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ABSTRACT

PERFORMANCE EVALUATION OF MATRIX OPERATIONS ON

MAP-REDUCE QUERY LANGUAGE

AHMED ABDUL HAMEED ULDE, M.S.

The University of Texas at Arlington, 2016

Supervising Professor: Leonidas Fegaras

Non-Negative matrix factorization is well-known complex machine learning al-

gorithm which is also used in collaborative filtering. Collaborative filtering technique

is used in recommendation systems and these techniques aim at predicting the miss-

ing values in user-item association matrix. User-item association matrix contains

number of users as rows and number of movies as columns and the values are the

ratings given by user to respective movies. These matrices have large dimensions,

missing values and needs parallel processing. Map reduce query language (MRQL) is

a query processing and optimization system for large-scale, distributed data analysis,

built on top of Apache hadoop, spark, hama and flink. Large scale matrix opera-

tions require proper scaling and optimization in distributed systems. Therefore, In

this work we are analyzing the performance of MRQL on complex matrix operations

by using different sparse matrix datasets in spark mode. This work aims at perfor-

mance analysis of Map Redce Query Language on complex matrix operations and

ease of scalability of these operations. We have performed simple matrix operation

like multiplication, division, addition, subtraction and also complex operation like
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factorization. Gaussian non negative matrix factorization and stochiastic gradient

descent based matrix factorization are the two algorithms which are tested in spark

and flink modes of MRQL with dataset of movie ratings. The performance analysis

in the experiments will help readers to understand and analyze the performance of

MRQL and also understand more about MRQL.
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CHAPTER 1

Introduction

There is a growing demand for large-scale data processing. We have variety

of tools and techniques to process this large-scale data. Hadoop, Hama, Spark and

flink are the most widely used platforms for distributed computing of these large-

scale data. We also have some query languages like pig, hive, latin which allow us to

write queries but the do not allow programmers to write complex machine learning

algorithms. In this theis, we are evaluating the performance of one such framework

called Map Reduce Query Language (MRQL pronounced as miracle) based on matrix

operations. The MRQL is like an abstraction layer over Hadoop, Hama, Spark and

flink which allows programmers to complex machine learning algorithms in the form

of MRQL query and run these queries on Hadoop, Hama, Spark or Flink effortlessly.

We are running matrix factorization algorithm in spark mode on various datasets

and record their performance and analyze the results for better understanding of the

system. We will also look at the performance of different approach towards matrix

factorizarion and understand the algorithms. We will also discuss the possible future

scope.
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CHAPTER 2

Background

The massive data explosion over past few years have made distributed com-

puting an important area. There has also been a growing need for scalable machine

learning algorithms. We have various platforms for large scale data processing like

hadoop, spark, hama, flink. Along with increasing data we have increasing tools and

technologies to analyze this data. A distributed program on one platform like hadoop

has to be completely re-written if we decide to optimize the program by moving from

hadoop to spark. Furthermore each map reduce program has to be configured man-

ually for tuning various input sizes or cluster size for scalability of the program and

to achieve better run time.

2.1 Available Frameworks for Distributed Processing

There are several frameorks for distributed processing like hadoop, spark, hama,

flink. Other related frameworks are pig, hive, latin, mahout and some more. We will

discuss a some of these frameworks in this section.

2.1.1 Hadoop

Hadoop MapReduce is a software framework for easily writing applications

which process vast amounts of data in parallel on large clusters. A Mapreduce job

usually splits the input data-set into independent chunks which are processed by the

map tasks in a completely parallel manner. The framework sorts the output of the

maps which are then input to reduce tasks[1].Hadoop project consists of four main
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modules. Firstly, Hadoop distributed file system (HDFS) is a file system designed to

store large amounts of data across multiple nodes of commodity hardware.Second is

the mapreduce engine which allows to perform parallel computations.Third we have

YARN(Yet Another Resource Negotiator) which performs the resource management

duties allowing a separation between the infrastructure and the programming model.

Lastly we have common module which includes a set of common utilities like interface

and tools for configurarions of rack awareness, authorization of proxy users, authenti-

cation, Hadoop Ket Management Server, java implementation for compression codecs,

I/O utilities, etc[2].

