1,ρ=1 λD,ρ∥Di,ρ:||1 +
∑p,q

i=1,ρ=1 λE,ρ∥Ei,ρ:||1 (3.16)

+ υ∥N−1
∑N−1

t=0 [(
∑p

i=1Eiy(t, i))(
∑p

i=1Eiy(t, i))
T ]− I||2F

+ ε∥N−1
∑N−1

t=0 [(
∑p

i=1Dix(t, i))(
∑p

i=1 Dix(t, i))
T ]− I||2F

in which Di,ρ: and Ei,ρ: represent the ρth row of Di and Ei.

The distributed S-CCA will be derived by combining block coordinate descent (BCD)

techniques along with the alternating direction method of multipliers (ADMM) [5, 61].

Specifically, BCD is used to split the minimization in (3.16) into p minimization sub-

tasks where the cost in (3.16) is minimized w.r.t. to the block Dj (or Ej) at sensor j

for j = 1, . . . , p. Meanwhile, ADMM will be employed to allow sensors estimate in a

distributed fashion the global quantities D̂τ · (x(t)− m̂x) and Êτ · (y(t)− m̂y) which will

be necessary when minimizing the cost in (3.16) w.r.t. Dj and Ej at sensor j. As in Sec.

3.2.1, to avoid generating fourth-order terms in the last two summands in the cost in (3.16)

we substitute one of the D and E with their latest update during iteration τ , i.e., the last

term in (3.16) is replaced with

ε∥N−1

N−1∑
t=0

[(

p∑
i=1

Dix(t, i))(

p∑
i=1

D̂τ−1
i x(t, i))T ]− I||2F , (3.17)

20



Similarly, we can substitute the second last term in (3.16) with

υ∥N−1

N−1∑
t=0

[(

p∑
i=1

Eiy(t, i))(

p∑
i=1

Êτ−1
i y(t, i))T ]− I||2F , (3.18)

The first step is to minimize (3.16) w.r.t. Dj at sensor j. Toward this end, we fix all

submatrices {Di}i̸=j and {Ei}pi=1 to their latest updates. Then, the resulting cost can be

written as a function of Dj as

∥Êτ−1Y − D̂τ−1X+ D̂τ−1
j Xj −DjXj||2F

+ ε∥N−1(D̂τ−1X− D̂τ−1
j Xj +DjXj)(D̂

τ−1X)T − I||2F

+
∑q

ρ=1 λD,ρ∥Dj,ρ:||1, where, (3.19)

X := [x(0)− m̂x, x(1)− m̂x, . . . ,x(N − 1)− m̂x] ∈ Rpf×N ,

Y := [y(0)− m̂y, y(1)− m̂y, . . . ,y(N − 1)− m̂y] ∈ Rpf×N

Xj := [x(0, j), x(1, j) . . .x(N − 1, j)] ∈ Rf×N , and

D̂τ−1X− D̂τ−1
j Xj =

∑p
i=1,i̸=j D̂

τ−1
i Xi. (3.20)

From (3.19) it follows that the ‘global’ terms D̂τ−1[x(t)− m̂x] and Êτ−1[y(t)− m̂y] have

to be available at every sensor j in order to update each entry of Dj via coordinate descent.

However, this is not the case since these global quantities contain information from all sen-

sors, and they are not physically available. To this end, ADMM will be utilized to express

D̂τ−1[x(t) − m̂x] or Êτ−1[y(t) − m̂y] at the solution of a separable convex minimization

problem that can be solved in a distributed fashion and allow each sensor j to estimate

these global quantities. Then, these estimates will be used to replace the corresponding

quantities in (3.19) which will be further minimized w.r.t. one entry of Dj while fixing the

rest.

Estimation of global quantities via ADMM:

To this end, note that D̂τ−1X = [D̂τ−1(x(0) − m̂x), . . . , D̂
τ−1(x(N − 1) − m̂x)], and

21



Êτ−1Y = [Êτ−1(y(0)− m̂y), . . . , Ê
τ−1(y(N − 1)− m̂y)]. Sensor j can obtain estimates

for the vectors D̂τ−1(x(t)− m̂x) t = 0, 1, ..., N − 1, by solving via ADMM the separable

constrained minimization problem:

µ̂i,t = minµi,t

∑p
i=1 ∥µi,t − pD̂τ−1

i x(t, i)||22 (3.21)

s. to µi,t = µi′,t, i
′ ∈ Ni, for t = 0, . . . , N − 1,

where µi,t ∈ Rq×1 represents a local state vector at sensor i for estimating D̂τ−1(x(t) −

m̂x) =
∑p

i=1 D̂
τ−1
i x(t, i) which is the minimizer µ̂i,t in (3.21). The equality constraints

µi,t = µi′,t guarantee that all local estimates µi,t will be equal across sensors. By employ-

ing the ADMM, see details in e.g., [5, 61], the subproblems (3.21) for t = 0, . . . , N − 1

will be tackled through updating the sensor j’s local estimate, µj,t, along with the La-

grange multipliers {vj
′

j,t}j′∈Nj
that correspond to the constraints µj,t = µj′,t. Sensor j is

responsible for carrying out the updating recursions (see details in Appendix B)

vj
′

j,t(k) = vj
′

j,t(k − 1) + 0.5c[µj,t(k)− µj′ ,t(k)] (3.22)

µj,t(k + 1) = [(2 + 2c|Nj|)I]−1 ×
[
2pD̂τ−1

j x(t, j) (3.23)

−
∑

j′∈Nj
((vj

′

j,t(k)− vj
j
′
,t
(k)) + c(µj,t(k) + µj′ ,t(k)))

]
where k corresponds to the ADMM iteration index, while c is a positive step-size. Using the

convergence results in [61], as k goes to infinity, µj,t(k) will converge to D̂τ−1(x(t)−m̂x),

no matter how the local estimates µj,t(0) are initialized (here they are initialized at zero).

Per coordinate cycle τ−1, a finite number ofK ADMM iterations are performed to estimate

D̂τ−1(x(t)− m̂x). A similar procedure is followed for estimating Êτ−1(y(t)− m̂y) across

sensors. The corresponding local estimate for Êτ−1(y(t) − m̂y) at sensor j is denoted by

ηj,t(k + 1). A similar set of local iterations as the ones in (3.22) are employed at sensor j

to update ηj,t(k+1). Further, let µ̂τj,t and η̂τj,t to be the local estimates of D̂τ−1(x(t)−m̂x)

and Êτ−1(y(t)− m̂y), respectively, after running K iterations in the τ th coordinate cycle,
22



i.e., µ̂τj,t := µj,t(K) and η̂τj,t := ηj,t(K). Hence, after coordinate cycle τ the global

quantities D̂τ−1X and Êτ−1Y in (3.19) are replaced with sensor j’s local estimates µ̂τj :=

[µ̂τj,0, . . . , µ̂
τ
j,N−1] and η̂τj := [η̂τj,0, . . . , η̂

τ
j,N−1], respectively. Using the notation

Mτ−1
j := η̂τj − µ̂

τ
j + D̂τ−1

j Xj,

Pτ−1
j := ε0.5N−1(µ̂τj − D̂τ−1

j Xj)(µ̂
τ
j )
T − ε0.5I,

Qτ−1
j := −ε0.5N−1Xj(µ̂

τ
j )
T (3.24)

the cost in (3.19) can be readily rewritten as

N−1∥Mτ−1
j −DjXj||2F + ∥Pτ−1

j −DjQ
τ−1
j ||2F +

∑q
ρ=1 λD,ρ∥Dj,ρ:||1 (3.25)

which will be tackled at sensor j to update the entries of sub matrix Dj .

The cost (3.25) is minimized locally at sensor j w.r.t. one entry of Dj , for in-

stance, Dj(α, β), while keeping the rest entries of Dj fixed. During τ th cycle, the variable

Dj(α, β) in (3.25) can be obtained by minimizing

D̂τ
j (α, β) = arg mind∥ψ

τ
j,α,β − dhτj,α,β||22 + λD,α∥d||1 (3.26)

where α = 1, .., q, β = 1, .., f , while

hτj,α,β := [N−0.5Xj,β:,Q
τ−1
j,β: ]

T ,ψτ
j,α,β := [ψτ

j,α,β,1,ψ
τ
j,α,β,2]

T (3.27)

ψτ
j,α,β,1 := N−1/2[Mτ−1

j,α: −
∑β−1

ℓ=1 D̂
τ
j (α, ℓ)Xj,ℓ: −

∑f
ℓ=β+1 D̂

τ−1
j (α, ℓ)Xj,ℓ:] and

ψτ
j,α,β,2 := Pτ−1

j,α: −
∑β−1

ℓ=1 D̂
τ
j (α, ℓ)Q

τ−1
j,ℓ: −

∑f
ℓ=β+1 D̂

τ−1
j (α, ℓ)Qτ−1

j,ℓ: . (3.28)

Using the result in (3.13) for (3.12) it follows that the solution for D̂τ
j (α, β) is given as

D̂τ
j (α, β) = F(ψτ

j,α,β,h
τ
j,α,β, 0, 0, λD,α), (3.29)
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where F(·) is defined in (4.22). Applying a process similar to the one for deriving (3.29),

the update Êτ
j (α, β) can be formed as

Êτ
j (α, β) = F(ϕτj,α,β,gτj,α,β, 0, 0, λE,α) (3.30)

where ϕτj,α,β and gτj,α,β are similar to ψτ
j,α,β and hτj,α,β , respectively, after doing the fol-

lowing substitutions: µ̂τj → η̂τj , η̂τj → µ̂τj , D̂τ−1
j → Êτ−1

j , D̂τ
j → Êτ

j , Xj → Yj and

ε→ v.

In the beginning of τ th coordinate cycle, the most-up-to-date D̂τ−1
j and Êτ−1

j are

available at sensor j. Then, K ADMM iterations will be run, nested in cycle τ , to esti-

mate the global values, D̂τ−1X and Êτ−1Y, via the local estimates µ̂τj and η̂τj , respec-

tively. During the ADMM iterations, sensor j has to communicate with its |Nj| neighbor-

ing sensors, which includes receiving vectors {vjj′,t(k),µj′,t(k)} and transmitting vectors,

{vjj,t(k)}j′∈Nj
,µj,t(k) from/to its neighboring sensors in set Nj . In detail, sensor j re-

ceives 2NKq|Nj| scalars in cycle τ , that correspond to the entries of the q × 1 vectors

vjj′,t(k) and µj′,t(k), for t = 0, ..., N − 1 and j′ ∈ Nj , needed to carry out the updates in

(3.22) and (24). Meanwhile, sensor j will transmit the ADMM multipliers, {vj
′

j,t(k)}j′∈Nj

and estimates µj,t(k) to its single-hop neighbors, which accounts for (|Nj|+ 1)qN scalars

per ADMM iteration and (|Nj| + 1)qNK scalars in total. In summary, the total number

of testing data N , the cardinality of neighborhood |Nj|, the size of q, which depends on

the number of sources and their dimensionality, and ADMM iterations K together decide

the communication cost. In practice q ≪ p, since only a few sources are sensed by many

sensors. The DS-CCA scheme is tabulated as Alg. 1.

As K → ∞, from the convergence claims in [61] it follows that µ̂τj → D̂τ−1X

and η̂τj → Êτ−1Y. Further, as the number of coordinate cycles τ → ∞, and nested

coordinate iterations K ′ → ∞ for D̂τ
j (α, β) and Êτ

j (α, β), then the updates D̂τ and Êτ as

τ → ∞ approach δ(ε)-close to a stationary point of the cost in (3.16) where limε→0 δ(ε) =
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Algorithm 1 : DS-CCA

Initialize Ď
(0)
j , Ě(0)

j with the outcome of DS-CCA applied for {λE,ρ = λD,ρ = 0}qρ=1 and initial-

ized randomly.

for τ = 1, 2... do

Sensor j forms estimates {µ̂τj,t}N−1
t=0 (and {η̂τj,t}N−1

t=0 ) via K ADMM updating recursions

in (3.22)-(24) for j = 1, . . . , p nested in cycle τ .

for j = 1, ..., p do

Update D̂τ
j (α, β) via (3.29).

Update Êτj (α, β) via (3.30), for α = 1, ..., q and β = 1, . . . , f .

Repeat the updates for K ′ ≥ 1 cycles.

end for

end for

0 [similar arguments as in the proof of Proposition 2 can be used here]. As a termination

criterion, the ‘updating’ error ∥D̂τ
j − D̂τ−1

j ∥F + ∥Êτ
j − Êτ−1

j ∥F is checked until it drops

below a desired tolerance.

3.3 Selection of λ

Proper selection of the sparsity-controlling coefficients in both CS-CCA and DS-

CCA is critical to ensure that the zero and nonzero entries are placed in the right positions

of the estimated D̂ and Ê.

Next, a simple and sensible method is put forth to select the λ’s. To simplify things,

we set λD,ρ = λE,ρ = λρ for ρ = 1, ..., q. This selection is reasonable given that the

support of the same rows in D and E, ideally, should coincide as explained in Sec. 3.1. Let

{λmax
ρ }qρ=1 denote the smallest values of the sparsity controlling coefficients that result the

ρth row of D̂ and Ê obtained from CS-CCA (or DS-CCA) to be equal to zero.
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Specifically, the proposed method here addresses two challenges: i) find a relatively

large value to initialize λρ which returns an all-zeros solution for the ρth row of D (and

Eρ:), i.e., D̂ρ: = 0; and ii) gradually decrease λρ starting from the relatively large value

set at i) and determine when to stop. The motivation is to start from an all-zeros solution

and gradually let more and more nonzero values show up in D (and E) by decreasing λρ

and reapplying S-CCA. The approach for selecting the initial value for λρ and determining

when to stop decreasing λρ is explained next.

The first step (Step 1 in Alg. 2) is to estimate λmax
ρ (not available in closed form) via

estimates λ̂mρ for ρ = 1, . . . , q. After randomly initializing λ̂mρ and applying CS-CCA (or

DS-CCA) the support sets of the estimates D̂ρ: and Êρ: are checked. If the support sets are

nonempty (nonzero entries exist) then λ̂mρ is increased by a factor of ω2 > 1. The estimates

λ̂mρ will keep increasing until the CS-CCA (or DS-CCA) gives an empty support for D̂ρ:

and Êρ: in which case it is certain that λmax
ρ has been reached or exceeded.

If the support sets D̂ρ: and/or Êρ: are empty then λ̂mρ has exceeded λρmax in which

case Alg. 2 starts decreasing λ̂mρ by a factor of ω1 ∈ [1− ϵ, 1) (close to one). The estimates

λ̂mρ will be decreased until when CS-CCA (or DS-CCA) gives a nonempty support for D̂ρ:

and Êρ: in which case Step 1 is concluded. Note that the closer ω1 is to one, the more

accurate Step 1 will be in estimating λmax
ρ .

Given the estimate λ̂mρ from Step 1, Step 2 is focusing on recovering the indices of

columns in D and E that are zero, denoted here as C. Note that the index of a zero column

indicates a sensor measurement acquiring only sensing noise. The estimate λ̂mρ is scaled

with factors ω3 < 1 and ω4 < 1, where ω4 << ω3. Two different column zero-entry

sets, namely C1 (using ω3) and C2 (using ω4), are obtained after applying CS-CCA (or DS-

CCA). Since ω4 << ω3 it is expected that C1 ⊇ C2. The reason for getting two different

sets C1 and C2 is to identify which columns (noisy sensors) in D and E will be zero for

both different scalings of λ̂mρ using ω4 and ω3. This way the columns of E,D that match
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with entries in x(t),y(t) that contain information about a source (nonzero columns) can

be distinguished from the columns that correspond to entries in x(t),y(t) with just sensing

noise (zero columns). Note that the proposed method is not optimizing a cost, however it

will exhibit good performance as demonstrated in Sec. 3.6 and it is not computationally

intensive.

The last (third) step is to select λ’s that result estimates for D and E whose zero

column index set coincides with C from Step 2. To this end, starting from λ̂mρ obtained in

Step 1 we gradually decrease their value by a factor ω5 ∈ [1 − ϵ, 1) until the zero column

index set of the D,E estimates in CS-CCA (or DS-CCA) coincides with C. In the numerical

tests later on we set ω1 = 0.75, ω2 = 1.5, ω3 = 0.1, ω4 = 0.01, ω5 = 0.95. These parameter

values exhibit acceptable behavior irrespective of the data processed, and there is no need

to reselect them every time a new data set is processed.

3.4 Online Implementation

The CS-CCA and DS-CCA schemes derived in Sec. 3.2 are batch algorithms in the

sense that first acquire data and then perform the processing. Such batch schemes are perti-

nent for settings where sensors acquire data for some limited time and then stop. However,

in settings where sensors are constantly sensing new data a batch algorithm will eventually

drain all storing and computational capabilities across sensors. To this end, online imple-

mentations for the S-CCA framework are derived here to allow real-time processing of the

acquired sensor data and reduce computational complexity.

3.4.1 Online Centralized S-CCA (OCS-CCA)

To this end, starting from (3.5) we consider the following time-varying cost that

accounts for a constant stream of sensor data
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Algorithm 2 Selection of the λ’s
1: -Step 1: Estimate {λmax

ρ }qρ=1.

2: Initialize {λ̂mρ > 0}qρ=1 randomly.

while(1)

3: Find D̂ and Ê via CS-CCA (or DS-CCA) using λ̂mρ .

If D̂ρ: ̸= 0 (or Êρ: ̸= 0)

Update λ̂mρ = ω2λ̂
m
ρ where ω2 > 1

else if D̂ρ: = 0 (or Êρ: = 0)

Update λ̂mρ = ω1λ̂
m
ρ , where ω1 < 1. Find Ď and Ě via

CS-CCA (or DS-CCA) with updated λ̂mρ .

If Ďρ: = 0 (or Ěρ: = 0)

Update λ̂mρ = ω1λ̂
m
ρ .

else if Ďρ: ̸= 0 (or Ěρ: ̸= 0)

Break while

endIf

end If

end while

4: -Step 2: Estimate zero column index set (denoted as C) of D (or E)

5: Find zero column index set C1 of D and E estimates found via

CS-CCA (or DS-CCA) using ω3λ̂
m
ρ with ω3 < 1.

6: Find zero column index set C2 of D and E estimates found via

CS-CCA (or DS-CCA) using ω4λ̂
m
ρ with ω4 < ω3 < 1.

7: Evaluate C = C1 ∩ C2

8: -Step 3: Select {λ̂ρ}qρ=1 to be used

Starting from the earlier found λ̂ρ,0 = λ̂mρ , iteratively decrease λρ,n = ω5λρ,n−1 where ω5 < 1

and apply CS-CCA (or DS-CCA). If resulting zero column index set for acquired D̂ (or Ê)

matches C then stop.
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arg minD,E(t+ 1)−1
∑t

τ=0 ∥Ey(τ)−Dx(τ)− m̂t∥22

+
∑q

ρ=1λE,ρ∥ET
ρ:||1 +

∑q
ρ=1 λD,ρ∥DT

ρ:||1 (3.31)

+ υ∥EΣ̂y,t(Ê
t−1)T − I||2F + ε∥DΣ̂x,t(D̂

t−1)T − I||2F ,

where Σ̂x,t = (t+1)−1
∑t

τ=0(x(τ)−m̂x,t)(x(τ)−m̂x,t)
T and m̂x,t = (t+1)−1

∑t
τ=0 x(τ)

(similarly for Σ̂y,t and m̂y,t) correspond to the online covariance and mean estimates. Fur-

ther, m̂t := Em̂y,t −Dm̂x,t.

As in Secs. 3.2.1 and 3.2.2, during time instant t, we split the minimization problem

in (3.31) into multiple subproblems, which focus on solving one entry of D while keeping

the rest of the entries of D and matrix E fixed. Using a similar way to derive the cost for

D(α, β) in (3.8)

D̂t(α, β) = arg mind
∑t

τ=0(ψα,β,τ − d · hα,β,τ)2 (3.32)

+ ∥ψ′

α,β,t − dh
′

α,β,t∥22 + λD,α|d|, where

ψα,β,τ := (t+ 1)−1/2{[Êt−1
α: [y(τ)− m̂y,t]−

∑β−1
ℓ=1 D̂

t(α, ℓ)[x(τ)

− m̂x,t]ℓ −
∑pf

ℓ=β+1 D̂
t−1(α, ℓ)[x(τ)− m̂x,t]ℓ}

hα,β,τ := (t+ 1)−1/2[x(τ)− m̂x,t]β τ = 0, . . . , t

ψ
′

α,β,t :=
√
ε[Iα: −

β−1∑
ℓ=1

D̂t(α, ℓ)Bt,ℓ: −
pf∑

ℓ=β+1

D̂t−1(α, ℓ)Bt,ℓ:]

h
′

α,β,t :=
√
εBt,β: where Bt := Σ̂x,t(D̂

t−1)T (3.33)

Using the result in (3.13) the minimizer for (3.32) is

D̂t(α, β) = F(ψ′

α,β,t,h
′

α,β,t,Σ
α,β
ψh,t,Σ

β
h2,t, λD,α) (3.34)

29



where Σα,β
ψh,t :=

∑t
τ=0 ψα,β,τ · hα,β,τ, Σ

β
h2,t :=

∑t
τ=0 h

2
α,β,τ, for α = 1, ..., q, and β =

1, ..., pf . Notice that the number of summands in Σα,β
ψh,t and Σβ

h2,t keeps increasing with

time, thus there is a need to calculate them adaptively. Note that:

Σβ
h2,t = (t+ 1)−1

t∑
τ=0

([x(τ)− m̂x,t]β)
2 = Σ̂x,t(β, β) (3.35)

Σα,β
ψh,t = (t+ 1)−1

∑t
τ=0 Ê

t−1
α: (y(τ)− m̂y,t)[x(τ)− m̂x,t]β

− (t+ 1)−1

β−1∑
ℓ=1

D̂t(α, ℓ)
t∑

τ=0

[x(τ)− m̂x,t]ℓ[x(τ)− m̂x,t]β (3.36)

− (t+ 1)−1

pf∑
ℓ=β+1

D̂t−1(α, ℓ)
t∑

τ=0

[x(τ)− m̂x,t]ℓ[x(τ)− m̂x,t]β

Next, it is delineated how the quantities in (3.35) can be found in an online fashion. Note

that the first summand of Σα,β
ψh,t in (3.35) contains the term Σ1,β

ψh,t − m̂1,β
ψh,t, where Σ1,β

ψh,t :=

(t + 1)−1
∑t

τ=0 y(τ)[x(τ)]β and m̂1,β
ψh,t := m̂y,t[m̂x,t]β . It follows readily that Σ1,β

ψh,t and

m̂y,t (or m̂x,t) can be adaptively updated as

Σ1,β
ψh,t = t(t+ 1)−1Σ1,β

ψh,t−1 + (t+ 1)−1y(t)[x(t)]β, (3.37)

m̂y,t = t(t+ 1)−1m̂y,t−1 + (t+ 1)−1y(t). (3.38)

Thus, there is no need to store all data history as is the case in the batch algorithm CS-CCA.

Further, there is a common part in the second and third terms in Σα,β
ψh,t in (3.36), namely

Σ̂x,t(ℓ, β) = (t+ 1)−1
∑t

τ=0[x(τ)]ℓ[x(τ)]β − [m̂x,t]ℓ[m̂x,t]β,

both summands in Σ̂x,t(ℓ, β) can be updated in an adaptive fashion as indicated in (3.37).

Note that

Rx,t(ℓ, β) := (t+ 1)−1
∑t

τ=0[x(τ)]ℓ[x(τ)]β (3.39)

= t(t+ 1)−1Rx,t−1(ℓ, β) + (t+ 1)−1[x(t)]ℓ[x(t)]β.
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The same online mechanism can be used to update Σβ
h2,t without the need to store all data

history. Using the same procedure we can derive an updating formula for each of the entries

of E. Specifically, Êt(α, β) can be obtained as

Êt(α, β) = F(ψ̌
′

α,β,t, ȟ
′

α,β,t, Σ̌
α,β
ψh,t, Σ̌

β
h2,t, λE,α) (3.40)

where Σ̌α,β
ψh,t is obtained via the expression of Σα,β

ψh,t in (3.35) after substituting Êt−1, D̂t, x,

y, m̂y,t and m̂x,t with D̂t−1, Êt, y, x, m̂x,t and m̂y,t, respectively. Similarly, Σ̌β
h2,t can be

obtained after making the same substitutions in Σβ
h2,t in (3.35). The quantities ψ̌

′

α,β,t and

ȟ
′

α,β,t can be obtained from the corresponding quantities ψ
′

α,β,t,h
′

α,β,t in (3.33) after apply-

ing the following substitutions: ε → v, D̂t → Êt, D̂t−1 → Êt−1 and Bt → Σ̂y,t(Ê
t−1)T .

Per time instant t one coordinate cycle is applied to update each entry of D (and E).

3.4.2 Online Distributed S-CCA (ODS-CCA)

An online distributed S-CCA (ODS-CCA) is put forth here for the network setting

considered also in Sec. 3.2.2. The starting point for building ODS-CCA will be the separa-

ble cost function introduced in (3.16) for DS-CCA, after replacingN with t+1 and making

it time-varying as in (3.31). As in OCS-CCA the goal is to obtain at every time-instant t

continuously refined sparse estimates D̂t and Êt. As in DS-CCA the resulting cost will be

minimized in a coordinate fashion with respect to the q×f submatrices Dj (and Ej), while

fixing the remaining submatrices to their recent updates. When focusing on minimizing

(3.16) (after replacing N with t + 1) w.r.t. Dj , the Euclidean norms in the first summand

in (3.16) will be replaced with

∥
∑p

i=1 Ê
t−1
i y(τ, i)−

∑p
i=1,i̸=j D̂

t−1
i x(τ, i)−Djx(τ, j)∥22,

where the most recent updates are used to set all Ei and Di, but Dj . As in DS-CCA, K

ADMM will be used to form local estimates for the global quantities
∑p

i=1 Ê
t−1
i y(τ, i)
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and
∑p

i=1 D̂
t−1
i x(τ, i) for τ = 0, . . . , t. However, it is not hard to notice that during time

instant t, t parallel ADMM schemes should run to estimate the aforementioned global

quantities. As more and more data are acquired and t increases, the related complexity

would be proportional to t and become eventually prohibitively high. To this end, we

substitute the global terms
∑p

i=1Dix(t, i) and
∑p

i=1Eiy(t, i) in (3.16) with the updates∑p
i=1 Ê

τ−1
i y(τ, i) and

∑p
i=1 D̂

τ−1
i x(τ, i) for τ = 0, . . . , t, where that data at time τ are

multiplied with the latest update for E and D at time τ − 1, namely Êτ−1 and D̂τ−1. This

substitution at time t requires only the estimation of
∑p

i=1 Ê
t−1
i y(t, i) and

∑p
i=1 D̂

t−1
i x(t, i)

via K ADMM iterations, whereas there is no need to re-estimate the past quantities for

τ = 0, . . . , t− 1.

As in Sec. 3.2.2, let η̂τ
j and µ̂τ

j denote the local estimates for
∑p

i=1 Ê
τ−1
i y(τ, i) and∑p

i=1 D̂
τ−1
i x(τ, i) respectively obtained at sensor j after K ADMM iterations within the

time interval [τ, τ+ 1).

Then, the global terms
∑p

i=1Eiy(τ, i) will be replaced with the local estimate η̂τ
j at

sensor j, while
∑p

i=1,i ̸=j Dix(τ, i) with the local estimate µ̂τ
j − D̂τ

jx(τ, j) in (3.16). To

prevent the presence of third and fourth-order terms resulting from the last summand in

(3.31), this summand is replaced with the following approximate term [similarly to the

ones in (3.17) and (3.18)]

ε∥(t+ 1)−1

t∑
τ=0

(

p∑
i=1

Dix(τ, i))(

p∑
i=1

D̂τ−1
i x(τ, i))T − I∥2F (3.41)
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where the Di’s have been replaced with the past estimates D̂τ−1
i when multiplying x(τ, i).

