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The only true voyage would be not

to travel through a hundred

different lands with the same pair of

eyes, but to see the same land

through a hundred different pairs of

eyes.

Marcel Proust

One cannot be human by oneself.

There is no selfhood where there is

no community. We do not relate to

others as the persons we are; we are

who we are in relating to others.

James P. Carse
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CHAPTER 0

Introduction

Emmy Noether’s theorem proved that a conserved physical quantity can be

described as a symmetry of nature. A couple of decades later, Eugene Wigner used

the Poincaré group to induce representations from the fundamental internal space-

time symmetries of (special) relativistic quantum particles [32] (in a flat Minkowski

space-time). However, many people found this paper so inaccessible that Wigner’s

students spent considerable amount of time translating passages of this paper into

more detailed and accessible papers [20] and books.

Since the 1930’s, many mathmeticians have worked on the problem of restricted

representations (or branching rules) of groups; we refer the reader to some relevant

articles: [21], [22], and [3]. The theory of branching rules is used extensively in

classical invariant theory; the most notable contributors to this field are, historically,

H. Weyl, F. Murnaghan, and D. Littlewood. Thankfully, branching rules have become

easier to work with due to modern techniques invented, most notably, by R. Brauer,

R Howe [19], B. Kostant, J. Lepowsky [24], and P. Littelmann.

In 1975, R. Haag et al. [9] investigated the possible extensions of the sym-

metries of relativistic quantum particles. They showed that the only consistent (su-

per)symmetric extensions to the standard model of physics are obtained by using

super charges to generate the odd part of a Lie superalgebra whos even part is gener-

ated by the Poincaré group; this theory has become known as supersymmetry. In this

paper, R. Haag et al. used a notation called supermultiplets to give the dimension
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of a representation and its multiplicity; this notation is described mathematically in

chapter 5 of this thesis.

By 1980 other possible extensions to the standard model of physics, such as

string theory, had been invented; many of these other theories use space-times with

dimension not equal to four. S. Ferrara et al. began classifying the representations of

these algebras for dimensions greater than four, and in 1986 Strathdee published con-

siderable work [29] (with the aid of [33]) listing some representations for the Poincaré

superalgebra in any finite dimension. Further, Strathdee began to restrict the repre-

sentations to only the ones considered “acceptable” for physical theories. This work

has been continued to date [11].

We found the work of S. Ferrara et al. [12] to be essential to our understanding

extended supersymmetries. This paper was the most usable source, because it con-

tained the most explicit mathematics and it avoided much of the conflicting, abused,

or undefined notations found in much of the other literature. However, this paper

was written using imprecise language meant for physicists, so it was far from trivial

to understand the mathematical interperetation of this work. The results of [12] go

a long way towards classifying the irreducible representations of the extended super-

symmetries in four dimensions.

In this thesis, we provide a “translation” of the results in [12] and [29] (along

with some other literature on the Extended Poincaré Superalgebras) into a rigorous

mathematical setting, which makes the subject more accessible to a larger audience.

Having a mathematical model allows us to give explicit results and detailed proofs.

Further, this model allowes us to see beyond just the physical interpretation and it

allows investigation by a purely mathematically adept audience.

Our work was motivated by a paper written in 2012 by M. Chaichian et al,

which classified all of the unitary, irreducible representations of the extended Poincaré
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superalgebra in three dimensions. The three dimensional case is of interest to string

theorists who work in 11 dimensions and reduce the dimensions to three by using the

periodic nature of Clifford modules.

We consider only the four dimensional case, which is of interest to physicists

working on quantum supergravity models without cosmological constant, and we

provide explicit branching rules for the invariant subgroups corresponding to the

most physically relevant symmetries of the irreducible representations of the Extended

Poincaré Superalgebra in four dimensions. However, it is possible to further generalize

this work into any finite dimension. Such work would classify all possible finitely

extended supersymmetric models.
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CHAPTER 1

Preliminary Definitions

In all subsequent chapters, we will denote the n× n identity matrix by In and

we will denote the transpose of a matrix A by At.

In this chapter, we let the field F = R or C. Unless otherwise stated, all vector

spaces, homomorphisms, and tensor products will be assumed to be over F. We

denote Z/2Z by Z2, and for i ∈ Z, by ī we denote i+ 2Z in Z2.

1.1 Lie Groups

Definition 1.1.1. By MF(n) we denote the set of all n× n matrices with entries in

F.

Remark 1.1.2. Note that MF(n) is an associative algebra over F with identity In.

Definition 1.1.3. A Lie group is a group G which is also a (real or complex) differen-

tiable manifold and for which the group multiplication map G×G→ G, (x, y) 7→ xy

and the inverse map G→ G, x 7→ x−1 are smooth maps of differentiable manifolds.

In this thesis we will work both with real and complex Lie groups. Also, we

deal mostly with reductive algebraic groups, in particular, subgroups of the general

linear group defined below.

Definition 1.1.4. If V is a vector space over F, then the set of all invertible endo-

morphisms of V forms a group with binary operation composition. We denote this

group by GLF(V ). In the case when V = Fn we have that GLF(V ) ' GLF(n) where

the latter is the general linear group:

GLF(n) = {A ∈MF(n) | AB = BA = In for some B ∈MF(n)} .
1



In the case F = R (respectively, F = C), GLF(n) is a real (complex) Lie group,

see for example [17].

Definition 1.1.5. The special linear group is

SLF(n) = {A ∈ GLF(n) | det(A) = 1}.

Definition 1.1.6. The real orthogonal group is

O(n) =
{
A ∈ GLR(n) | AtA = In

}
,

where At denotes the transpose of the matrix A.

Remark 1.1.7. For A ∈ O(n), detA = ±1.

Definition 1.1.8. The special orthogonal group is

SO(n) = O(n) ∩ SLR(n).

Definition 1.1.9. The generalized orthogonal group is

O(p, q) = {A ∈MR(n) | AtIp,qA = Ip,q}

where p, q ∈ Z≥0, p+ q = n, and

Ip,q =

 Ip 0

0 −Iq

 .
Definition 1.1.10.

SO(p, q) = O(p, q) ∩ SLR(p+ q)

Remark 1.1.11. • O(n, 0) ∼= O(0, n) ∼= O(n)

• O(p, q) ∼= O(q, p)

Definition 1.1.12. The complex symplectic group is

SpC(n) =
{
A ∈ GLC(2n) | ATJ2nA = J2n

}
,
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where J2n =

 0 In

−In 0

 .
Definition 1.1.13. The unitary group is

U(n) =
{
A ∈ GLC(n) | AtA = In

}
,

where A denote the complex conjugate of the matrix A.

Remark 1.1.14. For A ∈ U(n), det(A) = ±1.

Definition 1.1.15. The special unitary group is

SU(n) = U(n) ∩ SLC(n).

Definition 1.1.16. The compact symplectic group is

Sp(n) = SpC(n) ∩ U(2n).

Definition 1.1.17.

U(p, q) =
{
A ∈ GLC(n) | AtIp,qA = Ip,q

}
.

1.2 Lie Algebras

Definition 1.2.1. A vector space V over a field F is called a Lie algebra if it has a

binary operation [·, ·] : V ×V → V called the Lie bracket which satisfies the following

three axioms for a, b ∈ F, and x, y, z ∈ V :

[ax+ by, z] = a[x, z] + b[y, z] and

[x, ay + bz] = a[x, y] + b[x, z] (bilinearity), (1.1)

[x, y] = −[y, x] (skew-symmetry), and (1.2)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

(the Jacobi identity). (1.3)
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Definition 1.2.2. A subspace h of a Lie algebra g is called a Lie subalgebra of g, if

[x, y] ∈ h whenever x, y ∈ h.

