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Abstract 

 
DISCRIMINATING PARKINSON’S DISEASE USING FUNCTIONAL CONNECTIVITY 

AND BRAIN NETWORK ANALYSIS 

 

Daniel Gellerup, MS 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Shouyi Wang  

In this study, we explored the use of functional connectivity patterns in fMRI data 

to classify subjects on the basis of Parkinson’s disease. We explore various brain 

networks and features. We partition our fMRI data in 5 filtered frequency ranges. We use 

a proximal support vector machine paired with a minimum-redundancy and maximum-

relevance feature selection method on each frequency range. We use a majority voting 

ensemble classification method on the results of the proximal support vector machine 

classification results. We use a double 5-fold cross validation scheme for model 

validation. We achieve 84% accuracy 74% sensitivity, and 93% specificity. Our results 

indicate that the ensemble method is effective compared to a single broad frequency 

range, and that Bonferroni correction may enhance classification results. We produce 

brain graphs to illustrate the brain networks of Parkinson’s and control subjects. 
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Chapter 1  

Introduction 

Applying machine learning algorithms to neuroimaging data is a promising 

method of modern neuroscience. Brain signals or transformed brain signals from 

neuroimaging can be used as features in a machine learning classification algorithm. 

These features can be used by a classification algorithm to discriminate between brain 

states. However, there are difficulties with this approach due to the high dimensionality 

and low signal to noise ratio in fMRI data. Additionally, high variability between brains 

among individuals makes it difficult to compare them. Simply using brain signals as 

features may not yield desirable performance. More sophisticated features developed 

from the underlying brain signals may be useful in improving the learning approach in 

terms of accuracy, sensitivity, and specificity. Different network approaches for modeling 

the brain connections may improve classifier performance. Researchers apply methods 

to reduce noise in the data during a phase of fMRI analysis known as preprocessing. 

Filters may be applied on the data to focus on certain information bandwidths. Some 

frequency ranges of fMRI data may contain a better signal to noise ratio for classification 

than others. An ensemble method that applies majority voting on a range of frequency 

values may outperform a single frequency range. In this paper, we seek discriminative 

features and compare their merit with an ensemble support vector machine classification 

scheme and minimum-redundancy maximum-relevancy feature selection scheme. We 

perform supervised learning on subjects on the basis of Parkinson’s disease, a neuro-

degenerative disease that may affect the functional connectivity patterns in the brain. We 

explore various frequency bands in the preprocessing step. Our approach advances the 

understanding of classification of functional connectivity patterns in Parkinson’s disease 

and the effect of ensemble classification with band-pass filters. We further contribute to 
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fMRI research on various correlation and network features used in brain state 

classification. 

1.1 History of Modern Neuroscience 

Modern neuroscience is a discipline interested in the scientific study of the 

nervous system. Neuroscientists study the properties of the brain, including the biological 

properties of the nervous system, the emergence of consciousness, memory, and 

cognitive processes. Some approaches used in the neuroscience are cognitive 

psychology, chemical-biological methods, computational neuroscience, and brain 

models. Neuroscience is a multi-disciplinary field that involves biologist, chemists, 

physicists, computer scientists, mathematicians, and related fields. 

The central nervous system is a complex system of specific subsystems 

composes of two main classes of cells: neurons and glial cells. Neurons are the basic 

signaling units that transmit information throughout the nervous system. Neurons are 

capable of receiving information, making a decision with it using chemo-biological 

processes and transmitting to other neurons, using a process called neuronal signaling. 

Neurons transmit information via electrical impulses, and chemical molecules. Glial cells 

are non-neural cells that provide structural support, electrical insulation to neurons, and 

modulate neuronal activities. Neurons are connected in complex networks of dendrites, 

branches between neurons that transmit inputs between neurons. Synapses are the 

structures neurons use to send information to another neuron.  

Neural communication in the brain involves complex patterns of connectivity 

involving sets of neurons that form networks of transmission called neural circuits. The 

structure and density of the network a neuron is contained in varies depending on the 

location of the neuron and what subsystem of the nervous system the neuron is a 
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member of. Neural circuits can combine with each other to make neural systems. Using 

anatomical criteria we can divide the brain into complex neural systems.  

Cognitive Psychology explore the mental operations that are produced by the 

underlying biology of the brain. Cognitive psychologist seek to understand the higher 

order mental processing abilities of the brain. Cognitive psychology models the brain as 

input output machine that processes information with internal representations and 

transforms these representations via cognitive processes. Mental representations are the 

way information is encoded and processed in the brain. Transformations describe how 

sensory data is transformed into internal representations and can be further transformed 

into different mental representations depending on situational context or on the nature of 

the sensory inputs; for example, images being processed in the brain and prompting a 

memory of an event with similar images. Cognitive psychology explore the information 

processing abilities of the brain from a higher order perspective. 

Chemical-biological methods explore the brain from its underlying biology. This 

ranges from the micro-foundations of the brain elements, the individual cells and 

molecules of the nervous system, or at the level of neural systems and brain systems. 

Methods include analysis of brain tissue, cells, and neural connections, analysis of brain 

systems using experiments, elucidating system properties from abnormal or damaged 

brains, and using imaging techniques to examine the brain. Changes in electrical 

impulses, fluctuations in blood flow, and shifts in utilization of oxygen and glucose are the 

changes in the brain that brain imaging exploit to view the inner functioning of the brain. 

Computed tomography, magnetic resonance imaging, diffusion tensor imaging, positron 

emission tomography, functional magnetic resonance imaging, and 

electroencephalography are all imaging techniques that measure various properties of 

the brain. 
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Computational neuroscience studies brain function in terms of the information 

processing properties of brain structures and units that compose the nervous system. It is 

a multi-disciplinary approach that uses methods from computer science, electrical 

engineering, and chemistry and biology to study these properties. Computational 

neuroscience studies all scales of the brain from single neurons, to cognition and 

consciousness. Brain imaging data is used in conjunction with computational methods 

such as pattern recognition, statistical analysis, and machine learning to understand the 

brain.  

1.2 Motivation 

The basic motivation behind research on supervised machine learning 

classification in the brain is to understand the functional properties of the brain and to 

determine mathematical models to determine brain states from underlying measurements 

of brain elements. One example of the utility of this research is diagnosing brain 

disorders based on underlying biological mechanisms in the brain, which may be more 

accurate than diagnosing based on symptoms which could be caused by multiple similar 

disorders, each with unique treatment options. 