2.1.2 Spark

Spark started as a research project at the UC Berkeley AMPLab in 2009, and

was open sourced in early 2010[3]. It is based on MapReduce but addresses a number

of the deficiencies in hadoop like in-memory processing and low latency. Spark sup-

ports iterative computation like hadoop and it improves on speed and resource issues

by utilizing in-memory computation. Then main abstractions used in this project are

called Resilient Distributed Datasets (RDD), which store data in-memory and pro-

vide fault tolerance without replication [4]. RDDs are like distributed shared memory

which reduces the number of read write operation necessary. Spark won the Daytona

GraySort Benchmark Contest [5]. Previously Hadoop held a record for sorting 102.5

TB on 2100 nodes in 72 min. Spark sorted 100 TB on 206 nodes in only 23 min,

three times faster with one tenth the number of machines [6][2].

2.1.3 Flink

Flink was developed at the Technical University of Berlin under the name

Stratosphere [7]. It offers capability for both batch and stream processing, thus
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allowing for the implementation of a Lambda Architecture. Lambda architecture is

a data processing architecture designed to handle massive quantity of data by taking

advantage of batch and stream processing methods. It is a scalable, inmemory and

has its own runtime, rather than being built on top of MapReduce. As such, it can be

integrated with HDFS and YARN or run completely independent from the Hadoop

ecosystem[2]. Flink uses more resouces but finishes job in less time. Flink is faster

than spark.

2.2 Map Reduce Query Language

More data means more problems and too many tools adds up to the problem.

MRQL is a query processing platform which allows user to write programs and run the

query in four modes namely: hadoop, spark, hama and flink. Also you can specify the

number of nodes which further helps in scaling up the query for massive dataset. The

MRQL query language is powerful enough to express most common data analysis

tasks over many forms of raw in-situ data, such as XML and JSON documents,

binary files, and CSV documents. MRQL is more powerful than other current high-

level MapReduce languages, such as Hive and PigLatin, since it can operate on more

complex data and supports more powerful query constructs, thus eliminating the

need for using explicit Java code. With MRQL, users are able to express complex

data analysis tasks, such as PageRank, k-means clustering, matrix factorization, etc,

using SQL-like queries exclusively, while the MRQL query processing system is able

to compile these queries to efficient Java code[1] .

2.2.1 The MRQL Model and Language

MRQL supports basic type like bool, short, int, long, float, double and string.

It also supports tuples, list, records, bag, user-defined type, and datatype T and a
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persistent collection. The MRQL expression that makes a directory of raw files which

can be accessed by a query is as follows: source(parser,uri,..) uri is the location of the

directory that containes the files and parser is a function name that will process the

file. Xml parser , Jason parser and a line based parser are experimented in this paper.

MRQL handles a number of collection types such as lists(sequences), bags(multisets),

and key value pairs. List supports operations based on order such as indexing.

2.2.1.1 The MRQL Physical Operators

This section will explain the translation of MRQL queries to efficient workflows

of MR jobs. The physical operators of map reduce query language form an algebra

over the domain DataSet(T) which is equivalent to the type bag(T). This domain is

associated with a set of source list where each source consists of a file or dir name in

DFS along with input file format which is a sequence file or a.k.a. binary file. The

following are the most important physical operators used by MRQL:

2.2.1.1.1 Map Reduce Operation The most important operation is map re-

duce as explained above. The map function transforms the value of type from the

input dataset into a bag of intermediate key/value pairs of type bag((k,γ)). The re-

duce function merges these intermediate pairs associated with same keys and produces

a bag(β).

2.2.1.1.2 Reduce Side Join This is the best known join algorithm also known

as partitioned joined or COGROUP in Pig. It mixes the the tuples of two input data

sets X and Y at the map side, groups the tuples by join key and performs a cross

product between the tuples from X and Y that correspond to the same join key at

the reduce side.
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SELECT x.C , y.D

FROM X as x, Y as y

WHERE x.A=y.B //join operation

Class Mapper1

Method map(key, x)

Emit(x.A,(1,x));

Class Mapper2

Method map(key, y)

Emit(y.B,(2,y));

Class Reducer

//Reduce side join

Method reduce(key,values)

For each(1,x)values

For each(1,x)values

Emit(key,(x.C,y.D));

2.2.1.1.3 Fragment Replicate Join In this implementation the entire data set

Y is replicated by caching in the DFS and each map worker performs the join between

each value of X and the entire replicated dataset Y. This technique can be useful if

the data y is small enough to fit in the mappers memory.
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2.2.1.1.4 Other Physical operators Cross products and -joins are evaluated

in MRQL by using a distributed block nested loop which joins the data set X of type

bag() with data set Y of type bag() to form a data set of type bag().