Then, after replacing the global terms
∑p

i=1,i ̸=j D̂
τ−1
i x(τ, i) and

∑p
i=1 Ê

τ−1
i y(τ, i) with

their local estimates µ̂τ
j and η̂τ

j at sensor j the cost

(t+ 1)−1
∑t

τ=0
∥η̂τ

j − µ̂
τ
j + D̂τ−1

j x(τ, j)−Djx(τ, j)∥22

+ ε∥(t+ 1)−0.5
∑t

τ=0

(
µ̂τ
j − D̂τ−1

j x(τ, j)

+Djx(τ, j)) (µ̂
τ
j)
T − I∥2F +

∑q
ρ=1 λD,ρ∥Dj,ρ:∥1 (3.42)

is obtained and will tackled at sensor j to update the entries of Dj . The cost in (3.42) for

Dj can be further written as

(t+ 1)−1
∑t

τ=0∥ϕj,τ −Djx(τ, j)∥22 +
∑q

ρ=1 λD,ρ∥Dj,ρ:∥1 + ∥Σ̃j

xµ̂,t,1 −DjΣ̃
j

xµ̂,t,2∥2F

(3.43)

where ϕj,τ := η̂
τ
j− µ̂

τ
j+D̂τ−1

j x(τ, j), Σ̃
j

xµ̂,t,1 =
√
εΣj

µ̂2,t−
√
εΣj

Dxµ̂,t−
√
εI and Σ̃

j

xµ̂,t,2 =

−
√
εΣxµ̂,t, in which,

Σj
µ̂2,t := (t+ 1)−1

∑t
τ=0 µ̂

τ
j(µ̂

τ
j)
T

Σj
Dxµ̂,t := (t+ 1)−1

∑t
τ=0 D̂

τ−1
j x(τ, j)(µ̂τ

j)
T

Σj
xµ̂,t := (t+ 1)−1

∑t
τ=0 x(τ, j)(µ̂

τ
j)
T , (3.44)

Each of these quantities in (3.44) can be updated in an online fashion as, e.g., Σj
µ̂2,t =

t(t + 1)−1Σj
µ̂2,t−1+(t+ 1)−1µ̂tj(µ̂

t
j)
T . The same updating process can be applied for the

other two matrices in (3.44).

Following a similar strategy as before the cost in (3.43) is minimized at sensor j w.r.t.

one entry of Dj , say Dj(α, β), while keeping the rest fixed in a coordinate descent fashion.
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In detail, D̂t
j(α, β) can be found as in (3.32) where the involved quantities ψ′

α,β,t, h
′
α,β,t,

ψα,β,τ and hα,β,τ are replaced respectively by the local quantities at sensor j

ψ′
j,α,β,t := [Σ̃xµ̂,t,1]α,: −

∑β−1
ℓ=1 D̂

t
j(α, ℓ)[Σ̃xµ̂,t,2]ℓ,:

−
∑f

ℓ=β+1D̂
t−1
j (α, ℓ)[Σ̃xµ̂,t,2]ℓ,:, (3.45)

and h′
j,α,β,t := [Σ̃xµ̂,t,2]β,:, while,

ψj,α,β,τ := (t+ 1)−1/2[[φj,τ]α −
∑β−1

ℓ=1 D̂
t
j(α, ℓ)[x(τ, j)]ℓ

−
∑f

ℓ=β+1 D̂
t−1
j (α, ℓ)[x(τ, j)]ℓ],

and hj,α,β,τ := (t+ 1)−1/2[x(τ, j)]β .

Note that D̂t
j(α, β) can be updated via (3.34) after using the quantities in (3.45) to

form Σj,α,β
ψh,t :=

∑t
τ=0 ψj,α,β,τhj,α,β,τ and Σj,β

h2,t :=
∑t

τ=0 h
2
j,α,β,τ that replace Σα,β

ψh,t and Σβ
h2,t

respectively in (3.34). Specifically:

Σj,α,β
ψh,t := Σj,α,β

ϕx,t −
∑β−1

ℓ=1 D̂
t
j(α, ℓ)Σxτ,j ,t(ℓ, β) (3.46)

−
∑f

ℓ=β+1 D̂
t−1
j (α, ℓ)Σxτ,j ,t(ℓ, β) where

Σj,α,β
ϕx,t := (t+ 1)−1

∑t
τ=0[φj,τ]α[x(τ, j)]ℓ,

Σxτ,j ,t(ℓ, β) := (t+ 1)−1
∑t

τ=0[x(τ, j)]ℓ[x(τ, j)]β

Note that the quantities Σj,α,β
ϕx,t and Σxτ,j ,t(ℓ, β) can be updated in an online fashion at sensor

j as described in (3.37) which facilitates the updating of Σj,α,β
ψh,t . The updating of Σj,β

h2,t =

Σxτ,j ,t(β, β) can be carried out in the exact same way. As mentioned earlier the update

D̂t
j(α, β) is formed, at sensor j, as

D̂t(α, β) = F(ψ′

j,α,β,t,h
′

j,α,β,t,Σ
j,α,β
ψh,t ,Σ

j,β
h2,t, λD,α) (3.47)

where ψ
′

j,α,β,t,h
′

j,α,β,t given in (3.45). The same process can be repeated for obtaining

updates for the entries of E. ODS-CCA is summarized next.
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At time t, each sensor j estimates the global quantities
∑p

i=1 Ê
t−1
i yt,i and

∑p
i=1 D̂

t−1
i yt,i

by applying 2K ADMM iterations that result the estimates η̂tj and µ̂tj . This is a basic differ-

ence with the batch counterpart DS-CCA in Sec. III-B, where all t quantities D̂t−1x(τ) and

Êt−1y(τ) for τ = 0, . . . , t need to be estimated at time instant t. That requires a number

of 2tK ADMM iterations which are constantly growing with time in order to process the

newly acquired data. Taking into account the communication complexity per ADMM itera-

tion (see Sec. 3.2.2), here sensor j receives 2(2q|Nj|K) scalars and transmits 2q(|Nj|+1)K

scalars from/to its neighbors in Nj after 2K ADMM iterations applied to compute η̂tj and

µ̂tj . In contrast in DS-CCA in Sec. III-B, the latter quantities have to scale up by a factor

t. Thus, DS-CCA has a lower computational and communication complexity. Nonetheless

DS-CCA will demonstrate a better performance compared to ODS-CCA when clustering

sensors.

3.5 S-CCA Properties

Next, it is shown that the S-CCA framework in (3.5) has the capability to return

sparse estimates D̂ and Ê, in which every row contains nonzero values at the entries corre-

sponding to sensor measurements in x(t) and y(t) that contain information about the same

source, whereas zeros correspond to entries in x(t) and y(t) that contain only noise. To

establish this property it is assumed that a sufficiently high number of data are available

(N → ∞), in which case from the law of large numbers it follows that Σ̂x and Σ̂y con-

verge to their ensemble counterpart Σx and Σy, respectively. Then, the sample-based cost

in (3.5) converges to the ensemble-based cost

arg minD,Etr[EΣyE
T +DΣxD

T−EΣyxD
T −DΣxyE

T ]

+ υ∥EΣyE
T − I||2F + ε∥DΣxD

T − I||2F

+
∑q

ρ=1 λE,ρ∥ET
ρ:||1 +

∑q
ρ=1 λD,ρ∥DT

ρ:||1. (3.48)
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Let De,Ee denote one pair of minimizers in (3.48), while Σxy denotes the ensemble cross-

covariance between {x(t)}N−1
t=0 and {y(t)}N−1

t=0 . It is studied how the nonzero and zero

entries are allocated across the rows of the estimates De,Ee. To facilitate the analysis, an

entry of De (or Ee), say De(α, β), will be considered nonzero if |De(α, β)| > δ, where δ

is an arbitrarily small positive value. It is demonstrated next that for proper λD,ρ and λE,ρ,

the S-CCA minimization framework returns rows De,ρ: and Ee,ρ: whose nonzero entries

indices correspond to sensors sensing the same source signal for ρ = 1, ..., q, while the

zero entries correspond to noisy sensor measurements.

In the subsequent analysis no assumptions are made about the data model which

can be nonlinear as outlined in (3.1). Further, it is assumed that each sensor observes at

most one source, thus the source-based sensor clusters Sm are not overlapping. This results

nonoverlapping groups of correlated entries in x(t) and y(t). Since the sources are station-

ary the groups of correlated entries are the same in both x(t) and y(t), since x(t) contains

a delayed version of the elements in y(t). Its follows readily that in the aforementioned

setting the (cross-)covariance matrices Σx,Σy, Σxy and Σyx will be block diagonal after

properly permuting their rows and columns. Let the M different groups of correlated en-

tries in x(t), and y(t) be denoted by ς1, . . . , ςM ; data entries belonging to different groups

ςm are uncorrelated with each other since the different sources are uncorrelated. A proper

permutation matrix P can be applied in x(t) (or y(t)) such that entries that belong to the

same group are contiguous in the permuted vector xP (t) := Px(t) = [xς1(t) . . .xςM (t)]T ,

where xςm(t) correspond to the sensor measurements acquired during interval [t− 1, t− f ]

that contain information about source sm for m = 1, . . . ,M . Thus, xP (t) (and yP (t)) has

a block diagonal covariance matrix, namely PΣxP
T = bdiag(Σxς1

. . .ΣxςM
), where Σxςm

corresponds to the covariance of xςm(t). A similar process can be applied to y(t) to obtain

yP (t) := Py(t) = [yς1(t) . . .yςM (t)]T whose covariance matrix is also block diagonal.
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Let v(F) denote the entries of vector v with indices belonging to the set F . It is

established in Appendix C that

Theorem 1: For block diagonal covariance matrices Σx and Σy and if {λD,ρ, λE,ρ}qρ=1

are selected properly, then for any arbitrarily small δ > 0 the minimization in (3.48) admits

an optimal solution De,Ee satisfying for ρ = 1, ..., q

∥De,ρ:(Z̄iρ)∥1 < δ, and ∥De,ρ:(Ziρ)∥1≥ξ(λD,ρ) > 0 (3.49)

∥Ee,ρ:(Z̄iρ)∥1 < δ, and ∥Ee,ρ:(Ziρ)∥1≥ξ(λE,ρ) > 0 (3.50)

where Z̄iρ is the complement of the support Ziρ of the iρth dominant eigenvector Ux,:iρ of

Σx (or Σy) and iρ ∈ 1, ..., q. The constants ξ(λD,ρ), ξ(λE,ρ) depend only on λD,ρ and λE,ρ

respectively and are strictly positive.

Theorem 1 states that S-CCA can generate optimal matrices (De, Ee) whose rows’

support is a subset of the truth support of the q dominant eigenvectors in Ux and Uy (which

have the same block diagonal structure as Σx,Σy). This is possible since for the ρth row of

De (and Ee), there is a corresponding iρ column of the eigenvector matrix Ux (and Uy) such

that ∥De,ρ:(Z̄iρ)∥1 < δ for arbitrarily small δ, while ∥De,ρ:(Ziρ)∥1≥ξ(λD,ρ)>0 (strictly

positive). Thus, all the nonzero entries of De,ρ:, with magnitude exceeding δ, will have

indices in Ziρ := support(Ux,:iρ) where ρ = 1, . . . , q. This happens since: i) ∥De,ρ:(Z̄iρ)∥1

can be made arbitrarily small, thus all entries of De,ρ: can be driven arbitrarily close to

zero; and ii) ∥De,ρ:(Ziρ)∥1 is strictly positive while ξ(λD,ρ) > δ by making δ arbitrarily

small. Thus, some of the entries of De,ρ: with indices in Ziρ must have magnitude greater

than δ. The number of nonzero entries in De,ρ:(Ziρ) is determined by λD,ρ. Thus, if λD,ρ is

selected such that ∥De,ρ:∥0 = ∥Ux,iρ∥0, then recovery of the whole support Ziρ is ensured.

Note that for an infinite number of data the standard CCA solution D̆ and Ĕ will

also be sparse with the nonzero entries across the rows of D̆ (or Ĕ) pointing at the sensors
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sensing a common source. Thus, Theorem 1 states that the S-CCA formulation makes

sense because they assign (non)zero entries in some meaningful positions rather than place

them arbitrarily. However, as will become apparent via extensive numerical tests the true

advantage of S-CCA (in terms of clustering sensors correctly) is in settings with a finite

and small number of data in which case the corresponding D̆ and Ĕ do not really give

any insight on the informative sensors. Another important aspect of Theorem 1 is that

perfect recovery of the different groups of informative sensors is ensured no matter what

the underlying data model is (nonlinear in general); this is not the case in [65].

3.6 Numerical Tests

The performance of the batch CS-CCA and DS-CCA, as well as online OCS-CCA

and ODS-CCA schemes is tested and compared with existing alternatives in terms of prob-

ability of correctly clustering sensor measurements based on their source content. The

novel schemes will be compared with i) standard CCA [6, Chpt. 10]; ii) CS-CCA for zero

sparsity-controlling coefficients (λ = 0); iii) the centralized sparse CCA scheme in [79]

abbreviated as PMD; and iv) K-means algorithm (see e.g., [38]) used to cluster the different

sensors into groups using the data vectorsχj := [xj(0), . . . , xj(N−1)]T acquired at sensor

j over time-horizon [0, N − 1] assuming the number of sources M is known and the cen-

troids initialized uniformly at random. The distributed algorithms put forth here (namely

DS-CCA and ODS-CCA) are tested in a sensor network of p = 15 randomly placed sensors

within a 2-D area which is represented by two normalized dimensions [0, 1]× [0, 1], while

the sensor communication range is set to 0.4.

In the following numerical tests both linear and nonlinear data models are considered

as specified next. An autoregressive evolution model is used for sources {sm}Mm=1, i.e.,

sm(t) =
∑L

τ=1Fm,τsm(t− τ) + um(t) (3.51)
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in which Fm,τ ∈ Rr×r correspond to the autoregressive coefficients, while L is the order

of the AR process and um(t) is white perturbation noise with zero-mean and variance

σ2
umIr×r. In the simulations the sources are scalar, i.e., r = 1.

First, three different non-overlapping scenarios (each sensor observes no more than

one source) are considered to test the performance of CS-CCA and DS-CCA and compare it

with other centralized approaches. The process order L = 1 in (3.51) is applied here, while

the AR coefficients are selected such that |Fm,1| ≤ 1. Moreover, the memory length param-

eter here is set f = 1. The first testing scenario treats a linear case where hm,j(sm(t)) =

hm,j · sm(t), where hm,j is normal if sensor j observes source m, otherwise hm,j is zero.

Also note that hm(sm(t)) := [hm,1(sm(t)), ..., hm,p(sm(t))]
T . In the non-overlapping con-

figuration considered here sensors {1, ..., 5} observe source s1(t), sensors {6, ..., 10} ob-

serve source s2(t) while sensors {11, ..., 15} sense just noise. In the second testing case (de-

noted as Nonlinear Case 1), sensors {1, ..., 5} observe source s1(t) and the first five entries

in h1(s1(t)) are equal to [h1,1s1(t), h1,2s1(t), h1,3s1(t), h1,4s1(t), h1,5s1(t)] while the last 10

entries are equal to zero. Sensors {6, ..., 10} observe source s2(t) thus the corresponding

entries in h2(s2(t)) are given by [h2,1s
2
2(t), h2,2s

2
2(t), h2,3s

2
2(t), h2,4s

2
2(t), h2,5s

2
2(t)] while

the rest are zero. Also, the coefficients hm,j are normally distributed. In the third test-

ing case (denoted as Nonlinear Case 2), sensors {1, ..., 5} observe source s1(t) and the first

five entries in h1(s1(t)) are equal to [h1,1s1(t), h1,2s
1.1
1 (t), h1,3s

1.2
1 (t), h1,4s

1.3
1 (t), h1,5s

1.4
1 (t)]

while the rest 10 entries are equal to zero. Sensors {6, ..., 10} observe source s2(t), thus the

corresponding entries in h2(s2(t)) are given by [h2,1s2(t), h2,2s
1.1
2 (t), h2,3s

1.2
2 (t), h2,4s

1.3
2 (t),

h2,5s
1.4
2 (t)] while the rest are zero.

In Fig. 4.2 we compare the probability of correct sensor clustering among CS-CCA,

DS-CCA for a different number of ADMM iterations (K = 5 andK = 15), standard CCA,

PMD, K-means and CS-CCA for zero sparsity-controlling coefficients in the linear case.

The sparsity-controlling coefficients λρD or λρE in 1) and 2) are selected using the algo-
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rithm in Sec. 3.3. The corresponding sparsity-controlling coefficients in PMD are selected

by cross-validation (details in [79]). The multipliers vj
′

j,0 and wj
′

j,0 in the DS-CCA algo-

rithm implementation are initialized to be zero. Fig. 4.2 depicts that CS-CCA achieves the

best performance, while the probability of clustering sensor measurements reaches unity

(corroborating Theorem 1) as the number of data vectors {x(t),y(t)}N−1
t=0 goes to infinity

(N → ∞). It is also of interest that DS-CCA yields better performance than other cen-

tralized S-CCA approaches, e.g. PMD and K-means. Notice also that DS-CCA achieves

a performance which improves as the number of ADMM iterations K increases leading to

better estimates. Note that as K increases the DS-CCA performance curve will gradually

overlap with the CS-CCA (K → ∞). Also it can be seen that if sparsity is not employed,

i.e., λE,ρ = λD,ρ = 0, then the performance of CS-CCA deteriorates significantly. In the

same way standard CCA for small number of samples has much worse performance than

CS-CCA and PMD, though as explained earlier for N → ∞ the probability gradually

reaches one since the standard CCA solution D̆, Ĕ will have zeros at the right entries as

N → ∞. Similar conclusions can be drawn from Fig. 4.5, which shows the performance of

the aforementioned schemes for the two nonlinear models considered here. This signifies

the capability of CS-CCA to correctly cluster sensors even in nonlinear settings.

In Figs. 4.6 and 4.7 the performance of the online OCS-CCA and ODS-CCA algo-

rithms is compared with the batch counterparts CS-CCA and DS-CCA, as well as K-means.

The tests are carried for the linear setting in Fig. 4.6 and for the nonlinear case 2 in Fig.

4.7. The batch algorithm at every time instant t has to process all data N = t, leading to a

prohibitively large complexity as explained in Secs. 3.4.1 and 3.4.2. This is not the case in

the online counterparts that process new data in an incremental way and fixed complexity

(not dependent on time). As expected the clustering performance of the online schemes

is worse than the batch algorithms, though the probability of correctly clustering the sen-
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sors increases with t. Nonetheless, even the online schemes achieve better performance

compared to the centralized schemes PMD and K-means.

The role of the memory length parameter f is examined next in the clustering perfor-

mance of CS-CCA. To this end, two different AR model for the M = 2 sources are consid-

ered having order L = 10, while the AR-coefficients are selected such that |Fm,τ | < 1 for

τ = 1, ..., L and m = 1, 2. The clustering performance of CS-CCA is tested for the linear

setting and nonlinear case 2, for two different memory length parameter values, namely

f = 1 and f = 5. Fig. 3.5 indicates that increasing the memory length parameter in the

current test setting boosts the performance of CS-CCA, especially in the nonlinear case.

Clearly, the larger f is the more CS-CCA takes advantage of the temporal correlations

present in the data due to the AR-10 source models.

The capability of CS-CCA to perfectly cluster sensors for an increasing number of

sensor data was proved for a non-overlapping setting where each sensor can observe at most

one field source. For the overlapping case where sensors could sense multiple sources there

are no theoretical guarantees for perfect clustering so far. Nonetheless, in Fig. 3.6 CS-CCA

is tested in an overlapping setting and compared with PMD and K-means. Specifically,

a 15-sensor network is considered while there are M = 3 sources in the field evolving

according to an AR-1 model. Sensors {1, 2, 3} observe source s1(t), sensors {4, 5, 6} ob-

serve source s2(t) and sensors {7, 8, 9} observe both sources s1(t), and source s3(t). In

the linear case the mappings in (3.1) are set such that entries {1, 2, 3} in h1(s1(t)) are set

as [h1,1s1(t), h1,2s1(t), h1,3s1(t)], entries {7, 8, 9} are set as [h1,4s1(t), h1,5s1(t), h1,6s1(t)]

while the rest of the entries are set equal to zero. Entries {4, 5, 6} in h2(s2(t)) are set as

[h2,1s2(t), h2,2s2(t), h2,3s2(t)], while the rest of the entries are equal to zero. Similarly,

entries {7, 8, 9} in h3(s3(t)) are set as [h3,1s3(t), h3,2s3(t), h3,3s3(t)], and the remaining

ones set to zero. For the nonlinear setting the mappings in (3.1) is set such that entries

{1, 2, 3} in h1(s1(t)) are set as [h1,1s1(t), h1,2s1(t), h1,3s1(t)], entries {7, 8, 9} are set as
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Figure 3.1. Probability of correctly clustering sensors (Pc) vs. number of data vectors
x(t),y(t) in a linear setting.

[h1,4s
2
1(t), h1,5s

2
1(t), h1,6s

2
1(t)] while the rest of the entries are set equal to zero. Entries

{4, 5, 6} in h2(s2(t)) are set as [h2,1s
2
2(t), h2,2s

2
2(t), h2,3s

2
2(t)], while the rest of the en-

tries are equal to zero. Similarly, entries {7, 8, 9} in h3(s3(t)) are set as [h3,1s
2
3(t), h3,2

s23(t), h3,3s
2
3(t)], and the remaining ones set to zero. The coefficients hm,j are normally dis-

tributed. Fig. 3.6 shows that the CS-CCA framework achieves significantly better perfor-

mance in both the linear and nonlinear settings w.r.t. PMD and K-means. The probability

of correct sensor clustering is gradually increasing with N , especially for the linear model,

reaching a probability much higher than PMD and K-means, which may not be one though.
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Figure 3.2. Probability of correctly clustering sensors vs. number of data vectors x(t),y(t)
in nonlinear settings.

3.7 Conclusions

A sparsity-inducing CCA framework was put forth and applied to clustering sensor

measurements based on their source content. Norm-one regularization was utilized to im-

pose the sparsity-requirements and recover the different sensor clusters. Relying on coordi-

nate descent techniques a novel centralized algorithm (CS-CCA) is developed to minimize

the associated cost and perform clustering. A distributed iterative approach (DS-CCA) that

relies only on single-hop inter-sensor communications is further developed using the alter-

nating direction method of multipliers. Online algorithmic implementations (OCS-CCA,

ODS-CCA), having manageable communication, computational and storage cost are also

derived for settings where sensors are constantly acquiring data. The potential of the pro-

posed sparse-CCA framework in correctly recovering is established theoretically, while
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Figure 3.3. Probability of correctly clustering sensors for the online CS-CCA framework
vs. time index t in a linear setting.

extensive numerical results demonstrate the advantages of the proposed approach over ex-

isting alternatives.
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Figure 3.4. Probability of correctly clustering sensors for the online CS-CCA framework
vs. time index t in a nonlinear setting.
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CHAPTER 4

CLUSTERING OF HETEROGENEOUS DATA

4.1 Problem Formulation

We consider a heterogeneous network of sensors, where two types of sensing nodes

are deployed in an area of interest. For instance, in environmental monitoring, or pollution

detection, the first type of sensors could sense temperature across time, while the second

type of sensors could be sensing CO (or CO2) levels [41,49]. In the monitored field there are

p1 sensors of the first type, [see red circles on Fig.1 (bottom)], and p2 sensors of the second

type [see blue boxes in Fig. 1 (bottom)]. In the field there are M spatially uncorrelated

sources, where the number of sources M is unknown. The mth source whose intensity is

denoted by random variable sm(t), for m = 1, ...,M , is located at position lm ∈ R2, while

t denotes the time index and t = 0, 1, ..., N − 1. Let A and B denote the sets of the first

and second type of sensors, with cardinality |A| = p1 and |B| = p2. Further, let lAj ∈ R2

denote the location for sensor j ∈ A, and lBi ∈ R2 the position of sensor i ∈ B. Diffusion

fields are considered here, which will be modeled using the Green’s function [8]. The field

f1(r, t) denotes the strength value of the field measured by sensors in A, and f2(r, t) the

strength of the field measured by sensors in B, at position r ∈ R2×1 and time t. Diffusion

fields are pertinent for modeling how heat or chemical substances are diffusing in space

and time [8]. From the theory of Green’s function, see e.g., [8], the two diffusion fields are

modeled as

f1(r, t) = (g1 ∗ Sd,1)(r, t) (4.1)

f2(r, t) = (g2 ∗ Sd,2)(r, t) (4.2)
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where ∗ is the convolution operator, while the functions

g1(r, t) =
1

4πγ1t
e
− ∥r∥22

4tγ1H(t) (4.3)

g2(r, t) =
1

4πγ2t
e
− ∥r∥22

4tγ2H(t) (4.4)

indicate the Green’s functions of the two-dimensional diffusion field, and H(t) is the unit

step function which is equal to unity for t ≥ 0 and zero otherwise. Moreover γ1 and γ2 are

the diffusivities of the medium through which the field propagates, see e.g., [8]. Further,

Sd,1 ∈ R2 and Sd,2 ∈ R2 denote the sources’ distribution at position r and time t, and are

given as

Sd,1(r, t) =
∑M

m=1 χ1,m(sm(t)) · δ((r− Ls,m), t) (4.5)

Sd,2(r, t) =
∑M

m=1 χ2,m(sm(t)) · δ((r− Ls,m), t) (4.6)

where δ(·) is the Dirac delta function, and χ1,m and χ2,m are random scalar nonlinear

mappings controlling the intensity of the different quantities being measured.

Sensor j ∈ A and i ∈ B, located at unknown positions lAj and lBi , respectively,

acquire at time instant t scalar measurements xj(t) and yi(t), which constitute noisy mea-

surements of the sensed fields, i.e.,

xj(t) = f1(l
A
j , t) + wj(t), for j = 1, 2, ..., p1 (4.7)

yi(t) = f2(l
B
i , t) + wi(t), for i = 1, 2, ..., p2 (4.8)

where wj(t) and wi(t) correspond to zero-mean white sensing noise which is independent

of the source intensity signals χ1,m(sm(t)), χ2,m(sm(t)) for m = 1, ...,M . Let

xt := [x1(t), x2(t), ..., xp1(t)]
T (4.9)

yt := [y1(t), y2(t), ..., yp2(t)]
T (4.10)
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denote the p1 × 1 and p2 × 1 vectors that contain the measurements acquired by sensors A

and B, respectively, at time instant t. Vectors xt, and yt essentially entail spatial samples

of the different views of the monitored area, e.g., a temperature field and a CO field in Fig.

1 (top) and Fig. 1 (center). Due to cost considerations and limited power budget, sensors

may not have GPS localization capabilities. As a result the data in xt and yt do not have

a location signature. Thus, when gathering and processing the data, it is not known which

sensor measurements in xt and yt contain information about the same field sources since

no location information is available.

The field sources [see e.g., Fig. 1 (top, center)] are quite localized affecting a limited

number of sensors in the monitored field. This further implies that different entries of xt

and yt contain information about different field sources. Denote Smx and Smy as the set of

indices of entries in xt and yt, respectively, that contain information about the mth source

for m = 1, ...,M , while S0 is the set of indices in xt and yt that contain just noise. For

example, in Fig. 1 (bottom), there are p1 = 30 sensors of the first type in A (red circles),

and p2 = 30 sensors of the second type in B (blue squares). M = 2 sources are present

forming the two diffusion fields in Fig. 1 (top), and Fig. 1 (center). In Fig. 1 (bottom)

the blue and red ellipsoids surround the area in which 90% of the energy of the source

field sources is contained. Thus, the red circles surrounded by the red ellipsoid correspond

to sensors in A acquiring information-bearing measurements about the two sources in the

field in Fig. 1 (top), whereas the red squares surrounded by the blue ellipsoids correspond

to sensors in B acquiring information about the two sources in the sensed field in Fig.

1 (center). Specifically, sensors S1
x = {4, 23} in A, and S1

y = {2, 8, 10, 18, 24, 30} in

B sense source s1(t), while sensors S2
x = {2} in A, and S2

y = {5, 29} in B sense source

s2(t), while the rest of sensors just acquire noise. It is of interest to associate measurements

acquired from the two different types of sensors, which have the entries in xt and yt,

with the present field sources. This task is essential to avoid mixing measurements that
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Figure 4.1. Diffusion field examples (top) sensed by a heterogeneous sensor network with
two types of sensing units (bottom).

correspond to different sensed sources that may confuse subsequent estimation/detection

procedures. Thus, a framework for matching different types of measurements in xt and

yt, and clustering them into groups, S1
x, S2

x, S1
y , S2

y , based on their information content is

developed here.

A fundamental property that can be utilized here is the fact that the entries in xt and

yt tend to be correlated when they contain information about the same source irrespective

of the fact that they measure different quantities.

The reason for imposing canonical variates D̂xt and Êyt to be as close as possible

is the fact that each entry of them is trying to uncover the shared sources sensed by xt and

yt. Given the source number M , traditional CCA is capable of estimating the sources that
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are present in both xt and yt, however it is not able to identify which entries of xt and yt

contain information about the same source. A necessary ingredient is the proper introduc-

tion of zeros (sparsity) in the CCA matrices D and E, such that the nonzero entries in each

row of D and E will point to these entries in xt and yt (as well as the corresponding sen-

sors) that contain information about the same source. For instance with reference to Fig. 1

(bottom), there should be one row of D and E with nonzero values at entries with indices

{4, 23} and {2, 8, 10, 18, 24, 30}, respectively, corresponding to sensors that contain infor-

mation about source s1(t); while the other row of D and E should have nonzero values

at entries with indices {2} and {5, 29} corresponding to sensors that contain information

about source s2(t), while the rest of the entries should be zero. To properly induce sparsity

in D and E, while coping with an unknown number of sources M , and motivated by the

sparse techniques in [64, 70, 79, 83, 87], the standard CCA formulation will be enhanced

with norm-one, and norm-two regularization. Further, a proper centralized and distributed

algorithmic framework will be put forth to facilitate the enhanced regularized CCA formu-

lation.

