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Abstract 

 
FAULT LOCALIZATION BASED ON COMBINATORIAL TESTING 

 

Laleh Shikh Gholamhosseinghandehari, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Yu Lei 

Combinatorial testing is a software testing strategy that has received a significant 

amount of attention from academia and industry. After executing a combinatorial test set, 

the execution status, i.e., pass or fail, of each test is obtained. If there is one or more failed 

tests, the next task is fault localization, i.e. localizing the fault in the source code. This 

dissertation addresses the problem of how to perform fault localization by leveraging the 

result of combinatorial testing.  

The major contribution of this dissertation is a fault localization approach called 

BEN that consists of two major phases: 1) failure-inducing combination identification, 2) 

faulty statement localization. A combination is failure-inducing if its existence in a test 

causes the test to fail. The failure-inducing combination identified in the first phase is used 

to generate a group of tests such that the spectra of these tests can be analyzed quickly 

to identify the faulty statement in the source code. To the best of our knowledge, BEN is 

the first approach that performs code-based fault localization by leveraging the result of 

combinatorial testing. We conducted experiments in which BEN was applied to a set of 

programs from the Software Infrastructure Repository (SIR). The programs include the 

programs in the Siemens suite and two real-life programs, i.e., grep and gzip. The 

experimental results show that our approach can effectively and efficiently localize the 

faulty statements in these programs.  



iii 

This dissertation also includes two empirical studies on the effectiveness of 

combinatorial testing. In the first study, we evaluate the effectiveness of combinatorial 

testing on the Siemens programs. In the second study, we compare the stability of 

combinatorial testing to that of random testing. These two studies are conducted as part of 

our effort to evaluate the effectiveness of BEN, since combinatorial testing must be 

performed on a subject program before BEN is applied to the program. Both studies 

contribute to the literature by providing additional data that demonstrate the effectiveness 

of combinatorial testing.   

This dissertation is presented in an article-based format and includes six research 

papers. The first paper reports our work on the first phase of BEN. The second paper 

reports our work on the second phases of BEN. The third paper is a journal extension that 

combines the first two papers and also adds several significant extensions of BEN. The 

fourth paper is a tool paper that describes the design and usage of a prototype tool that 

implements BEN. The fifth paper reports the empirical study on input parameter modeling. 

The sixth paper reports the empirical study, on comparing combinatorial testing and 

random testing. All these papers have been published in peer-reviewed venues except the 

third one, which is currently under review. 
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 Introduction 

Combinatorial testing is a software testing strategy that has received a significant 

amount of attention from academia and industry. The key observation is that most software 

failures are caused by interactions of only a few parameters. A widely cited NIST study 

reports that failures in several real-life systems involved no more than six parameters. A t-

way combinatorial test set is built to cover all the t-way interactions, i.e., interactions 

involving t parameters, where t is typically a small integer. Empirical results have shown 

that combinatorial testing is very effective for failure detection while significantly reducing 

the number of tests.   

Most research in combinatorial testing has focused on developing efficient 

combinatorial test generation algorithms and conducting empirical studies to evaluate the 

failure-detection effectiveness of combinatorial testing. After a failure is detected, the next 

task is to find the fault that caused the failure. An important research problem is how to 

leverage the result of combinatorial testing for fault localization.  

1.1 Research overview 

In this dissertation, we present an approach to locate one or more faulty 

statements in the source code using the result of combinatorial test set. Our approach, 

called BEN, consists of two major phases. In the first phase, BEN identifies failure inducing 

combination. A combination is failure inducing, or simply inducing, if it causes any test in 

which it appears to fail. To identify inducing combination, our approach takes as input a t-

way test set and their status and reports as output the inducing combination of size t, i.e., 

the strength of initial test set, or larger. BEN iteratively identifies a set of suspicious 

combinations in the current test set, initially the combinatorial test set. Suspicious 

combinations are candidate of inducing combinations. Then, BEN systematically generates 
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a small number of tests which can be executed to refine the suspicious combinations set. 

The process continues until the failure inducing combination is identified.  

In the second phase, BEN localizes the faulty statement in the source code. The 

second phase takes as input the identified inducing combination, and produces as output 

a ranking of statements in terms of their likelihood of being faulty. In this phase BEN 

generates a small group of tests from the inducing combination. The tests are generated 

in a way such that the spectra of these tests can be analyzed quickly to generate ranking 

of statements.   

To the best of our knowledge BEN is the first approach that deals with code-based 

fault localization using combinatorial testing. Existing work on fault localization based on 

combinatorial testing focuses on identifying failure inducing combinations. Also, there are 

several studies on general code based fault localization problem. BEN differs from the 

other spectrum-based fault localization approaches, which they do not deal with the test 

generation problem, and they assume the existence of a large number of tests, which are 

generated randomly and/or using other techniques. Moreover, the other approaches do 

not use the benefit of the combinatorial test set, therefore, BEN is more effective and 

efficient comparing to the general spectrum-based approaches.   

BEN was applied to the Siemens suite which contains seven relatively small 

programs and two large programs, i.e., grep and gzip from the Software Infrastructure 

Repository (SIR). The results show that BEN is effective in localizing faulty statements and 

also efficient in that only a small number of tests need to be executed and instrumented. 

Moreover, we compared the results of BEN and two other spectrum based approaches, 

Tarantula and Ochiai. Our experimental results show that BEN achieved results that are 

competitive to or better than Tarantula and Ochiai but with a significantly less number of 

tests. 
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We also conducted two empirical studies on the effectiveness of combinatorial 

testing. These two empirical studies are performed to evaluate the effectiveness of fault 

localization process using BEN, since BEN is a combinatorial testing based approach, i.e., 

combinatorial testing must be performed before BEN is applied. In the first study, we 

applied combinatorial testing on the Siemens programs. The results show that 

combinatorial testing is very effective and detects most faulty versions of these programs. 

In the second study, we compared two testing strategies, i.e., combinatorial testing and 

random testing, in terms of their stability. The effectiveness of each testing strategy is 

measured in terms of the code coverage and fault detection. The results of our study 

suggest that in most cases, combinatorial testing performed as good as or better than 

random testing.  

1.2 Summary of publications 

This dissertation is presented in an article-based format and includes six research 

papers. In Chapter 2, we present the paper titled, “Identifying failure inducing combination 

in a combinatorial test set”, which was published in IEEE fifth International Conference on 

Software Testing, Verification and Validation (ICST), in 2012. The paper reports our work 

on the first phase of BEN. 

Chapter 3 presents the paper titled, “Fault localization based on failure inducing 

combinations”. The paper was published in IEEE 24th International Symposium on 

Software Reliability Engineering (ISSRE) in 2013. The paper presents our work on the 

second phase of BEN.   

The two approaches presented in Chapter 2 and Chapter 3 are combined and 

revised to form an extended version of BEN. This version is presented in Chapter 4 by the 

paper titled “A combinatorial testing-based approach to fault localization”, which is 

submitted in January 2016 and is currently under review. The extended version of BEN 
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supports systems whose inducing combinations are larger than the strength of the initial 

combinatorial test set. Moreover, by revising the stopping condition, BEN can identify an 

inducing combination by generating a less number of tests in comparison with the approach 

presented in Chapter 2. Moreover, additional experiments are conducted to further 

evaluate the effectiveness of BEN.  

Chapter 5 presents a tool paper titled “BEN: A combinatorial testing-based fault 

localization tool”, which was published in IEEE 8th International Conference on Software 

Testing, Verification and Validation Workshops (ICSTW), in 2015.  In this paper, we 

presented the major user scenarios and also the architectural design of BEN. BEN provides 

both Graphical User Interface and Command Line Interface.  

The first empirical study is presented in Chapter 6, using the paper titled, “Applying 

combinatorial testing to the Siemens suite”. The paper presented in IEEE 6th International 

Conference on Software Testing, Verification and Validation Workshops (ICSTW), in 2013. 

In this chapter, we reported an experiment that applies combinatorial testing to the 

Siemens suite. The chapter describes the details of our three-step modeling process. Note 

that the Siemens suite has been widely used as a benchmark to evaluate the effectiveness 

of many testing and fault localization techniques. We also used the Siemens suite to 

evaluate our proposed approaches in Chapter 3 and Chapter 4. 

Chapter 7 presents a paper titled “An empirical comparison of combinatorial and 

random testing”. The paper was published in IEEE 7th International Conference on 

Software Testing, Verification and Validation Workshops (ICSTW), in 2014. In this paper 

we compared the stability of combinatorial testing to that of random testing and also 

measure it in terms of both code coverage and fault detection. Our experimental results 

show that in most cases, combinatorial testing performed as good as or better than random 
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testing. There are few cases where random testing performed better, but with a very small 

margin. 

Finally, in Chapter 8 we provide the concluding remarks and discuss several 

directions for our future work. 
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 Identifying failure inducing combinations in a combinatorial test set 

The chapter contains a paper published in IEEE fifth International Conference on 

Software Testing, Verification and Validation (ICSE), in 2012. 
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Abstract - A 𝐭-way combinatorial test set is designed to detect failures that are 

triggered by combinations involving no more than 𝐭 parameters. Assume that we have 

executed a 𝐭-way test set and some tests have failed. A natural question to ask is: what 

combinations have caused these failures? Identifying such combinations can facilitate the 

debugging effort, e.g., by reducing the scope of the code that needs to be inspected.  

In this paper, we present an approach to identifying failure-inducing combinations, 

i.e., combinations that have caused some tests to fail. Given a 𝐭-way test set, our approach 

first identifies and ranks a set of suspicious combinations, which are candidates that are 

likely to be failure-inducing combinations. Next, it generates a set of new tests, which can 

be executed to refine the ranking of suspicious combinations in the next iteration. This 

process can be repeated until a stopping condition is satisfied. We conducted an 

experiment in which our approach was applied to several benchmark programs. The 

                                                 
* Copyright © 2012 IEEE. Reprinted, with permission, from Laleh Sh. Ghandehari, Yu Lei, Tao Xie, 

Richard Kuhn, Raghu Kacker Identifying failure inducing combinations in a combinatorial test set, 
IEEE International Conference on Software Testing, Verification and Validation (ICST), April 2012. 
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experimental results show that our approach can effectively and efficiently identify failure-

inducing combinations in these programs. 

Keywords- Combinatorial Testing, Fault Localization, Debugging. 

 

2.1 INTRODUCTION 

Combinatorial testing has been shown to be a very practical and efficient testing 

strategy [2, 3, 6]. The main idea behind combinatorial testing is the following: while the 

behavior of a system as a whole may be affected by many parameters, many failures are 

caused by interactions of only a few parameters [5]. It is, however, not known a priori 

interactions of which parameters could cause a failure. A t-way combinatorial test set is 

designed to cover all the t-way interactions, i.e., combinations of values involving t  

parameters, where t is typically a small integer [2, 6]. If the input parameters are modeled 

properly, a t-way test set is guaranteed to detect all the failures that are triggered by 

interactions of no more than t parameters. 

Assume that we have executed a t-way test set and some tests have failed. A 

natural question to ask is: what combinations have caused these failures? Identifying such 

combinations can facilitate the debugging effort, e.g., by reducing the scope of the code 

that needs to be inspected. 

In this paper, we present an approach to identifying failure-inducing combinations 

in a combinatorial test set. A failure-inducing combination, or simply an inducing 

combination, is a combination of parameter values such that all test cases containing this 

combination fail [8, 10, 13]. Our approach takes as input a combinatorial test set and 

produces as output a ranking of t-way suspicious combinations in terms of their likelihood 

to be inducing. Moreover, our approach identifies all the suspicious combinations whose 

size is smaller than t, if they exist.    
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Our approach adopts an iterative framework. At each iteration, a set F of test cases 

is analyzed. (F is a t-way test set at the first iteration.) Our approach first identifies the set 

π of all t-way suspicious combinations, and then ranks them based on their likelihood to be 

inducing. Next, our approach generates a set F′ of new test cases. The test cases in F′, if 

executed, will be added to F, and will be analyzed in the next iteration to refine the set of 

suspicious combinations and their ranking. This process is repeated until a stopping 

condition is satisfied.  

The novelty of our approach lies in the fact that we rank suspicious combinations 

based on two notions: suspiciousness of a combination and suspiciousness of the 

environment of a combination. Informally, the environment of a combination consists of 

other parameter values that appear in the same test case. The higher the suspiciousness 

of a combination, the lower the suspiciousness of its environment, the higher this 

combination is ranked. Moreover, new test cases are generated for the most suspicious 

combinations. Let f be a new test case generated for a suspicious combination c. Test f is 

generated such that the suspiciousness of the environment for c is minimized. If f fails, it is 

more likely to be caused by c instead of other values in f.   

We report an experiment in which we apply our approach to a set of six third-party 

benchmark programs. Each benchmark program has a number of seeded faults. The 

results show that our approach is effective in identifying inducing combinations. On one 

hand, truly inducing combinations are ranked to the top very quickly. On the other hand, 

combinations that are ranked on the top but are not failure-inducing often have a very high 

probability to be inducing. Our approach is also very efficient in that only a very small 

percentage of all possible test cases need to be executed. For example, for one version of 

the six benchmark program (version 3 of a program named cmdline), the only two inducing 

combinations are ranked to the top 10 after executing 0.034% of all possible test cases.     
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The remainder of this paper is organized as follows. Section 2.2 represents the 

definitions and notations used in this paper. Section 2.3 describes our approach. 

Section 2.4 gives an example to illustrate our approach. Section 2.5 reports an experiment 

that demonstrates the effectiveness and efficiency of our approach. Section 2.6 discusses 

existing work on identifying inducing combinations. Section 2.7 provides some concluding 

remarks. 

2.2 PRELIMINARIES 

In this section, we introduce the basic definitions and assumptions needed in our 

approach.  

2.2.1 Basic concepts 

Assume that the system under test (SUT) has k input parameters, denoted by set 

P = {p1, p2, … , pk}. Let di be the domain of parameter pi. That is, dicontains all possible 

values that pi could take, and let D = {d1 ∪ d2 ∪ … ∪ dk}. 

Definition 1. (Test Case)  A test case is a function that assigns a value to each 

parameter. Formally, a test case is a function f: P → D. 

We use Γ to represent all possible test cases for the SUT. It is clear that |Γ| =

|d1| × |d2| × … × |dK| .  

Definition 2. (Test Oracle) A test oracle determines whether the execution of a 

test case is “pass” or “fail”. Formally, a test oracle is a function r: Γ → {pass, fail}.  

Definition 3. (Combination) A combination c is a test case f restricted to a non-

empty, proper subset M of parameters in P. Formally, c = f|M, where M ⊂ P, and |M| > 0. 

In the preceding definition, M is a proper subset of  P thus a test case is not 

considered to be a combination in this paper. We use dom(c) to denote the domain of c, 

which is a set of parameters involved in c. (Note that dom(c) is the domain of a function, 
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which is different from the domain of a parameter.) We define the size [c] of a combination 

c to be the number of parameters involved in c. That is [c] = |dom(c)|. 

A combination of size 1 is a special combination, which we refer to as a component. 

Since there is only one parameter involved, we denote a component o as an assignment, 

i.e., o = p ← v, where o(p) = v.  

Definition 4. (Component Containment)  A component o = p ← v is contained in 

a combination c denoted by o ∈ c , if and only if  p ∈ dom(c) and c(p) =  v. 

Definition 5. (Combination Containment) A combination c is contained in a test 

case f, denoted by  c ⊂  f , if and only if   ∀p ∈ dom(c), f(p) = c(p) . 

Definition 6. (Inducing Combination) A combination c is failure-inducing if any test 

case f in which c is contained fails. Formally,  ∀f ∈ Γ: c ⊂ f ⟹  r(f) = fail. 

Definition 6 is consistent with the definition of inducing combinations in previous 

work [8, 9, 10, 13].  

Definition 7. (Inducing Probability) The inducing probability of a combination c is 

the ratio of the number of all possible failed test cases containing c to the number of all 

possible test cases containing c. The inducing probability is computed by 

|{f ∈ Γ|r(f) = fail ∧ c ⊂ f}|

|{f ∈ Γ|c ⊂ f}|
 

The computation of inducing probabilities requires all possible test cases 

containing a combination; such represent is not possible in practice. This notion is mainly 

used to evaluate the goodness of our experimental results.  

 Definition 8. (Suspicious Combination) A combination c is a suspicious 

combination in a test set F ⊆ Γ if c is contained only in failed test cases in F. Formally, ∀f ∈

F: c ⊂ f ⇒ r(f) = fail. 
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Inducing combinations must be suspicious combinations, but suspicious 

combinations may or may not be inducing combinations. 

2.2.2 Assumption 

Assumption 1. The output of the SUT is deterministic. In other words, the SUT 

always produces the same output from a given test case.  

Assumption 2. There exists a test oracle that determines the status of a test 

execution, i.e., “pass” or “fail”. Assumption 2 is made to simplify the presentation of our 

approach. The construction of a test oracle is an independent research problem. When a 

test oracle exists, our approach can be fully automated. When a test oracle does not exist, 

our approach can still be applied, but the user needs to assist in determining the execution 

status of a test case. 

Assumption 3. Inducing combinations should involve no more than t parameters, 

where t is the strength of the initial combinatorial test set.  

Our approach focuses on detecting inducing combinations that are of size t or less. 

Such focus is consistent with the implicit assumption held when a tester decides to use a 

t-way combinatorial test set. 

2.3 APPROACH 

In this section, we present our approach to identifying inducing combinations.  

2.3.1 Framework 

As shown in Figure 2-1, the framework consists of three main steps. (1) Rank 

generation: In this step, we first identify all the t-way suspicious combinations in F (line 4). 

We then produce a ranking of the suspicious combinations (line 7). (2) Test generation: In 

this step, we generate a set of new tests, which will be used to refine the ranking of 

suspicious combinations in the next iteration (line 9). (3) Reduction: In this step, we analyze 

the final ranking of t-way suspicious combinations to derive suspicious combinations of 
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size smaller than t, if they exist (line 17). The details of these three steps are presented in 

the following subsections.  

In the framework, the two steps, rank generation and test generation, are 

performed iteratively when the set of suspicious combinations, π, is not empty and the size 

of π in the current iteration is less than the previous iteration (line 5). Otherwise, the 

algorithm stops (lines 12, 14).  

In addition, another stopping condition happens when a combination is marked as 

an inducing combination by the test generation step (line 15). The reduction step analyzes 

π to determine smaller suspicious combinations and produce a ranking for them (line 17).  

The user can decide to stop at the end of each iteration, if the resource is limited. 

Algorithm IdentifyInducingCombinations 

Input: sut, F0, t 

Output: a set R = {R1, R2, … Rt} of rankings,  

where Ri is the ranking of i-way suspicious combinations 

 

1.  let F = F0 and  let π be an empty set 

2.  while (true) { 

3.     // Step 1. rank suspicious combinations 

4.     identify the set π′ of t-way suspicious combinations in F 

5.     if ( π′ != empty  && ( |π′| < |π| ){ 

6.        π = π′ 

7.        produce a ranking R of all the t-way combinations in π 

8.        // Step 2. generate new tests 

9.        generate a set F' of new tests 

10.       F = F ⋃  F' 
11.    } 

12.    else if ( π′= empty ) 

13.       return an empty set of rankings; 

14.    if (|π′| = |π|  
15.          || any combination marked as inducing) { 

16.        // Step 3. derive smaller combinations 

17.       derive R1, R2, … Rt based on π′ 

18.       return {R1, R2, … Rt} 

19.    } 

20.  } // end of while 

Figure 2-1. Algorithm for identifying inducing combinations 
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2.3.2 Rank generation 

In step of rank generation, we first identify the set π′ of all t-way suspicious 

combinations in F. In the first iteration, F is the initial t-way test set, i.e., F0. Thus, F0 covers 

all t-way combinations. Initially, π′contains all the t-way combinations. We then check each 

t-way combination c in π′. If c appears in at least one passed test, c is removed from π′. In 

the subsequent iterations, we do not have to re-compute π′ from the scratch. Instead, we 

only need to remove from π′ all the combinations contained in newly added, passed tests. 

We next discuss how to rank the suspicious combinations in π. First, we introduce 

three important metrics of suspiciousness, suspiciousness of component, suspiciousness 

of combination, and suspiciousness of environment. 

Suspiciousness of component (ρ): This notion is defined such that the higher ρ a 

component o has, the more likely o contributes to a failure, and the more likely o appears 

in an inducing combination. Let F be the test set that is analyzed in the current iteration. In 

our approach, ρ is computed by the following formula: 

ρ(o) =
1

3
( u(o) + v(o) + w(o))                 (1)

Where 

u(o) =
|{f ∈ Fi|r(f) = fail ∧ o ∈ f}| 

 |{f ∈ Fi|r(f) = fail}|
 

v(o) =
|{f ∈ Fi|r(f) = fail ∧ o ∈ f}| 

 |{f ∈ Fi|o ∈ f}|


w(o) =
|{c|o ∈ c ∧ c ∈ π}| 

|π|


The first factor of (1), u(o), shows the ratio of the number of failed test cases in 

which component o appears over the total number of failed test cases. The second factor, 

v(o), shows the ratio of the number of failed test cases in which component o appears over 

the total number of test cases in which component o appears. The third factor shows the 
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ratio of the number of suspicious combinations in which component o appears over the 

total number of suspicious combinations. The three factors are averaged to produce a 

value between 0 and 1.  

The motivation behind the first two factors is that the more frequently a component 

appears in failed test cases, this component is more likely to contribute to a failure. 

There is an important difference between the two factors. Since the greater the 

domain size is, the less frequently each individual value of this parameter appears in a test 

set and consequently in failed test cases, the first factor, u(o), has a bias towards smaller 

domain size parameters. The second factor, v(o), is brought in to reduce this bias.  

The motivation for the third factor is that components of inducing combinations 

tend to appear more frequently in suspicious combinations. For example, assume that 

combination c = (a ← 0, b ← 0) is inducing. Let f = (a ← 0, b ← 0, c ← 0, d ← 0)  be a test 

case. Test case f fails as it contains c. Let f ′ = (a ← 1, b ← 1, c ← 0, d ← 0) be another test 

case, which passed since it does not contain c. The set of suspicious combinations derived 

from these two test cases is π = {(a ← 0, b ← 0), (a ← 0, c ← 0), (a ← 0, d ←

0), (b ← 0, c ← 0), (b ← 0, d ← 0)} 

In this set, the frequencies of a ← 0 and b ← 0 both are greater than others. The 

reason is that (c ← 0, d ← 0) appears in f ′, which is a passed test case. 

Suspiciousness of combination (ρc): Suspiciousness of a combination c is defined 

to be the average of suspiciousness of components that appear in c. Formally 

suspiciousness of combination c,  ρc(c)  is computed by 

ρc(c) =
1

[c]
∑ ρ(o)

∀ o∈c

                                    (2) 

Suspiciousness of Environment ( ρe ): The environment of a combination c in a test 

f includes all components that appear in f but do not appear in c. The suspiciousness of 
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the environment of a combination c in a test f is the average suspiciousness of the 

components in the environment of c. If there is more than one (failed) test containing c in a 

test set, the suspiciousness of the environment of c in this test set is the minimum 

suspiciousness of environment of c in all the tests containing c. Formally, suspiciousness 

of the environment is computed by  

ρe(c) = Min ( ∑ ρ(o),

o∈f ∧o∉c

 ∀f ∈ F )                    (3)   

Now we discuss how to actually rank the suspicious combinations based on ρc and 

ρe. Intuitively, the higher the value of c, the lower the value of e, the higher a combination 

is ranked.  

To produce the final ranking, we first produce two rankings Rc and Re of suspicious 

combinations, where Rc is in the non-descending order of c and Re is in the non-ascending 

order of e. The final ranking R is produced by combining Rc and Re as follows. Let c and 

c′ be two suspicious combinations. Assume that c has ranks rc and re in Rc and Re, 

respectively, and c′ has ranks rc
′  and re

′  in Rc and Re, respectively. In the final ranking  R, c 

is ranked before c′ if and only if rc + re < rc
′ + re

′ . 

2.3.3 Test generation 

The step of test generation is responsible for generating new test cases for a 

predefined number of top suspicious combinations. These new test cases are used to 

refine the ranking of suspicious combinations in the next iteration. Let c be a suspicious 

combination. A new test f is generated for c such that f contains c and the suspiciousness 

of the environment for c is minimized in f. When such a test case passes, this combination 

is removed from the suspicious set. When such a test case fails, the failure is more likely 

due to this combination since the suspiciousness of its environment is minimized. 
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One algorithm to find a new test case with minimum ρe for a suspicious 

combination is to generate all possible tests containing this combination, remove tests 

which already exist in F, and then select one with minimum ρe. This algorithm is very 

expensive. We next describe a more efficient, but heuristic, algorithm. 

First, we generate a base test f as follows. For each parameter involved in c, we 

give the same value in f as in c. Doing so makes sure that f contains c. For each parameter 

in the environment of c, i.e., each parameter that is not involved in c, we choose a value 

(or component) whose suspiciousness ρ is the minimum. If there is more than one value 

with minimum ρ, one of them is selected randomly.   

Next, we check whether the base test f is really new, i.e., making sure that f has 

not been executed before. If so, f is returned as the new test that contains c and has 

minimum ρe. If not, we pick one parameter randomly and change its value to a value with 

the next minimum ρ. Again, this test is checked to see whether it is a new test. These steps 

are repeated until a new test is found, or the number of attempts for finding new test case 

reaches a predefined number. In the latter case, the combination c is marked as an 

inducing combination, because it is very likely that all the test cases containing this 

combination have been executed (and all of them must have failed). 

2.3.4 Reduction 

In the step of reduction, the set of t-way suspicious combinations is analyzed to 

derive suspicious combinations of smaller size, i.e., size 1 to t − 1. A k-way combination c, 

where 1 ≤ k ≤ t − 1, is suspicious if all the (k+1)-way combinations containing c are 

suspicious.   

Our reduction algorithm works as follows. A bucket is assigned to each (t − 1)-way 

combination c to hold t-way suspicious combinations that contain c. For each t-way 

suspicious combination in π, we put it into t buckets, one for each (t − 1)-way combination 
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that it contains. A (t − 1)-way combination c is identified to be a suspicious combination if 

the number of t-way combinations in its bucket is equal to the number of all possible t-way 

combinations containing c. 

After all the (t − 1)-way suspicious combinations are identified, they are ranked 

using the same algorithm for ranking t-way suspicious combinations.  

The similar process can be applied to derive suspicious combinations of size t −

2, and so on, until we derive suspicious combinations of size 1. 

2.3.5 Stopping condition 

There are three stopping conditions in Figure 2-1. The first condition is that π 

becomes empty. This situation occurs when all inducing combinations are of size greater 

than t. In this situation, assumption 3 is not satisfied. In this situation, no rankings of 

suspicious combinations are produced.  

The second condition is that the size of π does not change from the previous 

iteration.  This situation occurs when all the new tests generated in the previous iteration 

fail, and thus no suspicious combination is removed from π.  

The third stopping condition is that the framework finds a suspicious combination 

marked as an inducing combination.  These combinations are marked in test generation 

step, when no new test is found for them. 

2.3.6 Discussion 

Our approach is by nature heuristic. On one hand, suspicious combinations that 

are ranked top by our approach may not be truly inducing. On the other hand, truly inducing 

combinations may not be ranked top by our approach.  

While our approach focuses on analyzing t-way combinations, it guarantees to 

identify inducing combinations involving no more than t parameters to be suspicious 

combinations. Let c be an inducing combination, we consider the following two cases. 
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Case (1): c is a t-way combination. As the initial test set is a t-way test set, there 

is at least one test that contains c, and all test cases containing c must fail, since c is 

inducing. Therefore, c is identified to be a suspicious combination by our approach. 

Case (2): The size of c is less than t. All t-way combinations containing c are 

inducing combinations and are identified to be suspicious combinations. Hence, the 

reduction step identifies c as a suspicious combination. 

Note that when an inducing combination involves more than t parameters, it may 

not appear in the initial t-way test set, and our algorithm does not identify it to be a 

suspicious combination.   

2.3.7 Complexity analysis 

Let k be the number of parameters, d the largest domain size and n the number of 

test cases in the test set. The maximum number of t-way combinations is  m = (k
t
)dt. 

The rank generation step needs to sort the set of suspicious combinations for three 

times, once for each ranking Rc, Re, and R. The sorting dominates the complexity of this 

step, which is O(m ∗ log m). 

The test generation step needs to select (k − t) values with minimum ρ first, which 

takes (k − t) ∗ O(d). Then it needs to check whether it is new, which is O(k ∗ n). In the worst 

case, a new test is not found after a predefined number of attempts. Thus the complexity 

for this step is (k − t) ∗ O(d) ∗ O(k ∗ n). 

In the reduction step, each t-way suspicious combination is put into t buckets. It 

takes O(t) to determine whether a t-way combination belongs to a particular bucket. There 

are l = ( k
t−1

)dt−1 buckets. So the complexity for all t-way combinations is O(t ∗ l ∗ m). This 

computation is performed for 1 to (t − 1)-way combinations, and the total complexity is 
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O(t2 ∗ l ∗ m). The reduction step ranks suspicious combinations, which is however 

dominated by finding suspicious combinations. 

2.4 EXAMPLE 

In this section, we illustrate our approach using an example program, which is 

shown in Figure 2-2. Method foo has a fault in line 6. The correct statement should be r+=

(b − d)/(a + 2), but operator “+” is missing. The input parameter model consists of P =

{a, b, c, d}, and da = {0,1}, db = {0,1}, dc = {0,1,2}, and  dd = {0,1,2,3}. The faulty 

statement is reachable with a test f such that (1) f(a) = 0; and (2) f(c) = 0 or f(d) = 3. So the 

inducing combinations are  (a ← 0, c ← 0) and (a ← 0, d ← 3). 

Suppose that the program is tested by a two-way test set. The result of the test 

executions is shown in Table 2-1, where 3 out of 12 tests fail. Test cases #1 and #7 fail 

because they contain combination (a ← 0, c ← 0). Test case #10 fails because it contains 

(a ← 0, c ← 0) and (a ← 0, d ← 3). 

Table 2-1. Two-way test set and their status 

Test # a b c d Status 

1 0 0 0 0 fail 

2 1 1 1 0 pass 

3 0 1 2 0 pass 

4 1 0 0 1 pass 

5 0 0 1 1 pass 

6 1 1 2 1 pass 

7 0 1 0 2 fail 

8 1 0 1 2 pass 

9 0 0 2 2 pass 

10 0 1 0 3 fail 

11 1 0 1 3 pass 

12 1 0 2 3 pass 

 

 
Figure 2-2. An example of faulty program 
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Our approach takes Table 2-1 as input.  Nine suspicious two-way combinations 

are identified, and are listed in the first column of Table 2-2.  Then our approach computes 

the suspiciousness of all the components (seven) that appear in a suspicious combination. 

For example, component c ← 0 appears in 3 failed test cases while there are 3 

failed test cases, so u(c ← 0) = 1. The frequency of c ← 0 in the test set is 4, so v(c ← 0) =

3 4⁄ ; 5 out of 9 members of suspicious combinations set contain c ← 0, so w(c ← 0) = 5 9⁄ . 

The computations for all components are as follows: 

ρ(𝑐 ← 0) =
1

3
∗ (1 +

3

4
+

5

9
) =  0.7685 

ρ(𝑑 ← 0) =
1

3
∗ (

1

3
+

1

3
+

2

9
) =  0.2963 

ρ(𝑑 ← 2) =
1

3
∗ (

1

3
+

1

3
+

2

9
) =  0.2963 

ρ(𝑑 ← 3) =
1

3
∗ (

1

3
+

1

3
+

3

9
) =  0.3333 

ρ(𝑏 ← 0) =
1

3
∗ (

1

3
+

1

7
+

1

9
) =  0.1958 

ρ(𝑏 ← 1) =
1

3
∗ (

2

3
+

2

5
+

3

9
) =  0.4667 

ρ(𝑎 ← 0) =
1

3
∗ (1 +

3

6
+

2

9
) =  0.5741 

According to formula (2),  ρc for a suspicious combination c is the average 

suspiciousness of the components that c contains. For example, in combination(a ← 0, c ←

0), ρcis (0.5741 + 0.7685) 2 = 0.6713⁄ . After computing ρc for all suspicious combinations, 

we ranked them based on the non-ascending order of  ρc. The values of ρc and Rc for each 

suspicious combination are shown in the second and third columns of Table 2-2.  
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Next we compute ρe for each suspicious combination using formula (3). For 

example, there are three test cases, test #1, test  #7, and test #10, that contain 

(a ← 0, c ← 0). Therefore, 

ρe(a ← 0, c ← 0) = min ((
ρ(b←0)+ρ(d←0)

2
) = 0.2460 , (

ρ(b←1)+ρ(d←2)

2
) =

0.3815, (
ρ(b←1)+ρ(d←3)

2
) = 0.4000) = 0.2460  

Next we rank suspicious combinations by a non-descending order of ρe, as shown 

in column Re of Table 2-2.  

Finally, the two rankings in columns Rc and Re are combined to produce a final 

ranking of the suspicious components (column R). In this final ranking, inducing 

combination (a ← 0, c ← 0) is ranked on the top, and the other (a ← 0, d ← 3) is ranked 6th. 

Then new tests are generated for the most suspicious combinations. For 

suspicious combination (a ← 0, c ← 0), we assign values to parameters in its environment, 

i.e., b and d, such that the suspiciousness of each value is minimum. For b, 0 is selected, 

asmin(ρ(b ← 0) = 0.1958 , ρ(b ← 1) = 0.4667) = 0.1958. For d, 1 is selected as min(ρ(d ←

0) = 0.2963, ρ(d ← 1) = 0, ρ(d ← 2) = 0.2963, ρ(d ← 3) = 0.3333) = 0. So a new test 

(a ← 0, b ← 0, c ← 0, d ← 1) is generated. 

Table 2-2. Suspicious combinations and their corresponding values  

Suspicious 
Combination 

𝝆𝒄 𝑹𝒄 𝝆𝒆 𝑹𝒆 𝑹𝒄 + 𝑹𝒆 𝑹 New test case Status 

𝑎 ← 0, 𝑐 ← 0 0.6713 1 0.2460 1 2 1  (a ← 0, b ← 0, c ← 0, d ← 1)  fail 

𝑏 ← 1, 𝑐 ← 0 0.6176 2 0.4352 3 5 2 (a ← 1, b ← 1, c ← 0, d ← 1)  pass 

𝑐 ← 0, 𝑑 ← 0 0.5324 4 0.3849 2 6 3 (a ← 1, b ← 0, c ← 0, d ← 0)  pass 

𝑐 ← 0, 𝑑 ← 3 0.5509 3 0.5204 4 7 4 (a ← 1, b ← 0, c ← 0, d ← 3)  pass 

𝑐 ← 0, 𝑑 ← 2 0.5324 4 0.5204 4 8 5 (a ← 1, b ← 0, c ← 0, d ← 2) pass 

𝑎 ← 0, 𝑑 ← 3 0.4537 5 0.6176 5 10 6 (a ← 0, b ← 0, c ← 2, d ← 3) fail 

𝑏 ← 1, 𝑑 ← 3 0.4000 6 0.6713 6 12 7 (a ← 1, b ← 1, c ← 1, d ← 3) pass 

𝑏 ← 1, 𝑑 ← 2 0.3815 7 0.6713 6 13 8 (a ← 1, b ← 1, c ← 1, d ← 2) pass 

𝑏 ← 0, 𝑑 ← 0 0.2460 8 0.6713 6 14 9 (a ← 1, b ← 0, c ← 2, d ← 0) pass 
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In this example, we generate a new test case for each suspicious combination 

since there are only nine combinations. As shown in the last column of Table 2-2, all the 

new test cases pass except two that contain two inducing combinations. In the next 

iteration, the combinations that appear in a passed test case are not suspicious anymore. 

Therefore, all combinations except two inducing combinations are removed from the 

suspicious combinations set, and this set consists of the two combinations, which are both 

inducing combinations.  

Note that this example represents a best case scenario of our approach. In the 

next section, we provide an experimental evaluation of our approach. 

2.5 EXPERIMENT 

We built a prototype tool called BEN that implements our approach. (BEN is a 

Chinese word that means “root cause”.) We used this tool to conduct an experiment on a 

set of six benchmark programs.   