Definition 1.2.3. A Lie algebra homomorphism is a vector space homomorphism

ϕ : g→ h such that ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g.

Definition 1.2.4. A Lie algebra isomorphism is a Lie algebra homomorphism that

is also one-to-one and onto.

Definition 1.2.5. Let V be a vector space over F. Then we denote by glF(V ) the

space of all endomorphisms on V along with the bracket operation [S, T ] = ST −TS.

We call glF(V ) the general linear Lie algebra of V .

Remark 1.2.6. The proof that glF(V ) is indeed a Lie algebra includes a straightfor-

ward calculation for (1.3). When dimFV = n, this Lie algebra is isomorphic to the

Lie algebra gl(n) consisting of all n×n matrices with entries in F, Mn(F) ∼= End(V ),

and Lie bracket [S, T ] = ST − TS.

Definition 1.2.7.

slF(V ) = {A ∈ glF(V ) | tr(A) = 0}

Definition 1.2.8. A representation of a Lie algebra g (or equivalently, a g-module)

is a Lie algebra homomorphism ρ : g → glF(V ). To identify the representation we

will use the pair (ρ, V ), or simply V when ρ is given in context.

Remark 1.2.9. Equivalently, V is a g-module if the map g×V → V , (x, v) 7→ x ·v =

ρ(x)v satisfies the following axioms for a, b ∈ F, v, w ∈ V , and x, y ∈ g:

(ax+ by) · v = a(x · v) + b(y · v), (1.4)

x · (av + bw) = a(x · v) + b(x · w), and (1.5)

[x, y] · v = x · (y · v)− y · (x · v). (1.6)

From now on, x · v will be denoted by xv for x ∈ g and v ∈ V .
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Definition 1.2.10. Let (ρ, V ) be a representation of g. Then a subrepresentation of

(ρ, V ) is a pair (ρ,W ), where W is a subspace of V for which (ρ(g))(w) ∈ W for any

g ∈ g and any w ∈ W .

Definition 1.2.11. Let h be a Lie subalgebra of g and let (ρ, V ) be a representation

of g. The pair (ρ|h, V ) is called the restriction of the representation (ρ, V ) on h. Here

ρ|h is the restriction map of ρ on h; that is, for any h ∈ h, ρ|h(h) = ρ(h).

Definition 1.2.12. Let g be a Lie algebra and let ϕ1 : U1 → V1 and ϕ2 : U2 → V2

be homomorphisms of vector spaces. Then ϕ1 ⊕ ϕ2 : U1 ⊕ U2 → V1 ⊕ V2 is the

homomorphism defined by (ϕ1 ⊕ ϕ2)(u1, u2) = (ϕ1(u1), ϕ2(u2)). In the case when we

consider U1 ⊕ U2 as an inner direct sum, i.e. U1 and U2 are subspaces of a vector

space U , we will write (ϕ1 ⊕ ϕ2)(u1 + u2) = ϕ1(u1) + ϕ(u2).

Definition 1.2.13. Let g be a Lie algebra and ϕ1 : U1 → V1 and ϕ2 : U2 → V2 be

homomorphisms of g-modules U1 and U2. Then ϕ1 ⊕ ϕ2 : U1 ⊕ U2 → V1 ⊕ V2 is a

homomorphism of g-modules, called the direct sum of ϕ1 and ϕ2.

Definition 1.2.14. Let W be a subrepresentation of V over a Lie algebra g. Then

the quotient vector space V/W is a representation of g defined by x(v+W ) = xv+W ;

this representation is called a quotient representation.

Remark 1.2.15. Whenever v1 + W = v2 + W , we have x(v1 + W ) = x(v2 + W ).

Since x(v1 − v2) ∈ W , the above action of g on V/W is well-defined.

1.3 Lie Superalgebras

Definition 1.3.1. A Z2-graded vector space V = V0̄ ⊕ V1̄ over F is called a vector

superspace with even part V0̄ and odd part V1̄.

We denote a vector superspace, over the field F, with even part of dimension m and

odd part of dimension n by Fm|n.

For a vector v in Vī, we call ī the parity of v and denote it by p(v).
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Remark 1.3.2. When we write p(v), we assume by default that v ∈ Vī for ī ∈ Z2.

Remark 1.3.3. Note that not every element in a vector superspace V = V0̄ ⊕ V1̄

has parity. For example, an element v0 + v1, where v0 ∈ V0̄ and v1 ∈ V1̄ are nonzero

vectors, that does not have an explicitly defined parity. An element with well defined

parity, i.e. in V0̄ or in V1̄, is called homogeneous. Although most of the vectors of a

vector superspace are non-homogeneous, many definitions and results for superspaces

can be stated for homogeneous vectors and then extended using bilinearity.

Definition 1.3.4. For a vector superspace V = V0̄⊕V1̄, we denote by ΠV the vector

superspace V with the parity reversed. We call ΠV the Π-dual of V .

Specifically, ΠV = V as a vector space such that (ΠV )0̄ = V1̄ and (ΠV )1̄ = V0̄.

Example 1.3.5. The vector space V = Cm|n has an even part V0̄ = Cm and an odd

part V1̄ = Cn. Further, ΠCm|n = Cn|m.

Definition 1.3.6. A vector subspace V of a vector superspace W is called a vector

subsuperspace whenever Vī ⊂ Wī

Definition 1.3.7. Let U = U0̄ ⊕ U1̄ and V = V0̄ ⊕ V1̄ be vector subsuperspaces of a

vector superspace W = W0̄⊕W1̄. Then we say that W is the direct sum of U and V ,

W = U ⊕ V , exactly when Wī = Uī ⊕ Vī for ī ∈ Z2

Definition 1.3.8. We say that a map ϕ : V0̄ ⊕ V1̄ → W0̄ ⊕W1̄ is parity invariant

whenever ϕ(vī) ∈ Wī where vī ∈ Vī and ī ∈ Z2.

Definition 1.3.9. A vector superspace homomorphism is a vector space homomor-

phism which is parity invariant.

6



Definition 1.3.10. A Lie superalgebra g is a vector superspace over F, g = g0̄ ⊕ g1̄,

with a binary operation [·, ·] : g × g → g, called the Lie superbracket, such that the

superbracket obeys the following four axioms for a, b ∈ F and x, y, z ∈ g:

p([x, y]) = p(x) + p(y) (parity invariance), (1.7)

[ax+ by, z] = a[x, z] + b[y, z] and

[x, ay + bz] = a[x, y] + b[x, z] (bilinearity), (1.8)

[x, y] = −(−1)p(y)p(x)[y, x] (super skew-symmetry), and (1.9)

(−1)p(x)p(z)[x, [y, z]] + (−1)p(y)p(x)[y, [z, x]] + (−1)p(z)p(y)[z, [x, y]] = 0

(the super Jacobi identity). (1.10)

Definition 1.3.11. A vector subsuperspace h of a Lie superalgebra g is called a Lie

subsuperalgebra of g if h is also a Lie superalgebra. Equivalently, a subsuperspace h

of g is a Lie subsuperalgebra of g if [a, b] ∈ h whenever a, b ∈ h.

