
i

FAULT LOCALIZATION BASED ON COMBINATORIAL TESTING

by

LALEH SHIKH GHOLAMHOSSEINGHANDEHARI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2016

ii

Abstract

FAULT LOCALIZATION BASED ON COMBINATORIAL TESTING

Laleh Shikh Gholamhosseinghandehari, PhD

The University of Texas at Arlington, 2016

Supervising Professor: Yu Lei

Combinatorial testing is a software testing strategy that has received a significant

amount of attention from academia and industry. After executing a combinatorial test set,

the execution status, i.e., pass or fail, of each test is obtained. If there is one or more failed

tests, the next task is fault localization, i.e. localizing the fault in the source code. This

dissertation addresses the problem of how to perform fault localization by leveraging the

result of combinatorial testing.

The major contribution of this dissertation is a fault localization approach called

BEN that consists of two major phases: 1) failure-inducing combination identification, 2)

faulty statement localization. A combination is failure-inducing if its existence in a test

causes the test to fail. The failure-inducing combination identified in the first phase is used

to generate a group of tests such that the spectra of these tests can be analyzed quickly

to identify the faulty statement in the source code. To the best of our knowledge, BEN is

the first approach that performs code-based fault localization by leveraging the result of

combinatorial testing. We conducted experiments in which BEN was applied to a set of

programs from the Software Infrastructure Repository (SIR). The programs include the

programs in the Siemens suite and two real-life programs, i.e., grep and gzip. The

experimental results show that our approach can effectively and efficiently localize the

faulty statements in these programs.

iii

This dissertation also includes two empirical studies on the effectiveness of

combinatorial testing. In the first study, we evaluate the effectiveness of combinatorial

testing on the Siemens programs. In the second study, we compare the stability of

combinatorial testing to that of random testing. These two studies are conducted as part of

our effort to evaluate the effectiveness of BEN, since combinatorial testing must be

performed on a subject program before BEN is applied to the program. Both studies

contribute to the literature by providing additional data that demonstrate the effectiveness

of combinatorial testing.

This dissertation is presented in an article-based format and includes six research

papers. The first paper reports our work on the first phase of BEN. The second paper

reports our work on the second phases of BEN. The third paper is a journal extension that

combines the first two papers and also adds several significant extensions of BEN. The

fourth paper is a tool paper that describes the design and usage of a prototype tool that

implements BEN. The fifth paper reports the empirical study on input parameter modeling.

The sixth paper reports the empirical study, on comparing combinatorial testing and

random testing. All these papers have been published in peer-reviewed venues except the

third one, which is currently under review.

iv

Copyright © by Laleh Sh. Ghandehari 2016

All Rights Reserved

v

Acknowledgements

I would like to thank my supervising professor Dr. Jeff Lei for his wisdom,

enthusiasm, and encouragement and also for pushing me further than I thought I could go.

This thesis would not have been possible without his help and generous support. I wish to

thank my committee, Dr. David Kung, Dr. Christoph Csallner, Dr. Donggang Liu and Dr.

Junzhou Huang for generously sharing their time and ideas.

I would also like to extend my appreciation to my parents for their constant love

and immeasurable sacrifice. I am grateful to my brothers for their support, interest and

advice. Finally, I wish to give my heartfelt thanks to my husband whose unconditional love,

patience and continual support enabled me to complete this thesis.

March 2016

vi

Table of Contents

Abstract ... ii

Acknowledgements ... v

Table of Contents ... vi

List of Illustrations ... xiii

List of Tables ...xiv

 Introduction .. 1

1.1 Research overview .. 1

1.2 Summary of publications ... 3

 Identifying failure inducing combinations in a combinatorial test

set 6

2.1 INTRODUCTION ... 8

2.2 PRELIMINARIES ... 10

2.2.1 Basic concepts .. 10

2.2.2 Assumption .. 12

2.3 APPROACH ... 12

2.3.1 Framework... 12

2.3.2 Rank generation .. 14

2.3.3 Test generation ... 16

2.3.4 Reduction .. 17

2.3.5 Stopping condition ... 18

2.3.6 Discussion ... 18

2.3.7 Complexity analysis ... 19

2.4 EXAMPLE .. 20

2.5 EXPERIMENT ... 23

vii

2.5.1 Experimental design .. 23

2.5.1.1 Subject programs .. 23

2.5.1.2 Metrics .. 24

2.5.1.3 Test generation ... 25

2.5.2 Results and discussion .. 25

2.5.3 Threats to validity .. 30

2.6 RELATED WORK .. 32

2.7 CONCLUSION ... 34

2.8 Acknowledgment ... 35

2.9 REFERENCES .. 35

 Fault localization based on failure inducing combinations 37

3.1 INTRODUCTION ... 39

3.2 A MOTIVATING EXAMPLE ... 41

3.3 PRELIMINARIES ... 45

3.3.1 Basic concepts .. 45

3.3.2 Identifying inducing combinations ... 46

3.4 APPROACH ... 48

3.4.1 Test generation ... 48

3.4.2 Rank generation .. 51

3.4.3 Discussion ... 52

3.4.4 Complexity analysis ... 52

3.5 EXPERIMENT ... 53

3.5.1 The Siemens suite ... 53

3.5.2 Initial test set.. 54

3.5.3 Trace collection ... 56

viii

3.5.4 Metrics ... 56

3.5.5 Results on single-fault versions... 57

3.5.6 Results on multiple-fault versions ... 59

3.5.7 The grep program .. 60

3.5.8 Threats to validity .. 61

3.6 RELATED WORK .. 62

3.7 CONCLUSION ... 65

3.8 Acknowledgment ... 66

3.9 REFERENCES .. 66

 A Combinatorial Testing-Based Approach to Fault Localization 69

4.1 INTRODUCTION ... 70

4.2 PRELIMINARIES ... 75

4.2.1 Basic concepts .. 75

4.2.2 Assumptions .. 78

4.3 APPROACH ... 78

4.3.1 Phase 1: Inducing combination identification .. 79

4.3.1.1 Framework .. 79

4.3.1.2 Algorithm identify ... 80

4.3.1.3 Rank generation ... 81

4.3.1.4 Test generation ... 84

4.3.1.5 Discussion .. 86

4.3.2 Phase 2: Faulty statement localization .. 88

4.3.2.1 Test generation ... 88

4.3.2.2 Rank generation ... 91

4.3.2.3 Discussion .. 92

ix

4.3.3 Complexity analysis ... 93

4.4 EXAMPLE .. 96

4.4.1 Phase 1: Inducing combination identification .. 97

4.4.2 Phase 2: Faulty statement localization .. 100

4.5 EXPERIMENT ... 103

4.5.1 Experimental design .. 104

4.5.1.1 Subject programs .. 104

4.5.1.2 Initial test set ... 108

4.5.1.3 Multiple-fault versions ... 111

4.5.1.4 Trace collection ... 114

4.5.1.5 BEN configuration ... 114

4.5.1.6 Metrics .. 114

4.5.2 Results and discussion .. 115

4.5.2.1 Results on single-fault versions .. 115

4.5.2.1.1 Phase 1: Identifying inducing combination 115

4.5.2.1.2 Phase 2: Faulty statement localization .. 117

4.5.2.2 Results on multiple-fault versions ... 120

4.5.2.2.1 Phase 1: Identifying inducing combination 120

4.5.2.2.2 Phase 2: Faulty statement localization .. 121

4.5.2.3 Comparison with Tarantula and Ochiai .. 123

4.5.2.4 Threats to validity .. 130

4.6 RELATED WORK .. 131

4.6.1 Related work on identifying inducing combinations 132

4.6.2 Related work on fault localization .. 134

4.7 CONCLUSION ... 136

x

4.8 Acknowledgment ... 138

4.9 REFERENCES .. 139

 BEN: A Combinatorial Testing-Based Fault Localization Tool 144

5.1 INTRODUCTION ... 146

5.2 APPROACH ... 147

5.2.1 Inducing combination identification ... 147

5.2.2 Faulty statement identification ... 148

5.3 USE CASE ... 148

5.4 DESIGN ... 152

5.4.1 Data Layer ... 152

5.4.2 Logical Layer ... 153

5.5 CONCLUSION ... 154

5.6 Acknowledgment ... 154

5.7 REFRENCES ... 155

 Applying Combinatorial Testing to the Siemens Suite 157

6.1 INTRODUCTION ... 159

6.2 APPROACH ... 160

6.2.1 Create abstract model ... 161

6.2.1.1 Define abstract parameters and values .. 161

6.2.1.2 Define relations and constraints ... 164

6.2.2 Generate abstract tests ... 164

6.2.3 Derive concrete tests ... 165

6.3 EXPERIMENT ... 167

6.3.1 Replace ... 168

6.3.2 Schedule.. 168

xi

6.3.3 Tcas ... 172

6.3.4 Totinfo .. 173

6.3.5 Printtokens Model .. 175

6.3.6 Discussion ... 178

6.3.7 Comparison ... 181

6.4 RELATED WORK .. 183

6.5 CONCLUSION ... 185

6.6 Acknowledgment ... 185

6.7 REFERENCES .. 186

 An Empirical Comparison of Combinatorial and Random

Testing 189

7.1 INTRODUCTION ... 191

7.2 EXPERIMENTAL DESIGN .. 194

7.2.1 Subject Programs .. 194

7.2.2 Evaluation Metrics ... 196

7.2.3 Test Generation ... 197

7.3 EXPERIMENTAL RESULTS ... 198

7.3.1 Test generation result .. 198

7.3.2 Test execution result ... 200

7.4 DISCUSSION .. 206

7.5 THREADS TO VALIDITY .. 209

7.6 RELATED WORK .. 210

7.7 CONCLUSION ... 212

7.8 Acknowledgment ... 213

7.9 REFRENCES ... 213

xii

 Conclusion ... 217

xiii

List of Illustrations

Figure 2-1. Algorithm for identifying inducing combinations ... 13

Figure 2-2. An example of faulty program... 20

Figure 2-3. Distribution of inducing and non-inducing combinations in suspicious set 31

Figure 3-1. Function is_str_constant ... 43

Figure 3-2. An illustration of how to generate derived members 49

Figure 4-1. The framework for identifying inducing combination 79

Figure 4-2. The Identify algorithm ... 80

Figure 4-3. The Localize algorithm ... 89

Figure 4-4. Generation of the candidate set Mo1 ... 90

Figure 4-5.The core and derived members... 91

Figure 4-6. An example faulty program ... 96

Figure 4-7. Candidate set of Ma ← 0 ... 100

Figure 4-8. Candidate set of Mc ← 0 ... 100

Figure 4-9. Core and derived members of the example program 102

Figure 5-1. The example of input file .. 149

Figure 5-2. The main window of BEN after creating a project .. 149

Figure 5-3. Suspicious combinations after first iteration ... 150

Figure 5-4. List of inducing combinations ... 150

Figure 5-5. Part of an execution trace in Gcov format .. 151

Figure 5-6. Statements ranking ... 152

Figure 5-7. Architecture diagram .. 153

Figure 6-1. An example of abstract test and its concrete test... 165

Figure 6-2. File example to detect v8 of schedule .. 172

Figure 7-1. Second Siemens Fault of Schedule Program .. 208

file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227859
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227860
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227861
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227863
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227864
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227865
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227866
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227867
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227868
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227869
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227870
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227871
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227872
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227873
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227874
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227875
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227876
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227877
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227878
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227879
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227880
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227881
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227882

xiv

List of Tables

Table 2-1. Two-way test set and their status .. 20

Table 2-2. Suspicious combinations and their corresponding values 22

Table 2-3. Subject programs ... 24

Table 2-4. Experimental results for t-way combinations ... 26

Table 2-5. Inducing probabilities of top 10 suspicious combinations that are not inducing

 .. 28

Table 2-6. Experimental results for (t-1)-way combinations ... 29

Table 2-7. Inducing probabilities of Top 10 (t-1)-way suspicious combinations 30

Table 3-1. Abstract tests for function is_str_constant ... 43

Table 3-2. Suspiciousness of components of an example system 50

Table 3-3. Characteristics of subject programs .. 54

Table 3-4. Programs model .. 55

Table 3-5. Test results .. 56

Table 3-6. Experimental results for single fault versions .. 58

Table 3-7. Experimental results for multiple faults versions ... 59

Table 4-1. two-way Test Set and Status ... 97

Table 4-2. Suspicious combinations and their corresponding values 97

Table 4-3. Suspiciousness of components ... 98

Table 4-4. Program spectra of core and candidate set 𝐌𝐜 ← 𝟎..................................... 101

Table 4-5. Program spectra and statements suspiciousness values 103

Table 4-6. Characteristics of Siemens programs .. 105

Table 4-7. Characteristics of grep versions ... 106

Table 4-8. Characteristics of gzip versions ... 107

Table 4-9. Programs model .. 108

file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227883
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227884
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227885
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227886
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227887
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227887
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227888
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227889
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227891
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227892
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227897
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227898
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227899
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227900
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227901
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227902
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227903
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227904
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227905

xv

Table 4-10. Test results for Siemens suite ... 110

Table 4-11. Test results for grep ... 110

Table 4-12. Test results for gzip ... 110

Table 4-13. Multiple-fault versions .. 112

Table 4-14. Test results for multiple-fault versions ... 113

Table 4-15. Inducing probabilities for single-fault versions ... 116

Table 4-16. Results for single-fault versions ... 118

Table 4-17. Inducing probabilities for multiple-fault versions .. 121

Table 4-18. Results for multiple-fault versions .. 122

Table 4-19. Efficiency comparison results for single-fault versions................................. 124

Table 4-20. Efficiency comparison results for multiple-fault versions 124

Table 4-21. Comparison results for single-fault versions .. 126

Table 4-22. Comparison results for multiple-fault versions ... 126

Table 4-23. Differences between BEN, Tarantula and Ochiai for single-fault versions .. 128

Table 4-24. Differences between BEN, Tarantula and Ochiai for multiple-fault versions

 .. 129

Table 6-1. Pattern's metacharacter ... 162

Table 6-2. The Abstract Model of Replace ... 163

Table 6-3. Subject Programs .. 167

Table 6-4. The Abstract Model of Schedule ... 170

Table 6-5. The abstract model of tcas .. 173

Table 6-6. The abstract model of totinfo ... 174

Table 6-7. The abstract model of Keyword .. 176

Table 6-8. The abstract model of Identifier Values ... 176

Table 6-9. The abstract model of Number Values ... 177

file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227906
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227907
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227908
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227909
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227910
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227911
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227912
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227913
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227914
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227915
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227916
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227917
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227918
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227919
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227920
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227920
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227921
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227922
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227923
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227924
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227925
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227926
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227927
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227928
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227929

xvi

Table 6-10. The abstract model of Comment Values ... 177

Table 6-11. Fault classification of detected versions .. 178

Table 6-12. Fault Classification based on Test Strength .. 180

Table 6-13. Compare random testing and combinatorial testing 182

Table 7-1. Characteristics of subject programs .. 195

Table 7-2. Characteristics of generated mutants .. 196

Table 7-3. Test sets’ size .. 198

Table 7-4. Combinatorial coverage of random sets .. 199

Table 7-5. Maximum line and branch coverage results .. 200

Table 7-6. T-way vs. random coverage result of top model of printtokens2 202

Table 7-7. T-way vs random coverage results of replace ... 202

Table 7-8. T-way vs random coverage results of tcas .. 202

Table 7-9. T-way vs random coverage results of totinfo ... 203

Table 7-10. Maximum number of Siemens faults detected .. 204

Table 7-11. T-way vs random Siemens faults detection of replace 204

Table 7-12. T-way vs. random Siemens fault detection of tcas 204

Table 7-13. Siemens faults detection of totinfo ... 204

Table 7-14. Maximum number of mutation faults detected ... 205

Table 7-15. T-way vs. random mutation faults detection of replace 206

Table 7-16. T-way vs random mutation faults detection of totinfo 206

Table 7-17. 3-way inducing combinations of the second faulty version of the schedule 209

file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227930
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227931
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227932
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227933
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227934
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227935
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227936
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227937
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227938
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227939
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227940
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227941
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227942
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227943
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227944
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227945
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227946
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227947
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227948
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227949
file:///C:/Users/Laleh/Google%20Drive/UTA/Thesis/LalehDissertation.docx%23_Toc448227950

1

 Introduction

Combinatorial testing is a software testing strategy that has received a significant

amount of attention from academia and industry. The key observation is that most software

failures are caused by interactions of only a few parameters. A widely cited NIST study

reports that failures in several real-life systems involved no more than six parameters. A t-

way combinatorial test set is built to cover all the t-way interactions, i.e., interactions

involving t parameters, where t is typically a small integer. Empirical results have shown

that combinatorial testing is very effective for failure detection while significantly reducing

the number of tests.

Most research in combinatorial testing has focused on developing efficient

combinatorial test generation algorithms and conducting empirical studies to evaluate the

failure-detection effectiveness of combinatorial testing. After a failure is detected, the next

task is to find the fault that caused the failure. An important research problem is how to

leverage the result of combinatorial testing for fault localization.

1.1 Research overview

In this dissertation, we present an approach to locate one or more faulty

statements in the source code using the result of combinatorial test set. Our approach,

called BEN, consists of two major phases. In the first phase, BEN identifies failure inducing

combination. A combination is failure inducing, or simply inducing, if it causes any test in

which it appears to fail. To identify inducing combination, our approach takes as input a t-

way test set and their status and reports as output the inducing combination of size t, i.e.,

the strength of initial test set, or larger. BEN iteratively identifies a set of suspicious

combinations in the current test set, initially the combinatorial test set. Suspicious

combinations are candidate of inducing combinations. Then, BEN systematically generates

2

a small number of tests which can be executed to refine the suspicious combinations set.

The process continues until the failure inducing combination is identified.

In the second phase, BEN localizes the faulty statement in the source code. The

second phase takes as input the identified inducing combination, and produces as output

a ranking of statements in terms of their likelihood of being faulty. In this phase BEN

generates a small group of tests from the inducing combination. The tests are generated

in a way such that the spectra of these tests can be analyzed quickly to generate ranking

of statements.

To the best of our knowledge BEN is the first approach that deals with code-based

fault localization using combinatorial testing. Existing work on fault localization based on

combinatorial testing focuses on identifying failure inducing combinations. Also, there are

several studies on general code based fault localization problem. BEN differs from the

other spectrum-based fault localization approaches, which they do not deal with the test

generation problem, and they assume the existence of a large number of tests, which are

generated randomly and/or using other techniques. Moreover, the other approaches do

not use the benefit of the combinatorial test set, therefore, BEN is more effective and

efficient comparing to the general spectrum-based approaches.

BEN was applied to the Siemens suite which contains seven relatively small

programs and two large programs, i.e., grep and gzip from the Software Infrastructure

Repository (SIR). The results show that BEN is effective in localizing faulty statements and

also efficient in that only a small number of tests need to be executed and instrumented.

Moreover, we compared the results of BEN and two other spectrum based approaches,

Tarantula and Ochiai. Our experimental results show that BEN achieved results that are

competitive to or better than Tarantula and Ochiai but with a significantly less number of

tests.

3

We also conducted two empirical studies on the effectiveness of combinatorial

testing. These two empirical studies are performed to evaluate the effectiveness of fault

localization process using BEN, since BEN is a combinatorial testing based approach, i.e.,

combinatorial testing must be performed before BEN is applied. In the first study, we

applied combinatorial testing on the Siemens programs. The results show that

combinatorial testing is very effective and detects most faulty versions of these programs.

In the second study, we compared two testing strategies, i.e., combinatorial testing and

random testing, in terms of their stability. The effectiveness of each testing strategy is

measured in terms of the code coverage and fault detection. The results of our study

suggest that in most cases, combinatorial testing performed as good as or better than

random testing.

1.2 Summary of publications

This dissertation is presented in an article-based format and includes six research

papers. In Chapter 2, we present the paper titled, “Identifying failure inducing combination

in a combinatorial test set”, which was published in IEEE fifth International Conference on

Software Testing, Verification and Validation (ICST), in 2012. The paper reports our work

on the first phase of BEN.

Chapter 3 presents the paper titled, “Fault localization based on failure inducing

combinations”. The paper was published in IEEE 24th International Symposium on

Software Reliability Engineering (ISSRE) in 2013. The paper presents our work on the

second phase of BEN.

The two approaches presented in Chapter 2 and Chapter 3 are combined and

revised to form an extended version of BEN. This version is presented in Chapter 4 by the

paper titled “A combinatorial testing-based approach to fault localization”, which is

submitted in January 2016 and is currently under review. The extended version of BEN

4

supports systems whose inducing combinations are larger than the strength of the initial

combinatorial test set. Moreover, by revising the stopping condition, BEN can identify an

inducing combination by generating a less number of tests in comparison with the approach

presented in Chapter 2. Moreover, additional experiments are conducted to further

evaluate the effectiveness of BEN.

Chapter 5 presents a tool paper titled “BEN: A combinatorial testing-based fault

localization tool”, which was published in IEEE 8th International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), in 2015. In this paper, we

presented the major user scenarios and also the architectural design of BEN. BEN provides

both Graphical User Interface and Command Line Interface.

The first empirical study is presented in Chapter 6, using the paper titled, “Applying

combinatorial testing to the Siemens suite”. The paper presented in IEEE 6th International

Conference on Software Testing, Verification and Validation Workshops (ICSTW), in 2013.

In this chapter, we reported an experiment that applies combinatorial testing to the

Siemens suite. The chapter describes the details of our three-step modeling process. Note

that the Siemens suite has been widely used as a benchmark to evaluate the effectiveness

of many testing and fault localization techniques. We also used the Siemens suite to

evaluate our proposed approaches in Chapter 3 and Chapter 4.

Chapter 7 presents a paper titled “An empirical comparison of combinatorial and

random testing”. The paper was published in IEEE 7th International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), in 2014. In this paper

we compared the stability of combinatorial testing to that of random testing and also

measure it in terms of both code coverage and fault detection. Our experimental results

show that in most cases, combinatorial testing performed as good as or better than random

5

testing. There are few cases where random testing performed better, but with a very small

margin.

Finally, in Chapter 8 we provide the concluding remarks and discuss several

directions for our future work.

6

 Identifying failure inducing combinations in a combinatorial test set

The chapter contains a paper published in IEEE fifth International Conference on

Software Testing, Verification and Validation (ICSE), in 2012.

7

Identifying failure inducing combinations in a

combinatorial test set*

Laleh Shikh Gholamhossein Ghandehari1, Yu Lei1, Tao Xie2, Richard Kuhn3, Raghu Kacker3

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX

76019, USA

2Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

3Information Technology Lab, National Institute of Standards and Technology, Gaithersburg, MD

20899, USA

Abstract - A 𝐭-way combinatorial test set is designed to detect failures that are

triggered by combinations involving no more than 𝐭 parameters. Assume that we have

executed a 𝐭-way test set and some tests have failed. A natural question to ask is: what

combinations have caused these failures? Identifying such combinations can facilitate the

debugging effort, e.g., by reducing the scope of the code that needs to be inspected.

In this paper, we present an approach to identifying failure-inducing combinations,

i.e., combinations that have caused some tests to fail. Given a 𝐭-way test set, our approach

first identifies and ranks a set of suspicious combinations, which are candidates that are

likely to be failure-inducing combinations. Next, it generates a set of new tests, which can

be executed to refine the ranking of suspicious combinations in the next iteration. This

process can be repeated until a stopping condition is satisfied. We conducted an

experiment in which our approach was applied to several benchmark programs. The

* Copyright © 2012 IEEE. Reprinted, with permission, from Laleh Sh. Ghandehari, Yu Lei, Tao Xie,

Richard Kuhn, Raghu Kacker Identifying failure inducing combinations in a combinatorial test set,
IEEE International Conference on Software Testing, Verification and Validation (ICST), April 2012.

8

experimental results show that our approach can effectively and efficiently identify failure-

inducing combinations in these programs.

Keywords- Combinatorial Testing, Fault Localization, Debugging.

2.1 INTRODUCTION

Combinatorial testing has been shown to be a very practical and efficient testing

strategy [2, 3, 6]. The main idea behind combinatorial testing is the following: while the

behavior of a system as a whole may be affected by many parameters, many failures are

caused by interactions of only a few parameters [5]. It is, however, not known a priori

interactions of which parameters could cause a failure. A t-way combinatorial test set is

designed to cover all the t-way interactions, i.e., combinations of values involving t

parameters, where t is typically a small integer [2, 6]. If the input parameters are modeled

properly, a t-way test set is guaranteed to detect all the failures that are triggered by

interactions of no more than t parameters.

Assume that we have executed a t-way test set and some tests have failed. A

natural question to ask is: what combinations have caused these failures? Identifying such

combinations can facilitate the debugging effort, e.g., by reducing the scope of the code

that needs to be inspected.

In this paper, we present an approach to identifying failure-inducing combinations

in a combinatorial test set. A failure-inducing combination, or simply an inducing

combination, is a combination of parameter values such that all test cases containing this

combination fail [8, 10, 13]. Our approach takes as input a combinatorial test set and

produces as output a ranking of t-way suspicious combinations in terms of their likelihood

to be inducing. Moreover, our approach identifies all the suspicious combinations whose

size is smaller than t, if they exist.

9

Our approach adopts an iterative framework. At each iteration, a set F of test cases

is analyzed. (F is a t-way test set at the first iteration.) Our approach first identifies the set

π of all t-way suspicious combinations, and then ranks them based on their likelihood to be

inducing. Next, our approach generates a set F′ of new test cases. The test cases in F′, if

executed, will be added to F, and will be analyzed in the next iteration to refine the set of

suspicious combinations and their ranking. This process is repeated until a stopping

condition is satisfied.

The novelty of our approach lies in the fact that we rank suspicious combinations

based on two notions: suspiciousness of a combination and suspiciousness of the

environment of a combination. Informally, the environment of a combination consists of

other parameter values that appear in the same test case. The higher the suspiciousness

of a combination, the lower the suspiciousness of its environment, the higher this

combination is ranked. Moreover, new test cases are generated for the most suspicious

combinations. Let f be a new test case generated for a suspicious combination c. Test f is

generated such that the suspiciousness of the environment for c is minimized. If f fails, it is

more likely to be caused by c instead of other values in f.

We report an experiment in which we apply our approach to a set of six third-party

benchmark programs. Each benchmark program has a number of seeded faults. The

results show that our approach is effective in identifying inducing combinations. On one

hand, truly inducing combinations are ranked to the top very quickly. On the other hand,

combinations that are ranked on the top but are not failure-inducing often have a very high

probability to be inducing. Our approach is also very efficient in that only a very small

percentage of all possible test cases need to be executed. For example, for one version of

the six benchmark program (version 3 of a program named cmdline), the only two inducing

combinations are ranked to the top 10 after executing 0.034% of all possible test cases.

10

The remainder of this paper is organized as follows. Section 2.2 represents the

definitions and notations used in this paper. Section 2.3 describes our approach.

Section 2.4 gives an example to illustrate our approach. Section 2.5 reports an experiment

that demonstrates the effectiveness and efficiency of our approach. Section 2.6 discusses

existing work on identifying inducing combinations. Section 2.7 provides some concluding

remarks.

2.2 PRELIMINARIES

In this section, we introduce the basic definitions and assumptions needed in our

approach.

2.2.1 Basic concepts

Assume that the system under test (SUT) has k input parameters, denoted by set

P = {p1, p2, … , pk}. Let di be the domain of parameter pi. That is, dicontains all possible

values that pi could take, and let D = {d1 ∪ d2 ∪ … ∪ dk}.

Definition 1. (Test Case) A test case is a function that assigns a value to each

parameter. Formally, a test case is a function f: P → D.

We use Γ to represent all possible test cases for the SUT. It is clear that |Γ| =

|d1| × |d2| × … × |dK| .

Definition 2. (Test Oracle) A test oracle determines whether the execution of a

test case is “pass” or “fail”. Formally, a test oracle is a function r: Γ → {pass, fail}.

Definition 3. (Combination) A combination c is a test case f restricted to a non-

empty, proper subset M of parameters in P. Formally, c = f|M, where M ⊂ P, and |M| > 0.

In the preceding definition, M is a proper subset of P thus a test case is not

considered to be a combination in this paper. We use dom(c) to denote the domain of c,

which is a set of parameters involved in c. (Note that dom(c) is the domain of a function,

11

which is different from the domain of a parameter.) We define the size [c] of a combination

c to be the number of parameters involved in c. That is [c] = |dom(c)|.

A combination of size 1 is a special combination, which we refer to as a component.

Since there is only one parameter involved, we denote a component o as an assignment,

i.e., o = p ← v, where o(p) = v.

Definition 4. (Component Containment) A component o = p ← v is contained in

a combination c denoted by o ∈ c , if and only if p ∈ dom(c) and c(p) = v.

Definition 5. (Combination Containment) A combination c is contained in a test

case f, denoted by c ⊂ f , if and only if ∀p ∈ dom(c), f(p) = c(p) .

Definition 6. (Inducing Combination) A combination c is failure-inducing if any test

case f in which c is contained fails. Formally, ∀f ∈ Γ: c ⊂ f ⟹ r(f) = fail.

Definition 6 is consistent with the definition of inducing combinations in previous

work [8, 9, 10, 13].

Definition 7. (Inducing Probability) The inducing probability of a combination c is

the ratio of the number of all possible failed test cases containing c to the number of all

possible test cases containing c. The inducing probability is computed by

|{f ∈ Γ|r(f) = fail ∧ c ⊂ f}|

|{f ∈ Γ|c ⊂ f}|

The computation of inducing probabilities requires all possible test cases

containing a combination; such represent is not possible in practice. This notion is mainly

used to evaluate the goodness of our experimental results.

 Definition 8. (Suspicious Combination) A combination c is a suspicious

combination in a test set F ⊆ Γ if c is contained only in failed test cases in F. Formally, ∀f ∈

F: c ⊂ f ⇒ r(f) = fail.

12

Inducing combinations must be suspicious combinations, but suspicious

combinations may or may not be inducing combinations.

2.2.2 Assumption

Assumption 1. The output of the SUT is deterministic. In other words, the SUT

always produces the same output from a given test case.

Assumption 2. There exists a test oracle that determines the status of a test

execution, i.e., “pass” or “fail”. Assumption 2 is made to simplify the presentation of our

approach. The construction of a test oracle is an independent research problem. When a

test oracle exists, our approach can be fully automated. When a test oracle does not exist,

our approach can still be applied, but the user needs to assist in determining the execution

status of a test case.

Assumption 3. Inducing combinations should involve no more than t parameters,

where t is the strength of the initial combinatorial test set.

Our approach focuses on detecting inducing combinations that are of size t or less.

Such focus is consistent with the implicit assumption held when a tester decides to use a

t-way combinatorial test set.

2.3 APPROACH

In this section, we present our approach to identifying inducing combinations.

2.3.1 Framework

As shown in Figure 2-1, the framework consists of three main steps. (1) Rank

generation: In this step, we first identify all the t-way suspicious combinations in F (line 4).

We then produce a ranking of the suspicious combinations (line 7). (2) Test generation: In

this step, we generate a set of new tests, which will be used to refine the ranking of

suspicious combinations in the next iteration (line 9). (3) Reduction: In this step, we analyze

the final ranking of t-way suspicious combinations to derive suspicious combinations of

13

size smaller than t, if they exist (line 17). The details of these three steps are presented in

the following subsections.

In the framework, the two steps, rank generation and test generation, are

performed iteratively when the set of suspicious combinations, π, is not empty and the size

of π in the current iteration is less than the previous iteration (line 5). Otherwise, the

algorithm stops (lines 12, 14).

In addition, another stopping condition happens when a combination is marked as

an inducing combination by the test generation step (line 15). The reduction step analyzes

π to determine smaller suspicious combinations and produce a ranking for them (line 17).

The user can decide to stop at the end of each iteration, if the resource is limited.

Algorithm IdentifyInducingCombinations

Input: sut, F0, t

Output: a set R = {R1, R2, … Rt} of rankings,

where Ri is the ranking of i-way suspicious combinations

1. let F = F0 and let π be an empty set

2. while (true) {

3. // Step 1. rank suspicious combinations

4. identify the set π′ of t-way suspicious combinations in F

5. if (π′ != empty && (|π′| < |π|){

6. π = π′

7. produce a ranking R of all the t-way combinations in π

8. // Step 2. generate new tests

9. generate a set F' of new tests

10. F = F ⋃ F'
11. }

12. else if (π′= empty)

13. return an empty set of rankings;

14. if (|π′| = |π|
15. || any combination marked as inducing) {

16. // Step 3. derive smaller combinations

17. derive R1, R2, … Rt based on π′

18. return {R1, R2, … Rt}

19. }

20. } // end of while

Figure 2-1. Algorithm for identifying inducing combinations

14

2.3.2 Rank generation

In step of rank generation, we first identify the set π′ of all t-way suspicious

combinations in F. In the first iteration, F is the initial t-way test set, i.e., F0. Thus, F0 covers

all t-way combinations. Initially, π′contains all the t-way combinations. We then check each

t-way combination c in π′. If c appears in at least one passed test, c is removed from π′. In

the subsequent iterations, we do not have to re-compute π′ from the scratch. Instead, we

only need to remove from π′ all the combinations contained in newly added, passed tests.

We next discuss how to rank the suspicious combinations in π. First, we introduce

three important metrics of suspiciousness, suspiciousness of component, suspiciousness

of combination, and suspiciousness of environment.

Suspiciousness of component (ρ): This notion is defined such that the higher ρ a

component o has, the more likely o contributes to a failure, and the more likely o appears

in an inducing combination. Let F be the test set that is analyzed in the current iteration. In

our approach, ρ is computed by the following formula:

ρ(o) =
1

3
(u(o) + v(o) + w(o)) (1)

Where

u(o) =
|{f ∈ Fi|r(f) = fail ∧ o ∈ f}|

 |{f ∈ Fi|r(f) = fail}|

v(o) =
|{f ∈ Fi|r(f) = fail ∧ o ∈ f}|

 |{f ∈ Fi|o ∈ f}|


w(o) =
|{c|o ∈ c ∧ c ∈ π}|

|π|


The first factor of (1), u(o), shows the ratio of the number of failed test cases in

which component o appears over the total number of failed test cases. The second factor,

v(o), shows the ratio of the number of failed test cases in which component o appears over

the total number of test cases in which component o appears. The third factor shows the

15

ratio of the number of suspicious combinations in which component o appears over the

total number of suspicious combinations. The three factors are averaged to produce a

value between 0 and 1.

The motivation behind the first two factors is that the more frequently a component

appears in failed test cases, this component is more likely to contribute to a failure.

There is an important difference between the two factors. Since the greater the

domain size is, the less frequently each individual value of this parameter appears in a test

set and consequently in failed test cases, the first factor, u(o), has a bias towards smaller

domain size parameters. The second factor, v(o), is brought in to reduce this bias.

The motivation for the third factor is that components of inducing combinations

tend to appear more frequently in suspicious combinations. For example, assume that

combination c = (a ← 0, b ← 0) is inducing. Let f = (a ← 0, b ← 0, c ← 0, d ← 0) be a test

case. Test case f fails as it contains c. Let f ′ = (a ← 1, b ← 1, c ← 0, d ← 0) be another test

case, which passed since it does not contain c. The set of suspicious combinations derived

from these two test cases is π = {(a ← 0, b ← 0), (a ← 0, c ← 0), (a ← 0, d ←

0), (b ← 0, c ← 0), (b ← 0, d ← 0)}

In this set, the frequencies of a ← 0 and b ← 0 both are greater than others. The

reason is that (c ← 0, d ← 0) appears in f ′, which is a passed test case.

Suspiciousness of combination (ρc): Suspiciousness of a combination c is defined

to be the average of suspiciousness of components that appear in c. Formally

suspiciousness of combination c, ρc(c) is computed by

ρc(c) =
1

[c]
∑ ρ(o)

∀ o∈c

 (2)

Suspiciousness of Environment (ρe): The environment of a combination c in a test

f includes all components that appear in f but do not appear in c. The suspiciousness of

16

the environment of a combination c in a test f is the average suspiciousness of the

components in the environment of c. If there is more than one (failed) test containing c in a

test set, the suspiciousness of the environment of c in this test set is the minimum

suspiciousness of environment of c in all the tests containing c. Formally, suspiciousness

of the environment is computed by

ρe(c) = Min (∑ ρ(o),

o∈f ∧o∉c

 ∀f ∈ F) (3)

Now we discuss how to actually rank the suspicious combinations based on ρc and

ρe. Intuitively, the higher the value of c, the lower the value of e, the higher a combination

is ranked.

To produce the final ranking, we first produce two rankings Rc and Re of suspicious

combinations, where Rc is in the non-descending order of c and Re is in the non-ascending

order of e. The final ranking R is produced by combining Rc and Re as follows. Let c and

c′ be two suspicious combinations. Assume that c has ranks rc and re in Rc and Re,

respectively, and c′ has ranks rc
′ and re

′ in Rc and Re, respectively. In the final ranking R, c

is ranked before c′ if and only if rc + re < rc
′ + re

′ .

2.3.3 Test generation

The step of test generation is responsible for generating new test cases for a

predefined number of top suspicious combinations. These new test cases are used to

refine the ranking of suspicious combinations in the next iteration. Let c be a suspicious

combination. A new test f is generated for c such that f contains c and the suspiciousness

of the environment for c is minimized in f. When such a test case passes, this combination

is removed from the suspicious set. When such a test case fails, the failure is more likely

due to this combination since the suspiciousness of its environment is minimized.

17

One algorithm to find a new test case with minimum ρe for a suspicious

combination is to generate all possible tests containing this combination, remove tests

which already exist in F, and then select one with minimum ρe. This algorithm is very

expensive. We next describe a more efficient, but heuristic, algorithm.

First, we generate a base test f as follows. For each parameter involved in c, we

give the same value in f as in c. Doing so makes sure that f contains c. For each parameter

in the environment of c, i.e., each parameter that is not involved in c, we choose a value

(or component) whose suspiciousness ρ is the minimum. If there is more than one value

with minimum ρ, one of them is selected randomly.

Next, we check whether the base test f is really new, i.e., making sure that f has

not been executed before. If so, f is returned as the new test that contains c and has

minimum ρe. If not, we pick one parameter randomly and change its value to a value with

the next minimum ρ. Again, this test is checked to see whether it is a new test. These steps

are repeated until a new test is found, or the number of attempts for finding new test case

reaches a predefined number. In the latter case, the combination c is marked as an

inducing combination, because it is very likely that all the test cases containing this

combination have been executed (and all of them must have failed).

2.3.4 Reduction

In the step of reduction, the set of t-way suspicious combinations is analyzed to

derive suspicious combinations of smaller size, i.e., size 1 to t − 1. A k-way combination c,

where 1 ≤ k ≤ t − 1, is suspicious if all the (k+1)-way combinations containing c are

suspicious.

Our reduction algorithm works as follows. A bucket is assigned to each (t − 1)-way

combination c to hold t-way suspicious combinations that contain c. For each t-way

suspicious combination in π, we put it into t buckets, one for each (t − 1)-way combination

18

that it contains. A (t − 1)-way combination c is identified to be a suspicious combination if

the number of t-way combinations in its bucket is equal to the number of all possible t-way

combinations containing c.

After all the (t − 1)-way suspicious combinations are identified, they are ranked

using the same algorithm for ranking t-way suspicious combinations.

The similar process can be applied to derive suspicious combinations of size t −

2, and so on, until we derive suspicious combinations of size 1.

2.3.5 Stopping condition

There are three stopping conditions in Figure 2-1. The first condition is that π

becomes empty. This situation occurs when all inducing combinations are of size greater

than t. In this situation, assumption 3 is not satisfied. In this situation, no rankings of

suspicious combinations are produced.

The second condition is that the size of π does not change from the previous

iteration. This situation occurs when all the new tests generated in the previous iteration

fail, and thus no suspicious combination is removed from π.

The third stopping condition is that the framework finds a suspicious combination

marked as an inducing combination. These combinations are marked in test generation

step, when no new test is found for them.

2.3.6 Discussion

Our approach is by nature heuristic. On one hand, suspicious combinations that

are ranked top by our approach may not be truly inducing. On the other hand, truly inducing

combinations may not be ranked top by our approach.

While our approach focuses on analyzing t-way combinations, it guarantees to

identify inducing combinations involving no more than t parameters to be suspicious

combinations. Let c be an inducing combination, we consider the following two cases.

19

Case (1): c is a t-way combination. As the initial test set is a t-way test set, there

is at least one test that contains c, and all test cases containing c must fail, since c is

inducing. Therefore, c is identified to be a suspicious combination by our approach.

Case (2): The size of c is less than t. All t-way combinations containing c are

inducing combinations and are identified to be suspicious combinations. Hence, the

reduction step identifies c as a suspicious combination.

Note that when an inducing combination involves more than t parameters, it may

not appear in the initial t-way test set, and our algorithm does not identify it to be a

suspicious combination.

2.3.7 Complexity analysis

Let k be the number of parameters, d the largest domain size and n the number of

test cases in the test set. The maximum number of t-way combinations is m = (k
t
)dt.

The rank generation step needs to sort the set of suspicious combinations for three

times, once for each ranking Rc, Re, and R. The sorting dominates the complexity of this

step, which is O(m ∗ log m).

The test generation step needs to select (k − t) values with minimum ρ first, which

takes (k − t) ∗ O(d). Then it needs to check whether it is new, which is O(k ∗ n). In the worst

case, a new test is not found after a predefined number of attempts. Thus the complexity

for this step is (k − t) ∗ O(d) ∗ O(k ∗ n).