Another motivation of this research is to examine multiple features commonly 

used in fMRI supervised machine learning and comparing them for their predictive 

abilities. Similarly, filtering imaging data is a common practice, and the best filtering 

frequency range is an open question. Our research is based on the standard structure of 

supervised machine learning studies and uses standard features and classifiers. The 

research in this thesis explores these features, classifiers, and filtering frequencies. We 

graphically represent the functional connectivity data using brain graph software building 

on exploratory research of brain graphs of neuro-degenerative diseases. 
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1.3 Objective of Research 

Following in the footsteps of prior research in fMRI brain state classification and 

research on Parkinson’s disease, we seek network features in the brain to use for pattern 

recognition to diagnose Parkinson’s patients. In particular, we explore a range of features 

from neuroscience theory to use in SVM classification to distinguish between Parkinson’s 

patients and healthy individuals. Further, we are interested in the benefits of using an 

ensemble SVM method with a range of brain imaging frequency values to evaluate if this 

improves classification properties. We further seek to compare features and filter 

frequencies to evaluate their utility in a supervised machine learning scheme for 

diagnosing Parkinson’s. In addition, we plot brain graphs of Parkinson’s and healthy 

subjects to graphically display the functional connectivity patterns. 

1.4 Organization of the Thesis 

This thesis is organized as follows: 

Chapter 2 summarizes the current state of the literature on fMRI classification and 

Parkinson’s research. 

Chapter 3 describes our research methodology. 

Chapter 4 reports the results of our research. 

Chapter 5 concludes the thesis and discusses limitations of the research and further 

research that is warranted.  
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Chapter 2  

Literature Review 

2.9 Diagnosis of Parkinson’s and Challenges 

Parkinson’s is a progressive neurodegenerative disorder that manifests 

principally as resting tremor, rigidity, akinesia and postural instability, and the diagnosis is 

based on these symptoms [26]. Parkinson’s results in cell death in the substantia nigra, a 

region of the brain. Parkinson’s is associated with the degeneration of dopaminergic 

nigrostriatal neurons with consequent dysfunction of the cortico-striatal-thalamic loops 

[44]. It is irreversible once it reaches a mature stage and there are few therapy options. 

There are enormous costs associated with the disease. Studies have shown that 

multivariate pattern analysis is capable of extracting functional patterns from 

neuroimaging data and may be useful for identifying significant neuroimaging-based 

biomarkers [43]. Biomarkers to distinguish patients from healthy controls are desirable for 

Parkinson’s disease. Biomarkers may be useful for identifying Parkinson’s in early stages 

to be used for early diagnosis and possibly intervention. There may be a transition stage 

between normal cognition and Parkinson’s.Functional connectivity studies on Parkinson’s 

focus on certain brain regions such as the putamen, thalamus or SMA [26]. Certain 

patterns of functional connectivity associated with Parkinson’s may exist as potential 

biomarkers that could provide additional information for the clinical diagnosis and 

treatment of this disease [43]. 

 
2.1 fMRI and Functional Connectivity 

The fMRI technique measures changes in blood supply and blood oxygenation in 

activated brain regions. The power of this imaging technique is derived from the fact that 

cerebral blood flow and neuronal activity are related. Blood flow is correlated with brain 
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activity in particular regions of the brain. As regions of the brain transition from an inactive 

to an active state, blood flows to that area and the neural tissue may not be able to 

absorb the oxygen, resulting in a change in the proportion of oxygenated to 

deoxygenated hemoglobin in the blood. BOLD is the ratio of oxygenated to deoxygenated 

hemoglobin. The fMRI imaging yields a sequence of 3D brain images with measurements 

of Blood Oxygenation Level Dependent (BOLD) brain activations [1]. Researchers can 

identify brain regions activated during fMRI scans and test functional anatomy and 

functional connectivity [2]. Frequently a block study is employed with the experimental 

structure of presenting stimuli sequentially within a condition, alternating this with other 

moments known as epochs when a different condition is presented [3]. Resting state 

fMRI studies take fMRI images over a course of time when a subject is not exposed to 

stimuli. It is important to note that movement of blood to a region of the brain is preceded 

by the activation in the region from a stimulus. BOLD typically peaks approximately 6 to 

10 seconds after stimulus [2]. 

Voxels are nodes of the brain that are measured over the course of an fMRI 

study. Voxels are a cube of brain tissue typically of length 2mm. Because of the temporal 

resolution of the fMRI, which requires approximately 2 seconds to scan, it is not possible 

to measure precisely when activity occurs in the brain because of the rapidity in which 

neurons can fire. [2]. Because of this, fMRI measures voxels over time and uses 

statistical analysis to analyze voxel activity [1]. 

Functional connectivity is brain connectivity defined by a functional connection 

but not necessarily a structural connection. Functional connectivity is a statistical 

concept. Two voxels are functionally connected if there are deviations from statistical 

independence between the time series of the voxels [2]. Therefore, voxels can be 

functionally related despite the fact that there do not exist structural anatomical brain links 
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between the two. Functional connectivity relationships can be inferred on functional 

connectivity in the brain by analyzing the relationships between voxels [4].   

2.2 Brain Graphs 

Representing functional connectivity in a graphical form using geometry and 

topology techniques is a useful method for analyzing the brain [5]. Nodes representing 

anatomical regions, such as voxels, can be used to produce graphs based off of imaging 

on these nodes. Brain graphs produced from fMRI data have revealed topological 

properties like small-world-ness, modularity, and heterogeneous distributions. They have 

also revealed efficient underlying biological mechanisms that the brain is based off of to 

minimize energy consumption [5]. 

Brain graphs are simple models of functional connectivity patterns in the brain. 

Nodes are connected by edges with values based on the strength on the functional 

connectivity between the two nodes. Some interesting properties of brain graphs are that 

they are generalizable to any scale of neuro-imaging data, exhibit small world-ness, 

modularity, and heterogeneity [5]. Small-worldness describes a network where most 

nodes are not connected by edges to each other, but most nodes can reach another 

node by a comparatively small sequence of connections between adjacent nodes relative 

to the overall size of the network [5]. A modular graph is one that can be decomposed 

into subsystems [5]. Heterogeneity describes graphs with central nodes that have many 

connections, also known as hubs [5]. Some studies have examined brain graphs of 

neurodegenerative diseases. For example, reductions in network efficiency have been 

associated with greater white matter lesion load in patients with multiple sclerosis [6], 

reductions in the average number of edges per nodes have been observed in patients 

with Alzheimer’s disease [7], and Parkinson’s may contribute to weaker connectivity 

strengths between brain regions compared to healthy individuals [8] 
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2.3 Preprocessing 

2.3.1 Overview of Preprocessing 

Preprocessing is a sequence of data transformations on the fMRI images to 

reduce noise and to make the data useful for statistical analysis [9]. There are several 

sources of noise during an fMRI reading and statistical corrections can be applied to 

remedy them. These sources include motion in the head, external body sources, and 

sources of noise generated by the fMRI scanner. In addition, preprocessing applies 

statistical techniques to adjust the brain images using normalization and other techniques 

to reduce noise and allow for statistical analysis. A brief discussion of various 

preprocessing techniques follows in the sequence they are typically performed [10]. 