2.5.1 Experimental design  

2.5.1.1 Subject programs 

We used six C programs, count, series, tokens, ntree, nametbl, and cmdline, as 

subject programs [7]. Each of these programs contains some faults. To determine whether 

a test case fails or passes, we created a fault-free version of each program according to 

the accompanying fault descriptions.  

In combinatorial testing, the result may be different by different ways of modeling 

the input space. To reduce bias, we used the same models for the six programs as in 

previous work [13].  

Table 2-3 shows properties of subject programs and their input models. The 

second column (LOC) shows the number of lines of uncommented code in these programs. 

The third column shows the number of faults. The last column (Input Model) shows the 
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input parameter model of each program, which includes the number of parameters and 

their domain size. We represent it by (d1
k1 × d2

k2 × … ) , where di
ki indicates that there are 

ki number of parameters with domain size as di. Note that k1 + k2 + ⋯ = k, which is the 

total number of parameters. For example, count has six parameters, among which two 

parameters have a domain size of two, and four parameters have a domain size of three. 

More details about these models can be found elsewhere [13]. 

Each subject program contains multiple faults. Generally speaking, the more faults, 

the more failure-inducing combinations, and the easier it is to find them. To make the 

problem more challenging, two additional versions for each program are created; a version 

with about 50% of faults, and a version with a single fault. We refer to these versions by 

versions1,2, and 3 respectively. Then we run the tool three times for each program, once 

for each version. 

2.5.1.2 Metrics 

To measure the effectiveness of our approach, we compute the percentage of truly 

inducing combinations in the top 10 ranked suspicious combinations. If a combination in 

top 10 is not inducing, we also compute its inducing probability.  

We measure the efficiency of BEN by the percentage of new test cases generated 

and number of iterations needed. 

Table 2-3. Subject programs 

Program LOC # of faults Input model 

count 42 8 (22 × 34) 

series 288 4 (21  × 42 × 61) 

tokens 192 5 (22 × 32) 

ntree 307 8 (44) 

nametbl 329 8 (21 × 32 × 52) 

cmdline 336 9 (21 × 34 × 41 × 62 × 151) 
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For the purpose of the evaluation, in order to detect truly inducing combinations, 

we run the exhaustive test set. A combination is truly inducing if all possible tests containing 

this combination fail. 

2.5.1.3 Test generation 

The initial t-way test set is generated using the ACTS tool [1]. When we generate 

new tests, we generate a new test for each of the top 10 suspicious combinations.  

2.5.2 Results and discussion 

We conduct the experiment by taking a 2-way test set as the initial test set, except 

for version 3 of series, where both the 2-way and 3-way tests are used. The reason is that 

there is no 2-way inducing combination for version 3 of series.  

The results of our experiment are summarized in Table 2-4. We will not explain the 

column headers one by one, as they are self-explanatory. We point out that the 7th column 

(ratio of inducing combinations to all combinations) is intended to show the difficulty of the 

identification problem. Typically, the fewer inducing combinations, the more effort needed 

to identify them.  

For example, in version 3 of cmdline, there are only 2 inducing combinations out 

of 836 possible 2-way combinations. In version 1 of count, every combination is inducing. 

It is easy to see that identifying inducing combinations in version 1 of count is much easier 

than in version 3 of cmdline. 

Note that the results for versions 1 and 2 of tokens are the same. Version 2 was 

created by removing 3 out of 5 faults of version 1. However, both versions produce the 

same output. The reason is that we used the same model as previous work [13], which 

does not capture the difference between these two versions. Columns 8, 9, and 10 (#of 

iterations, #of new test cases, and percentage of executed tests to the exhaustive test set) 

are intended to show the efficiency of our approach. In general, a small percentage of tests 
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need to be executed by our approach. There are a few cases where more than 50% tests 

were executed. One case is for version 3 of series with 3-way  test  set,  we  ran 60 %  of  

the test  cases,  i.e., 116  test cases. However, only 10 new test cases were added by our 

approach and the other 106 tests were in the initial test set.  The other cases are for the 

Table 2-4. Experimental results for t-way combinations 
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count 

1 

324 12 106 

106 1 2 10 7% 106 100% 

2 30 0.2830 4 30 13% 45 100% 

3 13 0.1226 2 10 7% 20 100% 

series 

1 

192 
24 92 

10 0.1087 3 20 23% 32 50% 

2 2 0.0217 4 22 24% 4 50% 

3 
0 0 4 6 16% 0 - 

106* 224 6 0.0268 2 10 60% 12 60% 

tokens 

1 

36 9 37 

14 0.3784 2 10 53% 21 100% 

2 14 0.3784 2 10 53% 21 100% 

3 8 0.2162 2 10 53% 14 80% 

ntree 

1 

256 16 96 

24 0.2500 2 10 10% 48 100% 

2 14 0.1458 3 20 14% 44 60% 

3 2 0.0208 4 22 15% 2 100% 

nametbl 

1 

450 25 126 

83 0.6587 2 10 8% 105 100% 

2 30 0.2381 2 10 8% 74 100% 

3 6 0.0476 10 83 24% 6 100% 

cmdline 

1 
3499

20 
95 836 

252 0.3014 4 30 0.036% 568 50% 

2 197 0.2356 7 60 0.044% 463 70% 

3 2 0.0024 4 24 0.034% 4 50% 

       *  three-way                                                   
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three versions of tokens. This program has a small number of the exhaustive test cases(36 

test cases), and there were 9 tests in the initial test set.  

In contrast, for the three different versions of cmdline, the largest program, at most 

0.044% of possible test cases were executed, but as shown in Figure 2-3, later, we can 

still rank all the inducing combinations to the top 10. 

The last two columns (# of suspicious combinations and percentage of inducing 

combinations in top 10 suspicious combinations) show the effectiveness of our approach. 

For 10 (out of 18) versions of these programs, all the top 10 ranked suspicious 

combinations are truly inducing. For other versions, Table 2-5 shows the ranks and 

inducing probabilities of the top 10 ranked suspicious combinations that are not truly 

inducing. All of these combinations have a very high inducing probability. The lowest 

inducing probabilities happen in version 3 of cmdline, where the 3rd and 4th ranked 

combinations have an inducing probability of 0.75 and 0.7114, respectively. The highest 

inducing probabilities happen in version 2 of cmdline, where the 4th, 7th, and 9th ranked 

combinations have an inducing probability that is close to 1, even if they are not truly 

inducing. 

 In two versions of series, 1st and 3rd (with 3-way test set), and the 3rd version of 

tokens, the third stopping condition is satisfied, and truly inducing combinations are found. 

So the information of other suspicious combinations is excluded from Table 2-5.    

As it is shown in Table 2-4, the set of suspicious combinations becomes empty in 

version 3 of series where 2-way test set is applied. In other cases, reaching the stable 

point, satisfying the second condition, happens.   

The reduction step finds 1-way suspicious combinations in 13 (out of 18) versions; 

in 8 versions of theses 13 versions, all of top ranked combinations are inducing (Table 2-6). 
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For other 5 versions, the ranks and inducing probabilities of non-inducing but suspicious 

combinations are shown in Table 2-7. 

The charts in Figure 2-3 show the distribution of inducing and non-inducing 

combinations in the ranking of suspicious combinations after each iteration. Due to limited 

space, we only show the distribution for the 3rd version of each program, except for program 

series, where version 2 is shown. The vertical axis shows the number of iterations. The 

horizontal axis shows the ranks. Inducing and non-inducing combinations are shown by 

different colors.    

Table 2-5. Inducing probabilities of top 10 suspicious combinations that are not inducing 

Program Version Rank 
# of possible test 
cases containing 

combination 

# of possible 
failed test cases 
containing this 
combination 

Inducing 
probability 

series 2 
1 12 10 0.8333 

2 12 10 0.8333 

ntree 2 

1 16 15 0.9375 

3 16 15 0.9375 

7 16 13 0.8125 

10 16 15 0.9375 

cmdline 

1 

1 29160 27216 0.9333 

7 11664 10674 0.9151 

8 43740 40824 0.9333 

9 11664 10674 0.9151 

10 29160 25704 0.8815 

2 

4 11664 11661 0.9997 

7 11664 11661 0.9997 

9 11664 11655 0.9992 

3 
3 7776 5832 0.75 

4 3888 2766 0.7114 
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The charts show that our approach can quickly rank all the inducing combinations 

to the top. For example, nametbl has 41 suspicious combinations in the first iteration. There 

are 6 truly inducing combinations, which are ranked 1 to 4, 7, and 11. In the second 

iteration, we have 33 suspicious combinations, and 5 out of 6 inducing combinations are 

ranked to the top 5. In the third iteration, all 6 inducing combinations are ranked to the top 

6. Although BEN runs 10 iterations to reach to the stable point, all 6 inducing combinations 

come to the higher ranks sooner than 10 iterations. 

Note that version 2 of series only has two inducing combinations, and they are 

ranked in the 3rd and 4th place. 

 

Table 2-6. Experimental results for (t-1)-way combinations 
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count 

1 
16 
 

16 1 16 100% 

2 2 0.125 2 100% 

3 1 0.0625 1 100% 

series 1 16 0 0 1 0% 

tokens 

1 

10 

2 0.2 2 100% 

2 2 0.2 2 100% 

3 1 0.1 1 100% 

ntree 
1 

16 
2 0.125 2 100% 

2 0 0 1 0% 

nametbl 
1 

18 
7 0.3889 10 70% 

2 2 0.1111 2 100% 

cmdline 
1 

45 
7 0.1556 13 50% 

2 6 0.1333 7 85% 
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2.5.3 Threats to validity  

Threats to internal validity are other factors that may be responsible for the 

experimental results, without our knowledge. We have tried to automate the experimental 

procedure as much as possible, as an effort to remove human errors. In particular, we build 

clean versions for all six subject programs, and a tool that automatically compares the 

results of the clean version and a faulty version to determine truly inducing combinations. 

Further, consistency of the results has been carefully checked to detect potential mistakes 

made in the experiment.  

 

Table 2-7. Inducing probabilities of Top 10 (t-1)-way suspicious combinations 
 that are not inducing 

 
Program 

 
Version Rank 

# of possible 
test cases 
containing 

combination 

# of possible failed 
test cases containing 

this combination 

Inducing 
probability 

series 1 1 32 30 0.9375 

ntree 2 1 64 61 0.9531 

nametbl 1 

5 90 86 0.9556 

8 90 80 0.8889 

9 90 86 0.9555 

cmdline 
1 

2 23328 22338 0.9576 

3 23328 22338 0.9576 

6 23328 22338 0.9576 

7 23328 22338 0.9576 

10 23328 22368 0.9588 

2 5 23328 23302 0.9988 
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Figure 2-3. Distribution of inducing and non-inducing 

combinations in suspicious set 
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Threats to external validity occur when the experimental results could not be 

generalized to other programs. We use subject programs from previous work [7]; these 

programs are created by a third party and have been used in other studies [13]. But the 

subject programs are programs of relatively small size with seeded faults. More 

experiments on larger programs with real faults can reduce external validity of our findings.  

The original versions of the subject programs had multiple faults, and thus many 

inducing combinations. So they could be identified more easily than those for programs 

with a small number of inducing combinations. To mitigate this threat, we conduct our 

experiment on 3 versions of each program, with all faults, 50% of faults, and one fault, 

respectively. 

2.6 RELATED WORK 

Delta debugging [12] is a technique that tries to find a minimum set of failure-

inducing input values in a failed test. It involves systematically changing or removing the 

values in a failed test to create new tests. Two similar techniques, called FIC and FIC_BS 

[13], try to identify all the faulty interactions contained in a failed test. The notion of   a faulty   

interaction is the same as the notion of an inducing combination defined in this paper. FIC 

and FIC_BS assume that no new inducing combinations are introduced when a value is 

changed to create a new test. 

Our approach is different from these previous techniques in that we try to identify 

inducing combinations in a combinatorial test set, instead of a single failed test.  On one 

hand, a test set contains more information than a single test. On the other hand, doing so 

makes it possible to identify inducing combinations that appear in different tests. Moreover, 

the assumption made by FIC and FIC_BS may not hold for many applications, as changing 

a value in a  test  introduces  many new  combinations, and  assuming that all of them are 

non-inducing is over-optimistic.   
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Yilmaz et al. [11] proposed a machine learning approach to identify likely inducing 

combinations from a given combinatorial test set. Their approach builds a data structure 

called classification tree, and assigns a score to each likely inducing combination. A 

combination is classified to be an inducing combination if its score is greater than a 

threshold value. This approach is used to guide the generation of new tests in an adaptive 

combinatorial testing technique [4]. 

 The preceding approach identifies inducing combinations based on a 

combinatorial test set only, i.e., without adding new tests. Considering that a combinatorial 

test set is often produced such that it contains as few tests as   possible while still achieving 

t-way coverage, many combinations are covered only once in a combinatorial test set. As 

a result, a combinatorial test set alone often provides insufficient information for effective 

classification, especially when there are a large number of inducing combinations and 

failed test cases. 

The work that is mostly related to ours is a technique called AIFL [8, 9]. Given a 

combinatorial test set, AIFL first identifies all the suspicious combinations, i.e., 

combinations that only appear in failed tests. Then, for each failed test, AIFL generates k 

test cases by changing the value of one parameter at a time, where k is the number of 

parameters. The new value of a changed parameter could be any value in its domain. New 

tests are then used to refine the set of suspicious combinations. At this point, AIFL stops 

and outputs the set of suspicious combinations. InterAIFL [10] extends AIFL by adopting 

an iterative framework. That is, new tests are generated to refine the set of suspicious 

combinations iteratively until a fixed point is reached, i.e., the set of suspicious 

combinations becomes stable.  

Our approach identifies suspicious combinations in the same way as AIFL and 

Inter-AIFL. However, our approach goes one step further to produce a ranking of 
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suspicious combinations. This ranking helps the debugging effort to focus on the most 

suspicious combinations. Our approach also differs significantly in the way of generating 

new tests: our test generation is based on the notions of suspiciousness combination and 

suspiciousness of environment. 

2.7 CONCLUSION 

In this paper, we presented an approach to identifying failure-inducing 

combinations in a combinatorial test set. Our approach adopts an iterative framework that 

ranks suspicious combinations and generates new tests repeatedly until a stable condition 

is reached. The novelty of our approach lies in the fact that we rank suspicious 

combinations and generate new tests based on the notions of suspiciousness of a 

combination and suspiciousness of its environment. The higher the suspiciousness of a 

combination, the lower the suspiciousness of its environment, the higher this combination 

is ranked. New tests are generated for a user-defined number of most suspicious 

combinations such that the suspiciousness of the environment of a combination is 

minimized in each test. Our experimental results show that our approach is very effective 

in terms of quickly identifying and ranking failure-inducing combinations to the top. 

There are two major directions to continue our work. First, we plan to conduct more 

empirical studies to further evaluate the performance of our approach. In particular, we 

plan to apply our approach to larger and more complex programs. Second, this work is part 

of a larger effort to develop fault localization techniques that leverage the result of 

combinatorial testing. The next step in our project is to go inside the source code and find 

a particular line or block of code that contains the fault. We believe that failure-inducing 

combinations provide important insights about how different parameters interact with each 

other and can be used to reduce the scope of the code that needs to be analyzed in the 

next step. 
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Abstract-Combinatorial testing has been shown to be a very effective testing 

strategy. After a failure is detected, the next task is to identify the fault that causes the 

failure. In this paper, we present an approach to fault localization that leverages the result 

of combinatorial testing. Our approach is based on a notion called failure-inducing 

combinations. A combination is failure-inducing if it causes any test in which it appears to 

fail. Given a failure-inducing combination, our approach derives a group of tests that are 

likely to exercise similar traces but produce different outcomes. These tests are then 

analyzed to locate the faults. We conducted an experiment in which our approach was 

applied to the Siemens suite as well as the grep program from the SIR repository that has 

10068 lines of code. The experimental results show that our approach can effectively and 

efficiently localize the faults in these programs.   
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3.1 INTRODUCTION 

Combinatorial testing has been shown to be a very effective testing strategy [7, 14]. 

The key observation is that most software failures are caused by interactions of only a few 

parameters. A widely cited NIST study reports that failures in several real-life systems 

involved no more than six parameters [11, 12]. A t-way combinatorial test set is built to cover 

all the t-way interactions, where t is typically a small integer. If test parameters and values 

are correctly modeled, a t-way test set is able to expose all failures involving no more than 

t parameters. Empirical results have shown that combinatorial testing is very effective for 

failure detection while significantly reducing the number of tests.   

Most research in combinatorial testing has focused on developing efficient 

combinatorial test generation algorithms and conducting empirical studies to evaluate the 

failure-detection effectiveness of combinatorial testing [7, 14]. After a failure is detected, the 

next task is to find the fault that caused the failure. An important research problem to 

investigate is how to leverage the result of combinatorial testing to locate the faults. Our 

earlier work in [6] investigated the problem of how to identify failure-inducing combinations 

in a combinatorial test set. A combination is failure inducing, or simply inducing, if it causes 

any test in which it appears to fail. In this paper, we address the problem of how to use 

inducing combinations to locate the faults in the source code.   

One common approach to fault localization is based on the notion of a program 

spectrum. A program spectrum records information about certain aspects of a test execution 

[20], such as function call counts, program paths, program slices and use-def chains [16]. 

Examples of spectrum-based methods include Tarantula [10], set union, set intersection, 

and nearest neighbor [16]. These methods identify faults by comparing the spectrums of 

passed and failed test executions. 
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In this paper, we present a spectrum-based approach to fault localization that 

leverages the notion of an inducing combination. The novelty of our approach is two-fold. 

First, to the best of our knowledge, our work is the first effort to perform code-based fault 

localization based on combinatorial testing. Existing work in this area, i.e., fault localization 

based on combinatorial testing, has only dealt with the problem of how to identify inducing 

combinations [15, 17, 19, 21].  

Second, our approach generates, in a systematic manner, a small group of tests 

from an inducing combination, such that the execution traces of these tests can be analyzed 

to quickly locate the faults. This differs from existing spectrum-based approaches which do 

not deal with the problem of test generation. Instead, they assume the existence of a large 

number of tests, which are generated randomly and/or using other techniques [10, 16, 20]. 

In our approach, one of the tests in the group is referred to as the core member, which 

consists of the inducing combination and produces a failed test execution. The other tests 

in the group are referred to as the derived members, which are derived from the core 

member in a way such that they are likely to execute a trace that is very similar to the trace 

of the core member but produce a different outcome, i.e., a passed execution. The spectrum 

of the core member is then compared to the spectrum of each derived member to produce 

a ranking of statements in terms of their likelihood to be faulty.  

Our approach is inspired by the notion of nearest neighbor [16]. The key idea of 

nearest neighbor is that faulty statements are likely to appear in the execution trace of a 

failed test but not in the execution trace of a passed test that is as similar to this failed test 

as possible. If two tests are significantly different, they are likely to represent different 

application scenarios. Thus, the differences in the execution traces of these two tests are 

likely due to program logic, instead of faults. The novelty of our approach lies in the fact that 

we generate, in a systematic manner, a failed test, i.e., the core member, and then derive 
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its nearest neighbors from this failed test, i.e., the derived members. This is in contrast with 

the approach in [16], which executes a large number of tests from which a failed test and its 

nearest neighbors are selected.  

We report an experiment in which we applied our approach to the Siemens suite 

and the grep program in the Software Infrastructure Repository (SIR) [18]. The Siemens 

suite has been commonly used to evaluate fault localization methods. Each program has a 

number of faulty versions. The programs in the Siemens suite are, however, relatively small. 

Thus, we also applied our approach to the grep program that has 10068 lines of code [18]. 

The results show that our approach is effective in localizing faulty statements and also very 

efficient in that only a small number of tests need to be generated and executed by our 

approach. For example, one of the programs in the Siemens suite called replace has 32 

faulty versions. These 32 versions were all killed by a 2-way test set with 192 tests. Our 

approach identified the faulty statement in each version by generating and executing only 

about 3 additional tests.  

The remainder of this paper is organized as follows.  Section 3.2 shows a 

motivating example. Section 3.3 introduces several definitions and reviews our previous 

work on identifying inducing combinations. Section 3.4 presents the details of our approach 

to locating faults based on inducing combinations. Section 3.5 reports the experimental 

results of applying our approach to the Siemens suite and the grep program. Section 3.6 

discusses existing work on fault localization. Section 3.7 provides concluding remarks and 

our plan for future work. 

3.2 A MOTIVATING EXAMPLE 

Consider as an example the printtokens2 program in the Siemens suite [18]. This 

program is a lexical analyzer that reads an input string and prints out all the tokens in the 
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input string. The types of tokens include keyword, special, identifier, number, comment, 

string_constant or character_constant. 

This program works by first extracting all the space-delimited elements in the input 

string. These elements are then sent to functions that are designed to recognize different 

types of tokens. One of the faulty versions of this program, i.e., version 5, has the faulty 

statement in function is_str_constant, which is responsible for recognizing whether or not 

an element extracted from the input string is a string_constant. A string_constant is a 

sequence of characters that begins and ends with a double quotation.  

Figure 3-1 shows the is_str_constant function. If str does not begin with a double 

quotation, this function returns false (i.e. the last return statement in Figure 3-1). If str begins 

with a double quotation, and a second double quotation is found in str, this function returns 

true (i.e., the first return statement in Figure 3-1). If str begins with a double quotation, and 

a second double quotation is not found, this function is supposed to return false, but it 

returns true (i.e., the second return statement in Figure 3-1), which is the faulty statement. 

For illustration, two abstract parameters P1 and P2, each of which has two values 

0 and 1, are identified to test function is_str_constant. P1 indicates whether or not a token 

begins with a double quotation, and P2 indicates whether or not there exists a second 

double quotation in a token. Each of these two abstract parameters represents a certain 

characteristic of the actual parameter str. Since the values of these two parameters cannot 

be directly taken by function is_str_constant, they must be mapped to a concrete value of 

the actual parameter str. For example, if both P1 and P2 take value 1, a token such as “test” 

can be used as the concrete value of str to test function is_str_constant.  

Table 3-1 shows four possible test cases, as well as the actual and expected output 

of each test case, for function is_str_constant. Note that a complete test for the printtokens2  
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Figure 3-1. Function is_str_constant 

 

Table 3-1. Abstract tests for function is_str_constant 

 
P1 P2 Actual Output Expected Output 

1 1 True True 

1 0 True False 

0 1 False False 

0 0 False False 

 

program would contain values of other parameters, which are not directly related to function 

is_str_constant and thus are not shown in Table 3-1. 

When we apply 2-way testing and our earlier approach in [6] to the printtokens2 

program, we identify combination < p1 ← 1, p2 ← 0 > to be a failure-inducing combination. 

This is because this combination represents a string that starts with a double quotation, but  
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does not have a second double quotation. So, every test containing this combination would 

execute the faulty statement, and thus would fail.  

Let f be a (failed) test that contains combination < P1 ← 1, P2 ← 0 >. All the  

statements that are executed by  f  are suspicious  statements,  which   are  < 4, 5, 6, 7, 9, 

10, 12 >.  To locate the true faulty statement, we create two tests, f1and f2, which  are as  

similar to f  as  possible  but  have a  different outcome. Test  f1 is created  such that it is 

the same as f except that we change the value of P1 from 1 to 0. Since combination <

P1 ← 0, P2 ← 0 > represents a string without any double quotation, test f1 will execute the 

last return statement (line #15) and thus will pass. The statements that are executed by f1, 

are <4, 5, 14 15>. Similarly, test f2 is created such that it is the same as f except that we 

change the value of P2 from 0 to 1. Since combination < P1 ← 1, P2 ← 1 > represents a 

string starting with a double quotation and has a second double quotation, test f2 will 

execute the first return statement (line #8) and thus will also pass. The statements that are 

executed by f2, are <4, 5, 6, 7, 8, 9, 10>. 

Now we analyze the execution traces of the three tests f, f1 and f2.   We find that 

the second return statement (line #12) is the only statement that is executed by the failed 

test f but not by passed tests f1 and f2. That is, all the other statements that are executed 

by f are executed by f1 and/or f2. Thus, the second return statement (line #12) is identified 

to be the statement that is most likely to be faulty. 

In the rest of this paper, we will describe the details of our approach. We 

emphasize that the novelty of our work is a systematic approach to generate tests like f, f1, 

and f2 whose execution traces can be analyzed to quickly identify the faulty statement(s). 
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3.3 PRELIMINARIES 

3.3.1 Basic concepts 

Assume that the system under test (SUT) has k input parameters, denoted by set 

P = {p1, p2, … , pk}. Let di be the domain of parameter pi. That is, di contains all possible 

values that pi could take, and let D = {d1 ∪ d2 ∪ … ∪ dk}. Let S be the set of all the 

statements in the source code of SUT. 

Definition 1. (Test Case)  A test case, or simply a test, is a function that assigns a 

value to each parameter. Formally, a test case is a function f: P → D. 

We use Γ to represent all possible test cases for the SUT. It is clear that |Γ| =

|d1| × |d2| × … × |dK|.  

Definition 2. (Test Oracle) A test oracle determines whether the execution of a test 

case is “pass” or “fail”. Formally, a test oracle is a function r: Γ → {pass, fail}.  

Definition 3. (Combination) A combination c is a test f restricted to a non-empty, 

proper subset M of parameters in P. Formally, c = f|M, where M ⊂ P, and |M| > 0. 

In the preceding definition, M is a proper subset of P. Thus a test case is not 

considered to be a combination in this paper. We use dom(c) to denote the domain of c, 

which is the set of parameters involved in c. (Note that dom(c) is the domain of a function, 

which is different from the domain of a parameter.) We define the size [c] of a combination 

c to be the number of parameters involved in c. That is [c] = |dom(c)|. 

A combination of size 1 is a special combination, which we refer to as a component. 

Since there is only one parameter involved, we denote a component o as an assignment, 

i.e., o = p ← v, where o(p) = v.  

Definition 4. (Component Containment)  A component o = p ← v is contained in a 

combination c, denoted by o ∈ c, if and only if  p ∈ dom(c) and c(p) =  v. 
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Definition 5. (Combination Containment) A combination c is contained in a test 

case f, denoted by c ⊂  f, if and only if   ∀p ∈ dom(c), f(p) = c(p) . 

If a combination c is contained by a test case f, i.e., c ⊂ f, all combinations that are 

contained by c, are contained by f. 

Definition 6. (Inducing Combination) A combination c is failure-inducing, or simply 

inducing, if any test f in which c is contained, fails. Formally, ∀f ∈ Γ: c ⊂ f ⟹  r(f) = fail. 

Definition 7. (Suspicious Combination) A combination c is a suspicious 

combination in a test set F ⊆ Γ if c is only contained in failed test cases in F. Formally, ∀f ∈

F: c ⊂ f ⇒ r(f) = fail. 

If F is a t-way test set, i.e., F covers all the t-way combinations, a t-way inducing 

combination must be a t-way suspicious combination in F. But a t-way suspicious 

combination in F may or may not be a t-way inducing combination.  

Definition 8. (Program Spectrum Function) Let f be a test and trace(f) ⊆ S the set 

of statements executed by f. (The order in which the statements are executed by f is not 

significant.)  The program spectrum function is a Boolean function γ defined as follows: 

γ: S ×  Γ → {true, false}, where γ(s, f) = true if s ∈ trace(f) and γ(s, f) = false if s ∉ trace(f).  

In other words, a program spectrum with respect to a test execution is a 

membership function that determines whether a statement is exercised by this test 

execution. 

3.3.2 Identifying inducing combinations  

In our previous work [6], we introduced an approach, BEN, to identify inducing 

combinations in a combinatorial test set. BEN takes a t-way test set as input and generates 

a ranking of combinations based on their likelihood to be inducing combinations. The main 

idea of BEN is based on three notions, suspiciousness of component, suspiciousness of 

combination, and suspiciousness of environment. 
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Suspiciousness of Component ( ρ ):  A value between 0 and 1. The higher the 

suspiciousness value of a component o, denoted as ρ(o), the more likely o contributes to a 

failure, and the more likely o is contained by an inducing combination. 

Suspiciousness of Combination ( ρc):  Suspiciousness of a combination c, ρc(c), is 

defined to be the average of suspiciousness of components that appear in c. Formally,  

 ρc(c) =
1

[c]
∑ ρ(o)   for  ∀ o ∈ c                                          (1) 

Suspiciousness of Environment ( ρe): The environment of a combination c in a test 

f includes all components that appear in f but do not appear in c. The suspiciousness of the 

environment of a combination c in a test f is the average suspiciousness of the components 

in the environment of c. If there is more than one (failed) test containing c in a test set, the 

suspiciousness of the environment of c in this test set is the minimum suspiciousness of 

environment of c in all the tests   containing   c .   Formally ,  suspiciousness  of  the 

environment is computed by 

  ρe(c) = Min (
1

[f]−[c]
∑ ρ(o))                                           (2) 

for ∀ o ∈ f ∧ o ∉ c 

The final ranking is produced such that the higher the suspiciousness of a 

combination, the lower the suspiciousness of its environment, the higher this combination 

is ranked. 

Experimental results show that BEN is very effective in identifying inducing 

combinations. On the one hand, truly inducing combinations are ranked to the top very 

quickly. On the other hand, combinations that are ranked on the top but are not truly 

inducing have a high probability of being inducing, i.e., they are very likely to cause a 

failure if they appear in a test. Our approach is also very efficient in that only a very small 

percentage of all possible tests need to be executed. 



48 

3.4 APPROACH 

The input of our approach is taken from the output of our earlier tool called BEN, 

including a suspicious combination c that is ranked at the top and the suspiciousness value, 

ρ, of every component (of every parameter) of the subject program. The top-ranked 

suspicious combination may not be a truly inducing combination. However, as mentioned in 

the previous section, it is very likely to cause a failure if it appears in a test case. The output 

is a ranking of statements with their likelihood of being faulty.  

Our approach consists of two major steps: (1) Test Generation: In this step, we 

generate a group of tests. This group consists of one failed test, which is referred to as the 

core member, and at most t passed tests, which are referred to as the derived members. 

Each derived member is expected to produce a similar trace as the core member. (2) Rank 

Generation: In this step, we compare the spectrum of the core member to the spectrum of 

each derived member, and then produce a ranking of statements in terms of their likelihood 

of being faulty. 

3.4.1 Test generation 

Let c be the top-ranked suspicious t-way combination taken as input by our 

approach. In this step, a group of tests is generated which contains a core member and at 

most t derived members. The core member f is created such that it contains c and the 

suspiciousness of environment of c in f is minimized. That is, for each parameter p involved 

in c, f has the same value for p as c, i.e. c ⊂  f; and for each parameter  p that does  not  

appear in  c,  f takes a  value  that  has  the  minimum  suspiciousness  value among all the 

values of p. As discussed later, the reason why we want to minimize the suspiciousness of 

the environment of c is to maximize the likelihood of a derived member to be a passing test. 

The core member f is very likely to fail, since it contains c, and c is, or very likely to 

be an inducing combination. In case that f does not fail, we pick a test from the initial t-way 
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test set that contains c as the core member. Since c is identified as an inducing combination, 

there must exist at least one failed test that contains c in the initial test set. (Otherwise, c 

would not even be a suspicious combination.) 

Next we generate t derived members f1, f2 … ft. A derived member fi is generated 

such that it has the same value as f for all parameters except one component of c, which is 

replaced with another component of the same parameter with the minimum suspiciousness 

value.  

Figure 3-2 shows how derived members are generated from the core member f. 

Core member f contains k components, o1, o2 … , ok, where k is the number of parameters. 

Without loss of generality, assume that the first t components in f, i.e., o1, o2 … , ot, are in the 

inducing combination c. Each derived member is different from the core member f, only in 

one component in the inducing combination c.  

On the one hand, a derived member fi is likely to pass for three reasons. First, the 

replacement effectively removes combination c from f. Second, it is not likely for fi to contain 

other suspicious combinations like c because the new component has the minimum 

suspiciousness value. Finally the suspiciousness of the environment of c is minimized. If a 

derived member does fail, we ignore this member. In case that all derived members fail, we 

f {𝑜1, 𝑜2, … , 𝑜𝑡, 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Core 

f1 {𝒐𝟏
′ , 𝑜2, … , 𝑜𝑡, 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Derived 

f2 {𝑜1, 𝒐𝟐
′ , … , 𝑜𝑡, 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Derived 

… … … 

ft {𝑜1, 𝑜2, … , 𝒐𝒕
′ , 𝑜𝑡+1, 𝑜𝑡+2 … , 𝑜𝑘} Derived 

 

c 

Figure 3-2. An illustration of how to generate derived members 
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pick a passed test f1 from the initial t-way test set such that the number of components that 

differ between f1 and the core member is minimized.  

On the other hand, the execution trace of a derived member is likely to be very 

similar to the execution trace of the core member, as these two tests only differ in one value. 

Therefore the faulty statement is very likely to be one of the statements that appear in the 

execution trace of f but do not appear in the execution trace of f1, f2 … ft.  

Example: Consider a system P with four parameters a, b, c, and d, where a and b 

takes two values 0 and 1, c takes three values 0, 1, and 2, and d takes four values 0, 1, 2, 

and 3. Assume that BEN ranked combination (a ← 0, c ← 0) as the most suspicious 

combination, and reported the suspiciousness of each component as shown in Table 3-2. 

In our approach, the core member, f = (a ← 0, b ← 0, c ← 0, d ← 1), is generated. This core 

member contains (a ← 0, c ← 0), components b ← 0 and d ← 1 have the minimum 

suspiciousness value. 

Two derived members f1= (a ← 1, b ← 0, c ← 0, d ← 1) and f2= (a ← 0, b ← 0, c ←

1, d ← 1) are generated from the core member f. Derived member  f1 replaces a ← 0 in f 

with a ← 1, as ρ(a ← 1) = 0, and f2 replaces c ← 0 in f with c ← 1, as ρ(c ← 1) = 0. Note 

that for f2, we could also replace c ← 0  in f with c ← 2, as ρ(c ← 2) = ρ(c ← 1) = 0. In this 

case, a random choice is made. 

Table 3-2. Suspiciousness of components of an example system 

Parameter value ρc Parameter value ρc 

a 
0 0.57 

b 
0 0.2 

1 0 1 0.47 

c 

0 0.77 

d 

0 0.3 

1 0 1 0 

2 0 2 0.3 

3 0.33 

 



51 

3.4.2 Rank generation 

In this section, we produce a ranking of statements in terms of their likelihood to be 

faulty by analyzing the spectrums of the core member and derived members. The 

suspiciousness of statement s is computed by the following formula: 

ρ(s) = ∑ ρ(s, fi)/(|gd|)fi∈gd
                                      (3) 

In the above formula, gd represents all the derived members, and fi is a derived 

member in the group, ρ(s) is the average of ρ(s, fi), for all the derived members fi. The value 

of ρ(s, fi) is computed by the following formula: 

ρ(s, fi) = {

1       if γ(s, f) =  true  and γ(s, fi) =  false    

0.5     if γ(s, f) =  γ(s, fi) =  true                        

0         if γ(s, f) =  false                                         

(4) 

The idea behind this formula is the following. Statements that are only executed by 

the core member f are most suspicious and are given 1 as their suspiciousness value. 

Statements that are executed by both core and derived members are less suspicious, and 

are given 0.5 as their suspiciousness value. Note that the execution of a faulty statement by 

a test does not necessarily make the test fail. For example, if there exists a fault in a 

conditional expression, this fault can be executed by all tests but only cause some to fail. 

Finally statements that are not executed by f are not suspicious.  

For example if there are three tests in the test group f, f1 and f2, where f is the core 

member, f1 and f2 are the derived members. Assume that a statement s is executed by f 

and f2. The suspiciousness value of s for each derived member is: ρ(s, f1) = 1 and ρ(s, f2) =

0.5. And, the overall suspiciousness value for statement s is: 

ρ(s) =
1 + 0.5

2
= 0.75 

The higher the suspiciousness value of a statement, the more likely this statement 

is faulty. We rank statements by a non-ascending order of their suspiciousness value. To 



52 

locate the faulty statement, statements in the top rank are examined first, and then 

statements in the next rank, until the faulty statement is found. 