In the reduction step, each t-way suspicious combination is put into t buckets. It

takes O(t) to determine whether a t-way combination belongs to a particular bucket. There

are l = (k
t−1

)dt−1 buckets. So the complexity for all t-way combinations is O(t ∗ l ∗ m). This

computation is performed for 1 to (t − 1)-way combinations, and the total complexity is

20

O(t2 ∗ l ∗ m). The reduction step ranks suspicious combinations, which is however

dominated by finding suspicious combinations.

2.4 EXAMPLE

In this section, we illustrate our approach using an example program, which is

shown in Figure 2-2. Method foo has a fault in line 6. The correct statement should be r+=

(b − d)/(a + 2), but operator “+” is missing. The input parameter model consists of P =

{a, b, c, d}, and da = {0,1}, db = {0,1}, dc = {0,1,2}, and dd = {0,1,2,3}. The faulty

statement is reachable with a test f such that (1) f(a) = 0; and (2) f(c) = 0 or f(d) = 3. So the

inducing combinations are (a ← 0, c ← 0) and (a ← 0, d ← 3).

Suppose that the program is tested by a two-way test set. The result of the test

executions is shown in Table 2-1, where 3 out of 12 tests fail. Test cases #1 and #7 fail

because they contain combination (a ← 0, c ← 0). Test case #10 fails because it contains

(a ← 0, c ← 0) and (a ← 0, d ← 3).

Table 2-1. Two-way test set and their status

Test # a b c d Status

1 0 0 0 0 fail

2 1 1 1 0 pass

3 0 1 2 0 pass

4 1 0 0 1 pass

5 0 0 1 1 pass

6 1 1 2 1 pass

7 0 1 0 2 fail

8 1 0 1 2 pass

9 0 0 2 2 pass

10 0 1 0 3 fail

11 1 0 1 3 pass

12 1 0 2 3 pass

Figure 2-2. An example of faulty program

21

Our approach takes Table 2-1 as input. Nine suspicious two-way combinations

are identified, and are listed in the first column of Table 2-2. Then our approach computes

the suspiciousness of all the components (seven) that appear in a suspicious combination.

For example, component c ← 0 appears in 3 failed test cases while there are 3

failed test cases, so u(c ← 0) = 1. The frequency of c ← 0 in the test set is 4, so v(c ← 0) =

3 4⁄ ; 5 out of 9 members of suspicious combinations set contain c ← 0, so w(c ← 0) = 5 9⁄ .

The computations for all components are as follows:

ρ(𝑐 ← 0) =
1

3
∗ (1 +

3

4
+

5

9
) = 0.7685

ρ(𝑑 ← 0) =
1

3
∗ (

1

3
+

1

3
+

2

9
) = 0.2963

ρ(𝑑 ← 2) =
1

3
∗ (

1

3
+

1

3
+

2

9
) = 0.2963

ρ(𝑑 ← 3) =
1

3
∗ (

1

3
+

1

3
+

3

9
) = 0.3333

ρ(𝑏 ← 0) =
1

3
∗ (

1

3
+

1

7
+

1

9
) = 0.1958

ρ(𝑏 ← 1) =
1

3
∗ (

2

3
+

2

5
+

3

9
) = 0.4667

ρ(𝑎 ← 0) =
1

3
∗ (1 +

3

6
+

2

9
) = 0.5741

According to formula (2), ρc for a suspicious combination c is the average

suspiciousness of the components that c contains. For example, in combination(a ← 0, c ←

0), ρcis (0.5741 + 0.7685) 2 = 0.6713⁄ . After computing ρc for all suspicious combinations,

we ranked them based on the non-ascending order of ρc. The values of ρc and Rc for each

suspicious combination are shown in the second and third columns of Table 2-2.

22

Next we compute ρe for each suspicious combination using formula (3). For

example, there are three test cases, test #1, test #7, and test #10, that contain

(a ← 0, c ← 0). Therefore,

ρe(a ← 0, c ← 0) = min ((
ρ(b←0)+ρ(d←0)

2
) = 0.2460 , (

ρ(b←1)+ρ(d←2)

2
) =

0.3815, (
ρ(b←1)+ρ(d←3)

2
) = 0.4000) = 0.2460

Next we rank suspicious combinations by a non-descending order of ρe, as shown

in column Re of Table 2-2.

Finally, the two rankings in columns Rc and Re are combined to produce a final

ranking of the suspicious components (column R). In this final ranking, inducing

combination (a ← 0, c ← 0) is ranked on the top, and the other (a ← 0, d ← 3) is ranked 6th.

Then new tests are generated for the most suspicious combinations. For

suspicious combination (a ← 0, c ← 0), we assign values to parameters in its environment,

i.e., b and d, such that the suspiciousness of each value is minimum. For b, 0 is selected,

asmin(ρ(b ← 0) = 0.1958 , ρ(b ← 1) = 0.4667) = 0.1958. For d, 1 is selected as min(ρ(d ←

0) = 0.2963, ρ(d ← 1) = 0, ρ(d ← 2) = 0.2963, ρ(d ← 3) = 0.3333) = 0. So a new test

(a ← 0, b ← 0, c ← 0, d ← 1) is generated.

Table 2-2. Suspicious combinations and their corresponding values

Suspicious
Combination

𝝆𝒄 𝑹𝒄 𝝆𝒆 𝑹𝒆 𝑹𝒄 + 𝑹𝒆 𝑹 New test case Status

𝑎 ← 0, 𝑐 ← 0 0.6713 1 0.2460 1 2 1 (a ← 0, b ← 0, c ← 0, d ← 1) fail

𝑏 ← 1, 𝑐 ← 0 0.6176 2 0.4352 3 5 2 (a ← 1, b ← 1, c ← 0, d ← 1) pass

𝑐 ← 0, 𝑑 ← 0 0.5324 4 0.3849 2 6 3 (a ← 1, b ← 0, c ← 0, d ← 0) pass

𝑐 ← 0, 𝑑 ← 3 0.5509 3 0.5204 4 7 4 (a ← 1, b ← 0, c ← 0, d ← 3) pass

𝑐 ← 0, 𝑑 ← 2 0.5324 4 0.5204 4 8 5 (a ← 1, b ← 0, c ← 0, d ← 2) pass

𝑎 ← 0, 𝑑 ← 3 0.4537 5 0.6176 5 10 6 (a ← 0, b ← 0, c ← 2, d ← 3) fail

𝑏 ← 1, 𝑑 ← 3 0.4000 6 0.6713 6 12 7 (a ← 1, b ← 1, c ← 1, d ← 3) pass

𝑏 ← 1, 𝑑 ← 2 0.3815 7 0.6713 6 13 8 (a ← 1, b ← 1, c ← 1, d ← 2) pass

𝑏 ← 0, 𝑑 ← 0 0.2460 8 0.6713 6 14 9 (a ← 1, b ← 0, c ← 2, d ← 0) pass

23

In this example, we generate a new test case for each suspicious combination

since there are only nine combinations. As shown in the last column of Table 2-2, all the

new test cases pass except two that contain two inducing combinations. In the next

iteration, the combinations that appear in a passed test case are not suspicious anymore.

Therefore, all combinations except two inducing combinations are removed from the

suspicious combinations set, and this set consists of the two combinations, which are both

inducing combinations.

Note that this example represents a best case scenario of our approach. In the

next section, we provide an experimental evaluation of our approach.

2.5 EXPERIMENT

We built a prototype tool called BEN that implements our approach. (BEN is a

Chinese word that means “root cause”.) We used this tool to conduct an experiment on a

set of six benchmark programs.

2.5.1 Experimental design

2.5.1.1 Subject programs

We used six C programs, count, series, tokens, ntree, nametbl, and cmdline, as

subject programs [7]. Each of these programs contains some faults. To determine whether

a test case fails or passes, we created a fault-free version of each program according to

the accompanying fault descriptions.

In combinatorial testing, the result may be different by different ways of modeling

the input space. To reduce bias, we used the same models for the six programs as in

previous work [13].

Table 2-3 shows properties of subject programs and their input models. The

second column (LOC) shows the number of lines of uncommented code in these programs.

The third column shows the number of faults. The last column (Input Model) shows the

24

input parameter model of each program, which includes the number of parameters and

their domain size. We represent it by (d1
k1 × d2

k2 × …) , where di
ki indicates that there are

ki number of parameters with domain size as di. Note that k1 + k2 + ⋯ = k, which is the

total number of parameters. For example, count has six parameters, among which two

parameters have a domain size of two, and four parameters have a domain size of three.

More details about these models can be found elsewhere [13].

Each subject program contains multiple faults. Generally speaking, the more faults,

the more failure-inducing combinations, and the easier it is to find them. To make the

problem more challenging, two additional versions for each program are created; a version

with about 50% of faults, and a version with a single fault. We refer to these versions by

versions1,2, and 3 respectively. Then we run the tool three times for each program, once

for each version.

2.5.1.2 Metrics

To measure the effectiveness of our approach, we compute the percentage of truly

inducing combinations in the top 10 ranked suspicious combinations. If a combination in

top 10 is not inducing, we also compute its inducing probability.

We measure the efficiency of BEN by the percentage of new test cases generated

and number of iterations needed.

Table 2-3. Subject programs

Program LOC # of faults Input model

count 42 8 (22 × 34)

series 288 4 (21 × 42 × 61)

tokens 192 5 (22 × 32)

ntree 307 8 (44)

nametbl 329 8 (21 × 32 × 52)

cmdline 336 9 (21 × 34 × 41 × 62 × 151)

25

For the purpose of the evaluation, in order to detect truly inducing combinations,

we run the exhaustive test set. A combination is truly inducing if all possible tests containing

this combination fail.

2.5.1.3 Test generation

The initial t-way test set is generated using the ACTS tool [1]. When we generate

new tests, we generate a new test for each of the top 10 suspicious combinations.

2.5.2 Results and discussion

We conduct the experiment by taking a 2-way test set as the initial test set, except

for version 3 of series, where both the 2-way and 3-way tests are used. The reason is that

there is no 2-way inducing combination for version 3 of series.

The results of our experiment are summarized in Table 2-4. We will not explain the

column headers one by one, as they are self-explanatory. We point out that the 7th column

(ratio of inducing combinations to all combinations) is intended to show the difficulty of the

identification problem. Typically, the fewer inducing combinations, the more effort needed

to identify them.

For example, in version 3 of cmdline, there are only 2 inducing combinations out

of 836 possible 2-way combinations. In version 1 of count, every combination is inducing.

It is easy to see that identifying inducing combinations in version 1 of count is much easier

than in version 3 of cmdline.

Note that the results for versions 1 and 2 of tokens are the same. Version 2 was

created by removing 3 out of 5 faults of version 1. However, both versions produce the

same output. The reason is that we used the same model as previous work [13], which

does not capture the difference between these two versions. Columns 8, 9, and 10 (#of

iterations, #of new test cases, and percentage of executed tests to the exhaustive test set)

are intended to show the efficiency of our approach. In general, a small percentage of tests

26

need to be executed by our approach. There are a few cases where more than 50% tests

were executed. One case is for version 3 of series with 3-way test set, we ran 60 % of

the test cases, i.e., 116 test cases. However, only 10 new test cases were added by our

approach and the other 106 tests were in the initial test set. The other cases are for the

Table 2-4. Experimental results for t-way combinations

P
ro

g
ra

m

V
e
rs

io
n

S
iz

e
 o

f
e
x
h

a
u
s
ti
v
e

te
s
t
s
e
t

S
iz

e
 o

f
In

it
ia

l

T
e
s
t
S

e
t

#
 o

f
a
ll

t-
w

a
y
 c

o
m

b
in

a
ti
o
n
s

#
 o

f
in

d
u
c
in

g
 c

o
m

b
in

a
ti
o
n
s

R
a
ti
o
 o

f
in

d
u
c
in

g
 c

o
m

b
in

a
ti
o
n
s

to
 a

ll
c
o

m
b

in
a
ti
o

n
s

#
 o

f
it
e
ra

ti
o

n
s

#
 o

f
n
e
w

 t
e
s
t
c
a
s
e
s

p
e
rc

e
n
ta

g
e
 o

f
e
x
e
c
u
te

d
 t

e
s
ts

to
 e

x
h
a

u
s
ti
v
e
 t

e
s
t
s
e
t

#
 o

f
s
u
s
p

ic
io

u
s
 c

o
m

b
in

a
ti
o

n
s

P
e
rc

e
n
ta

g
e
 o

f
in

d
u
c
in

g

c
o
m

b
in

a
ti
o
n
s
 i
n
 t

o
p
 1

0

s
u
s
p
ic

io
u
s
 c

o
m

b
in

a
ti
o

n
s

count

1

324 12 106

106 1 2 10 7% 106 100%

2 30 0.2830 4 30 13% 45 100%

3 13 0.1226 2 10 7% 20 100%

series

1

192
24 92

10 0.1087 3 20 23% 32 50%

2 2 0.0217 4 22 24% 4 50%

3
0 0 4 6 16% 0 -

106* 224 6 0.0268 2 10 60% 12 60%

tokens

1

36 9 37

14 0.3784 2 10 53% 21 100%

2 14 0.3784 2 10 53% 21 100%

3 8 0.2162 2 10 53% 14 80%

ntree

1

256 16 96

24 0.2500 2 10 10% 48 100%

2 14 0.1458 3 20 14% 44 60%

3 2 0.0208 4 22 15% 2 100%

nametbl

1

450 25 126

83 0.6587 2 10 8% 105 100%

2 30 0.2381 2 10 8% 74 100%

3 6 0.0476 10 83 24% 6 100%

cmdline

1
3499

20
95 836

252 0.3014 4 30 0.036% 568 50%

2 197 0.2356 7 60 0.044% 463 70%

3 2 0.0024 4 24 0.034% 4 50%

 * three-way

27

three versions of tokens. This program has a small number of the exhaustive test cases(36

test cases), and there were 9 tests in the initial test set.

In contrast, for the three different versions of cmdline, the largest program, at most

0.044% of possible test cases were executed, but as shown in Figure 2-3, later, we can

still rank all the inducing combinations to the top 10.

The last two columns (# of suspicious combinations and percentage of inducing

combinations in top 10 suspicious combinations) show the effectiveness of our approach.

For 10 (out of 18) versions of these programs, all the top 10 ranked suspicious

combinations are truly inducing. For other versions, Table 2-5 shows the ranks and

inducing probabilities of the top 10 ranked suspicious combinations that are not truly

inducing. All of these combinations have a very high inducing probability. The lowest

inducing probabilities happen in version 3 of cmdline, where the 3rd and 4th ranked

combinations have an inducing probability of 0.75 and 0.7114, respectively. The highest

inducing probabilities happen in version 2 of cmdline, where the 4th, 7th, and 9th ranked

combinations have an inducing probability that is close to 1, even if they are not truly

inducing.

 In two versions of series, 1st and 3rd (with 3-way test set), and the 3rd version of

tokens, the third stopping condition is satisfied, and truly inducing combinations are found.

So the information of other suspicious combinations is excluded from Table 2-5.

As it is shown in Table 2-4, the set of suspicious combinations becomes empty in

version 3 of series where 2-way test set is applied. In other cases, reaching the stable

point, satisfying the second condition, happens.

The reduction step finds 1-way suspicious combinations in 13 (out of 18) versions;

in 8 versions of theses 13 versions, all of top ranked combinations are inducing (Table 2-6).

28

For other 5 versions, the ranks and inducing probabilities of non-inducing but suspicious

combinations are shown in Table 2-7.

The charts in Figure 2-3 show the distribution of inducing and non-inducing

combinations in the ranking of suspicious combinations after each iteration. Due to limited

space, we only show the distribution for the 3rd version of each program, except for program

series, where version 2 is shown. The vertical axis shows the number of iterations. The

horizontal axis shows the ranks. Inducing and non-inducing combinations are shown by

different colors.

Table 2-5. Inducing probabilities of top 10 suspicious combinations that are not inducing

Program Version Rank
of possible test
cases containing

combination

of possible
failed test cases
containing this
combination

Inducing
probability

series 2
1 12 10 0.8333

2 12 10 0.8333

ntree 2

1 16 15 0.9375

3 16 15 0.9375

7 16 13 0.8125

10 16 15 0.9375

cmdline

1

1 29160 27216 0.9333

7 11664 10674 0.9151

8 43740 40824 0.9333

9 11664 10674 0.9151

10 29160 25704 0.8815

2

4 11664 11661 0.9997

7 11664 11661 0.9997

9 11664 11655 0.9992

3
3 7776 5832 0.75

4 3888 2766 0.7114

29

The charts show that our approach can quickly rank all the inducing combinations

to the top. For example, nametbl has 41 suspicious combinations in the first iteration. There

are 6 truly inducing combinations, which are ranked 1 to 4, 7, and 11. In the second

iteration, we have 33 suspicious combinations, and 5 out of 6 inducing combinations are

ranked to the top 5. In the third iteration, all 6 inducing combinations are ranked to the top

6. Although BEN runs 10 iterations to reach to the stable point, all 6 inducing combinations

come to the higher ranks sooner than 10 iterations.

Note that version 2 of series only has two inducing combinations, and they are

ranked in the 3rd and 4th place.

Table 2-6. Experimental results for (t-1)-way combinations

Program

Version

#
 o

f
a
ll

(t
 –

 1
)-

w
a
y

c
o
m

b
in

a
ti
o
n
s

#
 o

f
in

d
u
c
in

g

c
o
m

b
in

a
ti
o
n
s

R
a
ti
o
 o

f
in

d
u
c
in

g

c
o
m

b
in

a
ti
o
n
s
 t

o

a
ll

c
o
m

b
in

a
ti
o
n
s

#
 d

e
ri
v
e

d
 c

o
m

b
in

a
ti
o
n
s

P
e
rc

e
n
ta

g
e
 o

f
in

d
u
c
in

g

in
 t

o
p
 1

0
 d

e
ri
v
e
d

c
o
m

b
in

a
ti
o
n
s

count

1
16

16 1 16 100%

2 2 0.125 2 100%

3 1 0.0625 1 100%

series 1 16 0 0 1 0%

tokens

1

10

2 0.2 2 100%

2 2 0.2 2 100%

3 1 0.1 1 100%

ntree
1

16
2 0.125 2 100%

2 0 0 1 0%

nametbl
1

18
7 0.3889 10 70%

2 2 0.1111 2 100%

cmdline
1

45
7 0.1556 13 50%

2 6 0.1333 7 85%

30

2.5.3 Threats to validity

Threats to internal validity are other factors that may be responsible for the

experimental results, without our knowledge. We have tried to automate the experimental

procedure as much as possible, as an effort to remove human errors. In particular, we build

clean versions for all six subject programs, and a tool that automatically compares the

results of the clean version and a faulty version to determine truly inducing combinations.

Further, consistency of the results has been carefully checked to detect potential mistakes

made in the experiment.

Table 2-7. Inducing probabilities of Top 10 (t-1)-way suspicious combinations
 that are not inducing

Program

Version Rank

of possible
test cases
containing

combination

of possible failed
test cases containing

this combination

Inducing
probability

series 1 1 32 30 0.9375

ntree 2 1 64 61 0.9531

nametbl 1

5 90 86 0.9556

8 90 80 0.8889

9 90 86 0.9555

cmdline
1

2 23328 22338 0.9576

3 23328 22338 0.9576

6 23328 22338 0.9576

7 23328 22338 0.9576

10 23328 22368 0.9588

2 5 23328 23302 0.9988

31

Figure 2-3. Distribution of inducing and non-inducing

combinations in suspicious set

32

Threats to external validity occur when the experimental results could not be

generalized to other programs. We use subject programs from previous work [7]; these

programs are created by a third party and have been used in other studies [13]. But the

subject programs are programs of relatively small size with seeded faults. More

experiments on larger programs with real faults can reduce external validity of our findings.

The original versions of the subject programs had multiple faults, and thus many

inducing combinations. So they could be identified more easily than those for programs

with a small number of inducing combinations. To mitigate this threat, we conduct our

experiment on 3 versions of each program, with all faults, 50% of faults, and one fault,

respectively.

2.6 RELATED WORK

Delta debugging [12] is a technique that tries to find a minimum set of failure-

inducing input values in a failed test. It involves systematically changing or removing the

values in a failed test to create new tests. Two similar techniques, called FIC and FIC_BS

[13], try to identify all the faulty interactions contained in a failed test. The notion of a faulty

interaction is the same as the notion of an inducing combination defined in this paper. FIC

and FIC_BS assume that no new inducing combinations are introduced when a value is

changed to create a new test.

Our approach is different from these previous techniques in that we try to identify

inducing combinations in a combinatorial test set, instead of a single failed test. On one

hand, a test set contains more information than a single test. On the other hand, doing so

makes it possible to identify inducing combinations that appear in different tests. Moreover,

the assumption made by FIC and FIC_BS may not hold for many applications, as changing

a value in a test introduces many new combinations, and assuming that all of them are

non-inducing is over-optimistic.

33

Yilmaz et al. [11] proposed a machine learning approach to identify likely inducing

combinations from a given combinatorial test set. Their approach builds a data structure

called classification tree, and assigns a score to each likely inducing combination. A

combination is classified to be an inducing combination if its score is greater than a

threshold value. This approach is used to guide the generation of new tests in an adaptive

combinatorial testing technique [4].

 The preceding approach identifies inducing combinations based on a

combinatorial test set only, i.e., without adding new tests. Considering that a combinatorial

test set is often produced such that it contains as few tests as possible while still achieving

t-way coverage, many combinations are covered only once in a combinatorial test set. As

a result, a combinatorial test set alone often provides insufficient information for effective

classification, especially when there are a large number of inducing combinations and

failed test cases.

The work that is mostly related to ours is a technique called AIFL [8, 9]. Given a

combinatorial test set, AIFL first identifies all the suspicious combinations, i.e.,

combinations that only appear in failed tests. Then, for each failed test, AIFL generates k

test cases by changing the value of one parameter at a time, where k is the number of

parameters. The new value of a changed parameter could be any value in its domain. New

tests are then used to refine the set of suspicious combinations. At this point, AIFL stops

and outputs the set of suspicious combinations. InterAIFL [10] extends AIFL by adopting

an iterative framework. That is, new tests are generated to refine the set of suspicious

combinations iteratively until a fixed point is reached, i.e., the set of suspicious

combinations becomes stable.

Our approach identifies suspicious combinations in the same way as AIFL and

Inter-AIFL. However, our approach goes one step further to produce a ranking of

34

suspicious combinations. This ranking helps the debugging effort to focus on the most

suspicious combinations. Our approach also differs significantly in the way of generating

new tests: our test generation is based on the notions of suspiciousness combination and

suspiciousness of environment.

2.7 CONCLUSION

In this paper, we presented an approach to identifying failure-inducing

combinations in a combinatorial test set. Our approach adopts an iterative framework that

ranks suspicious combinations and generates new tests repeatedly until a stable condition

is reached. The novelty of our approach lies in the fact that we rank suspicious

combinations and generate new tests based on the notions of suspiciousness of a

combination and suspiciousness of its environment. The higher the suspiciousness of a

combination, the lower the suspiciousness of its environment, the higher this combination

is ranked. New tests are generated for a user-defined number of most suspicious

combinations such that the suspiciousness of the environment of a combination is

minimized in each test. Our experimental results show that our approach is very effective

in terms of quickly identifying and ranking failure-inducing combinations to the top.

There are two major directions to continue our work. First, we plan to conduct more

empirical studies to further evaluate the performance of our approach. In particular, we

plan to apply our approach to larger and more complex programs. Second, this work is part

of a larger effort to develop fault localization techniques that leverage the result of

combinatorial testing. The next step in our project is to go inside the source code and find

a particular line or block of code that contains the fault. We believe that failure-inducing

combinations provide important insights about how different parameters interact with each

other and can be used to reduce the scope of the code that needs to be analyzed in the

next step.

35

2.8 Acknowledgment

We thank Christopher Lott for providing the benchmark programs and Jian Zhang

for allowing us to use their combinatorial models. This work is supported by two grants

(70NANB9H9178 and 70NANB10H168) from Information Technology Lab of National

Institute of Standards and Technology (NIST) and a grant (61070013) of National Natural

Science Foundation of China.

Disclaimer: Certain software products are identified in this document. Such

identification does not imply recommendation by the NIST, nor does it imply that the

products identified are necessarily the best available for the purpose.

2.9 REFERENCES

1. Advanced Combinatorial Testing System (ACTS), 2010.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html.

2. D. Cohen, S. Dalal, M. Fredman, and G. Patton. The AETG system: An approach

to testing based on combinatorial design. IEEE Transactions on Software

Engineering, 23(7):437–444, 1997.

3. M. B. Cohen, P. B. Gibbons, W.B. Mugridge, C.J. Colbourn. Constructing test

suites for interaction testing. In Proceedings of the 25th International Conference

on Software Engineering (ICSE 2003), pages 38-48, 2003.

4. E. Dumlu, C. Yılmaz, M. B. Cohen, and A. Porter. Feedback driven adaptive

combinatorial testing. In Proceedings of International Symposium on Software

Testing and Analysis (ISSTA 2011), pages 243-253, 2011.

5. D.R. Kuhn, D.R. Wallace, A.M. Gallo. Software fault interactions and implications

for software testing. IEEE Transaction on Software Engineering, 2004, 30: 418–

421

36

6. Y. Lei, R. Kacker, D. Kuhn, V. Okun, J. Lawrence, IPOG/IPOD: Efficient test

generation for multi-way software testing, Journal of Software Testing, Verification,

and Reliability, 18(3):125-148, Sept. 2008.

7. C. Lott. A repeatable software engineering experiment.

http://www.maultech.com/chrislott/work/exp.

8. C. Nie, H. Leung, and B. Xu. The minimal failure-causing schema of combinatorial

testing. ACM Transactions on Software Engineering and Methodology, Volume 20

Issue 4, September 2011.

9. L. Shi, C. Nie, B. Xu. A software debugging method based on pairwise testing. In

Proceedings of the International Conference on Computational Science

(ICCS2005), pages 1088-1091, 2005.

10. Z. Wang, B. Xu, L. Chen, and L. Xu. Adaptive interaction fault location based on

combinatorial testing. In Proceedings of the 10th International Conference on

Quality Software (QSIC 2010), pages 495–502, 2010.

11. C. Yilmaz, M. B. Cohen, A. A. Porter. Covering arrays for efficient fault

characterization in complex configuration spaces. IEEE Transaction on Software

Engineering, 2006, 32(1): 20-34.

12. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE

Transactions on Software Engineering, 2002, pages 183–200.

13. Z. Zhang, and J. Zhang. Characterizing failure-causing parameter interactions by

adaptive testing. In Proceding of ACM International Symposium on Software

Testing and Analysis (ISSTA 2011), pages 331-341, 2011.

http://www.maultech.com/chrislott/work/exp/

37

 Fault localization based on failure inducing combinations

This chapter contains a paper published in IEEE 24th International Symposium on

Software Reliability Engineering (ISSRE), in 2013.

38

Fault localization based on failure inducing

combinations*

Laleh Sh. Ghandehari1, Yu Lei1, David Kung1, Raghu Kacker2, Richard Kuhn2

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

laleh.shikhgholamhosseing@mavs.uta.edu, {ylei,kung}@uta.edu

2Information Technology Lab, National Institute of Standards and Technology, Gaithersburg, MD,

USA raghu.kacker@nist.gov, kuhn@nist.gov

Abstract-Combinatorial testing has been shown to be a very effective testing

strategy. After a failure is detected, the next task is to identify the fault that causes the

failure. In this paper, we present an approach to fault localization that leverages the result

of combinatorial testing. Our approach is based on a notion called failure-inducing

combinations. A combination is failure-inducing if it causes any test in which it appears to

fail. Given a failure-inducing combination, our approach derives a group of tests that are

likely to exercise similar traces but produce different outcomes. These tests are then

analyzed to locate the faults. We conducted an experiment in which our approach was

applied to the Siemens suite as well as the grep program from the SIR repository that has

10068 lines of code. The experimental results show that our approach can effectively and

efficiently localize the faults in these programs.

Keywords- Combinatorial Testing; Fault Localization; Debugging.

* Copyright © 2013 IEEE. Reprinted, with permission, from Laleh Sh. Ghandehari, Yu Lei, David

Kung, Raghu Kacker and Richard Kuhn, Fault localization based on failure inducing combinations,
IEEE International Symposium on Software Reliability Engineering (ISSRE), November 2013.

mailto:kuhn@nist.go

39

3.1 INTRODUCTION

Combinatorial testing has been shown to be a very effective testing strategy [7, 14].

The key observation is that most software failures are caused by interactions of only a few

parameters. A widely cited NIST study reports that failures in several real-life systems

involved no more than six parameters [11, 12]. A t-way combinatorial test set is built to cover

all the t-way interactions, where t is typically a small integer. If test parameters and values

are correctly modeled, a t-way test set is able to expose all failures involving no more than

t parameters. Empirical results have shown that combinatorial testing is very effective for

failure detection while significantly reducing the number of tests.

Most research in combinatorial testing has focused on developing efficient

combinatorial test generation algorithms and conducting empirical studies to evaluate the

failure-detection effectiveness of combinatorial testing [7, 14]. After a failure is detected, the

next task is to find the fault that caused the failure. An important research problem to

investigate is how to leverage the result of combinatorial testing to locate the faults. Our

earlier work in [6] investigated the problem of how to identify failure-inducing combinations

in a combinatorial test set. A combination is failure inducing, or simply inducing, if it causes

any test in which it appears to fail. In this paper, we address the problem of how to use

inducing combinations to locate the faults in the source code.

One common approach to fault localization is based on the notion of a program

spectrum. A program spectrum records information about certain aspects of a test execution

[20], such as function call counts, program paths, program slices and use-def chains [16].

Examples of spectrum-based methods include Tarantula [10], set union, set intersection,

and nearest neighbor [16]. These methods identify faults by comparing the spectrums of

passed and failed test executions.

40

In this paper, we present a spectrum-based approach to fault localization that

leverages the notion of an inducing combination. The novelty of our approach is two-fold.

First, to the best of our knowledge, our work is the first effort to perform code-based fault

localization based on combinatorial testing. Existing work in this area, i.e., fault localization

based on combinatorial testing, has only dealt with the problem of how to identify inducing

combinations [15, 17, 19, 21].

Second, our approach generates, in a systematic manner, a small group of tests

from an inducing combination, such that the execution traces of these tests can be analyzed

to quickly locate the faults. This differs from existing spectrum-based approaches which do

not deal with the problem of test generation. Instead, they assume the existence of a large

number of tests, which are generated randomly and/or using other techniques [10, 16, 20].

In our approach, one of the tests in the group is referred to as the core member, which

consists of the inducing combination and produces a failed test execution. The other tests

in the group are referred to as the derived members, which are derived from the core

member in a way such that they are likely to execute a trace that is very similar to the trace

of the core member but produce a different outcome, i.e., a passed execution. The spectrum

of the core member is then compared to the spectrum of each derived member to produce

a ranking of statements in terms of their likelihood to be faulty.

Our approach is inspired by the notion of nearest neighbor [16]. The key idea of

nearest neighbor is that faulty statements are likely to appear in the execution trace of a

failed test but not in the execution trace of a passed test that is as similar to this failed test

as possible. If two tests are significantly different, they are likely to represent different

application scenarios. Thus, the differences in the execution traces of these two tests are

likely due to program logic, instead of faults. The novelty of our approach lies in the fact that

we generate, in a systematic manner, a failed test, i.e., the core member, and then derive

41

its nearest neighbors from this failed test, i.e., the derived members. This is in contrast with

the approach in [16], which executes a large number of tests from which a failed test and its

nearest neighbors are selected.

We report an experiment in which we applied our approach to the Siemens suite

and the grep program in the Software Infrastructure Repository (SIR) [18]. The Siemens

suite has been commonly used to evaluate fault localization methods. Each program has a

number of faulty versions. The programs in the Siemens suite are, however, relatively small.

Thus, we also applied our approach to the grep program that has 10068 lines of code [18].

The results show that our approach is effective in localizing faulty statements and also very

efficient in that only a small number of tests need to be generated and executed by our

approach. For example, one of the programs in the Siemens suite called replace has 32

faulty versions. These 32 versions were all killed by a 2-way test set with 192 tests. Our

approach identified the faulty statement in each version by generating and executing only

about 3 additional tests.

The remainder of this paper is organized as follows. Section 3.2 shows a

motivating example. Section 3.3 introduces several definitions and reviews our previous

work on identifying inducing combinations. Section 3.4 presents the details of our approach

to locating faults based on inducing combinations. Section 3.5 reports the experimental

results of applying our approach to the Siemens suite and the grep program. Section 3.6

discusses existing work on fault localization. Section 3.7 provides concluding remarks and

our plan for future work.

3.2 A MOTIVATING EXAMPLE

Consider as an example the printtokens2 program in the Siemens suite [18]. This

program is a lexical analyzer that reads an input string and prints out all the tokens in the

42

input string. The types of tokens include keyword, special, identifier, number, comment,

string_constant or character_constant.

This program works by first extracting all the space-delimited elements in the input

string. These elements are then sent to functions that are designed to recognize different

types of tokens. One of the faulty versions of this program, i.e., version 5, has the faulty

statement in function is_str_constant, which is responsible for recognizing whether or not

an element extracted from the input string is a string_constant. A string_constant is a

sequence of characters that begins and ends with a double quotation.

Figure 3-1 shows the is_str_constant function. If str does not begin with a double

quotation, this function returns false (i.e. the last return statement in Figure 3-1). If str begins

with a double quotation, and a second double quotation is found in str, this function returns

true (i.e., the first return statement in Figure 3-1). If str begins with a double quotation, and

a second double quotation is not found, this function is supposed to return false, but it

returns true (i.e., the second return statement in Figure 3-1), which is the faulty statement.

For illustration, two abstract parameters P1 and P2, each of which has two values

0 and 1, are identified to test function is_str_constant. P1 indicates whether or not a token

begins with a double quotation, and P2 indicates whether or not there exists a second

double quotation in a token. Each of these two abstract parameters represents a certain

characteristic of the actual parameter str. Since the values of these two parameters cannot

be directly taken by function is_str_constant, they must be mapped to a concrete value of

the actual parameter str. For example, if both P1 and P2 take value 1, a token such as “test”

can be used as the concrete value of str to test function is_str_constant.

Table 3-1 shows four possible test cases, as well as the actual and expected output

of each test case, for function is_str_constant. Note that a complete test for the printtokens2

43

Figure 3-1. Function is_str_constant

Table 3-1. Abstract tests for function is_str_constant

P1 P2 Actual Output Expected Output

1 1 True True

1 0 True False

0 1 False False

0 0 False False

program would contain values of other parameters, which are not directly related to function

is_str_constant and thus are not shown in Table 3-1.

When we apply 2-way testing and our earlier approach in [6] to the printtokens2

program, we identify combination < p1 ← 1, p2 ← 0 > to be a failure-inducing combination.

This is because this combination represents a string that starts with a double quotation, but

44

does not have a second double quotation. So, every test containing this combination would

execute the faulty statement, and thus would fail.

Let f be a (failed) test that contains combination < P1 ← 1, P2 ← 0 >. All the

statements that are executed by f are suspicious statements, which are < 4, 5, 6, 7, 9,

10, 12 >. To locate the true faulty statement, we create two tests, f1and f2, which are as

similar to f as possible but have a different outcome. Test f1 is created such that it is

the same as f except that we change the value of P1 from 1 to 0. Since combination <

P1 ← 0, P2 ← 0 > represents a string without any double quotation, test f1 will execute the

last return statement (line #15) and thus will pass. The statements that are executed by f1,

are <4, 5, 14 15>. Similarly, test f2 is created such that it is the same as f except that we

change the value of P2 from 0 to 1. Since combination < P1 ← 1, P2 ← 1 > represents a

string starting with a double quotation and has a second double quotation, test f2 will

execute the first return statement (line #8) and thus will also pass. The statements that are

executed by f2, are <4, 5, 6, 7, 8, 9, 10>.

Now we analyze the execution traces of the three tests f, f1 and f2. We find that

the second return statement (line #12) is the only statement that is executed by the failed

test f but not by passed tests f1 and f2. That is, all the other statements that are executed

by f are executed by f1 and/or f2. Thus, the second return statement (line #12) is identified

to be the statement that is most likely to be faulty.

In the rest of this paper, we will describe the details of our approach. We

emphasize that the novelty of our work is a systematic approach to generate tests like f, f1,

and f2 whose execution traces can be analyzed to quickly identify the faulty statement(s).

45

3.3 PRELIMINARIES

3.3.1 Basic concepts

Assume that the system under test (SUT) has k input parameters, denoted by set

P = {p1, p2, … , pk}. Let di be the domain of parameter pi. That is, di contains all possible

values that pi could take, and let D = {d1 ∪ d2 ∪ … ∪ dk}. Let S be the set of all the

statements in the source code of SUT.

Definition 1. (Test Case) A test case, or simply a test, is a function that assigns a

value to each parameter. Formally, a test case is a function f: P → D.

We use Γ to represent all possible test cases for the SUT. It is clear that |Γ| =

|d1| × |d2| × … × |dK|.

Definition 2. (Test Oracle) A test oracle determines whether the execution of a test

case is “pass” or “fail”. Formally, a test oracle is a function r: Γ → {pass, fail}.

Definition 3. (Combination) A combination c is a test f restricted to a non-empty,

proper subset M of parameters in P. Formally, c = f|M, where M ⊂ P, and |M| > 0.

In the preceding definition, M is a proper subset of P. Thus a test case is not

considered to be a combination in this paper. We use dom(c) to denote the domain of c,

which is the set of parameters involved in c. (Note that dom(c) is the domain of a function,

which is different from the domain of a parameter.) We define the size [c] of a combination

c to be the number of parameters involved in c. That is [c] = |dom(c)|.

A combination of size 1 is a special combination, which we refer to as a component.

Since there is only one parameter involved, we denote a component o as an assignment,

i.e., o = p ← v, where o(p) = v.

Definition 4. (Component Containment) A component o = p ← v is contained in a

combination c, denoted by o ∈ c, if and only if p ∈ dom(c) and c(p) = v.

46

Definition 5. (Combination Containment) A combination c is contained in a test

case f, denoted by c ⊂ f, if and only if ∀p ∈ dom(c), f(p) = c(p) .

If a combination c is contained by a test case f, i.e., c ⊂ f, all combinations that are

contained by c, are contained by f.

Definition 6. (Inducing Combination) A combination c is failure-inducing, or simply

inducing, if any test f in which c is contained, fails. Formally, ∀f ∈ Γ: c ⊂ f ⟹ r(f) = fail.

Definition 7. (Suspicious Combination) A combination c is a suspicious

combination in a test set F ⊆ Γ if c is only contained in failed test cases in F. Formally, ∀f ∈

F: c ⊂ f ⇒ r(f) = fail.

If F is a t-way test set, i.e., F covers all the t-way combinations, a t-way inducing

combination must be a t-way suspicious combination in F. But a t-way suspicious

combination in F may or may not be a t-way inducing combination.

Definition 8. (Program Spectrum Function) Let f be a test and trace(f) ⊆ S the set

of statements executed by f. (The order in which the statements are executed by f is not

significant.) The program spectrum function is a Boolean function γ defined as follows:

γ: S × Γ → {true, false}, where γ(s, f) = true if s ∈ trace(f) and γ(s, f) = false if s ∉ trace(f).

In other words, a program spectrum with respect to a test execution is a

membership function that determines whether a statement is exercised by this test

execution.

3.3.2 Identifying inducing combinations

In our previous work [6], we introduced an approach, BEN, to identify inducing

combinations in a combinatorial test set. BEN takes a t-way test set as input and generates

a ranking of combinations based on their likelihood to be inducing combinations. The main

idea of BEN is based on three notions, suspiciousness of component, suspiciousness of

combination, and suspiciousness of environment.

47

Suspiciousness of Component (ρ): A value between 0 and 1. The higher the

suspiciousness value of a component o, denoted as ρ(o), the more likely o contributes to a

failure, and the more likely o is contained by an inducing combination.

Suspiciousness of Combination (ρc): Suspiciousness of a combination c, ρc(c), is

defined to be the average of suspiciousness of components that appear in c. Formally,

 ρc(c) =
1

[c]
∑ ρ(o) for ∀ o ∈ c (1)

Suspiciousness of Environment (ρe): The environment of a combination c in a test

f includes all components that appear in f but do not appear in c. The suspiciousness of the

environment of a combination c in a test f is the average suspiciousness of the components

in the environment of c. If there is more than one (failed) test containing c in a test set, the

suspiciousness of the environment of c in this test set is the minimum suspiciousness of

environment of c in all the tests containing c . Formally , suspiciousness of the

environment is computed by

 ρe(c) = Min (
1

[f]−[c]
∑ ρ(o)) (2)

for ∀ o ∈ f ∧ o ∉ c

The final ranking is produced such that the higher the suspiciousness of a

combination, the lower the suspiciousness of its environment, the higher this combination

is ranked.

Experimental results show that BEN is very effective in identifying inducing

combinations. On the one hand, truly inducing combinations are ranked to the top very

quickly. On the other hand, combinations that are ranked on the top but are not truly

inducing have a high probability of being inducing, i.e., they are very likely to cause a

failure if they appear in a test. Our approach is also very efficient in that only a very small

percentage of all possible tests need to be executed.

48

3.4 APPROACH

The input of our approach is taken from the output of our earlier tool called BEN,

including a suspicious combination c that is ranked at the top and the suspiciousness value,

ρ, of every component (of every parameter) of the subject program. The top-ranked

suspicious combination may not be a truly inducing combination. However, as mentioned in

the previous section, it is very likely to cause a failure if it appears in a test case. The output

is a ranking of statements with their likelihood of being faulty.