2.3.2 Reconstruction from k-space Data 

Reconstruction from k-space data is the first step. The raw signal from the 

scanner is received in a state known as k-state, which is a spatial frequency 

transformation of the actual image space. An inverse transform, typically the inverse 

Fourier transform, is performed to transform the data to image data. Often artefacts, 

corruptions in brain image, occur from data received from the brain scanner so artefact 

correction steps are often included in the reconstruction step [5]. 

2.3.3 Motion Correction 

Motion in the head during a scan is a significant problem because the position of 

the voxels change over time and cause artefacts in data [11]. Data from subjects with too 

much motion may need to be discarded entirely and for those with less extreme amounts 

of movement it is desirable to apply realignment correction techniques to their data [11]. 

This amounts to finding a common orientation of images and performing operations such 

as translations and rotations to reorient the images to a common frame. Other sources of 

movement that occur from natural body operations such as the respiratory and cardiac 
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cycles also cause motion, however minor. Some researchers attempt to minimize the 

effects of these movements, but this is not a common technique [10]. 

2.3.4 Slice Timing Correction 

Datasets are commonly measured using repeated 2D imaging methods, resulting 

in a temporal offset between slices. To compensate for this timing difference, slice-timing 

correction, or temporal data interpolation, has been used as a preprocessing step [12]. 

The typical method of temporal adjustment is to shift the time series values in the 

sequence to a reference time using interpolation [10]. 

2.3.5 Spatial Filtering 

Spatial filtering applies an inter-subject averaging technique also referred to as 

blurring to the imaging data, as spatial normalization cannot perfectly align all structures. 

This increases signal to noise by removing noise from small scale changes in the image 

[13]. 

2.3.6 Normalization 

Spatial normalization enables reporting of activations as coordinates within a 

known standard space [14]. Spatial normalization deforms human brain scans so one 

location in one subject's brain scan corresponds to the same location in another subject's 

brain scan [15]. Normalization is often achieved by scaling each voxels time series by a 

mean intensity over the course of the scan [10]. 

2.3.7 Temporal Filtering 

Temporal filtering is used to filter out frequencies that are not salient to the 

analysis the researchers are performing. Physiological noise can be reduced by 

straightforward measures that include filters or more complicated corrections in k-space 

using navigator echoes or external monitoring and retrospective estimation [16]. High-

pass filters can remove low-frequency drifts, which are thought to be caused by 
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physiological noise as well as by physical scanner-related noise [16]. Low-pass filters are 

used to reduce physiological high-frequency respiratory and cardiac noise [16]. Band-

pass filters, which is both a low and high-pass filter, are frequently used and three 

frequency bands typically used in the analysis of fMRI data are: 0.01 Hz to 0.03 Hz, 

0.03Hz to 0.07Hz, 0.01 to 0.10 Hz [17]. A research paper of particular interest uses 

frequency values of 0.23 to 0.45 Hz, 0.11 to 0.23 Hz, 0.06 to 0.11 Hz, 0.03 to 0.06 Hz 

[18]. A result from that paper finds that the most informative frequency ranges are below 

0.11 Hz. The fast Fourier transform is a band-pass filter technique that can transform 

time series data to the frequency domain where it can be filtered, then an inverse Fourier 

transform can be applied to return to the time domain [19]. 

2.4 Functional fMRI Features 

Common features for fMRI classification include voxel time series data, correlation 

matrices, topological features, and computational features. Time series from voxels can 

be effective features [20]. However, some studies have found that simply considering 

connections as features does not yield desirable predictions [8].  

In general, by using domain knowledge to construct appropriate features, one can 

often improve a learning method that has only the raw features at its disposal [2]. Another 

approach examines voxels as clusters. ReHo values are a method to analyze voxels at 

the individual level using cluster assumptions of their neighboring voxel cluster [21]. 

Similarly, voxel time series can be computationally combined to improve signal to noise 

ratios. Regression techniques can reduce confounding voxels [22]. Correlation matrices 

between voxel time series, also known as functional connectivity matrices, are frequently 

used to represent the functional organization of the brain network across subjects and 

conditions. Partial correlations represent the strength of edges when all other time series 

have been regressed out, thereby putatively representing direct links between nodes [23]. 
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Another type of correlation feature defines a feature vector whose elements are pairwise 

regional correlation coefficients [24]. However, previous studies have shown that 

correlations among network nodes have been discovered to change throughout a scan in 

a structured way [25]. Moreover, brain network patterns obtained from voxel-wise 

correlation features are often difficult to interpret in terms of the underlying neurobiology 

due to the limitation of feature selection techniques [26].  

Topological features emphasize the network structure of the brain. The notions of 

brain connectivity naturally lend themselves to graphical representation and make use of 

modern graph techniques to describe and represent brain networks [27]. There is a 

wealth of previously defined metrics that can be used to characterize the topological 

architecture of the brain’s anatomical or functional connectivity: degree and degree 

distribution, small-worldness and efficiency, modularity, and distance measures [5].  

2.5 Modularity Analysis of Functional Connectivity Networks 

An important property of a network is the existence of subsets of the network that 

form dense networks of their own and that are only weakly linked to the other nodes in 

the network at large, if at all. If such a subset of the network exists, it is called a 

community structure of the network. A metric that has been used to identify the 

community structures of a network is modularity. Modularity is, up to a multiplicative 

constant, the number of edges falling within groups minus the expected number in an 

equivalent network with edges placed at random [28]. 

 One common modularity method of identifying community structures is the 

Louvain method for community detection [29]. The Louvain method is an optimization 

method that optimizes the modularity of partitions of the network. The Louvain method 

first finds communities by optimizing modularity locally. Next, it aggregates nodes 

belonging to the same community and builds a new network whose nodes are the 
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communities. Then the algorithm iterates these two steps until a maximum value of 

modularity is achieved and the optimal communities are formed, if they exist [29]. 

2.6 Feature Selection 

Feature selection removes features from the supervised learning algorithm with 

high noise levels and low signal levels that can reduce classifier performance [1]. 