Definition 1.3.12. Let V = V0̄ ⊕ V1̄ be a vector superspace. Then the space gl(V )

of endomorphisms of V is a superspace with even part

gl(V )0̄ = {T ∈ gl(V ) | T (V0̄) ⊂ V0̄, T (V1̄) ⊂ V1̄}

and odd part

gl(V )1̄ = {T ∈ gl(V ) | T (V0̄) ⊂ V1̄, T (V1̄) ⊂ V0̄}.

The superspace gl(V ) together with the superbracket

[S, T ] = ST − (−1)p(T )p(S)TS is a Lie superalgebra, called the general linear Lie

superalgebra of V .

Remark 1.3.13. The maps S and T above are vector space homomorphisms but not

necessarily vector superspace homomorphisms.

Remark 1.3.14. Let V = Cm|n

7



Denote by gl(m|n) the Lie superalgebra consisting of (m+n)×(m+n) matrices A B

C D

, where A ∈Mm(C), D ∈Mn(C), B is an m×n complex matrix, and C is

an n×m complex matrix. The even part gl(m|n)0̄ consists of all matrices of the form A 0

0 D

 while the odd part gl(m|n)1̄ consists of the matrices of the form

 0 B

C 0

.

The Lie superbracket of gl(m|n) is defined by [X, Y ] = XY −(−1)p(X)p(Y )Y X. In par-

ticular, gl(m|n) has a basis consisting of all elementary matrices and dimCgl(m|n) =

(m+ n)2. After fixing a basis for V = Cm|n, we can show that gl(V ) ∼= gl(m|n). The

proof is similar to the proof that gl(Ck) ∼= gl(k).

Definition 1.3.15. A Lie superalgebra isomorphism is a Lie superalgebra homomor-

phism that is also one-to-one and onto.

Definition 1.3.16. A representation of the Lie superalgebra g (or a g-module) is a

Lie superalgebra homomorphism ρ : g→ gl(V ), where V is a vector superspace. This

is denoted by (ρ, V )

Definition 1.3.17. For a Lie superalgebra g, a vector superspace V is a g-module

if the operation g × V → V such that (g, v) → gv satisfies the following axioms for

a, b ∈ F, v, w ∈ V , and x, y ∈ g:

gīVj̄ ⊂ Vī+j̄ (1.11)

(ax+ by)v = a(xv) + b(yv), (1.12)

x(av + bw) = a(xv) + b(xw), and (1.13)

[x, y]v = x(yv)− y(xv). (1.14)

Remark 1.3.18. Every representation (ρ, V ) of a Lie superalgebra is a g-module

through the map (g, v) 7→ ρ(g)v for each g ∈ g and v ∈ V .

8



Conversely, we have that every g-module W is a representation of g by defining

ρ(g)(v) = gv.

Remark 1.3.19. If V is a representation of g, then, as we will check, ΠV is also a

representation of g.

For equation (1.11), gī(ΠV )j̄ = gīVj̄+1̄ ⊂ Vī+j̄+1̄ = (ΠV )ī+j̄. Showing that (1.12)-

(1.14) hold is straightforward.

Definition 1.3.20. Let V be a representation of a Lie superalgebra g. A subsu-

perspace W of V is a subrepresentation of V , if it is a representation of g itself.

Equivalently, W is a subrepresentation, if gw ∈ W for any g ∈ g and w ∈ W .

Definition 1.3.21. Let g be a Lie superalgebra and let ϕ1 : U1 → V1 and ϕ2 : U2 → V2

be homomorphisms of vector superspaces U1 and U2. Then ϕ1⊕ϕ2 : U1⊕U2 → V1⊕V2

is the homomorphism defined similarly to definition 1.2.12.

Definition 1.3.22. Let g be a Lie superalgebra and ϕ1 : U1 → V1 and ϕ2 : U2 → V2 be

vector superspace homomorphisms of g-modules U1 and U2. Then ϕ1⊕ϕ2 : U1⊕U2 →

V1 ⊕ V2 is a homomorphism of g-modules, called the direct sum of ϕ1 and ϕ2.

9



CHAPTER 2

Invariant Theory

In this chapter, we present results from invariant theory that are needed for

the results in chapter 5. All of the content of this chapter comes from Goodman and

Wallach [15], to which the reader is encouraged to refer for more details.

We will assume that the ground field is C unless otherwise noted, and we refer

the reader to Appendix C for background material for associative algebras and group

algebras.

2.1 Duality at the Level of Associative Algebras

Recall that for any vector space V , End(V ) is an associative algebra with unity

IV , the identity map on V .

Definition 2.1.1. For any subset U ⊂ End(V ), let

Comm(U) = {T ∈ End(V )|TS = ST for any S ∈ U}

denote the commutant of U in End(V ).

Remark 2.1.2. Comm(U) is an associative subalgebra of End(V ).

Theorem 2.1.3 (Double Commutant). Suppose A ⊂ End(V ) is an associative alge-

bra with unity. Then let B = Comm(A).

If V is a completely reducible A-module, then Comm(B) = A.

Recall that a representation of G is a group homomorphism ρ : G→ GLC(V ),

where V is a complex vector space. From now until the end of the chapter we fix

G ⊂ GLC(V ) to be a reductive linear algebraic group.

10



Definition 2.1.4. By [G] we denote the set of equivalence classes of irreducible rep-

resentations of G. On the other hand, Ĝ will stand for the subset of [G] of equivalence

classes of finite-dimensional irreducible representations of G. The corresponding sets

of equivalence classes of representations of an associative algebra A, and a Lie algebra

g will be denoted by [A], Â, [g], ĝ, respectively.

If A is G or g, then every representation of A will be considered as a pair

(ρ, V ), where V is a complex vector space and ρ is the corresponding homomorphism

(of groups or of Lie algebras). We will write (ρλ, F λ) for a representative of the class

λ, for each λ in [G] or [g].

Definition 2.1.5. By A(G) (or, by C[G]) we denote the group algebra associated

with the group G.

Remark 2.1.6. Every G-module is considered as an A(G)-module and vice-versa,

see Example 2, §4.1.1, [15]

2.2 Duality at the Level of Groups

The following theorem is a corollary of Proposition 4.1.12 in [15]. The original

statement is stronger as it holds for locally completely reducible G-modules. We recall

that G is a linear reductive group.

Theorem 2.2.1. Let (ρ,W ) be a finite-dimensional representation of G. Then

W ∼=
∑
λ∈Ĝ

Hom(F λ,W )⊗ F λ (2.1)

as a G-module.

Definition 2.2.2. We write Spec(ρ) for the set of representation types λ that occur

in the decomposition (2.1) of (ρ,W ):

W ∼=
∑

λ∈Spec(ρ)

Hom(F λ,W )⊗ F λ.
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We call Hom(F λ,W ) the multiplicity spaces in this decomposition.

Definition 2.2.3. Let R ⊂ End(W ) be a subalgebra such that

1. R acts irreducibly on W .

2. If g ∈ G and T ∈ R, then (g, T ) 7→ ρ(g)Tρ(g−1) ∈ R defines an action of G on

R.

Then we denote by

RG = {T ∈ R|ρ(g)T = Tρ(g) for all g ∈ G}

the commutant of ρ(G) in R.

By EndG(W ) = Comm(ρ(G)) we denote the commutant of ρ(G) in End(W ).

Remark 2.2.4. Since elements of RG commute with elements from A(G), we may

define an RG ⊗A(G)-module structure on W . Alternatively, we may consider W as

an (RG,A(G))-bimodule.

Let Eλ = HomG(F λ, L) for λ ∈ Ĝ. Then Eλ is an RG-module satisfying

Tu(πλ(g)v) = Tρ(g)u(v) = ρ(g)(Tu(v)),

where u ∈ Eλ, v ∈ F λ, T ∈ RG, and g ∈ G.