2.3 MRQL Language Description

MRQL is SQL-like query language and not sql and it can be used for large-scale

data analysis on a computer cluster. It is powerful enough to process data in various

formats like XML, JSON, binary files, csv files and also supports a richer data model,

arbitrary query nesting and user defined types and functions. You can implement

complex machine learning algorithms in MRQL to obtain a good performance and

scalability. To evaluate queries in map reduce mode you must run the script bin/mrql

in installation directory, for spark mode you must run the script bin/mrql.spark and

for flink mode you can run the script bin/mrql.flink. MRQL can run the query in

various modes and also various configurations. To run the query in local mode before

you run it on cluster mrql -local command should be used. To run the query in

distributed mode on cluster you must use mrql -dist command. In cluster mode, the

number nodes or containers to process your query in spark mode or any other mode

can also be specified using mrql.spark -dist -nodes 4 query.mrql. Data types supported

by MRQL are a basic type: bool, short, int, long, float, double, string, a tuple ( t1,...,

tn ), a record < A1: t1, ..., An: tn >, a list (sequence) [t] or list(t), a bag (multiset)

t or bag(t), a user-defined type, a data type T, a persistent collection !list(t), ![t],

!bag(t), or !t where t, t1,...,tn are types. MRQL supports the usual arithmetic and

comparison operations for numbers. An integer constant is of type int, a real number

constant is a float. They can be up-coerced using the syntax e as t. For example, 1

as float. Arithmetic expressions are overloaded to work on multiple numerical types,

such as 10+3.4E2. A bool can only be true or false. Boolean conditions can be
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checked with the if e1 then e2 else e3 syntax and can be combined with the and, or,

and not operators. Strings are concatenated with +. Tuples are constructed using (

e1, ..., en ) and records are constructed using < A1: e1, ..., An: en >, where e1, ...,

en are expressions. To get the ith element of a tuple x (starting from 0), use x#i. To

get the A component of a record x, use x.A. The repetition syntax is repeat v = e

step body [ limit n ] where v is repetition variable and e is the expression.

2.3.1 Frameworks related to MRQL

MRQL is a query processing and optimization system for large-scale, distributed

data analysis, built on top of Apache Hadoop, Spark, Hama, and Flink. MRQL has

some overlapping functionality with Hive, Impala and Drill, but one major difference

is that it can capture many complex data analysis algorithms that can not be done

easily in those systems in declarative form. Most programmers prefer using a high

level declarative language like Hive for data-intensive computations but complex data-

analysis cannot be expressed in Hive. Complex data analysis tasks, such as PageRank,

k-means clustering, and matrix multiplication and factorization, can be expressed

as short SQL-like queries in MRQL, while the MRQL system is able to evaluate

these queries efficiently. Also MRQL query can be run in four modes to get better

performance and scalability. MRQL also overcomes the limitations of google pregel

and systemML.

Google Pregel aims at solving practical computing problems concern large

graphs such as the Web graph and various social networks. These graphs have billions

of vertices, trillions of edgesposes which poses a challenge to solve them efficiently.

Programs are expressed as a sequence of iterations, in each of which a vertex can

receive messages sent in the previous iteration, send messages to other vertices, and

modify its own state and that of its outgoing edges or mutate graph topology. This
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vertexcentric approach is flexible enough to express a broad set of algorithms. The

model has been designed for efficient, scalable and fault-tolerant implementation on

clusters of thousands of commodity computers, and its implied synchronicity makes

reasoning about programs easier. Distribution related details are hidden behind an

abstract API. The result is a framework for processing large graphs that is expressive

and easy to program.[8] A pagerank algorithm in pregel would be like:

class PageRankVertex

: public Vertex<double, void, double> {

public:

virtual void Compute(MessageIterator* msgs) {

if (superstep() >= 1) {

double sum = 0;

for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();

*MutableValue() =

0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();

SendMessageToAllNeighbors(GetValue() / n);

} else {

VoteToHalt();

}

}
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};

SystemML provides declarative large-scale machine learning (ML) that aims at

flexible specification of ML algorithms and automatic generation of hybrid runtime

plans ranging from single-node, in-memory computations, to distributed computa-

tions on Apache Hadoop and Apache Spark. ML algorithms are expressed in an

R-like or Python-like syntax that includes linear algebra primitives, statistical func-

tions, and ML-specific constructs. This high-level language provides full flexibility in

expressing custom analytics and data independence from the underlying input for-

mats and physical data representations. Automatic optimization according to data

and cluster characteristics ensures both efficiency and scalability.