4.2 Regularized CCA

In order to induce sparsity in matrices D and E, and subsequently identify different

subsets of entries in xt and yt that contain information about the same field source, norm-

one regularization will be induced in the standard CCA formulation, motived by the work

in [64, 70, 79, 87]. Further, sensors are unaware of the number of sources M that may

be present. To cope with this limitation, not handled in standard CCA, the idea is to set

the number of rows q in D and E such that it is larger than the actual number of sources

M . Such an upper bound on M can be easily set by selecting q sufficiently high. Then,

norm-two regularization can be incorporated in the standard CCA, e.g., see [10,83] to zero-
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out the extra rows by inducing ‘group’ sparsity. In detail, the proposed regularized CCA

framework equipped with ℓ1- and ℓ2-regularization takes the form:

(D̂, Ê) = arg minD,EN
−1

∑N−1
t=0 ∥Eyt −Dxt − µ̂∥22

+ υ∥EΣ̂yE
T − I||2F + ε∥DΣ̂xD

T − I||2F

+
∑q

ρ=1λE,ρ∥Eρ:||1 +
∑q

ρ=1 λD,ρ∥Dρ:||1

+ ϕD
∑q

ρ=1 ∥Dρ:∥2 + ϕE
∑q

ρ=1 ∥Eρ:∥2 (4.11)

where the positive scalars λD,ρ and λE,ρ are controlling the sparsity (number of zeroes)

in the ρth row of D and E, respectively. Further, the nonnegative coefficients ϕD and ϕE

multiplying the last norm-two terms in (4.11) control the number of nonzero rows in D and

E. The last two terms in (4.11) introduce group sparsity, e.g., [10, 83], and can zero out

entire rows in D and E that are not necessary, especially if q > M . Thus, proper selection

of ϕD and ϕE can zero out the (q −M) redundant rows in D and E, while estimating the

ground truth number of sources.

The cost function in (4.11) will be split into 2q subproblems each of which subprob-

lems involves minimization w.r.t. a single row of D, say Dρ: (or E, say Eρ:) while fixing

the remaining rows of D and E to their most up-to-date values. To tackle the subtasks,

the alternating direction method of multipliers (ADMM), see e.g., [5] [1] will be applied.

The centralized algorithm will be derived to tackle the problem in (4.11), and perform the

desired clustering tasks in the heterogeneous sensor measurements.

4.2.1 Centralized Optimization of RCCA (CR-CCA)

A centralized setting is considered, where a fusion center (FC) collects the measure-

ments acquired across all the sensors. Notice that the cost in (4.11) is a nonconvex function

w.r.t. D and E. Block coordinate descent [4] [71] can surpass this challenge by iteratively
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solving the cost in (4.11) w.r.t. one matrix, say D (or E) while making the other matrix E

(or D) fixed. Specifically, the minimization task wrt D can be rewritten as

D̂ = arg minDN
−1

∑N−1
t=0 ∥Êyt −Dxt − µ̂∥22 (4.12)

+ ε∥DΣ̂xD
T − I||2F +

∑q
ρ=1 λD,ρ∥Dρ:||1 + ϕD

∑q
ρ=1 ∥Dρ:∥2.

In order to solve the problem in (4.12), the proposed ADMM solver will focus on one row

of D, e.g., Dρ:, while fixing the rest of the rows. Thus, Dρ: is obtained as

D̂ρ: = arg minDρ:
N−1∥Êρ:Y −Dρ:X∥22 + λD,ρ∥Dρ:∥1

+ ϕD∥Dρ:∥2 + ε∥Iρ: −Dρ:Σ̂xD
T∥22 (4.13)

in which, X := [x0 − µ̂x,x1 − µ̂x, ...,xN−1 − µ̂x] ∈ Rp1×N and Y := [y0 − µ̂y,y1 −

µ̂y, ...,yN−1 − µ̂y] ∈ Rp2×N . Let τ denote as block coordinate cycle index. Note that

the last term in (4.13) produces fourth-order polynomials in the cost function. To simplify

the process of solving (4.13) w.r.t. Dρ:, we fix the second D in the last term of the cost

in (4.13) to the most recent update D̂τ−1 during the τ th coordinate descent cycle (similar

when updating E). Given the estimates D̂τ−1 and Êτ−1 in the beginning of coordinate cycle

τ , the minimization problem in (4.13) can be rewritten as

D̂τ
ρ: = arg minDρ:

N−1∥Êτ−1
ρ: Y −Dρ:X∥22 + λD,ρ∥Dρ:∥1

+ ϕD∥Dρ:∥2 + ε∥Iρ: −Dρ:Σ̂x(D̂
τ−1)T∥22 (4.14)

To tackle the minimization problem in (4.14) we will employ ADMM. To this end,

we introduce an auxiliary vector bρ ∈ R1×p1 and reformulate (4.14) as the following equiv-

alent constrained minimization problem

(D̂τ
ρ:, b̂

τ
ρ) = arg minDρ:,bρ

N−1∥Êτ−1
ρ: Y −Dρ:X∥22 + λD,ρ

∥Dρ:∥1 + ϕD∥bρ∥2 + ε∥Iρ: −Dρ:Σ̂x(D̂
τ−1)T∥22,

subject to bρ = Dρ: (4.15)
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Notice that (4.15) amd (4.14) are equivalent in the sense that they have the same optimal

solution. A necessary step in applying ADMM in (4.15) is the formation of augmented

Lagrangian function

Lτ (Dρ:,bρ,pρ) = N−1∥Êτ−1
ρ: Y −Dρ:X∥22 + λD,ρ∥Dρ:∥1 + ϕD∥bρ∥2

+ ε∥Iρ: −Dρ:Σ̂x(D̂
τ−1)T∥22 + (Dρ: − bρ)pρ +

c

2
∥Dρ: − bρ∥22 (4.16)

where pρ ∈ Rp1×1 denotes the Lagrange multiplier accounting for the constraint bρ =

Dρ:, while c > 0 is a penalty coefficient ensuring (4.16) is strictly convex w.r.t. Dρ: and

bρ. ADMM is an iterative method, see e.g., [5], which involves the following three steps

(details follow later):

Step 1) Minimize the augmented Lagrangian in (4.16) w.r.t. Dρ:, while fixing bρ, and pρ

to their most recent updates, to obtain update D̂τ,κ
ρ: which denotes the ADMM update for

Dρ: during coordinate cycle τ , while the index κ denotes the ADMM iteration index nested

inside coordinate cycle τ . Here K ADMM iterations will be applied per coordinate cycle

τ , where K is a user-defined parameter.

Step 2) Minimize the augmented Lagrangian in (4.16) w.r.t. bρ, while fixing Dρ:, and pρ

to the ADMM updates D̂τ,κ
ρ: and pτ,κ−1

ρ obtained at steps 1) and 2), to obtain update bτ,κρ .

Step 3) Update the Lagrange multiplier using gradient ascent iterations. Let pτ,κρ denote

the ADMM update for pρ during coordinate cycle τ , and the κth ADMM iteration. These

three steps are applied for K ADMM iterations, i.e., κ = 1, ..., K, nested inside cycle τ .

The first step in ADMM, during coordinate descent cycle τ , involves minimization of

(4.16) w.r.t. Dρ:, while fixing the remaining optimization variables to their most up-to-date

values Êτ−1, bτ,κ−1
ρ , and pτ,κ−1

ρ . Specifically, D̂τ,κ
ρ can be obtained as

D̂τ,κ
ρ: = arg minDρ:

N−1∥Êτ−1
ρ: Y −Dρ:X∥22 + λD,ρ∥Dρ:∥1

+ ε∥Iρ: −Dρ:Σ̂x(D̂
τ−1)T∥22 +

c

2
∥Dρ: − bτ,κ−1

ρ ∥22 +Dρ:p
τ,κ−1
ρ . (4.17)
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The second step in ADMM involves minimizing (4.16) w.r.t. bρ, while using the most

recent updates D̂τ,κ
ρ: and pτ,κ−1

ρ to obtain

bτ,κρ = arg minbρ
ϕD∥bρ∥2 +

c

2
∥D̂τ,κ

ρ: − bρ∥22 − bρp
τ,κ−1
ρ (4.18)

The third step involves updating the Lagrange multiplier vector

pτ,κρ = pτ,κ−1
ρ + c(D̂τ,κ

ρ: − bτ,κρ )T . (4.19)

Using the convergence claims for ADMM in [5], it can be readily shown that the iterates

D̂τ,k
ρ: converge to limk→∞D̂τ,k

ρ: = D̂τ
ρ:, where D̂τ

ρ: for ρ = 1, ..., q is the minimizer of (4.14)

as the number of ADMM iterations goes to ∞.

To tackle the minimization problem in (4.17), we resort to a coordinate descent tech-

nique, where we minimize w.r.t. an entry of Dρ:, say D(ρ, β), while fixing the rest of the

entries in Dρ: to their most up-to-date values. Thus, p1 subproblems are obtained from

(4.17) each giving the update

D̂τ,κ(ρ, β) = arg mind∥ζ
τ
ρ,β − d · hτρ,β∥22 + λD,ρ|d|+ 0.5c(d− bτ,κ−1

ρ (β))2 + d · pτ,κ−1
ρ (β)

(4.20)

for β = 1, 2, ..., p1, where

ζτρ,β := [ζ1,τρ,β, ζ
2,τ
ρ,β]

T

and

hτρ,β := [N−0.5Xβ:, (Σ̂x(D̂
τ−1)T )β:]

T ,

in which

ζ1,τρ,β := N− 1
2 [Êτ−1

ρ: Y −
∑p1

ℓ=1,ℓ̸=β D̂
τ,κ−1(ρ, ℓ)Xℓ:],

ζ2,τρ,β := ε0.5[Iρ: −
∑p1

ℓ=1,ℓ̸=β D̂
τ,κ−1(ρ, ℓ)[Σ̂x(D̂

τ−1)T ]ℓ:].
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As it has been shown in [64, Apdx. A], the closed form solution to (4.20) can be expressed

as

D̂τ,κ(ρ, β) = F(ζτρ,β,hτρ,β,
c

2
(bτ,κ−1

ρ (β)−
pτ,κ−1
ρ (β)

c
) ,
c

2
, λD,ρ ) (4.21)

where F(p1,p2, p3, p4, λ) := sgn(pT1 p2 + p3) (4.22)

× (max
(
0,

(∣∣∣∣ pT1 p2 + p3
∥p2∥22 + p4

∣∣∣∣− (
λ

2(∥p2∥22 + p4)

)))
.

It is established in Apdx. C that the minimizer of (4.18) results the following update

bτ,κρ = c−1Sv(pτ,κ−1
ρ + c · D̂τ,κ

ρ , ϕD) (4.23)

where Sv(v, ϕ) = [1− ϕ
∥v∥2 ]+v.

Next, starting from (4.11), we focus on updating each row of E, e.g., Eρ:, while

fixing the rest of the rows of E and D. During τ th coordinate cycle, the estimate Eτ
ρ: is

obtained as

Êτ
ρ: = arg minEρ:

N−1∥D̂τ−1
ρ: X− Eρ:Y∥22 + λE,ρ∥Eρ:∥1

+ ϕE∥ET
ρ:∥2 + υ∥Iρ: − Eρ:Σ̂y(Ê

τ−1)T∥22. (4.24)

In order to solve the problem in (4.24), we follow a similar process as the one used to update

D̂τ
ρ: in (4.14). Then, we can obtain the updating recursions for Êτ,κ(ρ, j), b̆τ,κρ ∈ R1×p2 , and

p̆τ,κρ ∈ Rp2×1, in which the later two quantities are similar to bτ,κρ , and pτ,κρ , respectively.

The update Êτ,κ(ρ, j) can be obtained as

Êτ,κ(ρ, j) = F( [ζ̆
1,τ

ρ,j , ζ̆
2,τ

ρ,j ]
T , h̆τρ ,

c

2
(b̆τ,κ−1

ρ (j)−
p̆τ,κ−1
ρ (j)

c
) ,
c

2
, λE,ρ ) (4.25)

for ρ = 1, ..., q, and j = 1, ..., p2, while ζ̆
1,τ

ρ,j , ζ̆
2,τ

ρ,j , and h̆τρ are obtained similarly to ζ1,τρ,β ,

ζ2,τρ,β , and hτρ, respectively, after substituting X, Y, Σ̂x, D̂τ , D̂τ−1, Êτ−1, β, p1, and ε by Y,
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X, Σ̂y, Êτ , Êτ−1, D̂τ−1, j, p2, and υ, respectively. Then, the auxiliary vector b̆τ,κρ can be

obtained by

b̆τ,κρ = c−1Sv(p̆τ,κ−1
ρ + c · Êτ,κ

ρ: , ϕE). (4.26)

Finally, the Lagrangian multiplier p̆τ,κρ can be updated as

p̆τ,κρ = p̆τ,κ−1
ρ + c(Êτ,κ

ρ: − b̆τ,κρ )T (4.27)

The entire updating process for implementing the centralized regularized CCA (CR-CCA)

algorithm is tabulated as Algorithm 3.

Algorithm 3 : CR-CCA
Initialize D(0) and E(0) randomly. Initialize b0

ρ, b̆
0
ρ, p0

ρ, p̆
0
ρ to 0 for ρ = 1, 2, ..., q.

for τ = 1, 2, . . . , do

for ρ = 1, 2, . . . , q do

for κ = 1, 2, . . . ,K do

Update D̂τ,κ(ρ, β), bτ,κρ , and pτ,κρ via (4.21), (4.23), and (4.19) for β = 1, . . . , p1.

Update Êτ,κ(ρ, j), b̆τ,κρ , and p̆τ,κρ via (4.25), (4.26), and (4.27) for j = 1, . . . , p2.

end for

end for

Set D̂τ+1
ρ: = D̂τ,K

ρ: and Êτ+1
ρ: = Êτ,Kρ: for ρ = 1, . . . , q.

If ∥D̂τ+1 − D̂τ∥F + ∥Êτ+1 − Êτ∥F < ϵ for a prescribed tolerance ϵ, then break.

end for

Notice that the updates in (4.21) and (4.25) for β = 1, . . . , p1 and j = 1, . . . , p2

can be implemented for multiple nested coordinate cycles, within coordinate cycle τ and

ADMM iteration k, indicated by iteration index τ2, i.e., the updates would be written as

D̂τ,k,τ2(ρ, β) and Êτ,k,τ2(ρ, β). In Alg. 3 it was assumed that τ = 1, which implies that
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the quantities in (4.21) and (4.25) were updated for one cycle, and thus the τ2 superscript

was not included. However, notice that to solve (4.17) (as well as the corresponding mini-

mization task when updating Êτ,k
ρ: ) the updates (4.21) [and correspondingly (4.25)] should

be applied for an increasing number of nested coordinate iterations, i.e., τ2 → ∞.

4.2.2 Distributed Implementation of RCCA (DR-CCA)

The proposed regularized (R-)CCA framework in (4.11) will be tackled here in a dis-

tributed fashion in a setting where sensors can only communicate with neighboring sensors

located within sufficient communication range (single-hop neighbors). No central fusion

center exists, and sensors need to carry out the data processing and perform the clustering

tasks in the network (in-network processing). The communication graph of the sensor net-

work is formed by all sensors in A
∪
B, which correspond to the nodes of the graph. Two

nodes are connected if and only if they are within the communication range, in which case

an edge connects them in the graph. To develop a distributed algorithm, we will impose the

following assumptions in the heterogeneous network topology: A1) The communication

graph A is connected; A2) The communication graph B is connected; A3) Every sensor in

A
∪

B has at least two neighboring sensors where one is in A and the other in B, i.e., if Nj

denotes the single-hop neighborhood of sensor j ∈ A
∪

B, then ∃j and j ′ , with j ∈ A and

j
′ ∈ B, where {j, j ′ , } ⊆ Nj . Each sensor j ∈ A (first type of sensing sensor), is responsi-

ble for updating the jth column of D, namely dj ∈ Rq×1, while sensor i ∈ B is responsible

for updating the ith column in E, namely ei ∈ Rq×1. Note that assumptions A1), A2) and

A3) imply that the communication graph A
∪
B is connected. The information acquired

across sensors is spatially scattered, i.e., sensor j ∈ A has available only measurements

xt(j) (jth entry in xt), while sensor i ∈ B has available only the scalar measurement yt(i)

(ith entry in yt). Further, let x̄t(j) and ȳt(i) denote the jth and ith entry, respectively of

the zero-mean translated vectors xt − µ̂x, and yt − µ̂y, respectively.
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In order to obtain a distributed algorithm for tackling the R-CCA framework, the

three ADMM steps outlined in Sec. 4.2 will be carried out in an in-network fashion here.

To this end, a framework to estimate the global quantities D(xt − µ̂x) and E(yt − µ̂y),

which contain information from all sensors, needs to be obtained. Note that these global

quantities can be written as an average sum of local terms available across sensors, i.e.,

D(xt − µ̂x) = p1[
1

p1

∑p1
j=1 djx̄t(j)] and (4.28)

E(yt − µ̂y) = p2[
1

p2

∑p2
i=1 eiȳt(i)] (4.29)

Substituting the previous quantities in the cost in (4.17), we obtain the following minimiza-

tion problem

D̂τ,κ
ρ: = arg min Dρ:

N−1
∑N−1

t=0 ∥
∑p2

i=1 Ê
τ−1(ρ, i)ȳt(i)

−
∑p1

j=1D(ρ, j)x̄t(j)∥22 + λD,ρ∥Dρ:∥1 +Dρ:p
τ,κ−1
ρ

+ ε∥Iρ: −
1

N

N−1∑
t=0

[(

p1∑
j=1

D(ρ, j)x̄t(j))(

p1∑
j=1

d̂τ−1
j x̄t(j))

T ]∥22

+
c

2
∥Dρ: − bτ,κ−1

ρ ∥22. (4.30)

Specifically, ADMM will be employed to allow sensors estimate in a distributed fashion

the global quantities

p2∑
i=1

Êτ−1(ρ, i)ȳt(i),
p1∑
j=1

D̂τ−1(ρ, j)x̄t(j) (4.31)

which correspond to the latest updates for the quantities at (4.28) and (26), at the beginning

of cycle τ . Sensor j ∈ A is responsible for updating the entries {D(ρ, j)}qρ=1 in D, which

further implies that sensor j will keep tracking of the jth entry in vectors bρ and pρ, namely

bρ(j) and pρ(j), respectively, for ρ = 1, . . . , q. Toward this end, the minimization problem

in (4.30) is split into p1 subtasks each one of which focuses on updating one entry of Dρ:
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while fixing the remaining entries. Then, the optimization problem for updating D(ρ, j) at

sensor j ∈ A can be written as (d corresponds to the optimization variable)

D̂τ,κ(ρ, j) = arg mindN
−1

N−1∑
t=0

∥
p2∑
i=1

Êτ−1(ρ, i)ȳt(i)

−
∑p1

i=1 D̂
τ,κ−1(ρ, i)x̄t(i) + D̂τ,κ−1(ρ, j)x̄t(j)− d · x̄t(j)∥22

+ λD,ρ|d|+ dpτ,κ−1
ρ (j) + ε∥Iρ: −N−1

N−1∑
t=0

[(

p1∑
i=1

D̂τ,κ−1(ρ, i)x̄t(i)

− D̂τ,κ−1(ρ, j)x̄t(j) + d · x(t, j))(
p1∑
i=1

d̂τ−1
i x̄t(i))

T∥22

+
c

2
[d− bτ,κ−1

ρ (j)]2, for j = 1, 2, ..., p1, (4.32)

where Êτ−1 := Êτ−1,K , and D̂τ−1 := D̂τ−1,K (the updates afterK ADMM iterations). The

necessity of estimating the quantities in (4.31) to allow sensor j update D̂τ,k(ρ, j) is appar-

ent from (4.32). Sensor j ∈ A has available measurements {x̄t(j)}N−1
t=0 , and is responsible

for updating bρ(j), pρ(j), and {D(ρ, j)}qρ=1. To this end, ADMM will be utilized to ex-

press the quantities in (4.31) as the solution of a separable convex minimization problem

that can be solved in a distributed fashion and enable each sensor j to estimate these global

quantities. These local estimates will be used to replace the corresponding global quantities

in (4.32) and enable sensor j to update D̂τ,k(ρ, j).

ADMM based estimation of global quantities:

Sensor j can obtain estimates for
∑p1

i=1 D̂
τ,κ−1(ρ, i)x̄t(i) for t = 0, ..., N − 1, by solving

the separable constrained minimization problem:

minητ,κ−1
i,t,ρ

p1∑
i=1

∥ητ,κ−1
i,t,ρ − p1D̂

τ,κ−1(ρ, i)x̄t(i)∥22 (4.33)

s. to ητ,κ−1
i,t,ρ = ητ,κ−1

i′ ,t,ρ
, i

′ ∈ N A
i for t = 0, 1, ..., N − 1

whose optimal solution is
∑p1

i=1 D̂
τ,κ−1(ρ, i)x̄t(i), and ητ,κ−1

i,t,ρ ∈ R1 corresponds to the local

estimate of
∑p1

i=1 D̂
τ,κ−1(ρ, i)x̄t(i) for sensor i ∈ A, and N A

i are the neighboring sensors
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of i in sensor set A. Note that the constrains ητ−1
i,t,ρ = ητ,κ−1

i
′
,t,ρ

, i
′ ∈ N A

i for i = 1, ..., p1

guarantee that the local estimates ητ,κ−1
i,t,ρ will be equal across all the p1 sensors. Employing

ADMM across the network, the minimization task in (4.33) can be tackled by sensor j

through updating the sensor j’s local estimate ηj,t,ρ, along with the Lagrange multipliers

{vi
′
,τ,κ−1

i,t,ρ }i′∈NA
i

, that correspond to the quality constraints ητ,κ−1
i,t,ρ = ητ,κ−1

i
′
,t,ρ

for i′ ∈ N A
i .

The corresponding ADMM updating recursions are given as

vj
′
,τ,κ−1

j,t,ρ (ι) = vj
′
,τ,κ−1

j,t,ρ (ι− 1) + 0.5c2[η
τ,κ−1
j,t,ρ (ι)− ητ,κ−1

j′ ,t,ρ
(ι)] (4.34)

ητ,κ−1
j,t,ρ (ι+ 1) = [(2 + 2c2|N A

j |)Iq]−1 × [2p1D̂
τ−1(ρ, j)x̄t(j)

−
∑

j
′∈NA

j
((vj

′
,τ,κ−1

j,t,ρ (ι)− vj,τ,κ−1

j′ ,t,ρ
(ι)) + c2(η

τ,κ−1
j,t,ρ (ι)

+ ητ,κ−1

j
′
,t,ρ

(ι)))] (4.35)

in which, ι is the network ADMM iteration index, and c2 represents a positive step-size.

The convergence results in [61] reveal that if ι→ ∞, limι→∞η
τ,κ−1
j,t,ρ (ι) =

∑p1
i=1 D̂

τ,κ−1(ρ, i)

x̄t(i), no matter how vj
′
,τ,κ−1

j,t,ρ (0) and ητ,κ−1
j,t,ρ (0) are initialized. In the practice, as well as the

numerical tests a finite number of K2 ADMM iterations are performed and let η̂τ,κ−1
j,t,ρ :=

ητ,κ−1
j,t,ρ (K2). Let’s define η̂τ−1

j,t := [η̂τ−1,K
j,t,1 , ..., η̂τ−1,K

j,t,q ]T ∈ Rq×1 denote the corresponding

estimates, which can be obtained in the beginning of τ th coordinate cycle at sensor j.

A similar procedure (4.34)-(35) is applied across sensors in B for estimating
∑p2

i=1

Êτ−1(ρ, i)ȳt(i) after implementing K2 network ADMM iterations to obtain estimates ν̂τ−1
f,t,ρ
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where sensor f ∈ B is in the neighborhood of sensor j ∈ A considered earlier. Thus, after

using the local estimates the cost function wrt D(ρ, j) in (4.32) can be replaced with

D̂τ,κ(ρ, j) = arg mind0.5c[d− bτ,κ−1
ρ (j)]2 + λD,ρ|d|

+N−1

N−1∑
t=0

∥ν̂τ−1
f,t,ρ − η̂τ,κ−1

j,t,ρ − d · x̄t(j) + D̂τ,κ−1(ρ, j)x̄t(j)∥22

+ ε∥Iρ: −
1

N

N−1∑
t=0

[(η̂τ,κ−1
j,t,ρ − D̂τ,κ−1(ρ, j)x̄t(j) + d · x̄t(j))

× (η̂τ−1
j,t )T ]∥22 + d · pτ,κ−1

ρ (j) for j = 1, 2, ..., p1. (4.36)

For notational simplicity let

ν̂τ−1
f,ρ := [ν̂τ−1

f,0,ρ, ν̂
τ−1
f,1,ρ...ν̂

τ−1
f,N−1,ρ] ∈ R1×N , (4.37)

η̂τ−1
j := [η̂τ−1

j,0 , η̂
τ−1
j,1 ...η̂

τ−1
j,N−1] ∈ Rq×N , (4.38)

η̂τ,κ−1
j,ρ := [η̂τ,κ−1

j,0,ρ , η̂
τ,κ−1
j,1,ρ ...η̂

τ,κ−1
j,N−1,ρ] ∈ R1×N (4.39)

X̄j := [x̄0(j), x̄1(j)...x̄N−1(j)] ∈ R1×N (4.40)

Moreover, the following notation is used

Mτ,κ
j,ρ := ν̂τ−1

f,ρ − η̂τ,κ−1
j,ρ + D̂τ,κ−1(ρ, j)X̄j,

Pτ,κ
j,ρ := ε0.5Iρ: − ε0.5N−1(η̂τ,κ−1

j,ρ −D̂τ,κ−1(ρ, j)X̄j)(η̂
τ−1
j )T ,

Qτ,κ
j := ε0.5N−1X̄j(η̂

τ−1
j )T (4.41)

then the cost in (4.36) can be rewritten as

D̂τ,κ(ρ, j) = arg mindN
−1∥Mτ,κ

j,ρ − d · X̄j∥22 (4.42)

+ λD,ρ|d|+ d · pτ,κ−1
ρ (j) + ∥Pτ,κ

j,ρ − d ·Qτ,κ
j ∥22

+
c

2
(d− bτ,κ−1

ρ (j))2 for j = 1, 2, ..., p1.
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Using a similar method to solve (4.14) in Centralized R-CCA framework, the solution to

(4.42) can be expressed as

D̂τ,κ(ρ, j) = F(Γτ,κρ,j ,Λ
τ,κ
ρ,j ,

c

2
(bτ,κ−1

ρ (j)−
pτ,κ−1
ρ (j)

c
),
c

2
) (4.43)

where Γτ,κρ,j = [N−0.5Mτ,κ
j,ρ ,P

τ,κ
j,ρ ]

T , and Λτ,κ
ρ,j = [N−0.5X̄j,Q

τ,κ
j ]T .

After finishing the first ADMM step for (4.17), our focus is shifted to implementing

the second step in (4.18) in a distributed fashion. Similar to the optimal solution for bτ,κ−1
ρ

given by (4.23) in the Centralized R-CCA scheme, sensor j ∈ A is responsible for updating

the jth entry of bτ,κρ in (4.23) which is given by

1

c
[1− ϕD

∥pτ,κ−1
ρ + c(D̂τ,κ

ρ: )T∥2
]+(p

τ,κ−1
ρ (j) + cD̂τ,κ(ρ, j)) (4.44)

where pτ,κ−1
ρ (j) and D̂τ,κ(ρ, j) are available for sensor j ∈ A. The challenge in calculating

(4.44) is finding the global value ∥pτ,κ−1
ρ +c(D̂τ,κ

ρ: )
T∥2 in a distributed fashion. Letmτ,κ

ρ :=

∥pτ,κ−1
ρ + c(D̂τ,κ

ρ: )
T∥22, then

mτ,κ
ρ =

∑p1
ℓ=1(p

τ,κ−1
ρ (ℓ) + cD̂τ,κ(ρ, ℓ))2 (4.45)

Notice that, mτ,κ
ρ is an average-like quantity, and ADMM can be employed as in (35)-(36)

to estimate mτ,κ
ρ across sensors. Let ûτ,κj,ρ denote sensor j’s local estimate of the global

quantity mτ,κ
ρ after taking K2 network ADMM iterations, say uτ,κj,ρ (K2). Thus, bτ,κρ (j) can

be obtained as

bτ,κρ (j) =
1

c
[1− ϕD,ρ

ûτ,κj,ρ
]+(p

τ,κ−1
ρ (j) + cD̂τ,κ(ρ, j)). (4.46)

Finally, the last task is to complete the third ADMM step in (4.19) in a distributed way.