As a corollary we obtain the following result (see (4.14) in [15]).

Theorem 2.2.5. As an RG ⊗A(G)-module, the space W decomposes as

W ∼=
⊕

λ∈Spec(ρ)

Eλ � F λ, (2.2)

where E � F stands for the outer (external) tensor product of the RG-module

E and of the A(G)-module F .

Theorem 2.2.6 (Duality). Each multiplicity space Eλ is an irreducible RG-module.

Further, if λ, µ ∈ Spec(ρ) and Eλ ∼= Eµ as an RG-module, then λ = µ.
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Theorem 2.2.7 (Duality Correspondence). Let σ be the representation of RG on W

and let Spec(σ) denote the set of equivalence classes of the irreducible representation

{Eλ} of the algebra RG occurring in W . Then the following hold.

• The representation (σ,W ) is a dirrect sum of irreducible RG-modules, and each

irreducible submodule Eλ occurs with finite mulitplicity, dim(F λ).

• The map F λ → Eλ is a bijection between Spec(ρ) and Spec(σ).

2.3 Duality at the Level of Lie Algebras

Let g be a semisimple Lie algebra. Then we fix a Cartan subalgebra h of g and

a choice of positive roots of h, and let g = n− ⊕ h ⊕ n+ be the associated triangular

decomposition of g.

Definition 2.3.1. By P++ we denote the set of dominant integral weights of g.

Remark 2.3.2. There is a bijection between P++ and ĝ; the map from P++ to ĝ is

given by µ 7→ (πµ, V µ), where V µ is a simple highest weight module of g with highest

weight µ (see for example Theorem 3.2.5 in [15]).

Definition 2.3.3. Let V be a finite-dimensional g-module.

• For any µ ∈ h∗, Vµ = {v ∈ V | hv = µ(h)v for all h ∈ h} denotes the µ-weight

space of V . Since V is finite-dimensional,

V =
⊕
µ∈h∗

Vµ.

We call this decomposition the weight space decomposition of V .

• We set V n+ = {v ∈ V |Xv = 0 for all X ∈ n+}.

Definition 2.3.4. Let V be a finite-dimensional representation of g. Then we call

P (V ) = {µ ∈ P++(g)|V n+

µ 6= 0} the set of highest weights of V .

Remark 2.3.5. If T ∈ Endg(V ), then T preserves V n+ and the weight space decom-

position V n+ =
⊕

µ∈P (V ) V
n+

µ .
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For each µ ∈ P (V ) we fix an irreducible representation (πµ, V µ) with highest

weight µ. We will consider V µ both as a module over g and over the universal

enveloping algebra U(g) of g.

Theorem 2.3.6. For T ∈ Endg(V ), the restriction map φ : T → T |V n+ gives an

algebra isomorphism,

Endg(V ) ∼=
⊕

µ∈P (V )

End(V n+

µ ).

• For every µ ∈ P (V ), the space V n+

µ is an irreducible module for Endg(V ).

• Further, distinct values of µ give the inequivalent modules for Endg(V ).

• Under the action of U(g)⊗ Endg(V ), V has the canonical decomposition

V ∼=
⊕

µ∈P (V )

V µ � V n+

µ . (2.3)

Remark 2.3.7. The decomposition (2.3) is often considered as a decomposition under

the “joint action” of g and Endg(V ).

2.4 Sp(2N) action on
∧

C2N

We have taken the following example directly from §5.5 of Goodman and Wal-

lach.

For the rest of this section G = Sp(2N). We fix V = C2N and Ω to be a

non-degenerate skew-symmetric bilinear form on V , we fix {ei} to be a basis of V ,

and we fix {ϕi} to be the Ω-dual basis of V , i.e. such that Ω(ei, ϕ
j) = δij.

Definition 2.4.1. For x ∈ V and x∗ ∈ V ∗ we define the exterior product operator

ε(x) :
∧k C2N →

∧k+1 C2`, by ε(x)(v1 ∧ ... ∧ vk) = x ∧ v1 ∧ ... ∧ vk, and the inte-

rior product operator on
∧
V , ι :

∧k C2N →
∧k−1 C2N , by ι(v∗)(v1 ∧ · · · ∧ vk) =∑k

j=1(−1)j−1〈v∗, vj〉v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk.
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Remark 2.4.2. We have the following relations:

{ε(x), ε(y)} = 0,

{ι(x∗), ι(y∗)} = 0,

{ε(x), ι(x∗)} = Ω(x∗, x)Id∧k C2` .

Definition 2.4.3. By E =
∑2N

i=1 ε(ei)ι(ϕ
i) we denote the skew-symmetric Euler op-

erator on
∧
V .

We also set θ =
∑2N

i=1 ei ⊗ ϕi.

Remark 2.4.4. For u ∈
∧k V , Eu = ku.

Definition 2.4.5. Let Y = 1
2
ε(θ), X = −Y ∗, and H = NId− E.

Lemma 2.4.6. The following identities hold in End(
∧
C2N).

[E,X] = −2X, [E, Y ] = 2Y, [Y,X] = E −NId

In particular, g′ = Span{X,E −NId, Y } is isomorphic to slC(2).

Theorem 2.4.7. The commutant Comm(Sp(C2N)) of the action of Sp(C2N) on

End(
∧

C2N) is generated by X, Y,E −NId, i.e. it is isomorphic to U(g′).

Definition 2.4.8. We call a k-vector u ∈
∧k C2N Ω-harmonic when Xu = 0.

We denote the k-homogeneous space of Ω-harmonic elements in
∧k C2N byH(

∧k C2N),

i.e.

H

(
k∧
C2N

)
=

{
u ∈

k∧
C2N |Xu = 0

}
.

We denote the space of all harmonic elements in
∧
C2N by H(

∧
C2N).

Recall that G = Sp(V,Ω) = Sp(2N), g′ ∼= slC(2), and that F (k) stands for the

irreducible g′-module of dimension k + 1. We shorten H(
∧k C2N) to Hk.

Theorem 2.4.9. (i) If p > N , then Hp = 0. If 0 ≤ k ≤ N , then the space Hk is

an irreducible representation of G which is isomorphic to the k-th fundamental

representation, i.e. its highest weight is the k-th fundamental weight $k.
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(ii) As (C[G],U(g′))-bimodules,

∧
C2N ∼=

N⊕
k=0

Hk � F (N−k).

In the following chapters, we use the term (G, g′)-modules instead of (C[G], U(g′)-

bimodules.

Corollary 2.4.10. As G-modules,

k∧
C2N =

bk/2c⊕
p=0

θp ∧H

(
k−2p∧

C2N ,Ω

)
.
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CHAPTER 3

Quantum Field Theory

One of the most celebrated achievements of Minkowski is that he placed time on

an equal footing with the three spatial dimensions: xη = (ct, ~x)t = (ct, x1, x2, x3)t =

(x0, x1, x2, x3)t, where c is the speed of light in a vacuum. The new terminology

(Minkowski) space-time emphasizes this union and it reinforces the need to express

physical objects in four dimensions – rather than just in three. This mathematical

structure is a natural environment for Einstein’s special relativity.