Our approach consists of two major steps: (1) Test Generation: In this step, we

generate a group of tests. This group consists of one failed test, which is referred to as the

core member, and at most t passed tests, which are referred to as the derived members.

Each derived member is expected to produce a similar trace as the core member. (2) Rank

Generation: In this step, we compare the spectrum of the core member to the spectrum of

each derived member, and then produce a ranking of statements in terms of their likelihood

of being faulty.

3.4.1 Test generation

Let c be the top-ranked suspicious t-way combination taken as input by our

approach. In this step, a group of tests is generated which contains a core member and at

most t derived members. The core member f is created such that it contains c and the

suspiciousness of environment of c in f is minimized. That is, for each parameter p involved

in c, f has the same value for p as c, i.e. c ⊂ f; and for each parameter p that does not

appear in c, f takes a value that has the minimum suspiciousness value among all the

values of p. As discussed later, the reason why we want to minimize the suspiciousness of

the environment of c is to maximize the likelihood of a derived member to be a passing test.

The core member f is very likely to fail, since it contains c, and c is, or very likely to

be an inducing combination. In case that f does not fail, we pick a test from the initial t-way

49

test set that contains c as the core member. Since c is identified as an inducing combination,

there must exist at least one failed test that contains c in the initial test set. (Otherwise, c

would not even be a suspicious combination.)

Next we generate t derived members f1, f2 … ft. A derived member fi is generated

such that it has the same value as f for all parameters except one component of c, which is

replaced with another component of the same parameter with the minimum suspiciousness

value.

Figure 3-2 shows how derived members are generated from the core member f.

Core member f contains k components, o1, o2 … , ok, where k is the number of parameters.

Without loss of generality, assume that the first t components in f, i.e., o1, o2 … , ot, are in the

inducing combination c. Each derived member is different from the core member f, only in

one component in the inducing combination c.

On the one hand, a derived member fi is likely to pass for three reasons. First, the

replacement effectively removes combination c from f. Second, it is not likely for fi to contain

other suspicious combinations like c because the new component has the minimum

suspiciousness value. Finally the suspiciousness of the environment of c is minimized. If a

derived member does fail, we ignore this member. In case that all derived members fail, we

f {𝑜1, 𝑜2, … , 𝑜𝑡, 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Core

f1 {𝒐𝟏
′ , 𝑜2, … , 𝑜𝑡, 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Derived

f2 {𝑜1, 𝒐𝟐
′ , … , 𝑜𝑡, 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Derived

… … …

ft {𝑜1, 𝑜2, … , 𝒐𝒕
′ , 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Derived

c

Figure 3-2. An illustration of how to generate derived members

50

pick a passed test f1 from the initial t-way test set such that the number of components that

differ between f1 and the core member is minimized.

On the other hand, the execution trace of a derived member is likely to be very

similar to the execution trace of the core member, as these two tests only differ in one value.

Therefore the faulty statement is very likely to be one of the statements that appear in the

execution trace of f but do not appear in the execution trace of f1, f2 … ft.

Example: Consider a system P with four parameters a, b, c, and d, where a and b

takes two values 0 and 1, c takes three values 0, 1, and 2, and d takes four values 0, 1, 2,

and 3. Assume that BEN ranked combination (a ← 0, c ← 0) as the most suspicious

combination, and reported the suspiciousness of each component as shown in Table 3-2.

In our approach, the core member, f = (a ← 0, b ← 0, c ← 0, d ← 1), is generated. This core

member contains (a ← 0, c ← 0), components b ← 0 and d ← 1 have the minimum

suspiciousness value.

Two derived members f1= (a ← 1, b ← 0, c ← 0, d ← 1) and f2= (a ← 0, b ← 0, c ←

1, d ← 1) are generated from the core member f. Derived member f1 replaces a ← 0 in f

with a ← 1, as ρ(a ← 1) = 0, and f2 replaces c ← 0 in f with c ← 1, as ρ(c ← 1) = 0. Note

that for f2, we could also replace c ← 0 in f with c ← 2, as ρ(c ← 2) = ρ(c ← 1) = 0. In this

case, a random choice is made.

Table 3-2. Suspiciousness of components of an example system

Parameter value ρc Parameter value ρc

a
0 0.57

b
0 0.2

1 0 1 0.47

c

0 0.77

d

0 0.3

1 0 1 0

2 0 2 0.3

3 0.33

51

3.4.2 Rank generation

In this section, we produce a ranking of statements in terms of their likelihood to be

faulty by analyzing the spectrums of the core member and derived members. The

suspiciousness of statement s is computed by the following formula:

ρ(s) = ∑ ρ(s, fi)/(|gd|)fi∈gd
 (3)

In the above formula, gd represents all the derived members, and fi is a derived

member in the group, ρ(s) is the average of ρ(s, fi), for all the derived members fi. The value

of ρ(s, fi) is computed by the following formula:

ρ(s, fi) = {

1 if γ(s, f) = true and γ(s, fi) = false

0.5 if γ(s, f) = γ(s, fi) = true

0 if γ(s, f) = false

(4)

The idea behind this formula is the following. Statements that are only executed by

the core member f are most suspicious and are given 1 as their suspiciousness value.

Statements that are executed by both core and derived members are less suspicious, and

are given 0.5 as their suspiciousness value. Note that the execution of a faulty statement by

a test does not necessarily make the test fail. For example, if there exists a fault in a

conditional expression, this fault can be executed by all tests but only cause some to fail.

Finally statements that are not executed by f are not suspicious.

For example if there are three tests in the test group f, f1 and f2, where f is the core

member, f1 and f2 are the derived members. Assume that a statement s is executed by f

and f2. The suspiciousness value of s for each derived member is: ρ(s, f1) = 1 and ρ(s, f2) =

0.5. And, the overall suspiciousness value for statement s is:

ρ(s) =
1 + 0.5

2
= 0.75

The higher the suspiciousness value of a statement, the more likely this statement

is faulty. We rank statements by a non-ascending order of their suspiciousness value. To

52

locate the faulty statement, statements in the top rank are examined first, and then

statements in the next rank, until the faulty statement is found.

3.4.3 Discussion

The effectiveness of our approach depends to some extent on the quality of the top-

ranked suspicious combination identified by BEN . If the top - ranked combination

is truly inducing, the core member generated by our approach, i.e., the one that contains

this combination and minimizes the suspiciousness of its environment, must fail. If the top-

ranked combination is not truly inducing, but has a high probability to be inducing, the core

member generated by our approach still has a high probability to fail. If the core member

generated by our approach does not fail, we have to pick from the initial test set a failed test

as the core member. This failed test contains this top-ranked combination, but may not

minimize the suspiciousness of its environment. This may reduce the probability for the

derived members to pass.

After finding the core member, the derived members are generated. The derived

members are passed tests which have a similar trace to the core member. If a derived

member fails, we discard it. If all the derived members fail, we pick a passed test from the

initial test set that is as similar to the core member as possible. In this case, the difference

between the core member and this derived member may not be minimized, which might

affect the effectiveness of our approach. We believe the chance for this case, i.e., all the

derived members fail, to occur is small, which is consistent with our experiments in which

no such case occurred to the total of 102 versions of our subject programs.

3.4.4 Complexity analysis

Let k be the number of parameters, t the strength of the initial test set and n the

number of statements in the subject program. To generate the core member, it is necessary

to find the component with the minimum suspiciousness value for all the parameters that

53

are not involved in the inducing combination (so that the suspiciousness of the environment

is minimized). This takes (k − t) ∗ O(d) where d is the largest domain size.

To generate a derived member, we replace a component in the inducing

combination with a component with the minimum suspiciousness value (of the same

parameter). This takes t ∗ O(d) for all the derived members.

In the rank generation part, the complexity of assigning a suspiciousness value to

each statement with respect to the t derived members is O(t). So for all the n statements

of the program, it takes n ∗ O(t). Then the rank generation part needs to sort all the

statements in a non-ascending order of their suspiciousness value, which is O(n ∗ log(n)).

Since t is typically much smaller than n, this sorting operation dominates the complexity of

this part.

3.5 EXPERIMENT

In our experiment, we applied our approach to the Siemens suite and the grep

program in SIR [18]. The Siemens suite has been used to evaluate several fault localization

techniques [9, 16, 20]. The grep program is a significantly larger program than the Siemens

programs and is designed to obtain some initial evidence on how our approach works on

larger programs.

3.5.1 The Siemens suite

The Siemens suite contains 7 programs and each of them contains a number of

faulty versions. The Siemens suite also provides an error-free version and a test set for each

program. Table 3-3 represents properties of subject programs. To show that our approach

works effectively when the program under test has more than one fault, one faulty version

is created for each program with all faults available in the Siemens suite.

54

Since some faults may conflict with each other, combining all of them in one

version is not possible. For example tcas has 41 faulty versions, but we could only apply

36 of them in one version. The column #of compatible faults in Table 3-3 shows the total

number of faults that can be combined in the multiple-fault version of each program.

3.5.2 Initial test set

The input model of each program is shown in Table 3-4. The detailed model is also

available for review in [8]. The model column in the table shows the number of parameters

and their domain size. We represent it by (d1
k1 × d2

k2 × …), where di
ki indicates that there are

ki number of parameters with domain size as di. Note that k1 + k2 + ⋯ = k, which is the

total number of parameters. For example totinfo has six parameters, among which three

parameters have a domain size of 3, two parameters have a domain size of 5, and one

parameter has a domain size of 6.

The constraint column shows the number of constraints in each model. Consider

the input model of the printtokens program which contains different positions for different

tokens. For example, keyword and identifier are two types of tokens that could appear at

Table 3-3. Characteristics of subject programs

Programs LOC # of faulty versions # of compatible faults

pinttokens 472 7 7

printtokens2 399 10 9

replace 512 32 24

schedule 292 9 8

schedule2 301 10 9

tcas 141 41 36

totinfo 440 23 20

55

the beginning, middle or end of the input stream. A constraint is needed to prevent having

more than one type of token at the same position.

Note that programs printtokens and printtokens2 share the same model, and so do

programs schedule and schedule2. The model in tcas is the same as [11]. Also note that

the models are built based on the specification of the programs, i.e., independent from their

implementations.

We used the ACTS tool [2] to generate t-way test sets. For each program, we first

test it with a 2-way test set. (We assume that boundary testing is done before combinatorial

testing is applied. Combinatorial testing is mainly used to test interaction faults involving

more than one parameter.) If a program is not killed by a 2-way test set, we increase the

test strength and then test the program with a 3-way test set. This process is repeated until

we reach strength 4.

Table 3-5, shows the number of versions in each fault category and the number of

versions that are killed by our test set. For example, in two versions of printtokens program

the fault is missing code, and both of them are killed by our combinatorial test set. The

maximum strength is used for testing is 4.

Table 3-4. Programs model

Programs Model #Constraints

printtokens (21 × 31 × 44 × 51 × 101 × 132) 8

printtokens2 (21 × 31 × 44 × 51 × 101 × 132) 8

replace (24 × 416) 36

schedule (21 × 38 × 82) 0

schedule2 (21 × 38 × 82) 0

tcas (27 × 32 × 41 × 102) 0

totinfo (33 × 52 × 61) 0

56

Table 3-5. Test results

Program
Extra code

Missing
code

Incorrect
code

Definition All

Total Kill Total Kill Total Kill Total Kill Total Kill

printtokens 1 0 2 2 2 0 2 1 7 3

printtokens2 0 0 3 2 7 7 0 0 10 9

replace 1 1 2 2 28 28 1 1 32 32

schedule 1 1 2 1 6 5 0 0 9 7

schedule2 1 0 6 2 3 1 0 0 10 3

tcas 0 0 0 0 31 30 10 6 41 36

totinfo 0 0 1 1 18 8 4 3 23 12

3.5.3 Trace collection

We used Gcov to collect execution trace. Gcov reports the number of times

statements are executed by a given test. A statement is included in the execution trace of

a given test if and only if it is executed by the test one or more times.

Gcov distinguishes between statements which are executable but do not execute

and statements which are not executable. We used this information to compute the

percentage of executable code that must be inspected to find the faulty statement. If a

program crashes, Gcov does not report any coverage. To deal with this problem, we add

a statement to call function gcov_flush before every statement. Note that this is only done

after a program crashes.

3.5.4 Metrics

Recall that the output of our approach is a ranking of statements in terms of their

likelihood to be faulty. In order to find the faulty statement, we inspect statements in the

first rank, and then statements in the second rank, and continue to do so until we find the

faulty statement. We record the number of statements that must be inspected to find the

faulty statement in each program to measure the effectiveness of our approach.

57

The efficiency of the approach is measured by the number of tests that are

executed. We show the number of tests executed in different stages of our approach, i.e.,

number of tests needed to kill a program, number of tests needed to identify inducing

combinations, and number of tests needed to produce the ranking of faulty statements.

3.5.5 Results on single-fault versions

Table 3-6 shows the results of our approach for each program. We will not explain

the column headers one by one, as they are self-explanatory. The experiments start by a

2-way test set and if needed the strength of the test set is increased up to 4. Note that in

the last five columns average is used, since the data could be different in different versions.

In some versions that are killed by a t-way test set, BEN does not find any t-way inducing

combination, i.e. the strength of the fault is more than t. In these cases we used the top-

ranked suspicious combination in the initial test set to locate the fault. It is very likely that

the core member does not fail in these versions and we must select the core member from

the test set. We do not increase the strength of the test set in these version. This is to show

that our approach works even truly inducing combination is not found. For example, the

fault in all versions of the tcas program has strength more than six, so the top-ranked

combination identified by BEN, is not truly inducing. In all versions of tcas, the test that

contains top-ranked combination and minimum environment passed. And, the core test is

selected from the test set, therefore the column six is equal to 1 for tcas program.

Also, in some versions, e.g. 12 versions of replace, BEN could not find any t-way

suspicious combination. In these cases, BEN reports all failed tests in the test set as

suspicious combinations. We select one of the failed tests randomly and assume that

whole test is inducing combination, i.e. all parameters (in this case 20 parameters) are

involved in the inducing combination.

58

Table 3-6. Experimental results for single fault versions

Program

T
e
s
t
s
tr

e
n
g
th

 (
t)

#
 o

f
te

s
ts

 i
n
 t
-w

a
y

te
s
t
s
e
t

#
 o

f
k
ill

e
d
 v

e
rs

io
n
s

A
v
g
 #

 o
f
te

s
ts

 f
o
r

id
e

n
ti
fy

in
g
 i
n

d
u
c
in

g

c
o
m

b
in

a
ti
o
n

A
v
g
 #

 o
f
ti
m

e
s
 t

h
e

c
o
re

 m
e
m

b
e
r

d
o
e
s

n
o
t
fa

il

A
v
g
 #

 o
f
te

s
ts

 f
o
r

ra
n
k
in

g
 s

u
s
p
ic

io
u
s

s
ta

te
m

e
n
ts

A
v
g

#

o
f
s
ta

te
m

e
n
ts

in
s
p
e
c
te

d
 t
o

 f
in

d

fa
u
lt
s

A
v
g
 p

e
rc

e
n
ta

g
e
 o

f

s
ta

te
m

e
n
t

in
s
p
e
c
te

d
 t
o

 l
o
c
a

te

fa
u
lt
s

printtokens 2 170 3 33 0.67 2.33 28.67 15.24

printtokens2 2 170 9 35.88 0.55 2.44 24.44 12.53

replace 2 192 32 12.66 0 3.62 35.25 14.57

schedule 2 64 7 23.86 0.28 3 9.14 5.94

schedule2 2 64 3 42 0 3 55 43.30

tcas

2 100 17 1.70 1 2.47 15.58 22.53

3 405 12 5.67 1 3.5 12.08 18.58

4 1434 7 13.14 1 4.14 11.71 18.02

totinfo
2 30 5 9.4 1 2 17.6 14.30

3 156 7 7.14 0.86 3.57 11.43 9.29

By definition, a group contains one core member and t derived members, so

t+1tests are in the group. But it is likely that some derived members fail and are discarded

from the group. So the maximum number of tests in the group is t+1 and the minimum

is 2 (a core test and one derived test). The sixth column shows the average number of

tests in the groups. Note that in the replace program the average number of tests in the

groups is 3.62, more than t+1. This is because in 12 out of 32 versions the suspicious

combination is more than 2-way. But in these versions 15 derived tests failed and their

groups have 6 members.

The last two columns show the average number and the percentage of code that

must be inspected to locate the fault. To compute this number, we started from statements

that were ranked at the top and for statements ranked at the same rank, we started from

the first statement as output by our approach. We did not perform any dependency

analysis. As discussed later, dependency analysis could further reduce the percentage of

59

code that needs to be inspected. As shown in the table, in 7 versions of schedule less than

6% of the code must be inspected to locate the fault and only about 28 tests are generated

after testing. In the worst case 43% of the code in schedule2 must be inspected.

Another point is that, the number of executable code in tcas is 65, less than 100.

In this program, when only one statement is needed to inspect, it is 1.54% of executable

code. So for tcas program number of statements gives better insight than the percentage

of code.

3.5.6 Results on multiple-fault versions

In this section we show the behavior of our approach when the program under test

has multiple faults. The faulty version is created such that it includes all compatible faults.

The result is summarized in Table 3-7 columns are the same as Table 3-6. The replace

program is removed from this table since all the tests in the initial 2-way test set fail; this

suggests that the fault should be fairly easy to locate even without help of any advanced

method.

Table 3-7. Experimental results for multiple faults versions

Program

T
e
s
t
s
tr

e
n
g
th

 (
t)

#
 o

f
te

s
ts

 i
n
 t
-w

a
y

te
s
t
s
e
t

#
 o

f
te

s
ts

 f
o
r

id
e
n
ti
fy

in
g

in
d

u
c
in

g
 c

o
m

b
in

a
ti
o
n

#
 o

f
ti
m

e
s
 t
h
e
 c

o
re

m
e
m

b
e
r

d
o
e
s
 n

o
t
fa

il

#
 o

f
te

s
ts

 f
o
r

ra
n
k
in

g

s
u
s
p
ic

io
u
s
 s

ta
te

m
e
n
ts

#
o
f
s
ta

te
m

e
n
ts

in
s
p
e
c
te

d
 t
o

 f
in

d
 f

a
u
lt
s

p
e
rc

e
n
ta

g
e
 o

f

s
ta

te
m

e
n
t

in
s
p
e
c
te

d
 t

o

lo
c
a
te

 f
a
u

lt
s

Printtokens 2 170 45 0 2 1 0.53

printtokens2 2 170 110 0 2 1 0.51

schedule 2 64 140 0 3 5 3.24

schedule2 2 64 42 0 3 1 0.79

tcas 2 100 71 0 3 1 1.54

totinfo 2 30 28 1 3 3 2.44

60

3.5.7 The grep program

We applied our approach to the grep program from SIR [18], which has 10068 lines

of code. The grep program has two input parameters, patterns and files. It prints lines in

the files that contain a match of any of the patterns. While the grep program can take

multiple patterns and files, we only used a single pattern and file in this experiment. Also

different options can be used to control the behavior of the grep program. For example,

option “–w” causes the program to print only lines containing whole-word matches.

The grep program can take four different types of patterns: (1) basic-regexp: a

basic regular expression. (2) extended-regexp: an extended regular expression. (3) fixed-

strings: a list of fixed strings. (4) perl-regexp: a Perl regular expression. In this experiment,

we focused on extended-regexp. There are five versions of grep in the benchmark, and

each of them has a number of seeded faults. We selected the first version, which has 18

seeded faults. Thus 18 faulty versions were built, each of which contains only one fault.

The grep program was written in C, and has ten header files and one C file. The

benchmark does not provide any specification for the grep program. So we used the grep’s

manual from [22] as the program specification. We modeled the input space focusing on

extended regular expression. The input model can be represented using the exponential

notation as (27 × 41 × 51 × 63 × 81 × 91 × 131) and has one constraint related to the

repetition operator. The 2-way test set created from the model has 121 tests and killed 4

versions, 3, 8, 11 and 14. We executed all the tests that come with this program in SIR,

which also only killed these 4 versions.

For version 11, all tests failed. In this case, our approach cannot be applied. In

practice, the fact that all the test cases failed suggests that this fault can probably be found

easily even without help from tools like ours.

61

For version 3, BEN generated 40 tests and identified 826 2-way suspicious

combinations. We generated a group of tests from the most suspicious combination ranked

by BEN. One derived member in the group failed. Thus, the group had 2 tests, one core

member and one derived member. The statements were ranked and the faulty statement

was in the second rank. To locate the faulty statement, 19% of the executable code needs

to be inspected.

For version 8, BEN generated 7 tests and identified one 2-way suspicious

combination. A group of 3 tests was generated, and the faulty statement was ranked in the

second rank. To locate the faulty statement, 0.9% of the executable code needs to be

inspected.

For version 14, BEN generated 41 tests and identified two 2-way suspicious

combinations. A group of 3 tests was generated and the faulty statement was in the second

rank. To locate the faulty statement, 8.5% of the executable code needs to be inspected.

On the average BEN identified 2-way inducing combination by generating 13.67

tests for the three killed versions, and the faulty statement as located by inspecting 9% of

the executable code. Recall from sub-section Metrics that we did not perform any manual

analysis when we determine the percentage of code that needs to be inspected. This

percentage can be significantly reduced even with some simple dependency analysis,

which we believe is what people typically do in practice.

3.5.8 Threats to validity

Threats to internal validity are factors that may be responsible for the experimental

results, without our knowledge. One of the key steps in our experiments is modeling the

input parameters, that may affect the correctness of the result. To reduce this threat, we

have done this step by using the program specifications and error-free versions, without

62

having any knowledge about the faults. Further, consistency of the results has been

carefully checked to detect potential mistakes made in the experiments.

Threats to external validity occur when the experimental results could not be

generalized to other programs. We use subject programs from the Siemens suite [18];

these programs are created by a third party and have been used in other studies [9, 16, 20].

But the subject programs are programs of relatively small size with seeded faults. To

mitigate this threat, the grep program was added to the experiments, but more experiments

on larger programs with real faults can further reduce this threat.

Each of the Siemens program has multiple versions, each of which has a single

fault. However, programs in practice could have multiple faults. To mitigate this threat, we

created a version that combined all the compatible faults and conducted an experiment on

this version. More experiments on programs with real faults can further reduce this threat.

3.6 RELATED WORK

Our approach is a spectrum-based approach based on combinatorial testing. In

this section, we first discuss two areas of work: (1) fault localization based on combinatorial

testing; and (2) spectrum-based fault localization.

Fault localization based on combinatorial testing: Several recent efforts have been

reported aiming to develop fault localization techniques that utilize the result of

combinatorial testing. Two techniques, called FIC and FIC_BS [21], take as input a single

failed test from a combinatorial test set, and identify as output a minimal inducing

combination that causes the test to fail. The main idea of the two techniques consists of

changing, in a systematic manner, the parameter values in the failed test. A parameter

value is considered to be involved in an inducing combination if changing it to a different

value causes the failed test to pass. It is assumed that changing a parameter value does

not introduce any new inducing combination.

63

Other techniques have also been reported that take as input the results of an entire

combinatorial test set, i.e., not only a single failed test, and identify as output one or more

combinations that are likely to be inducing. These techniques include AIFL and InterAIFL

[15, 17], and our earlier work BEN [6]. The key idea behind these techniques is that an

inducing combination is more likely to appear in a failed test than in a passed test. InterAIFL

and BEN may generate and execute additional tests to refine the results.

To the best of our knowledge, all the existing work in this area has focused on the

identification of inducing combinations. Our work presented in this paper is the first effort

to leverage the notion of inducing combination to locate the faults inside the source code.

In this respect, our work is the natural, next step of the above existing work.

Spectrum-Based Fault Localization: Tarantula uses the coverage of statements in

the execution traces of failed and passed tests to compute suspiciousness of each

statement [10]. The suspiciousness score of each statement is the ratio of failed test cases

that execute the statement divided by the ratio of failed test cases that execute the

statement plus the ratio of passed test cases that execute the statement. The statements

with the highest suspiciousness score must be examined first when looking for the fault. If

the fault is not found, the remaining statements are examined in a non-increasing order of

their suspiciousness scores. Other approaches such as Pinpoint, AMPLE and Ochiai [1]

are reported that adopt the general framework of Tarantula but use different metrics to

compute suspiciousness of statements. Experiments reported by [13], shows that no other

spectrum-based approaches statistically significantly outperform Tarantula.

Renieris and Reiss in [16] proposed three different spectrum-based approaches,

set union, set intersection and nearest neighbor. They assume the existence of one failed

run and a large number of passed runs. The input of the approach is a group of program

runs, instead of a test set. The set union method computes f − ⋃ sS , where f is a program

64

spectra of a failing run and ⋃ sS is the union spectra of a set of passed runs. The intersection

model computes, the intersection spectra, ⋂ sS − f, of a set of passed runs. The statements

in these spectra are then checked to find the actual faults.

The nearest neighbor method [16] chooses one passed run whose spectrum is the

closest one to the failed spectrum. Then it searches for a fault in the difference set of these

two spectra. If the fault is not found in the difference set, a ranking technique based on the

program dependence graph is proposed. In the program dependence graph, the nodes

corresponding to the difference set are identified and called as blamed nodes. A breadth-

first search from the blamed nodes is performed along dependency edges in both forward

and backward directions. All adjacent nodes to the blamed nodes are grouped in the next

rank and checked as blamed. This process is repeated until the faulty statement is found.

Our approach is fundamentally different from the existing spectrum-based

methods in the following aspects. First, the existing spectrum-based methods do not deal

with the problem of test generation. Instead, they assume the existence of a large number

of test runs and then analyze the spectra with respect to these test runs. In contrast, our

approach proposes a systematic strategy to generate a group of tests, whose spectra are

then used to produce a ranking of statements. Second, the existing spectrum-based

methods do not make a clear distinction between the testing stage and the fault localization

stage. In these methods, all the tests are generated up front and then executed and traced

to record the program spectra. In contrast, our approach is to be applied after combinatorial

testing is performed. The tests used in our approach for the purpose of fault localization

are generated based on the result of combinatorial testing. Furthermore, only tests that are

generated by our approach are traced to record program spectra, whereas the original

combinatorial tests are not traced. Finally, we point out that the formulas used in our

approach to compute suspiciousness of statement are different from those used in the

65

existing spectrum-based methods. This is to accommodate the fact that our approach uses

a small group of tests among which there is only a single failed test, i.e., the core member.

The effectiveness of a spectrum-based method such as ours also depends on the

quality of the initial set of failed and passed tests. Baudrey et al. in [5] proposed a criterion

to evaluate the efficiency of a test set for fault localization. They introduced a concept, i.e.,

dynamic basic block that contains a set of statements that is covered by the same test

cases in a test set. All statements in the same basic block typically have the same rank.

The more dynamic basic blocks in the program a test set could distinguish, the more

efficient the test set is for fault localization. They then use an adoption of a genetic algorithm

to optimize a test set and maximize the number of dynamic basic blocks.

3.7 CONCLUSION

In this paper, we presented an approach to localizing faults that leverages the

result of combinatorial testing. The key idea of our approach is that we systematically

generate a group of tests from an inducing combination such that the spectra of these tests

can be analyzed quickly to identify the faulty statement. This group of tests consists of a

core member that is a failed test run and a number of derived members that are passed

test runs but are very similar to the core member. The suspiciousness values of statements

are computed by analyzing the spectra of the core member and the derived members. We

applied our approach to the Siemens suite and also the grep program. Our experimental

results show that our approach requires a very small number of tests while significantly

reducing the number of statements to be inspected for fault localization.

We plan to conduct more empirical studies to further evaluate the performance of

our approach. In particular, we plan to apply our approach to more programs like grep that

are larger and/or more complex than the Siemens programs. Our current approach

assumes that a combinatorial test set is used to test a program. We plan to investigate how

66

to adapt our approach to work with an arbitrary test set. That is, we will try to identify

inducing combinations from an arbitrary test and then use them to generate tests for fault

localization. This will further increase the applicability of our approach.

3.8 Acknowledgment

This work is supported by two grants (70NANB12H175 and 70NANB10H168) from

Information Technology Lab of National Institute of Standards and Technology (NIST).

Disclaimer: Certain software products are identified in this document. Such

identification does not imply recommendation by the NIST, nor does it imply that the

products identified are necessarily the best available for the purpose.

3.9 REFERENCES

1. R. Abreu, P. Zoeteweij and A. van Gemund. An Evaluation of Similarity

Coefficients for Software Fault Localization. Proceedings of the 12th Pacific Rim

International Symposium on Dependable Computing, 39-46, 2006.

2. Advanced Combinatorial Testing System (ACTS), http://csrc.nist.gov/

groups/SNS/acts/documents/comparison-report.html, 2013.

3. H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with dynamic slicing and

backtracking. Proceedings of Software-Practice & Experience. 23(6):589-616,

1993.

4. H. Agrawal, J. Horgan, S. London, and E. Wong. Fault localization using execution

slices and dataflow tests. Proceedings of the 6th IEEE International Symposium

on Software Reliability Engineering, 143-151, 1995.

5. B. Baudry, F. Fleurey, and Y. Traon. Improving test suites for efficient fault

localization. Proceedings of the 28th ACM International Conference on Software

Engineering (ICSE). 82-91, 2006.

http://csrc.nist.gov/%20groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/%20groups/SNS/acts/documents/comparison-report.html

67

6. L.S.G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker. Identifying Failure-

Inducing Combinations in a Combinatorial Test Set. Proceedings of the IEEE

International Conference on Software Testing, Verification and Validation (ICST),

370-379, 2012.

7. M. Grindal, J. Offutt, and S. Andler. Combination Testing Strategies: A Survey.

Journal of Software Testing, Verification and Reliability, 15(3), 167-199, 2005.

8. Input models for the subject programs,

http://barbie.uta.edu/~laleh/BEN/models.html. 2013.

9. J. Jones and M. Harrold. Empirical evaluation of the tarantula automatic fault-

localization technique. Proceedings of the 20th IEEE/ACM international

Conference on Automated Software Engineering (ASE). 273-282, 2005.

10. J. Jones, M. Harrold, and J. Stasko. Visualization of test information to assist fault

localization. Proceedings of the 24th ACM International Conference on Software

Engineering (ICSE), 467-477, 2002.

11. D.R. Kuhn and V. Okum. Pseudo-Exhaustive Testing for Software. Proceedings of

the 30th Annual IEEE/NASA Software Engineering Workshop (SEW). 153-158,

2006.

12. D.R. Kuhn, D.R. Wallace, and A.M. Gallo. Software Fault Interactions and

Implications for Software Testing. IEEE Transaction on Software

Engineering 30(6):418-421, 2004.

13. Lucia, D. Lo, L. Jiang, A. Budi, Comprehensive evaluation of association measures

for fault localization. Proceedings of the IEEE International Conference on

Software Maintenance, 1-10, 2010.

68

14. C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing Surveys

(CSUR).43(2):11, 2011.

15. C. Nie and H. Leung. The Minimal Failure-Causing Schema of Combinatorial

Testing. ACM Transactions on Software Engineering and Methodology (TOSEM),

20(4):15 , 2011.

16. M. Renieris and S. Reiss. Fault localization with nearest neighbor queries.

Proceedings of the i8th IEEE International Conference on Automated Software

Engineering (ASE). 30-39, 2003.

17. L. Shi, C. Nie, and B. Xu. A software debugging method based on pairwise testing.

Proceedings of the 5th International Conference on Computational Science

(ICCS), 1088-1091, 2005.

18. H. Do, S. Elbaum, and G. Rothermel. Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact. Empirical Software

Engineering. 10(4):405-435, 2005.

19. Z. Wang, B. Xu, L. Chen, and L. Xu. Adaptive interaction fault location based on

combinatorial testing. Proceedings of the 10th International Conference on Quality

Software (QSIC), 495–502, 2010.

20. E. Wong and V. Debroy. A survey on software fault localization. Technical Report

UTDCS-45-09, Department of Computer Science, University of Texas at Dallas,

2009.

21. Z. Zhang and J. Zhang. Characterizing failure-causing parameter interactions by

adaptive testing. Proceedings of the ACM International Symposium on Software

Testing and Analysis (ISSTA), 331-341, 2011.

22. GNU Grep 2.14 http://www.gnu.org/software/grep/manual/grep.html, 2012.

http://www.gnu.org/software/grep/manual/grep.html

69

 A Combinatorial Testing-Based Approach to Fault Localization

This chapter contains a paper which is submitted in January 2016, and currently

under review.

70

A Combinatorial Testing-Based Approach to Fault

Localization

Laleh Sh. Ghandehari, Yu Lei, Raghu Kacker, Richard Kuhn*

Abstract— Combinatorial testing has been shown to be a very effective strategy

for software testing. After a failure is detected, the next task is to identify one or more faulty

statements in the source code that have caused the failure. In this paper, we present a

fault localization approach, called BEN, which produces a ranking of statements in terms

of their likelihood of being faulty by leveraging the result of combinatorial testing.

BEN consists of two major phases. In the first phase, BEN identifies a combination

that is very likely to be failure-inducing. A combination is failure-inducing if it causes any

test in which it appears to fail. In the second phase, BEN takes as input a failure-inducing

combination identified in the first phase and produces a ranking of statements in terms of

their likelihood to be faulty. We conducted an experiment in which our approach was

applied to the Siemens suite and two relatively large programs, grep and gzip, from

Software Infrastructure Repository (SIR). The experimental results show that our approach

can effectively and efficiently localize the faulty statements in these programs.

Index Terms— Combinatorial Testing, Fault Localization, Debugging

4.1 INTRODUCTION

Combinatorial testing is based on the observation that a large number of software

failures are caused by interactions of only a few input parameters [20]. A t-way

 Laleh Sh. Ghandehari and Yu Lei are with the Department of Computer Science and Engineering, University of Texas

at Arlington, Texas, USA. E-mail: laleh.shikhgholamhosseing@mavs.uta.edu and ylei@uta.edu.
 Raghu Kacker, and Richard Kuhn are with the Information Technology Lab, National Institute of Standards and

Technology, Gaithersburg, Maryland, USA. E-mail: raghu.kacker@nist.gov and kuhn@nist.gov.

mailto:laleh.shikhgholamhosseing@mavs.uta.edu
mailto:ylei@uta.edu
mailto:raghu.kacker@nist.gov

71

combinatorial test set, or simply a t-way test set, is designed to cover all the t-way

combinations, i.e., combinations involving any t parameters [5][6][21]. Typically, t is a small

number and is referred to as the strength of a combinatorial test set [19][20]. When the

input parameters are properly modeled, a t-way test set triggers all or most failures caused

by interaction of at most t parameters. Empirical studies have shown that combinatorial

testing is very effective in practice [4][11][19].

After a failure is detected during combinatorial testing, the next task is locating the

fault that caused the failure. In this paper, we present a fault localization approach called

BEN that leverages the result of combinatorial testing. BEN takes as input a combinatorial

test set and the execution status, i.e., pass or fail, of each test, and produces as output a

ranking of statements in terms of their likelihood to be faulty.

Most research in combinatorial testing has focused on developing efficient

combinatorial test generation algorithms [5][21][25], or demonstrating the effectiveness of

combinatorial testing in different application domains [4][10][29][32]. Several approaches

have been developed to identify failure-inducing combinations in a combinatorial test set

[37][33]. A failure-inducing combination, or simply an inducing combination, is a combination

that causes all tests containing this combination to fail [37][26]. These approaches, however,

are not designed to locate faulty statements in the source code.

A significant amount of research has been reported on spectrum-based

approaches to fault localization [1][17][27][34]. A program spectrum records information

about certain aspects of a test execution [34], such as function call counts, program paths,

program slices and use-def chains [27]. Examples of spectrum-based methods include

Tarantula [18], set union, set intersection, and nearest neighbor [27]. These approaches

identify faulty statements by analyzing the spectra of passed and failed test executions

[18][27][23]. These approaches are not designed to work with combinatorial testing.

72

However, they can be applied to analyze test executions obtained from combinatorial testing,

provided that the test executions were traced. In case that a combinatorial test set is already

executed without being traced, which is often the case in practice considering that testing

and debugging are fundamentally different activities and are often performed separately, the

test set must be re-executed before these approaches could be applied. In contrast, our

approach does not require every test execution to be traced and is designed to be applied

after normal testing is performed where test executions are not traced. We will compare our

approach, i.e., BEN, to these approaches both analytically (Section 4.6.2) and experimentally

(Section 4.5.2.3).

Our approach consists of two major phases, consisting of inducing combination

identification and faulty statement localization. In the first phase, BEN takes as input a t-way

combinatorial test set, and it adopts an iterative framework to identify an inducing

combination of size t or larger. At each iteration, a set F of tests is analyzed. Initially F is the

t-way combinatorial test set taken as input by BEN. BEN first identifies the set π of all t-way

suspicious combinations in F, and ranks them based on their likelihood to be inducing.

Suspicious combinations are candidates of inducing combinations.

Next, our approach generates a set F′ of new test. If all the tests containing a

suspicious combination c in F′ fail, c is marked as an inducing combination, and the process

stops. Otherwise, all the tests in F′ are added to F and the process is repeated until a t-way

combination is marked as an inducing combination or a stopping condition is satisfied. In the

latter case, no t-way inducing combination is identified and we increase the size of inducing

combination. That is, we try to identify a (t+1)-way inducing combination. This process is

repeated until an inducing combination is found. Note that this process must terminate, as a

failed test is by definition an inducing combination.

73

The novelty of our approach in this phase lies in the fact that we rank suspicious

combinations based on two notions, including suspiciousness of a combination and

suspiciousness of the environment of a combination. Informally, the environment of a

combination consists of other parameter values that appear in the same test case. The

higher the suspiciousness of a combination, the lower the suspiciousness of its

environment, the higher this combination is ranked. Moreover, new tests are generated for

the most suspicious combinations. Let f be a new test generated for a suspicious

combination c. Test f is generated such that it contains c and the suspiciousness of the

environment for c is minimized. If f fails, it is more likely to be caused by c instead of other

values in f.

In the second phase of our approach, i.e., faulty statement localization, BEN

systematically generates a small group of tests from an inducing combination such that the

execution traces of these tests can be analyzed to quickly locate the faults. One of the tests

in the group is referred to as the core member, which consists of the inducing combination

and produces a failed test execution. The other tests in the group are referred to as the

derived members, which are derived from the core member in a way such that they are

likely to execute a trace that is very similar to the trace of the core member but produce a

different outcome, i.e., a passed execution. The spectrum of the core member is then

compared to the spectrum of each derived member to produce a ranking of statements in

terms of their likelihood to be faulty.

Our approach differs from existing spectrum-based approaches, which do not deal

with the problem of test generation. Instead, they assume the existence of a large number

of tests, which are generated randomly and/or using other techniques [18][27][34].

The second phase of BEN is inspired by the notion of nearest neighbor [27]. The

key idea of nearest neighbor is that faulty statements are likely to appear in the execution

74

trace of a failed test but not in the execution trace of a passed test that is as similar to this

failed test as possible. If two tests are significantly different, they are likely to represent

different application scenarios. Thus, the differences in the execution traces of these two

tests are likely due to program logic, instead of faults. The novelty of our approach lies in

the fact that we generate, in a systematic manner, a failed test, i.e., the core member, and

then derive its nearest neighbors from this failed test, i.e., the derived members. This is in

contrast with the approach in [27], which executes a large number of tests from which a

failed test and its nearest neighbors are selected.

We report an experiment in which we applied our approach to the Siemens suite and

two relatively large programs, grep and gzip, in the Software Infrastructure Repository (SIR)

[31]. The Siemens suite has been used in several studies to evaluate fault localization

methods [17] [27] [34]. It contains seven relatively small programs, each of which has a

number of faulty versions. The two larger programs, i.e., grep and gzip, have 10068 and 5680

lines of code respectively, and they also have a number of faulty versions in SIR. The faulty

versions in SIR contain a single fault. In order to evaluate the performance of BEN with

multiple faults, we created several faulty versions that contain multiple faults.

The results show that our approach is effective in localizing faulty statements and

also efficient in that only a small number of tests need to be executed and instrumented. For

example, one of the implementations of the grep program called grep3 has 18 faulty versions.

Among them four versions were killed by a 2-way test set consisting of 121 tests. On average,

BEN generated and executed 25 additional tests and instrumented 7 tests for theses 4

versions. One needs to examine 0.64% (on average) of the code to locate the faulty

statement.

Moreover, we compared the results of BEN and two other spectrum based

approaches, Tarantula [18] and Ochiai [23]. Since Tarantula and Ochiai do not deal with test

75

generation, they were applied to the initial combinatorial test set. Our experimental results

show that BEN performed better than or as well as Tarantula and Ochiai for all the programs,

but it requires a significant smaller number of test executions to be traced and analyzed. In

particular, BEN works better than the two other approaches, for the two larger programs and

when they have multiple faults. For instance, gzip1 has 13 multiple-fault versions, among

which BEN outperforms Tarantula for nine versions with an average improvement of 13.58%.

That is, in these nine versions BEN on average inspects 13.58% less lines of code than

Tarantula.

The approach presented in this paper is the extension of our previous work, which

has been presented in [14] and [13]. To the best of our knowledge, our work is the first to

deal with code-based fault localization based on combinatorial testing. Existing work in this

area, i.e., fault localization based on combinatorial testing, has mainly dealt with the

problem of how to identify inducing combinations [37][30][26][33].