Sensor j ∈ A needs to update pτ,κρ (j) based on the most recent updated D̂τ,κ(ρ, j) and

bτ,κρ (j), which can be directly obtained by

pτ,κρ (j) = pτ,κ−1
ρ (j) + c(D̂τ,κ(ρ, j)− bτ,κρ (j)). (4.47)
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Starting form (4.11), a similar process will be followed to obtain updating recursions

for Êτ,κ(ρ, i), which involves iteratively updating the corresponding vector b̆τ,κρ (i) and

Lagrangian multiplier p̆τ,κρ (i). Specifically, let’s denote ν̂τ,κ−1
i,t,ρ as the local estimate of∑p2

ℓ=1Ê
τ,κ−1(ρ, ℓ)ȳt(ℓ) after applying K2 ADMM iterations across sensors in B. Define

ν̂τ−1
i,t := [ν̂τ−1,K

i,t,1 , ..., ν̂τ−1,K
i,t,q ]T ∈ Rq×1 and let

ν̂τ,κ−1
i,ρ := [ν̂τ,κ−1

i,0,ρ , ..., ν̂τ,κ−1
i,N−1,ρ]

T ∈ Rq×N (4.48)

η̂τ−1
h,ρ := [η̂τ−1

h ]ρ: ∈ R1×N (4.49)

Ȳi := [ȳ0(i), ..., ȳN−1(i)]
T ∈ Rq×N (4.50)

where h ∈ A corresponds to the neighboring sensor of i ∈ B. Using similar notation as in

(4.41) let us define for sensor i ∈ B

M̆τ,κ
i,ρ := η̂τ−1

h,ρ − ν̂τ,κ−1
i,ρ + Êτ,κ−1(ρ, i)Ȳi,

P̆τ,κ
i,ρ := υ0.5Iρ: − υ0.5N−1(ν̂τ,κ−1

i,ρ − Êτ,κ−1(ρ, i)Ȳi)(ν̂
τ−1
i )T ,

Q̆τ,κ
i := υ0.5N−1Ȳj(ν̂

τ−1
i )T . (4.51)

Thus, the recursions for updating Êτ,κ(ρ, i), b̆τ,κρ (i), and p̆τ,κρ (i) can be obtained as

Êτ,κ(ρ, i) = F([N−0.5M̆τ,κ
i,ρ , P̆

τ,κ
i,ρ ]

T , [N−0.5Ȳi, Q̆
τ,κ
i ]T ,

c

2
(b̆τ,κ−1

ρ (i)−
p̆τ,κ−1
ρ (i)

c
),
c

2
) (4.52)

b̆τ,κρ (i) =
1

c
(1− ϕE

ˆ̆uτ,κi
)+(p̆

τ,κ−1
ρ (i) + cÊτ,κ(ρ, i)) (4.53)

p̆τ,κρ (i) = pτ,κ−1
ρ (j) + c(Êτ,κ(ρ, i)− b̆τ,κρ (i)) (4.54)

where ˆ̆uτ,κi denotes the local estimate at sensor i ∈ B local estimate of ∥p′,τ,κ−1
ρ +c(Êτ,κ

ρ: )
T∥22

after applying K2 ADMM iterations. To summarize, the distributed regularized CCA(DR-

CCA) algorithm is tabulated as Algorithm 3.
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Algorithm 3: DR-CCA

Initialize {d0
j ∈ Rq×1 for j ∈ A and ei ∈ Rq×1 for i ∈ B randomly. Initialize scalars

b0
ρ(j) = b̆0

ρ(i) = p0
ρ(j) = p̆0

ρ(i) = 0 for ρ = 1, 2, ..., q, j = 1, 2, ..., p1 and i = 1, 2, ..., p2.

for τ = 1, 2, . . . , do

for ρ = 1, 2, . . . , q do

for κ = 1, 2, . . . , K do

Sensor j ∈ A and i ∈ B form estimates {η̂τ,κ−1
j,t,ρ }N−1

t=0

and {ν̂τ,κ−1
i,t,ρ }N−1

t=0 , via K2 network ADMM iterations.

Update D̂τ,κ(ρ, j), bτ,κρ (j) and pτ,κρ (j) via (4.43), (4.46) and

(4.47) respectively for j = 1, . . . , p1 and j ∈ A.

Update Êτ,κ(ρ, i), b̆τ,κρ (i) and p̆τ,κρ (i) via (4.52), (4.53)

and (4.54) respectively for i = 1, . . . , p2 and i ∈ B.

end for

end for

If maxj∈A∥d̂τj − d̂τ−1
j ∥2 < ϵ and maxi∈B∥êτi − êτ−1

i ∥2 < ϵ for a prescribed tolerance

ϵ, then break.

end for

From the convergence claims in [61] it follows that, asK2 → ∞, η̂τ,κ−1
j,ρ → D̂τ,κ−1

ρ: X,

η̂τ−1
j → D̂τ−1X, ν̂τ,κ−1

i,ρ → Êτ,κ−1
ρ: Y, and ν̂τ−1

i → Êτ−1X. Similary, as K → ∞, the D̂τ,κ
ρ:

and Êτ,κ
ρ: obtained from (4.43) and (4.52) go to the optimizer of D̂τ

ρ and Êτ of (4.14) and

(4.24) , respectively. Further, as the block coordinate cycle τ → ∞ the updates D̂τ and Êτ

will approach δ(ε)-close to a stationary point of the cost in (4.11) where limϵ→0δ(ϵ) = 0.
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4.3 Parameter Selection

The CR-CCA and DR-CCA schemes utilize two different kinds of regularization co-

efficients. The ℓ2-regularization coefficients ϕD and ϕE control the number of zero-rows

in D and E. The ℓ1-regularization coefficients {λD,ρ and λE,ρ}qρ=1 are used to control

the number of zeros in the ρth row of matrices D and E, respectively. Thus, it is criti-

cal to choose the proper coefficients, which ensure CR-CCA and DR-CCA algorithms can

accurately and efficiently identify and match groups of sensors in A and B, whose mea-

surements are affected by the same source. Further, proper selection of ϕD and ϕE can

facilitate estimation of the number of field sources via the number of nonzero rows in the

estimated D and E matrices.

First, the range of the number of field sources is going to be estimated. Recall that,

in standard CCA, D̂xt is an estimate of the underlying source signals. The ensemble co-

variance of D̂xt is D̂ΣxD̂
T and given that there are M sources, it should ideally have rank

equal to M . Thus, in an ideal noiseless setting D̂ΣxD̂
T should have M nonzero eigenval-

ues corresponding the energy contributed by the M field sources. In practice, the ensemble

D̂ΣxD̂
T is estimated by the sample-average based estimator D̂Σ̂xD̂

T , which will be af-

fected by noise and the usage of a finite number of samples estimating Σ̂x. In general, rank

(D̂Σ̂xD̂
T ) = q in the presence of noise. The challenge is to decide how many eigenvalues

to keep and interpret them as source components.

After applying CR-CCA (or DR-CCA) for ϕD = ϕE = 0 and λD,ρ = λE,ρ = 0

for ρ = 1, ..., q, we estimate the number of ‘source-related’ eigenvalues in D̂Σ̂xD̂
T using

the cumulative percent variance (CPV) approach, see. e.g. [27] and [90]. Specifically, the

percentage of total variance captured by the first A largest eigenvalues of D̂Σ̂xD̂
T , namely

λx,1 ≥ λx,2 ≥, ...,≥ λx,A is quantified as

CPVA(%) =

∑A
i=1 λx,i∑q
i=1 λx,i

× 100, (4.55)
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where q corresponds also to the total number of eigenvalues of D̂Σ̂xD̂
T . A relatively large

and small value, namely Ru and Rl, are used for CPVA(%) to estimate an upper and lower

bound on the number of field sources. Values Ru = 95% and Rl = 75%, will be chosen

here to estimate the upper and lower bounds M̂u and M̂l, respectively, on the number of

sources. The percentages can be set based on prior information we may have on how strong

the sources are relative to the sensing noise.

Secondly, the zero column index sets of D and E, denoted as CD and CE , respectively,

are estimated. At this stage the number of nonzero rows in D and E are irrelevant, thus

ϕD = ϕE = 0, while λD,1 = λD,2 = ... = λD,q and λE,1 = λE,2 = ... = λE,q since we are

looking for column-wise sparse structures. The estimates of sparse sets CD and CE can be

obtained through the following three steps: Step 1) Find the smallest values of λD,ρs and

λE,ρs, denoted here as λmaxD and λmaxE , that result D̂ and Ê in CR-CCA (or DR-CCA) to be

equal to zero; Step 2) Multiply λmaxD and λmaxE with a sufficiently small coefficient ω1, and

apply the scaled sparsity-controlling in CR-CCA (or DR-CCA) to get D̂ and Ê; Step 3)

Use the zero column support of D̂ and Ê to estimate sets CD and CE . This process can be

used to distinguish the columns in D and E (and subsequently the entries in xt and yt) that

contain information about a source (corresponding to a nonzero column), or just contain

sensing noise (corresponding to zero-columns). To estimate the unknown λmaxD and λmaxE ,

via estimates λ̂mD and λ̂mE someone can start from λD,ρ = λE,ρ = 0 for ρ = 1, ..., q, and

gradually increase λD,ρ and λE,ρ by a small step size ∆λ and apply CR-CCA (or DR-CCA)

to obtain D̂ and Ê until the matrices D̂ = 0 and Ê = 0. Then, the largest set of values

λD,ρ, λE,ρ that gave nonzero estimates D̂ and Ê is retained as λ̂mD and λ̂mE .

Third, proper ϕD, ϕE , {λD,ρ, λD,ρ}qρ=1 are selected to implement the clustering task

via CR-CCA (or DR-CCA). Coefficients ϕD, ϕE , λD,ρ, and λE,ρ are initialized to zero.

Then, λD,ρ and λE,ρ are increased gradually until the zero-column set of estimates D̂, Ê
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match the sets CD, CE obtained earlier. Let the sparsity-controlling coefficients achieving

that be denoted as λD,0 and λE,0. For simplicity in notation let D̂ and Ê denote the estimates

for D and E after using the most recently updated values for ϕD, ϕE , {λD,ρ, λD,ρ}qρ=1 in

CR-CCA (or DR-CCA).

Fixing the coefficients λD,ρ = λD,0 and λE,ρ = λE,0 for ρ = 1, ..., q, the coefficients

ϕD = ϕE are gradually increased (starting from 0) until the number of non-zero rows in D̂

and Ê lies between M̂l and M̂u.

As ϕD and ϕE are increasing, more rows in D and E will be zeroed out. The chal-

lenge is when to stop increasing ϕD and ϕE such that the number of nonzero rows in D̂

and Ê does not drop below the number of field sources. The goal is to obtain estimates

D̂ and Ê that share the same nonzero row index set and they are robust in the sense that

when slightly changing ϕD or ϕE does not change the number of nonzero rows in D̂ and Ê.

Let R̃D and R̃E denote the nonzero row index set for matrices D̂ and Ê, respectively. The

coefficients ϕD and ϕE will be increased up to the point where R̃D = R̃E . Since there is a

possibility that a row of D̂ and Ê, say D̂ρ: and Êρ:, may not be zeroed out simultaneously

by adjusting ϕD and ϕE , we force concurrent zeroing out by increasing correspondingly

λD,ρ or λE,ρ. For fixed ϕD and ϕE parameters, the sparsity-controlling coefficients are

readjusted until R̃D = R̃E , and D̂, Ê are robust (the set of nonzero rows does not change

with slight changes in ϕD or ϕE). If the latter requirements can not be met, ϕD and ϕE are

increased to generate new zero rows in D̂ and Ê, and then λD,ρ and λE,ρ can be readjusted

again.

The parameter selection scheme is summarized below as Algorithm 4. The zero-

column index sets of the estimates D̂ and Ê are denoted as CD,c and CE,c, respectively;

while the number of the common non-zero rows in D̂, Ê is denoted as Mc.

Algorithm 4: Sparsity-Controlling Coefficient Selection
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• Find the upper and lower bounds M̂u and M̂l.

Use CPVM̂l
= 0.75, CPVM̂u

= 0.95.

• Estimate the zero-column index sets of D, E: CD and CE .

Initialize: ϕD = ϕE = 0, {λD,ρ = λE,ρ = 0}qρ=1.

Step 2.1) Find estimates λmaxD , λmaxE , namely λ̂mD , λ̂mE .

Step 2.2) Use ω1λ̂
m
D , ω1λ̂

m
E into CR-CCA (or DR-CCA).

Determine CD and CE of D̂ and Ê obtained at Step 2.2.

• Adjust ϕD, ϕE , and {λD,ρ, λE,ρ}qρ=1 alternatively.

Initialize ϕD = ϕE = λD,ρ = λE,ρ = 0 for ρ = 1, ..., q.

Find D̂, Ê using CR-CCA (or DR-CCA) and determine sets CD,c and CE,c.

3.1) Find proper {λD,ρ, λE,ρ}qρ=1 resulting sets CD and CE .

while (CD,c ⊂ CD or CE,c ⊂ CE )

If CD,c ⊂ CD: {λD,ρ = λD,ρ +∆λ}qρ=1;

If CE,c ⊂ CE: {λE,ρ = λE,ρ +∆λ}qρ=1;

Run CR-CCA (or DR-CCA) and update CD,c and CE,c.

end

3.2) Increase ϕD and ϕE gradually (using step size ∆ϕ) and run CR-CCA (or DR

-CCA) to update D̂, Ê, and Mc, until M̂l ≤Mc ≤ M̂u. Initialize Rc as the set of

the common nonzero row indices in D̂ and Ê.

3.3) Find pertinent D̂ and Ê.

while (M̂l ≤Mc ≤ M̂u)

while (true)

(i)If ρ ∈ Rc and D̂ρ: ̸= 0, then λD,ρ = λD,ρ +∆λ, for ρ = 1, ..., q.

(ii)If ρ ∈ Rc and Êρ: ̸= 0, then λE,ρ = λE,ρ +∆λ, for ρ = 1, ..., q.

(iii) Run CR-CCA (or DR-CCA), and update D̂, Ê, R̃D, R̃E .
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(iv) If R̃D = R̃E = Rc

If D̂, Ê are robust, then STOP.

else, ExitFlag = 1, and Break while.

end

end

(v) If the number of the common non-zero rows in D̂ and Ê < |Rc|, ExitFlag = 2

and Break while.

end

If ExitFlag = 2, then update Mc = |Rc|.

If ExitFlag = 1, then increase ϕD, ϕE gradually, i.e., ϕD = ϕD + n ·∆ϕ,

ϕE = ϕE + n ·∆ϕ for n=1,2,..., and use them in CR-CCA (or DR-CCA), until

the number of the common non-zero rows in D̂, Ê < |Rc|. Update Mc = |Rc|.

end

The Break while in Alg. 3 terminates the execution of the inner while loop, and the

STOP exits from Alg. 3. In the numerical tests, the parameters involved in Alg.3 are set

as follows: Rl = 75%, Ru = 95%, ω1 = 0.01, ∆λ = 0.005, ∆ϕ = 0.005, ε = 0.5, and

υ = 0.5.

4.4 Simulation Results

The performance of CR-CCA and DR-CCA schemes is tested and compared with the ex-

isting methods in terms of the probability of correctly clustering sensors according to their

source content, which is equal to the probability of correctly assigning zero and non-zero

entries when estimating D and E. The proposed schemes are compared with i) the spar-

sity inducing CCA algorithm in [79] abbreviated as PMD; and ii) intelligent K-Means
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(iK-Means) clustering approach in [13], [46] which estimates the number of clusters based

on sequential extraction of anomalous patterns in the observation data, and then applying

estimated cluster number in the traditional K-Means [38].

Consider a setting in which M = 3 uncorrelated sources with p1 sensors in A and

p2 sensors in set B. The diffusivities in the Green’s function, namely γ1 and γ2, are set

as γ1 = 1 and γ2 = 2. Three scenarios with low, medium, and high number of sensors

(denoted as low, medium, and high setting, respectively) are considered in the testing.

Specifically, the low setting consists of p1 = 10 sensors in A, and p2 = 10 sensors in

set B while sensors in sets {A1,B2}, {A3,B4}, and {A5,B6} observe sources s1(t),

s2(t), and s3(t), respectively, and the remaining 14 sensors sense noise. In the medium

setting, p1 = 15 and p2 = 15 sensors are deployed, where sensors in {A1,A5,B2,B3},

{A6,B7}, and {A2,A7,B8} sense sources s1(t), s2(t), and s3(t), respectively, and the re-

maining 21 sensors only sense noise. The high setting consists of p1 = 30 sensors in

A and p2 = 30 sensors in set B. Sensors {A4,A23,B2,B8,B10,B18,B24,B30} ob-

serve source s1(t), while source s2(t) affects sensors {A2,B5,B29}. Further, sensors

{A7,A13,A21,A24,B1,B4,B23} acquire measurements from source s3(t), and the remain-

ing sensors observe just sensing noise. The low number of sensors setting simulation results

are depicted in Fig. 4.3, while Fig. 4.4 shows the performance for the medium setting,

and Fig. 4.2, Fig. 4.5, Fig. 4.6 correspond to the high number of sensors setting. In Fig.

4.2, Fig. 4.3, Fig. 4.4, Fig. 4.5, and Fig. 4.7, the sensing signal-to-noise ratio (SNR) in

the acquired measurements is set to be 10dB. The number of ADMM iterations, namely

K, is set equal to K = 20. Note that, all the simulation results are produced after 150

independent Monte Carlo runs.

In Fig. 4.2 we compare the probability of correctly clustering sensors among CR-

CCA for different q (upper bounding the actual number of sources), DR-CCA for differ-

ent q (q = 5, 6, 7), PMD and iK-Means. The number of the network ADMM iterations,
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say K2, is set to 20. The corresponding regularization coefficients, ϕD, ϕE , λD,ρs and

λE,ρs in CR-CCA and DR-CCA are selected using the Alg. 3 in Sec. 4.3. The sparsity-

controlling coefficients in PMD are selected through cross-validation, whose details can

be found in [79]. Fig. 4.2 depicts that CR-CCA yields the best performance, and as the

number of data samples increases, the probability of correct sensor clustering will increase.

It is also interesting that DR-CCA achieves better performance than other centralized al-

ternatives, i.e., PMD and iK-Means. Thus, Fig. 4.2 clearly demonstrates the capability of

CR-CCA and DR-CCA to correctly cluster sensors in heterogeneous networks based on

their information content. Note also that selecting q does not affect performance as long

as q > M . Notice that for a fixed number of data samples, the probability of correctly

clustering sensors based on their source content is not affected significantly by the value

of q. Notice that, in the iK-Means, the selection of the number of clusters and the task of

clustering the sensors are quite associated with the magnitude of the sensor data, resulting

errors when estimating the number of groups and improper clustering, as sensors in the

same source-group do not necessary acquire measurements of similar magnitude. From

testing iK-Means, the estimated number of clusters was always equal to 1 irrespective of

the number of measurements used, making the probability curve to be straight. The same

conclusions with Fig. 4.2 can also be obtained from Fig. 4.3 and Fig. 4.4 under the low and

medium number of sensors setting, respectively. The results in Fig. 4.2, Fig. 4.3 and Fig.

4.4 corroborate the capability of our algorithm in sensor clustering no matter how many

sensors are deployed as long as a sufficiently large number of consensus iterations K2 is

run.

Fig. 4.5 depicts the performance of DR-CCA for different network ADMM itera-

tions, i.e., K2 = 10, K2 = 20, and K2 = 30 for the p1 + p2 = 60 sensors. The test results

show that as K2 increases, DR-CCA can achieve better performance. Another interesting

property is that CR-CCA outperforms DR-CCA, which is expected. Note that asK2 → ∞,
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the involved global quantities can be precisely estimated by the ADMM technique applied

in A and B, resulting DR-CCA to behave similarly to CR-CCA.

Here we also test the performance of CR-CCA and DR-CCA along with sensing SNR, i.e.,

SNR=5dB, 10dB, 15dB, 20dB and 25dB. The network ADMM iteration is set as K2 = 2

for DR-CCA, the sparsity-controlling coefficients are chosen through the Alg. 3 in Sec.

4.3, and the number of data vector is set as N = 500. Fig. 4.6 depicts that CR-CCA and

DR-CCA with larger SNR exhibit better behavior than those with smaller SNR, irrespective

of the values of q used in the simulation for p1 + p2 = 60 sensors.

Finally, we examine the performance of DR-CCA for q = 5, 6, 7 andN = 500, 1000,

versus the average number of scalars communicated per sensor in the network. Recall that,

in τ th block coordinate cycle, in the beginning of updating the ρth row of D, sensor j ∈ A

receives scalars {ν̂τ−1
f,t,ρ}

N−1
t=0 from its neighboring sensor f ∈ B, then during the κth ADMM

iteration, sensor j needs to communicate with its |N A
j | neighboring sensors in A, which

includes transmitting scalars {{vj,τ,κ−1

j
′
,t,ρ

(ℓ)}j′∈NA
j
, ητ,κ−1
j,t,ρ (ℓ), wj,τ,κ

j
′
,ρ
(ℓ), uτ,κj,ρ (ℓ)}

N−1,K2

t=0,ℓ=1 , and

receiving scalars {vj
′
,τ,κ−1

j,t,ρ (ℓ), ητ,κ−1

j
′
,t,ρ

(ℓ), wj
′
,τ,κ

j,ρ (ℓ), uτ,κ
j
′
,ρ
(ℓ)}N−1,K2

t=0,ℓ=1,j
′∈NA

j

. Here the number

of network ADMM iterations is set as K2 = 20, and the single-hop communication dis-

tance is set to be 0.4 with sensors lying in the area [0, 1] × [0, 1]. In the simulation, we fix

the number of the block coordinate cycle, i.e., τ = 0, 1, ..., 99, for different testing cases,

and also apply the parameter selection algorithm in Alg. 3 to DR-CCA. The simulation

results are shown in Fig. 4.7 for p1 + p2 = 60 sensor. It can be seen that, in the beginning

as the average number of scalars communicated among neighboring (n for short) increases,

the probability of correctly clustering sensors also increases. Within each coordinate cy-

cle, a finite number of ADMM iterations, say K and a finite number of network ADMM

iterations, namely K2, are used to estimate the global quantities in a distributed fashion for

DR-CCA. Note that the probability for N = 1000 converges to a higher value than that for

N = 500, under the same q values for q = 5, 6, 7.
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Figure 4.2. Probability of correctly clustering sensors vs. number of data vectors for p1 +
p2 = 60 sensors.

4.5 Conclusion

A norm-one and norm-two regularized CCA framework (R-CCA) was put forth and

applied to clustering sensor measurements based on their source content in heterogeneous

sensor networks. Norm-two regularization was utilized to estimate the unknown number of

field sources, while norm-one terms were employed to recover different clusters of informa-

tion within the sensor data. Relying on block coordinate descent techniques equipped with

alternating direction method of multipliers, a novel centralized R-CCA (CR-CCA) was de-

veloped to minimize the associated cost problem, which was solved in a recursive way, to

perform the heterogeneous data clustering. Building on CR-CCA and further employing a

network ADMM approach, a distributed iterative scheme, namely DR-CCA, was derived

to carry out the clustering task in ad hoc sensor network where only neighboring sensors
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Figure 4.3. Probability of correctly clustering sensors vs. number of data vectors for p1 +
p2 = 20 sensors.

collaborate. The potential of the proposed CR-CCA and DR-CCA in correctly recovering

clusters for heterogeneous sensors, was demonstrated via extensive numerical tests.
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Figure 4.4. Probability of correctly clustering sensors vs. number of data vectors for p1 +
p2 = 30 sensors.
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ferent number of ADMM iterations.
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Figure 4.7. Probability of correctly clustering sensors vs. the average number of scalars
communicated per sensor for N = 500 measurements (left) and N = 1000 measurements
(right).
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CHAPTER 5

COMMUNICATION EFFICIENT FIELD RECONSTRUCTION

5.1 Problem Description

Consider a field consisting of p spatially scattered sensors, which is generated by M

underlying sources, while the number of sources M is unknown. The source signals placed

in different spatial locations are modeled as random uncorrelated processes, namely sm(t),

where m denotes the source index and t is time instant. We assume the source signals are

wide sense stationary, which implies that their ensemble average is time-invariant.

The source signals are reaching the sensing units via multipath propagation chan-

nels. And the channel coefficients from the mth source to sensor j is modeled as a finite

impulse response filter with coefficients hj,m = [hj,m(0), . . . , hj,m(L − 1)], where L rep-

resents the maximum number of taps these filters can have. The channel coefficients are

not available and modeled as random Gaussian variables. Inspired by the diffusion fields

which are pertinent for modeling how heat or chemical substances are diffusing in space

and time. We assume the energy of the source signals is decreasing exponentially with

distance (corresponds to the propagation mechanics of a diffusion field [8]).

A sensor is considered to observe a source if the sensed source signal energy at the

sensor’s location is more than 10% of the signal power at the emission point, otherwise

it is assumed that the sensor does not contain any information about that source. Thus,

a threshold corresponding to 10% of a source’s signal energy is used to determine which

source every sensor observes. Given that the source signal power attenuates exponentially

fast with propagation distance, the field sources are quite localized affecting a limited num-
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ber of sensors in the monitored field. Let Sj contain the indices of the sources observed by

sensor j, the measurement xj(t) adheres to the following model

xj(t) =
∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)sm(t− τ) + wj(t) (5.1)

where, cj,m is a positive coefficient quantifying the attenuation experienced by the mth

source signal at sensor j; for a diffusion field it can be quantified as (see details in [8])

cj,m =
1

4π
e−||pj−psm ||2 (5.2)

where pj,psm ∈ R2 correspond to the positions of sensor j and source sm(t), respectively,

and ∥ · ∥2 denotes Euclidean norm. Further, wj(t) corresponds to the zero-mean sensing

noise with variance σ2
w.

In existing sensing protocols developed for FC-based topologies, all sensor measure-

ments at any time instant t have to be transmitted back to the FC for application dependent

processing. Thus, at every t all p sensors transmit to the FC, leading to a communication

cost of the order of O(pt). The communication cost is prohibitively high given that the

number of sensors p is large for many different sensing applications such as environmental

monitoring, surveillance and so on [12, 85].

The objective here is to utilize the spatial correlation among the sensor measure-

ments to significantly reduce the communication load. The aforementioned goal can be

divided into two steps: i) Identifying the set of sensors acquiring spatially correlated mea-

surements; and ii) Learning the statistical models that the different correlated groups of

sensor measurements follow. Toward this end, the first step boils down to determining the

sets Mm, ∀ m ∈ {1, ...,M} that contain the sensor indices whose measurements contain

information about source sm(t).

The second step relies on the fact that a set of correlated sensor measurements are

linearly dependent on common source signals. The main idea is to transmit the measure-
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ments of only one sensor in a correlated set Mm, namely a head sensor, and rely on adap-

tive filtering to learn proper linear transformations (filtering coefficients) that can be used

to reconstruct the data of all other sensors in Mm using only the head sensor measure-

ments. Learning has to be performed under a setting where the source-to-sensor channel

coefficients are unknown, and source signals are not available. In detail, in every set of

correlated measurements Mm, the head sensor will be designated as a reference sensor

whose measurements will be used to linearly reconstruct all other sensors’ measurements

in Mm. Thus, communication savings will be introduced by communicating to the FC

only the head sensor measurements.

5.2 Learning and Reconstructing the Monitored Field

The proposed framework entails a training phase during which training data are ac-

quired at the sensors and used to learn the statistical correlation structure of the monitored

field. Specifically, three tasks are carried out here: i) determining the unknown number

of sources M ; ii) identifying the M sets of sensors with correlated measurements, i.e.,

{Mm}Mm=1; and iii) learning pertinent filters to reconstruct the sensor measurements in a

correlated set Mm using only the head sensor’s acquired measurements.

5.2.1 Determining the Number of Sources

A framework to identify the number of informative sources in the field and subse-

quently determine the correlated clusters is proposed. A novel combination of sample-

averaging along with PCA is employed to effectively reduce the sensing noise variance and

estimate the number of sources.
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During training each sensor, say sensor j, acquires N measurements xj(t) for t =

1, . . . , N adhering to the model in (5.1). Each sensor then performs sample-averaging using

a moving-average (MA) filter, producing the MA processed measurements

x̄j(t) = P−1
∑P

ℓ=1 xj(t+ ℓ− 1) (5.3)

where P denotes the length of the MA filter performing averaging, with t = 1, . . . , N −

P + 1, while N > P .

The next step is to stack all the MA measurements in (5.3) in a vector x̄t := [x̄1(t) . . .

x̄p(t)]
T that can be formed at the FC. The MA data vectors are subsequently used to esti-

mate the MA data covariance matrix via sample-averaging as

Σ̂x̄ = (N − P + 1)−1

N−P+1∑
t=1

[x̄t −mx̄][x̄t −mx̄]
T , (5.4)

where mx̄ := (N−P +1)−1
∑N−P+1

t=1 x̄t denotes the sample-average estimate for the mean

of x̄t.