Formally, we consider the vector xη to represent the four-component vector with

any fixed basis {ei|i = 0, 1, 2, 3}: xη = x0+x1+x2+x3 = a0e0+a1e1+a2e2+a3e3 – not

a particular (coordinate) component, say, a2. Specifically, the index η corresponds

to the basis which is used for the corresponding vector space; we refer the reader

to appendix B for more details. Mathematically, Minkowski embedded the three-

dimensional vector kinematics into a psuedo-Riemannian structure which physicists

call Minkowski space, in which operators act on the configuration and momentum

spaces. Because the momentum space describes the potential and kinetic energy

of the system, the momentum space gives a more illuminating picture of what is

happening physically.

We consider a four-momentum to be the classical three dimensional physical pre-

sentation of momentum, ~p, concatinated by the particle’s rest energy: pα = (Mc2, ~pc)t.

Given the vector space isomorphism R1,3 ∼= R4, the Euclidean metric of the four-

momentum in Minkowski space represents the square of the particle’s energy at rest
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plus the square of the particle’s kinetic energy; this is given by Einstein’s famous

equation

E2 = (Mc2)2 + (~pc)2,

where ~p is the three-dimensional momentum. From here on we set the physical

constants to unity (c = 1 = ~) and we consider the energy of a particle to be positive,

while the energy of its anti-partle is negative.

If E2 > 0, then it is useful to “boost” our reference frame to that of the

particle; mathematically, we change the basis of our coordinate system until the

particle appears to be at rest. Then E2 = M2 and ~p = 0, which fixes a canonical

choice of presentation for pα = (M, 0, 0, 0)t and which motivates the terminalogy a

massive particle at rest.

If E2 = 0, then we have two cases: the zero momentum case and the massless

(light-like) case. In the zero momentum case, pα = (0, 0, 0, 0)t. In the massless case,

the square of the particle’s energy equals the square of the particle’s momentum:

E2−~p·~p = M2 = 0. In other words, all of the particle’s energy is in its (3-dimensional)

momentum. Hence, the canonical choice of presentation pα = (ω, ω, 0, 0)t.

To recapitulate the above, the four-momentum, pα, of a particle is of one of the

three standard forms:

(i) pα = (0, 0, 0, 0)t (zero momentum),

(ii) pα = (ω, ω, 0, 0)t (massless), or

(iii) pα = (M, 0, 0, 0)t (massive).

In this chapter, we use tensor notation by default; we refer the reader to Ap-

pendix B for more details. We have adapted much of this chapter from [26]
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3.1 Minkowski Space

Let R1,3 denote the four-dimensional Minkowski space with signature

(+1,−1,−1,−1).

• For every four-component (covariant) vector xα ∈ R1,3, there exists a four-

component dual (contravariant) vector xα ∈ (R1,3)∗ such that xα =
∑3

β=0 g
αβxβ.

The indices α correspond to a fixed (dual) basis {ϕ0, ϕ1, ϕ2, ϕ3} of (R1,3)∗ –

rather than the basis elements of R1,3.

• We consider the indices of gαβ to each correlate with the dual basis of R1,3,

(R1,3)∗. For instance, if we wish to consider the matrix of gαβ, then we write

(gαβ)ρη, where α and β still correspond to basis elements of the dual space, (R1,3)∗

and where the indices ρ and η correspond to row or columns of the matrix. To

be more explicit, we need to establish a convention; let xρ represent a column

vector. Then ρ above labels the rows of the matrix, (gαβ)ρη, while η labels the

columns of the matrix.

• If e is a basis element and ϕ is a dual basis element, then eϕ = ϕ(e); if xα

is a column vector (so that xα is the dual of xα), then xαy
α =

∑3
α=0 y

αxα =∑3
α=0 yαxα.

• From here on, we will use Einstein’s notation; namely, that repeated upper

and lower indices imply a partial evaluation (or a contraction); in example,∑3
α=0 x

αyα will be denoted by xαyα. The convention is that greek letters are

summed over 0, 1, 2, and 3 while latin letters are summed over 1, 2, and 3;

however, we will need to depart from this convention in the following chapters,

which deal extensively with equations of tensors and spinors together.

As we will see, the natural pairing, xµxµ, in Minkowski space is a defining

invariant of the Lorentz group.
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3.2 Lorentz Algebra

We denote the six (anti-symmetric) generators of the Lorentz algebra by Jβα ,

where Jβα = −Jαβ .

As a matrix, we have (Jβα)ζη =
√
−1(gζαδ

β
η − g

β
ζ δ

ζ
α), where ζ and η label the rows

and columns, respectively, and α and β label the co/contra-variant basis elements,

respectively.

Then

[Jβα , J
ζ
η ] =

√
−1(gζαJ

β
η − gβζJαη − gαηJβζ). (3.1)

This is the Lie algebra so(1, 3), which we call the Lorentz algebra.

Sometimes Jβα is written more explicitely as two types of spatial vectors, namely,

Ki = J i0 = −J0
i and J jk = εijkJ i, where i, j, k = 1, 2, or 3. Explicitely, we can write

J1 =



0 0 0 0

0 0 0 0

0 0 0 −
√
−1

0 0
√
−1 0


, K1 =



0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


,

J2 =



0 0 0 0

0 0 0
√
−1

0 0 0 0

0 −
√
−1 0 0


, K2 =



0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0


,

J3 =



0 0 0 0

0 0 −
√
−1 0

0
√
−1 0 0

0 0 0 0


, K3 =



0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0


.

The subalgebra of so(1, 3) which leaves the time component invariant is so(3) ∼=

su(2), which generates the group of rotations in the three spatial planes (x, y), (x, z),
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and (y, z). The other three generators, Ki, generate the three hyperbolic rotations,

in the (t, x1), (t, x2), or (t, x3) planes, which we call boosts.

In vector notation, the relation for so(1, 3) given in equation (3.1) becomes

[Ji, Jj] =
√
−1εijkJk, (3.2)

[Ji, Kj] =
√
−1εijkKk, and (3.3)

[Ki, Kj] = −
√
−1εijkJk. (3.4)

We set out to decouple this algebra into two separate (commuting) algebras, so

we let J iL = 1
2
(J i −

√
−1Ki) and J iR = 1

2
(J i +

√
−1Ki). Then we have

[
J iL, J

j
L

]
=
√
−1εijkJkL,

[
J iR, J

j
R

]
=
√
−1εijkJkR, and [J iL, J

j
R] = 0.

Thus, so(1, 3) ∼= su(2)⊕ su(2) as Lie algebras, and, in this context, we may describe

the physical states as two angular momenta (j, j′), corresponding to J iL and J iR.

We fix the Pauli matrices to be

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , and σ3 =

 1 0

0 −1

 ,
where [σi, σj] = 2

√
−1εijkσk and {σi, σj} = 2δij. In addition to the three Pauli

matrices above, we introduce a fourth matrix, σ0 = I2. The four Pauli matrices form a

basis of the space of 2×2 Hermitian matrices ; we denote this space by H(2) ⊂MC(2).

We use the fact that (σ0)2 = I2 and (σi)
2 = −I2 to motivate our choice of signature

for the Minkowski space, which is isomorphic to the group of quaternions with unit

Euclidean length.

We say that a square matrix is Hermitian when it is invariant under the action

of the adjoint operator, A = At, and we say that a square matrix is skew-Hermitian

when it changes sign under the action of the adjoint operator: A = −At. The Pauli
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matrices are Hermitian while
√
−1σi are skew-Hermitian. This motivates our use of

the factor of
√
−1 above.

In the semi-spinor representation of the Lorentz algebra, we use the Pauli ma-

trices as a basis for the Minkowski space, R1,3. Explicitely, we use the injective vector

space homomorphism R1,3 → H(2) such that eη 7→ ση. Then we have

x0

x1

x2

x3


7→

 x0 + x3 x1 −
√
−1x2

x1 +
√
−1x2 x0 − x3

 .