The remainder of this paper is organized as follows. Section 4.2 explains basic

concepts and assumptions of our approach. Section 4.3 presents the details. Section 4.4

gives an example to illustrate the approach. Section 4.5 reports the experimental results of

applying our approach to the subject programs. Section 4.6 discusses existing work on fault

localization. Section 4.7 provides the concluding remarks plans for future work.

4.2 PRELIMINARIES

In this section, we introduce the basic concepts and assumptions needed in our

approach.

4.2.1 Basic concepts

Assume that the system under test (SUT) has a set P of k input parameters,

denoted by P = {p1, p2, … , pk}. Let di be the domain of parameter pi. That is, di contains all

76

possible values that pi could take. Let D = {d1 ∪ d2 ∪ … ∪ dk}. Let Π = d1 × d2 × … × dk.

Let S be the set of program statements.

Definition 1. (Test Case) A test case or simply a test is a function that assigns a

value to each parameter. Formally, a test is a function f: P → D.

Definition 2. (Constraint) A constraint 𝜓 is a function that maps a test case to a

Boolean value true or false, formally, 𝜓: Π ⟶ {true, false}.

The system under test, SUT, includes a set Ψ = {𝜓1, 𝜓2, … , 𝜓|Ψ|} of constraints.

We use Γ to represent all valid tests for the SUT, formally Γ ⊆ Π. A test f ∈ Γ is valid if and

only if ∀𝜓 ∈ Ψ, 𝜓(f) = true. To simplify the presentation, we assume that each test is a

valid test in the remainder of the paper unless otherwise specified.

Definition 3. (Test Oracle) A test oracle determines whether the execution of a

test is “pass” or “fail”. Formally, a test oracle is a function r: Γ → {pass, fail}.

Definition 4. (Combination) A combination c is a test f restricted to a non-empty,

subset M of parameters in P. Formally, c = f|M where M ⊆ P, and |M| > 0.

In the preceding definition, M is a subset of P. Thus, a test is a combination where

M = P. We use dom(c) to denote the domain of c, which is a set of parameters involved in

c. (Note that dom(c) is the domain of a function, which is different from the domain of a

parameter.)

A combination of size one is a special combination, which we refer to as a

component. Since there is only one parameter involved, we denote a component o as an

assignment, i.e., o = p ← v, where o(p) = v.

Definition 5. (Component Containment) A component o = p ← v is contained in

a combination c denoted by o ∈ c, if and only if p ∈ dom(c) and c(p) = v.

Definition 6. (Combination Containment) A combination c is contained in a test f,

denoted by c ⊆ f , if and only if ∀p ∈ dom(c), f(p) = c(p) .

77

Definition 7. (Inducing Combination) A combination c is failure-inducing, or simply

inducing, if any test f in which c is contained fails. Formally, ∀f ∈ Γ: c ⊆ f ⟹ r(f) = fail.

Definition 7 is consistent with the definition of inducing combinations in previous

work [37][30][26][33].

Definition 8. (Inducing Probability) The inducing probability of a combination c is

the ratio of the number of all possible failed tests containing c to the number of all possible

tests containing c. The inducing probability is computed by

|{f ∈ Γ|r(f) = fail ∧ c ⊆ f}|

|{f ∈ Γ|c ⊆ f}|

The computation of inducing probabilities requires all possible tests containing a

combination, which is often not possible in practice. This notion is mainly used to evaluate

the goodness of our experimental results. By Definition 7, an (truly) inducing combination

is a combination whose inducing probability is one.

 Definition 9. (Suspicious Combination) A combination c is a suspicious

combination in a test set F ⊆ Γ if c is contained only in failed tests in F. Formally, ∀f ∈ F: c ⊆

f ⇒ r(f) = fail.

Inducing combinations must be suspicious combinations, but suspicious

combinations may or may not be inducing combinations.

Definition 10. (Test Spectrum) A test spectrum is a membership function γ that

determines whether a statement is exercised by a test (or precisely the execution of a test).

Formally, γ: S × Γ → {true, false}, where γ(s, f) = true if 𝑠 ∈ 𝑆 is executed by f ∈ Γ, and

γ(s, f) = false otherwise.

In the rest of the paper, we also use γ(f) to represent all the statements that are

executed by f. Formally, γ(f) = {𝑠 ∈ 𝑆 | γ(s, f) = 𝑡𝑟𝑢𝑒}.

78

4.2.2 Assumptions

In this section, we present several assumptions that must hold to apply BEN.

Assumption 1. The output of the SUT is deterministic. In other words, the SUT

always produces the same output for a given test.

Assumption 2. There exists a test oracle that determines the status of a test

execution, i.e., “pass” or “fail”.

Assumption 2 is made to simplify the presentation of our approach. The

construction of a test oracle is an independent research problem. When a test oracle exists,

our approach can be fully automated. When a test oracle does not exist, our approach can

still be applied, but the user needs to assist in determining the execution status of a test

case.

Assumption 3. There are at least one failed and one passed tests in the initial test

set.

If there is no failed test, no fault is detected. Fault localization is typically performed

when at least one fault is detected. If there is no passed test, the fault is likely easy to

locate.

4.3 APPROACH

In this section, we present the BEN approach. BEN consists of two major phases,

inducing combination identification and faulty statement localization. BEN assumes that a

combinatorial test set has been executed on the subject program. Thus, the execution

status of each test is known. Also, it assumes that the input parameter model used to

generate the combinatorial test set is known. An input parameter model includes a set of

parameters, each of which has a set of values, and a set of constraints that must be

satisfied for a test to be valid.

79

The output of our approach is the ranking of statements such that the higher a

statement is ranked, the more likely it is faulty. In the rest of this section, we explain the

details of BEN.

4.3.1 Phase 1: Inducing combination identification

This phase takes three inputs, including an input parameter model Ω, a

combinatorial test set F0 created based on Ω, and the strength t of F0. It produces as output

an inducing combination, or more precisely a highly suspicious combination.

4.3.1.1 Framework

As shown in Figure 4-1 our approach adopts an iterative framework in this phase.

At each iteration, the identify algorithm is used to analyze a set F of test cases and identify

an l-way inducing combination. Initially, F is the initial combinatorial test set and l, the size

of inducing combination, is the strength of the initial test set.

If the identify algorithm identifies an l-way inducing combination, c, the while loop

stops and reports c as an inducing combination (line 5). If no l-way inducing combination

is found, i.e. the identify algorithm returns null (line 2), l will be incremented. In the next

iteration, the framework searches for inducing combination of size l+1. As shown in

Figure 4-2 new tests may be added into F by the identify algorithm each time it is called.

 Based on assumption 3, there is at least one failed test in the initial test set. Recall

that a failed test is an inducing combination by definition. Therefore, there is at least one

inducing combination in the initial test set. Thus, the framework must terminate.

The Framework

1 l ← t and F ← F0

2 while((c ← identify(Ω, l, F)) = null) {

3 l ← l + 1

4 }

5 return c

Figure 4-1. The framework for identifying inducing combination

80

4.3.1.2 Algorithm identify

Algorithm identify is shown Figure 4-2, and is designed to find an l-way inducing

combination in the test set F. It takes as input the input parameter model, Ω, test set F and

l. Algorithm identify consists of two main steps. (1) Rank generation: In this step, we first

identify all the l-way suspicious combinations in F (line 3). Then, the suspiciousness value

of each component and suspicious combination is computed (line 6 and line 8), and finally

a ranking of the suspicious combinations is produced (line 10). (2) Test generation: In this

step, for a user-specified number of top-ranked suspicious combinations, a set of new tests

is generated (line 14). Note that the user could specify the number of top-ranked

Algorithm identify

1 while (c = null) {

2 // Step 1. rank suspicious combinations

3 π ← l-way suspicious combinations in F

4 if (π = empty) then return null; //No l-way inducing combination is found

5 let Θ be the set of suspicious components that appear in π

6 compute the suspiciousness of each component in Θ

7 for each combination τ ∈ π {

8 compute ρc(τ) and ρe(τ) based on formula 2 and 3

9 }

10 produce a ranking of l-way combinations in π based on ρc and ρe

11 // Step 2. generate new tests

12 let Τ be the set containing a user-specified number of top-ranked combinations

13 for every combination τ ∈ T {

14 generate a set F′of a user-specified number of new tests that contain τ

15 if (|F′| == 0 || (∀f ∈ F′, r(f) = fail))

16 𝑐 ← τ // l-way inducing combination is found

17 else

18 F ← F ⋃ F′

19 }

20 }

21 return c

Figure 4-2. The Identify algorithm

81

suspicious combinations and the number of tests generated for each top-ranked

combination. If an inducing combination is not found, all the new tests in F’ are added to

the test set F to refine the ranking of suspicious combinations in the next iteration (line 18).

The two steps, rank generation and test generation, are performed iteratively until

one of the following two stopping conditions is satisfied:

(1) The set π of l-way suspicious combinations becomes empty (line 4); or.

(2) An l-way inducing combination is found (line 16 and line 21). An l-way

suspicious combination τ is considered to be an inducing combination if no new test

containing τ can be generated, or all newly generated tests containing τ fail (line 15). In the

former case, it is very likely that all tests containing τ have been executed, and all of them

must have failed (otherwise, τ is not suspicious). Thus, τ is the inducing combination. In

the latter case, τ is likely to be inducing due to the way the new tests are generated as

explained in Section 4.3.1.4. Later, we will discuss how BEN works when a non-inducing

combination is reported as an inducing combination.

In the following subsections, we will explain the two major steps, rank generation

and test generation.

4.3.1.3 Rank generation

In this step, we first identify the set π of all l-way suspicious combinations in F.

Initially, π contains all the l-way combinations covered by F. We then check each l-way

combination τ in π. If τ appears in at least one passed test, τ is removed from π, since it is

not suspicious anymore. In the subsequent iterations, we do not re-compute π from the

scratch. Instead, we only remove from π all the combinations contained by newly added

tests that passed.

If there is no l-way suspicious combination, there is no l-way inducing combination.

In this case, the identify algorithm returns null. The main framework, as shown in

82

Figure 4-1, then increases the size of inducing combination by one, and calls the identify

algorithm again.

In the first iteration, where F = F0 and l = t, all the t-way combinations are covered

by F, as F0 is a t-way test set. But, when l > t, F does not contain all the l-way combinations.

Therefore our approach focuses on l-way combinations that appear F.

We next discuss how to rank the suspicious combinations in π. First, we introduce

three important notions of suspiciousness, including suspiciousness of component,

suspiciousness of combination, and suspiciousness of environment.

Suspiciousness of component (ρ): This notion is defined such that the higher ρ a

component o has, the more likely o contributes to a failure, and the more likely o appears

in an inducing combination. Let F be the test set that is analyzed in the current iteration. In

our approach, ρ is computed by the following formula:

ρ(o) =
1

3
(u(o) + v(o) + w(o)) (1)

Where

u(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}|

 |{f ∈ F|r(f) = fail}|

v(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}|

 |{f ∈ F|o ∈ f}|

w(o) =
|{τ|o ∈ τ ∧ τ ∈ π}|

|π|


The first factor, u(o), shows the ratio of the number of failed test cases in which

component o appears over the total number of failed test cases. The second factor, v(o),

shows the ratio of the number of failed test cases in which component o appears over the

total number of test cases in which component o appears. The third factor shows the ratio

of the number of suspicious combinations in which component o appears over the total

83

number of suspicious combinations. The three factors are averaged to produce a value

between 0 and 1.

The motivation behind the first two factors is that the more frequently a component

appears in failed test cases, this component is more likely to contribute to a failure.

There is an important difference between the first two factors. Since the greater

the domain size is, the less frequently each individual value of this parameter appears in a

test set and consequently in failed test cases, the first factor, u(o), has a bias towards

smaller domain size parameters. The second factor, v(o), is used in to reduce this bias.

The motivation for the third factor is that components of inducing combinations

tend to appear more frequently in suspicious combinations. For example, assume that

combination c = (a ← 0, b ← 0) is inducing. Let f = (a ← 0, b ← 0, c ← 0, d ← 0) be a test

case. Test case f fails as it contains c. Let f ′ = (a ← 1, b ← 1, c ← 0, d ← 0) be another test

case, which passes since it does not contain c. The set of suspicious combinations derived

from these two test cases is

π = {(a ← 0, b ← 0), (a ← 0, c ← 0), (a ← 0, d ← 0), (b ← 0, c ← 0), (b ← 0, d ← 0)}

In this set, the frequencies of a ← 0 and b ← 0 both are greater than others. The

reason is that (c ← 0, d ← 0) appears in f ′, which is a passed test case.

Suspiciousness of combination (ρc): Suspiciousness of a combination τ is defined

to be the average of suspiciousness of components that appear in τ. Formally

suspiciousness of combination τ, ρc(τ) is computed by

ρc(τ) =
1

|𝜏|
∑ ρ(o)

∀ o∈τ

 (2)

Suspiciousness of Environment (ρe): The environment of a combination τ in a test

f includes all the components that appear in f but do not appear in τ. The suspiciousness

of the environment of a combination τ in a test f is the average suspiciousness of the

84

components in the environment of τ. If there is more than one (failed) test containing τ in

a test set, the suspiciousness of the environment of τ in this test set is the minimum

suspiciousness of environment of τ in all the tests containing τ. Formally, suspiciousness

of the environment ρe is computed by

ρe(τ) = min
 f∈F∧τ⊆f

∧ r(f)=fail

 ∑ ρ(o)

o∈f ∧o∉τ

 (3)

Now we discuss how to actually rank the suspicious combinations based on ρc and

ρe. Intuitively, the higher the value of c, the lower the value of e, the higher a combination

is ranked.

To produce the final ranking, we first produce two rankings Rc and Re of suspicious

combinations, where Rc is in the non-ascending order of c and Re is in the non-descending

order of e. The final ranking R is produced by combining Rc and Re as follows. Let τ and

τ′ be two suspicious combinations. Assume that τ has ranks rc and re in Rc and Re,

respectively, and τ′ has ranks rc
′ and re

′ in Rc and Re, respectively. In the final ranking R, τ

is ranked before τ′ if and only if rc + re < rc
′ + re

′ .

4.3.1.4 Test generation

This step is responsible for generating new test cases for user-specified top-

ranked suspicious combinations. Let 𝜏 be a top-ranked suspicious combination. A new test

f is generated for 𝜏 such that f contains 𝜏 and the suspiciousness of the environment for τ

is minimized in f. When such a test case passes, this combination is removed from the

suspicious set. When such a test fails, the failure is more likely due to this combination

since the suspiciousness of its environment is minimized. Therefore, the suspicious

combination should be marked as an inducing combination. To increase the confidence, a

user-specified number of tests can be generated for a top-ranked suspicious combination.

85

One approach to generate a given number n of new tests with minimum ρe for a

suspicious combination is to generate all possible tests containing this combination,

remove tests which already exist in F, and then select n tests which have the lowest ρe.

This algorithm is very expensive. We next describe a more efficient but heuristic algorithm.

 First, we generate a base test f as follows. For each parameter involved in τ, we

give the same value in f as in τ. Doing so makes sure that f contains τ. For each parameter

in the environment of τ, i.e., each parameter that is not involved in τ, we choose a value (or

component) whose suspiciousness ρ is the minimum. If there is more than one value with

minimum ρ, one of them is selected randomly.

Next, we check whether the base test f is new, i.e., making sure that f has not been

executed before. If so, f is returned as the new test that contains τ and has minimum ρe. If

not, we pick one parameter randomly and change its value to a value with the next

minimum ρ. Again, this test is checked to see whether it is a new test. These steps are

repeated until a new test is found, or the number of attempts for finding a new test case

reaches a predefined number. The process is repeated until a desired number of new tests

are generated.

If BEN does not find any new test, the combination is marked as an inducing

combination, because it is likely that all the test cases containing this combination have

been executed (and all of them must have failed).

The newly generated tests, i.e., those in set F′, are executed. If all the tests fail,

the suspicious combination, τ, is marked as an inducing (line 16 -Figure 4-2). If not, F′ is

added to the test set (line 18 - Figure 4-2) to refine the suspicious combinations set in the

next iteration. By adding F′ to the test set the suspicious combination τ and all other

suspicious combinations appear in passed tests of F′ are removed from the suspicious

86

combinations set. Therefore, the number of suspicions combinations could be reduced by

the new tests added into the test set.

4.3.1.5 Discussion

To successfully identify an inducing combination, BEN must first identify the

combination to be a suspicious combination. Assume that c is an inducing combination.

Let t be the strength of the initial test set. We consider the following three cases.

Case (1): c is a t-way combination. As the initial test set is a t-way test set, there

is at least one test that contains c, and all test cases containing c must fail, since c is

inducing. Therefore, c is identified to be a suspicious combination.

Case (2): The size of c is less than t. All t-way combinations containing c are

inducing combinations, and are identified to be suspicious combinations.

Case (3): The size of c is more than t. The initial t-way test set is not guaranteed

to cover every combination whose size is more than t. If c appears in the initial t-way test

set or the newly generated tests, and thus causes a test containing it to fail, it is identified

to be a suspicious combination when l is equal to the size of c.

Let c be an inducing combination that has been identified as a suspicious

combination. If it is in the top-ranked set, i.e., the set of a user-specified number of top-

ranked combinations, all the tests generated for c fail since they contain c. Therefore, c is

identified to be an inducing combination.

Now consider the case that c is not in the top-ranked set. Without loss of generality,

assume that every combination c’ in the top-ranked set is not inducing. If any new test

generated for c’ passes, c’ is no longer suspicious and is thus removed from π. This will

cause c to move up in the ranking. With a sufficient number of iterations, c will be moved

into the top-ranked set and will be identified to be an inducing combination.

87

If all the tests generated for 𝑐’ fail, 𝑐’ will be reported as an inducing combination.

As discussed earlier, a new test for 𝑐’ is generated such that if it fails, it is likely due to 𝑐’

Thus, if all the tests generated for 𝑐’ fail, 𝑐’ is likely to have a high inducing probability even

if it is not truly inducing.

BEN provides the user with several options to control the cost and effectiveness

of the process. First, BEN allows the user to specify the number of new tests generated for

each top-ranked suspicious combination. The more tests generated, the more effort it takes

to execute them, but the more confidence we have about the identified inducing

combinations.

Second, BEN allows the user to specify the size of the top-ranked set for which

new tests will be generated. The bigger the top-ranked set, the more effort to generate and

execute the new tests, but the faster an inducing combination may be identified. This is

because if an inducing combination c is included in the top-ranked set, c is identified to be

an inducing combination in the first iteration. Otherwise, it may take multiple iterations for

c to move up into the top-ranked set.

Finally, BEN allows the user to stop the first phase (and move to the second phase)

in the following three ways if there is limited resource:

The user could define the maximum number of iterations for the identify algorithm.

That is, if none of the two stopping conditions is satisfied after a specified number of

iterations, the identify algorithm stops and returns null. Returning null shows that there is

no inducing combination of the current size; therefore, the main framework increments the

size in the next iteration.

The user could decide to stop at the end of each iteration of the framework. In this

case, the top ranked suspicious combination would be reported as an inducing

combination.

88

The user could define the maximum size of inducing combination. If the maximum

size is reached but BEN still does not find any inducing combination, the top ranked

suspicious combination in the last iteration is reported as an inducing combination. Recall

that in the worst case, the size of inducing combination is equal to the number of

parameters.

4.3.2 Phase 2: Faulty statement localization

Figure 4-3 shows the algorithm used by BEN to localize faulty statements. It

consists of two major steps: (1) Test Generation: In this step, we generate a small group

of tests. The group contains one failed test, which is referred to as the core member, and

at most l passed tests, where l is the size of the inducing combination. The passed tests

are referred to as the derived members. Each derived member is expected to produce a

similar execution trace as the core member. (2) Rank Generation: In this step, we compare

the spectrum of the core member to the spectrum of each derived member, and then

produce a ranking of statements in terms of their likelihood of being faulty. More details of

these two steps are explained in the following sections.

4.3.2.1 Test generation

In this step, as shown in Figure 4-3 (lines 2-9), a group of tests, M, which includes

the core member f and at most l derived members, are generated. Let c be the l-way

inducing combination identified in Phase 1. The core member f is created such that it

contains c and the suspiciousness of environment of c in f is minimized (line 3). To generate

such a test, the same algorithm used for test generation in Phase 1 is applied: For each

parameter p involved in c, f has the same value for p as c, i.e. c ⊂ f, and for each parameter

p that does not appear in c, f takes a value that has the minimum suspiciousness value

among all the values of p. As discussed later, the reason why we want to minimize the

89

suspiciousness of the environment of c is to maximize the likelihood of a derived member

to be a passing test.

The core member f is likely to fail, since it contains the inducing combination c

identified in the first phase. Next, for each component o ∈ c, a set of derived member

candidates, Mo, is generated. A derived member candidate m𝑖 ∈ Mo is generated such

that it has the same values as f for all parameters except for one component o ∈ c. The

component o is replaced with another component, o′, of the same parameter with the

minimum suspiciousness value. Note that a parameter may have multiple least suspicious

components, i.e., multiple components with the minimum suspiciousness value. So, all the

tests in Mo are different from the core member and from each other in one component, o.

Algorithm localize

1 // Step 1. Generate core and derived members

2 let c be the inducing combination identified in Phase 1

3 let M be an empty set

4 generate core member f ∈ Γ such that c ⊂ f and for all o ∈ f and o ∉ c,

ρ(o: p ← v) = min
vi∈d

{ρ(p ← vi)}

5 for (each component o ∈ c) {

6 generate the derived member candidate set Mo for component o based on Θ
and Ω

7 select derived member mo ∈ Mowhere r(mo) = pass and |γ(f) − γ(mo)| >
0 and |γ(f) − γ(mo)| = min

m∈Mo

{|γ(f) − γ(m)|}

8 M = M ∪ {mo}

9 }

10 // Step 2. Rank statements

11 for each statement s ∈ S {

12 for all derived members in m ∈ M)

13 compute ρ(s, m) with respect of core member f, based on formula 5

14 ρ(s) = ∑ ρ(s, m)m∈M /|M|

15 }

16 Let R be the ranking of statement in the non-increasing order of ρ(s)

17 return R

Figure 4-3. The Localize algorithm

90

Figure 4-4 shows how the derived member candidate set, or simply candidate set

Mo1
 is generated from the core member f. (In the remainder of this paper, we will refer to a

derived member candidate set as a candidate set if there is no ambiguity.) The core

member f contains k components, o1, o2 … , ok, where k is the number of parameters.

Without loss of generality, assume that the first l components in f, i.e., o1, o2 … , o𝑙, are in

the inducing combination c. As shown Figure 4-4, each test in candidate set Mo1
 is different

from the core member f in component o1 ∈ c. The o1 component is replaced with o1
j

=

p1 ⟵ vj where o1
j
 is a least suspicious component of p1. For each least suspicious

component p1, one derived candidate test is generated. Formally:

ρ(o1
1 = p1 ⟵ v1) = ρ(o1

2 = p1 ⟵ v2) … = min
∀j∈d1

ρ (p1 ⟵ vj)

The number of tests in Mo1
 depends on the number of least suspicious

components of parameter p1. Candidate tests are likely to pass. First, the replacement

effectively removes inducing combination c from tests. Second, the use of a least

suspicious component for the replacement, and having the suspiciousness of the

environment minimized reduce the chance of introducing another inducing combination to

the test.

Next, a derived member mo is selected from each candidate set Mo (line 7). There

are two criteria for derived member mo. First, it must pass. Second, it has the minimum

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok} Core

Mo1

{𝐨𝟏
𝟏, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}

{𝐨𝟏
𝟐, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}

...

Figure 4-4. Generation of the candidate set Mo1

c

91

positive spectrum difference with the core member f among all the passed tests in Mo.

Formally, |γ(f) − γ(mo)| = min
m∈Mo∧

r(m)=pass

{|γ(f) − γ(m)|} and |γ(f) − γ(mo)| > 0.

If there is more than one test that satisfies the two criteria, one of them is selected

randomly. All the derived members are stored in a set called M (line 8). Figure 4-5 shows

the core member f and the set M of derived members.

The execution trace of a derived member mi ∈ M is likely to be very similar to the

execution trace of the core member, because these two tests only differ in one value, and

they have the minimum spectrum differences among other similar tests. Since all the

derived members mi pass whereas the core member f fail, the faulty statement is very likely

to be one of the statements that appear in the execution trace of f but do not appear in the

execution trace of m1, m2 … m𝑙.

4.3.2.2 Rank generation

In this step, BEN computes the suspiciousness of statements and then ranks them

in terms of their likelihood to be faulty by analyzing the spectrums of the core member and

derived members. The suspiciousness of statement s is denoted by ρ(s) and computed by

analyzing the spectrums of the core member and derived members. The suspiciousness

of statement s is the average of suspiciousness of s with respect to every derived members.

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok} Core

 {𝐨𝟏
′ , o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}

M
{o1, 𝐨𝟐

′ , … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}

…

 {o1, o2, … , 𝐨𝒍
′, o𝑙+1, o𝑙+2 … , ok}

Figure 4-5.The core and derived members

c

92

Formally:

ρ(s) = ∑ ρ(s, mi)/(|M|)mi∈M (4)

where ρ(s, mi) is the suspiciousness of s with respect to a derived member mi and

is computed by the following formula:

ρ(s, mi) = {

1 if γ(s, f) = true and γ(s, mi) = false

0.5 if γ(s, f) = γ(s, mi) = true (5)

0 if γ(s, f) = false

The idea behind formula (5) is the following. Statements that are only executed by

the core member f are most suspicious and are given 1 as their suspiciousness value.

Statements that are executed by both the core member and a derived member are less

suspicious, and are given 0.5 as their suspiciousness value. Note that the execution of a

faulty statement by a test does not necessarily make the test fail. For example, if there

exists a fault in a conditional expression, this fault can be executed by all tests but only

cause some to fail. Finally, statements that are not executed by f are not suspicious.

For example, if there are two derived members in M, m1 and m2, and the core

member is f. Assume that a statement s is executed by f and m2, but not by m1 The

suspiciousnes ρ(s) of s would be 0.75. This is because ρ(s, m1) = 1 and ρ(s, m2) = 0.5,

and the average of ρ(s, m1) and ρ(s, m2) would be 0.75.

The higher the suspiciousness value of a statement, the more likely this statement

is faulty. We rank statements by a non-ascending order of their suspiciousness value. To

locate the faulty statement, statements in the top rank are examined first, and then

statements in the next rank, until the faulty statement is found.

4.3.2.3 Discussion

The effectiveness of our approach in this phase depends to some extent on the

quality of the inducing combination c identified in the first phase. If combination c is truly

inducing, the core member generated by our approach, i.e., the one that contains this

93

combination and minimizes the suspiciousness of its environment, must fail. However, if c

is not truly inducing, but with a high inducing probability, the core member still has a high

probably to fail. The experimental results in Section 4.5.2.1.1 and 4.5.2.2.1 show that

Phase 1 of our approach can identify truly inducing combinations or combinations that have

a high inducing probability.

If the core member generated in the second phase does not fail, we pick a test

from the initial t-way test set that contains c as the core member. Since c is identified as an

inducing combination, there must exist at least one failed test that contains c in the initial

test set. (Otherwise, c would not even be a suspicious combination.) In this case, the

suspiciousness of environment of c in this test may not be minimized. This may reduce the

probability for the derived members to pass.

If BEN could not find any passed test in a candidate set Mo for a component o (in

the inducing combination), it ignores the candidate set and thus no derived member is

generated for component o. In case that no derived member is generated for all the

components in the inducing combination, BEN picks a passed test from the test set such

that the number of components that differ between the passed test and the core member

is minimized. In this case, the difference between the core member and this derived

member may not be minimized, which might affect the effectiveness of our approach. We

believe the chance for this case, i.e., all the tests in all the candidate sets for all the

components fail, to occur is small, which is consistent with our experiments in which it

occurred in 3 versions to the total of 124 versions of our subject programs.

4.3.3 Complexity analysis

In our analysis, we do not consider the complexity of constraint solving and the

cost of test execution. Our approach uses a third-party solver for constraint solving. The

cost of test execution depends on the subject program.

94

Let k be the number of parameters, t the strength of the initial test set and d the

largest domain size of the parameters. Let N be the number of tests in the current iteration,

which includes the tests in the initial test set and the tests generated at the previous

iterations. Note that the number of test generated at each iteration depends on two user-

specified numbers, i.e., the size of the top-ranked set consisting of suspicious combinations

for which tests are to be generated, and the number of tests to be generated for each

suspicious combination in the top-ranked set. Assume that the inducing combination is of

size 𝑙 which is greater than or equal to t. The maximum number of 𝑙-way combinations

contained in the test set is η = (k
𝑙
)N.

To determine whether a combination is suspicious, the identify algorithm needs to

check if the combination appears in any passed test, which takes O(N × 𝑙). Therefore,

building the suspicious combinations set takes η × O(N × 𝑙). Next, the identify algorithm

computes the suspiciousness value for all the components, which includes computing the

frequency of each component in the suspicious combination set, test set and failed tests.

Computing the frequency in the suspicious combination set dominates the other two, which

takes O(η) for each component. The maximum number of components is k × d. Thus,

computing suspiciousness values for all the components takes k × d × O(η).

After having suspiciousness values of all the components, computing

suspiciousness of each combination (ρc) takes 𝑙, and thus 𝑙 × O(η) for all the combinations.

To compute ρe of a combination, BEN first searches in the test set to find all the failed tests

that contain this combination, which takes 𝑙 × O(N). Next, for each of these failed tests, it

computes the average suspiciousness value of k − 𝑙 components in the environment.

Therefore, it takes in total 𝑙 × (k − 𝑙) × O(η) × O(N). Finally, BEN finds the minimum

suspiciousness of the environment among all these failed tests, which takes O(N).

95

Therefore, the complexity of computing ρe for all the combination is 𝑙 × (k − 𝑙) × O(η) ×

O(N).

The identify algorithm sorts the set of suspicious combinations three times, once

for each ranking Rc, Re, and R, taking O(η × log(η)). This dominates the complexity of the

rank generation step, if the number of tests N is far less than the number of combinations,

η.

The test generation step needs to select (k − 𝑙) values with minimum ρ first, which

takes (k − 𝑙) × O(d). Then it needs to check whether it is new, which is O(N). Since k, l and

d are smaller than η, O(η × log(η)) dominates the complexity of the rank generation and

test generation steps. Therefore the complexity of the identify algorithm is O(η × log(η)).

In the worst case, the identify algorithm is called (k − t) times. Thus, the complexity of this

phase is (k − t) × O(η × log(η)).

In Phase 2, in order to generate the core member, we need to select values with

minimum suspiciousness for (k − 𝑙) components, which takes (k − 𝑙) × O(d). There are 𝑙

candidate sets, and for each it takes O(d) to find components with minimum ρ. Therefore,

generating all candidate sets takes 𝑙 × O(d).

 Each candidate set at most contains d − 1 derived members. Selecting a test with

minimum difference in the spectrum with the core member takes [𝑙 × (d − 1)] × |S|, where

|S| is the number of statements of the program. The complexity of selecting a test, [𝑙 ×

(d − 1)] × |S|, dominates the complexity of this step.

In the rank generation step, the complexity of assigning a suspiciousness value to

each statement with respect to the 𝑙 derived members is O(𝑙). So for all the statements S

of the program, it takes |S| × O(𝑙). Then all the statements need to be sorted to rank the

statements, which is O(|S| × log(|S|)). Since 𝑙 is typically much smaller than the program

96

size |S|, this sorting operation dominates the complexity of this part. The complexity of the

rank generation step, O(|S| × log(|S|)), dominates the complexity of this phase.

Depending on the programs size, |S| and the number of suspicious combinations,

η, the complexity of Phase 1 or Phase 2 may dominate the complexity of BEN.

4.4 EXAMPLE

In this section, we illustrate our approach using an example program shown in

Figure 4-6. Method foo has a fault in line 9. The correct statement should be r+= (b −

d)/(a + 2), but operator “+” is missing. The input parameter model consists of P =

{a, b, c, d}, and da = {0,1}, db = {0,1}, dc = {0,1,2}, and dd = {0,1,2,3}. The faulty

statement is reached when a is 0 and c is 0 or d is 3. So there are two inducing

combinations (a ← 0, c ← 0) and (a ← 0, d ← 3).

 Assume that the program is tested by a two-way test set. The test result is

shown in Table1, where 3 out of 12 tests fail. Test cases #1 and #7 fail because they

contain combination (a ← 0, c ← 0). Test case #10 fails because it contains (a ← 0, c ← 0)

and (a ← 0, d ← 3).

Figure 4-6. An example faulty program

97

4.4.1 Phase 1: Inducing combination identification

Table 4-1 shows a t-way test set with test execution statuses for the example

program. In the first iteration, the identify algorithm identifies nine suspicious combinations

(Figure 4-2, line 3) which are listed in the first column of Table 4-2Table 4-2. Then the

algorithm computes the suspiciousness values of all the (seven) components that appear

in one or more of these suspicious combinations.

Table 4-1. two-way Test Set and Status

Test # a b c d Status

1 0 0 0 0 fail

2 1 1 1 0 pass

3 0 1 2 0 pass

4 1 0 0 1 pass

5 0 0 1 1 pass

6 1 1 2 1 pass

7 0 1 0 2 fail

8 1 0 1 2 pass

9 0 0 2 2 pass

10 0 1 0 3 fail

11 1 0 1 3 pass

12 1 0 2 3 pass

Table 4-2. Suspicious combinations and their corresponding values

Suspicious
Combination

𝝆𝒄 𝑹𝒄 𝝆𝒆 𝑹𝒆 𝑹𝒄 + 𝑹𝒆 𝑹

𝑎 ← 0, 𝑐 ← 0 0.6713 1 0.2460 1 2 1

𝑏 ← 1, 𝑐 ← 0 0.6176 2 0.4352 3 5 2

𝑐 ← 0, 𝑑 ← 0 0.5324 4 0.3849 2 6 3

𝑐 ← 0, 𝑑 ← 3 0.5509 3 0.5204 4 7 4

𝑐 ← 0, 𝑑 ← 2 0.5324 4 0.5204 4 8 5

𝑎 ← 0, 𝑑 ← 3 0.4537 5 0.6176 5 10 6

𝑏 ← 1, 𝑑 ← 3 0.4000 6 0.6713 6 12 7

𝑏 ← 1, 𝑑 ← 2 0.3815 7 0.6713 6 13 8

𝑏 ← 0, 𝑑 ← 0 0.2460 8 0.6713 6 14 9

98

For example, component c ← 0 appears in all of the three failed test cases, so

u(c ← 0) = 1. Also, it appears a total of four tests three of which are failed tests, so

v(c ← 0) = 3 4⁄ ; 5 out of 9 members of suspicious combinations set contain c ← 0, so

w(c ← 0) = 5 9⁄ . The computations for all the seven components are as follows:

ρ(c ← 0) =
1

3
× (1 +

3

4
+

5

9
) = 0.7685

ρ(d ← 0) =
1

3
× (

1

3
+

1

3
+

2

9
) = 0.2963

ρ(d ← 2) =
1

3
× (

1

3
+

1

3
+

2

9
) = 0.2963

ρ(d ← 3) =
1

3
× (

1

3
+

1

3
+

3

9
) = 0.3333

ρ(b ← 0) =
1

3
× (

1

3
+

1

7
+

1

9
) = 0.1958

ρ(b ← 1) =
1

3
× (

2

3
+

2

5
+

3

9
) = 0.4667

ρ(a ← 0) =
1

3
× (1 +

3

6
+

2

9
) = 0.5741

Table 4-3 illustrates the suspiciousness values of all the components. The

suspiciousness values for the components that do not appear in any suspicious

combination are zero.

According to formula (2), ρc for a suspicious combination τ is the average

suspiciousness of the components that τ contains. For example, in combination

Table 4-3. Suspiciousness of components

Parameter Value ρc Parameter Value ρc

a
0 0.5741

b
0 0.1958

1 0 1 0.4667

c

0 0.7685

d

0 0.2963

1 0 1 0

2 0
2 0.2963

3 0.3333

99

(a ← 0, c ← 0), ρc is (0.5741 + 0.7685) 2 = 0.6713⁄ . After computing ρc for all suspicious

combinations, we rank them based on the non-ascending order of ρc. The values of ρc and

Rc for each suspicious combination are shown in the second and third columns of

Table 4-2Table 4-2.

Next, we compute ρe for each suspicious combination using formula (3). For

example, there are three test cases, test #1, test #7, and test #10, that contain

(a ← 0, c ← 0). Therefore,

ρe(a ← 0, c ← 0) = min ((
ρ(b ← 0) + ρ(d ← 0)

2
) = 0.2460 , (

ρ(b ← 1) + ρ(d ← 2)

2
)

= 0.3815, (
ρ(b ← 1) + ρ(d ← 3)

2
) = 0.4000) = 0.2460

Next we rank suspicious combinations by a non-descending order of ρe, as shown

in column Re of Table 4-2.

Finally, the two rankings in columns Rc and Re are combined to produce a final

ranking of the suspicious components (column R). In this final ranking, inducing

combination (a ← 0, c ← 0) is ranked on the top, and the other (a ← 0, d ← 3) is ranked 6th.

Then, a new test is generated for the top ranked suspicious combination

(a ← 0, c ← 0). We assign values to parameters in its environment, i.e., b and d, such that

the suspiciousness of each value is minimum. For b, 0 is selected, as min(ρ(b ← 0) =

0.1958 , ρ(b ← 1) = 0.4667) = 0.1958. For d, 1 is selected as min(ρ(d ← 0) =

0.2963, ρ(d ← 1) = 0, ρ(d ← 2) = 0.2963, ρ(d ← 3) = 0.3333) = 0. So a new test (a ←

0, b ← 0, c ← 0, d ← 1) is generated.

The newly generated test, (a ← 0, b ← 0, c ← 0, d ← 1), fails. For simplicity of

presentation, assume that only one test is generated for this combination. (If more tests

are generated, all of them would fail too in this example.) Therefore, suspicious

100

combination (a ← 0, c ← 0) is marked as inducing combination and returned by the identify

algorithm. The main framework of the first phase stops at the end of the first iteration and

reports (a ← 0, c ← 0) as the inducing combination.

4.4.2 Phase 2: Faulty statement localization

In the test generation step of the second phase, the core member f = (a ← 0, b ←

0, 𝑐 ← 0, d ← 1) is generated. It contains the inducing combination (a ← 0, c ← 0), and two

components b ← 0 and d ← 1 which have the minimum suspiciousness value (among

components of the same parameter) as shown in Table 4-3. The core member fails.

As shown in Figure 4-7 the candidate set Ma←0 of component a ← 0 contains only

one test, (a ← 1, b ← 0, c ← 0, d ← 1), since a ← 1 is the only component with minimum

suspiciousness. The test passes and therefore is selected as a derived member, ma←0.

The second candidate set Mc←0, shown in Figure 4-8 has two tests, where

component c ← 0 from the core member is replaced with c ← 1 and c ← 2, since

min(ρ(c ← 0) = 0.7685, ρ(c ← 1) = 0, ρ(c ← 2) = 0) = 0 and both components c ← 1 and

c ← 2 have the minimum suspiciousness value, 0.

To select a derived member mc←0 from candidate set Mc←0, both tests m𝑐←0
1 and

m𝑐←0
2 are executed and their execution traces are recorded. A test is selected as a derived

member if it passes and it has minimum spectrum difference with the core member.

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail

Ma←0 ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1) Pass

Figure 4-7. Candidate set of Ma←0

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail

Mc←0
m𝑐←0

1 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass

m𝑐←0
2 = (a ← 0, b ← 0, 𝐜 ← 𝟐, d ← 1) Pass

Figure 4-8. Candidate set of Mc←0

101

Both tests m𝑐←0
1 and m𝑐←0

2 pass. The spectra of the core member, f, and two

members of candidate set Mc←0 are shown in Table 4-4. The second column of Table 4-4

shows the program statements. The third column shows the spectra of the core member f.

The fourth column shows the program spectrum of m𝑐←0
1 . The fifth column contains 1 if a

statement is executed by the core member but not by m𝑐←0
1 . Otherwise it contains 0. The

sixth column show the program spectrum of m𝑐←0
2 . The last column is assigned to 1 iff the

corresponding statement is executed by the core member and not by mc←0
2 . The fifth and

Table 4-4. Program spectra of core and candidate set 𝐌𝐜←𝟎

 Subject Program γ(s, f) γ(s, m𝑐←0
1)

γ
(f

)
−

γ
(m

𝑐
←

0
1

)

γ(s, m𝑐←0
2)

γ
(f

)
−

γ
(m

𝑐
←

0
2

)

1 public static int foo(int a,int b, int c,int d){ True True 0 True 0

2 int r = 1; True True 0 True 0

3 b += a + c; True True 0 True 0

4 switch (a){ True True 0 True 0

5 case 0 : True True 0 True 0

6 if (c<1 || d>2) True True 0 True 0

7 //r += (b-d)/(a+2); - - 0 - 0

8 //fault:+is missing; - - 0 - 0

9 r = (b-d)/(a+2); True False 1 False 1

10 else False True 0 True 0

11 r = b/(c+2); False True 0 True 0

12 break; True True 0 True 0

13 case 1 : False False 0 False 0

14 r = c*(a-d); False False 0 False 0

15 break; False False 0 False 0

16 } True True 0 True 0

17 return r; True True 0 True 0

18 } True True 0 True 0

|γ(f) − γ(mc←0)| - - 1 - 1

102

seventh columns are used to compute the spectrum differences of the core and m𝑐←0
1 or

mc←0
2 . The last row of Table 4-4 shows the spectrum difference of the core and each

member of Mc←0, which are computed by the summation of fifth and last columns.