3.4.3 Discussion 

The effectiveness of our approach depends to some extent on the quality of the top-

ranked suspicious combination    identified   by    BEN  .  If   the   top -  ranked combination 

is truly inducing, the core member generated by our approach, i.e., the one that contains 

this combination and minimizes the suspiciousness of its environment, must fail. If the top-

ranked combination is not truly inducing, but has a high probability to be inducing, the core 

member generated by our approach still has a high probability to fail. If the core member 

generated by our approach does not fail, we have to pick from the initial test set a failed test 

as the core member. This failed test contains this top-ranked combination, but may not 

minimize the suspiciousness of its environment. This may reduce the probability for the 

derived members to pass.   

After finding the core member, the derived members are generated. The derived 

members are passed tests which have a similar trace to the core member. If a derived 

member fails, we discard it. If all the derived members fail, we pick a passed test from the 

initial test set that is as similar to the core member as possible. In this case, the difference 

between the core member and this derived member may not be minimized, which might 

affect the effectiveness of our approach. We believe the chance for this case, i.e., all the 

derived members fail, to occur is small, which is consistent with our experiments in which 

no such case occurred to the total of 102 versions of our subject programs.       

3.4.4 Complexity analysis 

Let k be the number of parameters, t the strength of the initial test set and n the 

number of statements in the subject program. To generate the core member, it is necessary 

to find the component with the minimum suspiciousness value for all the parameters that 
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are not involved in the inducing combination (so that the suspiciousness of the environment 

is minimized). This takes (k − t) ∗ O(d) where d is the largest domain size. 

To generate a derived member, we replace a component in the inducing 

combination with a component with the minimum suspiciousness value (of the same 

parameter). This takes t ∗ O(d) for all the derived members. 

In the rank generation part, the complexity of assigning a suspiciousness value to 

each statement with respect to the t derived members is O(t). So for all the n statements 

of the program, it takes n ∗ O(t). Then the rank generation part needs to sort all the 

statements in a non-ascending order of their suspiciousness value, which is O(n ∗ log(n)). 

Since t is typically much smaller than n, this sorting operation dominates the complexity of 

this part. 

3.5 EXPERIMENT 

In our experiment, we applied our approach to the Siemens suite and the grep 

program in SIR [18]. The Siemens suite has been used to evaluate several fault localization 

techniques [9, 16, 20]. The grep program is a significantly larger program than the Siemens 

programs and is designed to obtain some initial evidence on how our approach works on 

larger programs.  

3.5.1 The Siemens suite 

The Siemens suite contains 7 programs and each of them contains a number of 

faulty versions. The Siemens suite also provides an error-free version and a test set for each 

program. Table 3-3 represents properties of subject programs. To show that our approach 

works effectively when the program under test has more than one fault, one faulty version 

is created for each program with all faults available in the Siemens suite. 
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Since some faults may conflict with each other, combining all of them in one 

version is not possible. For example tcas has 41 faulty versions, but we could only apply 

36 of them in one version. The column #of compatible faults in Table 3-3 shows the total 

number of faults that can be combined in the multiple-fault version of each program. 

 

 
3.5.2 Initial test set 

The input model of each program is shown in Table 3-4. The detailed model is also 

available for review in [8]. The model column in the table shows the number of parameters 

and their domain size. We represent it by (d1
k1 × d2

k2 × … ), where di
ki indicates that there are 

ki number of parameters with domain size as di. Note that k1 + k2 + ⋯ = k, which is the 

total number of parameters. For example totinfo has six parameters, among which three  

parameters have a domain size of 3, two parameters have a domain size of 5, and one 

parameter has a domain size of 6.  

The constraint column shows the number of constraints in each model. Consider 

the input model of the printtokens program which contains different positions for different 

tokens. For example, keyword and identifier are two types of  tokens that could appear at 

Table 3-3. Characteristics of subject programs 

Programs LOC # of faulty versions # of compatible faults 

pinttokens 472 7 7 

printtokens2 399 10 9 

replace 512 32 24 

schedule 292 9 8 

schedule2 301 10 9 

tcas 141 41 36 

totinfo 440 23 20 
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the beginning, middle or end of the input stream. A constraint is needed to prevent having 

more than one type of token at the same position.  

Note that programs printtokens and printtokens2 share the same model, and so do 

programs schedule and schedule2. The model in tcas is the same as [11]. Also note that 

the models are built based on the specification of the programs, i.e., independent from their 

implementations. 

We used the ACTS tool [2] to generate t-way test sets. For each program, we first 

test it with a 2-way test set. (We assume that boundary testing is done before combinatorial 

testing is applied. Combinatorial testing is mainly used to test interaction faults involving 

more than one parameter.) If a program is not killed by a 2-way test set, we increase the 

test strength and then test the program with a 3-way test set. This process is repeated until 

we reach strength 4. 

Table 3-5, shows the number of versions in each fault category and the number of 

versions that are killed by our test set. For example, in two versions of printtokens program 

the fault is missing code, and both of them are killed by our combinatorial test set. The 

maximum strength is used for testing is 4. 

 

Table 3-4. Programs model 

Programs Model #Constraints 

printtokens (21 × 31 × 44 × 51 × 101 × 132) 8 

printtokens2 (21 × 31 × 44 × 51 × 101 × 132) 8 

replace (24 × 416) 36 

schedule (21 × 38 × 82) 0 

schedule2 (21 × 38 × 82) 0 

tcas (27 × 32 × 41 × 102) 0 

totinfo (33 × 52 × 61) 0 
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Table 3-5. Test results 

Program 
Extra code 

Missing 
code 

Incorrect 
code 

Definition All 

Total Kill Total Kill Total Kill Total Kill Total Kill 

printtokens 1 0 2 2 2 0 2 1 7 3 

printtokens2 0 0 3 2 7 7 0 0 10 9 

replace 1 1 2 2 28 28 1 1 32 32 

schedule 1 1 2 1 6 5 0 0 9 7 

schedule2 1 0 6 2 3 1 0 0 10 3 

tcas 0 0 0 0 31 30 10 6 41 36 

totinfo 0 0 1 1 18 8 4 3 23 12 

 
3.5.3 Trace collection 

We used Gcov to collect execution trace. Gcov reports the number of times 

statements are executed by a given test. A statement is included in the execution trace of 

a given test if and only if it is executed by the test one or more times.  

Gcov distinguishes between statements which are executable but do not execute 

and  statements  which  are  not  executable.  We  used  this  information to  compute the  

percentage of executable code that must be inspected to find the faulty statement. If a 

program crashes, Gcov does not report any coverage. To deal with this problem, we add 

a statement to call function gcov_flush before every statement. Note that this is only done 

after a program crashes. 

3.5.4 Metrics  

Recall that the output of our approach is a ranking of statements in terms of their 

likelihood to be faulty. In order to find the faulty statement, we inspect statements in the 

first rank, and then statements in the second rank, and continue to do so until we find the 

faulty statement. We record the number of statements that must be inspected to find the 

faulty statement in each program to measure the effectiveness of our approach.   
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The efficiency of the approach is measured by the number of tests that are 

executed. We show the number of tests executed in different stages of our approach, i.e., 

number of tests needed to kill a program, number of tests needed to identify inducing 

combinations, and number of tests needed to produce the ranking of faulty statements. 

3.5.5 Results on single-fault versions 

Table 3-6 shows the results of our approach for each program. We will not explain 

the column headers one by one, as they are self-explanatory. The experiments start by a 

2-way test set and if needed the strength of the test set is increased up to 4. Note that in 

the last five columns average is used, since the data could be different in different versions. 

In some versions that are killed by a t-way test set, BEN does not find any t-way inducing 

combination, i.e. the strength of the fault is more than t. In these cases we used the top-

ranked suspicious combination in the initial test set to locate the fault. It is very likely that 

the core member does not fail in these versions and we must select the core member from 

the test set. We do not increase the strength of the test set in these version. This is to show 

that our approach works even truly inducing combination is not found. For example, the 

fault in all versions of the tcas program has strength more than six, so the top-ranked 

combination identified by BEN, is not truly inducing. In all versions of tcas, the test that 

contains top-ranked combination and minimum environment passed. And, the core test is 

selected from the test set, therefore the column six is equal to 1 for tcas program. 

Also, in some versions, e.g. 12 versions of replace, BEN could not find any t-way 

suspicious combination. In these cases, BEN reports all failed tests in the test set as 

suspicious combinations. We select one of the failed tests randomly and assume that 

whole test is inducing combination, i.e. all parameters (in this case 20 parameters) are 

involved in the inducing combination.   
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Table 3-6. Experimental results for single fault versions 
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printtokens 2 170 3 33 0.67 2.33 28.67 15.24 

printtokens2 2 170 9 35.88 0.55 2.44 24.44 12.53 

replace 2 192 32 12.66 0 3.62 35.25 14.57 

schedule 2 64 7 23.86 0.28 3 9.14 5.94 

schedule2 2 64 3 42 0 3 55 43.30 

tcas 

2 100 17 1.70 1 2.47 15.58 22.53 

3 405 12 5.67 1 3.5 12.08 18.58 

4 1434 7 13.14 1 4.14 11.71 18.02 

totinfo 
2 30 5 9.4 1 2 17.6 14.30 

3 156 7 7.14 0.86 3.57 11.43 9.29 

 

By definition, a group contains one core member and t derived members, so 

t+1tests are in the group.  But it is likely that some derived members fail and are discarded 

from the group. So the maximum  number  of  tests in the  group is t+1 and the minimum 

is 2 (a core test and one derived test). The sixth  column shows  the  average number  of 

tests in the groups. Note that in the replace program the average number of tests in the 

groups is 3.62, more  than  t+1.  This  is  because  in 12  out  of 32  versions the suspicious 

combination is more than 2-way. But in these versions 15 derived tests failed and their 

groups have 6 members. 

The last two columns show the average number and the percentage of code that 

must be inspected to locate the fault. To compute this number, we started from statements 

that were ranked at the top and for statements ranked at the same rank, we started from 

the first statement as output by our approach. We did not perform any dependency 

analysis. As discussed later, dependency analysis could further reduce the percentage of 
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code that needs to be inspected. As shown in the table, in 7 versions of schedule less than 

6% of the code must be inspected to locate the fault and only about 28 tests are generated 

after testing. In the worst case 43% of the code in schedule2 must be inspected. 

Another point is that, the number of executable code in tcas is 65, less than 100. 

In this program, when only one statement is needed to inspect, it is 1.54% of executable 

code. So for tcas program number of statements gives better insight than the percentage 

of code. 

3.5.6 Results on multiple-fault versions  

In this section we show the behavior of our approach when the program under test 

has multiple faults. The faulty version is created such that it includes all compatible faults.  

The result is summarized in Table 3-7 columns are the same as Table 3-6. The replace 

program is removed from this table since all the tests in the initial 2-way test set fail; this 

suggests that the fault should be fairly easy to locate even without help of any advanced 

method.  

Table 3-7. Experimental results for multiple faults versions 
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Printtokens 2 170 45 0 2 1 0.53 

printtokens2 2 170 110 0 2 1 0.51 

schedule 2 64 140 0 3 5 3.24 

schedule2 2 64 42 0 3 1 0.79 

tcas 2 100 71 0 3 1 1.54 

totinfo 2 30 28 1 3 3 2.44 
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3.5.7 The grep program 

We applied our approach to the grep program from SIR [18], which has 10068 lines 

of code. The grep program has two input parameters, patterns and files. It prints lines in 

the files that contain a match of any of the patterns. While the grep program can take 

multiple patterns and files, we only used a single pattern and file in this experiment. Also 

different options can be used to control the behavior of the grep program. For example, 

option “–w” causes the program to print only lines containing whole-word matches.  

The grep program can take four different types of patterns: (1) basic-regexp: a 

basic regular expression. (2) extended-regexp: an extended regular expression. (3) fixed-

strings: a list of fixed strings. (4) perl-regexp: a Perl regular expression. In this experiment, 

we focused on extended-regexp. There are five versions of grep in the benchmark, and 

each of them has a number of seeded faults. We selected the first version, which has 18 

seeded faults. Thus 18 faulty versions were built, each of which contains only one fault.  

The grep program was written in C, and has ten header files and one C file. The 

benchmark does not provide any specification for the grep program. So we used the grep’s 

manual from [22] as the program specification. We modeled the input space focusing on 

extended regular expression. The input model can be represented using the exponential 

notation as (27 × 41 × 51 × 63 × 81 × 91 × 131) and has one constraint related to the 

repetition operator.  The 2-way test set created from the model has 121 tests and killed 4 

versions, 3, 8, 11 and 14. We executed all the tests that come with this program in SIR, 

which also only killed these 4 versions. 

For version 11, all tests failed. In this case, our approach cannot be applied. In 

practice, the fact that all the test cases failed suggests that this fault can probably be found 

easily even without help from tools like ours.  
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For version 3, BEN generated 40 tests and identified 826 2-way suspicious 

combinations. We generated a group of tests from the most suspicious combination ranked 

by BEN. One derived member in the group failed. Thus, the group had 2 tests, one core 

member and one derived member. The statements were ranked and the faulty statement 

was in the second rank. To locate the faulty statement, 19% of the executable code needs 

to be inspected. 

For version 8, BEN generated 7 tests and identified one 2-way suspicious 

combination. A group of 3 tests was generated, and the faulty statement was ranked in the 

second rank. To locate the faulty statement, 0.9% of the executable code needs to be 

inspected.  

For version 14, BEN generated 41 tests and identified two 2-way suspicious 

combinations. A group of 3 tests was generated and the faulty statement was in the second 

rank. To locate the faulty statement, 8.5% of the executable code needs to be inspected.  

On the average BEN identified 2-way inducing combination by generating 13.67 

tests for the three killed versions, and the faulty statement as located by inspecting 9% of 

the executable code. Recall from sub-section Metrics that we did not perform any manual 

analysis when we determine the percentage of code that needs to be inspected. This 

percentage can be significantly reduced even with some simple dependency analysis, 

which we believe is what people typically do in practice. 

3.5.8 Threats to validity 

Threats to internal validity are factors that may be responsible for the experimental 

results, without our knowledge. One of the key steps in our experiments is modeling the 

input parameters, that may affect the correctness of the result. To reduce this threat, we 

have done this step by using the program specifications and error-free versions, without 
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having any knowledge about the faults. Further, consistency of the results has been 

carefully checked to detect potential mistakes made in the experiments. 

Threats to external validity occur when the experimental results could not be 

generalized to other programs. We use subject programs from the Siemens suite [18]; 

these programs are created by a third party and have been used in other studies [9, 16, 20]. 

But the subject programs are programs of relatively small size with seeded faults. To 

mitigate this threat, the grep program was added to the experiments, but more experiments 

on larger programs with real faults can further reduce this threat.  

Each of the Siemens program has multiple versions, each of which has a single 

fault. However, programs in practice could have multiple faults. To mitigate this threat, we 

created a version that combined all the compatible faults and conducted an experiment on 

this version. More experiments on programs with real faults can further reduce this threat. 

3.6 RELATED WORK 

Our approach is a spectrum-based approach based on combinatorial testing. In 

this section, we first discuss two areas of work: (1) fault localization based on combinatorial 

testing; and (2) spectrum-based fault localization. 

Fault localization based on combinatorial testing: Several recent efforts have been 

reported aiming to develop fault localization techniques that utilize the result of 

combinatorial testing. Two techniques, called FIC and FIC_BS [21], take as input a single 

failed test from a combinatorial test set, and identify as output a minimal inducing 

combination that causes the test to fail. The main idea of the two techniques consists of 

changing, in a systematic manner, the parameter values in the failed test. A parameter 

value is considered to be involved in an inducing combination if changing it to a different 

value causes the failed test to pass. It is assumed that changing a parameter value does 

not introduce any new inducing combination. 
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Other techniques have also been reported that take as input the results of an entire 

combinatorial test set, i.e., not only a single failed test, and identify as output one or more 

combinations that are likely to be inducing. These techniques include AIFL and InterAIFL 

[15, 17], and our earlier work BEN [6]. The key idea behind these techniques is that an 

inducing combination is more likely to appear in a failed test than in a passed test. InterAIFL 

and BEN may generate and execute additional tests to refine the results.  

To the best of our knowledge, all the existing work in this area has focused on the 

identification of inducing combinations. Our work presented in this paper is the first effort 

to leverage the notion of inducing combination to locate the faults inside the source code. 

In this respect, our work is the natural, next step of the above existing work. 

Spectrum-Based Fault Localization: Tarantula uses the coverage of statements in 

the execution traces of failed and passed tests to compute suspiciousness of each 

statement [10]. The suspiciousness score of each statement is the ratio of failed test cases 

that execute the statement divided by the ratio of failed test cases that execute the 

statement plus the ratio of passed test cases that execute the statement. The statements 

with the highest suspiciousness score must be examined first when looking for the fault. If 

the fault is not found, the remaining statements are examined in a non-increasing order of 

their suspiciousness scores. Other approaches such as Pinpoint, AMPLE and Ochiai [1] 

are reported that adopt the general framework of Tarantula but use different metrics to 

compute suspiciousness of statements. Experiments reported by [13], shows that no other 

spectrum-based approaches statistically significantly outperform Tarantula.  

Renieris and Reiss in [16] proposed three different spectrum-based approaches, 

set union, set intersection and nearest neighbor. They assume the existence of one failed 

run and a large number of passed runs. The input of the approach is a group of program 

runs, instead of a test set. The set union method computes f − ⋃ sS , where f is a program 
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spectra of a failing run and ⋃ sS  is the union spectra of a set of passed runs. The intersection 

model computes, the intersection spectra, ⋂ sS − f, of a set of passed runs. The statements 

in these spectra are then checked to find the actual faults. 

The nearest neighbor method [16] chooses one passed run whose spectrum is the 

closest one to the failed spectrum. Then it searches for a fault in the difference set of these 

two spectra. If the fault is not found in the difference set, a ranking technique based on the 

program dependence graph is proposed. In the program dependence graph, the nodes 

corresponding to the difference set are identified and called as blamed nodes. A breadth-

first search from the blamed nodes is performed along dependency edges in both forward 

and backward directions. All adjacent nodes to the blamed nodes are grouped in the next 

rank and checked as blamed.  This process is repeated until the faulty statement is found. 

Our approach is fundamentally different from the existing spectrum-based 

methods in the following aspects. First, the existing spectrum-based methods do not deal 

with the problem of test generation. Instead, they assume the existence of a large number 

of test runs and then analyze the spectra with respect to these test runs. In contrast, our 

approach proposes a systematic strategy to generate a group of tests, whose spectra are 

then used to produce a ranking of statements. Second, the existing spectrum-based 

methods do not make a clear distinction between the testing stage and the fault localization 

stage. In these methods, all the tests are generated up front and then executed and traced 

to record the program spectra. In contrast, our approach is to be applied after combinatorial 

testing is performed. The tests used in our approach for the purpose of fault localization 

are generated based on the result of combinatorial testing. Furthermore, only tests that are 

generated by our approach are traced to record program spectra, whereas the original 

combinatorial tests are not traced. Finally, we point out that the formulas used in our 

approach to compute suspiciousness of statement are different from those used in the 
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existing spectrum-based methods. This is to accommodate the fact that our approach uses 

a small group of tests among which there is only a single failed test, i.e., the core member. 

The effectiveness of a spectrum-based method such as ours also depends on the 

quality of the initial set of failed and passed tests. Baudrey et al. in [5] proposed a criterion 

to evaluate the efficiency of a test set for fault localization. They introduced a concept, i.e., 

dynamic basic block that contains a set of statements that is covered by the same test 

cases in a test set. All statements in the same basic block typically have the same rank. 

The more dynamic basic blocks in the program a test set could distinguish, the more 

efficient the test set is for fault localization. They then use an adoption of a genetic algorithm 

to optimize a test set and maximize the number of dynamic basic blocks. 

3.7 CONCLUSION 

In this paper, we presented an approach to localizing faults that leverages the 

result of combinatorial testing. The key idea of our approach is that we systematically 

generate a group of tests from an inducing combination such that the spectra of these tests 

can be analyzed quickly to identify the faulty statement. This group of tests consists of a 

core member that is a failed test run and a number of derived members that are passed 

test runs but are very similar to the core member. The suspiciousness values of statements 

are computed by analyzing the spectra of the core member and the derived members. We 

applied our approach to the Siemens suite and also the grep program. Our experimental 

results show that our approach requires a very small number of tests while significantly 

reducing the number of statements to be inspected for fault localization.  

We plan to conduct more empirical studies to further evaluate the performance of 

our approach. In particular, we plan to apply our approach to more programs like grep that 

are larger and/or more complex than the Siemens programs. Our current approach 

assumes that a combinatorial test set is used to test a program. We plan to investigate how 
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to adapt our approach to work with an arbitrary test set. That is, we will try to identify 

inducing combinations from an arbitrary test and then use them to generate tests for fault 

localization. This will further increase the applicability of our approach.  
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Localization 

Laleh Sh. Ghandehari, Yu Lei, Raghu Kacker, Richard Kuhn* 

 

Abstract— Combinatorial testing has been shown to be a very effective strategy 

for software testing. After a failure is detected, the next task is to identify one or more faulty 

statements in the source code that have caused the failure. In this paper, we present a 

fault localization approach, called BEN, which produces a ranking of statements in terms 

of their likelihood of being faulty by leveraging the result of combinatorial testing. 

BEN consists of two major phases. In the first phase, BEN identifies a combination 

that is very likely to be failure-inducing. A combination is failure-inducing if it causes any 

test in which it appears to fail. In the second phase, BEN takes as input a failure-inducing 

combination identified in the first phase and produces a ranking of statements in terms of 

their likelihood to be faulty. We conducted an experiment in which our approach was 

applied to the Siemens suite and two relatively large programs, grep and gzip, from 

Software Infrastructure Repository (SIR). The experimental results show that our approach 

can effectively and efficiently localize the faulty statements in these programs. 

Index Terms— Combinatorial Testing, Fault Localization, Debugging 

4.1 INTRODUCTION 

Combinatorial testing is based on the observation that a large number of software 

failures are caused by interactions of only a few input parameters [20]. A t-way 
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combinatorial test set, or simply a t-way test set, is designed to cover all the t-way 

combinations, i.e., combinations involving any t parameters [5][6][21]. Typically, t is a small 

number and is referred to as the strength of a combinatorial test set [19][20]. When the 

input parameters are properly modeled, a t-way test set triggers all or most failures caused 

by interaction of at most t parameters. Empirical studies have shown that combinatorial 

testing is very effective in practice [4][11][19].    

After a failure is detected during combinatorial testing, the next task is locating the 

fault that caused the failure. In this paper, we present a fault localization approach called 

BEN that leverages the result of combinatorial testing. BEN takes as input a combinatorial 

test set and the execution status, i.e., pass or fail, of each test, and produces as output a 

ranking of statements in terms of their likelihood to be faulty.  

Most research in combinatorial testing has focused on developing efficient 

combinatorial test generation algorithms [5][21][25], or demonstrating the effectiveness of 

combinatorial testing in different application domains [4][10][29][32]. Several approaches 

have been developed to identify failure-inducing combinations in a combinatorial test set 

[37][33]. A failure-inducing combination, or simply an inducing combination, is a combination 

that causes all tests containing this combination to fail [37][26].  These approaches, however, 

are not designed to locate faulty statements in the source code.   

A significant amount of research has been reported on spectrum-based 

approaches to fault localization [1][17][27][34]. A program spectrum records information 

about certain aspects of a test execution [34], such as function call counts, program paths, 

program slices and use-def chains [27]. Examples of spectrum-based methods include 

Tarantula [18], set union, set intersection, and nearest neighbor [27]. These approaches 

identify faulty statements by analyzing the spectra of passed and failed test executions 

[18][27][23].  These approaches are not designed to work with combinatorial testing. 
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However, they can be applied to analyze test executions obtained from combinatorial testing, 

provided that the test executions were traced. In case that a combinatorial test set is already 

executed without being traced, which is often the case in practice considering that testing 

and debugging are fundamentally different activities and are often performed separately, the 

test set must be re-executed before these approaches could be applied. In contrast, our 

approach does not require every test execution to be traced and is designed to be applied 

after normal testing is performed where test executions are not traced. We will compare our 

approach, i.e., BEN, to these approaches both analytically (Section 4.6.2) and experimentally 

(Section 4.5.2.3).    

Our approach consists of two major phases, consisting of inducing combination 

identification and faulty statement localization. In the first phase, BEN takes as input a t-way 

combinatorial test set, and it adopts an iterative framework to identify an inducing 

combination of size t or larger. At each iteration, a set F of tests is analyzed. Initially F is the 

t-way combinatorial test set taken as input by BEN. BEN first identifies the set π of all t-way 

suspicious combinations in F, and ranks them based on their likelihood to be inducing. 

Suspicious combinations are candidates of inducing combinations.  

Next, our approach generates a set F′ of new test. If all the tests containing a 

suspicious combination c in F′ fail, c is marked as an inducing combination, and the process 

stops. Otherwise, all the tests in F′ are added to F and the process is repeated until a t-way 

combination is marked as an inducing combination or a stopping condition is satisfied. In the 

latter case, no t-way inducing combination is identified and we increase the size of inducing 

combination. That is, we try to identify a (t+1)-way inducing combination. This process is 

repeated until an inducing combination is found. Note that this process must terminate, as a 

failed test is by definition an inducing combination.  
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The novelty of our approach in this phase lies in the fact that we rank suspicious 

combinations based on two notions, including suspiciousness of a combination and 

suspiciousness of the environment of a combination. Informally, the environment of a 

combination consists of other parameter values that appear in the same test case. The 

higher the suspiciousness of a combination, the lower the suspiciousness of its 

environment, the higher this combination is ranked. Moreover, new tests are generated for 

the most suspicious combinations. Let f be a new test generated for a suspicious 

combination c. Test f is generated such that it contains c and the suspiciousness of the 

environment for c is minimized. If f fails, it is more likely to be caused by c instead of other 

values in f. 

In the second phase of our approach, i.e., faulty statement localization, BEN 

systematically generates a small group of tests from an inducing combination such that the 

execution traces of these tests can be analyzed to quickly locate the faults. One of the tests 

in the group is referred to as the core member, which consists of the inducing combination 

and produces a failed test execution. The other tests in the group are referred to as the 

derived members, which are derived from the core member in a way such that they are 

likely to execute a trace that is very similar to the trace of the core member but produce a 

different outcome, i.e., a passed execution. The spectrum of the core member is then 

compared to the spectrum of each derived member to produce a ranking of statements in 

terms of their likelihood to be faulty. 

Our approach differs from existing spectrum-based approaches, which do not deal 

with the problem of test generation. Instead, they assume the existence of a large number 

of tests, which are generated randomly and/or using other techniques [18][27][34]. 

The second phase of BEN is inspired by the notion of nearest neighbor [27]. The 

key idea of nearest neighbor is that faulty statements are likely to appear in the execution 
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trace of a failed test but not in the execution trace of a passed test that is as similar to this 

failed test as possible. If two tests are significantly different, they are likely to represent 

different application scenarios. Thus, the differences in the execution traces of these two 

tests are likely due to program logic, instead of faults. The novelty of our approach lies in 

the fact that we generate, in a systematic manner, a failed test, i.e., the core member, and 

then derive its nearest neighbors from this failed test, i.e., the derived members. This is in 

contrast with the approach in [27], which executes a large number of tests from which a 

failed test and its nearest neighbors are selected. 

We report an experiment in which we applied our approach to the Siemens suite and 

two relatively large programs, grep and gzip, in the Software Infrastructure Repository (SIR) 

[31]. The Siemens suite has been used in several studies to evaluate fault localization 

methods [17] [27] [34]. It contains seven relatively small programs, each of which has a 

number of faulty versions. The two larger programs, i.e., grep and gzip, have 10068 and 5680 

lines of code respectively, and they also have a number of faulty versions in SIR. The faulty 

versions in SIR contain a single fault. In order to evaluate the performance of BEN with 

multiple faults, we created several faulty versions that contain multiple faults.  

The results show that our approach is effective in localizing faulty statements and 

also efficient in that only a small number of tests need to be executed and instrumented. For 

example, one of the implementations of the grep program called grep3 has 18 faulty versions. 

Among them four versions were killed by a 2-way test set consisting of 121 tests. On average, 

BEN generated and executed 25 additional tests and instrumented 7 tests for theses 4 

versions. One needs to examine 0.64% (on average) of the code to locate the faulty 

statement.  

Moreover, we compared the results of BEN and two other spectrum based 

approaches, Tarantula [18] and Ochiai [23]. Since Tarantula and Ochiai do not deal with test 
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generation, they were applied to the initial combinatorial test set. Our experimental results 

show that BEN performed better than or as well as Tarantula and Ochiai for all the programs, 

but it requires a significant smaller number of test executions to be traced and analyzed. In 

particular, BEN works better than the two other approaches, for the two larger programs and 

when they have multiple faults. For instance, gzip1 has 13 multiple-fault versions, among 

which BEN outperforms Tarantula for nine versions with an average improvement of 13.58%. 

That is, in these nine versions BEN on average inspects 13.58% less lines of code than 

Tarantula.  

The approach presented in this paper is the extension of our previous work, which 

has been presented in [14] and [13]. To the best of our knowledge, our work is the first to 

deal with code-based fault localization based on combinatorial testing. Existing work in this 

area, i.e., fault localization based on combinatorial testing, has mainly dealt with the 

problem of how to identify inducing combinations [37][30][26][33].      

The remainder of this paper is organized as follows.  Section 4.2 explains basic 

concepts and assumptions of our approach. Section 4.3 presents the details. Section 4.4 

gives an example to illustrate the approach. Section 4.5 reports the experimental results of 

applying our approach to the subject programs. Section 4.6 discusses existing work on fault 

localization. Section 4.7 provides the concluding remarks plans for future work. 

4.2 PRELIMINARIES 

In this section, we introduce the basic concepts and assumptions needed in our 

approach.  

4.2.1 Basic concepts 

Assume that the system under test (SUT) has a set P of k input parameters, 

denoted by P = {p1, p2, … , pk}. Let di be the domain of parameter pi. That is, di contains all 



76 

possible values that pi could take. Let D = {d1 ∪ d2 ∪ … ∪ dk}. Let Π =  d1 × d2 × … × dk. 

Let S be the set of program statements. 

Definition 1. (Test Case)  A test case or simply a test is a function that assigns a 

value to each parameter. Formally, a test is a function f: P → D. 

Definition 2. (Constraint) A constraint 𝜓 is a function that maps a test case to a 

Boolean value true or false, formally, 𝜓: Π ⟶ {true, false}. 

The system under test, SUT, includes a set Ψ = {𝜓1, 𝜓2, … , 𝜓|Ψ|} of constraints. 

We use Γ to represent all valid tests for the SUT, formally Γ ⊆ Π. A test f ∈ Γ is valid if and 

only if ∀𝜓 ∈ Ψ, 𝜓(f) = true. To simplify the presentation, we assume that each test is a 

valid test in the remainder of the paper unless otherwise specified.  

Definition 3. (Test Oracle) A test oracle determines whether the execution of a 

test is “pass” or “fail”. Formally, a test oracle is a function r: Γ → {pass, fail}. 

Definition 4. (Combination) A combination c is a test f restricted to a non-empty, 

subset M of parameters in P. Formally, c = f|M where M ⊆ P, and |M| > 0. 

In the preceding definition, M is a subset of P. Thus, a test is a combination where 

M = P. We use dom(c) to denote the domain of c, which is a set of parameters involved in 

c. (Note that dom(c) is the domain of a function, which is different from the domain of a 

parameter.)  

A combination of size one is a special combination, which we refer to as a 

component. Since there is only one parameter involved, we denote a component o as an 

assignment, i.e., o = p ← v, where o(p) = v.  

Definition 5. (Component Containment)  A component o = p ← v is contained in 

a combination c denoted by o ∈ c, if and only if  p ∈ dom(c) and c(p) =  v. 

Definition 6. (Combination Containment) A combination c is contained in a test f, 

denoted by  c ⊆  f , if and only if   ∀p ∈ dom(c), f(p) = c(p) . 
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Definition 7. (Inducing Combination) A combination c is failure-inducing, or simply 

inducing, if any test f in which c is contained fails. Formally,  ∀f ∈ Γ: c ⊆ f ⟹  r(f) = fail. 

Definition 7 is consistent with the definition of inducing combinations in previous 

work [37][30][26][33]. 

Definition 8. (Inducing Probability) The inducing probability of a combination c is 

the ratio of the number of all possible failed tests containing c to the number of all possible 

tests containing c. The inducing probability is computed by 

|{f ∈ Γ|r(f) = fail ∧ c ⊆ f}|

|{f ∈ Γ|c ⊆ f}|
 

The computation of inducing probabilities requires all possible tests containing a 

combination, which is often not possible in practice. This notion is mainly used to evaluate 

the goodness of our experimental results. By Definition 7, an (truly) inducing combination 

is a combination whose inducing probability is one.  

 Definition 9. (Suspicious Combination) A combination c is a suspicious 

combination in a test set F ⊆ Γ if c is contained only in failed tests in F. Formally, ∀f ∈ F: c ⊆

f ⇒ r(f) = fail. 

Inducing combinations must be suspicious combinations, but suspicious 

combinations may or may not be inducing combinations. 

Definition 10. (Test Spectrum) A test spectrum is a membership function γ that 

determines whether a statement is exercised by a test (or precisely the execution of a test). 

Formally, γ: S ×  Γ → {true, false}, where γ(s, f) = true if 𝑠 ∈ 𝑆 is executed by f ∈ Γ, and 

γ(s, f) = false otherwise.  

In the rest of the paper, we also use γ(f) to represent all the statements that are 

executed by f. Formally, γ(f) = {𝑠 ∈ 𝑆 | γ(s, f) = 𝑡𝑟𝑢𝑒}. 
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4.2.2 Assumptions 

In this section, we present several assumptions that must hold to apply BEN.  

Assumption 1. The output of the SUT is deterministic. In other words, the SUT 

always produces the same output for a given test. 

Assumption 2. There exists a test oracle that determines the status of a test 

execution, i.e., “pass” or “fail”. 

Assumption 2 is made to simplify the presentation of our approach. The 

construction of a test oracle is an independent research problem. When a test oracle exists, 

our approach can be fully automated. When a test oracle does not exist, our approach can 

still be applied, but the user needs to assist in determining the execution status of a test 

case. 

Assumption 3. There are at least one failed and one passed tests in the initial test 

set.  

If there is no failed test, no fault is detected. Fault localization is typically performed 

when at least one fault is detected. If there is no passed test, the fault is likely easy to 

locate. 

4.3 APPROACH 

 
In this section, we present the BEN approach. BEN consists of two major phases, 

inducing combination identification and faulty statement localization. BEN assumes that a 

combinatorial test set has been executed on the subject program. Thus, the execution 

status of each test is known. Also, it assumes that the input parameter model used to 

generate the combinatorial test set is known. An input parameter model includes a set of 

parameters, each of which has a set of values, and a set of constraints that must be 

satisfied for a test to be valid. 
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The output of our approach is the ranking of statements such that the higher a 

statement is ranked, the more likely it is faulty. In the rest of this section, we explain the 

details of BEN.  

4.3.1 Phase 1: Inducing combination identification  

This phase takes three inputs, including an input parameter model Ω, a 

combinatorial test set F0 created based on Ω, and the strength t of F0. It produces as output 

an inducing combination, or more precisely a highly suspicious combination. 

4.3.1.1 Framework 

As shown in Figure 4-1 our approach adopts an iterative framework in this phase. 

At each iteration, the identify algorithm is used to analyze a set F of test cases and identify 

an l-way inducing combination. Initially, F is the initial combinatorial test set and l, the size 

of inducing combination, is the strength of the initial test set. 

If the identify algorithm identifies an l-way inducing combination, c, the while loop 

stops and reports c as an inducing combination (line 5). If no l-way inducing combination 

is found, i.e. the identify algorithm returns null (line 2), l will be incremented. In the next 

iteration, the framework searches for inducing combination of size l+1. As shown in 

Figure 4-2 new tests may be added into F by the identify algorithm each time it is called. 

 Based on assumption 3, there is at least one failed test in the initial test set. Recall 

that a failed test is an inducing combination by definition. Therefore, there is at least one 

inducing combination in the initial test set. Thus, the framework must terminate. 