The natural pairing in the Minkowski space, which is ivariant under this homomor-

phism, becomes the determinant of the 2 × 2 matrix presentation of the vector in

Hermitian space.

The following calculations show that σ2 plays a special role:

σ2σ1σ2 = −σ1 = −σ1,

σ2σ2σ2 = σ2 = −σ2, and

σ2σ3σ2 = −σ3 = −σ3.

In terms of our results below, we have σ2
tσ2 = I2 and σ2

tσησ2 = −ση.

3.3 Semi-Spinor Representations

We now investigate the representations of SO(3) and SU(2) by investigating

their generating Lie algebra [J i, J j] =
√
−1εijkJk (presented in vector notation) acting

on R3. We begin by defining the orthogonal transformation Λ ∈ O(3) where Λ : V →

V such that

x′i = Λj
ixj. (3.5)
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Then we move from acting on R3 to acting on C2 by changing our basis as described

above. When viewed as an embedding of R3 in R1,3, σi = Λα
i σα, and we still have

{σi, σj} = 2δij and [σα, σβ] = 2
√
−1εαβkσk. If the matrix of the homomorphism given

by equation (3.5) is in SO(3), then Λj
i is an algebra automorphism and there is an

invertible homomorphism ρ such that A = ρΛρ−1 ∈ SLC(2). The map ρ such that

Λ 7→ ρ(Λ) is called the semi- (or half-) spinor representation of SO(3) (or SU(2))

in GLR(3) (or GLC(2)). For more information on this homomorphism, we refer the

reader to [10].

Remark 3.3.1. It is interesting that, under conjugation by ζ = −
√
−1σ2, the Hermi-

tian matrices, H(2), generate SLC(2): for any N ∈ SLC(2), there is some M ∈ H(2)

such that

N = ζMζ−1.

Because an inner automorphism determines the conjugating matrix modulo

the kernel, ρ is only unique up to a non-zero constant multiple θ ∈ C×; the spinor

representation is the homomorphism SO(3)→ SLC(2)/{±I2} which is double-valued:

SO(3) ∼= SU(2)/{±I2}.

3.4 Lorentz Group

Given the Lorentz algebra above, we construct the corresponding Lie group

called the Lorentz group. A general element of the Lorentz algebra is of the form θiJ
i±

ωi
√
−1Ki (in vector notation with Einstein summation notation), so a general element

of the Lorentz group is of the form Λ = exp(θiJ
i ±
√
−1ωiK

i). More invariantly, the

Lorentz group is

O(1, 3) = {Λβ
α | gαβxαxβ = gαβ(Λζ

αxζ)(Λ
η
βxη)}.
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It can be shown that det(Λβ
α) = ±1. The transformations such that det(Λβ

α) =

+1 form a subgroup of O(1, 3) which is called the proper Lorentz transformations ; this

group is denoted by SO(1, 3). The proper Lorentz group has two disconnected com-

ponents, which either preserve the direction of time or reverse it: Λ0
0 ≥ 1 or Λ0

0 ≤ −1,

respectively. These transformations are called orthochronous or non-orthochronous,

respectively.

We use representations from the only connected component which contains the

identity element (the proper orthochronous elements), because it is the only con-

nected component which forms a subgroup of the Lorentz group. We then extend

the representations of the restricted Lorentz group to representations of the entire

Lorentz group by acting on the restricted representation by the operations P , T , and

PT defined below.

The transformations such that det(Λβ
α) = −1 can occur in three different ways

which generate the three remaining disconnected components from the component

containing the identity element:

• P (t, x, y, z) = (t,−x,−y,−z) is called the spatial parity operator,

• T (t, x, y, z) = (−t, x, y, z) is called the time reversal operation, and

• Transformations such that (t, x, y, z) 7→ (t,−x, y, z) or (t, x,−y, z) or (t, x, y,−z)

are reflections about a single spatial axis.

3.5 Spinor Representations

Recalling the semi- (or half-) spinor representation theory of SU(2) and that

so(1, 3) ∼= su(2)⊕ su(2), we can write C4 as C2 ⊕ C2, which indicates that C4 is the

24



sum of two representations of SU(2) (each of which is conjugate to the other vector

space). Now we give the four-component spinors to be

ψ =

 ξ

η

 ,
where ψ ∈ C4, η ∈ C2, and ξ ∈ C2. The spatial parity operator defined above is such

that ξ 7→ η and η 7→ ξ.

3.6 Clifford Algebras Associated with Minkowski Space

Given that the σ’s give representations of so(3) and since so(1, 3) ∼= so(3) ⊕

so(3), we define γ’s in block diagonal form, such a basis is called a chiral basis.

Definition 3.6.1. We define the four γ-matrices to be

γ0 =

 0 σ0

σ0 0

 and γk =

 0 σk

−σk 0

 ,
where k =1, 2, or 3.

Then the γ’s obey the relation

{γη, γζ} = 2gηζ . (3.6)

In other words, {γ0, γ1, γ2, γ3} generate a Clifford algebra whose bilinear form is

determined by (gαβ). For more details, see Appendix D. We now recall the following

standard fact (for example see lemma 15.6 in [27]).

Lemma 3.6.2. The associative unital algebra generated by {γ0, γ1, γ2, γ3} has a

basis

I, γη, γηγζ (η < ζ), γηγζγµ (η < ζ < µ), γ0γ1γ2γ3.

Hence this algebra is isomorphic to the matrix algebra MC(4).

(For a Geometric Algebra interpretation of the above, we refer the reader to [18].)
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Now we turn our attention to the spinor representations of the the Lorentz

group. Consider the Minkowski space R1,3 and an arbitrary element Λ ∈ O(1, 3).

Then

γ′η = Λζ
ηγζ ,

satisfy the identities {γ′η, γ′ζ} = 2gηζ . Therefore the maps 1 7→ 1, γη 7→ γ′η define

an automorphism A(Λ) of MC(4). Since every automorphism of MC(4) is inner, we

have that there is some ρ = ρ(Λ) in GLC(4) such that A(Λ)(X) = ρXρ−1. The map

Λ 7→ ρ(Λ) is called the spinor representation of the group O(1, 3) in the group GLC(4).

We note that ρ(Λ) ∈ SLC(4) is double-valued and defined up to a multiplicative

complex constant.

The 4-dimensional complex space, C4, with the above spinor representation,

Λ 7→ ρ(Λ), is called the space of four-component spinors. The elements of this space

are (column vectors and are) called spinors.

As a generalization of the conjugate action of σ2 above, we introduce the charge

conjugation matrix (in the chiral basis),

C =
√
−1γ2,

which satisfies C
t
C = I4 and C

t
γµC = −(γµ).

The four γ’s above generate a Clifford algebra on four generators:

{γµ, γν} = 2gµνI4

such that γµγν = −γν , γµ whenever µ 6= ν. This Clifford algebra was discovered

by P.A.M. Dirac while investigating the Klein-Gordon equation, which is the wave

equation for massive relativistic quantum particles with spin 1/2. The relations for
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the Clifford algebra turned out to be necessary and sufficient conditions for the Klein-

Gordon equation,

−
(
gαβ

∂

∂γα

∂

∂γβ
+M2

)
ψ = 0,

to be expressed as the product of two first order operators,(√
−1γα

∂

∂γα
+M

)(√
−1γβ

∂

∂γβ
−M

)
ψ = 0.