Common feature selection methods for fMRI data are to identify specific regions of 

interest from neuroscience theory and to select active voxels [1]. One approach is to filter 

voxels based on neuroscience theory focusing only on which voxels are in a region of 

interest depending on the study [30]. An approach that can be used in conjunction with 

the region of interest approach is to use the fisher discriminant ratio to choose the most 

active voxels from the most active regions of interest as the most informative features 

[31]. Analysis of variance can be performed comparing mean values between voxels and 

identifying the most dissimilar voxels [1]. 

Another method to select active regions is independent component analysis 

(ICA). ICA can be used in fMRI modeling to understand the spatio-temporal structure of 

the signal [32]. Independent component analysis is frequently performed in conjunction 

with algorithms to identify and choose voxels with significant signal patterns in the brain 

activity [33].  

An alternative feature selection algorithm is minimum redundancy maximum 

relevance (mRMR). This approach seeks features with maximum relevance measured in 

mutual information and minimum redundancy to select mutually exclusive features [34]. 

Some advantages of this approach are the reduction of noise to improve classification 

accuracy and more interpretable features of characteristics that can help identify and 

monitor the target diseases or function types [35]. This approach is common to genetic 

research and the similarities between fMRI and genetic datasets, such as large 
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dimensionality with many features that are not salient for the task being researched, 

make mRMR a useful approach for fMRI data as well [36]. Minimum redundancy 

eliminates features that are highly correlated with others leaving behind a sparse set of 

representative features. This is paired with a maximum relevance criteria such as 

maximum Euclidean distance, minimum pair-wise correlation, or mutual information [34]. 

2.7 Pattern Classification Models 

Machine learning algorithms are well suited for the task of using relationships in 

fMRI data to decode cognitive states [1]. Supervised learning methods take features from 

labeled classes and produces a function to map new data to the classes [37]. fMRI brain 

images have been used in supervised learning algorithms to build decoders for mind 

states [38].  

Pattern classification is a technique that identifies differences patterns and 

regularities in neural systems [39]. In supervised learning, pattern classification is trained 

on models with labeled data then applied to unlabeled data. Pattern classification takes 

the features as inputs and applies a mathematical model to map the data from the high 

dimensional feature domain to the low dimension class range with values representing 

classes.  

Support vector machines are a prominent pattern recognition based classifier 

that produce nonlinear boundaries between non-separable classes by constructing linear 

boundaries in a transformed version of the feature space [37].  SVM selects a hyperplane 

in the feature space that maximizes its distance from the closes data point. The 

hyperplane partitions the feature space and assigns data points to one of two classes 

based on the margins created [35]. Support vector machines (SVM) have been widely 

used as an accurate and reliable method to decipher brain patterns from functional MRI 

data [20]. It is possible to augment SVMs with kernels to provide a computationally 
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efficient way to perform classification without explicitly using potentially long feature 

vectors [40]. 

Proximal classification is a computationally useful approach. It is a fast 

alternative to the standard SVM. Proximal SVM forms proximal planes around which 

points of the two classes cluster and which are located as far away as possible from each 

other. PSVM has similar classification performance properties to standard SVM 

classifiers [40].  

Ensemble approaches apply various classification schemes on the data and 

apply a method to determine a final label value on each subject based on some voting 

mechanism to decide between the labels chosen by each classifier [37]. One ensemble 

approach that has been used on fMRI data is to partition the data into frequency bands, 

use a standard classification method on each sub-band, and use some voting 

mechanism to determine the final label chosen. This method has been shown to improve 

SVM classification properties [18]. 
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Chapter 3  

Methodology 

3.1 Data Acquisition 

 
The fMRI data were acquired using a Philips 3T Achieva MR System from 

University of Washington, Integrated Brain Imaging Center. A summary of the 

participants is summarized in Table 1. 45 Subjects were scanned. 24 with Parkinson’s 

(17 male) and 21 control subjects (9 male). 264 functional areas (ROI) were selected for 

imaging based on the Power 264 template.  

The Power template is based off of the combination of two network methods. The 

first used a large fMRI data set to identify voxels that were activated with a significant 

probability when research subjects performed specific tasks. The second method used a 

technique of mapping cortical areas. The combination of these resulted in 264 nodes 

representing an element of brain organization spanning the cerebral cortex, subcortical 

structures, and the cerebellum [45]. 

Descriptive statistics were calculated on the subjects and are represented in 

Table 1. The Hoehn and Yahr scale is a system for describing how Parkinson’s disease 

progresses. A score of 1 describes a state of unilateral involvement only usually with 

minimal or no functional disability. A score of 2 describes a state of bilateral or midline 

involvement without impairment of balance. The number of right-handed subjects is 

reported because studies have shown evidence of functional differences between left-

handers and right-handers that extends to declarative memory processes [46]. 
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Table 3-1 Subject Data 

Demographics PD Patients Controls Total Participants 

Number of Participants 24 21 45 

Age at Scan 66.08(10.27) 61.90(10.00) 64.13(10.25) 

Number of Male 

Participants 17(71%) 9(43%) 16.05(2.23) 

Years of Education 16.17(2.12) 15.90(2.39) 16.05(2.23) 

Hoehn and Yahr Scale 

(HY) 2.04(1-2.5) - - 

Number of Right-handed 20 19 39 

 

We note the similarities and dissimilarities between the patients and controls. 

The mean ages of Parkinson’s patients and controls differ by 5.82 with standard 

deviations that differ be a value of .27. The years of education are also similar with a 

value of approximately 16 and standard deviations that differ by a value of .29. 

3.2 Frequency Band Analysis of fMRI Data 

fMRI data were preprocessed by the University of Washington. First fMRI images 

were corrected for within-scan acquisition time differences between slices and realigned 

to the first volume to adjust inter-scan head motions. Subjects with head movement 

greater than or equal to 2mm or rotation greater than or equal to 1 degree were 

discarded. Then motion-corrected functional volumes were spatially normalized to the 

Power 264 brain template and re-sampled into 2-mm isotropic voxels. Finally time-series 

for each voxel were passed through a temporal band-pass filter for low spatial resolution 

of .01 to 0.1Hz. 
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We imported the transformed fMRI time series data into matrices corresponding 

to each subject with nodes as rows, time as columns, and entries representing neural 

activity in a node at a specific time. These matrices are normalized with a function that 

rescales the matrix according to the following equation: 

     
                    

                               
. 

where, 

    is a normalized element in position (i,j) of the normalized matrix;   

    is an element in the time series matrix contained in row i of length n.  

Next we pass the data through a Fast Fourier Transform (FFT) band-pass filter at 

a range of low and high filter values to limit our data to frequencies of interest. The Fast 

Fourier Transform’s equation is: 

             
           

   . 