It is demonstrated in Appendix D that as the number of training data increases, while

the length of the MA filter P is sufficiently large to make the sensing noise variance suf-

ficiently small (arbitrarily close to zero for increasing P ), then the number of eigenvalues

of Σ̂x̄, whose amplitude is larger than the MA sensing noise variance σ2/P , will be equal

to the number of sources M . Effectively the MA filtering helps reducing the sensing noise

variance while preserving the source signal power as shown in Appendix D. Moreover,

MA filtering transforms the convolutive model in (5.1) into a simpler low dimensional

linear model on which MA data x̄t adhere to. Then, PCA is utilized to determine the

source-related principal eigenvalues.

5.2.2 Clustering Sensor Measurements

The first step in the proposed field reconstruction scheme is to determine clusters of

correlated sensor measurements that contain information about common sources, namely
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the sensor subsets Mm which contains all sensors sensing source sm(t) for m = 1, . . . ,M .

The norm-one regularized canonical correlations framework in [15] to cluster a set of sensor

measurements based on source content, will be enhanced with a PCA scheme used to check

the validity of the resulting clusters and achieve flawless clustering for sufficiently large

number of measurements, even in settings where sensors observe more than one sources

(overlapping sources). This is to be contrasted with the approach in [15] which may not

perform well for an overlapping setting, where the clustering performance is sensitive to

certain parameter selection.

The CS-CCA algorithm proposed in Sec. 3.2.1 is utilized here to cluster sensor

measurements after substituting the two data sequences in (3.2) by χt and ψt, which are

defined as:

χt = [x̄Tt−1, · · · , x̄Tt−f ]T , (5.5)

ψt = [x̄Tt , · · · , x̄Tt+f−1]
T (5.6)

Nonetheless, the clustering performance of CS-CCA may not be perfect. To improve per-

formance, an iterative combination of the CS-CCA framework and PCA framework is pro-

posed next. As it will be shown in Sec. 5.2.3 this combination can lead to perfect sensor

clustering as the number of measurements N , and MA filter length P are increasing.

The idea here is to determine how many sources are present in each of the estimated

clusters M̂m obtained from CS-CCA when applied in all data. If a cluster has one source

no further splitting is needed, whereas if a cluster contains information about multiple

sources the goal is to identify which sources are contained in that cluster. For each of

the clusters M̂m the corresponding sensor measurements are stacked in vectors x̄1
m1(t),

where the subscript indicates the cluster index and the superscript the iteration index of
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the alternating process between CS-CCA and PCA, while t = 1, . . . , N̄ and m1 ≡ m =

1, . . . ,M . These vectors are used to form the sample-averaging covariance estimates

Σ1
x,m1 := N̄−1

N̄∑
τ=1

[x̄1
m1(τ)−mx̄1

m1
][x̄1

m1(τ)−mx̄1
m1
]T , (5.7)

where mx̄1
m1

denotes the sample-average of vectors {x̄1
m1(t)}N̄t=1. Here PCA can be ap-

plied to determine the number of source-related PCs, namely M1
m1 for m1 = 1, . . . ,M .

For sufficiently large P (length of MA filter) the noise-related eigenvalues in (5.7) will

be significantly smaller than the source-related PCs which can be easily separated using

thresholding. M1
m1 can be used to estimate the number of sources for which information is

contained in each cluster M̂1
m1 .

For each cluster M̂1
m1 for which M1

m1 = 1 no further splitting is applied in the

cluster since it has been estimated that only one source is present in the measurements

in M̂1
m1 . However, if M1

m1 > 1 this implies that more than one sources are sensed by

the measurements in M̂1
m1 , and CS-CCA is applied within the cluster in order to separate

the measurements further based on their information content. Toward this end, the CS-

CCA formulation in (3.6) can be applied after using matrices E and D of size M1
m1 ×

|M̂1
m1 |f where |M̂1

m1 | denotes the number of measurements in M̂1
m1 . Further, the χt and

ψt vectors will be of size |M̂1
m1 |f × 1 and constructed as described earlier using only

the measurements in M̂1
m1 . Thus, if M1

m1 > 1 CS-CCA is employed (iteration index 2)

to perform further splitting of cluster M̂1
m1 into M1

m1 clusters denoted as M̂2
m2 , where

m2 = 1, . . . ,M1
m1 and m ∈ {1, . . . ,M} for all these clusters that give more than one

PCs after iteration 2. Then, PCA is applied again during iteration 3 to decide whether

any of the clusters M̂2
m2 need to be spit further as described earlier. The aforementioned

iterative alternation between CS-CCA and PCA is continued until all resulting clusters

contain measurements whose corresponding covariance contains at most one source-related

85



PC, or the resulting cluster contains a single measurement which may have information

about multiple sources.

Next, PCA is applied to (i) merge clusters that contain information about the same

source; and (ii) further conclude which sources are contained in the single-measurement

clusters which sense multiple sources. To carry out task (i) any two clusters whose co-

variance has a single source-related eigenvalue are combined into a single-cluster if the

resulting cluster gives a measurement covariance matrix which also has a single source-

related eigenvalue. PCA is used again to find the source-related PCs. If only one PC is

present in the covariance of the resulting cluster then it is ensured that both clusters com-

bined contain information about the same source and merging is valid, otherwise merging

is not valid. Task (ii) focuses on identifying which single-source clusters carry informa-

tion about the sources contained in these single-measurement clusters that sense more than

one sources. After completion of task (i) each of the remaining single-measurement clus-

ters are merged with those single-source clusters that contain measurements of sensors

that are physical neighbors. This is done since sources sensed by the same sensor have

to be geographically close in distance. In the merging of the neighboring clusters with a

single-measurement cluster, we select only those neighboring clusters that, when merged

with the single-measurement cluster, do not generate a covariance matrix with a number of

PCs greater than the number of single-source neighboring clusters (which actually is equal

to the number of sources contained in the single-measurement cluster). This process en-

sures that clustering is performed correctly for a sufficiently large number of measurements

and points to the single-source clusters whose source content is contained in the examined

single-measurement cluster.
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5.2.3 Algorithmic Analysis and Practical Considerations

Interestingly, as the number of training data N and the length of the MA filter P

are increasing arbitrarily large, alternating applicability of the CS-CCA and the PCA can

achieve flawless clustering of the sensors according to their source content. Specifically, it

is demonstrated in Appendix E:

Proposition 3 : Application of CS-CCA and PCA in an alternating fashion as proposed

in Sec. 5.2.2, performs correct clustering of the sensors with probability one as the number

of data N and the length of the MA filter P are increasing to infinity.

In practice both N and P are finite, which may create challenges when determin-

ing the source-related PCs and trying to separate them from the noise-related PCs when

applying PCA to split or merge clusters. Specifically, in a scenario where there are sen-

sors whose measurements contain information about multiple sources, CS-CCA may result

clusters where some measurements contain information about a single source, while other

measurements contain many sources. When N and P are sufficiently large applying PCA

as delineated earlier will result multiple source-related PCs corresponding to the sources

contained in a cluster. However, when N and P are small due to e.g., low sampling rates,

it may be the case that some source-related PCs have small-amplitude and cannot be dis-

tinguished from noise-related PCs, especially if some sources have weak presence in the

cluster measurements. A process is described next to separate within a cluster sensors that

contain information about one source (single-source sensors), from sensors whose mea-

surements are affected by multiple sources (multi-source sensors).

Within a cluster, say M̂, that potentially contains both single-source and multi-

source sensors the goal is to extract out the singe-source sensors and place them in the

correct single-source cluster. To this end, the process starts by picking a sensor’s measure-

ments inside a cluster as a reference signal and checking its ability to reconstruct (via linear

filtering) another sensor’s measurements within the cluster. Proper linear filters can be de-
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termined via the normalized least mean squares (NLMS) process detailed in Sec. 5.2.4. If

the reference sensor picked within a cluster is a single-source sensor and there are other

single-source sensors within the cluster observing the same source, then the NLMS recon-

struction error will have a variance relatively close to the sensing noise variance σ2
w, see

e.g., [78]. Let us denote the subset that contains all these single-source sensors whose mea-

surements can be reconstructed from the reference sensor as Ns. This is to be contradicted

with the case where either i) the reference sensor picked is a multi-source sensor, or ii) the

remaining sensors within the cluster are multi-source sensors. If all reconstruction errors

between the reference sensor and the rest of the sensors in the cluster have variance larger

than σ2
w, it can be concluded that the single-source set Ns will be empty.

If the resulting set Ns of potential single-source sensors is not empty, then these

are removed from cluster M̂ and merged with that single-source cluster that contains in-

formation about the same source. This is found by employing PCA and checking which

neighboring single-source cluster can be merged with the measurements from Ns without

increasing the number of PCs in the resulting merged cluster. If set Ns is empty one possi-

ble scenario is that the reference sensor is single-source and the remaining measurements

within the cluster examined correspond to multi-source sensors. To check such a case, the

measurements corresponding to the reference sensor from cluster M̂ are merged with ex-

isting single-source clusters. If there is a single-source cluster, say M̂′ that when merged

with the measurements of the reference sensor does not result increasing the number of

PCs, then the reference sensor measurements are removed from cluster M̂ and merged

with the single-source cluster M̂′. Then, among the remaining sensors in M̂ another one

is picked as a reference and the process is repeated until all remaining sensors in M̂ have

been used as reference sensors.

The aforementioned process is used to extract the single-source measurements from

a cluster M̂ and merge them with those single-source clusters that have the same source
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information content. The remaining measurements will correspond to multi-source sensors

and these multi-source sensors will be merged as explained in Sec. 5.2.2 with neighboring

single-source clusters to identify their source content. The algorithm involving alternation

between CS-CCA and PCA is summarized in Alg. 5.

Algorithm 5 Clustering via Alternating CS-CCA and PCA
1: Initialize: x̄0

t := x̄t for t = 1, . . . , N̄

2: Apply CS-CCA using the N̄ measurements x̄0
t to obtain clusters M̂m for m = 1, . . . ,M .

3: Set M̂1
m1 ≡ M̂m and m1 ≡ m.

4: for k = 1, 2 . . . , κ do

5: Stack the measurements in cluster M̂k
mk to form vectors {{x̄k

mk(t)}N̄t=1}mk .

6: Obtain covariance estimate Σk
x,mk as in (5.7) and find the number of source-related PCs,

namely Mk
mk , by applying PCA.

7: If Mk
mk = 1 then M̂k

mk is a single-source cluster, else if Mk
mk > 1 CS-CCA is applied using

{x̄k
mk(t)}N̄t=1. to split M̂k

mk into smaller clusters M̂k+1
mk+1

8: If all obtained clusters so far have one PC or contain only a single-sensor measurement then

break, else go back to 4.

9: end for

10: For each of the clusters obtained apply step for small N,P in Sec. 5.2.3 to separate possible

multi-source sensors from single-source sensors.

11: Merge the single-source clusters into a larger cluster if resulting cluster has only one source-

related PC.

12: Merge multi-source clusters with neighboring single-source clusters to identify their source-

content.
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5.2.4 Learning Statistical Models

5.2.4.1 Single-Source Clusters

Consider a cluster M̂m obtained via the process in Sec. 5.2.2 and designated as a

single-source cluster. Then, a head sensor im is designated in cluster M̂m. Since all sensors

in M̂m have correlated measurements, the goal here is to learn |M̂m| − 1 linear filters that

are able to generate all sensors’ measurements in M̂m using as input the measurements

acquired at the head sensor im for m = 1, . . . ,M . During the training phase, adaptive

filtering is employed at the FC to learn the coefficients of the |M̂m|−1 linear filters. During

the operational stage only the cluster head sensors transmit their measurements to the FC

which can then reconstruct the other sensors’ measurements in each cluster using only the

head sensor data and the learnt filter coefficients. This process will reduce significantly the

communication costs.

The head sensor im in each cluster M̂m is selected arbitrarily. During the training

phase of the algorithm all sensors in M̂m send their measurements to the FC. The FC treats

the head sensor measurements xim(t) as input, and each of the remaining |M̂m| − 1 sensor

measurements in M̂m is viewed as desired output of a linear filter whose coefficients are

determined via the NLMS adaptive filtering approach, see e.g., [78]. Each filter is set to

have L̄ taps, where L̄ is selected sufficiently large such that L ≤ L̄.

Consider sensor j within cluster M̂m with j ̸= im (not the head sensor). Sensors

j and im belong to cluster M̂m, thus they should be sensing a common source sm(t).

Taking into account the data model in (5.1) and ignoring for now the sensing noise the

measurements in the frequency domain are given as

Xj(ω) = cj,mHj,m(ω)Sm(ω), (5.8)

Xim(ω) = cim,mHim,m(ω)Sm(ω) (5.9)
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Figure 5.1. Adaptive filter block diagram..

where ω ∈ [−π, π] denotes frequency, while Hj,m(ω), Him,m(ω) and Sm(ω) denote the

frequency responses of the source-to-sensor channels {hj,m(τ), him,m(τ)}L−1
τ=0 , and source

sm(t), respectively. From (14), (15) it follows readily

Xj(ω) =
cj,m
cim,m

· Hj,m(ω)

Him,m(ω)
·Xim(ω). (5.10)

Thus, the NLMS algorithm is trying to learn in time-domain (via a linear filter), the fre-

quency response cj,m
cim,m

· Hj,m(ω)

Him,m(ω)
associating the measurements at head sensor im, with the

measurements of sensor j within single-source cluster M̂m. Learning the filter in (5.10),

via which the measurements of sensor sensor j can be reconstructed using as input the head

sensor’s measurements, involves the following three steps (see block diagram in Fig. 5.1):

Step 1: Evaluate the estimated output signal for sensor j

x̂j(t) := uTim(t) · ŵim,j(t) (5.11)

where uTim(t) := [xim(t), xim(t − 1), · · · , xim(t − L̄ + 1)]T is the filter input vector,

ŵim,j(t) := [wim,j,t(0), wim,j,t(1), · · · , wim,j,t(L̄− 1)]T contains the filter coefficients used

to learn the relationship in (5.10).

Step 2: Calculate the error signal eim,j(t)

eim,j(t) = x̂j(t)− xj(t) (5.12)
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Step 3: Update the filter coefficients ŵim,j(t) as

ŵim,j(t+ 1) = ŵim,j(t) + µ
eim,j(t)

ζ + uTim(t)uim(t)
uim(t), (5.13)

where µ is the step-size used in NLMS, and ζ is a positive constant. The coefficients are

continuously updated at the FC until ∥ŵim,j(t + 1)− ŵim,j(t)∥2 stops decreasing below a

desired threshold. After NLMS algorithm has terminated the final filter coefficients will be

denoted by ŵim,j .

5.2.4.2 Multi-source clusters

When the cluster M̂m considered contains multi-source sensors some generaliza-

tions need to be performed to the aforementioned NLMS framework based adaptive fil-

tering approach in order to reconstruct accurately the measurements of the multi-source

sensors within M̂m. Let’s denote a multi-source sensor j in M̂m, for each source n ∈ Sj

a head sensor, namely in, is picked from a neighboring single-source cluster M̂n that con-

tains information about source n. Since sensor j observes all sources in set Sj the corre-

sponding frequency domain equations of (14), (15) are written here as

Xj(ω) =
∑
n∈Sj

cj,nHj,n(ω)Sn(ω) (5.14)

Xin(ω) = cin,nHin,n(ω)Sn(ω) (5.15)

where the same notation as in (14) is used. From (5.14), the following can be obtained

Xj(ω) =
∑
n∈Sj

cj,nHj,n(ω)

cin,nHin,n(ω)
Xi,n(ω). (5.16)

Comparing (5.16) with the single-source equivalent in (5.10) it turns out that |Sj|

different filters, with frequency responses { cj,nHj,n(ω)

cin,nHin,n(ω)
}n∈Sj

, have to be learnt using the

NLMS approach. Thus, |Sj| different adaptive filters will be learnt using NLMS via the

following updating steps:
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Step 1: Evaluate the filter output x̂j(t)

x̂j(t) =
∑
n∈Sj

uTin(t) · ŵin,j(t) (5.17)

where uin(t) := [xin(t), xin(t− 1), · · · , xin(t− L̄ + 1)]T corresponds to the input signals

from head sensor in in single-source cluster M̂n, and ŵin,j(t) := [win,j,t(0), win,j,t(1), . . . ,

win,j,t(L̄ − 1)]T corresponds to the L̄ coefficients of the adaptive filters used to learn the

frequency response { cj,nHj,n(ω)

cin,nHin,n(ω)
}. This step is done for all n ∈ Sj .

Step 2: Calculate the error signal ein,j(t)

ein,j(t) = x̂j(t)− xj(t) (5.18)

Step 3: Update the filter coefficients win,j as

ŵin,j(t+ 1) = ŵin,j(t) + µ
ein,j(t)ui,n(t)

ζ + uTin(t)uin(t)
. (5.19)

The coefficients ŵin,j(t+ 1) are iteratively updated until the update difference ∥ŵin,j(t)−

ŵin,j(t − 1)∥2 drops below a desired threshold. In fact, the three updating steps presented

earlier could be applied periodically in a setting where the channel coefficients hj,m,t(τ)

are slowly-varying with time.

5.2.5 FC Field Reconstruction

During the operation stage of the proposed scheme, the FC is responsible for recon-

structing all sensor measurements using only i) the measurements of the head sensors; and

ii) the filter coefficients determined in Sec. 5.2.4. First, the reconstruction of the mea-

surements of a sensor belonging to a single-source cluster M̂m is considered at the FC.

Let sensor im denote the head sensor in cluster M̂m with measurements xim(t). Sensor j

measurements are reconstructed using the filter ŵim,j obtained using NLMS in Sec. 5.2.4.1

as

x̂j(t) = uTim(t) · ŵim,j, (5.20)
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where uim contains the head sensor’s measurements [cf. Sec. 5.2.4.1].

If sensor j belongs to a multi-source cluster M̂m, then the FC can reconstruct its

measurements readily using the filters ŵin,j , obtained in Sec. 5.2.4.2, as follows

x̂j(t) =
∑
n∈Sj

uTin(t) · ŵin,j, (5.21)

where uin(t) corresponds to the sensor measurements obtained at head sensor in in neigh-

boring single-source cluster M̂n [cf. Sec. 5.2.4.2].

5.3 Communication and Computational Costs

In a setting with dense sensor deployment, the communication cost is an important

figure of merit to quantify the efficacy of the algorithm. The proposed framework intro-

duces a significant reduction in the communication cost with respect to a setting where all

sensors have to transmit their measurements to the FC every time they sense new informa-

tion. Specifically, consider a setting with M uncorrelated sources (number of single-source

clusters) impacting the N + T measurements acquired across the p sensors, where N cor-

responds to the number of the training data and T denotes the number of measurements

obtained during the operational phase of the algorithm. The proposed scheme entails the

transmission of pN+MT scalars. In a standard approach, where all sensors transmit to the

FC, the communication cost will be p(N+T ) scalars. The reduction in the communication

cost takes place during the operation stage of the proposed scheme, the reason is that in

practical settings the number of sensors p is much larger than the number of sources M ,

especially when the network consists of densely populated sensing units.

During the training stage of the algorithm, the computational complexity at the FC

is O(Np2) dominated by PCA. During the operational stage, the reconstruction formulas

in (5.20) and (5.21), reveal that the computational complexity at the FC is of the order of

O(L̄ · T ·
∑M

m=1(|M̂m| − 1)).
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The scalability of the algorithm to handle data from large number of sensors is an-

other important aspect in practical deployments. Employing CS-CCA and PCA for a large

population of sensors may be challenging. Thus, from the perspective of a practical im-

plementation, the entire field can be split in multiple, physically separated subfields which

can be treated separately as described earlier in Secs. 5.2.1 and 5.2.2. In each of these

subfields the proposed framework is utilized to identify their respective clusters. Then, the

merging approach put forth in Sec. 5.2.2 can be applied in clusters obtained in neighboring

subfields.

5.4 Numerical Tests

The proposed framework is tested here in terms of clustering efficiency, field recon-

struction quality and communication efficiency. To this end, p sensors are deployed within

a 2-D field occupying the normalized region [0, 1]× [0, 1]. The field sources evolve in time

according to a first-order autoregressive model (AR-1), i.e., sm(t) = Fm ·sm(t−1)+um(t),

for m = 1, . . . ,M where Fm is the autoregressive coefficient which is selected such that

|Fm| ≤ 1, and um(t) corresponds to zero-mean white perturbation noise with variance 0.1.

The propagation coefficients for the channels {hj,m(l)}p,L,Mj=1,l=1,m=1 in (5.1) are Gaus-

sian distributed under the constraint that their energy is equal to one, i.e., {
∑L−1

τ=0 h
2
j,m(τ) =

1}, where L = 3. Furthermore, the memory length, namely f in (5.5), is set as f = 1. The

sparsity-controlling coefficients, saying {λD,ρ, λE,ρ}Mρ=1, are chosen through the λ-selection

scheme in Sec. III-C of [15]. The NLMS-based adaptive filter is considered to have L̄ = 20

taps and the NLMS step-size is set to µ = 0.01. Furthermore, the sensing noise variance is

set such that the signal-to-noise-ratio (SNR) in the numerical tests is 13dB. Note that all the

simulation graphs below are obtained after averaging over 100 independent Monte Carlo
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runs. In this section, we apply our proposed algorithm in Sec. 5.2 to the following three

scenarios:

S1) Non-overlapping case: Three uncorrelated sources s1(t), s2(t) and s3(t) are consid-

ered to be at positions [0.3, 0.4], [0.8, 0.8], and [0.8, 0.2], respectively. p = 30 sensors are

considered here, and each source is sensed by 10 sensors. Each sensor acquires information

about one source only, since sources do not overlap here.

S2) Overlapping case 1: p = 15 sensors are deployed in the field in which M = 2

uncorrelated sources are present. Each source is sensed by 5 single-source sensors, the

remaining 5 sensors observe both sources.

S3) Overlapping case 2: There are p = 30 sensors andM = 4 sources in the field, see. Fig.

5.2. In detail, 4 sensors (denoted by the purple dots), 4 sensors (red dots), 4 sensors (pink

dots), and 3 sensors (blue dots) observe source s1(t), s2(t), s3(t), and s4(t), respectively.

Moreover, 3 sensors (the green dots) acquire information about source s1(t) and s2(t), 4

sensors (yellow dots) are affected by both sources s3(t) and s4(t), while the remaining

sensors (black dots) are far away from any of the four sources and they only sense noise.

5.4.1 Clustering Performance

During the training phase, the number of sources needs to be determined and sub-

sequently the sensor measurements should be clustered into M groups according to their

source information content. First, it is demonstrated that the MA filtering approach in Sec.

5.2.1 eliminates the noise-related PCs in the MA data covariance to estimate the number of

sources. The length of MA filter is set as P = 30 in the experiments. The relative strength

(with respect to the summation of all nonzero eigenvalues) of each eigenvalue of the orig-

inal data covariance Σ̂x and MA data covariance Σ̂x̄ is depicted for the non-overlapping

case in Fig. 5.3, and for overlapping case 1 in Fig. 5.4. Clearly, when applying MA the

96



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

 

 

s
2
(t)

s
3
(t)

s
4
(t)

noise
s

1
(t),s

2
(t)

s
3
(t),s

4
(t)

s
1
(t)

Figure 5.2. Configuration for overlapping case 2..

noise-related eigenvalues are effectively eliminated making easier to find the number of

source-related eigenvalues which equals M = 3 in Fig. 5.3 and M = 2 in Fig. 5.4.

Next, we study the number of iterations alternating between PCA and CS-CCA as

described in Sec. 5.2.2, namely the κ constant in Alg. 5, required to achieve flawless

sensor clustering. Specifically, in Fig. 5.5, we plot the average number of PCA/CS-CCA

iterations needed along with vertical lines showing the spread in the number of iterations

versus the number of training data for all three different scenarios S1, S2 and S3. It can

be seen that the most challenging case in terms of higher number of iterations required is

scenario S3 where sources overlap. Further, it can also be inferred that as the number of

training data increases the required number of iterations decreases since CS-CCA performs

better in terms of clustering the sensor data and less iterations are required to reallocate
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Figure 5.3. Relative strength of the eigenvalues in the data covariance before (A) and after
(B) applying MA filtering for the non-overlapping case.

sensors that are wrongly clustered. The probability of correct clustering via CS-CCA is

also studied in Figs. 5.6, 5.7 and 5.8 versus the number of training data samples available

per sensor. Note that the different probability curves are plotted for a different number of

CS-CCA/PCA iterations to demonstrate how the scheme in Sec. 5.2.2 gradually improves

the clustering accuracy. Figs. 5.6, 5.7 and 5.8 depict the probability curves for scenarios S1,

S2 and S3, respectively. It can be seen clearly in all cases that as the number of iterations

increases the probability also increases and eventually reaches one after a certain number

of iterations depending on the setting. Note also that the probability increases with the

number of training data. Further, the improvement in probability is substantial for the initial
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Figure 5.4. Relative strength of the eigenvalues in the data covariance before (A) and after
(B) applying MA filtering in overlapping case 1.

iterations, while it declines as more and more iterations are applied and perfect clustering

is reached.

5.4.2 Signal Reconstruction

The average reconstruction MSE at the FC is studied here versus the number of

training data available. In detail, the performance metric utilized here is the normalized

average recovery mean-square error defined as

MSEn =
1

p

p∑
j=1

[

∑T
t=1(x̂j(t)− xj(t))

2
2∑T

t=1(xj(t))
2
2

], (5.22)

where the data employed correspond to the data acquired after the training phase during

the operational stage. Thus, the normalized average MSE demonstrates how efficient is the
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Figure 5.5. Number of iterations required for perfect clustering vs. number of training
samples.

proposed algorithm in reconstructing data other than the training data (generalization) that

follow the same statistical model. The reconstruction capability of the proposed framework

in Sec. 5.2.4 via NLMS adaptive filtering and relying on the source cluster sensors is de-

picted in Fig. 5.9, for scenarios S1, S2 and S3. Fig. 5.9, corroborates that as the number

of training sensor measurements increases the normalized MSE reduces showing the ca-

pability of the proposed NLMS-based reconstruction technique in learning the correlation

patterns within clusters. Further, the average normalized MSE is similar for all different

scenarios considered showing the effectiveness of the proposed scheme irrespective of the

setting considered.
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Figure 5.6. Probability of correct sensor clustering vs. number of training samples for
different number of CS-CCA/PCA iterations for scenario S1.

5.4.3 Source-Sensor Channel Variation and Communication Efficiency

The adaptivity of the NLMS’s reconstruction ability is tested in a setting where the

source-sensor channel coefficients change at a given time. The test setting involves p = 10

sensors that observe the same source. The channel coefficients {hj(ℓ)}10,3j=1,ℓ=1 are modified

at time instant t = 2000, and sensor 1 is used as the head sensor whose measurements

will be used as a reference signal when applying NLMS to reconstruct the measurements

corresponding to the remaining 9 sensors. Fig. 5.10 depicts the relative error versus time t.

The relative reconstruction MSE is evaluated here as

eMSE(t) :=

∑10
j=2(x̂j(t)− xj(t))

2

1
4000

∑3999
t=0

∑10
j=2(xj(t))

2
. (5.23)
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Figure 5.7. Probability of correct sensor clustering vs. number of training samples for
different number of CS-CCA/PCA iterations for scenario S2.

Fig. 5.10 corroborates the adaptability of the proposed scheme in the event of changes in

the channel coefficients. Clearly, when the source-sensor channel coefficients change, the

NMLS approach, after an overshoot in the relative MSE at t = 2000 is able to eventually

recover and reconstruct all the sensor measurements accurately . Finally, Fig. 5.11 il-

lustrates the communication cost in terms of the number of scalars transmitted from the

sensors to the FC versus time. The communication cost is depicted for the three differ-

ent scenarios S1, S2 and S3. The training phase lasts up to t = 5000 where all sensors

acquire N = 5000 measurements used as training data, while the remaining T = 5000

correspond to the measurements acquired during the operational stage. Notice that during

the training phase all sensors transmit to the FC so there is no reduction in communication
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Figure 5.8. Probability of correct sensor clustering vs. number of training samples for
different number of CS-CCA/PCA iterations for scenario S3.

cost during this period. However, during the operational phase where sensor clustering has

been performed and only the head sensors of each cluster transmit information to the FC

the reduction in communication cost is substantial compared to a setting where all sensors

keep transmitting their measurements to the FC. Fig. 5.11 depicts the substantial reduction

in the number of scalars that need to be communicated from the head sensors to the FC

during the operational phase of the novel framework.