The Dirac equation (for the four component spinor ψ) is(√
−1γβ

∂

∂γβ
−M

)
ψ = 0, (3.7)

while the conjugate Dirac equation is(√
−1γα

∂

∂γα
+m

)
ψ = 0,

where ψ = ψ∗γ0 is the Dirac conjugate. For more information on Clifford algebras in

relativistic electrodynamics, we refer the reader to [16], [23], and [30].

We define a fifth γ matrix:

γ5 =
√
−1γ0γ1γ2γ3.

The label 5 for this element comes from physicists who originally worked over Eu-

clidean space where the vector components are labelled by 1,2,3, and 4 – rather than

in Minkowski space where the vector components are labelled by 0,1,2, and 3.

We call the operator π± = 1
2
(I4± γ5) the Lorentz invariant projection operator ;

we can use π± to separate the four-component chiral spinors into two two-component

spinors,

ψ± = π±ψ

where ψ satisfies the Dirac equation.
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3.7 Poincaré Algebra and Group

In full generalization of the relativity described by the Euclidean group, Weyl

introduced the generators of space-time translations, Pα =
√
−1 ∂

∂xα
, as a symmetry

of the special theory of relativity. In this way, a generic translation operator in the

Poincaré group is of the form exp(−
√
−1Pαaα), where aα is a fixed four-component

position vector and Pα is the four component energy-momentum operator associated

to the vector xα which is being translated. Further,

[Pα, P β] = 0.

In tensor notation, we have the relation

[Pα, Jζη ] =
√
−1(gαζPη − gαηP ζ).

In explicit terms, the Poincaré algebra is generated by Jαβ and Pα, subject to

the relations

[Pα, P β] = 0, (3.8)

[Jαβ , P
ζ ] =
√
−1
(
gζβP

α − gαζPβ
)
, and (3.9)

[Jαβ , J
ζη] =

√
−1
(
gζβJ

α
η + gαη J

ζ
β − g

αζJβη − gβηJαζ
)
. (3.10)

In analogy with the Lorentz algebra, the Poincaré algebra can be expressed in

the less compact but more illucidating notation:

[J i, J j] =
√
−1εijkJk, [J i, Kj] =

√
−1εijkKk, [J i, P j] =

√
−1εijkP k,

[Ki, Kj] = −
√
−1εijkJk, [P i, P j] = 0, [Ki, P j] =

√
−1P 0δijI3,

[J i, P 0] = 0, [P i, P 0] = 0, [Ki, P 0] =
√
−1P i.

We define the Poincaré group as the semi-direct product O(1, 3) n R1,3 acting

on R1,3 such that

(Λ, a) : xα 7→ Λβ
αxβ + aα,
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where Λ = Λβ
α ∈ O(1, 3) and aα ∈ R1,3 are fixed and for any xα ∈ R1,3. This action

leaves the natural pairing in Minkowski space, xβxβ = gαβxαxβ, invariant, which is

an alternate definition for the group.

We extend representations from the connected component of the Poincaré group

that contains the identity element, so we define the notation

L = {Λ ∈ SO(1, 3) | (Λβ
α)0

0 > 0}.

Then, for fixed Pα, we call

Lp = {Λ ∈ L | L(P ) = P}

the little subgroup or the little group of the Poincaré group on four dimensions.

We note that Lp ∼= SO(3) for massive representations and Lp ∼= SO(2) for

massless representations, see for example the proof of Theorem 6 in [5].

Given a fixed four-momentum, pα, we let Lp denote the subgroup of L which

leaves pα invariant. Then lp = Lie(Lp) is a subalgebra of g, and the Harish-Chandra

pair (LpnR1,3, g0̄) is a subsupergroup of the extended Poincaré supergroup, which is

considered in the next chapter.
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CHAPTER 4

Mathematical Model of the Extended Poincaré Superalgebras

We are ready to define our main object of study - the finitely Extended Poincaré

superalgebra. We use the definition according to Ferrara et al ; however, other equiva-

lent definitions exist. We highly encourage the reader to refer to the previous chapter

and the appendices for more details.

Definition 4.0.1. The Extended Poincaré superalgebra of N supercharges on four

dimensions is the Lie superalgebra, EPS(N), whose even part, EPS(N)0̄, is generated

by Jα,β, Pα, U ij, V ij, and whose odd part, EPS(N)1̄, is generated by Qi
α, α, β = 1, 2,

i, j = 1, 2, . . . , N , subject to the relations

[Jαβ , P
ζ ] =
√
−1
(
gζβP

α − gαζPβ
)
, (4.1)

[Jαβ , J
ζ
η ] =

√
−1
(
gζβJ

α
η + gαη J

ζ
β − g

αζJβη − gβηJαζ
)
, (4.2)

{Qi
α, Q

j
β} = (γζC)αβPζδ

ij + CαβU
ij + (γ5C)αβV

ij, (4.3)

[Qi
α, J

ζη] =
√
−1(Σζη)

ρ
αQ

i
ρ, (4.4)

[Pα, P β] = 0, (4.5)

[Qi
α, P

ζ ] = 0, (4.6)

[Pα, U ij] = [Pα, V ij] = 0, (4.7)

[Jαβ, U ij] = [Jαβ, V ij] = 0, (4.8)

[U ij, Qk
α] = [V ij, Qk

α] = 0, and (4.9)

[U ij, U `m] = [V ij, V `m] = [V ij, U `m] = 0, (4.10)
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where ρ = 1, 2, ζ, η = 0, 1, 2, 3, U ij and V ij are Hermitian operators, and Σαβ =

1
2
[γα, γβ]. The Qi

α’s are spinors which we call supercharges (or Fermi charges), and

we call U ij and V ij central charges. We remind the reader of one of the properties of

spinors, namely (CQ∗)iα = Qi
α.

Remark 4.0.2. Because the probablities described by the Schrödinger equation are

invariant under unitary transformations, unitary representations are the most inter-

esting representations for quantum mechanics. Recall that ρ : G→ GL(n) is a unitary

representation of the group G if the image ρ(G) is a subgroup of U(n). We similarly

define unitary representations of Lie (super)algebras and associative algebras. From

now on, whenever we write A∗ for an element A in a group or a Lie superalgebra, we

mean the complex conjugate of ρ(A) in a fixed representation ρ.

Along these lines, in addition to the 2N supercharges Qi
α, there are 2N conju-

gates, Q∗iα . As a result, there are 4N supercharges; this will be discussed below in

more detail.

At the level of categories, we may regard a Lie supergroup as a super Harish-

Chandra pair (G0̄, g), where G0̄ = Lp n R1,3 is the little Poincaré group and g =

g0̄ ⊕ g1̄ = Lie(G0̄) ⊕ g1̄ is a Lie superalgebra which is a G0̄-module such that the

Lie(G0̄)-action is the differential of the G0̄-action on g. We adopt the supergroup

terminology of [8] to which we refer the reader for more details. We refer the reader

to [13] for a deep mathematical article about the relevant superspaces.

We may present the extended Poincaré superalgebra with fewer generators while

being more explicit. For this purpose, we define

Zjk = −V jk +
√
−1U jk,
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and, in analogy with the previous chapter, we introduce the following notation for

our (two-component) supercharges:

Qi
α = (Qα)i

(Qα)i =
(
εαβQ∗β

)i
=
(√
−1 (σ2)αβ Q∗β

)i
,

where i, j = 1, . . . N , α, β = 1, 2; we have chosen to suppress the traditional Van der

Waerden notation for spinors. In our notation, the four-component spinors are such

that

Qα =

 Qβ

εβηQ∗η

 ,

where α = 1, . . . , 4 and β, η = 1, 2.