Poisson Nonnegative Matrix Factorization in SystemML R-like Syntax

while (iter < max_iterations) {

iter = iter + 1;

H = (H * (t(W) %*% (V/(W%*%H)))) / t(colSums(W));

W = (W * ((V/(W%*%H)) %*% t(H))) / t(rowSums(H));

obj = as.scalar(colSums(W) %*% rowSums(H)) - sum(V * log(W%*%H));

print("iter=" + iter + " obj=" + obj);

}

SystemML computations can be executed in Standalone, Hadoop or Spark

modes. This flexibility improves resource utilization and efficiency. SystemML can

also be operated via Java and Scala.

Running SystemML Programs in different modes

// Standalone
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./bin/systemml test.dml

// Spark

$SPARK_HOME/bin/spark-submit SystemML.jar -f test.dml -exec hybrid_spark

// Hadoop MapReduce

hadoop jar SystemML.jar -f test.dml -exec hybrid

SystemML provides Automatic Optimization. Algorithms specified in DML and

PyDML are dynamically compiled and optimized based on data and cluster charac-

teristics using rule-based and cost-based optimization techniques. The optimizer au-

tomatically generates hybrid runtime execution plans ranging from in-memory single-

node execution to distributed computations on Spark or Hadoop. This ensures both

efficiency and scalability. Automatic optimization reduces or eliminates the need to

hand-tune distributed runtime execution plans and system configurations.[9]

As compared to systemml, MRQL can be operated in Hadoop, Hama, Spark

and flink modes. It also can process large scale graph based data like google pregel.

A variety of algorithms can be written as MRQL queries and scaled efficiently.
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CHAPTER 3

Algorithms

In this chapter we will discuss the important algorithms used for matrix oper-

ations. We will understand the matrix factorization concepts and also learn about

how to perform MRQL queries for matrix operations.

3.1 Math for Matrix Factorization

Matrix factorization is a technique for dimensionality reduction that factorizes

a matrix into a product of two matrices. Collaborative filtering based methods in

recommendation systems are based on two models namely neighbourhood methods

and latent factor models. Neighbourhood methods are centered on computing the

relationships between items or, alternatively, between users. Latent factor models

are an alternative approach that tries to explain the ratings by characterizing both

items and users on, say, 20 to 100 factors inferred from the ratings patterns. These

factors are called latent factors because in statistics latent variables are variables

that are not directly observed but are rather inferred through a mathematical model

from other variables that are observed or directly measured[10].The most successful

realization of latent factor model is matrix factorization. Due to wide use of matrix

factorization in various domains like recommendation systems, it is important to scale

this complex operation for large input matrices.[11] In attempting to discover latent

factors we make an assumption that the number of features would be smaller that the

number of users or movies because it would not be reasonable to assume that each

user is associated with a unique feature. To understand the mathematics of matrix
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factorization let’s say we have a set U of users, and a set D of items. Let R of size U

× D be the matrix that contains all the ratings that the users have assigned to the

items. Also, we assume that we would like to discover K latent features. Our task,

then, is to find two matrics matrices P (a U × K matrix) and Q (a D × K matrix)

such that their product approximates R:

R ≈ P×QT = R̂

In this way, each row of P would represent the strength of the associations

between a user and the features. Similarly, each row of Q would represent the strength

of the associations between an item and the features. To get the prediction of a rating

of an item dj by ui, we can calculate the dot product of the two vectors corresponding

to ui and dj:

r̂ij = pTi qj =
∑k

k=1 pikqkj

Now, we have to find a way to obtain P and Q. One way to approach this

problem is the first intialize the two matrices with some values, calculate how ‘different

their product is to M, and then try to minimize this difference iteratively. Such a

method is called gradient descent, aiming at finding a local minimum of the difference.

The difference here, usually called the error between the estimated rating and

the real rating, can be calculated by the following equation for each user-item pair:

e2ij = (rij − r̂ij)2 = (rij −
∑K

k=1 pikqkj)
2

Here we consider the squared error because the estimated rating can be either

higher or lower than the real rating.