The Framework  

1 l ← t and F ← F0 

2 while((c ← identify(Ω, l, F)) = null) { 

3 l ← l + 1 

4 } 

5 return c 

Figure 4-1. The framework for identifying inducing combination 
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4.3.1.2 Algorithm  identify 

Algorithm identify is shown Figure 4-2, and is designed to find an l-way inducing 

combination in the test set F. It takes as input the input parameter model, Ω, test set F and 

l. Algorithm identify consists of two main steps. (1) Rank generation: In this step, we first 

identify all the l-way suspicious combinations in F (line 3). Then, the suspiciousness value 

of each component and suspicious combination is computed (line 6 and line 8), and finally 

a ranking of the suspicious combinations is produced (line 10). (2) Test generation: In this 

step, for a user-specified number of top-ranked suspicious combinations, a set of new tests 

is generated (line 14).  Note that the user could specify the number of top-ranked 

Algorithm identify 

1 while ( c = null) { 

2 // Step 1. rank suspicious combinations 

3 π ← l-way suspicious combinations in F 

4 if (π = empty) then return null; //No l-way inducing combination is found 

5 let Θ be the set of suspicious components that appear in π 

6 compute the suspiciousness of each component in Θ 

7 for each combination τ ∈ π { 

8 compute ρc(τ) and ρe(τ) based on formula 2 and 3  

9 } 

10 produce a ranking of l-way combinations in π based on ρc and ρe 

11 // Step 2. generate new tests   

12 let Τ be the set containing a user-specified number of top-ranked combinations 

13 for every combination τ ∈ T { 

14 generate a set F′of a user-specified number of new tests that contain τ  

15 if (|F′| == 0 || (∀f ∈ F′, r(f) = fail) )   

16 𝑐 ← τ     // l-way inducing combination is found 

17 else 

18        F ← F ⋃ F′   

19 } 

20 } 

21 return c 

Figure 4-2. The Identify algorithm 
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suspicious combinations and the number of tests generated for each top-ranked 

combination. If an inducing combination is not found, all the new tests in F’ are added to 

the test set F to refine the ranking of suspicious combinations in the next iteration (line 18). 

The two steps, rank generation and test generation, are performed iteratively until 

one of the following two stopping conditions is satisfied:  

(1) The set π of l-way suspicious combinations becomes empty (line 4); or.   

(2) An l-way inducing combination is found (line 16 and line 21). An l-way 

suspicious combination τ is considered to be an inducing combination if no new test 

containing τ can be generated, or all newly generated tests containing τ fail (line 15). In the 

former case, it is very likely that all tests containing τ have been executed, and all of them 

must have failed (otherwise, τ is not suspicious). Thus, τ is the inducing combination. In 

the latter case, τ is likely to be inducing due to the way the new tests are generated as 

explained in Section 4.3.1.4. Later, we will discuss how BEN works when a non-inducing 

combination is reported as an inducing combination.    

In the following subsections, we will explain the two major steps, rank generation 

and test generation. 

4.3.1.3 Rank generation 

In this step, we first identify the set π of all l-way suspicious combinations in F. 

Initially, π contains all the l-way combinations covered by F. We then check each l-way 

combination τ in π. If τ appears in at least one passed test, τ is removed from π, since it is 

not suspicious anymore. In the subsequent iterations, we do not re-compute π from the 

scratch. Instead, we only remove from π all the combinations contained by newly added 

tests that passed. 

If there is no l-way suspicious combination, there is no l-way inducing combination. 

In this case, the identify algorithm returns null. The main framework, as shown in 
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Figure 4-1, then increases the size of inducing combination by one, and calls the identify 

algorithm again. 

In the first iteration, where F = F0 and l = t, all the t-way combinations are covered 

by F, as F0 is a t-way test set. But, when l > t, F does not contain all the l-way combinations. 

Therefore our approach focuses on l-way combinations that appear F.     

We next discuss how to rank the suspicious combinations in π. First, we introduce 

three important notions of suspiciousness, including suspiciousness of component, 

suspiciousness of combination, and suspiciousness of environment. 

Suspiciousness of component (ρ): This notion is defined such that the higher ρ a 

component o has, the more likely o contributes to a failure, and the more likely o appears 

in an inducing combination. Let F be the test set that is analyzed in the current iteration. In 

our approach, ρ is computed by the following formula: 

ρ(o) =
1

3
( u(o) + v(o) + w(o))                            (1) 

Where 

u(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}| 

 |{f ∈ F|r(f) = fail}|
 

v(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}| 

 |{f ∈ F|o ∈ f}|
 

w(o) =
|{τ|o ∈ τ ∧ τ ∈ π}|

|π|


The first factor, u(o), shows the ratio of the number of failed test cases in which 

component o appears over the total number of failed test cases. The second factor, v(o), 

shows the ratio of the number of failed test cases in which component o appears over the 

total number of test cases in which component o appears. The third factor shows the ratio 

of the number of suspicious combinations in which component o appears over the total 
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number of suspicious combinations. The three factors are averaged to produce a value 

between 0 and 1.  

The motivation behind the first two factors is that the more frequently a component 

appears in failed test cases, this component is more likely to contribute to a failure. 

There is an important difference between the first two factors. Since the greater 

the domain size is, the less frequently each individual value of this parameter appears in a 

test set and consequently in failed test cases, the first factor, u(o), has a bias towards 

smaller domain size parameters. The second factor, v(o), is used in to reduce this bias.  

The motivation for the third factor is that components of inducing combinations 

tend to appear more frequently in suspicious combinations. For example, assume that 

combination c = (a ← 0, b ← 0) is inducing. Let f = (a ← 0, b ← 0, c ← 0, d ← 0)  be a test 

case. Test case f fails as it contains c. Let f ′ = (a ← 1, b ← 1, c ← 0, d ← 0) be another test 

case, which passes since it does not contain c. The set of suspicious combinations derived 

from these two test cases is 

π = {(a ← 0, b ← 0), (a ← 0, c ← 0), (a ← 0, d ← 0), (b ← 0, c ← 0), (b ← 0, d ← 0)} 

In this set, the frequencies of a ← 0 and b ← 0 both are greater than others. The 

reason is that (c ← 0, d ← 0) appears in f ′, which is a passed test case. 

Suspiciousness of combination (ρc): Suspiciousness of a combination τ is defined 

to be the average of suspiciousness of components that appear in τ. Formally 

suspiciousness of combination τ,  ρc(τ)  is computed by 

ρc(τ) =
1

|𝜏|
∑ ρ(o)

∀ o∈τ

                                             (2) 

Suspiciousness of Environment (ρe): The environment of a combination τ in a test 

f includes all the components that appear in f but do not appear in τ. The suspiciousness 

of the environment of a combination τ in a test f is the average suspiciousness of the 
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components in the environment of τ. If there is more than one (failed) test containing τ in 

a test set, the suspiciousness of the environment of τ in this test set is the minimum 

suspiciousness of environment of τ in all the tests containing τ. Formally, suspiciousness 

of the environment  ρe  is computed by  

ρe(τ) = min
 f∈F∧τ⊆f

∧ r(f)=fail

  ∑ ρ(o) 

o∈f ∧o∉τ

                            (3) 

Now we discuss how to actually rank the suspicious combinations based on ρc and 

ρe. Intuitively, the higher the value of c, the lower the value of e, the higher a combination 

is ranked.  

To produce the final ranking, we first produce two rankings Rc and Re of suspicious 

combinations, where Rc is in the non-ascending order of c and Re is in the non-descending 

order of e. The final ranking R is produced by combining Rc and Re as follows. Let τ and 

τ′ be two suspicious combinations. Assume that τ has ranks rc and re in Rc and Re, 

respectively, and τ′ has ranks rc
′  and re

′  in Rc and Re, respectively. In the final ranking  R, τ 

is ranked before τ′ if and only if rc + re < rc
′ + re

′ . 

4.3.1.4 Test generation 

This step is responsible for generating new test cases for user-specified top-

ranked suspicious combinations. Let 𝜏 be a top-ranked suspicious combination. A new test 

f is generated for 𝜏 such that f contains 𝜏 and the suspiciousness of the environment for τ 

is minimized in f. When such a test case passes, this combination is removed from the 

suspicious set. When such a test fails, the failure is more likely due to this combination 

since the suspiciousness of its environment is minimized. Therefore, the suspicious 

combination should be marked as an inducing combination. To increase the confidence, a 

user-specified number of tests can be generated for a top-ranked suspicious combination.  
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One approach to generate a given number n of new tests with minimum ρe for a 

suspicious combination is to generate all possible tests containing this combination, 

remove tests which already exist in F, and then select n tests which have the lowest ρe. 

This algorithm is very expensive. We next describe a more efficient but heuristic algorithm.

 First, we generate a base test f as follows. For each parameter involved in τ, we 

give the same value in f as in τ. Doing so makes sure that f contains τ. For each parameter 

in the environment of τ, i.e., each parameter that is not involved in τ, we choose a value (or 

component) whose suspiciousness ρ is the minimum. If there is more than one value with 

minimum ρ, one of them is selected randomly. 

Next, we check whether the base test f is new, i.e., making sure that f has not been 

executed before. If so, f is returned as the new test that contains τ and has minimum ρe. If 

not, we pick one parameter randomly and change its value to a value with the next 

minimum ρ. Again, this test is checked to see whether it is a new test. These steps are 

repeated until a new test is found, or the number of attempts for finding a new test case 

reaches a predefined number. The process is repeated until a desired number of new tests 

are generated.  

If BEN does not find any new test, the combination is marked as an inducing 

combination, because it is likely that all the test cases containing this combination have 

been executed (and all of them must have failed). 

The newly generated tests, i.e., those in set F′, are executed. If all the tests fail, 

the suspicious combination, τ, is marked as an inducing (line 16 -Figure 4-2). If not, F′ is 

added to the test set (line 18 - Figure 4-2) to refine the suspicious combinations set in the 

next iteration. By adding F′ to the test set the suspicious combination τ and all other 

suspicious combinations appear in passed tests of F′ are removed from the suspicious 
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combinations set. Therefore, the number of suspicions combinations could be reduced by 

the new tests added into the test set. 

4.3.1.5 Discussion 

To successfully identify an inducing combination, BEN must first identify the 

combination to be a suspicious combination. Assume that c is an inducing combination. 

Let t be the strength of the initial test set. We consider the following three cases. 

Case (1): c is a t-way combination. As the initial test set is a t-way test set, there 

is at least one test that contains c, and all test cases containing c must fail, since c is 

inducing. Therefore, c is identified to be a suspicious combination. 

Case (2): The size of c is less than t. All t-way combinations containing c are 

inducing combinations, and are identified to be suspicious combinations.  

Case (3): The size of c is more than t. The initial t-way test set is not guaranteed 

to cover every combination whose size is more than t. If c appears in the initial t-way test 

set or the newly generated tests, and thus causes a test containing it to fail, it is identified 

to be a suspicious combination when l is equal to the size of c.     

Let c be an inducing combination that has been identified as a suspicious 

combination. If it is in the top-ranked set, i.e., the set of a user-specified number of top-

ranked combinations, all the tests generated for c fail since they contain c. Therefore, c is 

identified to be an inducing combination.  

Now consider the case that c is not in the top-ranked set. Without loss of generality, 

assume that every combination c’ in the top-ranked set is not inducing. If any new test 

generated for c’ passes, c’ is no longer suspicious and is thus removed from π. This will 

cause c to move up in the ranking. With a sufficient number of iterations, c will be moved 

into the top-ranked set and will be identified to be an inducing combination.  
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If all the tests generated for 𝑐’ fail, 𝑐’ will be reported as an inducing combination. 

As discussed earlier, a new test for 𝑐’ is generated such that if it fails, it is likely due to 𝑐’ 

Thus, if all the tests generated for 𝑐’ fail, 𝑐’ is likely to have a high inducing probability even 

if it is not truly inducing.   

BEN provides the user with several options to control the cost and effectiveness 

of the process. First, BEN allows the user to specify the number of new tests generated for 

each top-ranked suspicious combination. The more tests generated, the more effort it takes 

to execute them, but the more confidence we have about the identified inducing 

combinations. 

Second, BEN allows the user to specify the size of the top-ranked set for which 

new tests will be generated. The bigger the top-ranked set, the more effort to generate and 

execute the new tests, but the faster an inducing combination may be identified. This is 

because if an inducing combination c is included in the top-ranked set, c is identified to be 

an inducing combination in the first iteration. Otherwise, it may take multiple iterations for 

c to move up into the top-ranked set. 

Finally, BEN allows the user to stop the first phase (and move to the second phase) 

in the following three ways if there is limited resource:  

The user could define the maximum number of iterations for the identify algorithm. 

That is, if none of the two stopping conditions is satisfied after a specified number of 

iterations, the identify algorithm stops and returns null. Returning null shows that there is 

no inducing combination of the current size; therefore, the main framework increments the 

size in the next iteration.  

The user could decide to stop at the end of each iteration of the framework. In this 

case, the top ranked suspicious combination would be reported as an inducing 

combination.  
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The user could define the maximum size of inducing combination. If the maximum 

size is reached but BEN still does not find any inducing combination, the top ranked 

suspicious combination in the last iteration is reported as an inducing combination. Recall 

that in the worst case, the size of inducing combination is equal to the number of 

parameters. 

4.3.2 Phase 2: Faulty statement localization 

Figure 4-3 shows the algorithm used by BEN to localize faulty statements. It 

consists of two major steps: (1) Test Generation: In this step, we generate a small group 

of tests. The group contains one failed test, which is referred to as the core member, and 

at most l passed tests, where l is the size of the inducing combination. The passed tests 

are referred to as the derived members. Each derived member is expected to produce a 

similar execution trace as the core member. (2) Rank Generation: In this step, we compare 

the spectrum of the core member to the spectrum of each derived member, and then 

produce a ranking of statements in terms of their likelihood of being faulty. More details of 

these two steps are explained in the following sections. 

4.3.2.1 Test generation 

In this step, as shown in Figure 4-3 (lines 2-9), a group of tests, M, which includes 

the core member f and at most l derived members, are generated. Let c be the l-way 

inducing combination identified in Phase 1. The core member f is created such that it 

contains c and the suspiciousness of environment of c in f is minimized (line 3). To generate 

such a test, the same algorithm used for test generation in Phase 1 is applied: For each 

parameter p involved in c, f has the same value for p as c, i.e. c ⊂ f, and for each parameter 

p that does not appear in c, f takes a value that has the minimum suspiciousness value 

among all the values of p. As discussed later, the reason why we want to minimize the 
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suspiciousness of the environment of c is to maximize the likelihood of a derived member 

to be a passing test. 

The core member f is likely to fail, since it contains the inducing combination c 

identified in the first phase. Next, for each component o ∈ c, a set of derived member 

candidates, Mo, is generated. A derived member candidate  m𝑖 ∈ Mo is generated such 

that it has the same values as f for all parameters except for one component o ∈ c. The 

component o is replaced with another component, o′, of the same parameter with the 

minimum suspiciousness value. Note that a parameter may have multiple least suspicious 

components, i.e., multiple components with the minimum suspiciousness value. So, all the 

tests in Mo are different from the core member and from each other in one component, o. 

Algorithm localize 

1  // Step 1. Generate core and derived members 

2 let c be the inducing combination identified in Phase 1  

3 let M be an empty set 

4 generate core member f ∈ Γ such that   c ⊂ f and for all o ∈ f and o ∉ c,  

ρ(o: p ← v) = min
vi∈d

{ρ(p ← vi)}    

5 for (each component o ∈ c) {  

6 generate the derived member candidate set Mo for component o based on Θ 
and Ω 

7 select derived member mo ∈ Mowhere r(mo) = pass and |γ(f) − γ(mo)| >
0 and |γ(f) − γ(mo)| = min

m∈Mo

{|γ(f) − γ(m)|} 

8 M = M ∪ {mo} 

9 } 

10 // Step 2. Rank statements 

11 for each statement s ∈ S { 

12 for all derived members in m ∈ M)  

13 compute ρ(s, m) with respect of core member f, based on formula 5 

14 ρ(s) = ∑ ρ(s, m)m∈M /|M|  

15 } 

16 Let R be the ranking of statement in the non-increasing order of ρ(s) 

17 return R 

Figure 4-3. The Localize algorithm 
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Figure 4-4 shows how the derived member candidate set, or simply candidate set 

Mo1
 is generated from the core member f. (In the remainder of this paper, we will refer to a 

derived member candidate set as a candidate set if there is no ambiguity.) The core 

member f contains k components, o1, o2 … , ok, where k is the number of parameters. 

Without loss of generality, assume that the first l components in f, i.e., o1, o2 … , o𝑙, are in 

the inducing combination c. As shown Figure 4-4, each test in candidate set Mo1
 is different 

from the core member f in component o1 ∈ c.  The o1 component is replaced with o1
j

=

p1 ⟵ vj where o1
j
 is a least suspicious component of p1. For each least suspicious 

component p1, one derived candidate test is generated. Formally: 

ρ(o1
1 = p1 ⟵ v1) =  ρ(o1

2 = p1 ⟵ v2) … =  min
∀j∈d1

ρ (p1 ⟵ vj) 

The number of tests in Mo1
 depends on the number of least suspicious 

components of parameter p1. Candidate tests are likely to pass. First, the replacement 

effectively removes inducing combination c from tests. Second, the use of a least 

suspicious component for the replacement, and having the suspiciousness of the 

environment minimized reduce the chance of introducing another inducing combination to 

the test. 

Next, a derived member mo is selected from each candidate set Mo (line 7). There 

are two criteria for derived member mo. First, it must pass. Second, it has the minimum 

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok} Core 

Mo1
 

{𝐨𝟏
𝟏, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}  

{𝐨𝟏
𝟐, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}  

...  

Figure 4-4. Generation of the candidate set Mo1
  

c 
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positive spectrum difference with the core member f among all the passed tests in Mo. 

Formally, |γ(f) − γ(mo)| = min
m∈Mo∧

r(m)=pass

{|γ(f) − γ(m)|} and |γ(f) − γ(mo)| > 0. 

If there is more than one test that satisfies the two criteria, one of them is selected 

randomly. All the derived members are stored in a set called M (line 8). Figure 4-5 shows 

the core member f and the set M of derived members. 

The execution trace of a derived member mi ∈ M is likely to be very similar to the 

execution trace of the core member, because these two tests only differ in one value, and 

they have the minimum spectrum differences among other similar tests. Since all the 

derived members mi pass whereas the core member f fail, the faulty statement is very likely 

to be one of the statements that appear in the execution trace of f but do not appear in the 

execution trace of m1, m2 … m𝑙. 

4.3.2.2 Rank generation 

In this step, BEN computes the suspiciousness of statements and then ranks them 

in terms of their likelihood to be faulty by analyzing the spectrums of the core member and 

derived members. The suspiciousness of statement s is denoted by ρ(s) and computed by 

analyzing the spectrums of the core member and derived members. The suspiciousness 

of statement s is the average of suspiciousness of s with respect to every derived members.  

 

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok} Core 

 {𝐨𝟏
′ , o2, … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}  

M 
{o1, 𝐨𝟐

′ , … , o𝑙 , o𝑙+1, o𝑙+2 … , ok}  

…  

 {o1, o2, … , 𝐨𝒍
′, o𝑙+1, o𝑙+2 … , ok}  

Figure 4-5.The core and derived members 

c 
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Formally: 

ρ(s) = ∑ ρ(s, mi)/(|M|)mi∈M                                         (4) 

where ρ(s, mi) is the suspiciousness of s with respect to a derived member mi and 

is computed by the following formula: 

ρ(s, mi) = {

1        if γ(s, f) =  true  and γ(s, mi) =  false      

0.5    if γ(s, f) =  γ(s, mi) =  true                   (5)

0       if γ(s, f) = false                                              

 

The idea behind formula (5) is the following. Statements that are only executed by 

the core member f are most suspicious and are given 1 as their suspiciousness value. 

Statements that are executed by both the core member and a derived member are less 

suspicious, and are given 0.5 as their suspiciousness value. Note that the execution of a 

faulty statement by a test does not necessarily make the test fail. For example, if there 

exists a fault in a conditional expression, this fault can be executed by all tests but only 

cause some to fail. Finally, statements that are not executed by f are not suspicious. 

For example, if there are two derived members in M, m1 and m2, and the core 

member is f. Assume that a  statement s is executed by f and m2, but not by m1 The 

suspiciousnes ρ(s) of s would be 0.75. This is because ρ(s, m1) = 1 and ρ(s, m2) = 0.5, 

and the average of ρ(s, m1) and ρ(s, m2) would be 0.75. 

The higher the suspiciousness value of a statement, the more likely this statement 

is faulty. We rank statements by a non-ascending order of their suspiciousness value. To 

locate the faulty statement, statements in the top rank are examined first, and then 

statements in the next rank, until the faulty statement is found. 

4.3.2.3 Discussion 

The effectiveness of our approach in this phase depends to some extent on the 

quality of the inducing combination c identified in the first phase. If combination c is truly 

inducing, the core member generated by our approach, i.e., the one that contains this 
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combination and minimizes the suspiciousness of its environment, must fail. However, if c 

is not truly inducing, but with a high inducing probability, the core member still has a high 

probably to fail. The experimental results in Section 4.5.2.1.1 and 4.5.2.2.1 show that 

Phase 1 of our approach can identify truly inducing combinations or combinations that have 

a high inducing probability. 

If the core member generated in the second phase does not fail, we pick a test 

from the initial t-way test set that contains c as the core member. Since c is identified as an 

inducing combination, there must exist at least one failed test that contains c in the initial 

test set. (Otherwise, c would not even be a suspicious combination.) In this case, the 

suspiciousness of environment of c in this test may not be minimized. This may reduce the 

probability for the derived members to pass.  

If BEN could not find any passed test in a candidate set Mo for a component o (in 

the inducing combination), it ignores the candidate set and thus no derived member is 

generated for component o. In case that no derived member is generated for all the 

components in the inducing combination, BEN picks a passed test from the test set such 

that the number of components that differ between the passed test and the core member 

is minimized. In this case, the difference between the core member and this derived 

member may not be minimized, which might affect the effectiveness of our approach. We 

believe the chance for this case, i.e., all the tests in all the candidate sets for all the 

components fail, to occur is small, which is consistent with our experiments in which it 

occurred in 3 versions to the total of 124 versions of our subject programs. 

4.3.3 Complexity analysis 

In our analysis, we do not consider the complexity of constraint solving and the 

cost of test execution. Our approach uses a third-party solver for constraint solving. The 

cost of test execution depends on the subject program. 
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Let k be the number of parameters, t the strength of the initial test set and d the 

largest domain size of the parameters. Let N be the number of tests in the current iteration, 

which includes the tests in the initial test set and the tests generated at the previous 

iterations. Note that the number of test generated at each iteration depends on two user-

specified numbers, i.e., the size of the top-ranked set consisting of suspicious combinations 

for which tests are to be generated, and the number of tests to be generated for each 

suspicious combination in the top-ranked set. Assume that the inducing combination is of 

size 𝑙 which is greater than or equal to t. The maximum number of 𝑙-way combinations 

contained in the test set is  η = (k
𝑙
)N. 

To determine whether a combination is suspicious, the identify algorithm needs to 

check if the combination appears in any passed test, which takes O(N × 𝑙). Therefore, 

building the suspicious combinations set takes η × O(N × 𝑙). Next, the identify algorithm 

computes the suspiciousness value for all the components, which includes computing the 

frequency of each component in the suspicious combination set, test set and failed tests. 

Computing the frequency in the suspicious combination set dominates the other two, which 

takes O(η) for each component. The maximum number of components is k × d. Thus, 

computing suspiciousness values for all the components takes k × d × O(η). 

After having suspiciousness values of all the components, computing 

suspiciousness of each combination (ρc) takes 𝑙, and thus 𝑙 ×  O(η) for all the combinations. 

To compute ρe of a combination, BEN first searches in the test set to find all the failed tests 

that contain this combination, which takes 𝑙 × O(N). Next, for each of these failed tests, it 

computes the average suspiciousness value of k − 𝑙 components in the environment. 

Therefore, it takes in total 𝑙 × (k − 𝑙) × O(η) × O(N). Finally, BEN finds the minimum 

suspiciousness of the environment among all these failed tests, which takes O(N). 
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Therefore, the complexity of computing ρe for all the combination is 𝑙 × (k − 𝑙) × O(η) ×

O(N). 

The identify algorithm sorts the set of suspicious combinations three times, once 

for each ranking Rc, Re, and R, taking O(η × log(η)). This dominates the complexity of the 

rank generation step, if the number of tests N is far less than the number of combinations, 

η. 

The test generation step needs to select (k − 𝑙) values with minimum ρ first, which 

takes (k − 𝑙) × O(d). Then it needs to check whether it is new, which is O(N). Since k, l and 

d are smaller than η, O(η × log(η)) dominates the complexity of the rank generation and 

test generation steps. Therefore the complexity of the identify algorithm is  O(η × log(η)). 

In the worst case, the identify algorithm is called (k − t) times. Thus, the complexity of this 

phase is (k − t) × O(η × log(η)).     

In Phase 2, in order to generate the core member, we need to select values with 

minimum suspiciousness for (k − 𝑙) components, which takes (k − 𝑙) × O(d). There are 𝑙 

candidate sets, and for each it takes O(d) to find components with minimum ρ. Therefore, 

generating all candidate sets takes 𝑙 × O(d). 

 Each candidate set at most contains d − 1 derived members. Selecting a test with 

minimum difference in the spectrum with the core member takes [𝑙 × (d − 1)] × |S|, where 

|S| is the number of statements of the program. The complexity of selecting a test, [𝑙 ×

(d − 1)] × |S|, dominates the complexity of this step.   

In the rank generation step, the complexity of assigning a suspiciousness value to 

each statement with respect to the 𝑙 derived members is O(𝑙). So for all the statements S 

of the program, it takes |S| × O(𝑙). Then all the statements need to be sorted to rank the 

statements, which is O(|S| × log(|S|)). Since 𝑙 is typically much smaller than the program 
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size |S|, this sorting operation dominates the complexity of this part. The complexity of the 

rank generation step, O(|S| × log(|S|)), dominates the complexity of this phase.  

Depending on the programs size, |S| and the number of suspicious combinations, 

η, the complexity of Phase 1 or Phase 2 may dominate the complexity of BEN. 

4.4 EXAMPLE 

In this section, we illustrate our approach using an example program shown in 

Figure 4-6. Method foo has a fault in line 9. The correct statement should be r+= (b −

d)/(a + 2), but operator “+” is missing. The input parameter model consists of P =

{a, b, c, d}, and da = {0,1}, db = {0,1}, dc = {0,1,2}, and  dd = {0,1,2,3}. The faulty 

statement is reached when a is 0 and c is 0 or d is 3. So there are two inducing 

combinations (a ← 0, c ← 0) and (a ← 0, d ← 3).  

 Assume that the program is tested by a two-way test set. The test result is 

shown in Table1, where 3 out of 12 tests fail. Test cases #1 and #7 fail because they 

contain combination (a ← 0, c ← 0). Test case #10 fails because it contains (a ← 0, c ← 0) 

and (a ← 0, d ← 3). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-6. An example faulty program 
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4.4.1 Phase 1: Inducing combination identification  

Table 4-1 shows a t-way test set with test execution statuses for the example 

program. In the first iteration, the identify algorithm identifies nine suspicious combinations 

(Figure 4-2, line 3) which are listed in the first column of Table 4-2Table 4-2. Then the 

algorithm computes the suspiciousness values of all the (seven) components that appear 

in one or more of these suspicious combinations. 

Table 4-1. two-way Test Set and Status 

Test # a b c d Status 

1 0 0 0 0 fail 

2 1 1 1 0 pass 

3 0 1 2 0 pass 

4 1 0 0 1 pass 

5 0 0 1 1 pass 

6 1 1 2 1 pass 

7 0 1 0 2 fail 

8 1 0 1 2 pass 

9 0 0 2 2 pass 

10 0 1 0 3 fail 

11 1 0 1 3 pass 

12 1 0 2 3 pass 
 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4-2. Suspicious combinations and their corresponding values 

Suspicious 
Combination 

𝝆𝒄 𝑹𝒄 𝝆𝒆 𝑹𝒆 𝑹𝒄 + 𝑹𝒆 𝑹 

𝑎 ← 0, 𝑐 ← 0 0.6713 1 0.2460 1 2 1 

𝑏 ← 1, 𝑐 ← 0 0.6176 2 0.4352 3 5 2 

𝑐 ← 0, 𝑑 ← 0 0.5324 4 0.3849 2 6 3 

𝑐 ← 0, 𝑑 ← 3 0.5509 3 0.5204 4 7 4 

𝑐 ← 0, 𝑑 ← 2 0.5324 4 0.5204 4 8 5 

𝑎 ← 0, 𝑑 ← 3 0.4537 5 0.6176 5 10 6 

𝑏 ← 1, 𝑑 ← 3 0.4000 6 0.6713 6 12 7 

𝑏 ← 1, 𝑑 ← 2 0.3815 7 0.6713 6 13 8 

𝑏 ← 0, 𝑑 ← 0 0.2460 8 0.6713 6 14 9 
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For example, component c ← 0 appears in all of the three failed test cases, so 

u(c ← 0) = 1. Also, it appears a total of four tests three of which are failed tests, so 

v(c ← 0) = 3 4⁄ ; 5 out of 9 members of suspicious combinations set contain c ← 0, so 

w(c ← 0) = 5 9⁄ . The computations for all the seven components are as follows: 

ρ(c ← 0) =
1

3
× (1 +

3

4
+

5

9
) =  0.7685 

ρ(d ← 0) =
1

3
× (

1

3
+

1

3
+

2

9
) =  0.2963 

ρ(d ← 2) =
1

3
× (

1

3
+

1

3
+

2

9
) =  0.2963 

ρ(d ← 3) =
1

3
× (

1

3
+

1

3
+

3

9
) =  0.3333 

ρ(b ← 0) =
1

3
× (

1

3
+

1

7
+

1

9
) =  0.1958 

ρ(b ← 1) =
1

3
× (

2

3
+

2

5
+

3

9
) =  0.4667 

ρ(a ← 0) =
1

3
× (1 +

3

6
+

2

9
) =  0.5741 

Table 4-3 illustrates the suspiciousness values of all the components. The 

suspiciousness values for the components that do not appear in any suspicious 

combination are zero. 

According to formula (2),  ρc for a suspicious combination τ is the average 

suspiciousness of the components that τ contains. For example, in combination 

Table 4-3. Suspiciousness of components 

Parameter Value ρc Parameter Value ρc 

a 
0 0.5741 

b 
0 0.1958 

1 0 1 0.4667 

c 

0 0.7685 

d 

0 0.2963 

1 0 1 0 

2 0 
2 0.2963 

3 0.3333 
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(a ← 0, c ← 0), ρc is (0.5741 + 0.7685) 2 = 0.6713⁄ . After computing ρc for all suspicious 

combinations, we rank them based on the non-ascending order of  ρc. The values of ρc and 

Rc for each suspicious combination are shown in the second and third columns of 

Table 4-2Table 4-2. 

Next, we compute ρe for each suspicious combination using formula (3). For 

example, there are three test cases, test #1, test  #7, and test #10, that contain 

(a ← 0, c ← 0). Therefore, 

ρe(a ← 0, c ← 0) = min ((
ρ(b ← 0) + ρ(d ← 0)

2
) = 0.2460 , (

ρ(b ← 1) + ρ(d ← 2)

2
)

= 0.3815, (
ρ(b ← 1) + ρ(d ← 3)

2
) = 0.4000) = 0.2460 

Next we rank suspicious combinations by a non-descending order of ρe, as shown 

in column Re of Table 4-2.  

Finally, the two rankings in columns Rc and Re are combined to produce a final 

ranking of the suspicious components (column R). In this final ranking, inducing 

combination (a ← 0, c ← 0) is ranked on the top, and the other (a ← 0, d ← 3) is ranked 6th. 

Then, a new test is generated for the top ranked suspicious combination 

(a ← 0, c ← 0). We assign values to parameters in its environment, i.e., b and d, such that 

the suspiciousness of each value is minimum. For b, 0 is selected, as min(ρ(b ← 0) =

0.1958 , ρ(b ← 1) = 0.4667) = 0.1958. For d, 1 is selected as min(ρ(d ← 0) =

0.2963, ρ(d ← 1) = 0, ρ(d ← 2) = 0.2963, ρ(d ← 3) = 0.3333) = 0. So a new test (a ←

0, b ← 0, c ← 0, d ← 1) is generated. 

The newly generated test, (a ← 0, b ← 0, c ← 0, d ← 1), fails. For simplicity of 

presentation, assume that only one test is generated for this combination. (If more tests 

are generated, all of them would fail too in this example.) Therefore, suspicious 
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combination (a ← 0, c ← 0) is marked as inducing combination and returned by the identify 

algorithm. The main framework of the first phase stops at the end of the first iteration and 

reports (a ← 0, c ← 0) as the inducing combination. 

4.4.2 Phase 2: Faulty statement localization 

In the test generation step of the second phase, the core member f = (a ← 0, b ←

0, 𝑐 ← 0, d ← 1) is generated. It contains the inducing combination (a ← 0, c ← 0), and two 

components b ← 0 and d ← 1 which have the minimum suspiciousness value (among 

components of the same parameter) as shown in Table 4-3. The core member fails. 

As shown in Figure 4-7 the candidate set Ma←0 of component a ← 0 contains only 

one test, (a ← 1, b ← 0, c ← 0, d ← 1), since a ← 1 is the only component with minimum 

suspiciousness. The test passes and therefore is selected as a derived member, ma←0. 

The second candidate set Mc←0, shown in Figure 4-8 has two tests, where 

component c ← 0 from the core member is replaced with c ← 1 and c ← 2, since 

min(ρ(c ← 0) = 0.7685, ρ(c ← 1) = 0, ρ(c ← 2) = 0) = 0 and both components c ← 1 and 

c ← 2 have the minimum suspiciousness value, 0.   

To select a derived member mc←0 from candidate set Mc←0, both tests m𝑐←0
1  and 

m𝑐←0
2  are executed and their execution traces are recorded. A test is selected as a derived 

member if it passes and it has minimum spectrum difference with the core member. 

f (a ← 0, b ← 0, c ← 0, d ← 1)   Fail 

Ma←0 ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1)   Pass 

Figure 4-7. Candidate set of Ma←0 

 

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail 

Mc←0 
m𝑐←0

1 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass 

m𝑐←0
2 = (a ← 0, b ← 0, 𝐜 ← 𝟐, d ← 1) Pass 

Figure 4-8. Candidate set of Mc←0 
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Both tests m𝑐←0
1  and m𝑐←0

2  pass. The spectra of the core member, f, and two 

members of candidate set Mc←0 are shown in Table 4-4. The second column of Table 4-4 

shows the program statements. The third column shows the spectra of the core member f. 

The fourth column shows the program spectrum of m𝑐←0
1 . The fifth column contains 1 if a 

statement is executed by the core member but not by  m𝑐←0
1 . Otherwise it contains 0. The 

sixth column show the program spectrum of  m𝑐←0
2 .  The last column is assigned to 1 iff the 

corresponding statement is executed by the core member and not by mc←0
2 . The fifth and 

Table 4-4.  Program spectra of core and candidate set 𝐌𝐜←𝟎 

 

 Subject Program γ(s, f) γ(s, m𝑐←0
1 ) 

γ
( f

)
−

γ
(m

𝑐
←

0
1

) 

γ(s, m𝑐←0
2 ) 

γ
( f

)
−

γ
(m

𝑐
←

0
2

) 

1 public static int foo(int a,int b, int c,int d){ True True 0 True 0 

2  int r = 1;   True True 0 True 0 

3  b += a + c; True True 0 True 0 

4  switch (a){ True True 0 True 0 

5    case 0 : True True 0 True 0 

6      if (c<1 || d>2) True True 0 True 0 

7        //r += (b-d)/(a+2); - - 0 - 0 

8       //fault:+is missing; - - 0 - 0 

9       r = (b-d)/(a+2); True False 1 False 1 

10      else False True 0 True 0 

11       r = b/(c+2); False True 0 True 0 

12    break; True True 0 True 0 

13    case 1 : False False 0 False 0 

14      r = c*(a-d); False False 0 False 0 

15    break; False False 0 False 0 

16  } True True 0 True 0 

17  return r; True True 0 True 0 

18 } True True 0 True 0 

|γ(f) − γ(mc←0)| - - 1 - 1 
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seventh columns are used to compute the spectrum differences of the core and m𝑐←0
1  or 

mc←0
2 . The last row of Table 4-4 shows the spectrum difference of the core and each 

member of Mc←0, which are computed by the summation of fifth and last columns.  