The inverse fast Fourier transform’s (IFFT) equation is: 

    
 

 
        

            
   . 

where, 

    is a root of unity;                                                                                           

      is an element of a vector of length N. 

We compute the FFT, filter out values outside of our frequency range, then use 

the IFFT to return to our filtered time series. Most fMRI studies select one range of 

frequencies. Following in the approach of Richiardi’s paper “Decoding Brain States from 

fMRI Connectivity Graphs”, we select a range of values. The range of values we use, 

measured in hertz are as follows: 0.01 to 0.03; 0.03 to 0.06; 0.06 to 0.11; 0.11 to 0.23; 

and 0.23 to 0.45. These are the same values used by our reference paper, with the 

addition of the 0.01 to 0.03 that we add to capture signals from lower frequencies [18]. 
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We apply different values for the filter in order to vary the information we receive and 

analyze how that affects our classification accuracy. We use the Fast Fourier Transform 

for its filtering properties.  

3.3 Brain Network Statistical Measures 

Following preprocessing, we initiate our pattern recognition study by calculating 

classical brain connectivity network matrices to represent functional connectivity in the 

brain. We use construct various brain networks using correlation and distance 

approaches. Our networks are constructed from the time series generated by the brain 

nodes. The brain networks we construct and a brief description of them follow.  

Pearson correlation: computes a network matrix from Pearson correlation 

between all of the nodes: 

   
        

           

     
, 

where 

   and    are a series of n measurements of two time series, X and Y; 

   and     are the sample standard deviations of X and Y; 

   and    are the sample means of X and Y. 

Pearson correlation with Fisher’s z-transformation: computes a matrix of 

Pearson correlation between node with the z-transformation to stabilize variance: 

         
   

   
 . 

Pearson correlation with a Bonferroni correction: computes a matrix with 

Pearson correlation p-values based off the null hypothesis that there does not exist a 

significant connection between nodes. This is computed between every node with a 

Bonferroni correction to correct the problem of multiple comparisons according to: 

   
 

 
, 
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where 

   is the p-value derived from the t-statistic; 

  is the number of comparisons performed on the p-value. 

Pearson Correlation with a Bonferroni Correction and a z-transformation: 

constructs a brain network matrix using a z-transformation on Pearson correlation with a 

Bonferroni correction as described above. 

Tetrachoric correlation: computes a matrix with tetrachoric correlations 

between nodes, which estimates the correlation between two normally distributed 

variables to observed ordinal variables according to: 

                , 

where 

    is the number of indices in the time series of X and Y, with    and    greater than the 

median values of their respective time series. 

t-stat distance: computes a matrix with a t-value assessing whether the means 

of the two nodes are statistically different from each other under the assumption that the 

paired differences are independent and identically normally distributed according to: 

     
           

     
, 

where  

    is the sample standard deviation between time series X and Y. 

Lagged correlation with maximum criterion: computes lagged cross 

correlation between nodes according to: 

   
                     

                        
, 

where 

  is the delay. 
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Lagged correlation with optimum criterion: computes lagged cross correlation 

with an optimum lag criteria using cross correlation. 

Euclidean distance: computes a matrix composed of the difference in distance 

between each brain node: 

                
            , 

where 

    are points with dimension  . 

Standard Euclidean distance: computes a matrix composed of Euclidean 

distances where every element of a time series has been divided by the standard 

deviation of the time series. 

Chebychev distance: computes the distance between each pair of nodes by the 

maximum distance along any of the three coordinate dimensions of the time series given 

by: 

                     . 

City block distance: computes the minimum distance traveled along piecewise 

linear paths between nodes, whose constituent line segments are all parallel to one of the 

coordinate axes given by: 

                
 
   . 

3.4 Brain Connectivity Modularity 

Next we apply an algorithm to search for modularity within each network 

computed using the Louvain method. The optimal community structure is a subdivision of 

the network into non-overlapping groups of nodes which maximizes the number of within-

group edges, and minimizes the number of between-group edges. We find community 

structure by optimizing modularity defined as: 

  
 

  
      

     

  
            , 
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where 

     represents the edge weight between nodes   and  ; 

    and    are the sum weights of the edges attached to nodes i and j respectively; 

   is the sum of all edge weights in the graph; 

    and    are the communities of the nodes; 

             if         and 0 otherwise. 

For each network, we retain our complete networks, calculate positive and 

negative only networks, submodule networks, and a network of only submodules. We 

select the five most modular submodules. 

3.5 Feature Extraction 

Next we extract features from each network. We extract both correlation features 

and topological features. Our correlation features take as inputs the networks and 

modulated networks computed by the correlation statistics described above. We take the 

elements of the matrices and translate them column-wise to a vector for all 45 subjects.  

Additionally, we investigated and evaluated a set of neuro-biologically meaningful 

topological brain network features calculated from the connectivity matrices. A brief 

description of these follow. 

Clustering Coefficient: the fraction triangles around a node, where a triangle is 

a set of 3 nodes that are all connected to each other according to: 

  
 

 
 

   

        

 
   , 

where 

  is the number of nodes; 

   is the degree of a node; 

   is the number of triangles around a node. 
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Characteristic Path Length: calculates the average path length between nodes 

in the network according to: 

  
 

 
 

        

   

 
   , 

where 

    is the shortest path length between nodes   and  . 

 Eccentricity: calculates the max value between every node and all other nodes, 

provided there is a connection between them according to: 

                     , 

where 

    is row   and column   of the connectivity network.  

Radius: the minimum eccentricity of the network 

                   . 

Small world-ness: measures the network in terms of being more clustered than 

a random network, yet having same characteristic path length as random networks 

according to: 

   
       

       
, 

where 

      is the clustering coefficient of a randomly generated network with as many nodes 

as the network; 

      is the characteristic path length of a randomly generated network with as many 

nodes as the network; 

Standard statistics: a set of standard statistical functions is applied on the 

network matrix: mean, standard deviation, quantiles, range, kurtosis, and skewness. 
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3.6 Classification Overview 

We performed an ensemble classification scheme depicted in Figure 3-1. 

We subdivide our data into 5 frequency ranges and perform mRMR feautes 

selection with PSVM classification on each band. We then perform ensemble 

classification on the results of each band. 

Figure 3-1 Classification Framework Overview 

3.7 Feature Selection 

Our feature extraction methods will produce many features depending on the 

number of modules computed by the Louvain algorithm. This has adverse consequences 

to classification. Therefore, we use an mRMR selection method to select the most 

informative features. This approach seeks the maximally relevant and minimally 

redundant features in our dataset. Our mRMR algorithm uses mutual information as the 

distance to compute feature to feature and feature to class labels similarities.  