Since two tests mc←0
1 and mc←0

2 both pass and have the same spectrum difference

with the core member. Test mc←0
1 is selected randomly as the derived member mc←0.

Figure 4-9 shows the output of the test generation step, the core member, f, in the first row

and the derived members set M, which contains two tests.

In the rank generation step, the spectrum of the core member is compared to that

of each derived member m ∈ M and the statement suspiciousness with respect to m is

computed. Table 4-5 shows the program spectra for the core member and two derived

members in columns 3 to 5. The suspiciousness values for each statement with respect to

derived tests ma←0 and mc←0 are shown in columns 6 and 7 (ρ(s, ma←0) and ρ(s, mc←0)) of

Table 4-5, respectively. The last two columns of Table 4-5 show the statement

suspiciousness and ranks. The faulty statement in line 9 is in the first rank.

Note that this example represents a best-case scenario of our approach. In the

next section, we provide an experimental evaluation of our approach.

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail

M
ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1) Pass

mc←0 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass

Figure 4-9. Core and derived members of the example program

103

4.5 EXPERIMENT

We built a tool called BEN [12] that implements our approach. (BEN is a Chinese

word that means “root cause”.) BEN is available for public download [3]. For our

experiment, we used the command line version of BEN on a set of nine benchmark

programs.

Subject programs are selected from the SIR [31] benchmark, including seven small

programs in the Siemens suite and two large real-life programs grep and gzip.

Table 4-5. Program spectra and statements suspiciousness values

 Subject Program

γ
(s

,f
)

γ
(s

,m
a

←
0

)

γ
(s

,m
c

←
0

)

ρ
(s

,m
a

←
0

)

ρ
(s

,m
c

←
0

)

ρ(s)

R
a
n
k

1 public static int foo(int a,int b, int c,int d){ True True True 0.5 0.5 0.5 3

2 int r = 1; True True True 0.5 0.5 0.5 3

3 b += a + c; True True True 0.5 0.5 0.5 3

4 switch (a){ True True True 0.5 0.5 0.5 3

5 case 0 : True False True 1 0.5 0.75 2

6 if (c<1 || d>2) True False True 1 0.5 0.75 2

7 //r += (b-d)/(a+2); - - - - - - -

8 //fault:+is missing; - - - - - - -

9 r = (b-d)/(a+2); True False False 1 1 1 1

10 else False False True 0 0 0 4

11 r = b/(c+2); False False True 0 0 0 4

12 break; True False True 1 0.5 0.75 2

13 case 1 : False True False 0 0 0 4

14 r = c*(a-d); False True False 0 0 0 4

15 break; False True False 0 0 0 4

16 } True True True 0.5 0.5 0.5 3

17 return r; True True True 0.5 0.5 0.5 3

18 } True True True 0.5 0.5 0.5 3

104

Furthermore, we conducted an experimental comparison between our approach and two

well-known spectrum based approaches, Tarantula [18] and Ochiai [23].

4.5.1 Experimental design

4.5.1.1 Subject programs

BEN is applied to the Siemens suite and the grep and gzip programs from SIR

[31]. The Siemens suite has been used to evaluate several fault localization techniques

[17][15][34]. The two programs, grep and gzip, are significantly larger programs than the

Siemens programs and are included to evaluate how our approach works on larger

programs.

THE SIEMENS SUITE - The Siemens suite contains seven programs and each of

these programs contains a number of faulty versions. The Siemens suite also provides an

error-free version and a test set for each program. Table 4-6 represents properties of

subject programs. The second column shows the number of lines of code for each program

[31], including comments. The third column shows the size of executable code computed

by Gcov 4.1.2 [9], and the last column indicates the number of faulty versions provided for

each program. Note that the number lines of executable code is different from the number

of lines code reported in [31], This is because the number of lines of executable code does

not include commented lines, declaration lines, nor code in header files.

Both of the two programs, printtokens and printtokens2, are used to tokenize the

input file and determine the type of each token. A token could be one of the following types:

identifier, special, keyword, number, comment, character constant or string constant.

Tokens of type keyword include and, or, if, xor, and lambda. Tokens of type special include

lparen, rparen, lsquare, rsquare, quote, bquote, comma and equalgreater. Comment

begins with semicolon and ends when a new line character is seen. String constant is a

string enclosed by two double quotations. Character is a token starting with #.

105

The replace program has three inputs, pattern, substitute and input text. The

program finds every match of pattern in the input text and replaces it with substitute. The

pattern is a restricted form of regular expression. The substitute is a string that allows three

meta-characters to be used. These include “@t”, which matches a tab; @n, which matches

the end of a line, and &, which represents the string that matches the pattern. For example,

if the string that matches pattern is ab and substitute is a&c, all ab strings in the file are

replaced with aabc.

Two programs, schedule and schedule2, take the same input and produce the

same output, but use different scheduling algorithms. The input includes: (1) three non-

negative integers representing the number of processes in three different priority queues,

low, medium and high; and (2) a list of commands that must be done on queues. There are

seven commands, new job, upgrade_prio, block, unblock, quantum_expire, finish and

flush. The output of these two programs is a list of numbers indicating the order in which

the processes exit (from the scheduling system).

The tcas program is an aircraft collision avoidance system. It takes 12 numbers

that represent different flight parameters of two aircrafts as input and generates as output

a resolution advisory, which can be unresolved, upward and downward.

Table 4-6. Characteristics of Siemens programs

Programs LOC
#Lines of

Executable Code
of faulty
versions

printtokens 726 188 7

printtokens2 570 201 10

replace 564 242 32

schedule 412 154 9

schedule2 374 127 10

tcas 173 65 41

totinfo 565 123 23

106

The totinfo program takes as input a file containing one or more tables. The

program uses the notions of chi-square and degree of freedom to calculate whether the

distribution of the numbers in these tables is logarithm gamma distribution. The output is

the total degree of freedom of rows and columns and chi-square.

THE GREP PROGRAM - The grep program from SIR, has 10068 lines of code [31].

The grep program has two input parameters, patterns and files. It prints lines in each file

that contain a match of any of the patterns. While the grep program can take multiple

patterns and files, we only used a single pattern and file in this experiment. In addition,

different options can be used to control the behavior of the grep program. For example,

option “–w” causes the program to print only lines containing whole-word matches.

The grep program can take four different types of patterns: (1) basic-regexp: a

basic regular expression. (2) extended-regexp: an extended regular expression. (3) fixed-

strings: a list of fixed strings. (4) perl-regexp: a Perl regular expression. In this experiment,

we focused on extended-regexp.

There are five versions of grep in the benchmark, and each of them has a number

of seeded faults. All versions were written in C, and have ten header files and one C file.

Table 4-7 shows the size of executable code computed by Gcov 4.1.2 and number of faulty

versions for each version.

Table 4-7. Characteristics of grep versions

Programs
#Lines of

Executable Code
of faulty
versions

Grep
version

grep1 3078 18 2.2

grep2 3224 8 2.3

grep3 3294 18 2.4

grep4 3313 12 2.4.1

grep5 3314 1 2.4.2

107

The last column of Table 4-7 indicates the release version of each program. Note

that all the faults in a given version are different from the faults of the other versions, and

reside in the code that has been modified from the previous version. For example, for

grep2, all the faults residing on the code modified from grep 2.2 to grep 2.3.

THE GZIP PROGRAM - The gzip program from SIR has 5680 lines of code [31], which

includes all header files, comments and declarations. The gzip program is used for file

compression and decompression. The gzip input includes 13 options and a list of file. For

example “-S” option uses to define the suffix of the result file, where the default is “.gz”.

There are five versions of gzip in the benchmark, and each of them has a number

of seeded faults. All versions were written in C, and have 6 header files and one C file.

Table 4-8 shows the number of lines of executable code computed by Gcov 4.1.2 and

number of faulty versions for each (correct) version, in the second and third columns,

respectively. The last column indicates the release version for each program. The base

version is gzip 1.0.7. The faults for different gzip versions are different from each other

except for one case where the first fault of gzip5 is the same as the first fault of gzip2. In

addition, all the faults reside in the code that has been modified from the previous version,

except the fault mention above. For example, for gzip2, all the faults reside in the code

modified from gzip 1.1.2 to gzip 1.2.2.

Table 4-8. Characteristics of gzip versions

Programs
#Lines of

Executable Code
of faulty
versions

Gzip
version

gzip1 1705 16 1.1.2

gzip2 2006 7 1.2.2

gzip3 1866 10 1.2.3

gzip4 1892 12 1.2.4

gzip5 1993 14 1.3

108

4.5.1.2 Initial test set

The input parameter model of each program is shown in Table 4-9. The detailed

models are made available for review in [8]. Also, in [10], we explained how we modeled

the input parameters of the Siemens programs to apply combinatorial testing.

The model column of Table 4-9 shows the number of parameters and their domain

size. We represent it by (d1
k1 × d2

k2 × …), where di
ki indicates that there are ki number of

parameters with domain size as di. Note that k1 + k2 + ⋯ = k, where k is the total number

of parameters. For example, totinfo has six parameters, among which three parameters

have a domain size of 3, two parameters have a domain size of 5, and one parameter has

a domain size of 6.

The constraint column shows the number of constraints in each model. Constraints

exclude invalid combinations from the resulting test set. Consider the input model of the

printtokens program, which contains different positions for different tokens. For example,

keyword and identifier are two types of tokens that could appear at the beginning, middle

or end of the input stream. A constraint is needed to prevent having more than one type of

token at the same position.

Table 4-9. Programs model

Programs Model #Constraints

S
ie

m
e
n

s
 S

u
it
e

printtokens (21 × 31 × 44 × 51 × 101 × 132) 8

replace (24 × 416) 36

schedule (21 × 38 × 82) 0

tcas (27 × 32 × 41 × 102) 0

totinfo (33 × 52 × 61) 0

grep (27 × 41 × 51 × 63 × 81 × 91 × 131) 1

gzip (211 × 42) 8

109

Note that programs printtokens and printtokens2 share the same model, and so

do programs schedule and schedule2. The model of tcas is the same as [19]. Also note

that the models are built based on the specification of the programs, i.e., independent from

their implementations. The SIR repository does not provide any specification for the grep

and gzip programs. So we used the manual document from [15] and [16] as their

specification.

We assume that boundary testing is done before combinatorial testing is applied.

Combinatorial testing focuses on failures caused by interactions between parameters,

while boundary testing focuses on failure caused by boundary values of individual

parameters. We used the ACTS tool [2] to generate t-way test sets. For each program, we

first test it with a 2-way test set. If a program is not killed by a 2-way test set, we increase

the test strength and then test the program with a 3-way test set. This process is repeated

until we reach strength 4.

Table 4-10 shows the number of versions killed by our test sets of different

strengths for Siemens suite. Note that the column of t-way test set indicates all versions

that are killed by t-way test set and not by (t − 1)-way test set. For example, 17, 12 and 7

versions of tcas are killed by the 2-way, 3-way and 4-way test sets, respectively. The 12

versions that are killed by 3-way test set are different from 17 and 7 versions that are killed

by 2-way and 4-way test set, respectively. Therefore, in total, 36 versions of tcas are killed.

The same information for the grep and gzip programs is shown in Table 4-11 and

Table 4-12.

We also executed all the tests in the test pool that come with each program in SIR.

(We will refer to the test pools in SIR as the SIR test pools.) These test pools are created

initially in a black box manner based on the tester’s understanding of the program’s

functionality and knowledge of special and boundary values. Then, white-box tests are

110

created and added into the pools to ensure that each executable statement, branch, and

definition-use pair in the error-free version was exercised [31]. All the faulty versions of the

Siemens programs are killed by the test pools, except version 9 of schedule2.

Table 4-10. Test results for Siemens suite

Programs
#faulty

versions

#Killed versions

2-way 3-way 4-way All

Printtokens 7 3 0 0 3

Printtokens2 10 9 0 0 9

replace 32 32 0 0 32

schedule 9 7 0 0 7

schedule2 10 3 0 0 3

tcas 41 17 12 7 36

totinfo 23 5 7 0 12

Table 4-11. Test results for grep

Programs
#faulty

versions

#Killed versions #Killed versions by
SIR test pool

2-way 3-way 4-way All

grep1 18 4 0 0 4 4

grep2 8 0 0 0 0 4

grep3 18 4 0 0 4 7

grep4 12 2 0 0 2 2

grep5 1 0 0 0 0 0

Table 4-12. Test results for gzip

Programs
#faulty

versions

#Killed versions #Killed versions by
SIR test pool 2-way 3-way 4-way All

gzip1 16 6 0 0 6 7

gzip2 7 3 0 0 3 3

gzip3 10 0 0 0 0 0

gzip4 12 1 0 0 1 3

gzip5 14 3 0 0 3 4

111

Combinatorial testing does not kill it either. The results of executing the test pools on the

grep and gzip programs are shown in the last column of Table 4-11 and Table 4-12.

For the grep1 program, both test sets, our combinatorial test set and the SIR test

pool, killed four versions. Three out of these four versions are the same, and one is

different. The combinatorial test set killed version 8 while the test pool killed version 7. The

combinatorial test set did not kill version 7 because the particular value that triggers the

fault was not modeled in our model.

Moreover, version 2 of grep4 was killed by the combinatorial test set but not by the

test pool. However, the test pool killed version 10 which is due to a boundary value that is

not handled correctly.

Note that 4 versions out of 18 versions of grep1 were killed by 2-way test set.

However, in one of the killed versions, i.e., version 11, all the tests failed. Based on

Assumption 3, BEN was not applied to this version.

4.5.1.3 Multiple-fault versions

To evaluate the effectiveness of our approach when the program under test has

more than one fault, we create several multiple-fault versions for each program. To

increase the diversity, different multiple-fault versions have different numbers of faults.

Table 4-13 shows the number of faulty versions with the number of faults created for each

program. For example, we created three versions with 2 faults and one version with 3 faults

for printtokens.

To create multiple-fault versions, we randomly pick faults from faults that are

detected by our combinatorial test sets. Consider the schedule program. There are nine

faulty versions and each version has one fault. The combinatorial test set kills seven of

them (Table 4-10), versions 1 to 7, and the other 2 versions, versions 9 and 10, were not

112

killed. To create multiple-fault versions with 2 faults, two faulty version from 1 to 7 are

selected randomly.

For each program, we typically generate one multiple-fault version for a certain

number of faults. The maximum number of multiple-fault versions for each program

depends on the number of killed versions. When the total number of killed versions is large,

e.g., replace and tcas, we create multiple-fault versions with a maximum number of 10

faults. When the total number of killed versions is small, e.g., printtokens and schedule2,

more than one multiple-fault version is created for the same number of faults. Since the

two large programs, grep and gzip, have a small number of killed versions, three multiple-

fault versions created for each number of faults, if possible.

Since some faults may conflict with each other, combining them in one version is

not possible. For example, the schedule2 program has three killed versions, version 2, 3,

and 7. Two faulty versions, version 3 and 7, conflict with each other. In version 7, the

Table 4-13. Multiple-fault versions

Programs

multiple-fault versions

2
faults

3
faults

4
faults

5
faults

6
faults

7
faults

8
faults

9
faults

10
faults

ALL

Siemens
Suite

printtokens 3 1 0 0 0 0 0 0 0 4

printtokens2 1 1 1 1 1 1 1 0 0 7

replace 1 1 1 1 1 1 1 1 1 9

schedule 1 1 1 1 1 0 0 0 0 5

schedule2 2 0 0 0 0 0 0 0 0 2

tcas 1 1 1 1 1 1 1 1 1 9

totinfo 1 1 1 1 1 1 1 1 1 9

grep

grep1 3 1 0 0 0 0 0 0 0 4

grep3 3 3 1 0 0 0 0 0 0 7

grep4 1 0 0 0 0 0 0 0 0 1

gzip

gzip1 3 3 3 3 1 0 0 0 0 13

gzip2 3 1 0 0 0 0 0 0 0 4

gzip5 3 1 0 0 0 0 0 0 0 4

113

condition of an if statement is changed, while version 3, the whole block that contains the

same if statement is missing. Therefore, having these two versions in one multiple-fault

version is not possible. For the schedule2 program, two multiple-fault versions with 2 faults

are created. One of them contains the faults of versions 2 and 3, and the other contains

the faults of versions 2 and 7.

Table 4-14 shows the result of combinatorial testing on multiple-fault versions. All

of them are killed by a 2-way test set except one version of program printtokens2 and one

version of program tcas that are killed by a 3-way test set. In addition, all the tests in the 2-

way test set failed for the version with 8 faults of the replace program, and therefore this

version is ignored.

Table 4-14. Test results for multiple-fault versions

Programs
#faulty

versions

#Killed versions

2-way 3-way All

Siemens
Suite

printtokens 4 4 0 4

printtokens2 7 6 1 7

replace 9 9 0 9

schedule 5 5 0 5

schedule2 2 2 0 2

tcas 9 8 1 9

totinfo 9 9 0 9

grep

grep1 4 4 0 4

grep3 7 7 0 7

grep4 1 1 0 1

gzip

gzip1 13 13 0 13

gzip2 4 4 0 4

gzip5 4 4 0 4

114

4.5.1.4 Trace collection

We used Gcov 4.1.2 [9] to collect execution trace. Gcov reports the number of

times a statement is executed by a given test. A statement is included in the execution

trace of a given test if and only if it is executed by the test for one or more times.

Gcov distinguishes between statements that are executable but are not executed

and statements that are not executable. We used this information to compute the

percentage of executable code that must be inspected to find the faulty statement. If a

program crashes, Gcov does not report any coverage. To deal with this problem, we add

a statement to call function gcov_flush before every statement. Note that this is only done

after a program crashes.

4.5.1.5 BEN configuration

For our experiments, we configure BEN to generate five tests for each of the two

top ranked suspicious combinations at each iteration. In addition, because of resource

limitation, we limit the size of inducing combination to 6. If BEN does not find an inducing

combination of size 5, BEN reports the top 6-way suspicious combination as an inducing.

4.5.1.6 Metrics

Recall that the output of BEN is a ranking of statements in terms of their likelihood

to be faulty. In order to find the faulty statement, we inspect statements in the first rank,

and then statements in the second rank, and continue to do so until we find the actual faulty

statement. Statements in the same rank are inspected in the order that they appear in the

program. We record the number of statements that must be inspected to find the actual

faulty statement in each program to measure the effectiveness of our approach.

Moreover, the effectiveness of the first phase, i.e., identifying inducing

combination, is measured by the inducing probability (Definition 8) of the identified

115

combination. The higher inducing probability the identified inducing combination has, the

more precise the approach is.

The efficiency of our approach is measured by two factors: the number of tests

that are executed and the number of tests that are instrumented for trace collection. We

show the number of tests executed in different stages of our approach, i.e., number of tests

of the initial combinatorial test set, number of tests needed to identify inducing

combinations (Phase 1), and number of tests needed to produce the ranking of faulty

statements (Phase 2).

We also compare our approach to two approaches Tarantula and Ochiai in terms

of effectiveness, i.e., the number of statements that must be inspected to find the actual

faulty statement, and efficiency, i.e., the number of tests executed and the number of tests

whose execution traces must be collected.

4.5.2 Results and discussion

In this section, we discuss the results of applying BEN to the subject programs.

We first report the results of BEN on the single-fault programs, then on the multiple-fault

programs. Next, we compare the results of BEN to two techniques, Tarantula and Ochiai.

Finally, the threats to validity are discussed.

4.5.2.1 Results on single-fault versions

This section is divided into two subsections. The first subsection reports the result

of the first phase, identifying inducing combination. The second subsection discusses the

result of the second phase, faulty statement localization.

4.5.2.1.1 Phase 1: Identifying inducing combination

Table 4-15 shows the inducing probabilities of inducing combinations identified in

the first phase. To compute the inducing probability for combination c, we generated and

116

executed all the tests containing c. Then, inducing probability is computed using the

formula explained in Section 4.2.1.

Depending on the input parameter model of the program, number of parameters,

their domain size and constraints, generating all the tests containing a combination can be

a very expensive task. This is the case for the inducing combinations identified for the two

programs, replace and grep. Thus, inducing probabilities are not computed for these two

programs.

In Table 4-15 the “test strength” column shows the strength of the initial test set,

and the next column, i.e., “#of killed versions”, indicates the number of versions killed using

the corresponding test set. The last two columns show the average size of the identified

inducing combinations and the average of their inducing probabilities.

As shown in Table 4-15, in most cases, the inducing probability is one, which

means that the identified inducing combination is truly inducing. For printtokens2 and

Table 4-15. Inducing probabilities for single-fault versions

Programs
Test

strength (t)
of killed
versions

Avg size of
inducing

combinations

Avg inducing
probability of inducing

combinations

Siemens
Suite

printtokens 2 3 3 1

printtokens2 2 9 2.56 0.93

schedule 2 7 2.86 0.86

schedule2 2 3 2 1

tcas

2 17 5.82 0.09

3 12 5.92 0.11

4 7 6 0.06

totinfo
2 5 4.8 1

3 7 4.86 1

gzip

gzip1 2 6 2.33 1

gzip2 2 3 2.33 1

gzip4 2 1 2 1

gzip5 2 3 2 1

117

schedule, the inducing probability is close to one. However, the inducing probability is very

low in the tcas program.

Recall that for our experiments, we limit the size of inducing combination to six.

BEN reports the top ranked suspicious combination of size six, if the inducing combination

of a smaller size was not identified. For tcas, the average size of inducing combination is

or close to 6, 5.82 and 5.92 (Table 4-15). This shows that BEN does not find the truly

inducing combination, but it stops as it reaches the size of 6.

4.5.2.1.2 Phase 2: Faulty statement localization

Table 4-16 shows the results of our approach on each program. We will not explain

the column headers one by one, as they are self-explanatory. Note that in the last eight

columns, average values are used, since the data could be different in different versions.

Column “Avg size of inducing combination” indicates the average size of inducing

combinations for versions that are killed by the t-way test set. For example, the sizes of the

inducing combinations for three versions, 3, 5 and 6, of printtokens that are killed by the 2-

way test set, are 2, 4 and 3, respectively. Therefore, the average size of inducing

combinations is 3. As explained in Section 4.3.1, the size of an inducing combination could

be greater than the strength of the initial test set.

The next column, “Avg # of tests for identifying inducing combination”, shows the

average number of tests generated in the first phase, i.e., inducing combination

identification. For gzip4, only one version is killed for which no new test is generated in the

first phase. This is because BEN could not find new test containing the top suspicious

combination in the first iteration.

If a combination c identified in the first phase is not inducing, there is a probability

that the core member does not fail. The higher the inducing probability, the more likely that

the core member fails. If the inducing probability is 1, the core member will definitely fail.

118

However, our approach can still apply if the core member does not fail. We select as the

core member a failed test that contains the inducing combination from the initial test set.

Column “Avg # of times the core member does not fail” shows the average number of such

cases. For all the seven versions of tcas, when the initial test set is 4-way, the core member

is selected from the initial test set. This is consistent with the fact that the inducing

probabilities of the identified inducing combinations were very small (Table 4-15).

Table 4-16. Results for single-fault versions

Programs
T

e
s
t
s
tr

e
n
g
th

 (
t)

#
 o

f
te

s
ts

 i
n
 t

-w
a
y

te
s
t
s
e
t

#
 o

f
k
ill

e
d
 v

e
rs

io
n
s

A
v
g
 s

iz
e
 o

f
in

d
u
c
in

g

c
o
m

b
in

a
ti
o

n

A
v
g
 #

 o
f
te

s
ts

 f
o
r

id
e
n
ti
fy

in
g
 i
n

d
u
c
in

g
 c

o
m

b
in

a
ti
o

n

A
v
g
 #

 o
f
ti
m

e
s
 t
h
e

 c
o
re

M
e

m
b

e
r

d
o
e
s
 n

o
t
fa

il

A
v
g
 #

 o
f
te

s
ts

 e
x
e
c
u
te

d

fo
r

g
e
n
e
ra

ti
n

g
 d

e
ri
v
e
d
 m

e
m

b
e
rs

A
v
g
 #

 o
f
ti
m

e
s
 d

e
ri
v
e
d
 m

e
m

b
e
rs

s
e
le

c
te

d
 f
ro

m
 i
n
it
ia

l
te

s
t
s
e
t

A
v
g
 #

 o
f
te

s
ts

 i
n

s
tr

u
m

e
n
te

d
 f

o
r

s
e
le

c
ti
n

g
 d

e
ri
v
e
d
 m

e
m

b
e
rs

A
v
g

#
o
f
s
ta

te
m

e
n
ts

in
s
p
e
c
te

d
 t
o
 f
in

d
 a

c
tu

a
l
fa

u
lt
s

A
v
g
 p

e
rc

e
n
ta

g
e
 o

f

s
ta

te
m

e
n
t
in

s
p
e
c
te

d
 t

o

lo
c
a
te

 a
c
tu

a
l
fa

u
lt
s

S
ie

m
e

n
s
 S

u
it
e

printtokens 2 170 3 3 20 0 10 0 11 25.66 13.65

printtokens2 2 170 9 2.56 16.67 0 10.89 0 11.89 13.55 6.74

replace 2 193 32 3.66 19.37 0.41 4.16 0 5.16 30.91 12.77

schedule 2 64 7 2.86 17.14 0.14 6.43 0 7.43 18.71 12.15

schedule2 2 64 3 2 10 0 4.33 0 5.33 59.67 46.98

tcas

2 100 17 5.82 32.23 0.94 21.35 0 22.35 14 21.54

3 405 12 5.91 25 0.92 20.83 0 21.83 14.67 22.57

4 1434 7 6 20 1 18.57 0 19.57 11.14 17.14

totinfo
2 30 5 4.8 40 0 11.5 0 12.5 20.8 16.91

3 156 7 4.86 27.43 0 13.5 0 14.5 11.71 9.52

g
re

p

grep1 2 121 3 3.33 20 0 9 0 10
327.3

3
10.63

grep3 2 121 4 4 25 0.5 6 0 7 21.25 0.64

grep4 2 121 2 2 10 0 5 0 6 172.5 5.21

g
z
ip

gzip1 2 17 6 2.33 10.33 0 1.33 0.16 2.5
170.6

7
9.46

gzip2 2 17 3 2.33 13.33 0 1.33 0 2.33 92.67 4.62

gzip4 2 17 1 2 0 0 3 1 5 4 0.21

gzip5 2 17 3 2 6.67 0 0.67 0.33 2
245.6

7
12.33

119

For each version, we compute the total number of tests in all the derived member

sets, i.e., all the tests executed for generating the derived members. The average of this

number for all versions is shown in the ninth column, “Avg # of tests executed for generating

derived members”. The number includes all the tests, although later some of them are

discarded since they do not pass. The maximum value of this column, 21.35, is for the tcas

program and 2-way test set. The minimum value, 0, happens for gzip4. Note that the

number of tests executed for generating derived members depends on the size of inducing

combination, the domain size of inducing components, and also system constraints.

The column, “Avg # of times derived members are selected from initial test set”,

shows the number of cases that all the derived member candidates failed, and a derived

member is selected from the initial test set.

The column, “Avg # of tests instrumented for selecting derived members”, shows

the average number of derived members whose traces are collected. Recall from

Section 4.3.2, the tests of a candidate set are instrumented for trace collection. Note that

BEN also needs the execution trace of the core member. Therefore the total number of

tests instrumented by the coverage tool is the summation of the following three numbers:

1) number of tests executed for generating derived members (column nine of Table 4-16);

2) number of derived members selected from initial test set (column ten of Table 4-16); and

3) one which represents the core member.

The last two columns show the average number and percentage of statements

that must be inspected to locate a fault. To compute this number, we include statements

that are ranked higher and statements that are ranked at the same rank but appear before

the faulty statement, in the order as produced by our approach. We did not perform any

dependency analysis, which could reduce the number of statements that must be

inspected.

120

We point out that, the number of executable statements in tcas is 65, less than

100. In this program, when only one statement is needed to inspect, it is 1.54% of

executable code. Therefore, for the tcas program the number of statements gives better

insight than the percentage of code.

As shown in Table 4-16 our approach works better for the grep and gzip programs

than the Siemens programs, i.e. small programs. The best case happens with gzip4 where

only 0.21% of code must be inspected to locate the fault. The worst case happens with

gzip5 where 12.33% of the code must be inspected. For the Siemens programs, the best

and worst cases happen with printtokens and schedule2, where 6.74% and 46.98% of the

code must be inspected, respectively.

4.5.2.2 Results on multiple-fault versions

In this section, we discuss the result of our experiments on the subject programs

that have multiple faults.

4.5.2.2.1 Phase 1: Identifying inducing combination

Table 4-17 shows the inducing probabilities for the inducing combinations

identified in the first phase. To compute inducing probability, the same procedure used in

Section 4.5.2.1 for single fault versions is performed. Again, two programs, grep and

replace, are ignored as it is very expensive to compute inducing probabilities for these

programs.

As shown in Table 4-17, the inducing probabilities for all programs are one or close

to one, except for the tcas program. In the five faulty versions (four versions killed by 2-

way test set and one killed by 3-way) of the tcas program, BEN does not find any inducing

combination of size of five or less. Therefore, the most suspicious combination whose size

is six is reported as an inducing combination.

121

4.5.2.2.2 Phase 2: Faulty statement localization

The results are summarized in Table 4-18, where the columns are the same as in

Table 4-16. The last two columns, “Avg #of statements inspected to find actual faults” and

“Avg percentage of statement inspected to locate actual faults”, show respectively the

number of statements and percentage of statements that should be inspected to locate the

first faulty statement.

Similar to the single-fault versions, BEN works better for grep and gzip, than for

the Siemens programs. For grep and gzip, the worst case happens in gzip1, where 8.00%

of executable code must be inspected to locate the fault. However, the worst case for the

Siemens programs happens with schedule2, where 25.83% of the executable code must

be inspected.

The results in Table 4-16 and Table 4-18, suggest that BEN works better when

there are multiple faults. For all the programs, BEN is more effective for multiple-fault

versions than single-fault versions, except grep3, in terms of percentage of code that needs

Table 4-17. Inducing probabilities for multiple-fault versions

Programs
Test

strength (t)
of killed
versions

Avg size of
inducing

combination

Avg of inducing
probability of inducing

combination

Siemens
Suite

printtokens 2 4 2.75 0.95

printtokens2 2 7 2.14 1

schedule 2 5 2 0.86

schedule2 2 2 2 1

tcas
2 8 5.12 0.33

3 1 6 0.02

tot_info 2 9 4.67 1

gzip

gzip1 2 13 2.07 1

gzip2 2 4 2.25 1

gzip5 2 4 2 0.84

122

to be inspected. Moreover, BEN is more efficient for multiple-fault versions than single-fault

versions, in terms of the total number of tests generated in phases 1 and 2 and the number

of tests instrumented by the coverage tool for multiple-fault versions. This can be explained

as follows.

The more faults a program has, the more likely that a test fails. When there are

more failed tests in the initial test set, it is likely to have more inducing combinations or the

size of inducing combination is smaller. Inducing combination of smaller size is less

expensive to identify compare with those of larger size. This is because the smaller the

inducing combination is, the fewer times the identify algorithm is called to identify the

Table 4-18. Results for multiple-fault versions

Programs
T

e
s
t
s
tr

e
n
g
th

 (
t)

#
 o

f
te

s
ts

 i
n
 t

-w
a
y

te
s
t
s
e
t

#
 o

f
k
ill

e
d
 v

e
rs

io
n
s

A
v
g
 s

iz
e
 o

f
in

d
u
c
in

g

c
o
m

b
in

a
ti
o

n

A
v
g
 #

 o
f
te

s
ts

 f
o
r

id
e
n
ti
fy

in
g
 i
n

d
u
c
in

g
 c

o
m

b
in

a
ti
o

n

A
v
g
 #

 o
f
ti
m

e
s
 t
h
e

 c
o
re

m
e

m
b

e
r

d
o
e
s
 n

o
t
fa

il

A
v
g
 #

 o
f
te

s
ts

 e
x
e
c
u
te

d
 f
o
r

g
e
n
e
ra

ti
n

g
 d

e
ri
v
e
d
 m

e
m

b
e
rs

A
v
g
 #

 o
f
ti
m

e
s
 d

e
ri
v
e
d
 m

e
m

b
e
rs

s
e
le

c
te

d
 f
ro

m
 i
n
it
ia

l
te

s
t
s
e
t

A
v
g
 #

 o
f
te

s
ts

 i
n

s
tr

u
m

e
n
te

d
 f

o
r

s
e
le

c
ti
n

g
 d

e
ri
v
e
d
 m

e
m

b
e
rs

A
v
g

#
o
f
s
ta

te
m

e
n
ts

in
s
p
e
c
te

d
 t
o
 f
in

d
 a

c
tu

a
l
fa

u
lt
s

A
v
g
 p

e
rc

e
n
ta

g
e
 o

f

s
ta

te
m

e
n
t
in

s
p
e
c
te

d
 t

o

lo
c
a
te

 a
c
tu

a
l
fa

u
lt
s

S
ie

m
e

n
s
 S

u
it
e

printtokens 2 170 4 2.75 17.5 0 5 0 6 1.25 0.66

printtokens2 2 170 7 2.14 11.43 0 3.14 0 4.14 1.86 0.92

replace 2 193 8 2.5 13 0.12 1.87 0 2.87 12.25 5.06

schedule 2 64 5 2 10 0.2 2.60 0 3.60 8.2 5.32

schedule2 2 64 2 2 10 0 4 0 5 45.5 25.83

tcas
2 100 8 5.12 31.75 0.50 14.37 0 15.37 3.62 5.57

3 405 1 6 22 1 23 0 24 11 16.92

tot_info 2 30 9 4.67 36.67 0 9.78 0 10.78 8.67 7.05

g
re

p

grep1 2 121 4 2.5 15 15 5.5 0 6.5 107.5 3.49

grep3 2 121 7 4.29 27.14 27.14 5.43 0 6.43 32.86 1

grep4 2 121 1 2 10 10 3 0 4 23 0.69

g
z
ip

gzip1 2 17 13 2.07 10 10 0.61 0.38 2 136.46 8.00

gzip2 2 17 4 2.25 10 10 1.5 0 2.5 51.25 2.55

gzip5 2 17 4 2 2.5 2.5 0.75 0.75 2.5 100.25 5.03

123

combination. Moreover, the number of candidate sets equals the size of inducing

combination. Thus, the smaller the inducing combination is, the fewer derived candidate

sets and therefore the fewer tests are generated in the second phase.

4.5.2.3 Comparison with Tarantula and Ochiai

We compared BEN to two spectrum-based approaches, Tarantula and Ochiai, in

terms of effectiveness and efficiency. Experiments suggest that Tarantula and Ochiai

perform best among other spectrum based approaches [1][17][23]. Recall that

effectiveness is measured by the percentage of executable code that must be examined

to guide the programmer to the faulty statement, and efficiency is measured by the number

of tests executed and the number of tests instrumented to collect the trace.

Since Tarantula and Ochiai do not deal with test generation, we applied them using

the initial combinatorial test set.

In Table 4-19 and Table 4-20, we compare the size of the test sets used in

Tarantula, Ochiai and BEN for each program. Table 4-19 and Table 4-20 show the

information for single-fault versions and multiple-fault versions, respectively. We used

average to aggregate the results of all the killed versions for each program. The third

column shows the average size of the combinatorial test sets used in the testing stage for

each program. The fourth column shows the average number of tests instrumented for

coverage collection, for Tarantula and Ochiai. Since every test needs to be traced for

Tarantula and Ochiai, columns three and four are equal.

The same information for BEN is shown in the last column. As shown in Table 4-19

and Table 4-20, BEN needs to instrument only a very small number of tests in comparison

with the other approaches. However, BEN generates and executes a number of tests (in

addition to the initial test set) to identify the inducing combination. This cost is shown in the

fifth column of Table 4-19 and Table 4-20, and it equals to the seventh column of Table 4-16

124

Table 4-19. Efficiency comparison results for single-fault versions

Programs

Avg # of
tests

executed in
the testing

stage

Tarantula and Ochiai BEN

Avg # of tests
instrumented for

coverage collection

Avg # of tests
generated and

executed in fault
localization stage

Avg #tests
instrumented
for coverage

collection

S
ie

m
e
n

s
 S

u
it
e

print_tokens 170 170 20 11

print_tokens2 170 170 16.67 11.89

replace 193 193 19.37 5.16

schedule 64 64 17.14 7.43

schedule2 64 64 10 5.33

tcas 461.05 461.05 27.44 21.64

tot_info 103.5 103.5 32.67 13.67

g
re

p
 grep1 121 121 20 10

grep3 121 121 25 7

grep4 121 121 10 6

g
z
ip

 gzip1 17 17 10.33 2.5

gzip2 17 17 13.33 2.33

gzip4 17 17 2 5

gzip5 17 17 2 2

Table 4-20. Efficiency comparison results for multiple-fault versions

Programs

Avg # of
tests

executed in
the testing

stage

Tarantula and Ochiai BEN

Avg # of tests
instrumented for

coverage collection

Avg # of tests
generated and

executed in fault
localization stage

Avg #tests
instrumented
for coverage

collection

S
ie

m
e
n

s
 S

u
it
e

print_tokens 170 170 17.5 6

print_tokens2 170 170 11.43 4.14

replace 193 193 13 2.87

schedule 64 64 10 3.60

schedule2 64 64 10 5

tcas 133.89 133.89 30.67 16.33

tot_info 30 30 36.67 10.78

g
re

p
 grep1 121 121 15 6.5

grep3 121 121 27.14 6.43

grep4 121 121 10 4

g
z
ip

 gzip1 17 17 10 2

gzip2 17 17 10 2.5

gzip5 17 17 2.5 2.5

125

and Table 4-18. So the last two columns show the cost of applying BEN and the fourth

column shows the cost of applying Tarantula and Ochiai.

In [17][27], a score is used to compare different fault localization methods. The

score is defined based on the percentage of code that must be examined to find the faulty

statement. The percentage is based on executable code, i.e., non-executable code is

excluded. Table 4-21 and Table 4-22 show the percentage of all the program versions that

achieve each score for single fault and multiple-fault versions, respectively. The results of

BEN, Tarantula and Ochiai for the Siemens programs are aggregated and shown in the

“Siemens Suite” rows, and the results of these three approaches for the grep and gzip

programs are aggregated in their corresponding rows.

For single fault versions (Table 4-21), on the first score, i.e., 99-100%, which

means only 1% or less than 1% of code must be inspected to find the first faulty statement,

BEN outperforms Tarantula for the Siemens programs and the grep program, while both

have the same results for the gzip program.

BEN achieves a higher score than Ochiai for the Siemens programs and the same

score for the grep program. However, Ochiai outperforms BEN for the gzip program, in

terms of the first score of single-fault versions. We analyzed all the versions of the gzip

program as an effort to explain this phenomenon. The gzip program has a very complex

input parameter model with eight constraints. As a result, the derived member candidates

which are the nearest neighbor of the core member, i.e., have minimum differences from

the core member, are not valid in a number of cases, i.e., they do not satisfy all the

constraints. In these cases, a passed test is selected from the initial test set as a derived

member, as shown in coulmn 10 of Table 4-16. Therefore, BEN could not benefit from the

notion of nearest neighbor. In these cases, BEN uses the core member and a single

derived member which is not the nearest neighbor to rank the statements, while Ochiai and

126

Tarantula uses all tests of the initial test set. Thus, BEN is less effective than Ochiai and

Tarantula for the gzip program.

For multiple-fault versions of all the programs (Table 4-22), the first score with BEN

is higher than Tarantula and Ochiai. Moreover, the difference between them is greater for

Table 4-21. Comparison results for single-fault versions

Programs Approach

Score
9
9
-1

0
0
%

9
0
-9

9
%

8
0
-9

0
%

7
0
-8

0
%

6
0
-7

0
%

5
0
-6

0
%

4
0
-5

0
%

3
0
-4

0
%

2
0
-3

0
%

1
0
-2

0
%

Siemens
Suite

BEN 23.53 30.39 22.55 4.90 3.92 9.80 1.96 1.96 0.98 0

Ochiai 20.59 34.31 14.71 11.76 4.90 5.88 5.88 1.96 0 0

Tarantula 18.63 33.33 16.67 11.76 3.92 3.92 8.82 0.98 1.96 0

grep

BEN 66.67 11.11 22.22 0 0 0 0 0 0 0

Ochiai 66.67 11.11 22.22 0 0 0 0 0 0 0

Tarantula 55.56 11.11 22.22 11.11 0 0 0 0 0 0

gzip

BEN 38.46 38.46 0 23.08 0 0 0 0 0 0

Ochiai 46.15 38.46 7.69 7.69 0 0 0 0 0 0

Tarantula 38.46 38.46 0 15.38 0 7.69 0 0 0 0

Table 4-22. Comparison results for multiple-fault versions

Programs Approach

Score

9
9
-1

0
0
%

9
0
-9

9
%

8
0
-9

0
%

7
0
-8

0
%

6
0
-7

0
%

5
0
-6

0
%

4
0
-5

0
%

3
0
-4

0
%

2
0
-3

0
%

1
0
-2

0
%

Siemens
Suite

BEN 38.64 40.91 18.18 0 0 0 0 0 2.27 0

Ochiai 31.82 52.27 13.64 0 0 0 0 2.27 0 0

Tarantula 31.82 61.36 4.55 0 0 0 0 0 2.27 0

grep

BEN 91.67 0 8.33 0 0 0 0 0 0 0

Ochiai 75.00 16.67 8.33 0 0 0 0 0 0 0

Tarantula 58.33 33.33 8.33 0 0 0 0 0 0 0

gzip

BEN 23.81 57.14 4.76 14.29 0 0 0 0 0 0

Ochiai 14.29 71.43 0 9.52 4.76 0 0 0 0 0

Tarantula 19.05 47.62 19.05 0 4.76 9.52 0 0 0 0

127

the multiple-fault version compared to the single-fault versions. The reason is that BEN first

identifies one inducing combination and it is likely that each inducing combination

corresponds to one faulty statement. In the second phase, BEN generates a group of tests

with one failed test, i.e., the core member, which likely includes one inducing combination

and executes only one faulty statement. Therefore, even when there is more than one fault

in the program, BEN focuses on one of them. However, when Tarantula and Ochiai are

applied on multiple-fault programs, they use the initial test set that likely includes several

failed tests corresponding to different faulty statements. Moreover, Tarantula and Ochiai

do not perform any nearest neighbor analysis. Thus, it is likely that very different execution

traces are compared to each other, which reduces their effectiveness of locating the faulty

statement.