5.5 Conclusion

A novel framework was put forth for sensor clustering and communication efficient

field reconstruction. Norm-one regularized canonical correlations were combined with
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Figure 5.9. Normalized average reconstruction MSE for scenarios S1,S2 and S3.

principal component analysis and moving-average filtering to successfully cluster sensors

according to their information content, as the number of training data and moving-average

filter length goes to infinity. Utilizing data only from pertinent head sensors in each clus-

ter, the FC reconstructs all sensors’ measurements using effective normalized least mean

squares techniques, reducing substantially the communication cost. Numerical experiments

demonstrated the capability of the proposed novel approach in field reconstruction.
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t = 2000.
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CHAPTER 6

CLUSTERING OF MULTIMODAL HETEROGENEOUS DATA

6.1 Problem Statement

The ideas of matching different types of sensor measurements that contain informa-

tion about the same sources can be generalized in settings where there are more than two

different types of sensors. Oftentimes a variety of sensors measuring temperature pres-

sure, carbon monoxide, carbon dioxide and so on are employed to get a better view and

understanding of the sensed field. Our idea is to start from the multiset canonical corre-

lation analysis (M-CCA) framework, see e.g., [23,40] that is capable to uncover common

features from multiple (more than 2) sets of data and introduce the sparsity regularization

terms introduced in Sec. 3.

Consider a connected network consisting of K ≥ 2 types of sensors, which generate

K different data sets, and M uncorrelated scalar sources, namely {sm(τ)}Mm=1, with the

number of sources unknown. Let’s denote Sba as the bth sensor of the ath type, and denote

Sa as the sensor set for the ath type of sensors with cardinality |Sa| = pa. Each sensor,

say sensor Sni , acquires scalar measurements {xi,τ (n)} during time instances τ = 1, · · · , t.

Each sensor contains the information about one of the M sources. The measurements of

the sensor Sni , adhere to the following model:

xi,n(τ) =
M∑
m=1

hm,i,n(sm(τ)) + wi,n(τ) (6.1)

where hm,i,n(·) is a random scalar linear mapping from R1 to R1, which equals to zero when

sensor Sni is sufficiently far from source sm(τ), and wi,n(τ) denotes zero-mean sensing

noise.
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Let xi(τ) := [xi,1(τ) − mi,1, · · · ,xi,n(τ) − mi,n, · · · ,xi,pi(τ) − mi,pi ]
T aggregate

the measurements acquired across all the sensors in Si, where mi,n represents the sample-

averaged expectation of xi,n(τ), i.e., mi,n = 1
t

∑t
τ=1xi,n(τ). Given K different data sets,

x1(τ) ∈ Rp1×1, x2(τ) ∈ Rp2×1, ...,xK(τ) ∈ RpK×1 for τ = 1, ..., t, M-CCA is looking for

q × pk matrices Dk and pk × q matrices Ek such that the following summation of pairwise

estimation errors is minimized, i.e.,

({Ei}K−1
i=1 , {Dj}Kj=2) = arg minDj ,Ei

K−1∑
i=1

K∑
j>i

t−1

t∑
τ=1

∥xi(τ)− EiDjxj(τ)∥22 (6.2)

Unlike the formulation for standard CCA that involves two data sets and it is imposed

the canonical variates to be as similar as possible, in the above M-CCA framework, only

Djxj(τ) is used to estimate the common information present in xi(τ) and xj(τ), corre-

sponding to the source signals and then based on the estimated source signals, matrices Ei

are introduced to recover the sensor measurements xi(τ).

The objective of this chapter is to estimate the number of sources and cluster the

sensors according to their source content. Toward this end, we will apply PCA along

with moving-average (MA) filtering to determine the number of sources. Then, norm-one

regularization will be combined with M-CCA to identify the set of sensors acquiring spa-

tially correlated measurements. Ideally imposed sparsity in matrices {Ei}K−1
i=1 and {Dj}Kj=2

makes these matrices behave such that each row of Di and each column of Ei can have the

same nonzero entry positions which correspond to the entries of the xi(τ) vector that con-

tain information about the same source.

In order to develop the sparse M-CCA algorithm in both centralized and distributed

fashions, we will impose the following assumptions in the multi-modality heterogeneous

networks: A1) Each source affects K types of sensor measurements; A2) The communi-

cation graph for each different type of sensors is connected; and A3) Each sensor has K

different types of neighboring sensors.
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6.2 ℓ1-Regularized Multiset Canonical Correlations

In order to isolate noninformative entries in xi(τ) and identify the source-informative

groups of entries within xi(τ), norm-one is incorporated in the standard M-CCA formu-

lation in (6.2). Proper sparse {Ei}K−1
i=1 and {Dj}Kj=2 matrices can be obtained through the

following sparsity-inducing M-CCA (SM-CCA) formulation:

({Ei}K−1
i=1 , {Dj}Kj=2) = arg minDj ,Ei

K−1∑
i=1

K∑
j>i

t−1

t∑
τ=1

∥xi(τ)− EiDjxj(τ)∥22 (6.3)

+
K−1∑
i=1

q∑
ρ=1

λEi,ρ∥Ei(:, ρ)∥1 +
K∑
j=2

q∑
ρ=1

λDj,ρ∥Dj(ρ, :)∥1.

Note that the number of rows of Dj and the number of columns of Ei, say q, is set as the

estimated number of sources obtained in Sec. 5.2.1. Block coordinate descent techniques

will be utilized to derive centralized and distributed approaches tackling the minimization

problem of (6.3).

6.2.1 Centralized SM-CCA (CSM-CCA)

We consider a centralized setting where there exists a fusion center collecting all

sensor measurements and solving the minimization problem in (6.3). In the beginning, one

type of sensor data is applied to the proposed PCA along with the MA filtering scheme

proposed in Sec. 5.2.1 to determine the number of sources and the value of q is set to the

estimated number of sources.. Using the block coordinate descent solver, the cost in (6.3)

is minimized w.r.t. one entry of {Dj}Kj=2 (or {Ei}K−1
i=1 ) while keeping the remaining entries

of {Dj}Kj=2 (or {Ei}K−1
i=1 ) to their most current updates. Let’s denote the current coordinate

descent cycle as z, and the most up-to-date updates of Dj and Ei as D̂z
j and Êz

i , respec-

tively, for i = 1, · · · ,K − 1, j = 2, · · · ,K. Specifically, in the beginning of coordinate
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cycle z, given the estimates {D̂z−1
j }Kj=2 and {Êz−1

i }K−1
i=1 , the minimization problem which

is used to obtain the current updates {D̂z
j}Kj=2 and {Êz

i }K−1
i=1 can be formulated as

({Êz
i }K−1
i=1 , {D̂z

j}Kj=2) = arg minDj ,Ei

K−1∑
i=1

K∑
j>i

t−1

t∑
τ=1

∥xi(τ)− EiDjxj(τ)∥22 (6.4)

+
K−1∑
i=1

q∑
ρ=1

λEi,ρ∥Ei(:, ρ)∥1 +
K∑
j=2

q∑
ρ=1

λDj,ρ∥Dj(ρ, :)∥1

To facilitate the application of coordinate descent iterations, we rewrite the cost in (6.4)

w.r.t. Dj while fixing {Ei}K−1
i=1 and {Di

′}i′ ̸=i

D̂z
j = arg minD

j−1∑
i=1

t−1

t∑
τ=1

∥xi(τ)− Êz−1
i Djxj(τ)∥22 +

q∑
ρ=1

λDj,ρ∥Dj(ρ, :)∥1. (6.5)

Coordinate descent is further applied in (6.5) to split it into qpi subproblems, each of which

corresponds to the minimization problem w.r.t. one entry of Dj , say Dj(α, β). After fixing

the remaining qpi − 1 entries to their most up-to-date values, the scalar update D̂z
j(α, β)

can be obtained by minimizing the following cost function:

D̂z
j(α, β) = arg mind

j−1∑
i=1

t−1

t∑
τ=1

∥χi,τ,α,β − d · Ex,τ,i(:, (β − 1)q + α)∥22 + λDj,α · |d|

(6.6)

where χi,τ,α,β = xi(τ)−
∑qpj

ℓ=1,ℓ̸=(β−1)q+α dv(ℓ) ·Ex,τ,i(:, ℓ) ∈ Rpi×1, and Ex,τ,i := xTj (τ)⊗

Êz−1
i , in which dv := vec(D̂z−1

j ) and vec represents the operator of vectorization, and ⊗

denotes Kronecker product.

Let’s define χα,β ∈ R(p1+p2+···+pj−1)t×1 and Ex,α,β ∈ R(p1+p2+···+pj−1)t×1 as

χα,β :=
1√
t
[χT1,1,α,β, · · · ,χT1,t,α,β, · · · ,χTj−1,1,α,β, · · · ,χTj−1,t,α,β]

T (6.7)

Ex,α,β :=
1√
t
[(Ex,1,1(:, (β − 1)q + α))T , · · · , (Ex,t,1(:, (β − 1)q + α))T ,

· · · , (Ex,1,j−1(:, (β − 1)q + α))T , · · · , (Ex,t,j−1(:, (β − 1)q + α))T ]T (6.8)
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After applying (6.7) and (6.8) in the first term of (6.6), the cost in (6.6) can be rewritten as

D̂z
j(α, β) = arg mind∥χα,β − d · Ex,α,β∥22 + λDj,α · |d| (6.9)

After observing that (6.9) is a scalar sparse regression problem, it turns out that

D̂z
j(α, β) = F(χα,β,Ex,α,β, 0, 0, λ

D
j,α) for α = 1, · · · , q, β = 1, · · · , pj, j = 2, · · · ,K

(6.10)

Next, we update each entry of Êz
i , say Êz

i (β, α) for i = 1, · · · ,K − 1. After simple

mathematical manipulations, the cost w.r.t. Êz
i (β, α) can be formulated as

Êz
i (β, α) = arg mine

K∑
j>i

t−1

t∑
τ=1

(χj,τ − e · hj,τ )2 + λEi,α|e| (6.11)

where hj,τ = (D̂z−1
j xj(τ))(α) ∈ R1, and χj,τ = xi,β(τ) − mi,β −

∑q
ℓ=1,ℓ̸=α Ê

z−1
i (β, ℓ) ·

(D̂z−1
j xj(τ))(ℓ) ∈ R1. Similarly, the update Êz

i (β, α) can be obtained as

Êz
i (β, α) = F(χi,β,α,hi,β,α, 0, 0, λEi,α) (6.12)

where χi,β,α = 1√
t
[χi+1,1, · · · , χi+1,t, · · · , χK,1, · · · , χK,t]

T ∈ R(K−i)t×1, and hi,β,α =

1√
t
[hi+1,1, · · · , hi+1,t, · · · , hK,1, · · · , hK,t]T ∈ R(K−i)t×1. The CSM-CCA algorithm can

be summarized as the following four steps:

Step 1) Use PCA combined with MA to estimate the number of sources which is assigned

to the value of q.

Step 2) Initialize {D̂0
j}Kj=2 and {Ê0

i }K−1
i=1 randomly.

Step 3) For the zth coordinate descent cycle, update D̂z
j(α, β) and Êz

i (β, α) via (6.10) and

(6.12) for α = 1, ·, q, β = 1, · · · , pj (or pi), j = 2, · · · ,K, and i = 1, · · · ,K − 1.

Step 4) If the CSM-CCA cost reduction in the current descent is larger than a pre-specified

threshold go back to Step 3), otherwise exit and return D̂j = D̂z
j and Êi = Êz

i for

j = 2, · · · ,K, and i = 1, · · · ,K − 1.
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6.2.2 Distributed SM-CCA (DSM-CCA)

The SM-CCA scheme is redesigned for a setting where each sensor is able to talk

only with its single-hop neighbors. In this distributed setting, sensor Sni will update the sub-

matrices Di(:, n) ∈ Rq×1 and Ei(n, :) ∈ R1×q using its available measurements xi,n(τ) for

τ = 1, · · · , t. First of all, a distributed PCA approach [66] combined with MA filtering is

applied to find the number of sources. Specifically, a framework of locally estimating prin-

cipal components vectors was proposed in [66], and the number of uncorrelated sources can

be obtained by estimating the number of eigenvalues corresponding to source signals and

denoted by q. Note that the mean of sensor data used in the distributed PCA is zeroed out

after applying MA. Then, ADMM will be combined with BCD to solve the minimization

problem of (6.3) in a distributed fashion. The basic theory of DSM-CCA is that sensors Sβj

and Sβi respectively update (6.10) and (6.12) locally using their own available information.

Let’s start from the solution of D̂z
j(α, β) in (6.10), which will be updated by sensor

Sβj in the coordinate cycle z. Let’s define that xi(τ, β) := xi,β − mi,β , then xi(τ) =

[xi(τ, 1), · · · ,xi(τ, pi)]T . Notice that, (6.10) involves χα,β
TEx,α,β and ∥Ex,α,β∥22, where

the first term can be equivalently written as

χTα,βEx,α,β =
1

t

j−1∑
i=1

t∑
τ=1

χTi,τ,α,βEx,τ,i(:, (β − 1)q + α)

=
1

t

j−1∑
i=1

t∑
τ=1

(xi(τ)−
qpj∑

ℓ=1,ℓ̸=(β−1)q+α

dv(ℓ)Ex,τ,i(:, ℓ))Ex,τ,i(:, (β − 1)q + α)

=
1

t

j−1∑
i=1

t∑
τ=1

xj(τ, β)(

pi∑
ℓ=1

xi(τ, ℓ)Ê
z−1
i (ℓ, α)) +

1

t

j−1∑
i=1

t∑
τ=1

x2
j(τ, β)D̂

z−1
j (α, β)E i(α, α)

− 1

t

j−1∑
i=1

t∑
τ=1

xj(τ, β) · [
pj∑
n=1

xj(τ, n)

q∑
ρ=1

(D̂z−1
j (ρ, n)E i(ρ, α))] (6.13)

where the α1th row and α2th column of matrix E i ∈ Rq×q, saying E i(α1, α2) is (Êz−1
i (:

, α1))
T ·(Êz−1

i (:, α2)) for α1, α2 = 1, · · · , q, revealing that each entry of E i is a global value

for the subnetwork consisting of sensors in the set of Si. Notice that,
∑pi

ℓ=1 xi(τ, ℓ)Ê
z−1
i (ℓ, α)
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is also a global value across the subnetwork comprising of sensors in Si. After sensor Sβj re-

ceiving E i(ρ, α) from its neighboring sensors that belong to Si,
∑pj

n=1 xj(τ, n)
∑q

ρ=1(D̂
z−1
j

(ρ, n) E i(ρ, α)) is the summation across all the sensors in Sj . Thus, in order to obtain

(6.13) purely relying on sensor Sβj ’s accessible values, ADMM is applied to find all the

concerned global terms in (6.13). In detail, each sensor in Si runs K ADMM iterations to

locally estimate the global scalars
∑pi

ℓ=1 xi(τ, ℓ)Ê
z−1
i (ℓ, α) and E i(ρ, α)), whose estimated

values from sensor Sn
β
j

i are denoted by u
nβ
j

i,α and u
nβ
j

i,ρ,α, respectively, for τ = 1, · · · , t,,

i = 1, · · · , j − 1, ρ = 1, · · · , q. Let’s define one of sensor Sβi ’s neighbors in Sj as Sn
β
i

j ,

and we define one of the neighboring sensors of sensor Sβj in Si as sensor Sn
β
j

i , where

nβi ∈ {1, · · · , pj} and pβj ∈ {1, · · · , pi}. Thus, sensor Sβj can communicate with sensor

Sn
β
j

i . Next, sensor Sn
β
j

i transmits u
nβ
j

i,α and u
nβ
j

i,ρ,α to sensor Sβj . Then, K ADMM iterations

will be run by every sensor in Sj , estimating
∑pj

n=1 xj(τ, n)
∑q

ρ=1(D̂
z−1
j (ρ, n)u

nβ
j

i,ρ,α) in a

distributed way, and let’s denote sensor Sβj ’s estimate as ūβj,α. Finally, sensor Sβj is able to

attain (6.13) only through communicating with its neighbors, which can be expressed as

χTα,βEx,α,β =
1

t

j−1∑
i=1

t∑
τ=1

xj(τ, β)u
nβ
j

i,α +
1

t

j−1∑
i=1

t∑
τ=1

x2
j(τ, β)D̂

z−1
j (α, β)u

nβ
j

i,α,α (6.14)

− 1

t

j−1∑
i=1

t∑
τ=1

xj(τ, β)ū
β
j,α

Another term associated with (6.10) is ∥Ex,α,β∥22, which equals to

∥Ex,α,β∥22 =
1

t

j−1∑
i=1

t∑
τ=1

∥Ex,τ,i(:, (β − 1)q + α)∥22 =
1

t

j−1∑
i=1

t∑
τ=1

x2
j(τ, β) · E i(α, α) (6.15)

Recall that sensor Sβj receives the estimate of E i(α, α), saying u
nβ
j

i,α,α, so sensor Sβj is able

to get (6.15) by calculating the following term

∥Ex,α,β∥22 =
1

t

j−1∑
i=1

t∑
τ=1

x2
j(τ, β) · u

nβ
j

i,α,α (6.16)
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According to (6.14) and (6.16), sensor Sβj is capable of updating D̂z
j(α, β). Thus, each

entry of D̂z
j is going to be locally updated by its corresponding sensor. And it follows

readily that, sensor Sβj updates D̂z
j(α, β) as

D̂z
j(α, β) = sgn(χTα,βEx,α,β)× (max(0, (|

χTα,βEx,α,β

∥Ex,α,β∥22
| −

λDj,α
2∥Ex,α,β∥22

))) (6.17)

where χTα,βEx,α,β and ∥Ex,α,β∥22 are obtained from (6.14) and (6.16), respectively.

Similarly, every entry of Êz
i (β, α) can be updated by sensor Sβi in a distributed fash-

ion. From the solution of Êz
i (β, α) in (6.12), it can be seen that sensor Sβi needs locally

calculate χTi,β,αhi,β,α as well as ∥hi,β,α∥22, which can be written as

χTi,β,αhi,β,α =
1

t

K∑
j=i+1

t∑
τ=1

xi(τ, β)D̂
z−1
j (α, :)xj(τ) (6.18)

− 1

t

K∑
j=i+1

t∑
τ=1

D̂z−1
j (α, :)xj(τ)

q∑
ℓ=1,ℓ̸=α

Êi(β, ℓ)D̂
z−1
j (ℓ, :)xj(τ)

and

∥hi,β,α∥22 =
1

t

K∑
j=i+1

t∑
τ=1

(D̂z−1
j (α, :)xj(τ))

2 (6.19)

where the global quantities D̂z−1
j (ℓ, :)xj(τ) for ℓ = 1, · · · , q, will be estimated by sensors

in Sj after employing ADMM technology. And let’s denote the estimation of D̂z−1
j (ℓ, :)

xj(τ) by sensor Sn
β
i

j as ûn
β
i
j,ℓ , where sensor Sn

β
i

j is the neighbor of sensor Sβi , which means

that the estimation ûn
β
i
j,ℓ is available for sensor Sβi . Toward this end, the two terms in (6.18)

and (6.19) which are necessary in updating Êz
i (β, α), can be obtained by the following

equations

χTi,β,αhi,β,α =
1

t

K∑
j=i+1

t∑
τ=1

xi(τ, β)D̂
z−1
j (α, :)xj(τ) (6.20)

− 1

t

K∑
j=i+1

t∑
τ=1

D̂z−1
j (α, :)xj(τ)

q∑
ℓ=1,ℓ̸=α

Êi(β, ℓ)û
nβ
i
j,ℓ (6.21)
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∥hi,β,α∥22 =
1

t

K∑
j=i+1

t∑
τ=1

(û
nβ
i
j,ℓ )

2. (6.22)

Meanwhile, using the results in (6.20) and (6.22), sensor Sβi can update Êz
i (β, α) as

Êz
i (β, α) = sgn(χTi,β,αhi,β,α)×max(0, (|

χTi,β,αhi,β,α

∥hi,β,α∥22
| −

λEi,α
2∥hi,β,α∥22

)) (6.23)

The DSM-CCA scheme is summarized as the following six steps:

Step 1) Set q as estimated number of sources using distributed PCA [66] along with MA.

Step 2) Initialize D̂0
j and Ê0

i with q×pj and pi×q matrices randomly, for i = 1, · · · ,K−1,

j = 2, · · · ,K.

Step 3) In cycle z, sensor S īi forms estimates uīi,α, and uīi,ρ,α, via K ADMM updating

recursions for i = 1, · · · ,K − 1, α, ρ = 1, · · · , q, and ī = 1 · · · , pi. Sensor S j̄j forms

estimates ūj̄j,α and ûj̄j,ℓ via K ADMM iterations, for j = 2, · · · ,K, α, ℓ = 1, · · · , q, and

j̄ = 1, · · · , pj .

Step 4) Update D̂z
j(α, β) via (6.17), for j = 2, · · · ,K, α = 1, · · · , q, and β = 1, · · · , pj .

Step 5) Update Êz
i (β, α) via (6.23), for i = 1, · · · ,K − 1, α = 1, · · · , q, and β =

1, · · · , pi.

Step 6) If the DSM-CCA cost reduction in current coordinate cycle drops below a desired

tolerance, exit and return D̂j = D̂z
j and Êi = Êz

i , otherwise go back to Step 3).

6.3 Simulation Results

The performance of the CSM-CCA and DSM-CCA is tested and compared with

iK-Means [13] in terms of probability of correctly clustering sensor measurements accord-

ing to their source information. The algorithms are tested in a sensor network consisting

of K = 3 types of sensors (15 sensors in each type) and M = 2 uncorrelated sources.

The AR-1 model is used for the sources {sm(τ)}Mm=1. In the testing scenario, sensors

{S1
1 ,S2

1 ,S3
1 ,S6

1 ,S7
1 ,S1

2 ,S3
2 ,S5

2 ,S7
2 ,S9

2 ,S1
3 ,S2

3 ,S3
3 ,S4

3 ,S5
3} observe source s1(τ), source s2(τ)
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Figure 6.1. Probability of correctly clustering sensors vs. number of training data.

affects sensors {S4
1 ,S5

1 ,S8
1 ,S9

1 ,S10
1 ,S2

2 ,S4
2 ,S6

2 ,S8
2 ,S10

2 ,S6
3 ,S7

3 ,S8
3 ,S9

3 ,S10
3 }, and the re-

maining 15 sensors are too far away from any of the sources to sense the sources. In

the DSM-CCA algorithm, the ADMM iteration K is set to be K = 20. The sparsity-

controlling coefficients are chosen using the λ−selection scheme proposed in 3.3. Fig.

6.1 depicts that CSM-CCA achieves the best performance, and DSM-CCA yields better

performance than iK-Means. It is also of interest to notice that, as the number of training

data t increases the higher probability of correctly clutering sensors for CSM-CCA and

DSM-CCA also increases.

6.4 Conclusion

A novel ℓ1-regularized M-CCA framework was put forth in this chapter and utilized

to cluster different types of sensor data based on their source content. With the consider-
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ation of different kinds of network setting, FC-based network and ad-hoc network, CSM-

CCA and DSM-CCA were proposed, respectively, which were translated to be minimiza-

tion problems while the associated matrices in the formulation were applied to perform the

clustering task. The numerical tests demonstrate that our proposed algorithm has the ability

to correctly cluster multi-modalities of sensors.
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CHAPTER 7

CONCLUDING REMARKS AND FUTURE RESEARCH

7.1 Conclusions

In this dissertation, the core objective is to cluster the sensor measurements based

on their source content. Several different scenarios are considered: 1) the number of un-

correlated sources is given, 2) the number of sources is unknown, 3) there is a FC exists

in the field, 4) the sensors are connected in an ad hoc way, 5) all the sensors sense the

same kind of elements (homogeneous network), 6) multiple types of sensors comprising a

heterogeneous network, 6) the FC and (or) sensors have limited capability of storing data

(in an online setting), and 8) the sensors and (or) FC is capable of storing all the historical

measurements (in a batch setting). For the sake of performing the sensor data clustering

under different scenarios, different CCA-based frameworks are proposed. Specifically, CS-

CCA and DS-CCA are designed to cope with the setting where the number of sources is

known, while the former and latter focused on the case of 3) and 4), respectively. Fur-

ther, both CS-CCA and DS-CCA are developed in an online fashion, which are denoted by

OCS-CCA and ODS-CCA algorithms. Without knowing the number of sources, two novel

solvers are provided, which are norm-two regularized algorithm and PCA based scheme. In

Chapter 4, we apply the first solver in sparse CCA, and in Chapter 6, PCA combined with

MA is utilized to carry out the clustering task. Different from the data models in Chapter

3 and Chapter 5, which are generated from the homogeneous networks, in Chapter 4 and

Chapter 6, we deal with the clustering of multiple types of data sets. The numerical tests

showed the capability of our proposed algorithms in grouping sensors according the sen-
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sors’ source information in different scenarios, and proved that our algorithms surpassed

the existing alternatives.

Two key techniques are utilized to solve the derived minimization frameworks, which

are BCD and ADMM. The contribution of BCD is providing tractable solution to noncon-

vex minimization problems. Specifically, through the application of BCD, the matrices

used to perform sensor clustering can be updated entry-by-entry in each coordinate cycle.

It has been shown that as the coordinate cycle goes to infinity, the aforementioned ma-

trices can behave perfectly in the sense that zero and nonzero entries will appear in the

proper locations. ADMM played an important role in two aspects: 1) all the proposed

distributed algorithms are associated with finding some global variables in a distributed

fashion, which can be easily estimated by ADMM iterations; and 2) in the CR-CCA and

DR-CCA schemes, the introduced norm-two terms make the cost function to be challeng-

ing, which was overcome by ADMM technique.

7.2 Future Research

The proposed CSM-CCA and DSM-CCA frameworks are batch algorithms in the

sense that first acquire data and then perform the processing. Such batch schemes are per-

tinent for settings where sensors acquire data for some limited time and then stop. How-

ever, when sensors are constantly sensing new data, a batch algorithm will eventually drain

all storing and computational capabilities across sensors. Furthermore, sensor data often-

times are collected in challenging environments, whose statistical structure is not known

and maybe dynamically changing with time. Obviously, when the phenomenon of interest

are mobile or exhibit nonstationarity, our proposed batch algorithms will not work well in

grouping sensors. To cope with these challenges, we will propose adaptive mechanisms,

which can give more emphasis to the recent data and gradually forget the past, and also
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this kind of adaptive processing should have the ability to tackle the problems with limited

number of data, which will not grow up dramatically with the time increases.

Moreover, the CS-CCA, DS-CCA, OCS-CCA, ODS-CCA, CR-CCA, DR-CCA, CSM-

CCA and DSM-CCA schemes derived in this thesis are tested using synthetic data. In the

future, those algorithms will be verified using real data.

In chapter 5, we proposed a new method based on CS-CCA, NLMS adaptive filter

as well as PCA techniques, while in the training phase, every processing is done in a FC,

which may introduce a heavy burden when the monitored field is very huge with extremely

high number of sensors. Thus, it is necessary to fulfill the flawless clustering in a more

efficient way, i.e., using a distributed scheme. Also, more detailed procedure will be pro-

posed to deal with the time-varying environment, i.e, moving sources, the disappearing or

appearing of sensors.
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APPENDIX A

PROOF OF PROPOSITION 2
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The proof consists of two parts: (I) It is shown that the updates Ďτ (α, β) and

Ěτ (α, β) by applying BCD to the CCA-based cost (3.5) converge to a stationary point

of the cost in (3.5); (II) It is demonstrated that the algorithmic updates obtained from ap-

plying BCD to the approximated cost in (7), namely D̂τ (α, β) and Êτ (α, β), are arbitrarily

close to the updates Ďτ (α, β) and Ěτ (α, β) obtained from the original CCA-based cost in

(3.5), i.e., |D̂τ (α, β) − Ďτ (α, β)| ≤ δ(ε), where δ(ε) is a nonnegative quantity for which

limε→0δ(ε) = 0. In detail:

A.1 Step I

First, minimize of the cost in (3.5) w.r.t. one entry of D (or E), namely D(α, β)

(or E(α, β)), without the approximation introduced in (3.6). Let Ďτ and Ěτ denote the

corresponding updates from entry-wise minimization of (3.5) . During the τ th BCD cycle,

the minimization of (3.5) w.r.t. D(α, β) involves the cost

Jτα,β(d) = ∥ψ̌τ

α,β − dȟτα,β∥22 + λD,α|d|+ (A.1)

ε[∥ψ1,τ
α,β − dh1,τ

α,β∥
2
2 + (d2Σ̂x(β, β) + d · 2h2,τα,β + h3,τα,β)

2]

where ψ̌
τ

α,β and ȟτα,β can be obtained as in (3.10) after replacing the D̂τ−1 and Êτ−1 updates

with Ďτ−1 and Ěτ−1 which will be obtained via solving (A.1). Further,

h2,τα,β :=
∑pf

j=1,j ̸=β Ď
τ−1(α, j)Σ̂x(j, β), (A.2)

h3,τα,β :=

pf∑
i,j=1,i,j ̸=β

Ďτ−1(α, j)Ďτ−1(α, i)Σ̂x(j, i)− 1

ψ1,τ
α,β := −

pf∑
i,j=1,j ̸=β

Ďτ−1(α, j)Σ̂x(j, i)Ď
τ−1(Iα, i)

h1,τ
α,β := −

pf∑
i=1

Σ̂x(β, i)Ď
τ−1(Iα, i)
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where Iα is an index set equal to {1, 2, . . . , α − 1, α + 1, . . . , q} and Ďτ−1(Iα, i) :=

[Ďτ−1(1, i) . . . Ďτ−1(α − 1, i), Ďτ−1(α + 1, i) . . . Ďτ−1(q, i)]T corresponds to a q − 1× 1

column vector. Let Ďτ (α, β) denote the minimizer of (A.1) which is not available in closed

form. This is to be contrasted with our algorithm, where instead of considering (A.1) we

tackle (7) [or equivalently (9) and (10)] after making the approximation ε∥DΣ̂xD
T − I||2F

with ε∥DΣ̂x(D̂
τ−1)T − I||2F (similary for the E term) leading to the simple closed-form

updates (3.13) and (3.15).