To minimize the error, we have to know in which direction we have to modify

the values of pik and qkj. In other words, we need to know the gradient at the current

values, and therefore we differentiate the above equation with respect to these two

variables separately:
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∂
∂pik

e2ij = −2(rij − r̂ij)(qkj) = −2eijqkj
∂
∂qik

e2ij = −2(rij − r̂ij)(pik) = −2eijpik

Having obtained the gradient, we can now formulate the update rules for both pik

and qkj: p′ik = pik + α ∂
∂pik

e2ij = pik + 2αeijqkjq
′
kj = qkj + α ∂

∂qkj
e2ij = qkj + 2αeijpik

Here, α is a constant whose value determines the rate of approaching the minimum.

Usually we will choose a small value for α, say 0.0002. This is because if we make too

large a step towards the minimum we may run into the risk of missing the minimum

and end up oscillating around the minimum.

Using the above update rules we can iteratively perform the operation until

the error converges to its minimum. We can check the overall error as calculated

using the following equation and determine when we should stop the process. E =∑
(ui,dj ,rij)∈T eij =

∑
(ui,dj ,rij)∈T (rij −

∑K
k=1 pikqkj)

2 The above algorithm is a very

basic algorithm for factorizing a matrix. There are a lot of methods and a common

extension to this basic algorithm is to introduce regularization to avoid overfitting.

This is done by adding a parameter β and modify the squared error as follows: e2ij =

(rij −
∑K

k=1 pikqkj)
2 + β

2

∑K
k=1 (||P ||2 + ||Q||2) In other words, the new parameter β

is used to control the magnitudes of the user-feature and item-feature vectors such

that P and Q would give a good approximation of R without having to contain large

numbers. In practice, β is set to some values in the range of 0.02. The new update

rules for this squared error can be obtained by a procedure similar to the one described

above. The new update rules are as follows.[12] p′ik = pik+α ∂
∂pik

e2ij = pik+α(2eijqkj−

βpik)q
′
kj = qkj + α ∂

∂qkj
e2ij = qkj + α(2eijpik − βqkj) Having the understanding of basic

mathematics of matrix factorization we can now proceed towards the understanding

of this algorithm in distributed mode.
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3.2 Matrix Factorization in distributed mode

The Matrix Factorization can be done in distributed mode by breaking down

the algorithm to a series of matrix operations like multiplication and division. The

algorithm for gaussian matrix factorization is given below.

Algorithm 1 Gaussian Non-Negative Matrix Factorization

V = read(in/V); //read input matrix V

W = read(in/W); //read initial values of W

H = read(in/H); //read initial values of H

max iteration = 20;

i = 0;

while i < max iteration do

H = H ∗ (W TV / W TWH);

W = W ∗ (V HT / WHHT );

i = i + 1;

end while

write(W,out/W); //write result W

write(H,out/H); //write result H

In the above algorithm, XT denotes the transpose of the matrix X, XY denotes

multiplication of matrix X and Y, X∗Y and X/Y denotes cell-wise multiplication

and division respectively. Consider the expression WHHT in the above algorithm.

This expression can be evaluated in two orders (WH)HT or W (HHT ). The choice

to pick right order may seem to be easy but matrix multiplication itself can be done
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in different ways. The two plans for matrix multiplication in mapreduce modes are

replication based matrix multiplication(RMM) and Cross Product based Matrix Mul-

tiplication(CPMM). So the system to be efficient it has to choose the right order for

evaluating the matrices and then for the chosen order it should chose from RMM or

CPMM. We can iterate over these update rules until we regenerate the input matrix.

These update rules can further be modified ti achieve poissons non-negative matrix

factorization and exponential non-negative matrix factorization.

Poissons Non-Negative Matrix Factorization

H \leftarrow H.*\frac{W^T*(V/WH)}{colsums(W)^T}

W \leftarrow W.*\frac{W*(V/WH)*H^T}{rowsums(H)^T}

Exponential Non-Negative Matrix Factorizarion

H \leftarrow H.*\frac{W^T[A./(WH)^2]}{W^T[1./WH]}

W \leftarrow W.*\frac{[A./(WH)^2]H^T}{[1./WH]H^T}

A matrix is treated as a triple (v,i,j) in MRQL where v is the value and i,j

are the row and column numbers respectively. The input file is like a adjacency list

represtation of matrix in text format and stored in HDFS. A query can be written

to read this input and perform operations on the input data. In MRQL the matrix

multiplication is achieved by replication of n partitions for N rows on m partitions on

M columns and p equals to n*m. These multiplications are gathered on reduce side

for sum of all p. This can be achieved in one map reduce job.