Since two tests mc←0
1  and mc←0

2  both pass and have the same spectrum difference 

with the core member. Test mc←0
1  is selected randomly as the derived member mc←0. 

Figure 4-9 shows the output of the test generation step, the core member, f, in the first row 

and the derived members set M, which contains two tests. 

In the rank generation step, the spectrum of the core member is compared to that 

of each derived member m ∈ M and the statement suspiciousness with respect to m is 

computed. Table 4-5 shows the program spectra for the core member and two derived 

members in columns 3 to 5. The suspiciousness values for each statement with respect to 

derived tests ma←0 and mc←0 are shown in columns 6 and 7 (ρ(s, ma←0) and ρ(s, mc←0) ) of 

Table 4-5, respectively. The last two columns of Table 4-5 show the statement 

suspiciousness and ranks. The faulty statement in line 9 is in the first rank. 

Note that this example represents a best-case scenario of our approach. In the 

next section, we provide an experimental evaluation of our approach. 

 

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail 

M 
ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1) Pass 

mc←0 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass 

Figure 4-9. Core and derived members of the example program 
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4.5 EXPERIMENT 

We built a tool called BEN [12] that implements our approach. (BEN is a Chinese 

word that means “root cause”.) BEN is available for public download [3]. For our 

experiment, we used the command line version of BEN on a set of nine benchmark 

programs.  

Subject programs are selected from the SIR [31] benchmark, including seven small 

programs in the Siemens suite and two large real-life programs grep and gzip. 

Table 4-5. Program spectra and statements suspiciousness values 

 

 Subject Program 

γ
( s

,f
)  

γ
( s

,m
a

←
0

)  

γ
( s

,m
c

←
0

)  

ρ
( s

,m
a

←
0

)  

ρ
( s

,m
c

←
0

)  

ρ(s) 

R
a
n
k
 

1 public static int foo(int a,int b, int c,int d){ True True True 0.5 0.5 0.5 3 

2  int r = 1;   True True True 0.5 0.5 0.5 3 

3  b += a + c; True True True 0.5 0.5 0.5 3 

4  switch (a){ True True True 0.5 0.5 0.5 3 

5    case 0 : True False True 1 0.5 0.75 2 

6      if (c<1 || d>2) True False True 1 0.5 0.75 2 

7        //r += (b-d)/(a+2); - - - - - - - 

8       //fault:+is missing; - - - - - - - 

9       r = (b-d)/(a+2); True False False 1 1 1 1 

10      else False False True 0 0 0 4 

11       r = b/(c+2); False False True 0 0 0 4 

12    break; True False True 1 0.5 0.75 2 

13    case 1 : False True False 0 0 0 4 

14      r = c*(a-d); False True False 0 0 0 4 

15    break; False True False 0 0 0 4 

16  } True True True 0.5 0.5 0.5 3 

17  return r; True True True 0.5 0.5 0.5 3 

18 } True True True 0.5 0.5 0.5 3 
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Furthermore, we conducted an experimental comparison between our approach and two 

well-known spectrum based approaches, Tarantula [18] and Ochiai [23]. 

4.5.1 Experimental design  

4.5.1.1 Subject programs 

BEN is applied to the Siemens suite and the grep and gzip programs from SIR 

[31]. The Siemens suite has been used to evaluate several fault localization techniques 

[17][15][34]. The two programs, grep and gzip, are significantly larger programs than the 

Siemens programs and are included to evaluate how our approach works on larger 

programs. 

THE SIEMENS SUITE - The Siemens suite contains seven programs and each of 

these programs contains a number of faulty versions. The Siemens suite also provides an 

error-free version and a test set for each program. Table 4-6 represents properties of 

subject programs. The second column shows the number of lines of code for each program 

[31], including comments. The third column shows the size of executable code computed 

by Gcov 4.1.2 [9], and the last column indicates the number of faulty versions provided for 

each program. Note that the number lines of executable code is different from the number 

of lines code reported in [31], This is because the number of lines of executable code does 

not include commented lines, declaration lines, nor code in header files.  

Both of the two programs, printtokens and printtokens2, are used to tokenize the 

input file and determine the type of each token. A token could be one of the following types: 

identifier, special, keyword, number, comment, character constant or string constant. 

Tokens of type keyword include and, or, if, xor, and lambda. Tokens of type special include 

lparen, rparen, lsquare, rsquare, quote, bquote, comma and equalgreater. Comment 

begins with semicolon and ends when a new line character is seen. String constant is a 

string enclosed by two double quotations. Character is a token starting with #. 
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The replace program has three inputs, pattern, substitute and input text. The 

program finds every match of pattern in the input text and replaces it with substitute. The 

pattern is a restricted form of regular expression. The substitute is a string that allows three 

meta-characters to be used. These include “@t”, which matches a tab; @n, which matches 

the end of a line, and &, which represents the string that matches the pattern. For example, 

if the string that matches pattern is ab and substitute is a&c, all ab strings in the file are 

replaced with aabc. 

Two programs, schedule and schedule2, take the same input and produce the 

same output, but use different scheduling algorithms. The input includes: (1) three non-

negative integers representing the number of processes in three different priority queues, 

low, medium and high; and (2) a list of commands that must be done on queues. There are 

seven commands, new job, upgrade_prio, block, unblock, quantum_expire, finish and 

flush. The output of these two programs is a list of numbers indicating the order in which 

the processes exit (from the scheduling system).  

The tcas program is an aircraft collision avoidance system. It takes 12 numbers 

that represent different flight parameters of two aircrafts as input and generates as output 

a resolution advisory, which can be unresolved, upward and downward. 

Table 4-6. Characteristics of Siemens programs 

Programs LOC 
#Lines of 

Executable Code 
# of faulty 
versions 

printtokens 726 188 7 

printtokens2 570 201 10 

replace 564 242 32 

schedule 412 154 9 

schedule2 374 127 10 

tcas 173 65 41 

totinfo 565 123 23 
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The totinfo program takes as input a file containing one or more tables. The 

program uses the notions of chi-square and degree of freedom to calculate whether the 

distribution of the numbers in these tables is logarithm gamma distribution. The output is 

the total degree of freedom of rows and columns and chi-square. 

 
THE GREP PROGRAM - The grep program from SIR, has 10068 lines of code [31]. 

The grep program has two input parameters, patterns and files. It prints lines in each file 

that contain a match of any of the patterns. While the grep program can take multiple 

patterns and files, we only used a single pattern and file in this experiment. In addition, 

different options can be used to control the behavior of the grep program. For example, 

option “–w” causes the program to print only lines containing whole-word matches. 

The grep program can take four different types of patterns: (1) basic-regexp: a 

basic regular expression. (2) extended-regexp: an extended regular expression. (3) fixed-

strings: a list of fixed strings. (4) perl-regexp: a Perl regular expression. In this experiment, 

we focused on extended-regexp. 

There are five versions of grep in the benchmark, and each of them has a number 

of seeded faults. All versions were written in C, and have ten header files and one C file. 

Table 4-7 shows the size of executable code computed by Gcov 4.1.2 and number of faulty 

versions for each version.  

Table 4-7. Characteristics of grep versions 

Programs 
#Lines of 

Executable Code 
# of faulty 
versions 

Grep 
version 

grep1 3078 18 2.2 

grep2 3224 8 2.3 

grep3 3294 18 2.4 

grep4 3313 12 2.4.1 

grep5 3314 1 2.4.2 
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The last column of Table 4-7 indicates the release version of each program. Note 

that all the faults in a given version are different from the faults of the other versions, and 

reside in the code that has been modified from the previous version. For example, for 

grep2, all the faults residing on the code modified from grep 2.2 to grep 2.3. 

THE GZIP PROGRAM - The gzip program from SIR has 5680 lines of code [31], which 

includes all header files, comments and declarations. The gzip program is used for file 

compression and decompression. The gzip input includes 13 options and a list of file. For 

example “-S” option uses to define the suffix of the result file, where the default is “.gz”.    

There are five versions of gzip in the benchmark, and each of them has a number 

of seeded faults. All versions were written in C, and have 6 header files and one C file. 

Table 4-8 shows the number of lines of executable code computed by Gcov 4.1.2 and 

number of faulty versions for each (correct) version, in the second and third columns, 

respectively. The last column indicates the release version for each program. The base 

version is gzip 1.0.7. The faults for different gzip versions are different from each other 

except for one case where the first fault of gzip5 is the same as the first fault of gzip2. In 

addition, all the faults reside in the code that has been modified from the previous version, 

except the fault mention above. For example, for gzip2, all the faults reside in the code 

modified from gzip 1.1.2 to gzip 1.2.2. 

 

Table 4-8. Characteristics of gzip versions 

Programs 
#Lines of 

Executable Code 
# of faulty 
versions 

Gzip 
version 

gzip1 1705 16 1.1.2 

gzip2 2006 7 1.2.2 

gzip3 1866 10 1.2.3 

gzip4 1892 12 1.2.4 

gzip5 1993 14 1.3 
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4.5.1.2 Initial test set 

The input parameter model of each program is shown in Table 4-9. The detailed 

models are made available for review in [8]. Also, in [10], we explained how we modeled 

the input parameters of the Siemens programs to apply combinatorial testing.  

The model column of Table 4-9 shows the number of parameters and their domain 

size. We represent it by (d1
k1 × d2

k2 × … ), where di
ki indicates that there are ki number of 

parameters with domain size as di. Note that k1 + k2 + ⋯ = k, where k is the total number 

of parameters. For example, totinfo has six parameters, among which three parameters 

have a domain size of 3, two parameters have a domain size of 5, and one parameter has 

a domain size of 6. 

The constraint column shows the number of constraints in each model. Constraints 

exclude invalid combinations from the resulting test set. Consider the input model of the 

printtokens program, which contains different positions for different tokens. For example, 

keyword and identifier are two types of tokens that could appear at the beginning, middle 

or end of the input stream. A constraint is needed to prevent having more than one type of 

token at the same position. 

Table 4-9. Programs model 

Programs Model #Constraints 

S
ie

m
e
n

s
 S

u
it
e
  
 

printtokens (21 × 31 × 44 × 51 × 101 × 132) 8 

replace (24 × 416) 36 

schedule (21 × 38 × 82) 0 

tcas (27 × 32 × 41 × 102) 0 

totinfo (33 × 52 × 61) 0 

grep (27 × 41 × 51 × 63 × 81 × 91 × 131) 1 

gzip (211 × 42) 8 
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Note that programs printtokens and printtokens2 share the same model, and so 

do programs schedule and schedule2. The model of tcas is the same as [19]. Also note 

that the models are built based on the specification of the programs, i.e., independent from 

their implementations. The SIR repository does not provide any specification for the grep 

and gzip programs. So we used the manual document from [15] and [16] as their 

specification. 

We assume that boundary testing is done before combinatorial testing is applied. 

Combinatorial testing focuses on failures caused by interactions between parameters, 

while boundary testing focuses on failure caused by boundary values of individual 

parameters. We used the ACTS tool [2] to generate t-way test sets. For each program, we 

first test it with a 2-way test set. If a program is not killed by a 2-way test set, we increase 

the test strength and then test the program with a 3-way test set. This process is repeated 

until we reach strength 4. 

Table 4-10 shows the number of versions killed by our test sets of different 

strengths for Siemens suite. Note that the column of t-way test set indicates all versions 

that are killed by t-way test set and not by (t − 1)-way test set. For example, 17, 12 and 7 

versions of tcas are killed by the 2-way, 3-way and 4-way test sets, respectively. The 12 

versions that are killed by 3-way test set are different from 17 and 7 versions that are killed 

by 2-way and 4-way test set, respectively. Therefore, in total, 36 versions of tcas are killed. 

The same information for the grep and gzip programs is shown in Table 4-11 and 

Table 4-12. 

We also executed all the tests in the test pool that come with each program in SIR. 

(We will refer to the test pools in SIR as the SIR test pools.) These test pools are created 

initially in a black box manner based on the tester’s understanding of the program’s 

functionality and knowledge of special and boundary values. Then, white-box tests are 
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created and added into the pools to ensure that each executable statement, branch, and 

definition-use pair in the error-free version was exercised [31]. All the faulty versions of the 

Siemens programs are killed by the test pools, except version 9 of schedule2. 

Table 4-10. Test results for Siemens suite 

Programs 
#faulty 

versions 

#Killed versions 

2-way 3-way 4-way All 

Printtokens 7 3 0 0 3 

Printtokens2 10 9 0 0 9 

replace 32 32 0 0 32 

schedule 9 7 0 0 7 

schedule2 10 3 0 0 3 

tcas 41 17 12 7 36 

totinfo 23 5 7 0 12 

 

Table 4-11. Test results for grep 

Programs 
#faulty 

versions 

#Killed versions #Killed versions by 
SIR test pool 

2-way 3-way 4-way All 

grep1 18 4 0 0 4 4 

grep2 8 0 0 0 0 4 

grep3 18 4 0 0 4 7 

grep4 12 2 0 0 2 2 

grep5 1 0 0 0 0 0 

 

Table 4-12. Test results for gzip 

Programs 
#faulty 

versions 

#Killed versions #Killed versions by 
SIR test pool 2-way 3-way 4-way All 

gzip1 16 6 0 0 6 7 

gzip2 7 3 0 0 3 3 

gzip3 10 0 0 0 0 0 

gzip4 12 1 0 0 1 3 

gzip5 14 3 0 0 3 4 
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Combinatorial testing does not kill it either. The results of executing the test pools on the 

grep and gzip programs are shown in the last column of Table 4-11 and Table 4-12. 

For the grep1 program, both test sets, our combinatorial test set and the SIR test 

pool, killed four versions. Three out of these four versions are the same, and one is 

different. The combinatorial test set killed version 8 while the test pool killed version 7. The 

combinatorial test set did not kill version 7 because the particular value that triggers the 

fault was not modeled in our model. 

Moreover, version 2 of grep4 was killed by the combinatorial test set but not by the 

test pool. However, the test pool killed version 10 which is due to a boundary value that is 

not handled correctly. 

Note that 4 versions out of 18 versions of grep1 were killed by 2-way test set. 

However, in one of the killed versions, i.e., version 11, all the tests failed. Based on 

Assumption 3, BEN was not applied to this version. 

4.5.1.3 Multiple-fault versions 

To evaluate the effectiveness of our approach when the program under test has 

more than one fault, we create several multiple-fault versions for each program. To 

increase the diversity, different multiple-fault versions have different numbers of faults. 

Table 4-13 shows the number of faulty versions with the number of faults created for each 

program. For example, we created three versions with 2 faults and one version with 3 faults 

for printtokens.   

To create multiple-fault versions, we randomly pick faults from faults that are 

detected by our combinatorial test sets. Consider the schedule program. There are nine 

faulty versions and each version has one fault. The combinatorial test set kills seven of 

them (Table 4-10), versions 1 to 7, and the other 2 versions, versions 9 and 10, were not 
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killed. To create multiple-fault versions with 2 faults, two faulty version from 1 to 7 are 

selected randomly. 

For each program, we typically generate one multiple-fault version for a certain 

number of faults. The maximum number of multiple-fault versions for each program 

depends on the number of killed versions. When the total number of killed versions is large, 

e.g., replace and tcas, we create multiple-fault versions with a maximum number of 10 

faults. When the total number of killed versions is small, e.g., printtokens and schedule2, 

more than one multiple-fault version is created for the same number of faults. Since the 

two large programs, grep and gzip, have a small number of killed versions, three multiple-

fault versions created for each number of faults, if possible. 

Since some faults may conflict with each other, combining them in one version is 

not possible. For example, the schedule2 program has three killed versions, version 2, 3, 

and 7. Two faulty versions, version 3 and 7, conflict with each other. In version 7, the 

Table 4-13. Multiple-fault versions 

Programs 

# multiple-fault versions 

2 
faults 

3 
faults 

4 
faults 

5 
faults 

6 
faults 

7 
faults 

8 
faults 

9 
faults 

10 
faults 

ALL 

Siemens 
Suite 

printtokens 3 1 0 0 0 0 0 0 0 4 

printtokens2 1 1 1 1 1 1 1 0 0 7 

replace 1 1 1 1 1 1 1 1 1 9 

schedule 1 1 1 1 1 0 0 0 0 5 

schedule2 2 0 0 0 0 0 0 0 0 2 

tcas 1 1 1 1 1 1 1 1 1 9 

totinfo 1 1 1 1 1 1 1 1 1 9 

grep 

grep1 3 1 0 0 0 0 0 0 0 4 

grep3 3 3 1 0 0 0 0 0 0 7 

grep4 1 0 0 0 0 0 0 0 0 1 

gzip 

gzip1 3 3 3 3 1 0 0 0 0 13 

gzip2 3 1 0 0 0 0 0 0 0 4 

gzip5 3 1 0 0 0 0 0 0 0 4 
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condition of an if statement is changed, while version 3, the whole block that contains the 

same if statement is missing. Therefore, having these two versions in one multiple-fault 

version is not possible. For the schedule2 program, two multiple-fault versions with 2 faults 

are created. One of them contains the faults of versions 2 and 3, and the other contains 

the faults of versions 2 and 7. 

Table 4-14 shows the result of combinatorial testing on multiple-fault versions. All 

of them are killed by a 2-way test set except one version of program printtokens2 and one 

version of program tcas that are killed by a 3-way test set. In addition, all the tests in the 2-

way test set failed for the version with 8 faults of the replace program, and therefore this 

version is ignored. 

Table 4-14. Test results for multiple-fault versions 

Programs 
#faulty 

versions 

#Killed versions 

2-way 3-way All 

Siemens 
Suite 

printtokens 4 4 0 4 

printtokens2 7 6 1 7 

replace 9 9 0 9 

schedule 5 5 0 5 

schedule2 2 2 0 2 

tcas 9 8 1 9 

totinfo 9 9 0 9 

grep 

grep1 4 4 0 4 

grep3 7 7 0 7 

grep4 1 1 0 1 

gzip 

gzip1 13 13 0 13 

gzip2 4 4 0 4 

gzip5 4 4 0 4 
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4.5.1.4 Trace collection 

We used Gcov 4.1.2 [9] to collect execution trace. Gcov reports the number of 

times a statement is executed by a given test. A statement is included in the execution 

trace of a given test if and only if it is executed by the test for one or more times.  

Gcov distinguishes between statements that are executable but are not executed 

and statements that are not executable. We used this information to compute the 

percentage of executable code that must be inspected to find the faulty statement. If a 

program crashes, Gcov does not report any coverage. To deal with this problem, we add 

a statement to call function gcov_flush before every statement. Note that this is only done 

after a program crashes.  

4.5.1.5 BEN configuration 

For our experiments, we configure BEN to generate five tests for each of the two 

top ranked suspicious combinations at each iteration. In addition, because of resource 

limitation, we limit the size of inducing combination to 6. If BEN does not find an inducing 

combination of size 5, BEN reports the top 6-way suspicious combination as an inducing.  

4.5.1.6 Metrics  

Recall that the output of BEN is a ranking of statements in terms of their likelihood 

to be faulty. In order to find the faulty statement, we inspect statements in the first rank, 

and then statements in the second rank, and continue to do so until we find the actual faulty 

statement. Statements in the same rank are inspected in the order that they appear in the 

program. We record the number of statements that must be inspected to find the actual 

faulty statement in each program to measure the effectiveness of our approach.  

Moreover, the effectiveness of the first phase, i.e., identifying inducing 

combination, is measured by the inducing probability (Definition 8) of the identified 
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combination. The higher inducing probability the identified inducing combination has, the 

more precise the approach is.  

The efficiency of our approach is measured by two factors: the number of tests 

that are executed and the number of tests that are instrumented for trace collection. We 

show the number of tests executed in different stages of our approach, i.e., number of tests 

of the initial combinatorial test set, number of tests needed to identify inducing 

combinations (Phase 1), and number of tests needed to produce the ranking of faulty 

statements (Phase 2). 

We also compare our approach to two approaches Tarantula and Ochiai in terms 

of effectiveness, i.e., the number of statements that must be inspected to find the actual 

faulty statement, and efficiency, i.e., the number of tests executed and the number of tests 

whose execution traces must be collected. 

4.5.2 Results and discussion 

In this section, we discuss the results of applying BEN to the subject programs. 

We first report the results of BEN on the single-fault programs, then on the multiple-fault 

programs. Next, we compare the results of BEN to two techniques, Tarantula and Ochiai. 

Finally, the threats to validity are discussed.  

4.5.2.1 Results on single-fault versions 

This section is divided into two subsections. The first subsection reports the result 

of the first phase, identifying inducing combination. The second subsection discusses the 

result of the second phase, faulty statement localization.  

4.5.2.1.1 Phase 1: Identifying inducing combination 

Table 4-15 shows the inducing probabilities of inducing combinations identified in 

the first phase. To compute the inducing probability for combination c, we generated and 
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executed all the tests containing c. Then, inducing probability is computed using the 

formula explained in Section 4.2.1. 

Depending on the input parameter model of the program, number of parameters, 

their domain size and constraints, generating all the tests containing a combination can be 

a very expensive task. This is the case for the inducing combinations identified for the two 

programs, replace and grep. Thus, inducing probabilities are not computed for these two 

programs. 

In Table 4-15 the “test strength” column shows the strength of the initial test set, 

and the next column, i.e., “#of killed versions”, indicates the number of versions killed using 

the corresponding test set. The last two columns show the average size of the identified 

inducing combinations and the average of their inducing probabilities. 

As shown in Table 4-15, in most cases, the inducing probability is one, which 

means that the identified inducing combination is truly inducing. For printtokens2 and 

Table 4-15. Inducing probabilities for single-fault versions 

Programs 
Test 

strength (t) 
# of killed 
versions 

Avg size of 
inducing 

combinations 

Avg inducing  
probability of inducing 

combinations 

Siemens 
Suite 

printtokens 2 3 3 1 

printtokens2 2 9 2.56 0.93 

schedule 2 7 2.86 0.86 

schedule2 2 3 2 1 

tcas 

2 17 5.82 0.09 

3 12 5.92 0.11 

4 7 6 0.06 

totinfo 
2 5 4.8 1 

3 7 4.86 1 

gzip 

gzip1 2 6 2.33 1 

gzip2 2 3 2.33 1 

gzip4 2 1 2 1 

gzip5 2 3 2 1 
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schedule, the inducing probability is close to one. However, the inducing probability is very 

low in the tcas program.  

Recall that for our experiments, we limit the size of inducing combination to six. 

BEN reports the top ranked suspicious combination of size six, if the inducing combination 

of a smaller size was not identified. For tcas, the average size of inducing combination is 

or close to 6, 5.82 and 5.92 (Table 4-15). This shows that BEN does not find the truly 

inducing combination, but it stops as it reaches the size of 6. 

4.5.2.1.2 Phase 2: Faulty statement localization  

Table 4-16 shows the results of our approach on each program. We will not explain 

the column headers one by one, as they are self-explanatory. Note that in the last eight 

columns, average values are used, since the data could be different in different versions. 

Column “Avg size of inducing combination” indicates the average size of inducing 

combinations for versions that are killed by the t-way test set. For example, the sizes of the 

inducing combinations for three versions, 3, 5 and 6, of printtokens that are killed by the 2-

way test set, are 2, 4 and 3, respectively. Therefore, the average size of inducing 

combinations is 3. As explained in Section 4.3.1, the size of an inducing combination could 

be greater than the strength of the initial test set. 

The next column, “Avg # of tests for identifying inducing combination”, shows the 

average number of tests generated in the first phase, i.e., inducing combination 

identification. For gzip4, only one version is killed for which no new test is generated in the 

first phase. This is because BEN could not find new test containing the top suspicious 

combination in the first iteration. 

If a combination c identified in the first phase is not inducing, there is a probability 

that the core member does not fail. The higher the inducing probability, the more likely that 

the core member fails. If the inducing probability is 1, the core member will definitely fail. 
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However, our approach can still apply if the core member does not fail. We select as the 

core member a failed test that contains the inducing combination from the initial test set. 

Column “Avg # of times the core member does not fail” shows the average number of such 

cases. For all the seven versions of tcas, when the initial test set is 4-way, the core member 

is selected from the initial test set. This is consistent with the fact that the inducing 

probabilities of the identified inducing combinations were very small (Table 4-15). 

Table 4-16. Results for single-fault versions 
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printtokens 2 170 3 3 20 0 10 0 11 25.66 13.65 

printtokens2 2 170 9 2.56 16.67 0 10.89 0 11.89 13.55 6.74 

replace 2 193 32 3.66 19.37 0.41 4.16 0 5.16 30.91 12.77 

schedule 2 64 7 2.86 17.14 0.14 6.43 0 7.43 18.71 12.15 

schedule2 2 64 3 2 10 0 4.33 0 5.33 59.67 46.98 

tcas 

2 100 17 5.82 32.23 0.94 21.35 0 22.35 14 21.54 

3 405 12 5.91 25 0.92 20.83 0 21.83 14.67 22.57 

4 1434 7 6 20 1 18.57 0 19.57 11.14 17.14 

totinfo 
2 30 5 4.8 40 0 11.5 0 12.5 20.8 16.91 

3 156 7 4.86 27.43 0 13.5 0 14.5 11.71 9.52 

g
re

p
 

grep1 2 121 3 3.33 20 0 9 0 10 
327.3

3 
10.63 

grep3 2 121 4 4 25 0.5 6 0 7 21.25 0.64 

grep4 2 121 2 2 10 0 5 0 6 172.5 5.21 

g
z
ip

 

gzip1 2 17 6 2.33 10.33 0 1.33 0.16 2.5 
170.6

7 
9.46 

gzip2 2 17 3 2.33 13.33 0 1.33 0 2.33 92.67 4.62 

gzip4 2 17 1 2 0 0 3 1 5 4 0.21 

gzip5 2 17 3 2 6.67 0 0.67 0.33 2 
245.6

7 
12.33 
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For each version, we compute the total number of tests in all the derived member 

sets, i.e., all the tests executed for generating the derived members. The average of this 

number for all versions is shown in the ninth column, “Avg # of tests executed for generating 

derived members”. The number includes all the tests, although later some of them are 

discarded since they do not pass. The maximum value of this column, 21.35, is for the tcas 

program and 2-way test set. The minimum value, 0, happens for gzip4. Note that the 

number of tests executed for generating derived members depends on the size of inducing 

combination, the domain size of inducing components, and also system constraints. 

The column, “Avg # of times derived members are selected from initial test set”, 

shows the number of cases that all the derived member candidates failed, and a derived 

member is selected from the initial test set. 

The column, “Avg # of tests instrumented for selecting derived members”, shows 

the average number of derived members whose traces are collected. Recall from 

Section 4.3.2, the tests of a candidate set are instrumented for trace collection. Note that 

BEN also needs the execution trace of the core member. Therefore the total number of 

tests instrumented by the coverage tool is the summation of the following three numbers: 

1) number of tests executed for generating derived members (column nine of Table 4-16); 

2) number of derived members selected from initial test set (column ten of Table 4-16); and 

3) one which represents the core member. 

The last two columns show the average number and percentage of statements 

that must be inspected to locate a fault. To compute this number, we include statements 

that are ranked higher and statements that are ranked at the same rank but appear before 

the faulty statement, in the order as produced by our approach. We did not perform any 

dependency analysis, which could reduce the number of statements that must be 

inspected.  
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We point out that, the number of executable statements in tcas is 65, less than 

100. In this program, when only one statement is needed to inspect, it is 1.54% of 

executable code. Therefore, for the tcas program the number of statements gives better 

insight than the percentage of code. 

As shown in Table 4-16 our approach works better for the grep and gzip programs 

than the Siemens programs, i.e. small programs. The best case happens with gzip4 where 

only 0.21% of code must be inspected to locate the fault. The worst case happens with 

gzip5 where 12.33% of the code must be inspected. For the Siemens programs, the best 

and worst cases happen with printtokens and schedule2, where 6.74% and 46.98% of the 

code must be inspected, respectively. 

4.5.2.2 Results on multiple-fault versions 

In this section, we discuss the result of our experiments on the subject programs 

that have multiple faults.   

4.5.2.2.1 Phase 1: Identifying inducing combination 

Table 4-17 shows the inducing probabilities for the inducing combinations 

identified in the first phase. To compute inducing probability, the same procedure used in 

Section 4.5.2.1 for single fault versions is performed. Again, two programs, grep and 

replace, are ignored as it is very expensive to compute inducing probabilities for these 

programs. 

As shown in Table 4-17, the inducing probabilities for all programs are one or close 

to one, except for the tcas program. In the five faulty versions (four versions killed by 2-

way test set and one killed by 3-way) of the tcas program, BEN does not find any inducing 

combination of size of five or less. Therefore, the most suspicious combination whose size 

is six is reported as an inducing combination. 
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4.5.2.2.2 Phase 2: Faulty statement localization  

The results are summarized in Table 4-18, where the columns are the same as in 

Table 4-16. The last two columns, “Avg #of statements inspected to find actual faults” and 

“Avg percentage of statement inspected to locate actual faults”, show respectively the 

number of statements and percentage of statements that should be inspected to locate the 

first faulty statement. 

Similar to the single-fault versions, BEN works better for grep and gzip, than for 

the Siemens programs. For grep and gzip, the worst case happens in gzip1, where 8.00% 

of executable code must be inspected to locate the fault. However, the worst case for the 

Siemens programs happens with schedule2, where 25.83% of the executable code must 

be inspected.  

The results in Table 4-16 and Table 4-18, suggest that BEN works better when 

there are multiple faults. For all the programs, BEN is more effective for multiple-fault 

versions than single-fault versions, except grep3, in terms of percentage of code that needs 

Table 4-17. Inducing probabilities for multiple-fault versions 

Programs 
Test 

strength (t) 
# of killed 
versions 

Avg size of 
inducing 

combination 

Avg of inducing  
probability of inducing 

combination 

Siemens 
Suite 

printtokens 2 4 2.75 0.95 

printtokens2 2 7 2.14 1 

schedule 2 5 2 0.86 

schedule2 2 2 2 1 

tcas 
2 8 5.12 0.33 

3 1 6 0.02 

tot_info 2 9 4.67 1 

gzip 

gzip1 2 13 2.07 1 

gzip2 2 4 2.25 1 

gzip5 2 4 2 0.84 
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to be inspected. Moreover, BEN is more efficient for multiple-fault versions than single-fault 

versions, in terms of the total number of tests generated in phases 1 and 2 and the number 

of tests instrumented by the coverage tool for multiple-fault versions.  This can be explained 

as follows. 

The more faults a program has, the more likely that a test fails. When there are 

more failed tests in the initial test set, it is likely to have more inducing combinations or the 

size of inducing combination is smaller. Inducing combination of smaller size is less 

expensive to identify compare with those of larger size. This is because the smaller the 

inducing combination is, the fewer times the identify algorithm is called to identify the 

Table 4-18. Results for multiple-fault versions 
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printtokens 2 170 4 2.75 17.5 0 5 0 6 1.25 0.66 

printtokens2 2 170 7 2.14 11.43 0 3.14 0 4.14 1.86 0.92 

replace 2 193 8 2.5 13 0.12 1.87 0 2.87 12.25 5.06 

schedule 2 64 5 2 10 0.2 2.60 0 3.60 8.2 5.32 

schedule2 2 64 2 2 10 0 4 0 5 45.5 25.83 

tcas 
2 100 8 5.12 31.75 0.50 14.37 0 15.37 3.62 5.57 

3 405 1 6 22 1 23 0 24 11 16.92 

tot_info 2 30 9 4.67 36.67 0 9.78 0 10.78 8.67 7.05 

g
re

p
 

grep1 2 121 4 2.5 15 15 5.5 0 6.5 107.5 3.49 

grep3 2 121 7 4.29 27.14 27.14 5.43 0 6.43 32.86 1 

grep4 2 121 1 2 10 10 3 0 4 23 0.69 

g
z
ip

 

gzip1 2 17 13 2.07 10 10 0.61 0.38 2 136.46 8.00 

gzip2 2 17 4 2.25 10 10 1.5 0 2.5 51.25 2.55 

gzip5 2 17 4 2 2.5 2.5 0.75 0.75 2.5 100.25 5.03 
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combination. Moreover, the number of candidate sets equals the size of inducing 

combination. Thus, the smaller the inducing combination is, the fewer derived candidate 

sets and therefore the fewer tests are generated in the second phase. 

4.5.2.3 Comparison with Tarantula and Ochiai  

We compared BEN to two spectrum-based approaches, Tarantula and Ochiai, in 

terms of effectiveness and efficiency. Experiments suggest that Tarantula and Ochiai 

perform best among other spectrum based approaches [1][17][23]. Recall that 

effectiveness is measured by the percentage of executable code that must be examined 

to guide the programmer to the faulty statement, and efficiency is measured by the number 

of tests executed and the number of tests instrumented to collect the trace. 

Since Tarantula and Ochiai do not deal with test generation, we applied them using 

the initial combinatorial test set. 

In Table 4-19 and Table 4-20, we compare the size of the test sets used in 

Tarantula, Ochiai and BEN for each program. Table 4-19 and Table 4-20 show the 

information for single-fault versions and multiple-fault versions, respectively. We used 

average to aggregate the results of all the killed versions for each program. The third 

column shows the average size of the combinatorial test sets used in the testing stage for 

each program. The fourth column shows the average number of tests instrumented for 

coverage collection, for Tarantula and Ochiai. Since every test needs to be traced for 

Tarantula and Ochiai, columns three and four are equal.  

The same information for BEN is shown in the last column. As shown in Table 4-19 

and Table 4-20, BEN needs to instrument only a very small number of tests in comparison 

with the other approaches. However, BEN generates and executes a number of tests (in 

addition to the initial test set) to identify the inducing combination. This cost is shown in the 

fifth column of Table 4-19 and Table 4-20, and it equals to the seventh column of Table 4-16  
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Table 4-19. Efficiency comparison results for single-fault versions 

Programs 

Avg # of 
tests 

executed in 
the testing 

stage 

Tarantula and Ochiai BEN 

Avg # of tests 
instrumented for 

coverage collection 

Avg # of tests 
generated and 

executed in fault 
localization stage 

Avg #tests 
instrumented 
for coverage 

collection 

S
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m
e
n

s
 S

u
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e

 

print_tokens 170 170 20 11 

print_tokens2 170 170 16.67 11.89 

replace 193 193 19.37 5.16 

schedule 64 64 17.14 7.43 

schedule2 64 64 10 5.33 

tcas 461.05 461.05 27.44 21.64 

tot_info 103.5 103.5 32.67 13.67 

g
re

p
 grep1 121 121 20 10 

grep3 121 121 25 7 

grep4 121 121 10 6 

g
z
ip

 gzip1 17 17 10.33 2.5 

gzip2 17 17 13.33 2.33 

gzip4 17 17 2 5 

gzip5 17 17 2 2 

Table 4-20. Efficiency comparison results for multiple-fault versions 

Programs 

Avg # of 
tests 

executed in 
the testing 

stage 

Tarantula and Ochiai BEN 

Avg # of tests 
instrumented for 

coverage collection 

Avg # of tests 
generated and 

executed in fault 
localization stage 

Avg #tests 
instrumented 
for coverage 

collection 

S
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m
e
n

s
 S
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e
 

print_tokens 170 170 17.5 6 

print_tokens2 170 170 11.43 4.14 

replace 193 193 13 2.87 

schedule 64 64 10 3.60 

schedule2 64 64 10 5 

tcas 133.89 133.89 30.67 16.33 

tot_info 30 30 36.67 10.78 

g
re

p
 grep1 121 121 15 6.5 

grep3 121 121 27.14 6.43 

grep4 121 121 10 4 

g
z
ip

 gzip1 17 17 10 2 

gzip2 17 17 10 2.5 

gzip5 17 17 2.5 2.5 
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and Table 4-18. So the last two columns show the cost of applying BEN and the fourth 

column shows the cost of applying Tarantula and Ochiai.  

In [17][27], a score is used to compare different fault localization methods. The 

score is defined based on the percentage of code that must be examined to find the faulty 

statement. The percentage is based on executable code, i.e., non-executable code is 

excluded. Table 4-21 and Table 4-22 show the percentage of all the program versions that 

achieve each score for single fault and multiple-fault versions, respectively. The results of 

BEN, Tarantula and Ochiai for the Siemens programs are aggregated and shown in the 

“Siemens Suite” rows, and the results of these three approaches for the grep and gzip 

programs are aggregated in their corresponding rows. 