Next, we are going to prove that the iterates acquired from (A.1) are convergent to a

stationary point of the CCA-based cost in (3.5). Let g({D(α, β),E(α, β)}q,pfα=1,β=1) denote

the S-CCA cost given in (3.5), which is defined over R2qpf×1 and

g0({D(α, β),E(α, β)}q,pfα=1,β=1) := υ∥EΣ̂yE
T − I||2F (A.3)

+ ε∥DΣ̂xD
T − I||2F +N−1

∑N−1
t=0 ∥Ey(t)−Dx(t)− m̂∥22.

Furthermore, let’s consider the level set

C0 := {{D(α, β),E(α, β)}q,pfα=1,β=1 :

g({D(α, β),E(α, β)}q,pfα=1,β=1) ≤ g(D̂0, Ê0)} (A.4)

where D̂0 and Ê0 are the q × pf matrices used to initialize S-CCA and selected such that

∥D̂0∥1 < ∞, ∥Ê0∥1 < ∞, from which it follows that g(D̂0, Ê0) < ∞. Further, from the

form of g(·) it follows that any D and E in C0 satisfy∑q

ρ=1
λE,ρ∥ET

ρ:||1 +
∑q

ρ=1 λD,ρ∥DT
ρ:||1 ≤ g(D̂0, Ê0) <∞.

Thus, (i) the set C0 is compact (closed and bounded). Moreover, (ii) g(·) is continuous on

C0.

The cost in (A.1) used to obtain Ďτ (α, β) can be written as

Jτα,β(d) = e4d
4 + e3d

3 + e2d
2 + e1d+ λα|d|+ e0 (A.5)
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where e4, e3, e2, e1 and e0 depend on the quantities defined in (A.2). Notice that e4 > 0

as the diagonal values of Σ̂x (or Σ̂y) are positive, and e2 ≥ 0. If e1 = 0, and e3 = 0,

then Jτα,β(d) is symmetric around zero. In this case, as e2 ≥ 0, zero is the unique min-

imizer of Jτα,β(d). If e1 ̸= 0 or e3 ̸= 0, there will be either one minimizer or two min-

imizers, where we can consistently select the larger (or smaller) minimizer. Thus, (iii)

we can always ensure the uniquiness of minimizer per iteration. Also, (iv) function g(·)

is regular at the unique minimizer, which is outlined in [71, (A1)]. Specifically, the do-

main of function g0(·) is formed by matrices which satisfy that D(α, β) ∈ (−∞,+∞) and

E(α, β) ∈ (−∞,+∞). Then, the domain(g0) = (−∞,+∞)2qpf×1 is an open set. More-

over, g0(·) is Gâuteaux-differential over domain(g0). In detail, the Gâuteaux derivative is

defined as

g
′

0(H;∆H) := limϵ→0[g0(H+ ϵ∆H)− g0(H)]/ϵ (A.6)

where H refers to either D or E. After carrying out the necessary algebraic manipu-

lations, it follows readily that g′
0(D;∆D) (and g

′
0(E;∆E)) exists for all ∆D (and ∆E)

∈domain(g0), and it is equal to (similarly for E)

tr[2(DX
′ − EY

′
)(∆DX

′
)T + 2ε(DΣ̂xD

T − I)(DΣ̂x∆
T
D −∆DΣ̂xD

T )] (A.7)

whre X′
= 1/

√
N [x(0)−m̂x, ...,x(N −1)−m̂x] and Y

′
= 1/

√
N [y(0)−m̂y, ...,y(N −

1)− m̂y].

The properties (i), (ii), (iii) and (iv) ensure the iterates Ďτ (α, β) and Ěτ (α, β) will

converge to a stationary point of g(·) [71, Thm. 4.1 (c)].

A.2 Step II

We demonstrate that the updates from (A.1), namely Ďτ (α, β), can be arbitrar-

ily close to the updates involved in the proposed algorithm in (14), i.e., |D̂τ (α, β) −

Ďτ (α, β)| ≤ δ(ε), where δ(ε) is a nonnegative quantity for which limε→0δ(ε) = 0.
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Both updates D̂0(α, β) and Ď0(α, β) can be initialized at same value. Assume

now that at BCD iteration τ − 1 it holds that |D̂τ−1(α, β) − Ďτ−1(α, β)| ≤ δ′(ϵ) and

|Êτ−1(α, β)− Ěτ−1(α, β)| ≤ δ′(ϵ), where limϵ→0 δ
′(ϵ) = 0. Then, using the cost in (A.1),

(13) can be written as

∥ψτ
α,β − dhτα,β∥22 + λD,α|d|+ ∥ψ̆

τ

α,β − dh̆τα,β∥22 (A.8)

= Jτα,β(d) + ϕ(d, ε)

where ψ̆
τ

α,β and h̆τα,β are defined in (3.11), and ϕ(d, ε) := ∥ψ̆
τ

α,β − dh̆τα,β∥22 − ε[∥ψ1,τ
α,β −

dh1,τ
α,β∥22−(d2Σ̂x(β, β)+d ·2h2,τα,β+h

3,τ
α,β)

2]+δ′(ϵ) ·∆τ , where ∆τ is a finite coefficient. The

continuity argument in [26, page 15] and (A.8) implies that, for any δ(ε), we can select ε

sufficiently small such that |D̂τ (α, β)−Ďτ (α, β)| ≤ δ(ε), where limε→0δ(ε) = 0. Thus, by

induction it follows that |D̂τ (α, β)− Ďτ (α, β)| ≤ δ(ε) and |Êτ (α, β)− Ěτ (α, β)| ≤ δ(ε)

for any τ .

Thus, the updates D̂τ (α, β) (and Êτ (α, β)) in (14)-(15) will be δ(ε)-close to a sta-

tionary point of the cost in (3.5) as iteration index τ → ∞.
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APPENDIX B

DERIVATION OF ADMM RECURSIONS IN (3.22)
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We introduce auxiliary variables zi
′

i,t for i′ ∈ Ni and t = 0, 1, ..., N−1 and substitute

the equality constraints in (3.21) with µi,t = zi
′

i,t and µi′ ,t = zi
i′ ,t

for i′ ∈ Ni and i ̸= i
′ .

Then the augmented Lagrangian function can be formed as

L[{µi,t}
p
i=1,v,w] =

∑p
i=1 ∥µi,t − pD̂τ−1

i x(t, i)||22 (B.1)

+
∑p

i=1

∑
i′∈Ni

[vi
′

i,t(µi,t − zi
′

i,t) +wi
′

i,t(µi′ ,t − zi
i
′
,t
)]

+ 0.5c
∑p

i=1

∑
i′∈Ni

[∥µi,t − zi
′

i,t∥22 + ∥µi,t − zi
i
′
,t
∥22]

where v and w contain the Lagrange multipliers vi
′

i,t and wi
′

i,t corresponding to the con-

straints µi,t = zi
′

i,t and µi′ ,t = zi
i′ ,t

, respectively. Solving (B.1) involves three steps: Step

1 uses gradient ascent iterations to update the Lagrange multipliers; Step 2 updates µi,t

by minimizing (B.1) w.r.t. µi,t while treating the rest quantities fixed; Step 3 minimizes

(B.1) w.r.t. zi
′

i,t while fixing the other variables. After reducing the redundant variables,

the subproblems (3.21) for t = 0, . . . , N − 1 will be tackled through updating the sensor

j’s local estimate, µj,t, along with the Lagrange multipliers {vj
′

j,t}j′∈Nj
. Thus, sensor j is

responsible for carrying out the updating recursions in (3.22)-(24).
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APPENDIX C

PROOF OF THEOREM 1
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The S-CCA framework in (3.5) for an infinite number of data converges to the en-

semble counterpart in (3.48) which can be equivalently rewritten as

(De,Ee) ∈ arg minD,EE[∥Ey −Dx∥22] (C.1)

υ∥EΣyE
T − I||2F +ε∥DΣxD

T − I||2F

+
∑q

ρ=1 λE,ρ
∑pf

j=1TE(ρ, j) +
∑q

ρ=1 λD,ρ
∑pf

j=1TD(ρ, j)

subject to the constraints |E(ρ, j)| ≤ TE(ρ, j) and |D(ρ, j)| ≤ TD(ρ, j) for ρ = 1, . . . , r

and j = 1, . . . , pf , while De,Ee indicate an optimal solution. The Lagrangian of (C.1) is

L(D,E,TD,TE,L1D,L2D,L1E,L2E) (C.2)

= tr(E[(Ey −Dx)(Ey −Dx)T ]) + λE1
T
q×1TE1pf×1

+ λD1
T
q×1TD1pf×1 + υtr((EΣyE

T − I)(EΣyE
T − I)T )

+ εtr((DΣxD
T − I)(DΣxD

T − I)T ) + tr(LT1D(D−TD))

+ tr(LT2D(−D−TD)) + tr[LT1E(E−TE) + LT2E(−E−TE)]

where L1E , L2E , L1D and L2D are Rq×pf matrices whose (ρ, j)th entry contains the La-

grange multiplier associated with the constraints E(ρ, j)≤TE(ρ, j), −E(ρ, j)≤TE(ρ, j),

D(ρ, j)≤TD(ρ, j) and −D(ρ, j)≤TD(ρ, j), respectively. Also, let λE := [λE,1, ..., λE,q]
T

and λD := [λD,1, ..., λD,q]
T . The Karush-Kunh-Tucker (KKT) necessary optimality con-

ditions, see e.g., [4], imply that the following gradients in (C.3) should be equal to 0q×pf

when evaluated at the optimum solution De and Ee, T∗
D and T∗

E , i.e.,

∂L
∂D

=
∂L
∂E

=
∂L
∂TD

=
∂L
∂TE

= 0q×pf (C.3)

The equations in (C.3) result the following equalities satisfied at the optimum of (C.1)

(2− 4υ)EeΣy + 4υEeΣyE
T
e EeΣy − 2DeΣxy (C.4)

+ L∗
1E − L∗

2E = 0q×pf
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(2− 4ε)DeΣx + 4εDeΣxD
T
eDeΣx − 2EeΣyx (C.5)

+ L∗
1D − L∗

2D = 0q×pf

L∗
1D + L∗

2D = λD1q×11
T
pf×1, L

∗
1E + L∗

2E = λE1q×11
T
pf×1

where the entries of the optimal Lagrange multipliers’ matrices should be nonnegative.

Moreover, the complementary slackness conditions imply for ρ = 1, . . . , q and j = 1, . . . , pf

that

L∗
1D(ρ, j)(De(ρ, j)−T∗

D(ρ, j)) = 0 and (C.6)

L∗
2D(ρ, j)(−De(ρ, j)−T∗

D(ρ, j)) = 0,

L∗
1E(ρ, j)(Ee(ρ, j)−T∗

E(ρ, j)) = 0 and (C.7)

L∗
2E(ρ, j)(−Ee(ρ, j)−T∗

E(ρ, j)) = 0

Consider the q× 1 vector eρ := [0, . . . , 0, 1, 0, . . . , 0]T where the only nonzero entry, equal

to 1, exists in the ρth position, for ρ = 1, . . . , q. Multiplying (C.4) from the left and right

with eTρ and ET
e,ρ:, respectively, we obtain

(2− 4υ)Ee,ρ:ΣyE
T
e,ρ: − 2De,ρ:ΣxyE

T
e,ρ: + 4υEe,ρ:Σy (C.8)

·ET
e EeΣyE

T
e,ρ: +

pf∑
j=1

(L∗
1E(ρ, j)− L∗

2E(ρ, j))Ee(ρ, j) = 0

From the two equalities in (C.4) and (C.8), it follows that
∑pf

j=1(L
∗
1E(ρ, j) − L∗

2E(ρ, j))

Ee(ρ, j) = λE,ρ∥Ee,ρ:∥1, then

(2− 4υ)Ee,ρ:ΣyE
T
e,ρ: − 2De,ρ:ΣxyE

T
e,ρ: (C.9)

+ 4υEe,ρ:ΣyE
T
e EeΣyE

T
e,ρ: = −λE,ρ∥Ee,ρ:∥1, ρ = 1, ..., q

Summing the q equations in (C.9) results

(1− 2υ)tr(ΣyE
T
e Ee)− tr(ΣxyE

T
eDe) (C.10)

+ 2υtr(ΣyE
T
e EeΣyE

T
e Ee) = −0.5

∑q
ρ=1 λE,ρ∥Ee,ρ:∥1
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Using similar steps we obtain

(1− 2ε)tr(ΣxD
T
eDe)− tr(ΣyxD

T
e Ee) (C.11)

+ 2εtr(ΣxD
T
eDeΣxD

T
eDe) = −0.5

∑q
ρ=1 λD,ρ∥De,ρ:∥1

As
∑q

ρ=1 De,ρ:ΣxyE
T
e,ρ: = tr(ΣxyE

T
eDe) = tr(DeΣxyE

T
e ), (C.9) and (C.11) can be

rewritten as

((1− 2υ)Ee,ρ:Σy −De,ρ:Σxy + 2υEe,ρ:ΣyE
T
e EeΣy)E

T
e,ρ:

+ 0.5λE,ρ∥Ee,ρ:∥1 = 0, ρ = 1, ..., q (C.12)

((1− 2ε)De,ρ:Σx − Ee,ρ:Σyx + 2εDe,ρ:ΣxD
T
eDeΣx)D

T
e,ρ:

+ 0.5λD,ρ∥De,ρ:∥1 = 0, ρ = 1, ..., q. (C.13)

Using (C.12) and (74), the cost in (C.1) can be rewritten as

∑q
ρ=1

λE,ρ

2
∥Eρ:∥1 +

∑q
ρ=1

λD,ρ

2
∥Dρ:∥1 − υtr(EΣyE

TEΣyE
T )

− εtr(DΣxD
TDΣxD

T ) + (υ + ε)tr(I) (C.14)

Thus, the minimization problem in (C.1) is equivalent to

(De,Ee) ∈ arg minD,E − υtr(EΣyE
TEΣyE

T ) (C.15)

− εtr(DΣxD
TDΣxD

T ) +

q∑
ρ=1

λE,ρ
2

∥Eρ:∥1 +
q∑

ρ=1

λD,ρ
2

∥Dρ:∥1

s. to the equality contraints in (C.12) and (76).

Given the properly selected sparsity-controlling coefficients λD and λE , assume that the

optimal solutions satisfy

∥De,ρ:∥0 = ℓd,ρ and ∥De,ρ:∥1 = κd,ρ

∥Ee,ρ:∥0 = ℓe,ρ and ∥Ee,ρ:∥1 = κe,ρ (C.16)
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for ρ = 1, .., q, where ℓd,ρ (and ℓe,ρ) denotes the number of nonzero entries in Dρ: (and Eρ:).

Firstly, let’s consider the simple case where q = 1. Let D1: = ∥D1:∥2D̃1:, where

∥D̃1:∥2 = 1. Further, let cd,1: = ∥D1:∥2 and γd,1: = D̃1:ΣxD̃
T
1:. Thus, D1:ΣxD

T
1: =

c2d,1D̃1:ΣxD̃
T
1: = c2d,1γd,1 ≥ 0. Similarly, let E1: = ∥E1:∥2Ẽ1:, where ∥Ẽ1:∥2 = 1,

ce,1: = ∥E1:∥2 and γe,1: = Ẽ1:ΣyẼ
T
1:. Thus, E1:ΣyE

T
1: = c2e,1γe,1 ≥ 0. In the same

way, let us define the quantity γde,1 := D̃1:ΣxyẼ
T
1: that can be used to write D1:ΣxyE

T
1: =

E1:ΣyxD
T
1: = cd,1ce,1γde,1. Then, the minimization problem in (C.15) can be rewritten as

min − υc4e,1γ
2
e,1 − εc4d,1γ

2
d,1 subject to (C.17)

(1− 2υ)c2e,1γe,1 − cd,1ce,1γde,1 + 2υc4e,1γ
2
e,1 = −0.5λE,1κe,1

(1− 2ε)c2d,1γd,1 − cd,1ce,1γde,1 + 2εc4d,1γ
2
d,1 = −0.5λD,1κd,1

0 ≤ cd,1 ≤ κd,1, 0 ≤ ce,1 ≤ κe,1, 0 ≤ γe,1 ≤ d∗e,

0 ≤ γd,1 ≤ d∗d, dmin(Σxy) ≤ γde,1 ≤ dmax(Σxy),

where d∗d is the maximum spectral radius among all possible ℓd,1 × ℓd,1 submatrices of Σx

that are formed after keeping ℓd,1 of its rows and columns with common indices that are

determined by the indices of the ℓd,1 nonzero entries in the optimal De,1: = ∥De,1:∥2D̃e,1:,

where D̃e,1: is the optimal selection for D̃1:. This explains why γd,1 = D̃1:ΣxD̃
T
1: ≤ d∗d for

any unit-vector D̃1: for which ∥D̃1:∥0 = ℓd,1. In the same way d∗e is the maximum spectral

radius among all possible ℓe,1 × ℓe,1 submatrices of Σy, from which it follows that γe,1 =

Ẽ1:ΣyẼ
T
1: ≤ d∗e for any unit-vector Ẽ1: for which ∥Ẽ1:∥0 = ℓe,1, the optimal selection for

Ẽ1: will be denoted as Ẽe,1:. Further, dmax(Σxy) and dmin(Σxy) denote the largest and

smallest singular values of any ℓd,1 × ℓe,1 submatrix of Σxy. Further, the third and fourth

inequality constraints in (C.17) hold because ∥Ẽ1:∥2 ≤ ∥Ẽ1:∥1 and ∥D̃1:∥2 ≤ ∥D̃1:∥1.

In order to solve (C.17), we form its Lagrangian function

132



L1(cd,1, ce,1, γd,1, γe,1, γde,1,v1) = −υc4e,1γ2e,1 − εc4d,1γ
2
d,1

+ va1 [(1− 2υ)c2e,1γe,1 − cd,1ce,1γde,1 + 2υc4e,1γ
2
e,1 + 0.5λE,1κe,1]

+ vb1[(1− 2ε)c2d,1γd,1 − cd,1ce,1γde,1 + 2εc4d,1γ
2
d,1 + 0.5λD,1κd,1]

+ vc1(cd,1 − κd,1)− vd1cd,1 + ve1(ce,1 − κe,1)− vf1 ce,1

+ vg1(γd,1 − d∗d)− vh1γd,1 + vi1(γe,1 − d∗e)− vj1γe,1

+ vk1 [γde,1 − dmax(Σxy)] + vl1[dmin(Σxy)− γde,1] (C.18)

where v1 := [va1 , v
b
1, v

c
1, v

d
1 , v

e
1, v

f
1 , v

g
1 , v

h
1 , v

i
1, v

j
1, v

k
1 , v

l
1]
T contains the multipliers for the

equality and inequality constrains in the minimization task in (C.17). From the KKT

necessary optimality conditions, it follows that vc1, v
d
1 , v

e
1, v

f
1 , v

g
1 , v

h
1 , v

i
1, v

j
1, v

k
1 , v

l
1 assume

nonnegative values.

Applying the KKT necessary optimality conditions in (C.18) involves: i) Differen-

tiating L1(�) w.r.t. cd,1, ce,1, γd,1, γe,1, γde,1 and making all these partial derivatives equal

to zero; and ii) Utilizing the complementary slackness conditions, which make vg∗1 (γ∗d,1 −

d∗d) = 0, vi∗1 (γ
∗
e,1 − d∗e) = 0, vk∗1 (γ∗de,1 − dmax(Σxy)) = 0 and vl∗1 (dmin(Σxy) − γ∗de,1) = 0,

where the ∗ superscripts indicate the optimal multipliers. In the same way it turns out that

vd∗1 = vh∗1 = vf∗1 = vj∗1 = 0. After applying these two steps, it follows (details omitted

due to space considerations) that vg∗1 and vi∗1 are strictly positive from which the slackness

conditions result that γ∗d,1 = d∗d and γ∗e,1 = d∗e. Now recall that γd,1 = D̃1:ΣxD̃
T
1: for

∥D̃1:∥2 = 1 and ∥D̃1:∥0 = ℓd,1. Thus, γd,1 = d∗d when D̃1: = D̃e,1:. Similarly, γe,1 = d∗e

when Ẽ1: = Ẽe,1:.

Recall that d∗d = maxD̃1:
D̃1:ΣxD̃

T
1:, subject to ∥D̃1:∥2 = 1 and ∥D̃1:∥0 = ℓd,1. It

is demonstrated next that if D̃e,1:ΣxD̃
T
e,1: = d∗d, there must exist a column, namely the

i1th column of Ux with support Zi1 , where Ux is the eigenvector matrix of Σx . Since

De,1: is a scaled version of D̃e,1:, latter property implies that ∥De,1:(Z̄i1)∥1 = 0, while
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∥De,1:(Zi1)∥1 > ξ1(λD,1), where ξ1(λD,1) is strictly positive. Further, let Gm1 denote the

index set of the entries of m1st diagonal block of Σx for which Gm1 = Zi1 , while m1 ∈

{1, . . . ,M}. It will be shown that I1 := support(De,1:) = support(D̃e,1:) ⊆ Gm1 . To this

end, let D̃1: := [D̃1
1:, D̃

2
1:, . . . , D̃

M
1: ] in which every subvector D̃m

1: has |Gm| entries (such

that
∑M

m=1 |Gm| = pf ) and let I1,m := support(D̃m
1: ) with

∑M
m=1 |I1,m| = ℓd,1, where

|I1,m| is the size of set I1,m. Then, it follows that,

D̃1:ΣxD̃
T
1: =

∑M
m=1 D̃

m
1:Σx,Gm(D̃

m
1: )

T

6
∑M

m=1dmax(Σ
ℓd,1
x,Gm

)∥D̃m
1:∥22 (C.19)

where dmax(Σ
ℓd,1
x,Gm

) is the spectral radius of the |Gm| × |Gm| submatrix Σ
ℓd,1
x,Gm

, which is

formed by keeping ℓd,1 rows and columns of Σx,Gm ∈ R|Gm|×|Gm| with common indices.

The inequality in (C.19) holds true because each subvector D̃m
1: of D̃1: can have at most ℓd,1

nonzero entries. If dℓd,1d denotes the maximum spectral radius that can be achieved by any

ℓd,1 × ℓd,1 submatrix Σ
ℓd,1
x,Gm

that is contained in a diagonal block Σx,Gm for m = 1, . . . ,M ,

then since
∑M

m=1 ∥D̃m
1:∥22 = 1 and equation (C.19), it holds that D̃1:ΣxD̃

T
1:≤d

ℓd,1
d . Then,

it should hold that dℓd,1d = d∗d. Then, the max value d∗d can be attained if and only if the

nonzero entry indices of the optimal D̃e,1: satisfy I1 := support(D̃e,1:) ⊆ Gm1 for a m1 ∈

{1, ...,M}. This further implies that there exists an eigenvector Ux,:i1 , with support Zi1 =

Gm1 for which I1 ⊆ Zi1 . Thus, it is deduced that ∥D̃e,1:(Z̄i1)∥1 = 0 and ∥D̃e,1:(Zi1)∥1 ≥

ξ(λD,1) > 0 since the ℓd,1 nonzero entries have indices in Zi1 . Positivity of ξ(λD,1) is

ensured since ∥D̃e,1:∥2 = 1 and λD,1 is selected such that De,1: ̸= 0.

Similarly, optimal Ee,1: satisfies I ′
1 := support(Ee,1:) ⊆ Gm′

1
for m′

1 ∈ {1, . . . ,M}

and Gm′
1

is the index set for the m′
1st diagonal block of Σy. In the same way, there exists

an eigenvector Uy,:i′1
, with support Zi′1

= Gm′
1

for which I ′
1 ⊆ Zi′1

. Thus, it is deduced that

∥Ẽe,1:(Z̄i′1
)∥1 = 0 and ∥Ẽe,1:(Zi′1

)∥1 ≥ ξ′(λE,1) > 0 since the ℓe,1 nonzero entries have

indices in Zi′1
.
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Next, it is shown that Gm′
1
= Gm1 = Zi′1

= Zi1 . From the constraints in (C.17),

it follows that, if the optimal γ∗e,1, γ
∗
d , c

∗
d, c

∗
e are all strictly positive, then, γ∗de are strictly

positive too. Recall that Σx and Σy have the same block diagonal structure then Gm1 =

Gm′
1
, otherwise I1 ∩ I ′

1 = ∅ which would further imply that γ∗de,1 = Ẽe,ρ:ΣyxD̃
T
e,ρ: = 0

resulting a contradiction. Thus, Gm′
1
= Gm1 results Zi′1

= Zi1 .

Let’s consider the more general case where q > 1. To this end, let Dρ: = ∥Dρ:∥2D̃ρ:

with ∥D̃ρ:∥2 = 1, and Eρ: = ∥Eρ:∥2Ẽρ: with ∥Ẽρ:∥2 = 1, for ρ = 1, ..., q. Further, let

cd,ρ: = ∥Dρ:∥2, γd,ρ: = D̃ρ:ΣxD̃
T
ρ:, γde,ρ: = D̃ρ:ΣxyẼ

T
ρ: and δd,ρj: = D̃ρ:ΣxD̃

T
j: (j ̸=

ρ, j, ρ = 1, . . . , q). Notice that δd,ρj = δd,jρ, δd,ρj ≤ γd,ρ, δd,ρj ≤ γd,j and γd,ρ ≤ d∗d,ρ.

Where, d∗d,ρ corresponds to the maximum value that D̃ρ:ΣxD̃
T
ρ: can attain when ∥D̃ρ:∥0 =

ℓd,ρ, which can be equivalently written as d∗d,ρ = maxD̃ρ:
D̃ρ:ΣxD̃

T
ρ: subject to the constraint

that ∥D̃ρ:∥0 = ℓd,ρ. Moreover, let ce,ρ: = ∥Eρ:∥2, γe,ρ: = Ẽρ:ΣyẼ
T
ρ: and δe,ρj: = Ẽρ:ΣyẼ

T
j:

(j ̸= ρ). Notice that δe,ρj = δe,jρ, δe,ρj ≤ γe,ρ, δe,ρj ≤ γe,j , and γe,ρ ≤ d∗e,ρ, in which,

d∗e,ρ: = maxẼρ:
Ẽρ:ΣyẼ

T
ρ:, subject to the constraint ∥Ẽρ:∥0 = ℓe,ρ. Recall that, λD and λE

have been selected such that ∥D∗
ρ:∥1 = κd,ρ and ∥D∗

ρ:∥0 = ℓd,ρ, while ∥E∗
ρ:∥1 = κe,ρ and

∥E∗
ρ:∥0 = ℓe,ρ for ρ = 1, ..., q.

In this case, let’s denote the Lagrangian function of (C.15) as L2(·). Next, we apply

KKT conditions to derive necessary conditions that the optimal solution of the minimiza-

tion problem should satisfy, which involves the following three steps (assume that v < 0.5

and ε < 0.5): 1) Differentiating L2(·) w.r.t. cd,ρ, ce,ρ, γd,ρ, γe,ρ, γde,ρ, δd,ρj , and δe,ρj; 2) Set-

ting the corrsponding derivatives equal to zero; 3) Applying the complementary slackness

conditions for the optimal Lagrange multipliers.

Firstly, we consider the easier case where r = 1, which makes q = M . From

Cauchy-Schwarz inequality and δd,ρj ≤ γd,ρ, we know that the two sides are equal if and

only if D̃ρ: and D̃j: are linearly dependent. As ∥D̃ρ:∥2 = ∥D̃j:∥2 = 1, if and only if

D̃ρ: = D̃j:, then, δd,ρj = γd,ρ = γd,j . Consider that the M sources are nonoverlapping,
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there could not be two rows of De which have the same direction. Thus δd,ρj < γd,ρ and

δd,ρj < γd,j . Similarly, δe,ρj < γe,ρ and δe,ρj < γe,j . Then after the aforementioned three

steps, it follows that at an optimal point it must hold that γd,ρ = d∗d,ρ , γe,ρ = d∗e,ρ, γd,ρj = 0

and γe,ρj = 0 for ρ = 1, ..., q, j = 1, ..., q, j ̸= ρ. Since γd,ρj = 0, it follows that the

optimal direction vector D̃ρ: should be selected such that D̃ρ:ΣxD̃
T
j: = 0 for j ̸= ρ, while

γ∗e,ρ = D̃ρ:ΣxD̃
T
ρ: is equal to the maximum possible value d∗d,ρ. The previous properties and

since De,ρ: = c∗d,ρD̃ρ:, results that the direction vector for the ρth row of the optimal matrix

De, namely D̃e,ρ:, should be selected such that

D̃e,ρ: = arg maxD̃ρ:
D̃ρ:ΣxD̃

T
ρ: (C.20)

s. to D̃ρ:ΣxD̃
T
j: = 0 , ∥D̃ρ:∥2 = 1 , ∥D̃e,ρ:∥1 = κd,ρ

where ρ = 1, ..., q, j ̸= ρ. Using similar derivations as when q = 1, it can be shown

that if D̃e,ρ:ΣxD̃
T
e,ρ: = d∗d,ρ, there must exist a column, namely the iρth column of Ux with

support Ziρ . As De,ρ: is a scaled version of D̃e,ρ:, it implies that ∥De,ρ:(Z̄iρ)∥1 = 0, while

∥De,ρ:(Ziρ)∥1 > ξρ(λD,ρ), where ξρ(λD,ρ) is strictly positive.