Mutual information is computed as: 

                    
      

        
       , 

where  

  and   are two features; 

     and      are marginal probability functions; 
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       is the connected probability distribution; 

An optimal subset of features can be obtained by minimizing the following objective 

function: 

         
 

    
        

 

                  , 

where  

   is redundancy;  

   is relevance among features; 

  is the set of features; 

  is the vector of target class labels; 

       is the amount of mutual information between features   and  ; 

3.8 PSVM Classification 

Due to its computational efficiency with respect to time and classification 

properties we use proximal SVM as our classifier using the features selected by mRMR. 

The standard SVM with Linear Kernel is defined as: 

      
 

 
          

 
   , 

              
                   . 

SVM creates hyperplanes used to classify classes by minimizing the margin to 

the other classes’ hyperplane. PSVM showed the explicit nonnegativity constraint is not 

needed. PSVM formulation replaces the inequality constraint by an equality, which 

changes the nature of optimization problem, and one can obtain an explicit exact solution 

to the problem.  PSVM uses the L2-norm error term which adds a stronger convexity 

condition to the objective function. With PSVM, the hyperplanes are not bounding planes 

anymore, but can be thought of as "proximal" planes, around which the points of each 
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class are clustered and which are pushed as far apart as possible. The PSVM 

formulation with linear kernel is defined as: 

      
 

 
       

 

 
     

  
   , 

              
              . 

 

Figure 3-2 Proximal SVM Classification with 5-fold Cross-validation  

 

3.9 Ensemble Classification 

We then use an ensemble framework that uses majority voting on the labels 

assigned to each subject by each frequency range to determine a final label assigned to 

the subject. This label corresponds to Parkinson’s or control. Our ensemble classification 

scheme is depicted by Figure 3-3. 
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Figure 3-3 Ensemble Classification With Majority Voting 

3.10 Classification Performance Evaluation 

The N-fold cross-validation is an attractive model evaluation method when the 

sample size is small. It is capable of providing an almost unbiased estimate of the 

generalization ability of a classification model [41]. N-fold cross-validation divides the 

dataset into N approximately equal mutually exclusive and collectively exhaustive 

subsets. It then uses the N-1 subsets for training and the N subset that is omitted for 

testing. The process then cycles through all of the N subsets so each is omitted from 

training and used for testing once. In determining what value to use for N, it is important 

to consider prediction error and the size of the dataset. If the learning curve has a 

considerable slope at a given training set size, a larger N will have higher but lower 

variance compared to a lower N value [37]. Five-fold cross-validation is considered a 

good compromise [42]. We use 5-fold cross-validation for classification performance 
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evaluation. We evaluate performance in terms of sensitivity, specificity, and accuracy, 

defined as: 

             
                                                

                                        
, 

             
                                            

                                     
, 

          
                               

                        
. 

For 5-fold cross-validation, we reserve 20% of the sample for testing with 80% for 

training and SVM parameter tuning. In particular, we divide the training data into 5 non-

overlapping sets. We leave one of the sets out a perform feature selection and 

classification using the remaining nine subsets. The set left out is used to evaluate the 

performance of the trained classifier. Then we cycle the set that was left out back in and 

remove one of the 4 sets and repeat the method until each of the 5 subsets has been left 

out once and used for validation. We average sensitivity, specificity, and accuracy over 

the 5 subsets. 
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Chapter 4  

Experimental Results 

4.1 Modularity 

The Louvain method yields the top 5 community structure modules for each of 

our correlation networks. In addition we have 3 other networks to examine. This results in 

a sum total of 8 networks listed below: 

 5 submodules from the Louvain method. 

 Global network consisting of all of the values in the network. 

 Global network positive values consisting of all of the positive values in the network. 

 Global network negative values consisting of all of the negative values in the network. 

4.2 Feature Selection 

For each subject, we have 12 correlation network types, each with 9 networks, 

and each network with 6 feature types. This results in a large number of features for 

classification. We report the complete network (global network) statistics because of its 

superior classification performance. The number of features in submodules varies based 

on the size of the submodule, but is strictly less than the total number of features for the 

global network. 
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Table 4-1 Feature Type Sizes for Global Network Matrices 

Feature Type Rows Columns 

Correlation Value 45 69432 

Clustering Coefficient 45 264 

Characteristic Path Length, Eccentricity, Radius 45 266 

Small-Worldness 45 264 

Distance Statistics 45 9 

All Features 45 70235 

 

Because of the large number of features, we use mRMR as our feature selection 

method due to its ability to select the most informative features from the large set. We 

use two parameter for our mRMR scheme: choose the top 100 features or the top 50 

features. 

4.3 Classification 

Our methods result in a total of 12,653 proximal SVM classifications on 

frequency bands. We perform classification on all of the combinations of networks, 

frequency ranges, and features. We focus our analysis on correlation features. However, 

we present the best performing submodule and topological feature combinations below 

on the Pearson network with ensemble classification. 
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Table 4-2 Classification with Submodules and Topological Features Pearson Network 

Submodule Feature # Features Accuracy Specificity Selectivity 

4 

Characteristic Path 
Length, 

Eccentricity, and 
Radius 

32 0.7 0.68 0.71 

4 
Clustering 
Coefficient 

10 0.67 0.71 0.63 

4 Small-worldness 10 0.66 0.72 0.59 

3 Standard Statistics 9 0.62 0.63 0.61 

1 Small-worldness 50 0.61 0.64 0.57 

2 
Clustering 
Coefficient 

39 0.6 0.6 0.6 

5 Small-worldness 10 0.58 0.6 0.55 

 

It is interesting to note that the best submodule for characteristic path length, 

eccentricity, and radius; clustering coefficient, and small world-ness is submodule 4. 

Submodule 3 has the best performance with the standard statistics. We also report the 

best features for submodules 1, 2, and 5. 