Table 4-23 and Table 4-24 also show the comparison between BEN and Tarantula

and Ochiai for single-fault and multiple-fault versions, respectively. There are two groups

of columns that show the comparison between BEN and Tarantula and the comparison

between BEN and Ochiai, respectively.

In each group, the first two columns show cases that BEN outperforms the other

approach, Tarantula or Ochiai (positive numbers). The first column shows the number of

killed versions that BEN outperforms the other approach, and the next one shows the

average percentage of improvement. For example in the 19 out of 36 killed single-fault

versions of the tcas program, BEN inspects 7.94% (of executable code) less than

Tarantula.

The third column of each group shows the number of killed versions that BEN and

the other approach, Tarantula or Ochiai, produce the same results. In addition, the last two

columns of each group show the number of versions that the other approach outperforms

BEN and the average percentage of the differences (negative numbers). For example in 5

128

out of 36 killed single-fault versions of the tcas program, BEN inspects about 3.38% (of

executable code) more than Tarantula.

Three rows, Siemens suite, grep and gzip, are added to represent the total results

of all the Siemens programs, all grep and all gzip versions, respectively.

Table 4-23. Differences between BEN, Tarantula and Ochiai for single-fault versions

Programs

#
o
f
k
ill

e
d
 v

e
rs

io
n
s

Tarantula Ochiai

BEN >
Tarantula

B
E

N
 =

 T
a
ra

n
tu

la

BEN <
Tarantula

BEN >
Ochiai

B
E

N
 =

 O
c
h
ia

i

BEN <
Ochiai

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

S
ie

m
e
n

s
 S

u
it
e

printtokens 3 +1 +8.51 1 -1 -0.53 +1 +4.79 1 -1 -0.53

printtokens2 9 +3 +5.97 2 -4 -3.98 +1 +9.45 4 -4 -7.21

replace 32 +14 +8.56 4 -14 -9.80 +14 +8.21 4 -14 -11.16

schedule 7 +2 +1.30 1 -4 -13.47 +2 +1.30 1 -4 -13.47

schedule2 3 +2 +5.91 1 0 0 0 0 1 -2 -3.54

tcas 36 +19 +7.94 12 -5 -3.38 +19 +7.61 12 -5 -3.38

totinfo 12 +4 +27.85 6 -2 -13.82 +3 +4.07 6 -3 -10.03

Siemens Suite 102 45 9.40 27 -30 -8.40 40 7.21 29 -33 -8.90

g
re

p
 grep1 3 +2 +2.84 1 0 0 +1 +1.56 1 -1 -1.92

grep3 4 +1 +6.80 1 -2 -0.09 +1 +0.24 1 -2 -0.09

grep4 2 +1 +3.08 0 -1 -0.12 0 0 0 -2 -0.98

grep 9 +4 +3.89 2 -3 -0.10 +2 0.90 2 -5 -0.81

g
z
ip

gzip1 6 +4 +5.41 0 -2 -2.52 +2 +0.26 0 -4 -7.71

gzip2 3 +3 +7.98 0 0 0 +1 +12.86 0 -2 -0.80

gzip4 1 0 0 1 0 0 0 0 1 0 0

gzip5 3 +2 +0.40 0 -1 -24.53 +1 0.05 0 -2 -13.07

gzip 13 +9 +5.15 1 -3 -9.86 +4 3.36 1 -8 -7.32

129

For single-fault versions (Table 4-23), BEN outperforms Tarantula in all the three

cases, Siemens Suite, grep and gzip, which is consistent with Table 4-21. According to

Table 4-23, BEN outperforms Ochiai for the Siemens programs, while Ochiai works better

than BEN for the gzip and grep programs, for single-fault versions. The difference between

BEN and Ochiai is very small (less than one percent), and thus it is not reflected in

Table 4-21. As explained, Ochiai outperforms BEN for the gzip programs, because BEN

could not benefit from the notion of nearest neighbor in this program.

Table 4-24. Differences between BEN, Tarantula and Ochiai for multiple-fault versions

Programs

#
o
f
k
ill

e
d
 v

e
rs

io
n
s

Tarantula Ochiai

BEN >
Tarantula

B
E

N
 =

 T
a
ra

n
tu

la

BEN <
Tarantula

BEN > Ochiai

B
E

N
 =

 O
c
h
ia

i

BEN <
Ochiai

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

#
o
f
v
e
rs

io
n
s

A
v
e
ra

g
e

 o
f
 D

if
fe

re
n
c
e

P
e
rc

e
n
ta

g
e
s

S
ie

m
e
n

s
 S

u
it
e

printtokens 4 0 0 3 -1 -0.53 0 0 4 0 0

printtokens2 7 +6 +3.73 1 0 0 +3 +1.33 4 -2 -0.50

replace 8 0 0 1 -7 -4.25 +2 +3.10 1 -5 -4.96

schedule 5 +1 +2.60 1 -3 -5.41 +4 +2.27 0 -1 -9.74

schedule2 2 +1 +3.94 1 0 0 0 0 1 -1 -0.79

tcas 9 +1 +4.62 5 -3 -4.62 +2 +2.31 4 -3 -4.10

totinfo 9 +2 +2.85 3 -4 -11.18 +4 +10.30 3 -3 -1.36

Siemens Suite 44 11 3.57 15 -18 -5.84 15 4.34 17 -15 -3.51

g
re

p

grep1 4 +3 +0.64 1 0 0 +2 +13.97 1 -1 -4.00

grep3 7 +4 +2.13 0 -3 -0.10 +4 +0.24 0 -3 -0.10

grep4 1 0 0 0 -1 -0.12 0 0 0 -1 -0.12

grep 12 +7 +1.49 1 -4 -0.10 +6 +4.82 1 -5 -0.89

g
z
ip

 gzip1 13 +9 +13.58 0 -4 -7.17 +10 +6.38 0 -3 -9.32

gzip2 4 +4 +0.70 0 0 0 +1 +0.10 0 -3 -0.55

gzip5 4 +3 +1.18 0 -1 -2.76 +2 +0.40 0 -2 -2.21

gzip 21 +16 +8.03 0 -5 -6.29 +13 4.98 0 -8 -4.25

130

For multiple-fault versions (Table 4-24), BEN outperforms Ochiai for all the three

cases, Siemens Suite, grep and gzip, although the difference between the two approaches

is very small for the Siemens programs. In Siemens programs, Tarantula is more effective

than BEN; however, BEN is much more effective in the grep and gzip programs.

We investigated all the four versions of totinfo in which Tarantula outperforms BEN.

In all cases the faulty statement localized by BEN is different from the one localized by

Tarantula. The faulty statement, which is detected by Tarantula, is not even executed by

the core member generated by BEN, thus it is not suspicious. The same situation happens

for two out of three versions of the tcas program that Tarantula outperforms BEN

(Table 4-24).

The effectiveness of BEN could be different in localizing different faulty statements.

However, as we mentioned, BEN focuses on one inducing combination, which is likely due

to one faulty statement. While there may be more than one inducing combination, BEN

stops searching for inducing combinations, as soon as the first one is identified, in the first

phase. The effectiveness of BEN to some extent depends on the faulty statement related

to the identified inducing combination.

4.5.2.4 Threats to validity

Threats to internal validity are factors that may be responsible for the experimental

results, without our knowledge. One of the key steps in our experiments is modeling the

input parameters, which may affect the correctness of the result. To reduce this threat, we

have modeled the input parameters by using the program specifications and if they are not

available, the error-free versions, without having any knowledge about the faults. All the

models, except the gzip model, have been used in other studies [13][10]. In [10], the models

are used to compare the effectiveness of combinatorial testing and random testing.

131

In addition, we automated the experimental procedure as much as possible, as an

effort to remove human errors. In particular, all the steps are automated except counting

the number of statements that should be inspected to find the faulty statement. Further,

consistency of the results has been carefully checked to detect potential mistakes made in

the experiments. For example, the higher the average of inducing probability, the more

likely the core member fails. In the extreme case, if the inducing probability is 1, the core

member must fail. To check the consistency of the results, we check the inducing

probability whenever the core member did not fail. For instance, in one out of seven killed

versions of the schedule program, the core member did not fail. We checked the inducing

probability for this version, which is relatively small, 0.25.

Threats to external validity occur when the experimental results could not be

generalized to other programs. We use subject programs from the Siemens suite [7]; these

programs are created by a third party and have been used in other studies [17][27][23].

However, the subject programs are programs of relatively small size with seeded faults. To

mitigate this threat, the grep and gzip programs were added to the experiments, but more

experiments on larger programs with real faults can further reduce this threat.

Each of the Siemens program has multiple versions, each of which has a single

fault. However, programs in practice could have multiple faults. To mitigate this threat, we

created several multiple-fault versions that combined randomly selected faults and

conducted an experiment on these versions. More experiments on programs with real

faults can further reduce this threat.

4.6 RELATED WORK

In this section, we first discuss existing work on identifying failure-inducing

combination, i.e., the first phase of BEN. Then, we focus on fault localization work, which

is related to the second phase of BEN.

132

4.6.1 Related work on identifying inducing combinations

Existing approaches to identifying inducing combinations can be classified into two

groups. The first group takes as input a single failed test and tries to identify inducing

combinations in the test.

Two techniques, called FIC and FIC_BS [37], try to identify all the inducing

combinations contained in a failed test. These approaches take one failed test from a

combinatorial test set, then generate and execute a small number of tests in a systematic

manner to identify inducing combinations in the failed test. New tests are generated such

that one value, 𝑣𝑖, of the failed test is changed to another possible value. When the newly

generated test passes, 𝑣𝑖 is part of inducing combination because its removal makes the

test pass. FIC generates k tests; where k is the number of parameters, for each failure

inducing combination.

FIC_BS is the binary search version of FIC. To generate a new test, FIC_BS

changes the values of k/2 parameters of the failed test. If the newly generated test passes,

FIC_BS searches for inducing combination in the changed values (k/2). The process

continues until all inducing combinations are found. FIC and FIC_BS assume that no new

inducing combinations are introduced when a value is changed to create a new test.

Li et al. [22] introduced two techniques for identifying inducing combinations called

RI and SRI. These techniques use a method called delta debugging [36] in an iterative

framework. The RI approach takes one failed test from the initial combinatorial test set,

and adopts a similar approach to FIC_BS to generate a small number of tests. The SRI

approach, which is an improved version of RI, takes one failed test, f, and the combinatorial

test set. Then it tries to find a similar passed test to f from the combinatorial test set. SRI

uses the fact that the inducing combination appeared in the failed test f, but not in the

similar passed test. Therefore, it focuses on the parameters, which are different in the failed

133

and passed tests. SRI could identify inducing combination by generating fewer tests than

RI.

The second group of techniques for identifying inducing combinations takes a set

of tests as well as their execution statuses.

The AIFL technique in [30][33] first identifies a set A of suspicious combinations as

candidates for being inducing. Second, it generates a group of tests for each failed test

using SOFOT strategy [26]. After executing the newly generated tests, combinations which

appeared in the passed tests are removed from the suspicious set, A.

The InterAIFL technique is an iterative approach proposed by Wang et al. in [33].

It iteratively generates and refines suspicious set A until it becomes stable.

Let k be the number of parameters. For each test f, the SOFOT strategy generates

k tests by changing the value of one parameter at a time. Each test is different from the

original test f in one value; the value is selected randomly from the corresponding

parameter’s domain.

BEN also, tries to identify inducing combinations in a combinatorial test set, instead

of a single failed test. There are two advantages resulting from using the whole test set

rather than a single test. First, a test set contains more information than a single test.

Second, it would be possible to identify inducing combinations that appear in different tests.

BEN identifies suspicious combinations in the same way as AIFL and Inter-AIFL.

However, BEN produces a ranking of suspicious combinations and focuses on the most

suspicious combinations. Moreover, BEN significantly differs from AIFL and Inter-AIFL in

the way of generating new tests. BEN generates tests for a top-ranked suspicious

combinations based on the notions of suspiciousness combination and suspiciousness of

the environment. While AIFL and Inter-AIFL generate tests for failed tests and select values

randomly.

134

We mention that Yilmaz et al. proposed a machine learning approach to identify

failure-inducing combinations [35]. The approach analyzes the combinatorial test set and

tests statuses and builds a classification tree. The classification tree is used to predict

inducing combinations. Shakya et al. in [28] made some improvements in identifying

failure-inducing combinations based on Yilmaz’s work.

4.6.2 Related work on fault localization

In Section 4.5, we already mention two fault localization approaches, Tarantula

[17][18] and Ochiai [1]. Similar to BEN, Tarantula and Ochiai use statement coverage

information to compute suspiciousness of each statement. Statement coverage is

computed by multiple execution traces of failed and passed tests.

In Tarantula, the suspiciousness value of each statement is the ratio of failed tests

that execute the statement divided by the ratio of failed tests that execute the statement

plus the ratio of passed tests that execute the statement. However, Ochiai computes the

suspiciousness value of each statement by dividing the number of failed tests that execute

the statement by the square root of all failed tests multiply by all tests that execute the

statement.

Then, Tarantula and Ochiai look for faulty statement in a non-increasing order of

their suspiciousness values.

Three spectrum-based approaches, set union, set intersection and nearest

neighbor, are proposed by Renieris and Reiss in [27]. These approaches assume that there

are one failed run (the spectrum of a failed test) and a large number of passed runs (the

spectra of passed tests).

Each of the three approaches has a different way to identify highly suspicious

statements for being faulty, and these statements are then checked to find the actual faults.

Let f be the program spectrum of a failing run and S be a set of program spectra of passed

135

runs. The set union method computes f − ⋃ sS , where ⋃ sS is the union spectra of a set of

passed runs. The statements in the spectrum of the failed run but not in the union spectra

of the passed runs are highly suspicious. In the intersection method, the highly suspicious

statements are in the intersection spectra of a set of passed runs but not in the spectrum

of the failed run, ⋂ sS − f.

In the nearest neighbor approach, one passed run whose spectrum is the most

similar to the failed spectrum is selected from 𝑆. The statements in the difference set of

these two spectra have the highest suspiciousness of being faulty.

If the fault is not found in the highly suspicious statements set, the program

dependence graph is build. The nodes corresponding to the highly suspicious statements

are marked as blamed nodes. Then, in both directions, backward and forward, a breadth-

first search is performed from the blamed nodes. The statements corresponding to the

nodes at a distance of one are also suspicious and must be checked. This process is

repeated until the faulty statement is found.

Empirical evaluation in [17] shows that for the Siemens suite, Tarantula is more

effective and efficient than the other methods, including set union, set intersection, and

nearest neighbor. Lucia et al. in [23] reported the experiments that show Tarantula and

Ochiai are comparable to each other for the Siemens programs. However, the work

reported in [1] suggests that Ochiai outperforms Tarantula. The former work used

statement coverage spectra while the latter used branch coverage spectra. Both works,

i.e., [1] and [23], applied fault localization methods using the test pools provided for each

program by the benchmark [7].

Our experimental results also show that Ochiai is slightly better than Tarantula.

BEN used combinatorial test set and statement coverage spectra.

136

The fundamental difference between BEN and the above spectrum-based

approaches is that BEN systematically generates a small group of tests, and then analyzes

their spectra to produce a ranking of statements. The existing approaches do not deal with

test generation. Instead, they assume the existence of a large number of test runs, which

are generated randomly or using other techniques. In addition, they require every test

execution to be traced. As a result, they cannot utilize the testing results if the test

executions were not traced. In contrast, our approach is designed to work after normal

testing is performed where test executions are not traced. Our approach only needs to

trace the execution of a small number of tests that are generated in the second phase of

our approach. As shown in Section 4.5, our approach can significantly reduce the number

of tests needed to be instrumented for tracing but still produce results that are competitive

to or better than Tarantula and Ochiai.

We mention that an approach, called LCEC [24], was reported that also leverages

the result of combinatorial testing to localize the faulty statement. LCEC was published

after our original work in [13][14]. LCEC selects a failed test from the initial combinatorial

test set, and generates a group of passed tests by changing values of failed test involved

in the inducing combination. The execution traces of failed and passed tests are analyzed

to derive cause-effect chains of statements. A depth-first search is performed for all cause-

effect chains to locate faulty statement. Then, if the faulty statement is not found, the user

does breath-first search in the dynamic backward slice, which has been done in, associated

with the incorrect output value. LCEC is applied to four small programs, maximum 220

lines of code, including tcas. The cost of applying LCEC is not reported in [24].

4.7 CONCLUSION

In this paper, we presented an approach called BEN to localizing faults that

leverages the result of combinatorial testing. Our approach consists of two phases. The

137

first phase identifies a failure-inducing combination, which is used in the second phase to

localize the faulty statement in the source code.

In the first phase, BEN adopts an iterative framework that ranks suspicious

combinations and generates new tests repeatedly until an inducing combination is

identified. The novelty of this phase lies in the fact that we rank suspicious combinations

and generate new tests based on the notions of suspiciousness of a combination and

suspiciousness of its environment. The higher the suspiciousness of a combination, the

lower the suspiciousness of its environment, the higher this combination is ranked. New

tests are generated for a user-specified number of top-ranked suspicious combinations

such that the suspiciousness of the environment of a combination is minimized in each

test. Our approach starts with searching for inducing combinations whose size is equal to

the strength t of the initial test set. If it is not found, the approach expands its search to

combinations whose size is greater than t.

The key idea of the second phase of BEN is that we systematically generate a

group of tests from an inducing combination such that the spectra of these tests can be

analyzed quickly to identify the faulty statement. This group of tests consists of a core

member that is a failed test run and a number of derived members that are passed test

runs but are very similar to the core member. The suspiciousness values of statements are

computed by analyzing the spectra of the core member and the derived members.

We applied BEN to the Siemens suite and also the grep and gzip programs. Our

experimental results show that our approach requires a very small number of tests to be

generated while significantly reducing the number of statements to be inspected for fault

localization. In particular, our approach achieves results that are competitive to or better

than those of Tarantula [18] and Ochiai [1] while requiring significantly fewer tests to be

instrumented.

138

We emphasize that our approach has an important advantage over existing

spectrum-based approaches such as Tarantula and Ochiai. Existing spectrum-based

approaches require every test execution to be traced. If a test set is already executed

without being traced, the test set must be re-executed to collect traces before they can be

used by approaches like Tarantula an Ochiai. In contrast, our approach only requires a

small number of tests generated in the second phase of our approach to be traced. Our

approach is designed to work after normal testing is performed where test executions do

not need to be traced.

We plan to conduct more empirical studies to further evaluate the performance of

our approach. In particular, our current approach assumes that a combinatorial test set is

used to test a program. We plan to investigate how to adapt our approach to work with an

arbitrary test set. This will further increase the applicability of our approach. That is, we will

try to identify inducing combinations from an arbitrary test set and then use them to

generate tests for fault localization. The challenge is to deal with the fact that unlike a

combinatorial test set, an arbitrary test set does not guarantee that all t-way combinations

are covered. This might reduce the effectiveness of our approach.

4.8 Acknowledgment

This work is partly supported by three grants (70NANB12H175, 70NANB10H168,

and 70NANB15H199) from Information Technology Lab of National Institute of Standards

and Technology (NIST).

Disclaimer: Certain software products are identified in this document. Such

identification does not imply recommendation by the NIST, nor does it imply that the

products identified are necessarily the best available for the purpose.

139

4.9 REFERENCES

1. R. Abreu, P. Zoeteweij, and A. van Gemund, "An Evaluation of Similarity Coefficients

for Software Fault Localization", In 12th Pacific Rim International Symposium

on Dependable Computing, pp.39,46, Dec. 2006.

2. Advanced Combinatorial Testing System (ACTS),

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html, 2015.

3. BEN: a combinatorial tesing-based fault localization tool,

http://barbie.uta.edu/~laleh/BEN.html, 2015.

4. M. N. Borazjany, Y. Linbin, Y. Lei, R. Kacker, and D. R. Kuhn, “T-way testing of

ACTS: A Case Study”, In Proceedings of the IEEE fifth International Conference on

Software Testing, Verification and Validation, pp.591-600, 2012.

5. D. Cohen, S. Dalal, M. Fredman, and G. Patton. “The AETG system: An approach

to testing based on combinatorial design”, In Proceedings of the IEEE Transactions

on Software Engineering, 23(7):437–444, 1997.

6. M. B. Cohen, P. B. Gibbons, W.B. Mugridge, C.J. Colbourn. “Constructing test suites

for interaction testing”, In Proceedings of the 25th International Conference on

Software Engineering (ICSE 2003), pages 38-48, 2003.

7. H. Do, S. Elbaum, and G. Rothermel. “Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact”, Empirical Software

Engineering. 10(4):405-435, 2005.

8. Empirical study on combinatorial testing, http://barbie.uta.edu/~laleh/research.html,

2015.

9. GCC online documentation, https://gcc.gnu.org/onlinedocs, 2015.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://barbie.uta.edu/~laleh/BEN.html

140

10. L. Ghandehari, M. N. Borazjany, Yu Lei, Raghu Kacker, Richard Kuhn, “Applying

Combinatorial Testing to the Siemens Suite”, In IEEE International Conference on

Software Testing, Verification and Validation (ICSTW), 2013.

11. L. Ghandehari, J. Czerwonka, Y. Lei; S. Shafiee, R. Kacker, R. Kuhn, "An Empirical

Comparison of Combinatorial and Random Testing," In Proceedings of the Software

Testing, Verification and Validation Workshops (ICSTW), pp.68-77, 2014.

12. L. Ghandehari, Jaganmohan Chandrasekaran, Yu Lei, Raghu Kacker, Richard Kuhn,

“BEN: A Combinatorial Testing-Based Fault Localization Tool”, In IEEE International

Conference on Software Testing, Verification and Validation (ICSTW), Graz, Austria,

April, 2015.

13. L. Ghandehari, Y. Lei, D. Kung, R. Kacker, R, Kuhn. Fault localization based on

failure-inducing combinations. Proceeding of the IEEE 24th International

Symposium on Software Reliability Engineering (ISSRE), 168-177, 2013.

14. L. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker. “Identifying Failure-Inducing

Combinations in a Combinatorial Test Set”, Proceedings of the IEEE International

Conference on Software Testing, Verification and Validation (ICST), 370-379, 2012.

15. GNU Grep, http://www.gnu.org/software/grep/manual/grep.html, 2015.

16. GNU Gzip, http://www.gnu.org/software/gzip/manual/gzip.html, 2015.

17. J. Jones and M. Harrold, “Empirical evaluation of the tarantula automatic fault-

localization technique”, In Proceeding IEEE/ACM Automated software engineering,

2005, 273-282.

18. J. Jones, M. Harrold, and J. Stasko, “Visualization of Test Information to Assist Fault

Localization”, In Proceedings of International Conf. on Software Engineering, 2002,

467-477.

http://www.gnu.org/software/grep/manual/grep.html
http://www.gnu.org/software/gzip/manual/gzip.html

141

19. D. R. Kuhn and V. Okum. “Pseudo-Exhaustive Testing for Software”, In Proceedings

of the 30th Annual IEEE/NASA Software Engineering Workshop (SEW '06). IEEE

Computer Society, 2006, 153-158.

20. D.R. Kuhn, D.R. Wallace, A.M. Gallo. “Software fault interactions and implications

for software testing”, In Proceedings of the IEEE Transaction on Software

Engineering, 2004, 30: 418–421.

21. Y. Lei, R. Kacker, D. Kuhn, V. Okun, J. Lawrence, “IPOG/IPOD: Efficient test

generation for multi-way software testing”, Journal of Software Testing, Verification,

and Reliability, 18(3):125-148, Sept. 2008.

22. J. Li; C. Nie, and Y. Lei, "Improved Delta Debugging Based on Combinatorial

Testing," In Proceedings of International Conference on Quality Software (QSIC),

pp.102,105, 2012.

23. Lucia, D. Lo, L. Jiang, A. Budi, “Comprehensive evaluation of association measures

for fault localization”, In Proceedings of the IEEE International Conference on

Software Maintenance, 1-10, 2010.

24. C. Ma, Y. Zhang, J. Liu, and M. Zhao, "Locating Faulty Code Using Failure-Causing

Input Combinations in Combinatorial Testing," In Proceedings of 4th World Congress

on of Software Engineering (WCSE), pp.91,98, 2013.

25. C. Nie and H. Leung. “A survey of combinatorial testing”, ACM Computing Surveys

(CSUR), 43(2):11: 1-11: 29, January 2011.

26. C. Nie, H. Leung, and B. Xu. “The minimal failure-causing schema of combinatorial

testing”, ACM Transactions on Software Engineering and Methodology, Volume 20

Issue 4, September 2011.

142

27. M. Renieris and S. Reiss, “Fault localization with nearest neighbor queries”, In

Proceedings of the International Conference on Automated Software Engineering,

2003.

28. K. Shakya, T. Xie, N. Li, Y. Lei, R. Kacker, and R. Kuhn, "Isolating Failure-Inducing

Combinations in Combinatorial Testing Using Test Augmentation and

Classification," In proceedings of 5th IEEE International Conference on Software

Testing, Verification and Validation (ICST), pp.620-623, 2012.

29. P.J. Schroeder, P. Bolaki, V. Gopu, "Comparing the fault detection effectiveness of

n-way and random test suites," In Proceeding of the International Symposium on

Empirical Software Engineering, pp.49-59, 2004.

30. L. Shi, C. Nie, B. Xu. “A software debugging method based on pairwise testing”, In

Proceedings of the International Conference on Computational Science (ICCS2005),

pages 1088-1091, 2005.

31. Software-artifact Infrastructure Repository, http://sir.unl.edu/portal/index.php, 2012.

32. D. R. Wallace, D. R. Kuhn, “Failure Modes in Medical Device Software: an Analysis

of 15 Years of Recall Data”, In Proceeding of the ACS/ IEEE International

Conference on Computer Systems and Applications, pp. 301-311, 2001.

33. Z. Wang, B. Xu, L. Chen, and L. Xu. “Adaptive interaction fault location based on

combinatorial testing”, In Proceedings of the 10th International Conference on

Quality Software (QSIC 2010), pages 495–502, 2010.

34. E. Wong and V. Debroy, “A survey on software fault localization”, Technical Report

UTDCS-45-09, Department of Computer Science, University of Texas at Dallas, Nov.

2009.

http://sir.unl.edu/portal/index.php

143

35. C. Yilmaz, M. B. Cohen, A. A. Porter. “Covering arrays for efficient fault

characterization in complex configuration spaces”, In Proceedings of the IEEE

Transaction on Software Engineering, 2006, 32(1): 20-34.

36. A. Zeller and R. Hildebrandt. “Simplifying and isolating failure-inducing input”, In

Proceedings of the IEEE Transactions on Software Engineering, 2002, pages 183–

200.

37. Z. Zhang, and J. Zhang. “Characterizing failure-causing parameter interactions by

adaptive testing”, In Proceedings of ACM International Symposium on Software

Testing and Analysis (ISSTA 2011), pages 331-341, 2011.

144

 BEN: A Combinatorial Testing-Based Fault Localization Tool

The paper is published in IEEE 8th International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), in 2015.

145

BEN: A Combinatorial Testing-Based Fault

Localization Tool*

Laleh Sh. Ghandehari1, Jaganmohan Chandrasekaran1, Yu Lei1, Raghu Kacker2, D. Richard Kuhn2

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

{laleh.shikhgholamhosseing, jaganmohan.chandrasekaran}@mavs.uta.edu, ylei@cse.uta.edu

2Information Technology Lab, National Institute of Standards and Technology, Gaithersburg, MD,

USA

{raghu.kacker, d.kuhn}@nist.gov

Abstract- We present a combinatorial testing-based fault localization tool called

BEN. BEN takes as input three types of information, including the subject program, the

source code, an input parameter model, and a combinatorial test set created based on the

input parameter model. It is assumed that the combinatorial test set has already been

executed, and thus the execution status of each test is known. The output of BEN is a

ranking of statements in terms of their likelihood to be faulty. In the fault localization

process, a small number of additional tests are generated by BEN and need to be executed

by the user. In this paper, we present the major user scenarios and the high-level design

of BEN. BEN is implemented in Java and provides a graphical user interface that provides

friendly access to the tool.

Keywords- BEN, Fault Localization, Combinatorial Testing.

* Copyright © 2015 IEEE. Reprinted, with permission, from Laleh Sh. Ghandehari, Jaganmohan

Chandrasekaran, Yu Lei, Raghu Kacker and Richard Kuhn, BEN: A Combinatorial Testing-Based
Fault Localization Tool, IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), April 2015.

146

5.1 INTRODUCTION

In this paper, we introduce a combinatorial testing-based fault localization tool

called BEN. BEN takes as input three types of information about the subject program, the

source code, an input parameter model, and a combinatorial test set created based on the

input parameter model. It is assumed that the combinatorial test set has already been

executed, and thus the execution status of each test is known. The output of BEN is a

ranking of statements such that the higher rank a statement has, the more likely it is faulty.

 The fault localization process conducted by BEN consists of two major phases.

The first phase produces a ranking of combinations in terms of their likelihood to be failure-

inducing. A combination is failure-inducing, or simply inducing, if all tests containing this

combination fail [3, 5, 7, 12, 13]. In the second phase, BEN takes a top ranked inducing

combination from which a failed test and a small number of passed tests are generated.

The execution traces of these tests are analyzed to produce the final ranking of faulty

statements.

BEN is written in Java and thus can be executed on different platforms such as

Windows, Linux and MacOS. BEN provides both Graphical User Interface (GUI) and

Command Line Interface. BEN is developed with support from NIST and the University of

Texas at Arlington. BEN is publicly available [1].

Several approaches are reported on how to identify inducing combinations in a

combinatorial test set [5, 8, 12, 14]. Ma et al. reported an approach that identifies faulty

code based on failure-inducing combinations [6]. While they adopt a similar two-phase

framework, they use very different techniques to identify inducing combinations and faulty

statements. To the best of our knowledge, their work is the only other work that performs

code-based fault localization based on combinatorial testing. However, they did not provide

a public tool that implements their approach.

147

The remainder of this paper is organized as follows. Section 5.2 describes the main

idea of the fault localization approach implemented by BEN. Section 5.3 discusses how to

use BEN through a use case. Section 5.4 describes the design of BEN in terms of major

data structures and modules. Section 5.5 provides concluding remarks and our plan for

future work.

5.2 APPROACH

In this section we provide a high-level discussion about the fault localization

approach implemented by BEN, in terms of its two major phases, i.e., inducing combination

identification, and faulty statement identification. Refer to our earlier work [5, 4] for more

details.

5.2.1 Inducing combination identification

This phase adopts an iterative framework. It begins by analyzing the initial

combinatorial test set to identify the set of all suspicious combinations. A suspicious

combination with respect to a test set F is a combination that only appears in the failed

tests of F. Suspicious combinations are candidates of inducing combinations. Suspicious

combinations are ranked based on their likelihood to be inducing. Next, a set of new tests

is generated that the user may choose to execute. The results of these new tests are used

to refine the ranking of suspicious combinations. This process continues until one or more

stopping conditions are satisfied.

The ranking of suspicious combination is based on two key concepts,

suspiciousness of combinations and suspiciousness of the environment of combination.

Informally, the higher the suspiciousness of a combination, the lower the suspiciousness

of its environment, the higher the combination is ranked. The details of the ranking and test

generation methods were explained in [5].

148

5.2.2 Faulty statement identification

 In this phase, a small group of tests are generated using an inducing combination.

The group has one failed test, which is referred to as a core member, containing the

inducing combination. The group also has several passed tests which are referred to as

derived members. Derived members are very similar to the core member but do not contain

the inducing combination. The execution trace of the core member is compared to the

execution trace of each derived member to produce a ranking of statements in terms of

their likelihood of being faulty.

5.3 USE CASE

In this section, we describe how BEN works. We use the 26th faulty version of the

replace program from the Siemens suite [2]. In order to apply combinatorial testing, we first

modeled the input parameters for the replace program. The details of the model are

discussed in [3]. Then, ACTS [11] is used to generate a 2-way test set consisting of 190

tests. All these 190 tests are executed, and 47 of them are failed. We show how to use

BEN to locate faulty statements causing these failures.

A new project, “replace”, is created in BEN by providing two input files. The first

file is the source code of the replace program. The second file is a configuration file

consisting of the input parameter model, the 2-way test set, and the test results. Figure 5-1

shows part of the second input file.

Figure 5-2 shows the main window of BEN after creating the replace project. The

main window has two parts. The left part provides an outline of the project where project

components are organized into a tree structure. The right part provides the details of each

component selected in the tree structure.

By pressing “Phase 1” button in the toolbar, BEN starts the first phase, i.e.,

inducing combination identification. The first phase may contain multiple iterations. When

149

the first iteration completes, new nodes are added to the tree to show the results of the first

iteration, including suspicious combinations, recommended test cases, suspicious

components, and inducing combinations. The user can inspect each component by clicking

on the desired node. Figure 5-3 shows the suspicious combinations and their ranks at the

end of the first iteration.

Figure 5-2. The main window of BEN after creating a project

Figure 5-1. The example of input file

150

Figure 5-3. Suspicious combinations after first iteration

Figure 5-4. List of inducing combinations

151

At this point, the user can either choose to proceed to the next iteration of Phase

1 or begin Phase 2. In the first case, the user can press “Phase 1” button again. In the

second case, the user should select an inducing combination and start Phase 2 by clicking

on the “Phase 2” button. Figure 5-4 shows inducing combinations of the example.

When Phase 2 completes, new nodes are added to the tree, which shows the core

member and three derived members. These tests should be executed and then the user

should provide the execution traces for the core member and all the derived members.

BEN adopts the Gcov [10] format for execution trace. The Gcov is a coverage tool and a

standard utility with the GNU Compiler Collection (GCC) suite.

Note that other coverage tools could be used, but the output should be saved in

the Gcov format. Figure 5-5 shows part of an execution trace of replace in the Gcov format.

The details of the Gcov format are available in [10].

By clicking on the “Statements Rank” button, the statements are ranked and top

ranked statements are highlighted, as shown in Figure 5-6. The demo of the example is

available at [1]. BEN is applied on several programs, Siemens suite, grep and gzip [2],

and the results show that it could locate faulty statement effectively and efficently. The

result will be published in fututre.

Figure 5-5. Part of an execution trace in Gcov format

152

5.4 DESIGN

Figure 5-7 shows the architecture of BEN consisting of two layers. The logical layer

contains the core functional components that manage the fault localization process. The

data layer contains the core data structures that store the input, intermediate and final

output.

5.4.1 Data Layer

IPM: A class that represents the input parameter model consisting of parameters

and constraints. A parameter contains a name and a list of values it takes. BEN supports

the same data types as supported by ACTS, i.e., Boolean, Integer and Enum [11]. A

constraint expression is represented as a string.

Component: A class that represents a parameter value. Each parameter value may

be associated with a suspiciousness value.

Figure 5-6. Statements ranking

153

Combination: A class that represents a combination of parameter values. Each

combination may be associated with a suspiciousness value.

Test Set: A class that represents a test set, which includes an array of tests and

also a list of execution results, one for each test. This class is used to represent both the

initial test set and recommended test sets.

Group: A class that represents a group of tests, one of which is a core member

and the others are derived members. An execution trace may be associated with each test

in the group.

5.4.2 Logical Layer

 Combination Management: A module is responsible to generate all possible

combinations. This model is also responsible for checking validity of combination.

Suspiciousness Management: A module that compute different types of

suspiciousness including suspiciousness of component, combination, and environment.

Combination Rank Generation: A module that computes the ranking of suspicious

combinations, using suspiciousness values computed by Suspiciousness Management.

BEN

Logical Layer

Suspiciousness
Management

Recommended
Test Generation

Statement Ranking
Generation

Data Layer

Source
Code

Test Set

Figure 5-7. Architecture diagram

Combination

Component IPM

Combination
Ranking Generation

Group

Statement Ranking

Core and Derived
Members Generation

Combination
Management

154

Recommended Test Generation: A module that generates recommended tests.

Recommended tests are guaranteed to be new, i.e. they have not been executed before.

The module also integrates an open source constraint solver, Choco [9] for constraint

handling to ensure validity of tests.

Core and Derived Member Generation: A module that generates the core member

and derived member based on an inducing combination. This module also uses the

constraint solver, Choco, to make sure the core and derived members satisfy constraints.

Statement Ranking Generation: A module that analyzes the execution traces of

the core member and derived members and produces the ranking of statements in terms

of their likelihood of being faulty.

5.5 CONCLUSION

In this paper, we report a combinatorial testing-based fault localization tool, i.e.,

BEN. We present a use case to demonstrate how to use BEN and also the architectural

design of BEN. Currently, BEN only implements our own approach to fault localization. We

plan to define and make public an API that allows BEN to be used by other combinatorial

testing-based approaches, e.g., Inter-AIFL [12] and FIC_BS [14].

5.6 Acknowledgment

This work is partly supported by a research grant (70NANB12H175) from

Information Technology Laboratory of National Institute of Standards and Technology

(NIST).

Disclaimer: NIST does not endorse or recommend

any commercial product referenced in this paper or imply that a referenced product is

necessarily the best available for the purpose.

155

5.7 REFRENCES

1. BEN the combinatorial testing-based fault localization tool,

http://barbie.uta.edu/~laleh/BEN.html

2. H. Do, S. Elbaum, and G. Rothermel. Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact. Empirical Software

Engineering. 10(4):405-435, 2005.

3. L.S. Ghandehari, M.N. Borazjany, Y. Lei, R. Kacker, R. Kuhn, Applying

Combinatorial Testing to the Siemens Suite. Proceeding of IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

362-371, 2013.

4. L.S. Ghandehari, Y. Lei, D. Kung, R. Kacker, R, Kuhn. Fault localization based on

failure-inducing combinations. Proceeding of the IEEE 24th International

Symposium on Software Reliability Engineering (ISSRE), 168-177, 2013.

5. L.S. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker. Identifying Failure-Inducing

Combinations in a Combinatorial Test Set. Proceedings of the IEEE International

Conference on Software Testing, Verification and Validation (ICST), 370-379, 2012.

6. C. Ma, Y. Zhang; J. Liu; M. Zhao, Locating Faulty Code Using Failure-Causing Input

Combinations in Combinatorial Testing, Proceedings of Fourth World Congress

on Software Engineering (WCSE), 91-98, 2013.

7. C. Nie and H. Leung. The Minimal Failure-Causing Schema of Combinatorial

Testing. ACM Transactions on Software Engineering and Methodology (TOSEM),

20(4):15 , 2011.

156

8. L. Shi, C. Nie, and B. Xu. A software debugging method based on pairwise testing.

Proceedings of the 5th International Conference on Computational Science (ICCS),

1088-1091, 2005.

9. The Choco Constraint Solver, http://www.emn.fr/z-info/choco-solver/index.html

10. The Test Coverage Tool, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

11. L. Yu, Y. Lei, R.N. Kacker, D.R. Kuhn. ACTS: A Combinatorial Test Generation

Tool. Proceeding of IEEE International Conference on Software Testing, Verification

and Validation (ICST), 370-375, 2013.

12. Z. Wang, B. Xu, L. Chen, and L. Xu. Adaptive interaction fault location based on

combinatorial testing. Proceedings of International Conference on Quality Software

(QSIC), 495–502, 2010.

13. Zeller and R. Hildebrandt. Simplifying and isolating failure inducing input.

Proceedings of the IEEE Transactions on Software Engineering, 183-200, 2002.

14. Z. Zhang and J. Zhang. Characterizing failure-causing parameter interactions by

adaptive testing. Proceedings of the ACM International Symposium on Software

Testing and Analysis (ISSTA), 331-341, 2011.

157

 Applying Combinatorial Testing to the Siemens Suite

The paper is published in IEEE 8th International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), in 2015.

158

Applying Combinatorial Testing to the Siemens

Suite*

Laleh Sh. Ghandehari1, Mehra N. Borazjany1, Yu Lei1, Raghu N. Kacker2, D. Richard Kuhn2

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas

76019, USA

2Information Technology Laboratory National Institute of Standards and Technology, Gaithersburg,

Maryland 20899, USA

Abstract- Combinatorial testing has attracted a lot of attention from both industry

and academia. A number of reports suggest that combinatorial testing can be effective for

practical applications. However, there are few systematic, controlled studies on the

effectiveness of combinatorial testing. In particular, input parameter modeling is a key step

in the combinatorial testing process. But most studies do not report the details of the

modeling process. In this paper, we report an experiment that applies combinatorial testing

to the Siemens suite. The Siemens suite has been used as a benchmark to evaluate the

effectiveness of many testing techniques. Each program in the suite has a number of faulty

versions. The effectiveness of combinatorial testing is measured in terms of the number of

faulty versions that are detected. The experimental results show that combinatorial testing

is effective in terms of detecting most of the faulty versions with a small number of tests. In

addition, we report the details of our modeling process, which we hope to shed some lights

on this critical, yet often ignored step, in the combinatorial testing process.