16



The basic operations involved in the above algorithms like multiplication, trans-

pose, cell-wise multiply and cell-wise division can be expressed in the form of MRQL

queries as shown below:

macro transpose ( X ) {

select (x,j,i)

from (x,i,j) in X

};

macro multiply ( X, Y ) {

select (sum(z),i,j)

from (x,i,k) in X, (y,k,j) in Y, z = x*y

group by (i,j)

};

macro Cmult ( X, Y ) {

select ( x*y, i, j )

from (x,i,j) in X, (y,i,j) in Y

};

macro Cdiv ( X, Y ) {

select ( x/y, i, j )

from (x,i,j) in X, (y,i,j) in Y

};

Using the above basic operations we can express the gaussian non-negative

matrix factorization as shown below:

Gaussian Matrix Factorization in MRQL
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macro factorize ( V, Hinit, Winit ) {

repeat (H,W) = (Hinit,Winit)

step ( Cmult(H,Cdiv(multiply(transpose(W),V),multiply(transpose(W),multiply(W,H)))),

Cmult(W,Cdiv(multiply(V,transpose(H)),multiply(W,multiply(H,transpose(H))))) )

limit 10

};

Similar to Gaussian Matrix Factorization we can implement exponential matrix

factorization and poissons matrix factorization as show below:

Exponential Matrix Factorization in MRQL

macro efactorize (V, Hinit, Winit){

repeat (H,W) = (Hinit,Winit)

step( Cmult(H,Cdiv(multiply(transpose(W),Cdiv(V,square(multiply(W,H)))),

multiply(transpose(W),Ccdiv(1,multiply(W,H))))),

Cmult(W,Cdiv(multiply(Cdiv(V,square(multiply(W,H))),transpose(H)),

multiply(Ccdiv(1,multiply(W,H)),transpose(H)))))

limit 4

};

Poissons Matrix Factorization in MRQL

macro pfactorize (V, Hinit, Winit){

repeat (H,W,obj) = (Hinit, Winit)

18



step(

Cmult(H,Cdiv(multiply(transpose(W),

Cdiv(V,multiply(W,H)),transpose(colsums(W)))),

Cmult(W,Cdiv(multiply(Cdiv(V,multiply(W,H)),

transpose(H)),transpose(rowsums(H)))) )

Csub(Cmult(colSums(W),rowSums(H)),sum(multiply(V,Clog(multiply(W,H))));

limit 4

};

Another variant of matrix factorization would be with the use of gradient de-

scent method. The math for the update rules used in gradient descent method has

been explain at the beginning of this chapter. Below is the MRQL query for the

gradient descent method:

Gradient Descent Non-Negative Matrix Factorization In MRQL

a = 0.002;

b = 0.02;

macro factorize ( R, Pinit, Qinit ) {

repeat (E,P,Q) = (R,Pinit,Qinit)

step ( Csub(R,multiply(P,transpose(Q))),

Cadd(P,mult(a,Csub(mult(2,multiply(E,transpose(Q))),mult(b,P)))),

Cadd(Q,mult(a,Csub(mult(2,multiply(E,transpose(P))),mult(b,Q)))) )

limit 4

};

let (E,X1,X2) = factorize(Mmatrix,Hmatrix,Wmatrix)
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in multiply(X1,transpose(X2));

Thus, in this capter we saw various algorithms and queries in MRQL that were

used for the performance evaluation.
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CHAPTER 4

Experimentation

In this chapter we will look at the performance of MRQL on Matrix factorization

algorithm in various modes and configuration and discuss about it.

4.1 Experimental setup

The experiments were performed on a cluster consisting of twelve servers. The

Cluster is made of 12 servers connected through 1 Gigabit Ethernet Switch where each

server is managed by Centos. A single server consists of Xeon CPU, 4 GB RAM, and

1.4 TB hard disk. One of the node acts as master, which consists of 2.7 TB hard

disk.