For single fault versions (Table 4-21), on the first score, i.e., 99-100%, which 

means only 1% or less than 1% of code must be inspected to find the first faulty statement, 

BEN outperforms Tarantula for the Siemens programs and the grep program, while both 

have the same results for the gzip program. 

BEN achieves a higher score than Ochiai for the Siemens programs and the same 

score for the grep program. However, Ochiai outperforms BEN for the gzip program, in 

terms of the first score of single-fault versions. We analyzed all the versions of the gzip 

program as an effort to explain this phenomenon. The gzip program has a very complex 

input parameter model with eight constraints. As a result, the derived member candidates 

which are the nearest neighbor of the core member, i.e., have minimum differences from 

the core member, are not valid in a number of cases, i.e., they do not satisfy all the 

constraints. In these cases, a passed test is selected from the initial test set as a derived 

member, as shown in coulmn 10 of Table 4-16. Therefore, BEN could not benefit from the 

notion of nearest neighbor. In these cases, BEN uses the core member and  a single 

derived member which is not the nearest neighbor to rank the statements, while Ochiai and 
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Tarantula uses all tests of the initial test set. Thus, BEN is less effective than Ochiai and 

Tarantula for the gzip program. 

For multiple-fault versions of all the programs (Table 4-22), the first score with BEN 

is higher than Tarantula and Ochiai. Moreover, the difference between them is greater for 

Table 4-21. Comparison results for single-fault versions  

Programs Approach 

Score 
9
9
-1

0
0
%

 

9
0
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9
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2
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-3

0
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1
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Siemens 
Suite 

BEN 23.53 30.39 22.55 4.90 3.92 9.80 1.96 1.96 0.98 0 

Ochiai 20.59 34.31 14.71 11.76 4.90 5.88 5.88 1.96 0 0 

Tarantula 18.63 33.33 16.67 11.76 3.92 3.92 8.82 0.98 1.96 0 

grep  

BEN 66.67 11.11 22.22 0 0 0 0 0 0 0 

Ochiai 66.67 11.11 22.22 0 0 0 0 0 0 0 

Tarantula 55.56 11.11 22.22 11.11 0 0 0 0 0 0 

gzip 

BEN 38.46 38.46 0 23.08 0 0 0 0 0 0 

Ochiai 46.15 38.46 7.69 7.69 0 0 0 0 0 0 

Tarantula 38.46 38.46 0 15.38 0 7.69 0 0 0 0 

 

Table 4-22. Comparison results for multiple-fault versions 

Programs Approach 

Score 
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0
%

 

1
0
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0
%

 

Siemens 
Suite 

BEN 38.64 40.91 18.18 0 0 0 0 0 2.27 0 

Ochiai 31.82 52.27 13.64 0 0 0 0 2.27 0 0 

Tarantula 31.82 61.36 4.55 0 0 0 0 0 2.27 0 

grep 

BEN 91.67 0 8.33 0 0 0 0 0 0 0 

Ochiai 75.00 16.67 8.33 0 0 0 0 0 0 0 

Tarantula 58.33 33.33 8.33 0 0 0 0 0 0 0 

gzip 

BEN 23.81 57.14 4.76 14.29 0 0 0 0 0 0 

Ochiai 14.29 71.43 0 9.52 4.76 0 0 0 0 0 

Tarantula 19.05 47.62 19.05 0 4.76 9.52 0 0 0 0 
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the multiple-fault version compared to the single-fault versions. The reason is that BEN first 

identifies one inducing combination and it is likely that each inducing combination 

corresponds to one faulty statement. In the second phase, BEN generates a group of tests 

with one failed test, i.e., the core member, which likely includes one inducing combination 

and executes only one faulty statement. Therefore, even when there is more than one fault 

in the program, BEN focuses on one of them. However, when Tarantula and Ochiai are 

applied on multiple-fault programs, they use the initial test set that likely includes several 

failed tests corresponding to different faulty statements. Moreover, Tarantula and Ochiai 

do not perform any nearest neighbor analysis. Thus, it is likely that very different execution 

traces are compared to each other, which reduces their effectiveness of locating the faulty 

statement. 

Table 4-23 and Table 4-24 also show the comparison between BEN and Tarantula 

and Ochiai for single-fault and multiple-fault versions, respectively.  There are two groups 

of columns that show the comparison between BEN and Tarantula and the comparison 

between BEN and Ochiai, respectively. 

In each group, the first two columns show cases that BEN outperforms the other 

approach, Tarantula or Ochiai (positive numbers). The first column shows the number of 

killed versions that BEN outperforms the other approach, and the next one shows the 

average percentage of improvement. For example in the 19 out of 36 killed single-fault 

versions of the tcas program, BEN inspects 7.94% (of executable code) less than 

Tarantula. 

The third column of each group shows the number of killed versions that BEN and 

the other approach, Tarantula or Ochiai, produce the same results. In addition, the last two 

columns of each group show the number of versions that the other approach outperforms 

BEN and the average percentage of the differences (negative numbers). For example in 5 
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out of 36 killed single-fault versions of the tcas program, BEN inspects about 3.38% (of 

executable code) more than Tarantula. 

Three rows, Siemens suite, grep and gzip, are added to represent the total results 

of all the Siemens programs, all grep and all gzip versions, respectively. 

 

Table 4-23. Differences between BEN, Tarantula and Ochiai for single-fault versions 
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printtokens 3 +1 +8.51 1 -1 -0.53 +1 +4.79 1 -1 -0.53 

printtokens2 9 +3 +5.97 2 -4 -3.98 +1 +9.45 4 -4 -7.21 

replace 32 +14 +8.56 4 -14 -9.80 +14 +8.21 4 -14 -11.16 

schedule 7 +2 +1.30 1 -4 -13.47 +2 +1.30 1 -4 -13.47 

schedule2 3 +2 +5.91 1 0 0 0 0 1 -2 -3.54 

tcas 36 +19 +7.94 12 -5 -3.38 +19 +7.61 12 -5 -3.38 

totinfo 12 +4 +27.85 6 -2 -13.82 +3 +4.07 6 -3 -10.03 

Siemens Suite 102 45 9.40 27 -30 -8.40 40 7.21 29 -33 -8.90 

g
re

p
 grep1 3 +2 +2.84 1 0 0 +1 +1.56 1 -1 -1.92 

grep3 4 +1 +6.80 1 -2 -0.09 +1 +0.24 1 -2 -0.09 

grep4 2 +1 +3.08 0 -1 -0.12 0 0 0 -2 -0.98 

grep 9 +4 +3.89 2 -3 -0.10 +2 0.90 2 -5 -0.81 

g
z
ip

 

gzip1 6 +4 +5.41 0 -2 -2.52 +2 +0.26 0 -4 -7.71 

gzip2 3 +3 +7.98 0 0 0 +1 +12.86 0 -2 -0.80 

gzip4 1 0 0 1 0 0 0 0 1 0 0 

gzip5 3 +2 +0.40 0 -1 -24.53 +1 0.05 0 -2 -13.07 

gzip 13 +9 +5.15 1 -3 -9.86 +4 3.36 1 -8 -7.32 
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For single-fault versions (Table 4-23), BEN outperforms Tarantula in all the three 

cases, Siemens Suite, grep and gzip, which is consistent with Table 4-21. According to 

Table 4-23, BEN outperforms Ochiai for the Siemens programs, while Ochiai works better 

than BEN for the gzip and grep programs, for single-fault versions. The difference between 

BEN and Ochiai is very small (less than one percent), and thus it is not reflected in 

Table 4-21. As explained, Ochiai outperforms BEN for the gzip programs, because BEN 

could not benefit from the notion of nearest neighbor in this program.    

Table 4-24. Differences between BEN, Tarantula and Ochiai for multiple-fault versions 
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printtokens 4 0 0 3 -1 -0.53 0 0 4 0 0 

printtokens2 7 +6 +3.73 1 0 0 +3 +1.33 4 -2 -0.50 

replace 8 0 0 1 -7 -4.25 +2 +3.10 1 -5 -4.96 

schedule 5 +1 +2.60 1 -3 -5.41 +4 +2.27 0 -1 -9.74 

schedule2 2 +1 +3.94 1 0 0 0 0 1 -1 -0.79 

tcas 9 +1 +4.62 5 -3 -4.62 +2 +2.31 4 -3 -4.10 

totinfo 9 +2 +2.85 3 -4 -11.18 +4 +10.30 3 -3 -1.36 

Siemens Suite 44 11 3.57 15 -18 -5.84 15 4.34 17 -15 -3.51 

g
re

p
 

grep1 4 +3 +0.64 1 0 0 +2 +13.97 1 -1 -4.00 

grep3 7 +4 +2.13 0 -3 -0.10 +4 +0.24 0 -3 -0.10 

grep4 1 0 0 0 -1 -0.12 0 0 0 -1 -0.12 

grep 12 +7 +1.49 1 -4 -0.10 +6 +4.82 1 -5 -0.89 

g
z
ip

 gzip1 13 +9 +13.58 0 -4 -7.17 +10 +6.38 0 -3 -9.32 

gzip2 4 +4 +0.70 0 0 0 +1 +0.10 0 -3 -0.55 

gzip5 4 +3 +1.18 0 -1 -2.76 +2 +0.40 0 -2 -2.21 

gzip 21 +16 +8.03 0 -5 -6.29 +13 4.98 0 -8 -4.25 
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For multiple-fault versions (Table 4-24), BEN outperforms Ochiai for all the three 

cases, Siemens Suite, grep and gzip, although the difference between the two approaches 

is very small for the Siemens programs. In Siemens programs, Tarantula is more effective 

than BEN; however, BEN is much more effective in the grep and gzip programs. 

We investigated all the four versions of totinfo in which Tarantula outperforms BEN. 

In all cases the faulty statement localized by BEN is different from the one localized by 

Tarantula. The faulty statement, which is detected by Tarantula, is not even executed by 

the core member generated by BEN, thus it is not suspicious. The same situation happens 

for two out of three versions of the tcas program that Tarantula outperforms BEN 

(Table 4-24).  

The effectiveness of BEN could be different in localizing different faulty statements. 

However, as we mentioned, BEN focuses on one inducing combination, which is likely due 

to one faulty statement. While there may be more than one inducing combination, BEN 

stops searching for inducing combinations, as soon as the first one is identified, in the first 

phase. The effectiveness of BEN to some extent depends on the faulty statement related 

to the identified inducing combination. 

4.5.2.4 Threats to validity  

Threats to internal validity are factors that may be responsible for the experimental 

results, without our knowledge. One of the key steps in our experiments is modeling the 

input parameters, which may affect the correctness of the result. To reduce this threat, we 

have modeled the input parameters by using the program specifications and if they are not 

available, the error-free versions, without having any knowledge about the faults. All the 

models, except the gzip model, have been used in other studies [13][10]. In [10], the models 

are used to compare the effectiveness of combinatorial testing and random testing.  
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In addition, we automated the experimental procedure as much as possible, as an 

effort to remove human errors. In particular, all the steps are automated except counting 

the number of statements that should be inspected to find the faulty statement. Further, 

consistency of the results has been carefully checked to detect potential mistakes made in 

the experiments. For example, the higher the average of inducing probability, the more 

likely the core member fails. In the extreme case, if the inducing probability is 1, the core 

member must fail. To check the consistency of the results, we check the inducing 

probability whenever the core member did not fail. For instance, in one out of seven killed 

versions of the schedule program, the core member did not fail. We checked the inducing 

probability for this version, which is relatively small, 0.25.  

Threats to external validity occur when the experimental results could not be 

generalized to other programs. We use subject programs from the Siemens suite [7]; these 

programs are created by a third party and have been used in other studies [17][27][23]. 

However, the subject programs are programs of relatively small size with seeded faults. To 

mitigate this threat, the grep and gzip programs were added to the experiments, but more 

experiments on larger programs with real faults can further reduce this threat.  

Each of the Siemens program has multiple versions, each of which has a single 

fault. However, programs in practice could have multiple faults. To mitigate this threat, we 

created several multiple-fault versions that combined randomly selected faults and 

conducted an experiment on these versions. More experiments on programs with real 

faults can further reduce this threat. 

4.6 RELATED WORK  

In this section, we first discuss existing work on identifying failure-inducing 

combination, i.e., the first phase of BEN. Then, we focus on fault localization work, which 

is related to the second phase of BEN.  
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4.6.1 Related work on identifying inducing combinations  

Existing approaches to identifying inducing combinations can be classified into two 

groups. The first group takes as input a single failed test and tries to identify inducing 

combinations in the test. 

Two techniques, called FIC and FIC_BS [37], try to identify all the inducing 

combinations contained in a failed test. These approaches take one failed test from a 

combinatorial test set, then generate and execute a small number of tests in a systematic 

manner to identify inducing combinations in the failed test. New tests are generated such 

that one value, 𝑣𝑖, of the failed test is changed to another possible value. When the newly 

generated test passes, 𝑣𝑖 is part of inducing combination because its removal makes the 

test pass. FIC generates k tests; where k is the number of parameters, for each failure 

inducing combination.  

FIC_BS is the binary search version of FIC. To generate a new test, FIC_BS 

changes the values of k/2 parameters of the failed test. If the newly generated test passes, 

FIC_BS searches for inducing combination in the changed values (k/2). The process 

continues until all inducing combinations are found. FIC and FIC_BS assume that no new 

inducing combinations are introduced when a value is changed to create a new test.  

Li et al. [22] introduced two techniques for identifying inducing combinations called 

RI and SRI. These techniques use a method called delta debugging [36] in an iterative 

framework. The RI approach takes one failed test from the initial combinatorial test set, 

and adopts a similar approach to FIC_BS to generate a small number of tests.   The SRI 

approach, which is an improved version of RI, takes one failed test, f, and the combinatorial 

test set. Then it tries to find a similar passed test to f from the combinatorial test set. SRI 

uses the fact that the inducing combination appeared in the failed test f, but not in the 

similar passed test. Therefore, it focuses on the parameters, which are different in the failed 
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and passed tests. SRI could identify inducing combination by generating fewer tests than 

RI.  

The second group of techniques for identifying inducing combinations takes a set 

of tests as well as their execution statuses.  

The AIFL technique in [30][33] first identifies a set A of suspicious combinations as 

candidates for being inducing. Second, it generates a group of tests for each failed test 

using SOFOT strategy [26]. After executing the newly generated tests, combinations which 

appeared in the passed tests are removed from the suspicious set, A.  

The InterAIFL technique is an iterative approach proposed by Wang et al. in [33]. 

It iteratively generates and refines suspicious set A until it becomes stable. 

Let k be the number of parameters.  For each test f, the SOFOT strategy generates 

k tests by changing the value of one parameter at a time. Each test is different from the 

original test f in one value; the value is selected randomly from the corresponding 

parameter’s domain. 

BEN also, tries to identify inducing combinations in a combinatorial test set, instead 

of a single failed test. There are two advantages resulting from using the whole test set 

rather than a single test. First, a test set contains more information than a single test. 

Second, it would be possible to identify inducing combinations that appear in different tests.  

BEN identifies suspicious combinations in the same way as AIFL and Inter-AIFL. 

However, BEN produces a ranking of suspicious combinations and focuses on the most 

suspicious combinations. Moreover, BEN significantly differs from AIFL and Inter-AIFL in 

the way of generating new tests. BEN generates tests for a top-ranked suspicious 

combinations based on the notions of suspiciousness combination and suspiciousness of 

the environment. While AIFL and Inter-AIFL generate tests for failed tests and select values 

randomly. 
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We mention that Yilmaz et al. proposed a machine learning approach to identify 

failure-inducing combinations [35]. The approach analyzes the combinatorial test set and 

tests statuses and builds a classification tree. The classification tree is used to predict 

inducing combinations. Shakya et al. in [28] made some improvements in identifying 

failure-inducing combinations based on Yilmaz’s work. 

4.6.2 Related work on fault localization 

In Section 4.5, we already mention two fault localization approaches, Tarantula 

[17][18] and Ochiai [1]. Similar to BEN, Tarantula and Ochiai use statement coverage 

information to compute suspiciousness of each statement. Statement coverage is 

computed by multiple execution traces of failed and passed tests. 

In Tarantula, the suspiciousness value of each statement is the ratio of failed tests 

that execute the statement divided by the ratio of failed tests that execute the statement 

plus the ratio of passed tests that execute the statement. However, Ochiai computes the 

suspiciousness value of each statement by dividing the number of failed tests that execute 

the statement by the square root of all failed tests multiply by all tests that execute the 

statement. 

Then, Tarantula and Ochiai look for faulty statement in a non-increasing order of 

their suspiciousness values. 

Three spectrum-based approaches, set union, set intersection and nearest 

neighbor, are proposed by Renieris and Reiss in [27]. These approaches assume that there 

are one failed run (the spectrum of a failed test) and a large number of passed runs (the 

spectra of passed tests). 

Each of the three approaches has a different way to identify highly suspicious 

statements for being faulty, and these statements are then checked to find the actual faults. 

Let f be the program spectrum of a failing run and S be a set of program spectra of passed 
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runs. The set union method computes f − ⋃ sS , where ⋃ sS  is the union spectra of a set of 

passed runs. The statements in the spectrum of the failed run but not in the union spectra 

of the passed runs are highly suspicious. In the intersection method, the highly suspicious 

statements are in the intersection spectra of a set of passed runs but not in the spectrum 

of the failed run, ⋂ sS − f.   

In the nearest neighbor approach, one passed run whose spectrum is the most 

similar to the failed spectrum is selected from 𝑆. The statements in the difference set of 

these two spectra have the highest suspiciousness of being faulty.  

If the fault is not found in the highly suspicious statements set, the program 

dependence graph is build. The nodes corresponding to the highly suspicious statements 

are marked as blamed nodes. Then, in both directions, backward and forward, a breadth-

first search is performed from the blamed nodes. The statements corresponding to the 

nodes at a distance of one are also suspicious and must be checked. This process is 

repeated until the faulty statement is found. 

Empirical evaluation in [17] shows that for the Siemens suite, Tarantula is more 

effective and efficient than the other methods, including set union, set intersection, and 

nearest neighbor. Lucia et al. in [23] reported the experiments that show Tarantula and 

Ochiai are comparable to each other for the Siemens programs. However, the work 

reported in [1] suggests that Ochiai outperforms Tarantula. The former work used 

statement coverage spectra while the latter used branch coverage spectra. Both works, 

i.e., [1] and [23], applied fault localization methods using the test pools provided for each 

program by the benchmark [7].  

Our experimental results also show that Ochiai is slightly better than Tarantula. 

BEN used combinatorial test set and statement coverage spectra. 
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The fundamental difference between BEN and the above spectrum-based 

approaches is that BEN systematically generates a small group of tests, and then analyzes 

their spectra to produce a ranking of statements. The existing approaches do not deal with 

test generation. Instead, they assume the existence of a large number of test runs, which 

are generated randomly or using other techniques. In addition, they require every test 

execution to be traced. As a result, they cannot utilize the testing results if the test 

executions were not traced. In contrast, our approach is designed to work after normal 

testing is performed where test executions are not traced. Our approach only needs to 

trace the execution of a small number of tests that are generated in the second phase of 

our approach. As shown in Section 4.5, our approach can significantly reduce the number 

of tests needed to be instrumented for tracing but still produce results that are competitive 

to or better than Tarantula and Ochiai.   

We mention that an approach, called LCEC [24], was reported that also leverages 

the result of combinatorial testing to localize the faulty statement. LCEC was published 

after our original work in [13][14]. LCEC selects a failed test from the initial combinatorial 

test set, and generates a group of passed tests by changing values of failed test involved 

in the inducing combination. The execution traces of failed and passed tests are analyzed 

to derive cause-effect chains of statements. A depth-first search is performed for all cause-

effect chains to locate faulty statement. Then, if the faulty statement is not found, the user 

does breath-first search in the dynamic backward slice, which has been done in, associated 

with the incorrect output value.  LCEC is applied to four small programs, maximum 220 

lines of code, including tcas. The cost of applying LCEC is not reported in [24]. 

4.7 CONCLUSION  

In this paper, we presented an approach called BEN to localizing faults that 

leverages the result of combinatorial testing. Our approach consists of two phases. The 
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first phase identifies a failure-inducing combination, which is used in the second phase to 

localize the faulty statement in the source code.  

In the first phase, BEN adopts an iterative framework that ranks suspicious 

combinations and generates new tests repeatedly until an inducing combination is 

identified. The novelty of this phase lies in the fact that we rank suspicious combinations 

and generate new tests based on the notions of suspiciousness of a combination and 

suspiciousness of its environment. The higher the suspiciousness of a combination, the 

lower the suspiciousness of its environment, the higher this combination is ranked. New 

tests are generated for a user-specified number of top-ranked suspicious combinations 

such that the suspiciousness of the environment of a combination is minimized in each 

test. Our approach starts with searching for inducing combinations whose size is equal to 

the strength t of the initial test set. If it is not found, the approach expands its search to 

combinations whose size is greater than t.  

The key idea of the second phase of BEN is that we systematically generate a 

group of tests from an inducing combination such that the spectra of these tests can be 

analyzed quickly to identify the faulty statement. This group of tests consists of a core 

member that is a failed test run and a number of derived members that are passed test 

runs but are very similar to the core member. The suspiciousness values of statements are 

computed by analyzing the spectra of the core member and the derived members.  

We applied BEN to the Siemens suite and also the grep and gzip programs. Our 

experimental results show that our approach requires a very small number of tests to be 

generated while significantly reducing the number of statements to be inspected for fault 

localization. In particular, our approach achieves results that are competitive to or better 

than those of Tarantula [18] and Ochiai [1] while requiring significantly fewer tests to be 

instrumented.  
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We emphasize that our approach has an important advantage over existing 

spectrum-based approaches such as Tarantula and Ochiai. Existing spectrum-based 

approaches require every test execution to be traced. If a test set is already executed 

without being traced, the test set must be re-executed to collect traces before they can be 

used by approaches like Tarantula an Ochiai. In contrast, our approach only requires a 

small number of tests generated in the second phase of our approach to be traced. Our 

approach is designed to work after normal testing is performed where test executions do 

not need to be traced.  

We plan to conduct more empirical studies to further evaluate the performance of 

our approach. In particular, our current approach assumes that a combinatorial test set is 

used to test a program. We plan to investigate how to adapt our approach to work with an 

arbitrary test set. This will further increase the applicability of our approach. That is, we will 

try to identify inducing combinations from an arbitrary test set and then use them to 

generate tests for fault localization. The challenge is to deal with the fact that unlike a 

combinatorial test set, an arbitrary test set does not guarantee that all t-way combinations 

are covered. This might reduce the effectiveness of our approach. 
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Abstract- We present a combinatorial testing-based fault localization tool called 

BEN. BEN takes as input three types of information, including the subject program, the 

source code, an input parameter model, and a combinatorial test set created based on the 

input parameter model. It is assumed that the combinatorial test set has already been 

executed, and thus the execution status of each test is known. The output of BEN is a 

ranking of statements in terms of their likelihood to be faulty. In the fault localization 

process, a small number of additional tests are generated by BEN and need to be executed 

by the user. In this paper, we present the major user scenarios and the high-level design 

of BEN. BEN is implemented in Java and provides a graphical user interface that provides 

friendly access to the tool. 

Keywords- BEN, Fault Localization, Combinatorial Testing. 
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5.1 INTRODUCTION 

In this paper, we introduce a combinatorial testing-based fault localization tool 

called BEN. BEN takes as input three types of information about the subject program, the 

source code, an input parameter model, and a combinatorial test set created based on the 

input parameter model. It is assumed that the combinatorial test set has already been 

executed, and thus the execution status of each test is known. The output of BEN is a 

ranking of statements such that the higher rank a statement has, the more likely it is faulty. 

 The fault localization process conducted by BEN consists of two major phases. 

The first phase produces a ranking of combinations in terms of their likelihood to be failure-

inducing. A combination is failure-inducing, or simply inducing, if all tests containing this 

combination fail [3, 5, 7, 12, 13]. In the second phase, BEN takes a top ranked inducing 

combination from which a failed test and a small number of passed tests are generated. 

The execution traces of these tests are analyzed to produce the final ranking of faulty 

statements.  

BEN is written in Java and thus can be executed on different platforms such as 

Windows, Linux and MacOS. BEN provides both Graphical User Interface (GUI) and 

Command Line Interface. BEN is developed with support from NIST and the University of 

Texas at Arlington. BEN is publicly available [1]. 

Several approaches are reported on how to identify inducing combinations in a 

combinatorial test set [5, 8, 12, 14]. Ma et al. reported an approach that identifies faulty 

code based on failure-inducing combinations [6]. While they adopt a similar two-phase 

framework, they use very different techniques to identify inducing combinations and faulty 

statements. To the best of our knowledge, their work is the only other work that performs 

code-based fault localization based on combinatorial testing. However, they did not provide 

a public tool that implements their approach.  
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The remainder of this paper is organized as follows. Section 5.2 describes the main 

idea of the fault localization approach implemented by BEN. Section 5.3 discusses how to 

use BEN through a use case. Section 5.4 describes the design of BEN in terms of major 

data structures and modules. Section 5.5 provides concluding remarks and our plan for 

future work. 

5.2 APPROACH 

In this section we provide a high-level discussion about the fault localization 

approach implemented by BEN, in terms of its two major phases, i.e., inducing combination 

identification, and faulty statement identification. Refer to our earlier work [5, 4] for more 

details. 

5.2.1 Inducing combination identification 

This phase adopts an iterative framework. It begins by analyzing the initial 

combinatorial test set to identify the set of all suspicious combinations. A suspicious 

combination with respect to a test set F is a combination that only appears in the failed 

tests of F. Suspicious combinations are candidates of inducing combinations. Suspicious 

combinations are ranked based on their likelihood to be inducing. Next, a set of new tests 

is generated that the user may choose to execute. The results of these new tests are used 

to refine the ranking of suspicious combinations. This process continues until one or more 

stopping conditions are satisfied. 

The ranking of suspicious combination is based on two key concepts, 

suspiciousness of combinations and suspiciousness of the environment of combination. 

Informally, the higher the suspiciousness of a combination, the lower the suspiciousness 

of its environment, the higher the combination is ranked. The details of the ranking and test 

generation methods were explained in [5]. 
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5.2.2 Faulty statement identification  

 In this phase, a small group of tests are generated using an inducing combination. 

The group has one failed test, which is referred to as a core member, containing the 

inducing combination. The group also has several passed tests which are referred to as 

derived members. Derived members are very similar to the core member but do not contain 

the inducing combination. The execution trace of the core member is compared to the 

execution trace of each derived member to produce a ranking of statements in terms of 

their likelihood of being faulty. 

5.3 USE CASE 

In this section, we describe how BEN works. We use the 26th faulty version of the 

replace program from the Siemens suite [2]. In order to apply combinatorial testing, we first 

modeled the input parameters for the replace program. The details of the model are 

discussed in [3]. Then, ACTS [11] is used to generate a 2-way test set consisting of 190 

tests. All these 190 tests are executed, and 47 of them are failed. We show how to use 

BEN to locate faulty statements causing these failures. 

A new project, “replace”, is created in BEN by providing two input files. The first 

file is the source code of the replace program. The second file is a configuration file 

consisting of the input parameter model, the 2-way test set, and the test results. Figure 5-1 

shows part of the second input file. 

Figure 5-2 shows the main window of BEN after creating the replace project. The 

main window has two parts. The left part provides an outline of the project where project 

components are organized into a tree structure. The right part provides the details of each 

component selected in the tree structure. 

By pressing “Phase 1” button in the toolbar, BEN starts the first phase, i.e., 

inducing combination identification. The first phase may contain multiple iterations. When 
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the first iteration completes, new nodes are added to the tree to show the results of the first 

iteration, including suspicious combinations, recommended test cases, suspicious 

components, and inducing combinations. The user can inspect each component by clicking 

on the desired node. Figure 5-3 shows the suspicious combinations and their ranks at the 

end of the first iteration. 

 
Figure 5-2. The main window of BEN after creating a project 

 

 

 
Figure 5-1. The example of input file 
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Figure 5-3. Suspicious combinations after first iteration 

 

 

Figure 5-4. List of inducing combinations 
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At this point, the user can either choose to proceed to the next iteration of Phase 

1 or begin Phase 2. In the first case, the user can press “Phase 1” button again. In the 

second case, the user should select an inducing combination and start Phase 2 by clicking 

on the “Phase 2” button. Figure 5-4 shows inducing combinations of the example.  

When Phase 2 completes, new nodes are added to the tree, which shows the core 

member and three derived members. These tests should be executed and then the user 

should provide the execution traces for the core member and all the derived members. 

BEN adopts the Gcov [10] format for execution trace. The Gcov is a coverage tool and a 

standard utility with the GNU Compiler Collection (GCC) suite. 

Note that other coverage tools could be used, but the output should be saved in 

the Gcov format. Figure 5-5 shows part of an execution trace of replace in the Gcov format. 

The details of the Gcov format are available in [10].  

By clicking on the “Statements Rank” button, the statements are ranked and top 

ranked statements are highlighted, as shown in Figure 5-6. The demo of the example is 

available at [1].  BEN is applied on several programs, Siemens suite, grep and gzip [2], 

and the results show that it could locate faulty statement effectively and efficently. The 

result will be published in fututre. 

 

 

 

Figure 5-5. Part of an execution trace in Gcov format 
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5.4 DESIGN 

Figure 5-7 shows the architecture of BEN consisting of two layers. The logical layer 

contains the core functional components that manage the fault localization process. The 

data layer contains the core data structures that store the input, intermediate and final 

output.  

5.4.1 Data Layer 

IPM: A class that represents the input parameter model consisting of parameters 

and constraints. A parameter contains a name and a list of values it takes. BEN supports 

the same data types as supported by ACTS, i.e., Boolean, Integer and Enum [11]. A 

constraint expression is represented as a string.  

Component: A class that represents a parameter value. Each parameter value may 

be associated with a suspiciousness value. 

 

Figure 5-6. Statements ranking 
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Combination: A class that represents a combination of parameter values. Each 

combination may be associated with a suspiciousness value. 

Test Set: A class that represents a test set, which includes an array of tests and 

also a list of execution results, one for each test. This class is used to represent both the 

initial test set and recommended test sets. 

Group: A class that represents a group of tests, one of which is a core member 

and the others are derived members. An execution trace may be associated with each test 

in the group.  

5.4.2 Logical Layer 

 Combination Management: A module is responsible to generate all possible 

combinations. This model is also responsible for checking validity of combination.  

Suspiciousness Management: A module that compute different types of 

suspiciousness including suspiciousness of component, combination, and environment.  

Combination Rank Generation: A module that computes the ranking of suspicious 

combinations, using suspiciousness values computed by Suspiciousness Management.  

BEN 

 
Logical Layer 

Suspiciousness 
Management 

Recommended 
Test Generation 

Statement Ranking 
Generation   

Data Layer 

Source 
Code 

Test Set 

Figure 5-7. Architecture diagram 
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Recommended Test Generation: A module that generates recommended tests. 

Recommended tests are guaranteed to be new, i.e. they have not been executed before. 

The module also integrates an open source constraint solver, Choco [9] for constraint 

handling to ensure validity of tests.  

Core and Derived Member Generation: A module that generates the core member 

and derived member based on an inducing combination. This module also uses the 

constraint solver, Choco, to make sure the core and derived members satisfy constraints. 

Statement Ranking Generation: A module that analyzes the execution traces of 

the core member and derived members and produces the ranking of statements in terms 

of their likelihood of being faulty. 

5.5 CONCLUSION 

In this paper, we report a combinatorial testing-based fault localization tool, i.e., 

BEN. We present a use case to demonstrate how to use BEN and also the architectural 

design of BEN. Currently, BEN only implements our own approach to fault localization. We 

plan to define and make public an API that allows BEN to be used by other combinatorial 

testing-based approaches, e.g., Inter-AIFL [12] and FIC_BS [14].  
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Abstract- Combinatorial testing has attracted a lot of attention from both industry 

and academia. A number of reports suggest that combinatorial testing can be effective for 

practical applications. However, there are few systematic, controlled studies on the 

effectiveness of combinatorial testing. In particular, input parameter modeling is a key step 

in the combinatorial testing process. But most studies do not report the details of the 

modeling process. In this paper, we report an experiment that applies combinatorial testing 

to the Siemens suite. The Siemens suite has been used as a benchmark to evaluate the 

effectiveness of many testing techniques. Each program in the suite has a number of faulty 

versions. The effectiveness of combinatorial testing is measured in terms of the number of 

faulty versions that are detected. The experimental results show that combinatorial testing 

is effective in terms of detecting most of the faulty versions with a small number of tests. In 

addition, we report the details of our modeling process, which we hope to shed some lights 

on this critical, yet often ignored step, in the combinatorial testing process.  
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6.1 INTRODUCTION 

Combinatorial testing has attracted a lot of attention from researchers. The key 

observation in combinatorial testing is that most software failures are caused by 

interactions of only a few input parameters. A t-way combinatorial test set is built to cover 

all the t-way interactions, where t is typically a small integer [11][6]. If test parameters and 

values are properly modeled, a t-way test set is able to expose all failures that involve no 

more than t parameters. 

A number of empirical reports suggest that combinatorial testing can be effective 

for practical applications [2][3][7]. Most studies in these reports were designed to show that 

combinatorial testing could be applied to different types of applications. Thus, they were 

not controlled studies for evaluating the effectiveness of combinatorial testing. There are 

two notable exceptions. Kuhn et al. studied several fault databases and found that all the 

faults in these databases are caused by interaction of no more than six parameters 

[9][10].These studies did not perform actual combinatorial testing on the subject systems. 

Schroeder et al. compared the effectiveness of t-way testing to random testing in a 

controlled study [14]. They selected two software applications used in their laboratory as 

subject programs, and manually seeded a number of faults to measure fault detection 

effectiveness.  

In this paper, we report an experiment that applies combinatorial testing to the 

Siemens suite [17]. The Siemens suite has been used as a benchmark to evaluate the 

effectiveness of many testing techniques [3][7][18]. Each program in the suite has a 

number of faulty versions. The effectiveness of combinatorial testing is measured in terms 

of the number of faulty versions that are detected. The results show that most of the faulty 
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versions are detected by a small number of test cases. For example, all 32 faulty versions 

of replace program are detected by a 2-way test set containing only 192 tests. Furthermore, 

the results show that combinatorial testing is more effective than random testing.  

We also report the details of our modeling process, which is a critical, yet often 

ignored step in the combinatorial testing process. Our approach consists of three main 

steps. First we create an abstract model for the system. This model consists of abstract 

parameters and values. On the one hand, abstraction reduces the modeling complexity 

that has to be managed at one time. On the other hand, abstraction helps to discover 

aspects that need to be tested. Second we generate a combinatorial test set based on the 

abstract model. Existing combinatorial test generation tools such as ACTS [1] can be used 

in this step. Third, we derive concrete tests from the abstract tests. These concrete tests 

are then used to perform the actual testing.  

It is important to note that whereas the programs in the Siemens suite are relatively 

small, in terms of lines of code, and have a small number of input parameters, their input 

spaces are complex. For example, replace has 564 lines of code and 3 input parameters. 

However, its abstract model contains 20 abstract parameters and 36 constraints. The input 

parameters have different features and characteristics that must be considered for testing, 

e.g. one of the input parameters is a regular expression.   

The remainder of this paper is organized as follows. In section 6.2, we describe 

our approach for applying combinatorial testing. Section 6.3 reports experimental results 

that demonstrate the effectiveness of our modeling. Section 6.4 discusses existing work 

on input space modeling. Section 6.5 provides concluding remarks. 

6.2 APPROACH 

In this section, we explain our approach to apply combinatorial testing. The 

approach consists of three major steps: (1) Create an abstract model, (2) Generate an 
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abstract test set, and (3) Derive concrete tests. We use the replace program in the Siemens 

suite, to explain each task in detail.   

6.2.1 Create abstract model 

This step has two major tasks: (1) define abstract parameters and values, (2) 

define relations and constraints.  