* Copyright © 2013 IEEE. Reprinted, with permission, from Laleh Sh. Ghandehari, Mehra N.

Borazjany, Yu Lei, Raghu N. Kacker and D. Richard Kuhn, Applying Combinatorial Testing to the
Siemens Suite, IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), March 2013.

159

Keywords- Combinatorial Testing, Input Modeling, Software Testing.

6.1 INTRODUCTION

Combinatorial testing has attracted a lot of attention from researchers. The key

observation in combinatorial testing is that most software failures are caused by

interactions of only a few input parameters. A t-way combinatorial test set is built to cover

all the t-way interactions, where t is typically a small integer [11][6]. If test parameters and

values are properly modeled, a t-way test set is able to expose all failures that involve no

more than t parameters.

A number of empirical reports suggest that combinatorial testing can be effective

for practical applications [2][3][7]. Most studies in these reports were designed to show that

combinatorial testing could be applied to different types of applications. Thus, they were

not controlled studies for evaluating the effectiveness of combinatorial testing. There are

two notable exceptions. Kuhn et al. studied several fault databases and found that all the

faults in these databases are caused by interaction of no more than six parameters

[9][10].These studies did not perform actual combinatorial testing on the subject systems.

Schroeder et al. compared the effectiveness of t-way testing to random testing in a

controlled study [14]. They selected two software applications used in their laboratory as

subject programs, and manually seeded a number of faults to measure fault detection

effectiveness.

In this paper, we report an experiment that applies combinatorial testing to the

Siemens suite [17]. The Siemens suite has been used as a benchmark to evaluate the

effectiveness of many testing techniques [3][7][18]. Each program in the suite has a

number of faulty versions. The effectiveness of combinatorial testing is measured in terms

of the number of faulty versions that are detected. The results show that most of the faulty

160

versions are detected by a small number of test cases. For example, all 32 faulty versions

of replace program are detected by a 2-way test set containing only 192 tests. Furthermore,

the results show that combinatorial testing is more effective than random testing.

We also report the details of our modeling process, which is a critical, yet often

ignored step in the combinatorial testing process. Our approach consists of three main

steps. First we create an abstract model for the system. This model consists of abstract

parameters and values. On the one hand, abstraction reduces the modeling complexity

that has to be managed at one time. On the other hand, abstraction helps to discover

aspects that need to be tested. Second we generate a combinatorial test set based on the

abstract model. Existing combinatorial test generation tools such as ACTS [1] can be used

in this step. Third, we derive concrete tests from the abstract tests. These concrete tests

are then used to perform the actual testing.

It is important to note that whereas the programs in the Siemens suite are relatively

small, in terms of lines of code, and have a small number of input parameters, their input

spaces are complex. For example, replace has 564 lines of code and 3 input parameters.

However, its abstract model contains 20 abstract parameters and 36 constraints. The input

parameters have different features and characteristics that must be considered for testing,

e.g. one of the input parameters is a regular expression.

The remainder of this paper is organized as follows. In section 6.2, we describe

our approach for applying combinatorial testing. Section 6.3 reports experimental results

that demonstrate the effectiveness of our modeling. Section 6.4 discusses existing work

on input space modeling. Section 6.5 provides concluding remarks.

6.2 APPROACH

In this section, we explain our approach to apply combinatorial testing. The

approach consists of three major steps: (1) Create an abstract model, (2) Generate an

161

abstract test set, and (3) Derive concrete tests. We use the replace program in the Siemens

suite, to explain each task in detail.

6.2.1 Create abstract model

This step has two major tasks: (1) define abstract parameters and values, (2)

define relations and constraints.

6.2.1.1 Define abstract parameters and values

First, we analyze the system specification and identify factors that may affect the

behavior of the system. These factors are candidates for abstract parameters. The

equivalence partitioning approach is used to define the values of each abstract parameter.

We use the replace program in the Siemens suite to show how we define abstract

parameters and values based on its specification. The replace program has three inputs,

pattern, substitute and input text. The program finds every match of the pattern in the input

text and replaces it with the substitute.

The pattern is a restricted form of regular expression. Table 6-1 shows the

metacharacters that can be used in pattern. Note that the @ character can have different

meanings, depending on the next character. If a character other than n and t appears after

@, the program ignores it. For example, @e matches e. But when @ appears at the end

of the pattern, the program behave as if it is a simple character and matches with @. For

example, e@ matches e@.

The substitute is a string that allows only three metacharacters to be used. These

include two metacharacters, @t and @n, as shown in Table 6-1 and a metacharacter &,

which represents the string that matches the pattern. For example, if the string that

matches the pattern is ab and the substitute is a&c, all ab strings in the file are replaced

with aabc.

162

Table 6-2 shows the abstract model of the replace program for pattern and

substitute. There are a total of 20 parameters in the model. The parameters with prefix pat

are identified for pattern, and the parameters with prefix sub are identified for substitute.

Note that these parameters are abstract as they are not the actual input parameters taken

by the replace program.

The key modeling decision is twofold. First, each metacharacter is identified to be

an abstract parameter. Our motivation is that the core logic of the replace program is

dealing with these metacharacters. Thus, we consider each metacharacter to be an

important factor that could affect the program behavior. Special attention is paid to

metacharacters * and &. These two metacharacters can be combined with other meta or

regular characters. An abstract parameter is identified for each possible combination. For

example, pat_question* represents the combination where a question mark appear before

*.

Second, the values of each abstract parameter (i.e., metacharacter) are identified

based two considerations. The first consideration is whether or not a parameter appears in

the pattern (or substitute). Two values, off and on, can be used to represent the two cases.

Table 6-1. Pattern's metacharacter

Metacharacter Description

? Matches every character.

*
Matches the preceding pattern element zero or more
times.

[-]
Matches a single character that is in the specified
range. For example [a-c] matches “a”, “b” and “c”.

[^]
Matches every character except the ones inside
brackets.

@t Matches a tab.

@n Matches the end of a line.

% Matches the beginning of a line. (BOL)

$ Matches the end of a line. (EOL)

163

The second consideration is the following: If a parameter does appear in the pattern (or

substitute), where does it appear? Thus, the on value identified earlier is further divided

into three abstract values, begin, middle, and end. In Table II, all the parameters but four

have four values, off, begin, middle, and end. The four exceptions, i.e., pat_BOL, pat_EOL,

pat_@n, and pat_@, only have two values, on and off, because they can only appear in a

particular position by nature. For example, BOL (i.e., %) by definition can only appear in

the beginning of the pattern.

Table 6-2. The Abstract Model of Replace

Parameters Values

pat_character1 [off, begin, middle, end]

pat_question2 [off, begin, middle, end]

pat_range3 [off, begin, middle, end]

pat_negate4 [off, begin, middle, end]

pat_@t [off, begin, middle, end]

pat_@character [off, begin, middle, end]

pat_question* [off, begin, middle, end]

pat_character* [off, begin, middle, end]

pat_range* [off, begin, middle, end]

pat_negate* [off, begin, middle, end]

pat_@t* [off, begin, middle, end]

pat_@character* [off, begin, middle, end]

pat_BOL5 [off,on]

pat_EOL6 [off,on]

pat_@n [off,on]

pat_@ [off,on]

sub_character [off, begin, middle, end]

sub_@n [off, begin, middle, end]

sub_@character [off, begin, middle, end]

sub_& [off, begin, middle, end]

1Regular character
2? metacharacter
3[-] metacharacter
4[^] metacharacter
5% metacharacter
6$ metacharacter

164

Now we discuss how to model the third input parameter, i.e., the input text, of the

replace program. We consider that an input text consists of a sequence of lines. The key

observation is that a line is relevant from the testing perspective only if it contains a match

or mismatch of the pattern. Assume that the pattern consists of k elements. The input text

is modeled such that it consists of k + 2 lines. The first line matches the pattern. The second

line matches all the elements but the first in the pattern. The third line matches all the

elements but the second in the pattern, and so on. The last line does not match any element

in the pattern. Note that we do not consider cases where a mismatch is due to multiple, but

not all, of the elements in the pattern. This is essentially a trade-off made between test

effort and test coverage.

6.2.1.2 Define relations and constraints

Relations are used to create parameter groups that can be covered at different

strengths. Furthermore, parameters in different groups are independent and thus their

combinations do not have to be tested. In our experiments, we used the default relation

where all the parameters are considered to be in the same group. In retrospect, the

parameters for pattern could be put into one group and the parameters for substitute in a

second group. This would allow us to reduce the number of tests.

Constraints are used to exclude combinations that are not valid from the domain

semantics. For the replace program, a total of 36 constraints are specified. All these 36

constraints are concerned with the position values of different parameters. In particular, in

each test, there shall be only one parameter that has the value begin or end.

6.2.2 Generate abstract tests

In this step, an abstract test set is generated using an existing combinatorial test

generation tool [11]. We used the ACTS tool [1]. ACTS can generate a combinatorial test

165

set with strength 2 through 6. Note that these tests are abstract in that they cannot be

directly executed. Instead, concrete tests must be derived first, which is discussed below.

6.2.3 Derive concrete tests

A scheme is needed to derive a concrete test from each abstract test.

Conceptually, such a scheme consists of two parts. The first part is to map each abstract

value to a concrete value. An abstract value is typically identified in a way such that it

represents an equivalence group, i.e., a group of values that are equivalent to each other

in terms of how they could affect the system behavior. Thus, it is sufficient to map an

a. Abstract test

Parameters Values

pat_character middle

pat_question middle

pat_range middle

pat_negate middle

pat_@t off

pat_@character off

pat_question* off

pat_character* off

pat_range* off

pat_negate* off

pat_@t* off

pat_@character* off

pat_BOL on

pat_EOL off

pat_@n on

pat_@ off

sub_character begin

sub_@n end

sub_@character off

sub_& middle

b. Concrete test

Parameters Values

Pattern %a?[a-e][^a]@n

Substitute a&@n

Input file 1. abef

2. gabef

3. bef

4. aef

5. abf

6. abe

7. abefg

8. gbfag

Figure 6-1. An example of abstract test and its concrete test

166

abstract value to any value in its equivalence group. For example, in the replace program,

the abstract value, middle, represents all the positions those are neither at the beginning

nor at the end. The specific position is often not important.

The second step is to map an abstract test to a concrete test. This part builds on

the first step. In addition, it needs to map abstract parameters to concrete parameters.

Recall that abstract parameters are identified to represent factors that could affect the

system behavior. There typically does not exist a one-to-one mapping between abstract

and concrete parameters. In fact, there are often more abstract parameters than concrete

parameters. For example, for the replace program, there exist 20 abstract parameters,

which need to be mapped to three concrete input parameters.

As an example, consider the abstract test in Figure 6-1(a) and the concrete test in

Figure 6-1 (b) for the replace program. In this example, the value of pat_BOL is on, so “%”

is put at the beginning of the pattern. Similar, “@n” is placed at the end of the pattern.

Other parameters, whose values are middle, are placed in the middle of the pattern. For

pat_character, pat_range and pat_negate a, [a-e] and [^a] are put in pattern. Similarly, the

substitute is created based on the corresponding parameter values in the abstract test.

The last row of Figure 6-1 (b) shows different lines in the input file. The first line,

abef, matches the pattern, since a matches with a, b matches with question mark, e

matches with [a-e] element, and f matches with [^a]. Also, the first line matches % at the

beginning and @n at the end.

Each line from line 2 to 7 matches all but one element in the pattern. For example

the second line has the exact string abef which matches the pattern. However, since it is

not at the beginning of the line (i.e., there is g at the beginning), the first element, %, in the

pattern is not matched. The third line violates a in the pattern, and so on. The last line, i.e.,

line 8, does not match any element in the pattern.

167

Note that the scheme used to derive concrete tests from abstract tests is often

specific to the subject application. However, such a scheme typically can be fully

automated. This is the case for our experiments, where we wrote a program for each

subject program to automate this process.

6.3 EXPERIMENT

We used the Siemens suite as our subject programs [17]. The Siemens suite

contains 7 programs and each of these programs contains a number of faulty versions.

The Siemens suite also provides an error-free version and a test pool for each program.

Table 6-3 represents properties of subject programs. The second column shows

the number of lines of uncommented code. The third column shows the number of

procedures. The forth column shows the number of faulty versions for each program.

Two programs, printtokens and printtokens2, have the same specification but

different implementations. Since the input space model is independent from the source

code, these programs share the same model. Similarly, two programs schedule and

schedule2 have the same specification and thus share the same model. Therefore, in this

section, we present five input models for the Siemens suite programs. Note that the input

model for tcas is given in [9] and is included here for completeness.

Table 6-3. Subject Programs

Program LOC Procedures #Faulty Versions

print_tokens 726 20 7

print_tokens2 570 21 10

replace 564 21 32

schedule 412 18 9

schedule2 374 16 10

tcas 173 8 41

totinfo 565 16 23

168

In our experiments, we focus on interaction faults. As a result, our models are not

designed for boundary testing or invalid testing. We believe most boundary and invalid

faults are one-way faults, and they can be detected more efficiently using a different model

where the focus is to identify special values of individual parameters. However, this belief

needs to be validated by more experiments, which is beyond the scope of this paper.

Specifications of the programs are not provided by the benchmark. To understand

what each program is supposed to do, we had to inspect the source code. (A search on

the Internet did not find any such specification either.) To avoid potential bias in developing

the model, only the source code of the error-free version was used. That is, we were not

aware of the faults during the modeling process. Nonetheless, this is an internal threat to

validity that needs to be considered.

We start with 2-way testing, and then move to 3-way testing, and so on, until (1)

all faulty versions are detected; or (2) testing at the current strength does not detect any

faulty versions that were not detected in testing at the previous strength. For example, 2-

way testing did not detect 2 out of 9 faulty versions of the schedule program. So 3-way

testing was performed on these 2 versions, which did not detect any of the two versions.

At this point, we stopped testing and started to inspect the testing results.

6.3.1 Replace

We explained the modeling details of the replace program in the previous section.

We applied 2-way testing to this program, which had a total of 192 tests. We detected all

the 32 faulty versions of this program.

6.3.2 Schedule

Two programs, schedule and schedule2, take the following inputs: (1) three non-

negative integers representing the number of processes in three different priority queues,

low, medium and high; and (2) a list of commands that must be done on queues. The output

169

of these two programs is a list of numbers indicating the order in which the processes exit

(from the scheduling system).

For example, consider the first three input parameters which are 3, 2 and 1. Three

processes are placed in low priority queue, two processes in medium priority queue, and

one process is high priority queue. The id is assigned to the processes by their priority so

the 0 is in the high priority queue, 1 and 2 are in medium priority queue and 3, 4 and 5 are

in low priority queue.

There are seven commands (1) new job: this command has one attribute, queue,

and adds a new process at the specified priority queue. (2) upgrade_prio: it has two

attributes, queue and ratio. This command promotes a process form the specified priority

queue to the next higher priority queue. The ratio attribute is used to determine which

process to be promoted. (3) block: this command adds the current process to the blocked

queue. (4) unblock: this command unblocks a process from the blocked queue. It has one

attribute, ratio, which is used to determine which process must be unblocked. (5)

quantum_expire: this command puts the current process at the end of its priority queue.

(6) finish: this command exits the current process and prints its number. (7) flush: this

command causes all processes from the priority queues to exit in their priority order.

Two commands, upgrade_prio and unblock, operate on the n-th process where

n = (int) (r + 1) and r = (length of queue ∗ ratio).

In our previous example, if a flush command (7) is executed, the output is 0 1 2 3

4 5. But, assume that before the flush command, a new job command (1 3) is executed,

where 1 indicates the new job command and 3 indicates the high priority queue. This new

job command adds a process to the high priority queue. The next available ID, which is 6,

is assigned to the new process and the process is placed at the end of the high priority

170

queue, i.e. after process 0. Now, if we execute the flush command, the output will be 0 6 1

2 3 4 5.

Table 6-4 shows the input model of the two schedule programs. Commands and

their attributes are modeled as parameters. Each command parameter has three values,

0, 1 and >1, where 0 means that this command does not appear, 1 means that this

command appears once, and >1 means that this command appears more than once. The

priority attribute of the new job command could be one of the three possible queues. But

the attribute of upgrade_prio could be either low or mid. (Processes in the high priority

queue cannot upgrade.)

Two commands unblock and upgrade_prio are affected by the length of the

queues, they select a process based on queue’s length and ratio. For these commands,

first, we test if the ratio equals to 0, 1, or >1. Then we check that if the number after floating

point in r = (length of queue ∗ ratio) is 1, 4, 5, 6 or 9. These numbers are selected to cover

upper limit (9), lower limit (1) and middle of the range (5), and also two numbers (4 and 6)

around the middle.

Table 6-4. The Abstract Model of Schedule

Parameters Values

new_process [0, 1, >1]

new_proc_queue [low, mid, high]

upgrade_prio [0, 1, >1]

upgrade_queue [low, mid]

upgrade_ratio [0, 1, >1, {r}=0.1, {r}=0.4, {r}=0.5, {r}=0.6, {r}=0.9]

block [0, 1, >1]

unblock [0, 1, >1]

unblock_ratio [0, 1, >1, {r}=0.1, {r}=0.4, {r}=0.5, {r}=0.6, {r}=0.9]

quantum_expire [0, 1, >1]

finish [0, 1, >1]

flush [0, 1, >1]

171

A C++ program was written to create the file that contains commands based on

abstract tests. For the initial length of the queues, we randomly selected 60. We fixed >1

values to 2, i.e. if the value of a command is >1, the command appears twice in the file.

Performing 2-way testing detected 7 out of 9 versions of the schedule and 3 out of

10 versions of the shedule2. In total, 9 versions were not detected. Performing 3-way

testing did not detect any more versions. We investigated all versions that were not

detected, 8 out of 9 (version 9 of the schedule and 7 versions, 1, 4, 5, 6, 8, 9 and 10, of the

schedule2) can be detected by invalid testing, which as mentioned is not the focus of our

study.

For example, version 10 of the schedule2 was detected by a test case which

contains new_process or upgrade_prio commands with invalid value for the queue attribute

(new_proc_queue or upgrade_queue parameter).

Version 8 of the schedule is the only version that was not detected and could not

be detected by invalid testing. This version could be detected only when two upgrade

commands, one block command, and one unblock command are executed consecutively

on one process.

The following example will reveal the bug:

./schedule 2 2 0 <file.txt

There are 4 processes, 0 to 3, two of which, 0 and 1, are in the mid priority queue,

and the other two, 2 and 3, are in the low priority queue. The high priority queue is empty.

Figure 6-2 shows the file that contains 5 commands. The comments explain the state of

the system after each command is executed.

In the schedule program, each process keeps the id of the queue to which it

belongs. The faulty code in the version 8 does not change the queue id of the process after

172

the upgrade command (lines #1 and #2). Thus when the process is unblocked (line #4), it

is assigned to the wrong queue.

We did not detect this version, because our approach, at this point, does not

generate test sequences. Combinatorial test sequence generation is a subject that we plan

to study in the future.

6.3.3 Tcas

This program was previously modeled by Kuhn et al. in [9][10], based on the

specification in [12]. The tcas program is an aircraft collision avoidance system, and it takes

12 numbers as input and generates as output one number, which can be 0, 1 and 2.

Table 6-5 shows the input model of the tcas program. Some input parameters,

e.g., high_confidence, two_of_three_reports_valid, and climb_inhibit, are boolean values,

0 and 1. Some input parameters, like alt_layer_value, are of enum type and have a set of

specific values. For the other parameters, the values are identified by analyzing the code

and by equivalence partitioning. Note that the input space of this program is not complex,

and thus an abstract model is not needed.

According to [9] all 41 faulty versions of tcas are detected by the model. The

maximum strength to detect all versions is six; we also got the same results.

As discussed in Section 6.3.6, all faulty versions of the tcas program were detected

by 6-way testing. However, the degree of fault is actually more than 6 in all faulty versions.

Figure 6-2. File example to detect v8 of schedule

173

Thus, these faulty versions were actually detected by higher strength combinations that

happen to appear in a 6-way testing.

6.3.4 Totinfo

This program takes as input a file containing one or more tables. The program

uses the notions of chi-square and degree of freedom to calculate whether the distribution

of the numbers in these tables is logarithm-gamma distribution. The output is the total

degree of freedom of rows and columns and chi-square.

We focused on the correctness of the syntax of input parameters instead of the

mathematical aspect of the program. The reason is that the logic of the program is very

complex and is difficult to understand due to a lack of specification.

We identified a total of 6 parameters related to the syntax input of the program.

Parameter # of tables can be 0, 1 or more than one. The maximum number of members in

a table is 1000. We set the maximum number of rows and columns to 500 and the minimum

number of rows and columns to 1. Thus, parameters # of rows and # of columns have three

values, 1, between 2 and 499, and 500.

Table 6-5. The abstract model of tcas

Parameters Values

cur_vertical_sep [299,300, 601]

high_confidence [0, 1]

two_of_three_reports_valid [0, 1]

own_tracked_alt [1, 2]

own_tracked_alt_rate [600, 601]

other_tracked_alt [1, 2]

alt_layer_value [0,1, 2, 3]

up_separation [0, 399, 400, 499, 500, 639, 640, 739, 740, 840]

down_separation [0, 399, 400, 499, 500, 639, 640, 739, 740, 840]

other_rac [0, 1, 2]

other_capability [1, 2]

climb_inhibit [0, 1]

174

Parameter tbl_attr is identified to define general attributes for tables’ elements.

One important attribute for the table elements is sign, they can be positive, negative, zero,

or mix. The number of elements is another attribute we identified for tbl_attr. The number

of the elements in a table defined by #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠; we added sufficient, more

than and less than enough values to check that whether the number of elements in the

table is consistent with #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠.

The option parameter models the position in which a comment appears. The

maxline parameter defines the maximum number of lines in the input file.

A program was written to generate the input tables from the abstract tests. 2-way

testing detected 5 out of 23 versions. 3-way testing detected 7 more versions, but 4-way

testing did not detect any new version. So, totally 12 out of 23 versions were detected. We

investigated the 11 versions which were not detected by the model. All of these versions

have faults related to the mathematical aspects of the program, which is out of our testing

scope.

Table 6-6. The abstract model of totinfo

Parameters Values

#of tables [0, 1, >1]

#of rows [1, between 2 and 499, 500]

#of columns [1, between 2 and 499, 500]

tbl_attr
[sufficient number positive1, sufficient number
negative2, sufficient number mix3, sufficient number
equal 04, more than enough5, less than enough6]

options
[normal, row & column in 2 lines, comment at the
beginning, comment in the middle, comment at the
end]

maxline [1, Between 2and 254, 255, 256, 257]
1There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 positive numbers in the input file.
2There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 negative numbers in the input file.
3There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 positive and negative number in the input file.
4There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 zero in the input file.
5There are less than #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 numbers in the input file.
6There are more than #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 numbers in the input file.

175

6.3.5 Printtokens Model

The goal of the two programs, printtokens and printtokens2, is tokenizing the input

file and determining the type of each token. Token could have one of these types: identifier,

special, keyword, number, comment, character constant or string constant.

 Keyword type includes and, or, if, xor, and lambda. Special type includes lparen,

rparen, lsquare, rsquare, quote, bquote, comma and equalgreater. Comment is started with

semicolon and ended when a new line character is seen. String constant is confined in two

double quotations. Character is a token started with #.

To model the system, we divided it into seven subsystems: keyword, special,

identifier, number, comment, character and string. By this classification each token type

was tested independently from the others. We assumed that the program analyzes each

token independent from previous and next token, i.e. the type of the previous or next token

does not affect on the analyzing the current token.

Each subsystem has 3 parameters, value, position and number of lines. Keyword

model is shown in Table 6-7, as an example. The kyw_value parameter covers all possible

values for keyword (corresponding token type in general). An important property for each

token type is position, depends on different position of token type the program may behave

differently. So for each token type the position property with three values, begin, middle

and end, is added to the model. The last parameter, # of lines, checks the behavior of the

system when the input file has a single line or multiple lines.

The possible values for some token types, such as keyword and special are

explicitly defined in the program specification. But for the others such as identifier, the

features and characteristic of its values are described in the specification. For each token

type, identifier, number, comment, character and string, we designed an abstract model to

define their values. Then after the possible values were defined in the next level they have

176

the same model as keyword. We explain the model of values for three subsystems

identifier, number and comment in more details.

Identifier has different feature such as having uppercase, lowercase, keyword or

numbers, a model is designed to cover all features of identifier values (Table 6-8).These

features are parameters with two values off and on, to show weather an identifier contains

the parameter or not. The whitespace parameter determines whether an identifier

separate from next token by space or tab. Note that we add a constraint to prevent having

null identifier. For 2-way test generation, we generate 2-way test set for identifier values

model first. The number of tests is 7. Then, we put these seven tests as values in the value

parameter of the identifier model, and generate 2-way test set for identifier.

For the number model, the characteristics of the number are the number of digit

and having zero at the beginning of it. So its model has 2 parameters, Table 6-9. Note that

sign and decimal point do not support by the printtokes programs.

Table 6-7. The abstract model of Keyword

Parameters Values

kyw_value [and, or, xor, if, lambda]

position [begin, middle, end]

of lines [1, >1]

Table 6-8. The abstract model of Identifier Values

Parameters Values

lowercase [off, on]

uppercase [off, on]

number [off, on]

keyword [off, on]

whitespace [Space, tab]

177

The comment model is shown in Table 6-10. We check the behavior of the system

when each token type appears as a comment. Also, whitespace parameter determines if

a comment separate from next token by space or tab, what would be the behavior of the

system. The models of sting and character values are the same as comment.

The 2-way testing detected 2 out of seven versions of the printtokens and nine

versions out of 10 versions of the printtokens2. Note that 2-way test set has only 141 tests.

The programs were tested by 3-way testing, but no new version was detected. So

we stopped testing and investigated versions which were not detected. Five versions out

of six can be detected by invalid testing. For example, in versions 6 of the printtokens, the

failure happen when the number of tokens in the input file exceeds the defined value. The

second version of the printtokens is not detected by invalid testing. The fault in this version

is adding code. The adding code is reached when there is a i token in the input file.

Table 6-9. The abstract model of Number Values

Parameters Values

#of digits [1, >1]

begins with zero [off, on]

Table 6-10. The abstract model of Comment Values

Parameters Values

identifier [off, on]

keyword [off, on]

character [off, on]

string [off, on]

special [off, on]

number [off, on]

comment [off, on]

whitespace [Space, tab]

178

6.3.6 Discussion

After testing programs using the combinatorial technique, we investigated the

faults detected by our model to ensure that the fault is caused by the interaction between

input parameters. In order to do that we introduce the notion of degree of fault or fault

strength which is defined to be the minimum number of parameters that must be involved

to trigger the fault.

As a t-way test set contains all t-way combinations, it is guaranteed to detect a

faulty version if the strength of the fault does not exceed t. But it is also possible that a t-

way test set detects a version whose degree of fault is higher than t. This is because the

test set may contain the inducing combination (in which more than t parameters are

involved) by chance.

In Table 6-11, we classified the degree of fault for all detected versions. For

example, in the schedule program, the model detected a total of 7 versions. The fault

strength in five of these versions is 2. In the two remaining versions, one of them is 3 and

another one is 4.

To define the degree of fault, we used the concept of inducing combination. An

inducing combination is a combination of parameter values such that all test cases

Table 6-11. Fault classification of detected versions

Program
#faulty versions with degree of fault

1 2 3 4 5 6 Beyond 6 sum

print_tokens 0 0 2 0 0 0 0 2

print_tokens2 0 6 3 0 0 0 0 9

replace 10 7 2 0 0 0 13 32

schedule 0 5 1 1 0 0 0 7

schedule2 0 3 0 0 0 0 0 3

tcas 0 0 0 0 0 0 41 41

totinfo 0 0 2 1 6 3 0 12

179

containing this combination fail. The length of the minimum inducing combination shows

the degree of fault.

We used a tool called BEN [4] to find minimum inducing combinations. BEN takes

a t-way test set as input and generates a ranking of t-way combinations based on their

likelihood to be inducing combinations. BEN has been shown very effective in identifying

inducing combinations [4]. However, BEN is heuristic by nature and thus does not

guarantee to always find minimum inducing combinations. This should be taken into

account when reading the results in Table 6-11. We are not aware of any method that can

precisely determine the degree of a fault.

For example seven versions of schedule are detected by 2-way test sets. BEN

finds an inducing combination for five of them, so the degree of fault is 2 for these versions.

For the two other versions BEN did not find an inducing combination, we used a 3-way test

set. BEN finds an inducing combination for one of them. We then used a 4-way test set for

the last version, which found an inducing combination.

Since there is a probability that the fault is not due to any parameter interaction,

we need to check whether only one parameter is involved in the fault. BEN has a feature

to derive inducing combinations with smaller size than t. We used this feature on 2-way

test sets, to derive one-way inducing combination. In ten versions of the replace the degree

of fault was 1. Table 6-11 shows that most faults are interaction faults.

In 13 versions of replace and 41 versions of tcas, BEN cannot identify inducing

combinations in the 6-way test sets, so the degree of fault is more than 6 for these versions.

Note that in the replace all 13 versions and in the tcas 9 of these versions are detected by

2-way testing. A 2-way test set is not guaranteed to detect these versions, since it is not

guaranteed to cover all combinations for t > 2, and the versions are detected accidentally.

180

We show the strength of fault for detected versions in respect to the test strength

in Table 6-12. The second column shows the test strength at which the faulty versions were

detected. The third one shows the number of faulty versions that were detected by the test

set, and the combinatorial test set guarantees to detect them, since their fault strength is

equal or less than the test strength. The forth column shows the number of detected

versions with higher fault strength than test strength, which are detected by chance.

For example, by applying 2-way testing to all faulty versions of the replace

program, we detected not only 17 versions whose degree of fault is 1 or 2, but also 13

versions whose degree of fault is higher than 6.

Another point to note is that, in each step we excluded detected versions in the

next step. For example, in the totinfo program 5 versions were detected by 2-way testing.

One of these 5 versions has the same degree of fault as the test strength, i.e., 2, and the

Table 6-12. Fault Classification based on Test Strength

program
Test
strength

of detected
versions with
the same or

lower strength

of detected
versions with

higher strength

total

Total not
detected

print_tokens 2 0 2 2 5

print_tokens2 2 6 3 9 1

replace 2 17 15 32 0

schedule 2 5 2 7 2

schedule2 2 3 0 3 7

tcas

2 0 9

41 0

3 0 13

4 0 14

5 0 4

6 0 1

totinfo
2 1 4

12 11
3 1 6

 If a t-way test detects a version, the version does not show in the result of (t+1)-way test.

 All 1-way and 2-way faulty versions of replace are detected in 2-way test set.

181

other four versions have the degree of fault higher than the test strength. For the next step

we excluded all five versions from testing and we applied 3-way testing only on versions

which were not detected.

6.3.7 Comparison

In this section, we show the effectiveness of combinatorial testing by comparing it

with random testing. We generated a random test suite corresponds to each combinatorial

test set which was used in the previous section. The random test suite and its

corresponding combinatorial test set have the same number of tests. For example, the 2-

way combinatorial test set for printtokens program has 141 tests; thus 141 tests are

generated for random testing.

For random test generation, we used the models which were described. Since the

subject programs have complex input spaces, we cannot apply random testing without any

abstraction. For instance, the first input parameter in the replace program is a regular

expression; generating valid random regular expressions is impractical.

Our random test generation approach is as follows. For programs whose models

do not have any constraint, schedule, schedule2, tcas and totinfo, a random value is

selected for each parameter in a test. For printtokens, we generate the same number of

tests as a 2-way test set for each subsystem. If the value parameter comes from the model,

such as identifier, first we randomly generate a test for value, and then for the subsystem.

If a model has constraints, random selected values may create invalid tests. We

avoided invalid tests using the following algorithm. In the replace program, constraints are

related to the position of elements. There are 4 parameters related to substitution. At most

one of them can be begin and also at most one can be end. Note that it is possible for a

test case to not include begin or end .

182

To generate random values for substitution related parameters (sub_character,

sub_@n, sub_@character, sub_&), we define which parameter should appear at the

beginning and which one at the end, randomly. A number between 0 and 4 (number of

parameters, sub_character, sub_@n, sub_@character and sub_&, plus 1) are selected

randomly. This number is used to select the parameter whose value should be begin and

appearing at the beginning. If 0 is selected, the first parameter, sub_character is set to

begin, and so on. If 4 is selected, none of the parameters would have begin value. Similarly,

we select the parameter that should appear at the end. For other parameters, off or middle

is selected randomly. The same approach is used for parameters which are involved in the

pattern.

Table 6-13 compares the results of combinatorial and random testing. The second

column shows the number of tests in the test sets, third and forth columns are shown the

strength and the number of detected versions in combinatorial test set. The last column

shows the number of detected versions in random test sets. According to the table, the

Table 6-13. Compare random testing and combinatorial testing

Program #tests
Combinatorial Random

Strength #detected version #detected version

print_tokens 141 2-way 2 1

print_tokens2 141 2-way 9 9

replace 192 2-way 32 17

schedule 64 2-way 7 7

schedule2 64 2-way 3 3

tcas

100 2-way 9 7

400 3-way 13 14

1363 4-way 14 6

4222 5-way 4 12

10843 6-way 1 2

totinfo
30 2-way 5 2

156 3-way 7 5

183

result of random testing is different in different programs. In the two schedule programs,

schedule and schedule2, combinatorial testing and random testing have the same results,

7 versions in the schedule and 3 versions in the schedule2 were detected. But in the

replace program, random testing detected 17 versions compared to 32 versions in

combinatorial testing.

In the tcas program, combinatorial test set and random test set detected all 41

faulty versions. But combinatorial test can detect more versions by using fewer tests.

Combinatorial test sets, 2-way, 3-way and 4-way, detected 36 versions, but random test

set with the same number of tests detected 27 versions.

6.4 RELATED WORK

First, we review existing work on input parameter modeling for combinatorial

testing. Grindal and Offutt [5] presented a structured method for input parameter modeling.

Their method provides guidelines for defining parameters, values, constraints and

relations. We followed this method, whereas applicable, in our experiments.

Several common patterns were reported for combinatorial models [15][16]. These

patterns include optional values, multi-selection, ranges and boundaries, order and

padding, redundant interactions, and auxiliary aggregates or commonality. We used similar

ideas for optional values, order and padding, and multiplicity patterns in our experiments.

For example, the optional values pattern occurred in the replace program. We added the

off value for each optional parameter.

Segall et al. suggested two constructs, called counters and properties, to model

high-level constraints [16]. Some abstract parameters, e.g., the position parameter,

identified in our experiments can be considered as properties of a concrete parameter.

However, these parameters are not used to facilitate constraint specification in our

experiments.

184

Second, we review existing work on empirical studies on combinatorial testing. We

focus on these controlled studies. Dalal et al. [3] reported four relatively large applications

that are modeled for combinatorial testing. They reported the number of failed tests and

the number of different types of failures that were detected. They showed that

combinatorial testing was more effective than traditional testing methods. The difference

between their approach and our work is that they did not identify abstract parameters and

values. In addition, their subject programs contain real faults, instead of seeded faults [3].

Kuhn et al. studied several fault databases and found that all the faults in these

databases are caused by interaction of no more than six parameters [9][10]. This study did

not perform actual combinatorial testing on the subject systems.

Schroeder et al. compared combinatorial testing to random testing in a controlled

study [14]. They selected two software applications used in their laboratory and used faults

that are manually seeded by a graduate student. In contrast, the Siemens suite used in our

experiments is a third-party benchmark that has been used to evaluate many testing

techniques [18]. We also used faults that come with the Siemens suite.

In [8], Kuhn et al. applied combinatorial testing to a multicomputer network

simulator. They compared combinatorial testing to random testing in terms of the number

of deadlocks that can be detected by both approaches. The modeling process was not

explained in [8].

In [12][13], combinatorial testing was compared to several prioritization techniques

and random testing. The experiments were done on two programs flex and make from SIR

[17] repository. The results showed there was no significant difference between

combinatorial testing and random testing. The details about the programs models were,

however, not, reported in the paper.

185

6.5 CONCLUSION

In this paper, we presented a three-step approach to apply combinatorial testing.

First we create an abstract model for the system. Then, based on this model, a

combinatorial abstract test set is generated. The last step derives a set of concrete tests

from these abstract tests. We reported our experiments in which we modeled the seven

programs in the Siemens suite and applied combinatorial testing to these programs. The

details of the abstract model and the results of applying combinatorial testing are presented

in the paper. The results show that combinatorial testing can detect most faulty versions of

the Siemens programs, and is more effective than random testing.

To better understand the effectiveness of combinatorial testing, we distinguished

faults guaranteed to be detected by t-way testing from faults detected incidentally. A fault

is detected incidentally by a t-way test set if the degree t’ of the fault is higher than t, but

the t-way test set happens to contain a t’-way combination that can trigger this fault. In our

experiments, we observed that t-way testing often detected some faults incidentally, i.e.,

the degrees of these faults were higher than t. In particular, for the tcas program, all the

faults were detected incidentally. This suggests that a t-way test set can be potentially more

effective if it covers more higher-strength combinations, in addition to all the t-way

combinations.

In the future, we plan to conduct more empirical studies on larger and more

complex programs. We believe this research will provide guidance for practitioners to apply

combinatorial testing in practice.

6.6 Acknowledgment

This work is supported by two grants (70NANB9H9178 and 70NANB10H168) from

Information Technology Lab of National Institute of Standards and Technology (NIST).

186

Disclaimer: NIST does not endorse or recommend any commercial product neither

referenced in this paper nor imply that the referenced product is necessarily the best.

6.7 REFERENCES

1. Advanced Combinatorial Testing System (ACTS), 2010.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html.

2. M. N. Borazjany, Y. Linbin, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial Testing

of ACTS: A Case Study. In Proc. of the 5th IEEE International Conference on

Software Testing, Verifcation and Validation, ICST, pages 591-600, Montreal,

Canada, 2012.

3. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B.

M. Horowitz. Model-based testing in practice. In Proceedings of the 21st

international conference on Software engineering , pages 285-294, New York,

USA, 1999.

4. L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker. 2012. Identifying

Failure-Inducing Combinations in a Combinatorial Test Set. In Proceedings of

International Conference on Software Testing, Verification and Validation, IEEE

Computer Society, Washington, DC, USA, pages 370-379, 2012.

5. M. Grindal , J. Offutt, Input parameter modeling for combination strategies,

Proceedings of the 25th conference on IASTED International Multi-Conference:

Software Engineering, pages 255-260, Innsbruck, Austria,2007.

6. M. Grindal, J. Offutt, and S. F. Andler. 2005. Combination Testing Strategies: A

Survey. Journal of Software Testing, Verification and Reliability vol. 15, no. 3, pp.

167-199, 2005.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://barbie.uta.edu/~mehra/3%20Combination%20Testing%20Strategies.pdf
http://barbie.uta.edu/~mehra/3%20Combination%20Testing%20Strategies.pdf

187

7. R. Krishnan, S. Murali Krishna, and P. Siva Nandhan. Combinatorial testing:

learnings from our experience. ACM SIGSOFT Software Engineering Notes, v.32

n.3, May 2007.

8. D. R. Kuhn, R. Kacker, Y. Lei. Combinatorial and Random Testing Effectiveness

for a Grid Computer Simulator. presented at the Mod Sim World, Virginia, USA,

2009.

9. D. R. Kuhn and V. Okum. 2006. Pseudo-Exhaustive Testing for Software. 30th

NASA/IEEE Software Engineering Workshop, pages 153-158, April 2006.

10. D. R. Kuhn, D. Wallace, and A. Gallo, Software Fault Interactions and Implications

for Software Testing, IEEE Transactions on Software Engineering, 30(6): 418-421,

2004.

11. C. Nie and H. Leung. 2011. A survey of combinatorial testing. ACM Computing

Surveys (CSUR), v.43 n.2, pages 1-29, January 2011

12. V. Okun, Specification Mutation for Test Generation and Analysis, PhD

Dissertation, University of Maryland, 2004

13. X. Qu, M. Cohen, and K. Woolf, Combinatorial interaction regression testing: A

study of test case generation and prioritization. In Proceedings of the IEEE

International Conferance on Software Maintenance (ICSM). IEEE Computer

Society, 413–418, 2007.

14. P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault detection

effectiveness of n-way and random test suites. Proceedings of International

Symposium on Empirical Software Engineering, pages 49-59, August 19-20, 2004.

188

15. Segall, R.Tzoref-Brill, and A. Zlotnick. 2012. Common Patterns in Combinatorial

Models. In Proc. of the 5th IEEE International Conference on Software Testing,

Verifcation and Validation, ICST, pages 624-629, Montreal, Canada, 2012.

16. Segall, R. Tzoref-Brill, and A. Zlotnick. Simplified Modeling of Combinatorial Test

Spaces. In Proc. of the 5th IEEE International Conference on Software Testing,

Verifcation and Validation, ICST, pages 573-579, Montreal, Canada, 2012.

17. Software-artifact Infrastructure Repository, http://sir.unl.edu/portal/index.php,

2012.