The dataset includes matrices with some missing values which is our sparse

matrix input. Some data was obtained from movielens dataset while most of the data

was generated randomly with a python script. The dataset we used includes 10000,

50000, 500000, 900000, 4000000 values in matrix. These values are the number of

values that should be in the matrix as a dense matrix. The percentage of sparsity

doesnt affect our performance evaluation as the algorithm starts with dense W and

H. All the data was stored in HDFS and following query was used to read it from

HDFS.

select (x,i,j) from (x,i,j) in

source ( line, ”hdfs/matrix900k.txt”, ”,”, type ((double,long,long)) );
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The gaussian non-negative matrix factorization is run using the spark mode

and flink mode with 4, 8, 12 nodes using the command given below:

bin/mrql.spark -dist -nodes 4 tests/query.mrql

bin/mrql.spark -dist -nodes 8 tests/query.mrql

bin/mrql.spark -dist -nodes 12 tests/query.mrql

bin/mrql.flink -dist -nodes 4 tests/query.mrql

bin/mrql.flink -dist -nodes 8 tests/query.mrql

bin/mrql.flink -dist -nodes 12 tests/query.mrql

Table 4.1. Runtime of Gaussian Matrix Factorization in spark mode

No. of values in matrix 8 Nodes 12 Nodes 16 Nodes
10000 42.67 47.479 65.183
50000 76.349 99.412 118.802
500000 263.169 322.64 471.61
900000 608.336 362.368 336.238
4000000 1226.356 825.328 684.115

Table 4.2. Runtime of Gaussian Matrix Factorization in flink mode

No. of values in matrix 4 Nodes 8 Nodes 12 Nodes
10000 35.938 29.193 32.015
50000 63.226 37.183 60.427

4000000 97.101 53.837 66.258

In the above performance graph it is noticable that for smaller datasets with

16 nodes the runtime is more due to communication overhead as compared to large
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Figure 4.1. Performance of GNMF over N=8, 12, 16 in Spark Mode.

Table 4.3. Runtime of Exponential Matrix Factorization in spark mode

No. of values in matrix 4 Nodes 8 Nodes 12 Nodes
10000 56.159 69.007 71.706
50000 99.572 126.734 166.755
500000 550.898 483.877 414.459
900000 1642.56 1602.69 737.703
1700000 1901.48 1428.73 880.727
4000000 5277.86 4034.08 2354.34

datasets with more nodes. In large datasets you can easily add more nodes using

the commands mentioned above to improve the performance of matrix operations on

MRQL. This proves the scalability and efficiency of the MRQL system. In spark mode

the maximum runtime is close to 1200 seconds whereas in flink mode the maximum

runtime is around 100 seconds. The query was switched to flink mode by using the
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Figure 4.2. Runtime for Gaussian Matrix Factorization on MRQL in flink mode.

Table 4.4. Comparison of SGD vs ENMF vs GNMF on Matrix with 10000 values
over N=4, 8,12

Number of Nodes SGD ENMF GNMF
4 84.466 56.159 42.67
8 116.324 69.007 47.479
12 139.828 71.706 65.183

MRQL commmands written above and optimization of runtime was achieved with

minimum efforts in coding.
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Figure 4.3. Runtime for Exponential Matrix Factorization on MRQL in Spark mode.
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Figure 4.4. Comparison of SGD vs ENMF vs GNMF on Matrix with 10000 values
over N=4, 8,12.

Figure 4.5. Comparison of Runtimes on Spark and Flink.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

MRQL provides good scalability and efficiency for gaussian and exponential

matrix factorization as they have multiplication based update rules. Due to these

rules MRQL can choose the most optimal query plan from the various choices and

evaluate the query using most efficient way. On the other hand Gradient Descent

query doesnt perform very well as Gradient Descent based matrix factorization does

not generate enough choices for query plan to select the optimized plan by MRQL.

This thesis demonstrated the performance of MRQL on matrix operations and also

proved the ease of scalability and flexibility of MRQL. It was also compared MRQL

to other similar systems. We also learnt about the usage of MRQL.

5.2 Future Work

The poissons matrix factorization could also be added to the demostrated list of

algorithms in MRQL. All these algorithms can be tested in flink mode to achieve even

better performance. These performance results can be compared to performance of

systemml and actual programs for the queries in hadoop, spark, hama and flink. Also

further queries like inverse of matrix can be implmented. These matrix operations can

be tested for variety of application like the yelp datasets, social graphs, image datasets,

etc. This would comprise an entire framework for matrix operations on MRQL.

Along with matrix operations we could work on developing queries for other complex

machine learning algorithms like SVM, PCA, Statistical analysis, logs, mathematical
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functions, regressions, classifiers, survival analysis etc. Also the MRQL could be

tested for various bugs and its development could be completed. This system could

be answer to various scalability and efficiency issues in the domain of big data.
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