Following the reference paper [18], we focused on the global positive network 

with correlation matrices as our features. The following tables present the results of 

proximal SVM on all networks and frequency bands. 
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Table 4-3 PSVM Frequency Band 0.01 – 0.03Hz PSVM 

Network Frequency Range # Features Accuracy Sensitivity Specificity 

Pearson with Bonferroni .01 - .03 100 0.81 0.88 0.73 

Pearson .01 - .03 100 0.74 0.73 0.74 

Lagged Correlation Max .01 - .03 50 0.70 0.75 0.64 

Tetrachoric .01 - .03 50 0.67 0.65 0.68 

Pearson with Bonferroni and z .01 - .03 100 0.63 0.6 0.65 

Pearson with z .01 - .03 50 0.62 0.64 0.6 

Chebychev .01 - .03 100 0.60 0.58 0.61 

Lagged Correlation Optimum .01 - .03 100 0.61 0.59 0.62 

t-stat .01 - .03 50 0.58 0.57 0.58 

Euclidean .01 - .03 100 0.53 0.55 0.5 

City Block .01 - .03 50 0.43 0.48 0.38 

Standardized Euclidean .01 - .03 100 0.44 0.48 0.39 

 

Table 4-4 PSVM Frequency Band 0.03 – 0.06Hz PSVM 

Pearson with z .03 - .06 50 0.72 0.76 0.68 

Pearson with Bonferroni and z .03 - .06 100 0.69 0.68 0.7 

Lagged Correlation Optimum .03 - .06 100 0.67 0.67 0.67 

Standardized Euclidean .03 - .06 100 0.67 0.68 0.65 

City Block .03 - .06 50 0.65 0.68 0.61 

Tetrachoric .03 - .06 50 0.65 0.65 0.64 

Pearson .03 - .06 100 0.62 0.64 0.6 

Pearson with Bonferroni .03 - .06 100 0.61 0.65 0.56 

Chebychev .03 - .06 100 0.58 0.59 0.56 

Euclidean .03 - .06 100 0.53 0.55 0.5 

Lagged Correlation Max .03 - .06 50 0.48 0.48 0.48 
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t-stat .03 - .06 50 0.47 0.5 0.43 

Pearson with z .03 - .06 50 0.72 0.76 0.68 

 

Table 4-5 PSVM Frequency Band 0.06 – 0.11 PSVM 

Network Frequency Range # Features Accuracy Sensitivity Specificity 

Lagged Correlation Optimum .06 -.11 100 0.75 0.7 0.8 

Pearson with z .06 -.11 50 0.68 0.65 0.71 

Pearson with Bonferroni .06 -.11 100 0.65 0.64 0.65 

City Block .06 -.11 50 0.63 0.61 0.64 

Lagged Correlation Max .06 -.11 50 0.63 0.62 0.63 

Pearson .06 -.11 100 0.62 0.64 0.6 

Pearson with Bonferroni and z .06 -.11 100 0.63 0.62 0.63 

Tetrachoric .06 -.11 50 0.62 0.64 0.6 

Euclidean .06 -.11 100 0.55 0.54 0.56 

Standardized Euclidean .06 -.11 100 0.55 0.55 0.55 

Chebychev .06 -.11 100 0.51 0.54 0.47 

t-stat .06 -.11 50 0.51 0.54 0.48 

 

Table 4-6 PSVM Frequency Band 0.11 – 0.23Hz PSVM 

Network Frequency Range # Features Accuracy Sensitivity Specificity 

Pearson with Bonferroni .11-.23 100 0.82 0.76 0.88 

Pearson with Bonferroni and z .11-.23 100 0.79 0.71 0.86 

Pearson .11-.23 100 0.69 0.71 0.67 

Chebychev .11-.23 100 0.67 0.67 0.67 

Euclidean .11-.23 100 0.65 0.63 0.67 

Lagged Correlation Max .11-.23 50 0.62 0.62 0.62 

Pearson and z .11-.23 50 0.62 0.65 0.59 

t-stat .11-.23 50 0.62 0.63 0.61 

Standardized Euclidean .11-.23 100 0.60 0.59 0.6 
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Tetrachoric .11-.23 50 0.60 0.63 0.57 

Lagged Correlation Optimum .11-.23 100 0.58 0.6 0.55 

City Block .11-.23 50 0.58 0.56 0.59 

 

Table 4-7 PSVM Frequency Band 0.23 – 0.45Hz PSVM 

Network Frequency Range # Features Accuracy Sensitivity Specificity 

t-stat .23 - .45 50 0.72 0.69 0.75 

Pearson .23 - .45 100 0.68 0.66 0.69 

Pearson with z .23 - .45 50 0.72 0.61 0.82 

Tetrachoric .23 - .45 50 0.68 0.63 0.73 

Chebychev .23 - .45 100 0.62 0.62 0.62 

City Block .23 - .45 50 0.63 0.61 0.64 

Euclidean .23 - .45 100 0.64 0.61 0.67 

Pearson with Bonferroni and z .23 - .45 100 0.60 0.58 0.61 

Pearson with Bonferroni .23 - .45 100 0.58 0.59 0.56 

Lagged Correlation Max .23 - .45 50 0.55 0.58 0.52 

Lagged Correlation Optimum .23 - .45 100 0.56 0.58 0.53 

Standardized Euclidean .23 - .45 100 0.52 0.52 0.52 
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In addition, we ran a full frequency range of .01-.45 in order to compare our 

ensemble result to non-filtered proximal SVM.  

Table 4-8 PSVM Frequency Band 0.01 - 0.45Hz 

Network Frequency Range # Features Accuracy Sensitivity Specificity 

Pearson and z .01-.45 50 0.75 0.7 0.8 

City Block .01-.45 50 0.675 0.66 0.69 

Pearson with Bonferroni and z .01-.45 100 0.675 0.66 0.69 

Tetrachoric .01-.45 100 0.645 0.67 0.62 

Lagged Correlation Optimum .01-.45 50 0.62 0.63 0.61 

Euclidean .01-.45 100 0.615 0.59 0.64 

Pearson with Bonferroni .01-.45 100 0.6 0.61 0.59 

t-stat .01-.45 50 0.53 0.56 0.5 

Pearson .01-.45 100 0.53 0.56 0.5 

Chebychev .01-.45 100 0.505 0.54 0.47 

Standardized Euclidean .01-.45 100 0.475 0.52 0.43 

Lagged Correlation Max .01-.45 50 0.37 0.49 0.25 
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We applied majority ensemble voting on each set of 5 frequency ranges, with the 

following results: 

Table 4-9 PSVM Ensemble Classification Global Network Positive Correlation 

Network Feature # Features Accuracy Sensitivity Specificity 

Pearson with Bonferroni Correlation 100 0.84 0.74 0.93 

Lagged Correlation Optimum Correlation 100 0.75 0.7 0.8 

Pearson Correlation 100 0.74 0.73 0.74 

Pearson and z Correlation 50 0.71 0.72 0.7 

Tetrachoric Correlation 50 0.71 0.74 0.68 

Pearson with Bonferroni and z Correlation 100 0.72 0.66 0.77 

Lagged Correlation Max Correlation 50 0.65 0.64 0.65 

Chebychev Correlation 100 0.62 0.59 0.64 

Euclidean Correlation 100 0.59 0.57 0.6 

t-stat  Correlation 50 0.55 0.58 0.52 

Standardized Euclidean Correlation 100 0.53 0.55 0.5 

City Block Correlation 50 0.50 0.53 0.46 

 

Our best performing ensemble data set was Pearson correlation with Bonferroni 

correction with an accuracy of 84%. 