18. E. Wong and V. Debroy, A survey on software fault localization, Technical Report

UTDCS-45-09, Department of Computer Science, University of Texas at Dallas,

Nov. 2009.

http://sir.unl.edu/portal/index.php

189

 An Empirical Comparison of Combinatorial and Random Testing

The paper was published in IEEE 7th International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), in 2014.

190

An Empirical Comparison of Combinatorial and

Random Testing*

Laleh Sh. Ghandehari1, Jacek Czerwonka2, Yu Lei1, Soheil Shafiee1, Raghu N. Kacker3, D. Richard

Kuhn3

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas

76019, USA

2Microsoft Research, Redmond, Washington 98052, USA

3Information Technology Laboratory National Institute of Standards and Technology, Gaithersburg,

Maryland 20899, USA

Abstract- Some conflicting results have been reported on the comparison

between t-way combinatorial testing and random testing. In this paper, we report a new

study that applies t-way and random testing to the Siemens suite. In particular, we

investigate the stability of the two techniques. We measure both code coverage and fault

detection effectiveness. Each program in the Siemens suite has a number of faulty

versions. In addition, mutation faults are used to better evaluate fault detection

effectiveness in terms of both number and diversity of faults. The experimental results show

that in most cases, t-way testing performed as good as or better than random testing. There

are few cases where random testing performed better, but with a very small margin.

Overall, the differences between the two techniques are not as significant as one would

* Copyright © 2014 IEEE. Reprinted, with permission, from Laleh Sh. Ghandehari, Jacek Czerwonka,

Yu Lei, Soheil Shafiee, Raghu Kacker and Richard Kuhn, An Empirical Comparison of
Combinatorial and Random Testing, IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), April 2014.

191

have probably expected. We discuss the practical implications of the results. We believe

that more studies are needed to better understand the comparison of the two techniques.

Keywords- Combinatorial Testing, Random Testing, Software Testing.

7.1 INTRODUCTION

Software failures are often caused by interactions of a few input parameters. A

technique called t-way combinatorial testing, or t-way testing, employs a test set that covers

all t-way interactions, i.e. interactions that involve no more than t parameters. If parameters

and values are modeled correctly, a t-way test set guarantees to expose all failures that

involve no more than t parameters. In practical applications, t is typically a small integer

that is no more than six [19].

Many empirical studies show that t-way testing can be very effective in fault

detection while significantly reducing the number of tests. However, a question that is often

asked by the research community is about the comparative effectiveness of t-way testing.

That is, how does t-way testing compare to other testing techniques? In particular, how

does t-way testing compare to random testing?

Some conflicting results have been reported in the literature. The studies such as

[6][14][17][18] find that t-way testing is more effective than random testing. However, other

studies such as [4][5][20][21] suggest that there is no significant difference between t-way

testing and random testing. This lack of consensus suggests a need for more studies to

better understand the effectiveness of these two techniques.

In this paper, we report a new study that responds to the above need. In particular,

we investigate the stability of the two testing techniques. For a given test strength t, multiple

test sets can be generated to satisfy t-way coverage. Similarly, multiple random test sets

of the same size can be generated. The notion of stability refers to the degree to which the

192

effectiveness of such multiple test sets varies. In practice, testers normally execute only

one test set that is essentially an arbitrary selection among multiple possible test sets. The

more stable a testing technique, the more confidence one has about the effectiveness of

the test set that is actually executed. Our work is inspired by Czerwonka’s earlier work that

has investigated the stability of t-way testing in terms of code coverage [9]. In this paper

we compare the stability of t-way testing to that of random testing and also measure it in

terms of both code coverage and fault detection.

 In our study, we use the Siemens suite as our subject programs. The Siemens

suite has been used a benchmark to evaluate the effectiveness of many testing techniques.

The suite consists of seven programs, each of which has a number of faulty versions. Our

earlier work modeled the input space of these programs [15]. In this current study, for a

given test strength t, a total of 100 t-way test sets are generated for each program. For

each t-way test set, a random test set of the same size is also generated. Both t-way and

random test sets are generated using the same input models in [15].

The effectiveness of an individual test set is measured in terms of code coverage

and fault detection. Code coverage data are collected by running test sets on the error-free

version of each program. For fault detection, we run test sets on the error-free version and

the faulty versions of each program. A fault is detected if the faulty version produces a

different output than the error-free version. A mutation test tool called Milu [16] is used to

generate additional faulty versions for three programs in the Siemens suite. Mutation faults

increase the number and diversity of the faults used in our experiments and thus helps to

better evaluate fault detection effectiveness.

The results of our study suggest that in most cases, t-way testing performed as

good as or better than random testing. There are few cases where random testing

performed better but with a very small margin. Overall, the differences between the two are

193

not as significant as one would have probably expected. This can be partially explained by

the fact that most random test sets have a high percentage of t-way coverage. That is,

while a random test set does not cover all the t-way combinations, it covers most of them.

A small number of combinations being missing does not always make a difference on code

coverage and fault detection results.

It is important to make several notes about the results of our study. First, we used

the same input model for t-way and random testing. While t-way test generation

is computationally more expensive than random test generation, both procedures are

automated. Thus the advantage of random testing in terms of reducing test generation cost

is not as significant in practice as one would probably have perceived. Second, in our

experiments, the size of a random test set is set to be the same as its corresponding t-way

test. However, when we apply random testing in practice, we need to decide when to stop,

i.e., how many tests are sufficient. This can be a difficult decision. In this respect, t-way

testing has an advantage in that it has a well-defined stopping point, i.e., achieving full t-

way coverage. Finally, we must acknowledge that our study is limited in terms of both the

number and sizes of the subject programs, and the number and types of faults. More

studies are needed to obtain a better understanding.

The remainder of this paper is organized as follows. In section 7.2, we describe

our experimental design. Section 7.3 reports experimental results. Section 7.4 provides

some general discussion about the experimental results. Section 7.5 describes threats to

validity. Section 7.6 gives an overview of work that is related to ours. Section 7.7 provides

concluding remark.

194

7.2 EXPERIMENTAL DESIGN

This section describes the design of our experiments, including the subject

programs, the evaluation metrics, and the test generation procedure used by our

experiments.

7.2.1 Subject Programs

Our experiments use the Siemens suite from the Software Infrastructure

Repository [12]. This suite contains 7 programs. Two programs, printtokens and

printtokens2, have the same specification but different implementations. They tokenize a

text file and determine the type of each token. The replace program takes three inputs,

pattern, substitute and input text, and it replaces every match of pattern in input text with

substitute. Two programs, schedule and schedule2, provide two different implementations

of a scheduling scheme that determines the execution order of a set of processes based

on their priorities. The tcas program is an aircraft collision avoidance system. The totinfo

program takes as input a file containing one or more tables, and computes the total degree

of freedom and chi-square of rows and columns.

In the Siemens suite, each program has an error-free version and several faulty

versions. There also exists a test set for each program. These test sets are not used in our

experiments. Table 7-1 shows some characteristics of the subject programs. The second

column shows the number of lines of (uncommented) code. The third column shows the

number of functions. The fourth column shows the number of faulty versions. The fifth

column shows the input models used for test generation. The input models are shown in

an exponential format. For example, totinfo has six parameters, where three, two and one

of them have a domain size of 3, 5 and 6, respectively. The model of this program is shown

in an exponential format by (33 × 52 × 61). The last column shows the number of

constraints in the input model. The details of the models are explained in [15].

195

In addition to the faulty versions that come with the Siemens suite, a mutation

testing tool called Milu [16] is used to generate additional faulty versions. This helps to

better evaluate fault detection effectiveness both in terms of number and diversity of faults.

The number of mutants generated by Milu is typically large, and running hundreds of test

sets over them is very time consuming. In our experiments, we select three programs,

replace, schedule and totinfo, and for each of the three programs, we select a few

functions, for mutant generation.

We refer to faults in the faulty versions provided by the Siemens suite as Siemens

faults, and faults that are generated by mutation as mutation faults.

Table 7-1. Characteristics of subject programs

Programs LOC

#
o
f
fu

n
c
ti
o
n
s

#
o
f
fa

u
lt
y
 v

e
rs

io
n
s

Model

N
u
m

b
e
r

o
f

c
o
n
s
tr

a
in

ts

printtokens 472 18 7
(22) × (24) × (5) × (8) × (2 × 7)3 a 4b

(47 × 22) 14

printtokens2 399 19 10
(22) × (24) × (5) × (8) × (2 × 7)3 a 4b

(47 × 22) 14

replace 512 21 32 (24 × 416) 36

schedule 292 18 9 (21 × 38 × 82) 0

schedule2 301 16 10 (21 × 38 × 82) 0

tcas 141 9 41 (27 × 32 × 41 × 102) 0

totinfo 440 7 23 (33 × 52 × 61) 0

a. The model of the replace program has two levels; sub level consists of 7 sub models and the top
model with 9 parameters. Three out of 7 sub models share the same model, two parameters with 2
and 7 values.

 b. The second sub model with (24) input model, has 4 constraints and the other does not have any
constraints.

196

Table 7-2 shows some characteristics of generated mutants. The second column

shows the number of functions selected for each program. Note that schedule is smaller

than the other two programs, the mutants are generated for the entire program. The third

column indicates the number of mutants generated.

We do not select printtokens and printtokens2 for mutant generation because of

the hierarchical nature of their input models. We do not select schedule2 since it has the

same model as schedule. Also tcas is not selected because it has complex decision logic

and its mutants are likely to represent faults with strength of more than 6.

7.2.2 Evaluation Metrics

We measure the effectiveness of an individual test set in two dimensions, i.e., code

coverage and fault detection.

For code coverage, line and branch coverage collected for each test set run with

the error-free version of each program. A tool called gcov is used to gather coverage data.

The tool is executed with the “branch-probabilities” option, and the “line executed” output

is taken for line coverage and the “taken at least once” output is used for branch coverage.

For fault detection, we check how many faults can be detected by a test set. A fault

is detected if the output of a faulty version is different from the output of the error-free

version by one or more tests in a test set.

For code coverage and fault detection data collected from a group of test sets, we

compute minimum, first quartile (Q1), median, third quartile (Q3), maximum, spread and

Table 7-2. Characteristics of generated mutants

Programs
Number of functions used for

mutants generation
Number of mutants

replace 4 143

schedule 18 94

totinfo 2 151

197

relative standard deviation. The first five measures summarize the effectiveness of the test

sets as a group, whereas the latter two summarize how stable the results are across

different test sets in the group.

7.2.3 Test Generation

For each subject program, we generate 100 t-way test sets for each strength t,

where t is from 2 to 5. There are a total of 400 t-way test sets for each program. We use

PICT [10] to generate t-way test sets. PICT uses a greedy, random algorithm for t-way test

generation and allows the user to specify a seed. In order to obtain different test sets, a

different seed is given each time a test set is generated. Test sets are compared to ensure

that no two test sets are exactly the same. In our experiments no redundant test sets are

detected. Note that ACTS was not used because it uses a deterministic algorithm which

does not give us multiple test sets [1].

For replace, we did not generate 5-way test sets as they are very large, and take

too much time to execute. On average, there are 12604.22 tests in a 5-way test set for

replace and it takes 3.22 seconds to execute each test (against all the 32 faulty versions

in the Siemens suite). Thus it takes about 11.27 hours to execute each test set. The time

needed to execute 100 test sets is prohibitive and thus we did not conduct 5-way testing

for replace in our experiments. Note that our experiments are conducted on a PC that has

a Pentium (R) 4 (2.40 GHZ) processor and 2 GB memory and that runs Ubuntu 12.04 LTS

(32bit).

For each t-way test set, we generate a random test set of the same size. The same

input model used by t-way test generation is used for random test generation. If the input

model of a program does not have any constraint, a random test is generated by simply

giving each parameter a random value of its domain. Otherwise, additional care needs to

198

be taken to ensure that all the constraints are satisfied. More details about random test

generation with the presence of constraints can be found in [15].

7.3 EXPERIMENTAL RESULTS

In this section, we first present the test generation results, i.e., some important

properties and statistics of the test sets generated in our experiments. Then we present

the test execution results in terms of code coverage and fault detection that are achieved

by these test sets.

7.3.1 Test generation result

Table 7-3 shows some statistics about the sizes of the generated test sets

including minimum, maximum, average and relative standard deviation. Note that

Table 7-3. Test sets’ size

Program Strength Min Max Average RelStdDev

printtokens

2 42 47 44.46 2.72

3 113 127 119.6 2.17

 4 307 330 319.97 1.64

 5 763 791 776.38 0.80

replace

2 200 220 210.86 2.18

3 904 955 928.66 1.10

4 3730 3805 3773.07

0.41

schedule

2 64 64 64 0

3 244 259 251.22

1.45

4 1060 1088 1075.30 0.57

5 3788 3806 3812.26 0.26

tcas

2 100 100 100 0

3 400 409 403.38 0.47

4 1401 1447 1423.28 0.65

5 4240 4321 4277.85 0.36

totinfo

2 31 35 32.41 3.10

3 150 158 153.26 0.92

4 532 560 544.5 1.05

5 1554 1613 1586.35

0.72

199

printtokens and printtokens2 use the same input model and thus have the same test

sets, and so do schedule and schedule2. Also note that printtokens and printtokens2 have

a hierarchical input model. Due to limited space, we only show statistics for the test sets

generated from the top model.

Table 7-4 shows the statistics of the t-way coverage achieved by the random test

sets. The t-way coverage of a test set is computed using the ACTS tool with a special

option on the command line interface [1]. For most cases, more than 80% (on average) of

t-way coverage is achieved by a random test set. The exceptions are for printtokens with t

= 2 and 3, where the average t-way coverage is more than 70% but lower than 80%. ACTS

was not able to compute the t-way coverage for replace when t = 4. The reason is that

Table 7-4. Combinatorial coverage of random sets

Program Strength Min Max Average RelStdDev

printtokens

2 52.94 82.5

8

72.03

7.88

3 54.29 88.5

4

76.95

11.45

4 61.10 94.2

7

86.31

9.24

5 73.68 95.3

1

91.76

4.13

replace
2 89.38 96.0

6

94.85

0.95

3 89.27 96.4

1

94.46

1.73

schedule

2 91.15 96.5

3

93.64 1.06

3 92.51 94.0

7

93.43 0.39

4 94.85 95.6

8

95.30

0.17

5 95.66 96.1

9

95.89 0.08

tcas

2 92.23 96.1

8

94.25 0.74

3 93.51 95.1

9

94.30 0.34

4 95.15 96.0

0

95.52 0.17

5 96.05 96.4

5

96.26 0.08

totinfo

2 75.78 88.6

7

82.64

2.96

 3 83.18 88.8

6

86.20 1.31

4 83.47 87.1

5

85.05 0.79

5 81.92 83.7

3

82.96 0.46

200

replace has a relative large and complex input model while the option for computing t-way

coverage in ACTS is mainly experimental and is thus not optimized.

7.3.2 Test execution result

The test execution results are presented in three parts, including code coverage

results, Siemens fault detection results, and mutation fault detection results.

Code Coverage: Code coverage is collected by running each test set on the error

- free version of each subject program. Table 7-5 shows the maximum line and branch

coverage achieved by these test sets. Maximum coverage indicates to certain degree the

quality of the input model. For printtokens and printtokens2, the maximum line and branch

coverage are shown for the top model and all the sub-models. The maximum line and

branch coverage achieved by t-way and random test sets are the same. This is consistent

with the fact that both types of test set use the same input model.

Tables 7-6, 7-7, 7-8 and 7-9 show the comparison of some code coverage

statistics between t-way and random testing, for four programs, printtokens2, replace, tcas

Table 7-5. Maximum line and branch coverage results

Programs Max of line coverage Max of branch coverage

printtokensa

46.15, 46.67, 45.13, 43.08,
74.36, 35.38, 47.69

35.78, 36.7, 38.53, 40.37,
57.8, 27.52, 35.78

69.74 55.05

printtokens2a

58.5, 58.5, 57, 71, 73.5,
56.5, 74.5

45.68, 46.91, 46.3, 58.02, 67.9,
40.74, 70.99

80.5 76.54

replace 88.93 80.56

schedule 94.74 80.30

schedule2 94.57 75

tcas 89.23 90.91b

totinfo 92.68 84.09
a. For printtokens and printtokens2 the maximum line and branch coverage achieved by
sub models are shown in the first row, in order of number, identifier, keyword, special,
character, comment, string sub models. The coverage achieved by top model is shown in
the second row.
b. In this program maximum branch coverage is greater than maximum line coverage, the
reason is that || and && operators (in an if statement) introduce new branches, in gcov.

201

and totinfo. In these tables, the numbers show the differences between t-way and random

testing results. A positive (negative) number indicates that t-way testing performs better

(worse) than random testing. Negative numbers are also highlighted.

Due to space limitation we do not show the results for programs where t-way and

random testing produced exactly the same statistics. That is, the tables for these programs

only consist of zeros. These programs include printtokens, schedule and schedule2. They

are made available in [2]. Also, for printtokens and printtokens2, we show the results of

their top model only.

For the replace program, t-way and random testing produce the same results for

line coverage. However, when t = 3, random testing has a slightly smaller relative standard

deviation for branch coverage than t-way testing (Table 7-7).

For the tcas program, random testing performed better than t-way testing when t

= 2 and 3, whereas t-way testing performed better when t>3 (Table 7-8).

For the printtokens2 and totinfo programs, t-way testing outperforms random

testing in many cases. For example, in the totinfo program, the minimum line and branch

coverage of t-way testing are greater, sometimes significantly greater, than random testing

for t = 3, 4, and 5 (Table 7-9). When t = 3, in the totinfo program random testing has a

smaller standard deviation than t-way testing for both line and branch coverage. However

t-way testing has higher min, Q1, median and Q3 than random testing.

We note that for t-way test sets, spread and standard deviation are non-increasing

as t increases. This indicates that as t increases, code coverage becomes more stable for

t-way test sets. This is, however, not true for random test sets. For example, for totinfo, the

spreads of both line and branch coverage when t = 3 are greater than when t =2. This

information is not shown in Table 7-9, which only show the differences between the two

methods. The reader is referred to [2] for the specific values of these statistics.

202

 Siemens Faults: Each program has a number of faulty versions in the Siemens

suite in SIR [12]. Table 7-10 show the maximum number of faults that are detected by the

t-way and random test sets generated in our experiments.

Table 7-6. T-way vs. random coverage result of top model of printtokens2

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev

Line

Coverage

2 1.5 1.5 1.5 1.5 0 1.5 0.49

3 1.5 1.5 1.5 0 0 1.5 0.67

4 1.5 0 0 0 0 1.5 0.45

5 0 0 0 0 0 0 0

Branch

Coverage

2 2.47 2.47 1.23 1.23 0 2.47 0.99

3 2.47 1.23 1.23 0 0 2.47 1.04

4 2.47 0 0 0 0 2.47 0.62

5 0 0 0 0 0 0 0

Table 7-7. T-way vs random coverage results of replace

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev

Line

Coverage

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

Branch

Coverage

2 0 0 0 0 0 0 0.01

3 0 0 0 0 0 0 -0.15

4 0 0 0 0 0 0 0

Table 7-8. T-way vs random coverage results of tcas

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev

Line

Coverage

2 -30.77 0 0 0 0 -30.77 -3.6

3 0 0 0 0 0 0 -0.01

4 0 0 0 0 0 0 0.15

5 0 0 0 0 0 0 0

Branch

Coverage

2 -19.7 0 0 -1.52 -6.06 -13.64 -0.62

3 0 0 0 0 0 0 -0.6

4 3.03 0 0 0 0 3.03 0.71

5 0 0 0 0 0 0 0

203

Tables 7-10, 7-11 and 7-12 show the results for three programs, i.e., replace, tcas

and totinfo respectively. The statistics for the other programs are not shown as they are

exactly the same between t-way and random testing. Again, positive (negative) numbers

indicate cases where t-way testing performed better (or worse) than random testing.

For replace, random testing has better Q1, Median, and RelStdDev when t = 2,

and better RelStdDev when t = 3 (Table 7-11). For tcas, random testing performs better

when t = 2 and 3, whereas t-way testing performs better when t = 4 and 5 (Table 7-12). For

totinfo, when t = 2, random testing has a smaller Spread but it has a higher Median and

Maximum. When t = 3, random testing has a smaller RelStdDev, but all the other measures

are the same. When t = 4, t-way testing clearly outperforms random testing, and when t =

5 both reach the maximum results.

For both t-way and random test sets, spread and RelStdDev are non-increasing

as t increases. This suggests that the fault detection results become more stable as t

increases [2]. For tcas, the fault detection results do not become stable as t increases. The

reason is probably because the degree of all the faults in tcas is more than 5 [15].

Table 7-9. T-way vs random coverage results of totinfo

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev

Line

Coverage

2 0 1.63 3.25 0 0 0 5.8

 3 11.38 1.63 1.62 0.61 0 11.38 -1.62

 4 1.62 13.82 0 0 0 1.62 1.47

5 13.14 0 0 0 0 13.82 1.49

Branch

Coverage

2 0 1.13 3.97 1.13 0 0 4.4

3 9.09

1.17 2.27 1.7 0 9.09 -1.42

4 2.27 9.09 0 0 0 2.27 1.09

 5 9.09

0 0 0 0 9.09 1.08

204

Table 7-11. T-way vs random Siemens faults detection of replace

Strength Min Q1 Median Q3 Max Spread RelStdDev

2 0 -2 -14 0 0 0 -6.88

 3 0 0 0 0 0 0 -2.49

4 0 0 0 0 0 0 0

Table 7-12. T-way vs. random Siemens fault detection of tcas

Strength Min Q1 Median Q3 Max Spread RelStdDev

2 1 -1 -1 0 -3 -4 -3.59

3 -1 -0.75 -1.5 -2 -3 2 -0.35

4 4 1 0 -1 1 3 0.08

5 1 0 0 0 0 1 0.17

Table 7-13. Siemens faults detection of totinfo

Strength Min Q1 Median Q3 Max Spread RelStdDev

2 0 0 2 0 2 -2 2.51

 3 0 0 0 0 0 0 -1.97

4 1 0 0 0 0 1 3.02

5 0 0 0 0 0 0 0

Table 7-10. Maximum number of Siemens faults detected

Programs Total
Max number of faults

detected

printtokens 7 2

printtokens2 10 7

replace 32 32

schedule 9 7

schedule2 10 3

tcas 41 41

totinfo 23 12

205

Mutation Faults: Only the first 30 (out of 100) test sets are executed on each

mutant. This is because running all test sets for each mutant is prohibitively time

consuming. For example, it takes 13.19 hours to execute (and evaluate) a 4-way test set

on all the 128 mutants of the replace program.

Table 7-14 shows the maximum number of mutants detected by t-way and random

testing. For the replace program all 143 mutants are detected. For schedule and totinfo, 22

and 27 mutants could not be detected, respectively.

Table 7-15 and Table 7-16 show some statistics of mutation fault detection for

replace and totinfo, respectively. For schedule, t-way and random testing have the same

results and are thus not shown [2].

For replace, t-way testing performed as good as or better than random testing

when t = 2 and 3, whereas random testing performed better when t = 4. More discussion

on the latter case is discussed later. For totinfo, when t = 2, t-way testing have better results

in all measures except for Q3 and Max. When t = 3, random testing seems to perform

better as it has better results in Min, Q1, Spread, and RelStdDev. However, when t = 4, t-

way testing clearly outperforms, and also it reaches the maximum point where the

maximum number of faults are detected by all test sets. When t = 5, both t-way and random

testing reach the maximum point.

Table 7-14. Maximum number of mutation faults detected

Programs Total Max number of faults detected

replace 143 143

schedule 94 72

totinfo 151 124

206

For replace, when t = 4, the minimum number of faults detected by a t-way test is

26 less than that by a random test set. We randomly selected 4 out of these 26 mutants

and analyzed their degrees of faults.

Our investigation showed that all these faults are more than 9-way, i.e., they

involve more than 9 parameters. Whereas the probability is not high, we conjecture that

the reason why there exists a t-way test set that detects none of these 26 mutants is

because this test set does contain any combinations that trigger these higher-degree faults.

In contrast, it happens to be that all the random tests happen to contain at least one

triggering combination for each of these 26 mutants.

7.4 DISCUSSION

In most cases, t-way testing performed as good as or better than random testing.

There are few cases where random testing performed better but with a very small margin.

Overall, the differences between the two are not as significant as one would have probably

expected. As shown in Table 7-4, random test sets provided on average a very high level

of combinatorial coverage, almost always in excess of 80% and frequently over 95%. This

Table 7-15. T-way vs. random mutation faults detection of replace

Strength Min Q1 Median Q3 Max Spread RelStdDev

2 0 0 0 0 0 0 0

3 0 1 0.5 0 0 0 0.78

4 -26 0 0 0 0 -26 -3.29

Table 7-16. T-way vs random mutation faults detection of totinfo

Strength Min Q1 Median Q3 Max Spread RelStdDev

2 0 0 1 -33.5 -3 3 3.6

3 -5 -1 0 0 0 -5 -9.76

4 7 0 0 0 0 7 1.44

5 0 0 0 0 0 0 0

207

result is consistent with the formal analysis in [23]. All test sets have some degree of t-way

coverage, regardless of how they are generated. The fact that the randomly generated

tests had a very high level of t-way coverage can explain why there is little difference

between the two techniques.

Although there was little difference between combinatorial and random tests at a

particular interaction strength t, fault detection increased rapidly with increasing t. For

practical testing, the results suggest that higher levels of combinatorial coverage

significantly improve fault detection, regardless of whether the combinatorial coverage is

produced by t-way or random test generation.

A t-way test set covers all t-way combinations and thus guarantees to detect all t-

way faults. Moreover, a t-way test set also covers many combinations whose size is greater

than t. Thus, a t-way test set may also detect faults of higher strength, but without

guarantee. This phenomenon has been observed in our experiments. For example, all the

faults that come with totinfo in the Siemens suite have a degree of at least three. However,

one of the 2-way test sets generated in our experiments was able to detect 11 of these

faults. Another example is the tcas program, for which all of the Siemens faults are more

than 5-way. Five 5-way test sets generated in our experiments detected all these faults.

Another example is the second faulty version of the schedule program from the

SIR benchmark. The fault is detected by all 100 2-way test set, while it is a 3-way fault.

The fault is shown in Figure 7-1. The Schedule program takes the following inputs: (1) three

non-negative integers representing the number of processes in three different priority

queues; and (2) a list of commands that must be executed on the queues. The output of

this program is a list of numbers indicating the order in which the processes exit (from the

scheduling system).

208

There are seven commands: new job, upgrade_prio, block, unblock,

quantum_expire, finish and flush. The faulty statement is in the unblock_process function

where a process that should be unblocked is selected from the blocked queue. In the

error - free version the unblock command operates on the n-th process where n =

(int) (count ∗ ratio + 1). In the faulty version n is computed by the two marked statements

in Figure 7-1.

To trigger this fault, the following two conditions need to be satisfied: (1) the

unblock_process must be called; and (2) the integer value, n, computed by the faulty

statements should be different from the one computed by the error-free statement.

The values of two parameters, ratio and size of the blocked queue must be

selected such that the second condition is satisfied. The blocked queue is initially empty

Figure 7-1. Second Siemens Fault of Schedule Program

209

and the block command should be called to add process to the blocked queue and

therefore change its size.

Thus the following combination of the three parameters detects the fault: (1)

number of times the block command is called (which determines the size of the blocked

queue), (2) the value of ratio, and (3) calling the unblock command at least once. Based

on the abstract model of the schedule program [15], there exist a total of six 3-way inducing

combinations that triggers this fault. These inducing combinations are shown in Table 7-17.

Each of the 100 2-way test sets contains at least one of these six inducing combinations

and thus detects this fault.

7.5 THREADS TO VALIDITY

Threats to internal validity are factors that may be responsible for the experimental

results, without our knowledge. We have tried to automate the experimental procedure as

much as possible, as an effort to remove human errors. In particular, we build a tool that

automatically compares the results of the error-free version and a faulty version to evaluate

each test run. Further, the consistency of the results are checked manually to determine

whether the tool works correctly or not.

Table 7-17. 3-way inducing combinations of the second

faulty version of the schedule

3-way inducing combination

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.5"

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.1"

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.4"

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.9"

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.5"

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.1"

210

Threats to external validity occur when the experimental results could not be

generalized to other programs. We use subject programs from the Siemens suite [12];

these programs are created by a third party, but the subject programs are programs of

relatively small size and with a small number of seeded faults. To mitigate this threat, the

mutation faults are added to the experiments. But more experiments on larger programs

with real faults can further reduce this threat.

7.6 RELATED WORK

A number of studies have been reported that evaluate the effectiveness of t-way

testing. In this section, we focus on related work that compares the effectiveness of t-way

and random testing.

Schroeder et al. in [20] conducted an experiment to compare the fault detection

effectiveness of combinatorial and random test sets. The subject programs are two real-

life programs in C++, including the Data Management Analysis System (DMAS) and the

Loan Arranger System (LAS), only one functionality of each program is tested. Their results

show that there is no significant difference in t-way and random testing in terms of fault

detection.

DMAS and LAS have 8.7 and 6.2 KLOC, and their input models are represented

as (216 × 5 × 8) and (27 × 310 × 42), respectively. For each program, and for each

strength t, where t is from 1 to 4, 10 t-way test sets are generated using a tool called TVG

[20]. For each t-way test set, a random test set of the same size is generated. Mutants are

created manually to generate faulty versions. Mutants that are killed by all the 1-way sets

are removed. A total of 88 mutants for DMAS and a total of 82 mutants for LAS are used

in their experiments.

In [20], a random test is generated by randomly selecting a test from all possible

tests. This is different from our approach in which a random test is generated by giving

211

each parameter a random value in its domain. This difference may slightly affect the

combinatorial test coverage achieved by a random test set. Note that the approach in [20]

assumes that all possible tests are first generated, which may not be practical for large

input models.

Ellimis et al. [13] [14] report an experiment that tests 10 different functions of a

system called Wallace that controls a large industrial engine. A mutation tool is used to

generate faulty versions. For each function, three test sets are generated, one t-way test

set, one pure random test set, and one manually generated test set. Pure random tests are

generated without using an input model.

Their results show that 2-way test sets are not as effective as manually generated

tests in term of fault detection. But a t-way test set of a higher strength could be as effective

as a manually generated test set. Their results also show that random test sets may often

provide good results. For example, for 5 out of 10 programs, random and t-way test sets

provide the same results, and in one case random test sets even produce better results

than t-way test sets.

Several studies are reported that compare t-way testing and random testing for

testing logical expressions [5][17] [21]. The logical expressions are either taken from a

program such as TCAS II or generated randomly. Mutants are generated to create faulty

versions. The results consistently show that t-way testing is always more effective, and

sometimes significantly more, than random testing

Kuhn et al. [18] report a study that applies t-way testing and random testing to

detect deadlocks in a network simulator called Simured. The input model for the simulator

is (23 × 3 × 49 × 5). T-way test sets are generated by ACTS with t = 2 to 4. For each t-way

test set, eight random test sets of the same size are generated corresponding to each

combinatorial set. Their experiments show that (1) random testing has better results than

212

2-way testing; (2) no significant difference exists between random and 3-way testing; (3)

4-way testing is more effective than random testing.

Bell and Vouk applied 2-way testing and random testing to a network-centric

software [6]. They found that 2-way testing is more effective in fault detection. In particular,

when there is at least one parameter with more than 10 values, random testing does not

detect about 75% of faults that are detected by 2-way testing

Bryce et al. compared the coverage of combinatorial and random testing on a

system called Flight Guidance System (FGS) [8]. The FGS system has 40 input

parameters, each of which has 2 values. Four t-way test sets with t = 2 to 5, as well four

random test sets of the same size, are generated. Their results show that t-way testing is

more effective than random testing for the FGS system.

A formal analysis in [3] shows that a random test set of the same size as a t-way

test set, could trigger at least one t-way fault with a probability of greater than 0.63. This is

consistent with our results in Table 7-4. The analysis in [3] also shows random testing

becomes more effective as the number of parameters increases and converges toward

being equally effective as combinatorial testing. The analysis assumes no constraints that

exist between parameters.

Finally we note that Czerwonka reported a study [9], that applies t-way testing to

four utility programs in Windows 7, including attrib.exe, fc.exe, find.exe and findstr.exe. The

focus of the study is to investigate the stability of t-way testing in terms of line and branch

coverage. The results show that t-way test sets provide stable coverage when t = 2. This

study, however, does not make a comparison with random testing.

7.7 CONCLUSION

In this paper, we report a study that compares the effectiveness of t-way testing to

that of random testing in terms of both code coverage and fault detection. In particular, we

213

investigated the stability of the two techniques. Our results show that in most cases, t-way

testing performed as good as or better than random testing. There are few cases where

random testing performed better, but with a very small margin. Overall, the differences

between the two are not as significant as one would have probably expected. A possible

explanation is that most random test sets seem to achieve a high level of t-way coverage.

More studies are needed to better understand the effectiveness of the two testing

techniques.

We plan to conduct more empirical studies to further evaluate the effectiveness

and stability of combinatorial testing. We plan to use programs that are larger and/or more

complex than the Siemens programs. We also plan to conduct studies where the degree

of fault can be better controlled. This will help us to better study the relationship between

the combinatorial coverage of a test set and the faults the test set is able to detect.

7.8 Acknowledgment

We thank Yue Jia for providing the Linux version of mutation tool. This work is

supported by two grants (70NANB12H175 and 70NANB10H168) from Information

Technology Lab of National Institute of Standards and Technology (NIST).

Disclaimer: Certain software products are identified in this document. Such

identification does not imply recommendation by the NIST, nor does it imply that the

products identified are necessarily the best available for the purpose.

7.9 REFRENCES

1. Advanced T-way testing System (ACTS), http://csrc.nist.gov/

groups/SNS/acts/documents/comparison-report.html, 2013.

2. Applying Combinatorial Testing, http://barbie.uta.edu/~laleh/BEN/ben.html, 2014.

http://csrc.nist.gov/%20groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/%20groups/SNS/acts/documents/comparison-report.html
http://barbie.uta.edu/~laleh/BEN/ben.html

214

3. A. Arcuri, L. Briand, "Formal Analysis of the Probability of Interaction Fault Detection

Using Random Testing," IEEE Transactions on Software Engineering 38(5):1088-

1099, 2012.

4. J. Bach, P. J. Schroeder, “Pairwise testing: A best practice that isn’t”, In Proceeding

of the 22nd Annual Pacific Northwest Software Quality Conference, pp. 180-196,

2004.

5. W. A. Ballance, S. Vilkomir, W. Jenkins, “Effectiveness of Pair-Wise Testing for

Software with Boolean Inputs”, In Proceedings of the IEEE Fifth International

Conference on Software Testing, Verification and Validation, pp.580-586, 2012.

6. K. Z. Bell, M. A. Vouk, "On effectiveness of pairwise methodology for testing network-

centric software". In Proceeding of the ITI 3rd International Conference on

Information and Communications Technology, pp.221-235, 2005.

7. M. N. Borazjany, Y. Linbin, Y. Lei, R. Kacker, and D. R. Kuhn, “T-way testing of

ACTS: A Case Study”, In Proceedings of the IEEE fifth International Conference on

Software Testing, Verification and Validation, pp.591-600, 2012.

8. R.C. Bryce, A. Rajan, M.P.E. Heimdahl, "Interaction Testing in Model-Based

Development: Effect on Model-Coverage," In Proceeding of the 13th Asia

Pacific Software Engineering Conference, pp.259-268, 2006.

9. J. Czerwonka, “On Use of Coverage Metrics in Assessing Effectiveness of

Combinatorial Test Deigns”, In Proceedings of the IEEE Sixth International

Conference on Software Testing, Verification and Validation Workshops, pp. 257-

266, 2013.

215

10. J. Czerwonka, “Pairwise testing in real world. Practical extensions to test case

generators”, In Proceedings of 24th Pacific Northwest Software Quality Conference,

pp. 419-430, 2006.

11. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M.

Horowitz. Model-based testing in practice. In Proceedings of the 21st international

conference on Software engineering, pp. 285-294, 1999.

12. H. Do, S. Elbaum, and G. Rothermel. “Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact”, Empirical Software

Engineering. 10(4):405-435, 2005.

13. M. Ellims, D. Ince, and M. Petre, "AETG vs. Man: an Assessment of the Effectiveness

of Combinatorial Test Data Generation," Technical Report 2007/08, Dept. Computer

Science, Open University, Milton Keynes, June 2007.

14. M. Ellims , D. Ince, M. Petre, "The effectiveness of t-way test data generation",

In Proceedings of the 27th international conference on Computer Safety, Reliability,

and Security, pp. 16-29, 2008.

15. L. S. Ghandehari, M. N. Bourazjany, Y. Lei, R.N. Kacker and D.R. Kuhn, "Applying

T-way testing to the Siemens Suite", In Proceedings of the IEEE Sixth International

Conference on Software Testing, Verification and Validation Workshops, pp. 362-

371, 2013.

16. Y. Jia and M. Harman. “Milu: A Customizable, Runtime-Optimized Higher Order

Mutation Testing Tool for the Full C Language”, TAIC PART '08. Testing: Academic

& Industrial Conference, pp. 94-98, 2008.

http://csrc.nist.gov/groups/SNS/acts/documents/ghandehari-et-al-iwct13.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/ghandehari-et-al-iwct13.pdf

216

17. N. Kobayashi, T. Tsuchiya, T. Kikuno, "Applicability of non-specification-based

approaches to logic testing for software", In Proceeding of the International

Conference on Dependable Systems and Networks, pp. 337-346, 2001.

18. D.R. Kuhn, R. Kacker, Y.Lei. “Random vs. Combinatorial Methods for Discrete Event

Simulation of a Grid Computer Network”, In Proceedings of ModSim World, pp. 83-

88, 2009.

19. D.R. Kuhn, D.R. Wallace, and A.M. Gallo. “Software Fault Interactions and

Implications for Software Testing”, IEEE Transaction on Software

Engineering 30(6):418-421, 2004.

20. P.J. Schroeder, P. Bolaki, V. Gopu, "Comparing the fault detection effectiveness of

n-way and random test suites," In Proceeding of the International Symposium

on Empirical Software Engineering, pp.49-59, 2004.

21. S. Vilkomir, O. Starov and R. Bhambroo, “Evaluation of t-wise approach for testing

logical expression in Software”, In Proceedings of the IEEE Sixth International

Conference on Software Testing, Verification and Validation Workshops, pp.249-

256, 2013.

22. D. R. Wallace, D. R. Kuhn, “Failure Modes in Medical Device Software: an Analysis

of 15 Years of Recall Data”, In Proceeding of the ACS/ IEEE International

Conference on Computer Systems and Applications, pp. 301-311, 2001.

217

 Conclusion

In this dissertation, we present a fault localization approach based on

combinatorial testing. Our approach, i.e., BEN, consists of two phases, i.e., failure-inducing

combination identification and faulty statement localization.

The novelty of our approach is twofold. In the first phase, we introduced two notions

of suspiciousness, suspiciousness of a combination and suspiciousness of its

environment. BEN uses these notions to rank suspicious combinations. The higher the

suspiciousness of a combination, the lower the suspiciousness of its environment, the

higher this combination is ranked.

In the second phase, we generate a small group of tests that include a failing test

and several passing tests that are very similar to the failing test. The spectra of these tests

are analyzed to rank statements in terms of their likelihood to be faulty. This approach is

inspired by the notion of nearest neighbor, i.e., the faulty statement is likely to appear in

the execution trace of a failed test but not in the execution trace of a passed test which is

similar to the failed test as possible.

It is important to emphasize that BEN differs from existing spectrum-based

approaches such as Tarantula and Ochiai in that existing approaches require the spectra

of all test executions be recorded. If a test set is already executed without being traced,

the test set must be re-executed to collect traces before they can be used by these

approaches. In contrast, BEN only requires the spectra of a small number of tests

generated in the second phase and can be applied after a regular testing process is

performed where test executions are not traced.

We conducted our experiments in which BEN is applied to the Siemens suite and

two real-life programs, i.e., the grep and gzip programs. Our experimental results show

that BEN is very effective, i.e., significantly reduces the number of statements to be

218

inspected for fault localization, and efficient, i.e., a very small number of tests needs to be

generated and traced. Moreover, the comparison of BEN to two spectrum-based

approaches, Tarantula and Ochiai, show that BEN achieves the results that are competitive

or even better than Tarantula 18and Ochiai while requiring significantly fewer tests to be

instrumented.

This dissertation also includes two empirical studies that were conducted as part

of our effort to evaluate the effectiveness of BEN. These studies provide additional data

that demonstrate the effectiveness of combinatorial testing. In the first study, we applied

combinatorial testing on the Siemens programs. Our experimental results show that

combinatorial testing is very effective in that it detects most faulty versions of these

programs. In the second study, we compared combinatorial testing and random testing in

terms of code coverage and fault detection. In particular, we investigated the stability of

the two techniques. Our results suggest that in most cases combinatorial testing performs

better or as good as random testing.

We plan to conduct more empirical studies to further evaluate the performance of

our approach on different fault types. In particular, we plan to investigate how BEN works

on security faults such as Buffer Overflow and Cross Site Scripting vulnerabilities. Security

faults seem to demonstrate some different properties than functional faults. It is expected

that BEN needs to be adapted for localizing security faults. We also plan to investigate how

to adapt our approach to work with an arbitrary test set. The challenge is to deal with the

fact that unlike a combinatorial test set, an arbitrary test set does not guarantee that all t-

way combinations are covered. This could potentially reduce the effectiveness of our

approach.