Similarly, ∥Ee,ρ:(Z̄i′ρ
)∥1 = 0, while ∥Ee,ρ:(Zi′ρ

)∥1 > ξ′ρ(λE,ρ), where ξ′ρ(λE,ρ) is

strictly positive and Zi′ρ
= support(Uy,:i′ρ

), while Uy is the eigenvector matrix of Σy.

Further, Gm′
ρ
= Gmρ = Zi′ρ = Ziρ , where Gmρ and Gm′

ρ
are the index sets for the mρth

diagonal block of Σx and the m′
ρth diagonal block of Σy, respectively.

Using the similar way, we can prove the Theorem 1 for the more general case where

r > 1.
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APPENDIX D

IMPACE OF MOVING AVERAGE FILTER
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Consider the measurement acquired at sensor j at time instant t

xj(t) =
∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)sm(t− τ) + wj(t) (D.1)

where Sj corresponds to the set that contains the source indices observed by sensor j.

The MA filtering applied here boils down to form a running sample-average of P

consecutive measurements at time instant t, i.e.,

xj(t) =
1

P

t−P+1∑
ℓ=t

∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)sm(ℓ− τ) + wj(ℓ)


=
∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)

[
P−1

t−P+1∑
ℓ=t

sm(ℓ− τ)

]
+

1

P

t−P+1∑
ℓ=t

wj(ℓ)

=
∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)s̄m(t− τ) + w̄j(t), (D.2)

where s̄m(t − τ) := P−1
∑t−P+1

ℓ=t sm(ℓ − τ) and w̄j(ℓ) corresponds to the averaged noise

term in (D.2).

Note that if the length of the MA filter P is selected sufficiently large compared to L,

while the source signals have a time-invariant ensemble average (e.g., wide sense stationary

processes) then in that case it holds that

s̄m(t) ≈ s̄m(t− 1) ≈ . . . ≈ s̄m(t− L+ 1), (D.3)

due to the averaging effect of a sufficiently large number of sensor measurements. Then,

after utilizing (D.3) in the third equation in (D.2) we obtain

xj(t) ≈
∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)s̄m(t) + w̄j(t) (D.4)

=
∑
m∈Sj

H̄j,ms̄m(t) + w̄j(t), (D.5)

where H̄j,m := cj,m
∑L−1

τ=0 hj,m(τ).
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From (D.4) it follows readily that the noise w̄j(t) has zero-mean and variance σ2
w/P .

Thus, for sufficiently large P the noise can be made negligible and virtually be ignored.

Next, it is demonstrated how the MA measurements can be utilized to obtain an accurate

estimate for the number of sources present in the monitored field. Stacking all the MA

measurements in (D.4) in a vector x̄t we obtain

x̄t := [x̄1(t) . . . x̄p(t)]
T =

M∑
m=1

h̄ms̄m(t), (D.6)

where h̄m is a p × 1 vector whose jth entry is zero, namely h̄m[j] = 0, if the measure-

ments of sensor j do not contain information about source sm(t), otherwise h̄m[j] =

cj,m
∑L−1

τ=0 hj,m(τ). If there is N̄ := N − P + 1 training sensor data vectors available,

i.e., {x̄t}N̄t=1 and after subtracting the sample-average estimate for the mean of x̄t, namely

mx̄ = N̄−1
∑N̄

t=1 x̄t, then the MA data covariance matrix can be estimated as

Σ̂x̄ =
1

N̄

N̄∑
t=1

[x̄t −mx̄][x̄t −mx̄]
T (D.7)

=
∑M

m=1

∑M
m′=1 h̄mh̄m′T

× [N̄−1
∑N̄

t=1[s̄m(t)− ¯̄sm][s̄m′(t)− ¯̄sm]], (D.8)

where ¯̄sm := N̄−1
∑N̄

t=1 s̄m(t). For sufficiently large number of training data N̄ and since

the sources are uncorrelated it turns out from Law of Large Numbers [39]

N̄−1
∑N̄

t=1[s̄m(t)− ¯̄sm][s̄m′(t)− ¯̄sm] ≈ σ2
mδ(m−m′) (D.9)

with δ(m−m′) denoting the Kronecker delta function and σ2
m corresponds to the variance

of source sm(t). Thus, the MA data covariance matrix in (D.7) can be written as

Σ̂x̄ ≈
∑M

m=1 σ
2
mh̄mh̄

T
m. (D.10)

As long as the column vectors h̄m are linearly independent it is easily seen that for suffi-

ciently large number of training data N , and MA filtering length P the number of nonzero
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eigenvalues of the MA data covariance matrix estimate Σ̂x̄ is equal to the number of sources

M . Note that for the random Gaussian channel coefficients considered in Sec. 5.1, the vec-

tors {h̄m}Mm=1 are linearly independent.
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APPENDIX E

PROOF OF PROPOSITION 3
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Consider sensor j in which after applying the MA filter to its measurements follow-

ing (5.1), and utilizing the result from (D.2) it follows

x̄j(t) =
∑
m∈Sj

cj,m

L−1∑
τ=0

hj,m(τ)

[
P−1

t−P+1∑
p=t

sm(p− τ)

]
+

1

P

t−P+1∑
p=t

wj(p) (E.1)

where Sj corresponds to the set of sources that are affecting the measurements of

sensor j. When the number of measurements P is selected sufficiently large, the noise

variance in (E.1) can be made arbitrarily small as stated in Apdx. A. Thus, for sufficiently

large P the MA measurements in (E.1) can be assumed approximately to be noise free

which further implies that the sensor measurements are scaled versions of the modified

source signal sm(t). Since the modified source signal sm(t) is formed by adding a set of P

samples of the original source signal sm(t), and the original source signals are uncorrelated

then the modified source signals are also uncorrelated.

It is demonstrated how the recursive interplay between PCA and CS-CCA in Sec.

5.2.2 ensures the correct clustering of the sensors according to their source content for

sufficiently large MA filter length P and number of training data N . S-CCA at first is

applied across all the sensors’ MA measurements which are stacked in vectors x̄(t) for

t = 1, . . . , N̄ and used to form the MA data covariance matrix Σ0
x using (5.7) and all

measurements in x̄(t). For sufficiently large P , the eigenvalues of Σ0
x corresponding to

the sources will be significantly larger in magnitude than the eigenvalues corresponding to

noise which will have negligible magnitude. Thus, by selecting a proper threshold (depen-

dent on the value of P ) the source-related eigenvalues can be identified, and their cardinal-

ity will correspond to the actual number of sources M . Then, CS-CCA can be employed

to identify the M different clusters M̂1
m1 for m1 = 1, . . . ,M . For each of these clusters

the corresponding sensor measurements are stacked in vectors x̄1
1(t), x̄

1
2(t), . . . , x̄

1
M(t) for

t = 1, . . . , N̄ respectively, where the subscript indicates the cluster index and the super-

script the iteration index. The aforementioned vectors are used in the same way as during
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the first iteration to form via sample-averaging the covariance matrices Σ1
x,m1 in (5.7).

After PCA is applied to each Σ1
x,m1 , the number of sources contained in the mth cluster

measurements x̄1
m(t) can be determined as delineated earlier. The alternating interplay be-

tween CS-CCA and PCA is continued until all resulting clusters either contain information

about only one source, or have a single measurement that may contain information about

multiple sources.

During the merging process, when PCA is applied for sufficiently large P and N as

described in Sec. 5.2.2 then after a finite number of iterations, which will not exceed the

number of sensors p (worst case scenario where all clusters contain a single-sensor mea-

surements), this process will result M clusters that contain the measurements of sensors

observing a single common source. If there are sensors that sense more than one sources,

then there will also be clusters that contain measurements which have information about

these sources. The source content of these multi-source clusters will be identified by em-

ploying the PCA process described in Sec. 5.2.2 which will determine the single-source

clusters that share the same source content with the multi-source cluster.

143



REFERENCES

[1] A. Aduroja, I. D. Schizas, and V. Maroulas, “Distributed Principal Component Analy-

sis in Sensor Networks,” in Proc. of the Intl. Conf. on Acoust., Speech and Sig. Proc.,

Vancouver, BC, pp. 5850–5854, May 2013.

[2] A. Avokh and G. Mirjalily, “Dynamic Balanced Spanning Tree (DBST) for Data

Aggregation in Wireless Sensor Networks,” Proc. of International Symposium on

Telecommunication (IST), pp. 391–396, 2010.

[3] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, “Generative Model-Based Clustering of

Directional Data,” Proc. of ACM SIGKDD Intl. Conf. on Knowledge Disc. and Data

Mining, Washington, DC, pp. 19–28, 2003.

[4] D. P. Bertsekas, Nonlinear Programming. 2nd Edition, Athena Scientific, Massachus-

sets, 1999.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods. 2nd Edition, Athena Scientific, Massachussets 1997.

[6] D. R. Brillinger, Time Series: Data Analysis and Theory. Expanded Edition, Holden

Day, 1981.

[7] M. Borga and H. Knutsson, “A Canonical Correlation Approach to Blind Source Sepa-

ration”, Department of Biomedical Engineering, Linkping University, Tech. Rep. LiU-

IMT-EX-0062, 2001.

[8] J. M. Bruce and P. L. Dragotti, “Reconstructing Diffusion Fields Sampled with a Net-

work of Arbitrarily Distributed Sensor,” Proc. of 22nd European Signal Processing

Conference (EUSIPCO), Lisbon, Portugal, Sep. 2014.

144



[9] J. M. Bruce and P. L. Dragotti, “Consensus for the Distributed Estimation of Point

Diffusion Sources in Sensor Networks,” IEEE Int. Conf. on Acoustics, Speech and

Signal Processing (ICASSP), Brisbane, Australia, April 2015.

[10] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Convex Optimization with

Sparsity-Inducing Norms,” Optimization for Machine Learning, MIT Press, 2011.

[11] A. Choromanska, and C. Monteleoni, “Online Clustering with Experts,” In Proc. Of

15th Int. Conf. on Artificial Intelligence and statistics (AISTATS), La Palma, Canary

Islands, pp. 1-18, Apr. 2012.

[12] J. H. Cui, J. Kong, M. Gerla, and S. Zhou, “The Challenges of Building Scalable Mo-

bile Underwater Wireless Sensor Networks for Aquatic Applications,” IEEE Networks,

no. 20, pp. 12–18, 2006.

[13] M. M. Chiang and B. Mirkin, “Intelligent Choice of the Number of Clusters in k-

Means Clustering: An Experimental Study with Different Cluster Spreads,” Journal of

Classification, vol. 27, no. 3, pp. 3–40, 2010.

[14] B. Cheng, J. C. Yang, S. C. Yan, Y. Fu, and T. S. Huang, “Learning with ℓ1-Graph

for Image Analysis,” IEEE Trans. Image Processing, vol. 19, no. 4, pp. 858-866, Apr.

2010.

[15] J. Chen and I. D. Schizas, “Online Distributed Sparsity-Aware Canonical Correlation

Analysis,” IEEE Trans. on Signal Processing, vol. 64, no. 3, pp. 688–703, 2016.

[16] J. Chen, I. D. Schizas, “Distributed information-based cluster-

ing of heterogeneous sensor data,” Signal Processing, available at

http://dx.doi.org/10.1016/j.sigpro.2015.12.017 , 2016.

[17] D. Cai, X. He, and J. Han, “Spectral Regression: A Unified Approach for Sparse

Subspace Learning,” Proc. IEEE Seventh Int’l Conf. Data Mining (ICDM), 2007.

145



[18] J. M. Hoem, “A contribution to the statistical theory of linear graduation,” Insur-

ance: Mathematics and Economics, vol. 3, no. 1, pp. 117, 1984, doi: 10.1016/0167-

6687(84)90014-3.

[19] E. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles: Exact Signal

Reconstruction from Highly Incomplete Frequency Information,” IEEE Trans. on Info.

Theory, pp. 489–509, Feb. 2006.

[20] X. Chen, H. Liu, and J. G. Carbonell, “Structured Sparse Canonical Correlation Anal-

ysis,” Proc. of Intl. Conf. on Artificial Intelligence and Stats. (AISTATS), La Palma,

Canary Islands, pp. 199–207, 2012.

[21] N. M. Correa, Y. O. Li, and T. Adali, “Canonical Correlation Analysis for Feature-

based Fusion of Biomedical Imaging Modalities and its Application to Detection of

Associative Networks in Schizophrenia”, IEEE Journal of Selected Topics in Signal

Processing, vol. 2, no. 6, pp. 998-1007, 2008.

[22] J. Coleman, and J. Hardin, “Robust Sparse Canonical Cor-

relation Analysis and PITCHf/x”, Tech. Report. Available:

”http://pages.pomona.edu/ jsh04747/Student%20Theses/JakeColeman13.pdf”

[23] L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li and C.Maple, “A Survey of Localization

in Wireless Sensor Network,”Intl. Journal of Distributed Sensor Networks, vol. 2012,

doi:10.1155/2012/962523, pp. 1–12, 2012.

[24] I. Dokmanic, J. Ranieri, A. Chebira, and M. Vetterli, “Sensor Networks for Diffu-

sion Fields: Detection of Sources in Space and Time,” Proc. of 49th Allerton Conf.

Commun., Control, Comput. (Allerton), pp. 1552–1558, Monticello, Sep. 2011.

[25] P. Elena, T. David, and B. Joseph, “Sparse Canonical Correlation Analysis with Ap-

plication to Genomic Data Integration,” Statistical Applications in Genetics and Molec-

ular Biology, vol. 8, no. 1, pp. 1-34, 2009.

146



[26] A. V. Fiacco, “Introduction to Sensitivity and Stability Analysis in Nonlinear Pro-

gramming”, Academic Press, 1983.

[27] D. Garcia-Alvarez, “ Fault Detection using Principal Component Analysis (PCA) in

a Wastewater Treatment Plant (WWTP),” Proc. of the International Students Scientific

Conference, 2009.

[28] I. Guedalia, M. London, and M. Werman, “An On-Line Agglomerative Clustering

Method for Nonstationary Data,” Neural Computation, vol. 11, pp. 521-540, 1999.

[29] D. R. Hardoon and J. Taylor, “The Double-Barrelled Lasso,” in Learning from Multi-

ple Sources Workshop, Advances on Neural Information Processing Systems, Vancou-

ver, Canada, 2008.

[30] D. R. Hardoon and J. Taylor, “Sparse Canonical Correlation Analysis,” Machine

Learning, vol. 83, no. 3, pp. 331-353, 2011.

[31] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On Clustering Validation Tech-

niques,” Journal of Intelligent Information Systems, 17, pp. 107-145, 2001.

[32] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning”,

Springer, 2009.

[33] H. Hotelling, “Relations Between Two Sets of Variates,” Biometrika, vol. 28, pp.

321–377, 1936.

[34] R. He, B. G. Hu, W. S. Zheng, and Y. Q. Guo, “Two-Stage Sparse Representation for

Robust Recognition on Larg-Scale Database,” Proc. AAAI Conf. Artificial Intelligence,

2010.

[35] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A Review”, ACM Comput-

ing Surveys, 31(3), pp. 264-323, 1999.

[36] S. Kim, K. A. Sohn, and E. P. Xing, “A Multivariate Regression Approach to Associ-

ation Analysis of a Quantitative Trait Network,” Bioinformatics, 25(12), pp. 204-212,

2009.

147



[37] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Pren-

tice Hall, 1993.

[38] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no.

2, pp. 129–137, Mar. 1982.

[39] M. Loeve, Probability Theory 1. Fourth Edition, Springer Verlag, 1977.

[40] Y. M. Lu, P. L. Dragotti, and M. Vetterli, “Localizing Point Sources in Diffusion

Fields from Spatiotemporal Samples,” Proc. of the 9th Int. Conf. Sampl. Theory Appl.

(SampTa), Singapore, May 2011.

[41] Y. Liu, Y. He, M. Le, J. Wang, K. Liu, L. Mo, W. Doing, Z. Yang, M. Xi, J. Zhao,

and X. Y. Li, “Does Wireless Sensor Network Scale? A Measurement Study on

GreenOrbs,” Proc. of the IEEE International Conference on Computer Communica-

tions (IEEE INFOCOM 2011), Shanghai, China, pp. 873–881, 2011.

[42] Y. O. Li, T. Adali, W. Wang, and V. Calhoun, “Joint Blind Source Separation by

Multiset Canonical Correlation Analysis”, IEEE Transactions on Signal Processing,

vol. 57, no. 10, pp. 3918–3929, 2009.

[43] D. Lin, J. Zhang, J. Li, V. D. Calhoun, H.-W. Deng and Y.-P. Wang, “Group Sparse

Canonical Correlation Analysis for Genomic Data Integration,” BMC bioinformatics,

vol. 14, no. 1, pp. 245, 2013.

[44] S. C. Madeira and A. L. Oliveira, “Biclustering Algorithms for Biological Data Anal-

ysis: A Survey,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 1, no. 1, pp. 24-45,

2004.

[45] D. Mantri, N. R. Prasad and R. Prasad, “BHCDA: Bandwidth efficient Heterogeneity

Aware Cluster Based Data Aggregation for Wireless Sensor Network,” Proc. of IEEE

Intl. Conf. of Advances in Computing, Communications and Informatics (ICACCI), pp.

1064–1069, Aug. 2013.

148



[46] B. Mirkin, Clustering for Data Mining: A Data Recovery Approach, Boca Raton, FL:

Chapman and Hall/CRC, 2005.

[47] J. B. MacQueen, “Some Methods for Classification and Analysis of MultiVariate

Observations,” Proc. of the fifth Berkeley Symposium on Mathematical Statistics and

Probability, L. M. L. Camand J. Neyman, eds, vol. 1, pp. 281–297, 1967.

[48] J. Matthes, L. Groll, and H. B. Keller, “Source Localization by Spatially Distributed

Electronic Noses for Advection and Diffusion,” IEEE Trans. Signal Processing, vol.

53, no. 5, pp. 1711–1719, May 2005.

[49] X. Mao, X. Miao, Y. He, T. Zhu, J. Wang, W. Dong, X. Y. Li, and Y. Liu, “CitySee:

Urban CO2 Monitoring with Sensors,” Proc. IEEE Int. Conf. Conput. Commun., pp.

1611–1619, 2012.

[50] A. Nehorai, B. Porat, and E. Paldi, “Detection and Localization of Vapor-Emitting

Sources,” IEEE Trans. Signal Processing, vol. 43, no. 1, pp. 243-253, Jan. 1995.

[51] A. Nordio, C. F. Chiasserini, and E. Viterbo, “Bandlimited field reconstruction for

wireless sensor networks,” Tech Rep., Politecnico di Torino, Jan. 2006.

[52] E. Parkhomenko, D. Tritchiler, and J. Beyene, “Sparse Canonical Correlation Analy-

sis with Application to Genomic Data Integration,” Statistical Applications in Genetics

and Molecular Biology, 8, pp. 1-34, 2009.

[53] A. T. Puig, A. Wiesel, and A. O. Hero, “Multidimensional Shrinkage-thresholding

Operator and Group LASSO Penalties,” IEEE Signal Process. Lett., vol. 18, pp. 363–

366, Jun. 2011.

[54] N. S. Patil and P. R. Patil, “Data Aggregation in Wireless Sensor Network”, IEEE Int.

Conf. Computational Intelligence and Computing Research, Dec. 2010.

[55] P. Patil and U. Kulkarni, “SVM based Data Redundancy Elimination for Data Aggre-

gation in Wireless Sensor Networks, in processing of Advances in Computing, Commu-

149



nications and Informatics (ICACCI), International Conference IEEE, pp. 1309-1316,

Aug. 2013.

[56] L. S. Qiao, S. C. Chen, and X. Y. Tan, “Sparsity Preserving Projections with Applica-

tions to Face Recognition,” Pattern Recognition, vol. 43, no. 1, pp. 31-341-, 2010.

[57] S. Ramachandran, A. K. Gopi, G. V. Elumalai, and M. Chellapa, “ REDD: Redun-

dancy Eliminated Data Dissemination in Cluster Based Mobile Sinks,” ICRTIT, Inter-

national Conference IEEE, Jun. 2011.

[58] G. Reise, G. Matz, and K. Grochenig, “Distributed Field Reconstruction in Wireless

Sensor Networks Based on Hybrid Shift-Invariant Spaces,” IEEE Trans. Signal Pro-

cess. vol. 60, no. 10, pp. 5426-5437, Oct. 2012.

[59] J. Ranieri, A. Vincenzi, A. Chebira, D. A. Alonso, and M. Vetterli, “EigenMaps: Al-

gorithms for Optimal Thermal Maps Extraction and Sensor Placement on Multicore

Processors,” Proc. 49th Design Autom. Conf. (DAC), ACM, pp. 636–641, San Fran-

cisco, 2012.

[60] G. Ren, I. D. Schizas and V. Maroulas, “Joint Sensors-Sources Association and Track-

ing,” Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop,

A Coruna, Spain, June 22-25, 2014.

[61] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in Ad Hoc WSNs with

Noisy Links - Part I: Distributed Estimation of Deterministic Signals,” IEEE Trans. on

Signal Processing, vol. 56, pp. 350–364, Jan. 2008.

[62] F. Sawo, K. Roberts, and U. D. Hanebeck, “Bayesian Estimation of Distributed Phe-

nomena Using Discretized Representations of Partial Differential Equations,” Proc. 3rd

IEEE Int. Conf. Inf. Control, Autom., Robot. (ICINCO), pp. 16–23, Aug. 2006.

[63] S. Sirsikar and S. Anavatti, “Issues of Data Aggregation Methods in Wireless Sensor

Network: A Survey,” Proc. of 4th International Conference on Advances in Computing,

Communication and Control (ICAC), vol. 49, pp. 194–201, 2015.

150



[64] I. D. Schizas and G. B. Giannakis, “Covariance Eigenvector Sparsity for Data Com-

pression and Denoising,” IEEE Trans. on Signal Processing, vol. 60, no. 5, pp. 2408–

2421, May 2012.

[65] I. D. Schizas, “Distributed Informative-Sensor Identification using Sparsity-Aware

Matrix Factorization,” IEEE Transactions on Sig. Proc., vol. 61, no. 18, pp. 4610–

4624, Sep. 2013.

[66] I. D. Schizas and A. Aduroja, “A Distributed Framework for Dimensionality Reducion

and Denoising,” IEEE Trans. on Signal Processing, vol. 63, no. 23, pp. 6379–6394,

Dec. 2015.

[67] J. Sui, H. He, G. D. Pearlson, T. Adali, K. A. Kiehl, Q. Yu, V. P. Clark, E. Castro,

T. White, B. A. Mueller, B. C. Ho, N. C. Andreasen, V. D. Calhoun, “Three-way (N-

way) Fusion of Brain Imaging Data based on mCCA+ jICA and its Application to

Discriminating Schizophrenia”, Neuroimage, vol. 66, pp. 119-132, 2013.

[68] S. Simic̀ and S. Sastry, “Distributed Environmental Monitoring Using Random Sensor

Networks,” Proc. of the 2nd Intl. Workshop on Info. Proc. in Sensor Nets., Palo Alto,

CA, USA, pp. 582–592, 2003.

[69] S. Theodoridis, and K. Koutroumbas, Pattern Recognition. Third Ed., Academic

Press, 2006.

[70] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the

Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996.

[71] P. Tseng, “Convergence of a Block Coordinate Descent Method for Nondifferentiable

Minimization,” Journal of Opt. Theory and Applications, vol. 109, no. 3, pp. 475–494,

Jun. 2001.

[72] M. O. Ulfarsson and V. Solo, “Sparse Variable PCA Using Geodesic Steepest De-

scent,” IEEE Transactions on Signal Processing, vol. 10, no. 12, pp. 5823–5832, 2008.

151



[73] J. Via, I. Santamaria, and J. Perez, “A Robust RLS Algorithm For Adaptive

Canonical Correlation Analysis,” in Proc. of ICASSP, Philadelphia, PA, pp. 365-368,

Mar 2005.

[74] S. Waaijenborg, P. C. V. de. W. Hamer, and A. H. Zwinderma, “Quantifying the As-

sociation between Gene Expressions and DNA-markers by Penalized Canonical Corre-

lation Analysis,” Statistical Applications in Genetics and Molecular Biology, 7. Issue

1, Article 3, 2008.

[75] S. Waaijenborg and A. H. Zwinderman, “Sparse Canonical Correlation Analysis for

Identifying, Connecting and Completing Gene-Expression Networks,” BMC Bioinfor-

matics, vol. 10, article 315, 2009.

[76] J. Wright, A. Yang, S. Sastry, and Y. Ma, “Robust Face Recognition via Sparse Rep-

resentation,” IEEE Trans. Pattern Aanlysis and Machine Intelligence, vol. 31, no. 2,

pp. 210-227, Feb. 2009.

[77] A. Wiesel, M. Kliger, and A. Hero, “ A Greedy Approach to Sparse Canoni-

cal Correlation Analysis,” Technical Report, University of Michigan, available in

arXiv:0802.2748, 2008.

[78] B. Widrow and S. Steam, “Adaptive Signal Processing,” 1st Edition, Prentice Hall,

Mar. 1985.

[79] D. M. Witten, R. Tibshirani, and T. Hastie, “A Penalized Matrix Decomposition, with

Applications to Sparse Principal Components and Canonical Correlation Analysis,”

Biostatistics, vol. 10, no. 3, pp. 515–534, 2009.

[80] J. Weimer, B. Sinopoli, and B. H. Krogh, “Multiple Source Detection and Localiza-

tion in Advection-Diffusion Processes Using Wireless Sensor Networks,” Proc. 30th

IEEE Real-Time Syst. Symp. (RTSS), pp. 333-342, Washington, DC, 2009.

152



[81] D. Witten and R. Tibshirani, “Extensions of Sparse Canonical Correlation Analysis

with Applications to Genomic Data,” Statistical Applications in Genetics and Molecu-

lar Biology, 8(1), pp. 1-27, 2009.

[82] R. Xu and D. Wunsch, II, “Survey of Clustering Algorithms,” IEEE Trans. Neural

Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[83] M. Yuan and Y. Lin, “Model Selection and Estimation in Regression with Grouped

Variables,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 68, no. 1, pp. 49–67, 2006.

[84] Z. Yong, Z. Hui, G. Dongqiang, and W. Zhihua, “Determination of Chemical Point

Source Using Distributed Algorithm in Sensors Network,” Proc. 24th Chin. Control

Decision Conf. (CCDC), pp. 3373–3377, May, 2012.

[85] O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering in wireless sensor

networks: recent developments and deployment challenges,” IEEE Networks, no. 20,

pp. 20–25, 2006.

[86] H. Zou, “The Adaptive Lasso and its Oracle Properties,” Journal of the American

Statistical Association, vol. 101, no. 476, pp. 1418–1429, 2006.

[87] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal Component Analysis,” Journal

of Computational and Graphical Statistics, vol. 15, no. 2, 2006.

[88] H. Zou, and T. Hastie, “Regularization and Variable Selection via the Elastic Net,”

Journal of the Royal Statistical Society, Series B, 67, pp. 301-320, 2005.

[89] S. Zhu, D. Wang, K. Yu, T. Li, and Y. Gong, “Feature Selection for Gene Expression

Using Model-Based Entropy, IEEE/ACM Trans. Computational Biology and Bioinfor-

matics, vol. 7, no. 1, pp. 25-36, Jan.-Mar. 2010.

[90] D. Zumoffen and M. Basualdo, “From Large Chemical Plant Data to Fault Diagnosis

Integrated to Decentralized Fault Tolerant Control: Pulp Mill Process Application,”

Industrial and Engineering Chemistry Research, vol. 47, pp. 1201-1220, 2007.

153



BIOGRAPHICAL STATEMENT

Jia Chen was born in Yingtan, China, in 1987. She received her B.S. degree from

Southwest Jiaotong University, China, in 2009, her M.S. degree from University of Elec-

tronic Science and Technology of China, China, in 2012. She is currently a PhD student in

the University of Texas at Arlington in Electrical Engineering. Her research interests focus

on machine learning, signal processing, and ad hoc networks.

154