6.2.1.1 Define abstract parameters and values 

First, we analyze the system specification and identify factors that may affect the 

behavior of the system. These factors are candidates for abstract parameters. The 

equivalence partitioning approach is used to define the values of each abstract parameter. 

We use the replace program in the Siemens suite to show how we define abstract 

parameters and values based on its specification. The replace program has three inputs, 

pattern, substitute and input text. The program finds every match of the pattern in the input 

text and replaces it with the substitute.  

The pattern is a restricted form of regular expression. Table 6-1 shows the 

metacharacters that can be used in pattern. Note that the @ character can have different 

meanings, depending on the next character. If a character other than n and t appears after 

@, the program ignores it. For example, @e matches e. But when @ appears at the end 

of the pattern, the program behave as if it is a simple character and matches with @. For 

example, e@ matches e@.  

The substitute is a string that allows only three metacharacters to be used. These 

include two metacharacters, @t and @n, as shown in Table 6-1 and a metacharacter &, 

which represents the string that matches the pattern. For example, if the string that 

matches the pattern is ab and the substitute is a&c, all ab strings in the file are replaced 

with aabc. 
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Table 6-2 shows the abstract model of the replace program for pattern and 

substitute. There are a total of 20 parameters in the model. The parameters with prefix pat 

are identified for pattern, and the parameters with prefix sub are identified for substitute. 

Note that these parameters are abstract as they are not the actual input parameters taken 

by the replace program. 

The key modeling decision is twofold. First, each metacharacter is identified to be 

an abstract parameter. Our motivation is that the core logic of the replace program is 

dealing with these metacharacters. Thus, we consider each metacharacter to be an 

important factor that could affect the program behavior. Special attention is paid to 

metacharacters * and &. These two metacharacters can be combined with other meta or 

regular characters. An abstract parameter is identified for each possible combination. For 

example, pat_question* represents the combination where a question mark appear before 

*. 

Second, the values of each abstract parameter (i.e., metacharacter) are identified 

based two considerations. The first consideration is whether or not a parameter appears in 

the pattern (or substitute). Two values, off and on, can be used to represent the two cases. 

Table 6-1. Pattern's metacharacter 

Metacharacter Description 

? Matches every character.  

* 
Matches the preceding pattern element zero or more 
times. 

[ -] 
Matches a single character that is in the specified 
range. For example [a-c] matches “a”, “b” and “c”. 

[^] 
Matches every character except the ones inside 
brackets. 

@t Matches a tab. 

@n Matches the end of a line. 

% Matches the beginning of a line. (BOL) 

$ Matches the end of a line. (EOL) 

 



163 

The second consideration is the following: If a parameter does appear in the pattern (or 

substitute), where does it appear? Thus, the on value identified earlier is further divided 

into three abstract values, begin, middle, and end. In Table II, all the parameters but four 

have four values, off, begin, middle, and end. The four exceptions, i.e., pat_BOL, pat_EOL, 

pat_@n, and pat_@, only have two values, on and off, because they can only appear in a 

particular position by nature. For example, BOL (i.e., %) by definition can only appear in 

the beginning of the pattern. 

Table 6-2. The Abstract Model of Replace 

Parameters Values 

pat_character1 [off, begin, middle, end] 

pat_question2 [off, begin, middle, end] 

pat_range3 [off, begin, middle, end] 

pat_negate4 [off, begin, middle, end] 

pat_@t [off, begin, middle, end] 

pat_@character [off, begin, middle, end] 

pat_question* [off, begin, middle, end] 

pat_character* [off, begin, middle, end] 

pat_range* [off, begin, middle, end] 

pat_negate* [off, begin, middle, end] 

pat_@t* [off, begin, middle, end] 

pat_@character* [off, begin, middle, end] 

pat_BOL5 [off,on] 

pat_EOL6 [off,on] 

pat_@n [off,on] 

pat_@ [off,on] 

sub_character [off, begin, middle, end] 

sub_@n [off, begin, middle, end] 

sub_@character [off, begin, middle, end] 

sub_& [off, begin, middle, end] 
 

1Regular character 
2? metacharacter 
3[ - ] metacharacter 
4[ ^ ] metacharacter 
5% metacharacter 
6$ metacharacter 
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Now we discuss how to model the third input parameter, i.e., the input text, of the 

replace program. We consider that an input text consists of a sequence of lines. The key 

observation is that a line is relevant from the testing perspective only if it contains a match 

or mismatch of the pattern. Assume that the pattern consists of k elements. The input text 

is modeled such that it consists of k + 2 lines. The first line matches the pattern. The second 

line matches all the elements but the first in the pattern. The third line matches all the 

elements but the second in the pattern, and so on. The last line does not match any element 

in the pattern. Note that we do not consider cases where a mismatch is due to multiple, but 

not all, of the elements in the pattern. This is essentially a trade-off made between test 

effort and test coverage. 

6.2.1.2 Define relations and constraints  

Relations are used to create parameter groups that can be covered at different 

strengths. Furthermore, parameters in different groups are independent and thus their 

combinations do not have to be tested. In our experiments, we used the default relation 

where all the parameters are considered to be in the same group. In retrospect, the 

parameters for pattern could be put into one group and the parameters for substitute in a 

second group. This would allow us to reduce the number of tests.  

Constraints are used to exclude combinations that are not valid from the domain 

semantics. For the replace program, a total of 36 constraints are specified. All these 36 

constraints are concerned with the position values of different parameters. In particular, in 

each test, there shall be only one parameter that has the value begin or end. 

6.2.2 Generate abstract tests 

In this step, an abstract test set is generated using an existing combinatorial test 

generation tool [11]. We used the ACTS tool [1]. ACTS can generate a combinatorial test 
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set with strength 2 through 6. Note that these tests are abstract in that they cannot be 

directly executed. Instead, concrete tests must be derived first, which is discussed below. 

6.2.3 Derive concrete tests 

A scheme is needed to derive a concrete test from each abstract test. 

Conceptually, such a scheme consists of two parts. The first part is to map each abstract 

value to a concrete value. An abstract value is typically identified in a way such that it 

represents an equivalence group, i.e., a group of values that are equivalent to each other 

in terms of how they could affect the system behavior. Thus, it is sufficient to map an 

a. Abstract test 

Parameters Values 

pat_character middle 

pat_question middle 

pat_range middle 

pat_negate middle 

pat_@t off 

pat_@character off 

pat_question* off 

pat_character* off 

pat_range* off 

pat_negate* off 

pat_@t* off 

pat_@character* off 

pat_BOL on 

pat_EOL off 

pat_@n on 

pat_@ off 

sub_character begin 

sub_@n end 

sub_@character off 

sub_& middle 

 

b.  Concrete test 

Parameters Values 

Pattern %a?[a-e][^a]@n 

Substitute a&@n 

Input file 1. abef 

2. gabef 

3. bef 

4. aef 

5. abf 

6. abe 

7. abefg 

8. gbfag 

 

Figure 6-1. An example of abstract test and its concrete test 
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abstract value to any value in its equivalence group. For example, in the replace program, 

the abstract value, middle, represents all the positions those are neither at the beginning 

nor at the end. The specific position is often not important. 

The second step is to map an abstract test to a concrete test. This part builds on 

the first step. In addition, it needs to map abstract parameters to concrete parameters. 

Recall that abstract parameters are identified to represent factors that could affect the 

system behavior. There typically does not exist a one-to-one mapping between abstract 

and concrete parameters. In fact, there are often more abstract parameters than concrete 

parameters. For example, for the replace program, there exist 20 abstract parameters, 

which need to be mapped to three concrete input parameters. 

As an example, consider the abstract test in Figure 6-1(a) and the concrete test in 

Figure 6-1 (b) for the replace program. In this example, the value of pat_BOL is on, so “%” 

is put at the beginning of the pattern. Similar, “@n” is placed at the end of the pattern.  

Other parameters, whose values are middle, are placed in the middle of the pattern. For 

pat_character, pat_range and pat_negate a, [a-e] and [^a] are put in pattern. Similarly, the 

substitute is created based on the corresponding parameter values in the abstract test. 

The last row of Figure 6-1 (b) shows different lines in the input file. The first line, 

abef, matches the pattern, since a matches with a, b matches with question mark, e 

matches with [a-e] element, and f matches with [^a]. Also, the first line matches % at the 

beginning and @n at the end.  

Each line from line 2 to 7 matches all but one element in the pattern.  For example 

the second line has the exact string abef which matches the pattern. However, since it is 

not at the beginning of the line (i.e., there is g at the beginning), the first element, %, in the 

pattern is not matched. The third line violates a in the pattern, and so on. The last line, i.e., 

line 8, does not match any element in the pattern.  
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Note that the scheme used to derive concrete tests from abstract tests is often 

specific to the subject application. However, such a scheme typically can be fully 

automated. This is the case for our experiments, where we wrote a program for each 

subject program to automate this process. 

6.3 EXPERIMENT 

We used the Siemens suite as our subject programs [17]. The Siemens suite 

contains 7 programs and each of these programs contains a number of faulty versions. 

The Siemens suite also provides an error-free version and a test pool for each program. 

Table 6-3 represents properties of subject programs. The second column shows 

the number of lines of uncommented code. The third column shows the number of 

procedures. The forth column shows the number of faulty versions for each program.  

Two programs, printtokens and printtokens2, have the same specification but 

different implementations. Since the input space model is independent from the source 

code, these programs share the same model. Similarly, two programs schedule and 

schedule2 have the same specification and thus share the same model. Therefore, in this 

section, we present five input models for the Siemens suite programs. Note that the input 

model for tcas is given in [9] and is included here for completeness.  

Table 6-3. Subject Programs 

Program LOC Procedures #Faulty Versions 

print_tokens 726 20 7 

print_tokens2 570 21 10 

replace 564 21 32 

schedule 412 18 9 

schedule2 374 16 10 

tcas 173 8 41 

totinfo 565 16 23 
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In our experiments, we focus on interaction faults.  As a result, our models are not 

designed for boundary testing or invalid testing. We believe most boundary and invalid 

faults are one-way faults, and they can be detected more efficiently using a different model 

where the focus is to identify special values of individual parameters. However, this belief 

needs to be validated by more experiments, which is beyond the scope of this paper.  

Specifications of the programs are not provided by the benchmark. To understand 

what each program is supposed to do, we had to inspect the source code. (A search on 

the Internet did not find any such specification either.) To avoid potential bias in developing 

the model, only the source code of the error-free version was used. That is, we were not 

aware of the faults during the modeling process. Nonetheless, this is an internal threat to 

validity that needs to be considered.  

We start with 2-way testing, and then move to 3-way testing, and so on, until (1) 

all faulty versions are detected; or (2) testing at the current strength does not detect any 

faulty versions that were not detected in testing at the previous strength. For example, 2-

way testing did not detect 2 out of 9 faulty versions of the schedule program. So 3-way 

testing was performed on these 2 versions, which did not detect any of the two versions. 

At this point, we stopped testing and started to inspect the testing results. 

6.3.1 Replace  

We explained the modeling details of the replace program in the previous section. 

We applied 2-way testing to this program, which had a total of 192 tests. We detected all 

the 32 faulty versions of this program.  

6.3.2 Schedule  

Two programs, schedule and schedule2, take the following inputs: (1) three non-

negative integers representing the number of processes in three different priority queues, 

low, medium and high; and (2) a list of commands that must be done on queues. The output 
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of these two programs is a list of numbers indicating the order in which the processes exit 

(from the scheduling system). 

For example, consider the first three input parameters which are 3, 2 and 1. Three 

processes are placed in low priority queue, two processes in medium priority queue, and 

one process is high priority queue.  The id is assigned to the processes by their priority so 

the 0 is in the high priority queue, 1 and 2 are in medium priority queue and 3, 4 and 5 are 

in low priority queue. 

There are seven commands (1) new job: this command has one attribute, queue, 

and adds a new process at the specified priority queue. (2) upgrade_prio: it has two 

attributes, queue and ratio. This command promotes a process form the specified priority 

queue to the next higher priority queue. The ratio attribute is used to determine which 

process to be promoted. (3) block: this command adds the current process to the blocked 

queue. (4) unblock: this command unblocks a process from the blocked queue. It has one 

attribute, ratio, which is used to determine which process must be unblocked. (5) 

quantum_expire: this command puts the current process at the end of its priority queue. 

(6) finish: this command exits the current process and prints its number. (7) flush: this 

command causes all processes from the priority queues to exit in their priority order.  

Two commands, upgrade_prio and unblock, operate on the n-th process where 

n = (int) (r + 1) and r =  (length of queue ∗ ratio).   

In our previous example, if a flush command (7) is executed, the output is 0 1 2 3 

4 5. But, assume that before the flush command, a new job command (1 3) is executed, 

where 1 indicates the new job command and 3 indicates the high priority queue. This new 

job command adds a process to the high priority queue. The next available ID, which is 6, 

is assigned to the new process and the process is placed at the end of the high priority 
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queue, i.e. after process 0. Now, if we execute the flush command, the output will be 0 6 1 

2 3 4 5. 

Table 6-4 shows the input model of the two schedule programs. Commands and 

their attributes are modeled as parameters. Each command parameter has three values, 

0, 1 and >1, where 0 means that this command does not appear, 1 means that this 

command appears once, and >1 means that this command appears more than once. The 

priority attribute of the new job command could be one of the three possible queues. But 

the attribute of upgrade_prio could be either low or mid. (Processes in the high priority 

queue cannot upgrade.)  

Two commands unblock and upgrade_prio are affected by the length of the 

queues, they select a process based on queue’s length and ratio. For these commands, 

first, we test if the ratio equals to 0, 1, or >1. Then we check that if the number after floating 

point in r =  (length of queue ∗ ratio) is 1, 4, 5, 6 or 9. These numbers are selected to cover 

upper limit (9), lower limit (1) and middle of the range (5), and also two numbers (4 and 6) 

around the middle. 

Table 6-4. The Abstract Model of Schedule 

Parameters Values 

new_process [0, 1, >1] 

new_proc_queue [low, mid, high] 

upgrade_prio [0, 1, >1] 

upgrade_queue [low, mid] 

upgrade_ratio [0, 1, >1, {r}=0.1, {r}=0.4,  {r}=0.5, {r}=0.6, {r}=0.9] 

block [0, 1, >1] 

unblock [0, 1, >1] 

unblock_ratio [0, 1, >1, {r}=0.1, {r}=0.4,  {r}=0.5, {r}=0.6, {r}=0.9] 

quantum_expire [0, 1, >1] 

finish [0, 1, >1] 

flush [0, 1, >1] 
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A C++ program was written to create the file that contains commands based on 

abstract tests. For the initial length of the queues, we randomly selected 60. We fixed >1 

values to 2, i.e. if the value of a command is >1, the command appears twice in the file. 

Performing 2-way testing detected 7 out of 9 versions of the schedule and 3 out of 

10 versions of the shedule2. In total, 9 versions were not detected. Performing 3-way 

testing did not detect any more versions. We investigated all versions that were not 

detected, 8 out of 9 (version 9 of the schedule and 7 versions, 1, 4, 5, 6, 8, 9 and 10, of the 

schedule2) can be detected by invalid testing, which as mentioned is not the focus of our 

study. 

For example, version 10 of the schedule2 was detected by a test case which 

contains new_process or upgrade_prio commands with invalid value for the queue attribute 

(new_proc_queue or upgrade_queue parameter).  

Version 8 of the schedule is the only version that was not detected and could not 

be detected by invalid testing. This version could be detected only when two upgrade 

commands, one block command, and one unblock command are executed consecutively 

on one process. 

The following example will reveal the bug:  

./schedule 2 2 0 <file.txt 

There are 4 processes, 0 to 3, two of which, 0 and 1, are in the mid priority queue, 

and the other two, 2 and 3, are in the low priority queue. The high priority queue is empty. 

Figure 6-2 shows the file that contains 5 commands. The comments explain the state of 

the system after each command is executed.  

In the schedule program, each process keeps the id of the queue to which it 

belongs. The faulty code in the version 8 does not change the queue id of the process after 
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the upgrade command (lines #1 and #2). Thus when the process is unblocked (line #4), it 

is assigned to the wrong queue.  

We did not detect this version, because our approach, at this point, does not 

generate test sequences. Combinatorial test sequence generation is a subject that we plan 

to study in the future.   

6.3.3 Tcas 

This program was previously modeled by Kuhn et al. in [9][10], based on the 

specification in [12]. The tcas program is an aircraft collision avoidance system, and it takes 

12 numbers as input and generates as output one number, which can be 0, 1 and 2. 

Table 6-5 shows the input model of the tcas program. Some input parameters, 

e.g., high_confidence, two_of_three_reports_valid, and climb_inhibit, are boolean values, 

0 and 1. Some input parameters, like alt_layer_value, are of enum type and have a set of 

specific values. For the other parameters, the values are identified by analyzing the code 

and by equivalence partitioning. Note that the input space of this program is not complex, 

and thus an abstract model is not needed.  

According to [9] all 41 faulty versions of tcas are detected by the model. The 

maximum strength to detect all versions is six; we also got the same results.  

As discussed in Section 6.3.6, all faulty versions of the tcas program were detected 

by 6-way testing. However, the degree of fault is actually more than 6 in all faulty versions. 

 
Figure 6-2. File example to detect v8 of schedule 
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Thus, these faulty versions were actually detected by higher strength combinations that 

happen to appear in a 6-way testing. 

6.3.4 Totinfo 

This program takes as input a file containing one or more tables. The program 

uses the notions of chi-square and degree of freedom to calculate whether the distribution 

of the numbers in these tables is logarithm-gamma distribution. The output is the total 

degree of freedom of rows and columns and chi-square. 

We focused on the correctness of the syntax of input parameters instead of the 

mathematical aspect of the program. The reason is that the logic of the program is very 

complex and is difficult to understand due to a lack of specification.  

We identified a total of 6 parameters related to the syntax input of the program. 

Parameter # of tables can be 0, 1 or more than one. The maximum number of members in 

a table is 1000. We set the maximum number of rows and columns to 500 and the minimum 

number of rows and columns to 1. Thus, parameters # of rows and # of columns have three 

values, 1, between 2 and 499, and 500. 

Table 6-5. The abstract model of tcas 

Parameters Values 

cur_vertical_sep [299,300, 601] 

high_confidence [0, 1] 

two_of_three_reports_valid [0, 1] 

own_tracked_alt [1, 2] 

own_tracked_alt_rate [600, 601] 

other_tracked_alt [1, 2] 

alt_layer_value [0,1, 2, 3] 

up_separation [0, 399, 400, 499, 500, 639, 640, 739, 740, 840] 

down_separation [0, 399, 400, 499, 500, 639, 640, 739, 740, 840] 

other_rac [0, 1, 2] 

other_capability [1, 2] 

climb_inhibit [0, 1] 

 



174 

Parameter tbl_attr is identified to define general attributes for tables’ elements. 

One important attribute for the table elements is sign, they can be positive, negative, zero, 

or mix. The number of elements is another attribute we identified for tbl_attr. The number 

of the elements in a table defined by #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠; we added sufficient, more 

than and less than enough values to check that whether the number of elements in the 

table is consistent with  #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠. 

The option parameter models the position in which a comment appears. The 

maxline parameter defines the maximum number of lines in the input file.  

A program was written to generate the input tables from the abstract tests. 2-way 

testing detected 5 out of 23 versions. 3-way testing detected 7 more versions, but 4-way 

testing did not detect any new version. So, totally 12 out of 23 versions were detected. We 

investigated the 11 versions which were not detected by the model. All of these versions 

have faults related to the mathematical aspects of the program, which is out of our testing 

scope. 

Table 6-6. The abstract model of totinfo 

Parameters Values 

#of tables [0, 1, >1] 

#of rows [1, between 2 and 499, 500] 

#of columns [1, between 2 and 499, 500] 

tbl_attr 
[sufficient number positive1, sufficient number 
negative2, sufficient number mix3, sufficient number 
equal 04, more than enough5, less than enough6] 

options 
[normal, row & column in 2 lines, comment at the 
beginning, comment in the middle, comment at the 
end] 

maxline [1, Between 2and 254, 255, 256, 257] 
1There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 positive numbers in the input file. 
2There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 negative numbers in the input file. 
3There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 positive and negative number in the input file. 
4There are #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 zero in the input file. 
5There are less than #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 numbers in the input file. 
6There are more than #𝑜𝑓 𝑟𝑜𝑤𝑠 × # 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 numbers in the input file. 
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6.3.5 Printtokens Model 

The goal of the two programs, printtokens and printtokens2, is tokenizing the input 

file and determining the type of each token. Token could have one of these types: identifier, 

special, keyword, number, comment, character constant or string constant.  

 Keyword type includes and, or, if, xor, and lambda.  Special type includes lparen, 

rparen, lsquare, rsquare, quote, bquote, comma and equalgreater. Comment is started with 

semicolon and ended when a new line character is seen. String constant is confined in two 

double quotations. Character is a token started with #.  

To model the system, we divided it into seven subsystems: keyword, special, 

identifier, number, comment, character and string. By this classification each token type 

was tested independently from the others. We assumed that the program analyzes each 

token independent from previous and next token, i.e. the type of the previous or next token 

does not affect on the analyzing the current token.     

Each subsystem has 3 parameters, value, position and number of lines. Keyword 

model is shown in Table 6-7, as an example. The kyw_value parameter covers all possible 

values for keyword (corresponding token type in general). An important property for each 

token type is position, depends on different position of token type the program may behave 

differently. So for each token type the position property with three values, begin, middle 

and end, is added to the model. The last parameter, # of lines, checks the behavior of the 

system when the input file has a single line or multiple lines.  

The possible values for some token types, such as keyword and special are 

explicitly defined in the program specification. But for the others such as identifier, the 

features and characteristic of its values are described in the specification. For each token 

type, identifier, number, comment, character and string, we designed an abstract model to 

define their values. Then after the possible values were defined in the next level they have 
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the same model as keyword. We explain the model of values for three subsystems 

identifier, number and comment in more details. 

Identifier has different feature such as having uppercase, lowercase, keyword or 

numbers, a model is designed to cover all features of identifier values (Table 6-8).These 

features are parameters with two values off and on, to show weather an identifier contains 

the parameter or not.   The   whitespace parameter determines whether an identifier 

separate from next token by space or tab. Note that we add a constraint to prevent having 

null identifier. For 2-way test generation, we generate 2-way test set for identifier values 

model first. The number of tests is 7. Then, we put these seven tests as values in the value 

parameter of the identifier model, and generate 2-way test set for identifier.  

For the number model, the characteristics of the number are the number of digit 

and having zero at the beginning of it. So its model has 2 parameters, Table 6-9. Note that 

sign and decimal point do not support by the printtokes programs. 

Table 6-7.  The abstract model of Keyword 

Parameters Values 

kyw_value [and, or, xor, if, lambda] 

position [ begin, middle, end] 

# of lines [1, >1] 

 

Table 6-8. The abstract model of Identifier Values 

Parameters Values 

lowercase [off, on] 

uppercase [off, on] 

number [off, on] 

keyword [off, on] 

whitespace [Space, tab] 
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The comment model is shown in Table 6-10. We check the behavior of the system 

when each token type appears as a comment. Also, whitespace parameter determines if 

a comment separate from next token by space or tab, what would be the behavior of the 

system. The models of sting and character values are the same as comment.   

The 2-way testing detected 2 out of seven versions of the printtokens and nine 

versions out of 10 versions of the printtokens2. Note that 2-way test set has only 141 tests.  

The programs were tested by 3-way testing, but no new version was detected. So 

we stopped testing and investigated versions which were not detected. Five versions out 

of six can be detected by invalid testing. For example, in versions 6 of the printtokens, the 

failure happen when the number of tokens in the input file exceeds the defined value. The 

second version of the printtokens is not detected by invalid testing. The fault in this version 

is adding code. The adding code is reached when there is a i token in the input file. 

Table 6-9.  The abstract model of Number Values 

Parameters Values 

#of digits [ 1, >1] 

begins with zero [off, on] 

 

Table 6-10. The abstract model of Comment Values 

Parameters Values 

identifier [off, on] 

keyword [off, on] 

character [off, on] 

string [off, on] 

special [off, on] 

number [off, on] 

comment [off, on] 

whitespace [Space, tab] 
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6.3.6 Discussion 

After testing programs using the combinatorial technique, we investigated the 

faults detected by our model to ensure that the fault is caused by the interaction between 

input parameters. In order to do that we introduce the notion of degree of fault or fault 

strength which is defined to be the minimum number of parameters that must be involved 

to trigger the fault. 

As a t-way test set contains all t-way combinations, it is guaranteed to detect a 

faulty version if the strength of the fault does not exceed t. But it is also possible that a t-

way test set detects a version whose degree of fault is higher than t. This is because the 

test set may contain the inducing combination (in which more than t parameters are 

involved) by chance.   

In Table 6-11, we classified the degree of fault for all detected versions. For 

example, in the schedule program, the model detected a total of 7 versions. The fault 

strength in five of these versions is 2. In the two remaining versions, one of them is 3 and 

another one is 4. 

To define the degree of fault, we used the concept of inducing combination. An 

inducing combination is a combination of parameter values such that all test cases 

Table 6-11. Fault classification of detected versions 

Program 
#faulty versions with degree of fault 

1 2 3 4 5 6 Beyond 6 sum 

print_tokens 0 0 2 0 0 0 0 2 

print_tokens2 0 6 3 0 0 0 0 9 

replace 10 7 2 0 0 0 13 32 

schedule 0 5 1 1 0 0 0 7 

schedule2  0 3 0 0 0 0 0 3 

tcas 0 0 0 0 0 0 41 41 

totinfo 0 0 2 1 6 3 0 12 
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containing this combination fail. The length of the minimum inducing combination shows 

the degree of fault. 

We used a tool called BEN [4] to find minimum inducing combinations. BEN takes 

a t-way test set as input and generates a ranking of t-way combinations based on their 

likelihood to be inducing combinations. BEN has been shown very effective in identifying 

inducing combinations [4]. However, BEN is heuristic by nature and thus does not 

guarantee to always find minimum inducing combinations. This should be taken into 

account when reading the results in Table 6-11. We are not aware of any method that can 

precisely determine the degree of a fault. 

For example seven versions of schedule are detected by 2-way test sets. BEN 

finds an inducing combination for five of them, so the degree of fault is 2 for these versions. 

For the two other versions BEN did not find an inducing combination, we used a 3-way test 

set. BEN finds an inducing combination for one of them. We then used a 4-way test set for 

the last version, which found an inducing combination.  

Since there is a probability that the fault is not due to any parameter interaction, 

we need to check whether only one parameter is involved in the fault. BEN has a feature 

to derive inducing combinations with smaller size than t. We used this feature on 2-way 

test sets, to derive one-way inducing combination. In ten versions of the replace the degree 

of fault was 1. Table 6-11 shows that most faults are interaction faults. 

In 13 versions of replace and 41 versions of tcas, BEN cannot identify inducing 

combinations in the 6-way test sets, so the degree of fault is more than 6 for these versions. 

Note that in the replace all 13 versions and in the tcas 9 of these versions are detected by 

2-way testing. A 2-way test set is not guaranteed to detect these versions, since it is not 

guaranteed to cover all combinations for t > 2, and the versions are detected accidentally. 
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We show the strength of fault for detected versions in respect to the test strength 

in Table 6-12. The second column shows the test strength at which the faulty versions were 

detected. The third one shows the number of faulty versions that were detected by the test 

set, and the combinatorial test set guarantees to detect them, since their fault strength is 

equal or less than the test strength. The forth column shows the number of detected 

versions with higher fault strength than test strength, which are detected by chance.         

For example, by applying 2-way testing to all faulty versions of the replace 

program, we detected  not only 17 versions whose degree of fault is 1 or 2, but also 13 

versions whose degree of fault is higher than 6.  

Another point to note is that, in each step we excluded detected versions in the 

next step. For example, in the totinfo program 5 versions were detected by 2-way testing. 

One of these 5 versions has the same degree of fault as the test strength, i.e., 2, and the 

Table 6-12. Fault Classification based on Test Strength 

program 
Test 
strength 

# of detected 
versions with 
the same or 

lower strength 

# of detected 
versions with 

higher strength 

total 
 

Total not 
detected 
 

print_tokens 2 0 2 2 5 

print_tokens2 2 6 3 9 1 

replace 2 17 15 32 0 

schedule 2 5 2 7 2 

schedule2  2 3 0 3 7 

tcas 

2 0 9 

41 0 

3 0 13 

4 0 14 

5 0 4 

6 0 1 

totinfo 
2 1 4 

12 11 
3 1 6 

 

 If a t-way test detects a version, the version does not show in the result of (t+1)-way test. 

 All 1-way and 2-way faulty versions of replace are detected in 2-way test set.   
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other four versions have the degree of fault higher than the test strength. For the next step 

we excluded all five versions from testing and we applied 3-way testing only on versions 

which were not detected. 

6.3.7 Comparison 

In this section, we show the effectiveness of combinatorial testing by comparing it 

with random testing. We generated a random test suite corresponds to each combinatorial 

test set which was used in the previous section. The random test suite and its 

corresponding combinatorial test set have the same number of tests. For example, the 2-

way combinatorial test set for printtokens program has 141 tests; thus 141 tests are 

generated for random testing.  

For random test generation, we used the models which were described. Since the 

subject programs have complex input spaces, we cannot apply random testing without any 

abstraction. For instance, the first input parameter in the replace program is a regular 

expression; generating valid random regular expressions is impractical.   

Our random test generation approach is as follows. For programs whose models 

do not have any constraint, schedule, schedule2, tcas and totinfo, a random value is 

selected for each parameter in a test. For printtokens, we generate the same number of 

tests as a 2-way test set for each subsystem. If the value parameter comes from the model, 

such as identifier, first we randomly generate a test for value, and then for the subsystem.   

If a model has constraints, random selected values may create invalid tests. We 

avoided invalid tests using the following algorithm. In the replace program, constraints are 

related to the position of elements. There are 4 parameters related to substitution. At most 

one of them can be begin and also at most one can be end.  Note that it is possible for a 

test case to not include begin or end . 
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To generate random values for substitution related parameters (sub_character, 

sub_@n, sub_@character, sub_&), we define which parameter should appear at the 

beginning and which one at the end, randomly. A number between 0 and 4 (number of 

parameters, sub_character, sub_@n, sub_@character and sub_&, plus 1) are selected 

randomly. This number is used to select the parameter whose value should be begin and 

appearing at the beginning. If 0 is selected, the first parameter, sub_character is set to 

begin, and so on. If 4 is selected, none of the parameters would have begin value. Similarly, 

we select the parameter that should appear at the end.  For other parameters, off or middle 

is selected randomly. The same approach is used for parameters which are involved in the 

pattern.   

Table 6-13 compares the results of combinatorial and random testing. The second 

column shows the number of tests in the test sets, third and forth columns are shown the 

strength and the number of detected versions in combinatorial test set. The last column 

shows the number of detected versions in random test sets.   According to the table, the 

Table 6-13. Compare random testing and combinatorial testing 

Program #tests 
Combinatorial Random 

Strength #detected version #detected version 

print_tokens 141 2-way 2 1 

print_tokens2 141 2-way 9 9 

replace 192 2-way 32 17 

schedule 64 2-way 7 7 

schedule2  64 2-way 3 3 

tcas 

100 2-way 9 7 

400 3-way 13 14 

1363 4-way 14 6 

4222 5-way 4 12 

10843 6-way 1 2 

totinfo 
30 2-way 5 2 

156 3-way 7 5 
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result of random testing is different in different programs. In the two schedule programs, 

schedule and schedule2, combinatorial testing and random testing have the same results, 

7 versions in the schedule and 3 versions in the schedule2 were detected. But in the 

replace program, random testing detected 17 versions compared to 32 versions in 

combinatorial testing.  

In the tcas program, combinatorial test set and random test set detected all 41 

faulty versions. But combinatorial test can detect more versions by using fewer tests. 

Combinatorial test sets, 2-way, 3-way and 4-way, detected 36 versions, but random test 

set with the same number of tests detected 27 versions. 

6.4 RELATED WORK 

First, we review existing work on input parameter modeling for combinatorial 

testing. Grindal and Offutt [5] presented a structured method for input parameter modeling. 

Their method provides guidelines for defining parameters, values, constraints and 

relations. We followed this method, whereas applicable, in our experiments.  

Several common patterns were reported for combinatorial models [15][16]. These 

patterns include optional values, multi-selection, ranges and boundaries, order and 

padding, redundant interactions, and auxiliary aggregates or commonality. We used similar 

ideas for optional values, order and padding, and multiplicity patterns in our experiments. 

For example, the optional values pattern occurred in the replace program. We added the 

off value for each optional parameter.  

Segall et al. suggested two constructs, called counters and properties, to model 

high-level constraints [16]. Some abstract parameters, e.g., the position parameter, 

identified in our experiments can be considered as properties of a concrete parameter. 

However, these parameters are not used to facilitate constraint specification in our 

experiments.  
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Second, we review existing work on empirical studies on combinatorial testing. We 

focus on these controlled studies. Dalal et al. [3] reported four relatively large applications 

that are modeled for combinatorial testing. They reported the number of failed tests and 

the number of different types of failures that were detected. They showed that 

combinatorial testing was more effective than traditional testing methods. The difference 

between their approach and our work is that they did not identify abstract parameters and 

values. In addition, their subject programs contain real faults, instead of seeded faults [3]. 

Kuhn et al. studied several fault databases and found that all the faults in these 

databases are caused by interaction of no more than six parameters [9][10]. This study did 

not perform actual combinatorial testing on the subject systems.  

Schroeder et al. compared combinatorial testing to random testing in a controlled 

study [14]. They selected two software applications used in their laboratory and used faults 

that are manually seeded by a graduate student. In contrast, the Siemens suite used in our 

experiments is a third-party benchmark that has been used to evaluate many testing 

techniques [18]. We also used faults that come with the Siemens suite.  

In [8], Kuhn et al. applied combinatorial testing to a multicomputer network 

simulator. They compared combinatorial testing to random testing in terms of the number 

of deadlocks that can be detected by both approaches. The modeling process was not 

explained in [8].  

In [12][13], combinatorial testing was compared to several prioritization techniques 

and random testing. The experiments were done on two programs flex and make from SIR 

[17] repository. The results showed there was no significant difference between 

combinatorial testing and random testing. The details about the programs models were, 

however, not, reported in the paper. 
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6.5 CONCLUSION 

In this paper, we presented a three-step approach to apply combinatorial testing. 

First we create an abstract model for the system. Then, based on this model, a 

combinatorial abstract test set is generated. The last step derives a set of concrete tests 

from these abstract tests. We reported our experiments in which we modeled the seven 

programs in the Siemens suite and applied combinatorial testing to these programs. The 

details of the abstract model and the results of applying combinatorial testing are presented 

in the paper. The results show that combinatorial testing can detect most faulty versions of 

the Siemens programs, and is more effective than random testing. 

To better understand the effectiveness of combinatorial testing, we distinguished 

faults guaranteed to be detected by t-way testing from faults detected incidentally.  A fault 

is detected incidentally by a t-way test set if the degree t’ of the fault is higher than t, but 

the t-way test set happens to contain a t’-way combination that can trigger this fault. In our 

experiments, we observed that t-way testing often detected some faults incidentally, i.e., 

the degrees of these faults were higher than t.  In particular, for the tcas program, all the 

faults were detected incidentally. This suggests that a t-way test set can be potentially more 

effective if it covers more higher-strength combinations, in addition to all the t-way 

combinations.  

In the future, we plan to conduct more empirical studies on larger and more 

complex programs. We believe this research will provide guidance for practitioners to apply 

combinatorial testing in practice. 
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Abstract- Some conflicting results have been reported on the comparison 

between t-way combinatorial testing and random testing. In this paper, we report a new 

study that applies t-way and random testing to the Siemens suite. In particular, we 

investigate the stability of the two techniques. We measure both code coverage and fault 

detection effectiveness. Each program in the Siemens suite has a number of faulty 

versions. In addition, mutation faults are used to better evaluate fault detection 

effectiveness in terms of both number and diversity of faults. The experimental results show 

that in most cases, t-way testing performed as good as or better than random testing. There 

are few cases where random testing performed better, but with a very small margin. 

Overall, the differences between the two techniques are not as significant as one would 
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have probably expected. We discuss the practical implications of the results. We believe 

that more studies are needed to better understand the comparison of the two techniques. 

Keywords- Combinatorial Testing, Random Testing, Software Testing. 