We present the best performing sub-band for comparison. It is interesting to note 

that the best performing sub-band in terms of accuracy varies between the different 

correlation networks. 
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 Table 4-10 PSVM Most Accurate Sub-band per Network 

Network Frequency Range # Features Accuracy Sensitivity Specificity 

Pearson with Bonferroni .01 - .03 100 0.81 0.88 0.73 

Pearson with Bonferroni and z .11-.23 100 0.79 0.71 0.86 

Lagged Correlation Optimum .06 -.11 100 0.75 0.7 0.8 

Pearson .01 - .03 100 0.74 0.73 0.74 

t-stat .23 - .45 50 0.72 0.69 0.75 

Pearson with z .23 - .45 50 0.72 0.61 0.82 

Lagged Correlation Max .01 - .03 50 0.70 0.75 0.64 

Tetrachoric .23 - .45 50 0.68 0.63 0.73 

Chebychev .11-.23 100 0.67 0.67 0.67 

Standardized Euclidean .03 - .06 100 0.67 0.68 0.65 

Euclidean .11-.23 100 0.65 0.63 0.67 

City Block .03 - .06 50 0.65 0.68 0.61 
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We now compare the best frequency band to the ensemble method that uses the 

range of frequency bands to compare performance.  

Table 4-11 Difference Between Ensemble and Best Sub-band Performance 

Network Delta Accuracy Delta Sensitivity Delta Specificity 

Pearson with Bonferroni 0.06 0.03 0.07 

Tetrachoric 0.03 0.11 -0.05 

Pearson 0.01 0.00 0.00 

Pearson with Bonferroni and z 0.01 0.05 -0.05 

Lagged Correlation Optimum 0.00 0.00 0.00 

Lagged Correlation Max -0.05 -0.11 0.01 

Chebychev -0.05 -0.08 -0.03 

Euclidean -0.06 -0.06 -0.07 

Pearson and z -0.10 -0.16 -0.03 

Standardized Euclidean -0.14 -0.13 -0.15 

City Block -0.15 -0.15 -0.15 

t-stat -0.17 -0.11 -0.23 

 

Table 11 reveals that the ensemble method never outperformed the best 

frequency sub-band in terms of accuracy, but did equal the same value for accuracy for 4 

of the 12 Data sets. The bottom 7 best networks performed considerably worse than the 

best sub-band. 
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We also compare the ensemble method applied to the full frequency range 0.01 

to 0.45. These differences are as follows: 

Table 4-12 difference between ensemble and full frequency range 

Network Delta Accuracy Delta Sensitivity Delta Specificity 

Lagged Correlation Max 0.28 0.15 0.40 

Pearson with Bonferroni 0.24 0.13 0.34 

Pearson 0.21 0.17 0.24 

Lagged Correlation Optimum 0.13 0.07 0.19 

Chebychev 0.12 0.05 0.17 

Tetrachoric 0.06 0.07 0.06 

Standardized Euclidean 0.06 0.03 0.07 

Pearson with Bonferroni and z 0.04 0.00 0.08 

t-stat 0.02 0.02 0.02 

Euclidean -0.03 -0.02 -0.04 

Pearson and z -0.04 0.02 -0.10 

City Block -0.18 -0.13 -0.23 

 

We note that the Ensemble method is superior with respect to accuracy, for 9 of 

12 networks with an average gain of .08, and that our most accurate ensemble 

classification scheme, Pearson with Bonferroni, is 24% more accurate than using the full 

frequency band. 

4.4 Brain Graphs 

We generate brain graphs of the networks of Parkinson’s and healthy subjects 

using the BrainNet Viewer program to visualize the networks. This program illustrates 

human connectomes as ball-and-stick models displaying brain surface, nodes, and 
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edges. The brain graphs we provide are averaged over the groups to provide a 

representative graph for Parkinson’s subjects and controls. 

We plotted brain graphs of Pearson correlation for their representation of 

functional connectivity in the subject’s brains. These results are an average of functional 

connectivity in the research subjects brains based on Parkinson’s status. Figure 4-1 

depicts the average functional connectivity patterns of the control subjects. 

 

Figure 4-1 Pearson Correlation Control 
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Figure 4-2 depicts the average functional connectivity patterns of the Parkinson’s 

subjects. 

 

Figure 4-2 Pearson Correlation Parkinson’s 

Thicker bands correspond to stronger network connectivity. From visual 

inspection, we find similar functional connectivity patterns between the two classes in the 

Pearson correlation brain graphs. We note that control subjects have visibly stronger 

functional connection patterns than Parkinson’s subjects. 
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Chapter 5  

Conclusion and Future Work 

5.1 Conclusion 

This thesis has explored the utility of an ensemble classification method using 

majority voting on labels assigned by proximal SVM performed on frequency sub-bands. 

Our best ensemble performance is Pearson Correlation with a Bonferroni correction, 

which yields an accuracy of 80%, sensitivity of 74% and specificity of 93%. However, this 

performance is very similar to the best frequency sub-band of .11 to .23 Hz.  We find that 

in general the best sub-band frequently outperforms or is similar to the ensemble method. 

We produce brain graphs based on average Pearson correlation of Parkinson’s and 

control subjects but they do not yield major visual differences. We explored proximal 

SVM classification on a range of topological features. We used the Louvain method to 

determine community structures in the data and discovered 5 submodules of the full 

global network. We used the global network with positive values for our ensemble 

classification. 

5.2 Future Work 

The ensemble frequency approach applied to different fMRI studies may yield 

insights on its utility. The comparison between the ensemble approach and the best sub-

band may suffer from bias by selecting the best sub-band ex-ante. An approach that 

tested ensemble and individual sub-bands could be warranted to better evaluate the 

ensemble method. We performed proximal classification using several topological 

features. A more in depth exploration of these features may be warranted with respect to 

Parkinson’s data or other fMRI data with a full comparison between topological and 

correlation based features. A more in depth analysis of Parkinson’s brain graphs using 

additional correlation types or topological methods coupled with numerical analysis may 
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yield insights. Similarly we explored several networks and subnetworks in our proximal 

classification scheme. These could warrant further exploration to understand their nature 

and function and possible relation to Parkinson’s disease. The performance of Pearson 

correlation with Bonferroni may suggest further research on this correlation variant. 

Artefact removal in preprocessing may improve the signal to noise ratio. 
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