 

7.1 INTRODUCTION 

Software failures are often caused by interactions of a few input parameters. A 

technique called t-way combinatorial testing, or t-way testing, employs a test set that covers 

all t-way interactions, i.e. interactions that involve no more than t parameters. If parameters 

and values are modeled correctly, a t-way test set guarantees to expose all failures that 

involve no more than t parameters. In practical applications, t is typically a small integer 

that is no more than six [19].  

Many empirical studies show that t-way testing can be very effective in fault 

detection while significantly reducing the number of tests. However, a question that is often 

asked by the research community is about the comparative effectiveness of t-way testing. 

That is, how does t-way testing compare to other testing techniques? In particular, how 

does t-way testing compare to random testing?  

Some conflicting results have been reported in the literature. The studies such as 

[6][14][17][18] find that t-way testing is more effective than random testing. However, other 

studies such as [4][5][20][21] suggest that there is no significant difference between t-way 

testing and random testing. This lack of consensus suggests a need for more studies to 

better understand the effectiveness of these two techniques. 

In this paper, we report a new study that responds to the above need. In particular, 

we investigate the stability of the two testing techniques. For a given test strength t, multiple 

test sets can be generated to satisfy t-way coverage. Similarly, multiple random test sets 

of the same size can be generated. The notion of stability refers to the degree to which the 
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effectiveness of such multiple test sets varies. In practice, testers normally execute only 

one test set that is essentially an arbitrary selection among multiple possible test sets. The 

more stable a testing technique, the more confidence one has about the effectiveness of 

the test set that is actually executed. Our work is inspired by Czerwonka’s earlier work that 

has investigated the stability of t-way testing in terms of code coverage [9]. In this paper 

we compare the stability of t-way testing to that of random testing and also measure it in 

terms of both code coverage and fault detection.  

 In our study, we use the Siemens suite as our subject programs. The Siemens 

suite has been used a benchmark to evaluate the effectiveness of many testing techniques. 

The suite consists of seven programs, each of which has a number of faulty versions. Our 

earlier work modeled the input space of these programs [15]. In this current study, for a 

given test strength t, a total of 100 t-way test sets are generated for each program. For 

each t-way test set, a random test set of the same size is also generated. Both t-way and 

random test sets are generated using the same input models in [15].  

The effectiveness of an individual test set is measured in terms of code coverage 

and fault detection. Code coverage data are collected by running test sets on the error-free 

version of each program. For fault detection, we run test sets on the error-free version and 

the faulty versions of each program. A fault is detected if the faulty version produces a 

different output than the error-free version. A mutation test tool called Milu [16] is used to 

generate additional faulty versions for three programs in the Siemens suite. Mutation faults 

increase the number and diversity of the faults used in our experiments and thus helps to 

better evaluate fault detection effectiveness.  

The results of our study suggest that in most cases, t-way testing performed as 

good as or better than random testing. There are few cases where random testing 

performed better but with a very small margin. Overall, the differences between the two are 
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not as significant as one would have probably expected. This can be partially explained by 

the fact that most random test sets have a high percentage of t-way coverage. That is, 

while a random test set does not cover all the t-way combinations, it covers most of them. 

A small number of combinations being missing does not always make a difference on code 

coverage and fault detection results. 

It is important to make several notes about the results of our study. First, we used 

the same input model for t-way and random     testing.     While     t-way    test     generation 

is computationally more expensive than random test generation, both procedures are 

automated. Thus the advantage of random testing in terms of reducing test generation cost 

is not as significant in practice as one would probably have perceived. Second, in our 

experiments, the size of a random test set is set to be the same as its corresponding t-way 

test. However, when we apply random testing in practice, we need to decide when to stop, 

i.e., how many tests are sufficient. This can be a difficult decision. In this respect, t-way 

testing has an advantage in that it has a well-defined stopping point, i.e., achieving full t-

way coverage. Finally, we must acknowledge that our study is limited in terms of both the 

number and sizes of the subject programs, and the number and types of faults. More 

studies are needed to obtain a better understanding.  

The remainder of this paper is organized as follows. In section 7.2, we describe 

our experimental design. Section 7.3 reports experimental results. Section 7.4 provides 

some general discussion about the experimental results. Section 7.5 describes threats to 

validity. Section 7.6 gives an overview of work that is related to ours. Section 7.7 provides 

concluding remark.     
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7.2 EXPERIMENTAL DESIGN 

This section describes the design of our experiments, including the subject 

programs, the evaluation metrics, and the test generation procedure used by our 

experiments. 

7.2.1 Subject Programs 

Our experiments use the Siemens suite from the Software Infrastructure 

Repository [12]. This suite contains 7 programs. Two programs, printtokens and 

printtokens2, have the same specification but different implementations. They tokenize a 

text file and determine the type of each token. The replace program takes three inputs, 

pattern, substitute and input text, and it replaces every match of pattern in input text with 

substitute. Two programs, schedule and schedule2, provide two different implementations 

of a scheduling scheme that determines the execution order of a set of processes based 

on their priorities. The tcas program is an aircraft collision avoidance system. The totinfo 

program takes as input a file containing one or more tables, and computes the total degree 

of freedom and chi-square of rows and columns. 

In the Siemens suite, each program has an error-free version and several faulty 

versions. There also exists a test set for each program. These test sets are not used in our 

experiments. Table 7-1 shows some characteristics of the subject programs. The second 

column shows the number of lines of (uncommented) code. The third column shows the 

number of functions. The fourth column shows the number of faulty versions. The fifth 

column shows the input models used for test generation. The input models are shown in 

an exponential format. For example, totinfo has six parameters, where three, two and one 

of them have a domain size of 3, 5 and 6, respectively. The model of this program is shown 

in an exponential format by (33 × 52 × 61). The last column shows the number of 

constraints in the input model. The details of the models are explained in [15]. 
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In addition to the faulty versions that come with the Siemens suite, a mutation 

testing tool called Milu [16] is used to generate additional faulty versions. This helps to 

better evaluate fault detection effectiveness both in terms of number and diversity of faults. 

The number of mutants generated by Milu is typically large, and running hundreds of test 

sets over them is very time consuming. In our experiments, we select three programs, 

replace, schedule and totinfo, and for each of the three programs, we select a few 

functions, for mutant generation.  

We refer to faults in the faulty versions provided by the Siemens suite as Siemens 

faults, and faults that are generated by mutation as mutation faults.    

Table 7-1. Characteristics of subject programs 

Programs LOC 

#
o
f 
fu

n
c
ti
o
n
s
 

#
o
f 
fa

u
lt
y
 v

e
rs

io
n
s
 

Model 

N
u
m

b
e
r 

o
f 

c
o
n
s
tr

a
in

ts
 

printtokens 472 18 7 
(22)  × (24)  × (5) × (8) × (2 × 7)3 a 4b 

(47 × 22) 14 

printtokens2 399 19 10 
(22)  × (24)  × (5) × (8) × (2 × 7)3 a 4b 

(47 × 22) 14 

replace 512 21 32 (24 × 416) 36 

schedule 292 18 9 (21 × 38 × 82) 0 

schedule2 301 16 10 (21 × 38 × 82) 0 

tcas 141 9 41 (27 × 32 × 41 × 102) 0 

totinfo 440 7 23 (33 × 52 × 61) 0 

a. The model of the replace program has two levels; sub level consists of 7 sub models and the top 
model with 9 parameters. Three out of 7 sub models share the same model, two parameters with 2 
and 7 values.   

  b.  The second sub model with (24)  input model, has 4 constraints and the other does not have any 
constraints.  
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Table 7-2 shows some characteristics of generated mutants. The second column 

shows the number of functions selected for each program. Note that schedule is smaller 

than the other two programs, the mutants are generated for the entire program. The third 

column indicates the number of mutants generated.  

We do not select printtokens and printtokens2 for mutant generation because of 

the hierarchical nature of their input models. We do not select schedule2 since it has the 

same model as schedule. Also tcas is not selected because it has complex decision logic 

and its mutants are likely to represent faults with strength of more than 6. 

7.2.2 Evaluation Metrics 

We measure the effectiveness of an individual test set in two dimensions, i.e., code 

coverage and fault detection. 

For code coverage, line and branch coverage collected for each test set run with 

the error-free version of each program. A tool called gcov is used to gather coverage data. 

The tool is executed with the “branch-probabilities” option, and the “line executed” output 

is taken for line coverage and the “taken at least once” output is used for branch coverage.  

For fault detection, we check how many faults can be detected by a test set. A fault 

is detected if the output of a faulty version is different from the output of the error-free 

version by one or more tests in a test set.  

For code coverage and fault detection data collected from a group of test sets, we 

compute minimum, first quartile (Q1), median, third quartile (Q3), maximum, spread and 

Table 7-2. Characteristics of generated mutants 

Programs 
Number of functions used for 

mutants generation 
Number of mutants 

replace 4 143 

schedule 18 94 

totinfo 2 151 
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relative standard deviation. The first five measures summarize the effectiveness of the test 

sets as a group, whereas the latter two summarize how stable the results are across 

different test sets in the group. 

7.2.3 Test Generation 

For each subject program, we generate 100 t-way test sets for each strength t, 

where t is from 2 to 5. There are a total of 400 t-way test sets for each program. We use 

PICT [10] to generate t-way test sets. PICT uses a greedy, random algorithm for t-way test 

generation and allows the user to specify a seed. In order to obtain different test sets, a 

different seed is given each time a test set is generated. Test sets are compared to ensure 

that no two test sets are exactly the same. In our experiments no redundant test sets are 

detected. Note that ACTS was not used because it uses a deterministic algorithm which 

does not give us multiple test sets [1]. 

For replace, we did not generate 5-way test sets as they are very large, and take 

too much time to execute. On average, there are 12604.22 tests in a 5-way test set for 

replace and it takes 3.22 seconds to execute each test (against all the 32 faulty versions 

in the Siemens suite). Thus it takes about 11.27 hours to execute each test set. The time 

needed to execute 100 test sets is prohibitive and thus we did not conduct 5-way testing 

for replace in our experiments. Note that our experiments are conducted on a PC that has 

a Pentium (R) 4 (2.40 GHZ) processor and 2 GB memory and that runs Ubuntu 12.04 LTS 

(32bit).  

For each t-way test set, we generate a random test set of the same size. The same 

input model used by t-way test generation is used for random test generation. If the input 

model of a program does not have any constraint, a random test is generated by simply 

giving each parameter a random value of its domain. Otherwise, additional care needs to 
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be taken to ensure that all the constraints are satisfied.  More details about random test 

generation with the presence of constraints can be found in [15]. 

7.3 EXPERIMENTAL RESULTS 

In this section, we first present the test generation results, i.e., some important 

properties and statistics of the test sets generated in our experiments. Then we present 

the test execution results in terms of code coverage and fault detection that are achieved 

by these test sets.  

7.3.1 Test generation result 

Table 7-3 shows some statistics about the sizes of the generated test sets 

including minimum, maximum, average and relative standard deviation. Note that 

Table 7-3. Test sets’ size  

Program Strength Min Max Average RelStdDev 

printtokens 

2 42 47 44.46 2.72 

3 113 127 119.6 2.17 

 4 307 330 319.97 1.64 

 5 763 791 776.38 0.80 

replace 

2 200 220 210.86 2.18 

3 904 955 928.66 1.10 

4 3730 3805 3773.07 

 

0.41 

schedule 

2 64 64 64 0 

3 244 259 251.22 

 

1.45 

4 1060 1088 1075.30 0.57 

5 3788 3806 3812.26 0.26 

tcas 

2 100 100 100 0 

3 400 409 403.38 0.47 

4 1401 1447 1423.28 0.65 

5 4240 4321 4277.85 0.36 

totinfo 

2 31 35 32.41 3.10 

3 150 158 153.26 0.92 

4 532 560 544.5 1.05 

5 1554 1613 1586.35 

 

0.72 
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printtokens and printtokens2 use the  same  input model and  thus  have  the same test 

sets, and so do schedule and schedule2. Also note that printtokens and printtokens2 have 

a hierarchical input model. Due to limited space, we only show statistics for the test sets 

generated from the top model. 

Table 7-4 shows the statistics of the t-way coverage achieved by the random test 

sets. The t-way coverage of a test set is computed using the ACTS tool with a special 

option on the command line interface [1]. For most cases, more than 80% (on average) of 

t-way coverage is achieved by a random test set. The exceptions are for printtokens with t 

= 2 and 3, where the average t-way coverage is more than 70% but lower than 80%. ACTS 

was not able to compute the t-way coverage for replace when t = 4. The reason is that 

Table 7-4. Combinatorial coverage of random sets 

Program Strength Min Max Average RelStdDev 

printtokens 

2 52.94 82.5

8 

72.03 

 

7.88 

3 54.29 88.5

4 

76.95 

 

11.45 

4 61.10 94.2

7 

86.31 

 

9.24 

5 73.68 95.3

1 

91.76 

 

4.13 

replace 
2 89.38 96.0

6 

94.85 

 

0.95 

3 89.27 96.4

1 

94.46 

 

1.73 

schedule 

2 91.15 96.5

3 

93.64 1.06 

3 92.51 94.0

7 

93.43 0.39 

4 94.85 95.6

8 

95.30 

 

0.17 

5 95.66 96.1

9 

95.89 0.08 

tcas 

2 92.23 96.1

8 

94.25 0.74 

3 93.51 95.1

9 

94.30 0.34 

4 95.15 96.0

0 

95.52 0.17 

5 96.05 96.4

5 

96.26 0.08 

totinfo 

2 75.78 88.6

7 

82.64 

 

2.96 

 3 83.18 88.8

6 

86.20 1.31 

4 83.47 87.1

5 

85.05 0.79 

5 81.92 83.7

3 

82.96 0.46 
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replace has a relative large and complex input model while the option for computing t-way 

coverage in ACTS is mainly experimental and is thus not optimized. 

 
7.3.2 Test execution result 

The test execution results are presented in three parts, including code coverage 

results, Siemens fault detection results, and mutation fault detection results. 

Code Coverage: Code coverage is collected by running each test set on the error 

- free version of each subject program. Table 7-5 shows the maximum line and branch 

coverage achieved by these test sets. Maximum coverage indicates to certain degree the 

quality of the input model. For printtokens and printtokens2, the maximum line and branch 

coverage are shown for the top model and all the sub-models. The maximum line and 

branch coverage achieved by t-way and random test sets are the same. This is consistent 

with the fact that both types of test set use the same input model. 

Tables 7-6, 7-7, 7-8 and 7-9 show the comparison of some code coverage 

statistics between t-way and random testing, for four programs, printtokens2, replace, tcas 

Table 7-5. Maximum line and branch coverage results  

Programs Max of line coverage Max of branch coverage 

printtokensa 

46.15, 46.67, 45.13, 43.08, 
74.36, 35.38, 47.69 

35.78, 36.7, 38.53, 40.37, 
57.8, 27.52, 35.78 

69.74 55.05 

printtokens2a 

58.5, 58.5, 57,  71, 73.5, 
56.5, 74.5 

45.68, 46.91, 46.3, 58.02, 67.9, 
40.74, 70.99 

80.5 76.54 

replace 88.93 80.56 

schedule 94.74 80.30 

schedule2 94.57 75 

tcas 89.23 90.91b 

totinfo 92.68 84.09 
a.   For printtokens and printtokens2 the maximum line and branch coverage achieved by 
sub models are shown in the first row, in order of number, identifier, keyword, special, 
character, comment, string sub models. The coverage achieved by top model is shown in 
the second row.  
b.  In this program maximum branch coverage is greater than maximum line coverage, the 
reason is that || and && operators (in an if statement) introduce new branches, in gcov.  
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and totinfo. In these tables, the numbers show the differences between t-way and random 

testing results. A positive (negative) number indicates that t-way testing performs better 

(worse) than random testing. Negative numbers are also highlighted. 

Due to space limitation we do not show the results for programs where t-way and 

random testing produced exactly the same statistics. That is, the tables for these programs 

only consist of zeros. These programs include printtokens, schedule and schedule2. They 

are made available in [2]. Also, for printtokens and printtokens2, we show the results of 

their top model only.  

For the replace program, t-way and random testing produce the same results for 

line coverage. However, when t = 3, random testing has a slightly smaller relative standard 

deviation for branch coverage than t-way testing (Table 7-7). 

For the tcas program, random testing performed better than t-way testing when t 

= 2 and 3, whereas t-way testing performed better when t>3 (Table 7-8). 

For the printtokens2 and totinfo programs, t-way testing outperforms random 

testing in many cases. For example, in the totinfo program, the minimum line and branch 

coverage of t-way testing are greater, sometimes significantly greater, than random testing 

for t = 3, 4, and 5 (Table 7-9). When t = 3, in the totinfo program random testing has a 

smaller standard deviation than t-way testing for both line and branch coverage. However 

t-way testing has higher min, Q1, median and Q3 than random testing. 

We note that for t-way test sets, spread and standard deviation are non-increasing 

as t increases. This indicates that as t increases, code coverage becomes more stable for 

t-way test sets. This is, however, not true for random test sets. For example, for totinfo, the 

spreads of both line and branch coverage when t = 3 are greater than when t =2. This 

information is not shown in Table 7-9, which only show the differences between the two 

methods. The reader is referred to [2] for the specific values of these statistics. 
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 Siemens Faults: Each program has a number of faulty versions in the Siemens 

suite in SIR [12]. Table 7-10 show the maximum number of faults that are detected by the 

t-way and random test sets generated in our experiments.  

Table 7-6. T-way vs. random coverage result of top model of printtokens2  

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev 

Line 

Coverage 

2 1.5 1.5 1.5 1.5 0 1.5 0.49 

3 1.5 1.5 1.5 0 0 1.5 0.67 

4 1.5 0 0 0 0 1.5 0.45 

5 0 0 0 0 0 0 0 

Branch 

Coverage 

2 2.47 2.47 1.23 1.23 0 2.47 0.99 

3 2.47 1.23 1.23 0 0 2.47 1.04 

4 2.47 0 0 0 0 2.47 0.62 

5 0 0 0 0 0 0 0 

Table 7-7. T-way vs random coverage results of replace 

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev 

Line 

Coverage 

2 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

Branch 

Coverage 

2 0 0 0 0 0 0 0.01 

3 0 0 0 0 0 0 -0.15 

4 0 0 0 0 0 0 0 

Table 7-8. T-way vs random coverage results of tcas 

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev 

Line 

Coverage 

2 -30.77 0 0 0 0 -30.77 -3.6 

3 0 0 0 0 0 0 -0.01 

4 0 0 0 0 0 0 0.15 

5 0 0 0 0 0 0 0 

Branch 

Coverage 

2 -19.7 0 0 -1.52 -6.06 -13.64 -0.62 

3 0 0 0 0 0 0 -0.6 

4 3.03 0 0 0 0 3.03 0.71 

5 0 0 0 0 0 0 0 
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Tables 7-10, 7-11 and 7-12 show the results for three programs, i.e., replace, tcas 

and totinfo respectively. The statistics for the other programs are not shown as they are 

exactly the same between t-way and random testing. Again, positive (negative) numbers 

indicate cases where t-way testing performed better (or worse) than random testing. 

For replace, random testing has better Q1, Median, and RelStdDev when t = 2, 

and better RelStdDev when t = 3 (Table 7-11). For tcas, random testing performs better 

when t = 2 and 3, whereas t-way testing performs better when t = 4 and 5 (Table 7-12). For 

totinfo, when t = 2, random testing has a smaller Spread but it has a higher Median and 

Maximum. When t = 3, random testing has a smaller RelStdDev, but all the other measures 

are the same. When t = 4, t-way testing clearly outperforms random testing, and when t = 

5 both reach the maximum results.  

For both t-way and random test sets, spread and RelStdDev are non-increasing 

as t increases. This suggests that the fault detection results become more stable as t 

increases [2]. For tcas, the fault detection results do not become stable as t increases. The 

reason is probably because the degree of all the faults in tcas is more than 5 [15]. 

 

 

Table 7-9. T-way vs random coverage results of totinfo 

Metric Strength Min Q1 Median Q3 Max Spread RelStdDev 

Line 

Coverage 

2 0 1.63 3.25 0 0 0 5.8 

 3 11.38 1.63 1.62 0.61 0 11.38 -1.62 

 4 1.62 13.82 0 0 0 1.62 1.47 

5 13.14 0 0 0 0 13.82 1.49 

Branch 

Coverage 

2 0 1.13 3.97 1.13 0 0 4.4 

3 9.09 

 

1.17 2.27 1.7 0 9.09 -1.42 

4 2.27 9.09 0 0 0 2.27 1.09 

 5 9.09 

 

0 0 0 0 9.09 1.08 
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Table 7-11. T-way vs random Siemens faults detection of replace 

Strength Min Q1 Median Q3 Max Spread RelStdDev 

2 0 -2 -14 0 0 0 -6.88 

 3 0 0 0 0 0 0 -2.49 

4 0 0 0 0 0 0 0 

Table 7-12. T-way vs. random Siemens fault detection of tcas 

Strength Min Q1 Median Q3 Max Spread RelStdDev 

2 1 -1 -1 0 -3 -4 -3.59 

3 -1 -0.75 -1.5 -2 -3 2 -0.35 

4 4 1 0 -1 1 3 0.08 

5 1 0 0 0 0 1 0.17 

 
 

Table 7-13. Siemens faults detection of totinfo 

Strength Min Q1 Median Q3 Max Spread RelStdDev 

2 0 0 2 0 2 -2 2.51 

 3 0 0 0 0 0 0 -1.97 

4 1 0 0 0 0 1 3.02 

5 0 0 0 0 0 0 0 
 

 

Table 7-10. Maximum number of Siemens faults detected  

Programs Total 
Max number of faults 

detected 

printtokens 7 2 

printtokens2 10 7 

replace 32 32 

schedule 9 7 

schedule2 10 3 

tcas 41 41 

totinfo 23 12 
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Mutation Faults: Only the first 30 (out of 100) test sets are executed on each 

mutant. This is because running all test sets for each mutant is prohibitively time 

consuming. For example, it takes 13.19 hours to execute (and evaluate) a 4-way test set 

on all the 128 mutants of the replace program. 

Table 7-14 shows the maximum number of mutants detected by t-way and random 

testing. For the replace program all 143 mutants are detected. For schedule and totinfo, 22 

and 27 mutants could not be detected, respectively.  

Table 7-15 and Table 7-16 show some statistics of mutation fault detection for 

replace and totinfo, respectively. For schedule, t-way and random testing have the same 

results and are thus not shown [2].  

For replace, t-way testing performed as good as or better than random testing 

when t = 2 and 3, whereas random testing performed better when t = 4. More discussion 

on the latter case is discussed later. For totinfo, when t = 2, t-way testing have better results 

in all measures except for Q3 and Max. When t = 3, random testing seems to perform 

better as it has better results in Min, Q1, Spread, and RelStdDev. However, when t = 4, t-

way testing clearly outperforms, and also it reaches the maximum point where the 

maximum number of faults are detected by all test sets. When t = 5, both t-way and random 

testing reach the maximum point. 

Table 7-14. Maximum number of mutation faults detected 

Programs Total Max number of faults detected 

replace 143 143 

schedule 94 72 

totinfo 151 124 
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For replace, when t = 4, the minimum number of faults detected by a t-way test is 

26 less than that by a random test set. We randomly selected 4 out of these 26 mutants 

and analyzed their degrees of faults. 

Our investigation showed that all these faults are more than 9-way, i.e., they 

involve more than 9 parameters. Whereas the probability is not high, we conjecture that 

the reason why there exists a t-way test set that detects none of these 26 mutants is 

because this test set does contain any combinations that trigger these higher-degree faults. 

In contrast, it happens to be that all the random tests happen to contain at least one 

triggering combination for each of these 26 mutants. 

7.4 DISCUSSION 

In most cases, t-way testing performed as good as or better than random testing. 

There are few cases where random testing performed better but with a very small margin. 

Overall, the differences between the two are not as significant as one would have probably 

expected. As shown in Table 7-4, random test sets provided on average a very high level 

of combinatorial coverage, almost always in excess of 80% and frequently over 95%. This 

Table 7-15. T-way vs. random mutation faults detection of replace 

Strength Min Q1 Median Q3 Max Spread RelStdDev 

2 0 0 0 0 0 0 0 

3 0 1 0.5 0 0 0 0.78 

4 -26 0 0 0 0 -26 -3.29 

 

Table 7-16. T-way vs random mutation faults detection of totinfo 

Strength Min Q1 Median Q3 Max Spread RelStdDev 

2 0 0 1 -33.5 -3 3 3.6 

3 -5 -1 0 0 0 -5 -9.76 

4 7 0 0 0 0 7 1.44 

5 0 0 0 0 0 0 0 
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result is consistent with the formal analysis in [23]. All test sets have some degree of t-way 

coverage, regardless of how they are generated.  The fact that the randomly generated 

tests had a very high level of t-way coverage can explain why there is little difference 

between the two techniques.  

Although there was little difference between combinatorial and random tests at a 

particular interaction strength t, fault detection increased rapidly with increasing t.  For 

practical testing, the results suggest that higher levels of combinatorial coverage 

significantly improve fault detection, regardless of whether the combinatorial coverage is 

produced by t-way or random test generation. 

A t-way test set covers all t-way combinations and thus guarantees to detect all t-

way faults. Moreover, a t-way test set also covers many combinations whose size is greater 

than t. Thus, a t-way test set may also detect faults of higher strength, but without 

guarantee. This phenomenon has been observed in our experiments. For example, all the 

faults that come with totinfo in the Siemens suite have a degree of at least three. However, 

one of the 2-way test sets generated in our experiments was able to detect 11 of these 

faults. Another example is the tcas program, for which all of the Siemens faults are more 

than 5-way. Five 5-way test sets generated in our experiments detected all these faults.   

Another example is the second faulty version of the schedule program from the 

SIR benchmark. The fault is detected by all 100 2-way test set, while it is a 3-way fault. 

The fault is shown in Figure 7-1. The Schedule program takes the following inputs: (1) three 

non-negative integers representing the number of processes in three different priority 

queues; and (2) a list of commands that must be executed on the queues. The output of 

this program is a list of numbers indicating the order in which the processes exit (from the 

scheduling system).  
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There are seven commands: new job, upgrade_prio, block, unblock, 

quantum_expire, finish and flush. The faulty statement is in the unblock_process function 

where a process that should be unblocked is selected from the blocked  queue.  In  the  

error - free  version  the  unblock command operates on the n-th process where n =

(int) (count ∗ ratio +  1). In the faulty version n is computed by the two marked statements 

in Figure 7-1. 

To trigger this fault, the following two conditions need to be satisfied: (1) the 

unblock_process must be called; and (2) the integer value, n, computed by the faulty 

statements should be different from the one computed by the error-free statement.  

The values of two parameters, ratio and size of the blocked queue must be 

selected such that the second condition is satisfied. The blocked queue is initially empty 

 

 
Figure 7-1. Second Siemens Fault of Schedule Program 
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and the block command should be called to add process to the blocked queue and 

therefore change its size.  

Thus the following combination of the three parameters detects the fault: (1) 

number of times the block command is called (which determines the size of the blocked 

queue), (2) the value of ratio,  and (3) calling the unblock command at least once.  Based 

on the abstract model of the schedule program [15], there exist a total of six 3-way inducing 

combinations that triggers this fault. These inducing combinations are shown in Table 7-17. 

Each of the 100 2-way test sets contains at least one of these six inducing combinations 

and thus detects this fault.  

7.5 THREADS TO VALIDITY 

Threats to internal validity are factors that may be responsible for the experimental 

results, without our knowledge. We have tried to automate the experimental procedure as 

much as possible, as an effort to remove human errors. In particular, we build a tool that 

automatically compares the results of the error-free version and a faulty version to evaluate 

each test run. Further, the consistency of the results are checked manually to determine 

whether the tool works correctly or not. 

Table 7-17. 3-way inducing combinations of the second 

faulty version of the schedule 

3-way inducing combination 

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.5" 

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.1" 

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.4" 

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.9" 

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.5" 

Block ← "1", Unblock ← "1", Unblock_ratio ← "{r} = 0.1" 
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Threats to external validity occur when the experimental results could not be 

generalized to other programs. We use subject programs from the Siemens suite [12]; 

these programs are created by a third party, but the subject programs are programs of 

relatively small size and with a small number of seeded faults. To mitigate this threat, the 

mutation faults are added to the experiments. But more experiments on larger programs 

with real faults can further reduce this threat. 

7.6 RELATED WORK 

A number of studies have been reported that evaluate the effectiveness of t-way 

testing. In this section, we focus on related work that compares the effectiveness of t-way 

and random testing.  

Schroeder et al. in [20] conducted an experiment to compare the fault detection 

effectiveness of combinatorial and random test sets. The subject programs are two real-

life programs in C++, including the Data Management Analysis System (DMAS) and the 

Loan Arranger System (LAS), only one functionality of each program is tested. Their results 

show that there is no significant difference in t-way and random testing in terms of fault 

detection. 

DMAS and LAS have 8.7 and 6.2 KLOC, and their input models are represented 

as (216  × 5 × 8) and (27  × 310 × 42), respectively. For each program, and for each 

strength t, where t is from 1 to 4, 10 t-way test sets are generated using a tool called TVG 

[20]. For each t-way test set, a random test set of the same size is generated. Mutants are 

created manually to generate faulty versions. Mutants that are killed by all the 1-way sets 

are removed. A total of 88 mutants for DMAS and a total of 82 mutants for LAS are used 

in their experiments.  

In [20], a random test is generated by randomly selecting a test from all possible 

tests. This is different from our approach in which a random test is generated by giving 
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each parameter a random value in its domain. This difference may slightly affect the 

combinatorial test coverage achieved by a random test set.  Note that the approach in [20] 

assumes that all possible tests are first generated, which may not be practical for large 

input models. 

Ellimis et al. [13] [14] report an experiment that tests 10 different functions of a 

system called Wallace that controls a large industrial engine. A mutation tool is used to 

generate faulty versions. For each function, three test sets are generated, one t-way test 

set, one pure random test set, and one manually generated test set. Pure random tests are 

generated without using an input model.  

Their results show that 2-way test sets are not as effective as manually generated 

tests in term of fault detection. But a t-way test set of a higher strength could be as effective 

as a manually generated test set. Their results also show that random test sets may often 

provide good results. For example, for 5 out of 10 programs, random and t-way test sets 

provide the same results, and in one case random test sets even produce better results 

than t-way test sets.  

Several studies are reported that compare t-way testing and random testing for 

testing logical expressions [5][17] [21]. The logical expressions are either taken from a 

program such as TCAS II or generated randomly. Mutants are generated to create faulty 

versions. The results consistently show that t-way testing is always more effective, and 

sometimes significantly more, than random testing 

Kuhn et al. [18] report a study that applies t-way testing and random testing to 

detect deadlocks in a network simulator called Simured. The input model for the simulator 

is (23 × 3 × 49 × 5). T-way test sets are generated by ACTS with t = 2 to 4. For each t-way 

test set, eight random test sets of the same size are generated corresponding to each 

combinatorial set. Their experiments show that (1) random testing has better results than 
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2-way testing; (2) no significant difference exists between random and 3-way testing; (3) 

4-way testing is more effective than random testing.   

Bell and Vouk applied 2-way testing and random testing to a network-centric 

software [6]. They found that 2-way testing is more effective in fault detection. In particular, 

when there is at least one parameter with more than 10 values, random testing does not 

detect about 75% of faults that are detected by 2-way testing  

Bryce et al. compared the coverage of combinatorial and random testing on a 

system called Flight Guidance System (FGS) [8]. The FGS system has 40 input 

parameters, each of which has 2 values. Four t-way test sets with t = 2 to 5, as well four 

random test sets of the same size, are generated. Their results show that t-way testing is 

more effective than random testing for the FGS system.  

A formal analysis in [3] shows that a random test set of the same size as a t-way 

test set, could trigger at least one t-way fault with a probability of greater than 0.63. This is 

consistent with our results in Table 7-4. The analysis in [3] also shows random testing 

becomes more effective as the number of parameters increases and converges toward 

being equally effective as combinatorial testing. The analysis assumes no constraints that 

exist between parameters.    

Finally we note that Czerwonka reported a study [9], that applies t-way testing to 

four utility programs in Windows 7, including attrib.exe, fc.exe, find.exe and findstr.exe. The 

focus of the study is to investigate the stability of t-way testing in terms of line and branch 

coverage. The results show that t-way test sets provide stable coverage when t = 2. This 

study, however, does not make a comparison with random testing. 

7.7 CONCLUSION 

In this paper, we report a study that compares the effectiveness of t-way testing to 

that of random testing in terms of both code coverage and fault detection. In particular, we 
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investigated the stability of the two techniques. Our results show that in most cases, t-way 

testing performed as good as or better than random testing. There are few cases where 

random testing performed better, but with a very small margin. Overall, the differences 

between the two are not as significant as one would have probably expected. A possible 

explanation is that most random test sets seem to achieve a high level of t-way coverage. 

More studies are needed to better understand the effectiveness of the two testing 

techniques. 

We plan to conduct more empirical studies to further evaluate the effectiveness 

and stability of combinatorial testing. We plan to use programs that are larger and/or more 

complex than the Siemens programs. We also plan to conduct studies where the degree 

of fault can be better controlled. This will help us to better study the relationship between 

the combinatorial coverage of a test set and the faults the test set is able to detect. 
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 Conclusion 

In this dissertation, we present a fault localization approach based on 

combinatorial testing. Our approach, i.e., BEN, consists of two phases, i.e., failure-inducing 

combination identification and faulty statement localization.  

The novelty of our approach is twofold. In the first phase, we introduced two notions 

of suspiciousness, suspiciousness of a combination and suspiciousness of its 

environment. BEN uses these notions to rank suspicious combinations. The higher the 

suspiciousness of a combination, the lower the suspiciousness of its environment, the 

higher this combination is ranked.  

In the second phase, we generate a small group of tests that include a failing test 

and several passing tests that are very similar to the failing test. The spectra of these tests 

are analyzed to rank statements in terms of their likelihood to be faulty. This approach is 

inspired by the notion of nearest neighbor, i.e., the faulty statement is likely to appear in 

the execution trace of a failed test but not in the execution trace of a passed test which is 

similar to the failed test as possible.    

It is important to emphasize that BEN differs from existing spectrum-based 

approaches such as Tarantula and Ochiai in that existing approaches require the spectra 

of all test executions be recorded. If a test set is already executed without being traced, 

the test set must be re-executed to collect traces before they can be used by these 

approaches. In contrast, BEN only requires the spectra of a small number of tests 

generated in the second phase and can be applied after a regular testing process is 

performed where test executions are not traced.  

We conducted our experiments in which BEN is applied to the Siemens suite and 

two real-life programs, i.e., the grep and gzip programs. Our experimental results show 

that BEN is very effective, i.e., significantly reduces the number of statements to be 
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inspected for fault localization, and efficient, i.e., a very small number of tests needs to be 

generated and traced. Moreover, the comparison of BEN to two spectrum-based 

approaches, Tarantula and Ochiai, show that BEN achieves the results that are competitive 

or even better than Tarantula 18and Ochiai while requiring significantly fewer tests to be 

instrumented.  

This dissertation also includes two empirical studies that were conducted as part 

of our effort to evaluate the effectiveness of BEN. These studies provide additional data 

that demonstrate the effectiveness of combinatorial testing. In the first study, we applied 

combinatorial testing on the Siemens programs. Our experimental results show that 

combinatorial testing is very effective in that it detects most faulty versions of these 

programs. In the second study, we compared combinatorial testing and random testing in 

terms of code coverage and fault detection. In particular, we investigated the stability of 

the two techniques. Our results suggest that in most cases combinatorial testing performs 

better or as good as random testing.   

We plan to conduct more empirical studies to further evaluate the performance of 

our approach on different fault types. In particular, we plan to investigate how BEN works 

on security faults such as Buffer Overflow and Cross Site Scripting vulnerabilities.  Security 

faults seem to demonstrate some different properties than functional faults. It is expected 

that BEN needs to be adapted for localizing security faults. We also plan to investigate how 

to adapt our approach to work with an arbitrary test set. The challenge is to deal with the 

fact that unlike a combinatorial test set, an arbitrary test set does not guarantee that all t-

way combinations are covered. This could potentially reduce the effectiveness of our 

approach. 