Now, in four-component notation, equation (4.3) becomes

{Qi
α, Q

∗j
β } = (σµ)αβP

µδij (4.11)

{Qi
α, Q

j
β} = εαβZ

ij (4.12)

{Q∗iα , Q
∗j
β } = εαβZ

ij, (4.13)

where α, β = 1, 2 and i, j = 1, . . . , N .

We want to simplify these relations; for this reason we apply unitary transfor-

mations,

Qi
α 7→ Q̃i

α =
N∑
j=1

X ijQj
α (4.14)

Q∗iα 7→ Q̃∗iα =
N∑
j=1

X∗ijQ∗jα, (4.15)
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such that the matrix of Zij transforms to a block diagonal matrix. Note that the

equations (4.11)-(4.13) do not change the rest frame under any unitary transformation

– specifically for X ij ∈ U(N).

Hence, for massive transformations, {Q̃i
α, Q̃

∗jβ} = δβαδ
ijP 0I2. However, the Zij’s

change according to the transformation

Zij 7→ (XZXT )ij = Z̃ij, (4.16)

where Zij is in block digonal form.

1. If N is even, then Z̃ =
√
−1σ2 ⊗ ẐN/2, where ẐN/2 = diag(z1, . . . , zN/2),

2. If N is odd, then

Z̃ =

 √−1σ2 ⊗ Ẑ(N−1)/2 0

0 0

 ,
where Ẑ(N−1)/2 = diag(z1, . . . , z(N−1)/2) and where z1, z2, . . . , zbN/2c are the eigen-

values of the anti-symmetric matrix Zij (and bN/2c is the floor function of N/2);

we choose the zi’s to be non-negative. Please see Appendix B for more details

about the tensor product of matrices.

Now we have the 2N (two-component) supercharges and their 2N conjugates.

Wanting to eventually multiplex these into four-component spinors, we introduce a

new notation for the index i = 1, . . . , N by splitting the single index into two separate

indices a = 1, 2 and m = 1, . . . , bN/2c. Keeping with the psuedo-Van der Waerden

notation for spinors used above, the positions of a and α, as indices, will indicate the

spatial parity (left or right“handedness”) of the spinors.

From now on we will consider all elements of EPS(N) as endomorphisms of a

fixed representation of EPS(N). Namely, if ρ : EPS(N) → EndV is a Lie superal-

gebra homomorphism, then we identify EPS(N) with ρ(EPS(N)). We also consider

representations of EPS(N) on which Z̃ij act by constant multiplication. Similarly
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P ζv = pζv for ζ = 0, 1, 2, 3. Furthermore, recall that there are only three types of

representations:

• Massive representations.

These are EPS(N)-representations for which (p0, p1, p2, p3) = (M, 0, 0, 0) with

M > 0.

• Massless (light-like) representations.

These are EPS(N)-representations for which (p0, p1, p2, p3) = (ω, ω, 0, 0) with

ω > 0.

• Zero momentum representations.

These are EPS(N)-representations for which

(p0, p1, p2, p3) = (0, 0, 0, 0).

4.1 Massive Representations of EPS(N) with Even N

We now focus on the first case, i.e. on the massive representations. We also

assume, for simplicity, that N is even. The case where N is odd is similar and is

discussed below.

Then we have the following relations after applying the transformation (4.16):

{Q̃am
α , Q̃bn

β } = εαβε
abδmnzn (4.17)

{Q̃am
α , Q̃∗βnb } = εβαε

a
bδ
mnM. (4.18)

where a, b, α, β = 1, 2 and m,n = 1, 2, . . . , N/2. We apply one more transformation

in order to obtain generators and relations in convenient terms. Then we define

Samα(1) =
Q̃am
α + Q̃∗αma√

2
and Samα(2) = (−1)a+1 Q̃

am
α − Q̃∗αma√

2
, (4.19)
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where a, α = 1, 2 and m = 1, 2, . . . , N/2 such that Samα(i) = εabεαβS
∗bm
β(i) . If N is even,

then equations (4.17)-(4.18) become

{Smα(i), S
∗n
β(j)} = δαβδ

mnδij(M − (−1)jzn) (4.20)

{Smα(i), S
n
β(j)} = 0 (4.21)

{S∗mα(i), S
∗n
β(j)} = 0, (4.22)

where α, β, i, j = 1, 2 and m,n = 1, 2, . . . , N/2.

Remark 4.1.1. Note that this notation does not require us to keep track of upper

verse lower indices – only repeated indices.

From the above, we have the positivity bound 0 ≤ zn ≤M for n = 1, 2, . . . , bN/2c.

A direct consequence of this bound is that all zn’s vanish when M = 0.

Proposition 4.1.2. The extended Poincaré superalgebra action on a massive repre-

sentation has the following relations

[Jζη , P
χ] =

√
−1
(
gχηP

ζ − gζχPη
)

[Jζη , J
χ
ξ ] =

√
−1
(
gχηJ

ζ
ξ + gζξJ

χ
η − gζχJηξ − gηξJζχ

)
{Smα(i), S

∗n
β(j)} = δαβδijδ

mn
(
M − (−1)jzn

)
[Smα(i), Jζη] = (Θζη)

ρ
αS

m
ρi

[P ζ , P η] = 0

[Smα(i), Pζ ] = 0

[Smα(i), S
n
β(j)] = [S∗mα(i), S

∗n
β(j)] = 0

[Z̃ij, P ζ ] = [Z̃ij, Jζη] = [Smα(i), Z̃
ij] = 0,

where i, j, α, β = 1, 2, m,n = 1, . . . , N/2, η, ζ = 1, 2, 3, 4, and Θ can be found from

equations (4.4), (4.14), and (4.19). Recall that Pζ , Jζη and Z̃ij generate EPS(N)0̄,

while the Smaα generate EPS(N)1̄.
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Definition 4.1.3. We denote by Q the space spanned by Qi
α and Q∗iα , and we let

Cliff(Q) denote the Clifford algebra generated by Q subject to the equations (4.17),

(4.18), and (4.23)-(4.25).

Every representation of EPS(N) is a representation of the Clifford algebra

Cliff(Q) generated byQi
α. Conversely, we are interested in representations ofEPS(N)

that come from representations of Cliff(Q). Namely, for every Cliff(Q)-representation

V0, we can consider the induced representation V through the embedding Cliff(Q) ⊂

EPS(N); see for example equation (3.1) in [6]. We note that this reference uses

analytic induction.

We are interested in the most physically relevant restrictions of the simple spin

module S =
∧

C2N of Cliff(Q). More precisely, we look at the following restrictions.

(i) Restriction to the group U(2N). Here we use the fact that S is a GLC(2N)-

module.

(ii) Restriction to the group SU(2) × Sp(2N). Here we use the fact that S is an

(sl(2), Sp(2n))-module (see example 2.4 in Chapter 2).

(iii) Restriction to the group U(1) × SU(N). Here we use the fact that S is a

(gl(1), SU(N))-module.

(iv) Restriction to the group Sp(2q1)× · · ·Sp(2qn)× U(N − 2
∑n

i=1 qi). This is the

case when

z1 = · · · = zq1 > zq1+1 = · · · =

= zq1+q2 > · · · > zq−qn = · · · = zq > zq+1 = · · · = zN/2 = 0,

where q =
∑n

i=1 qi. We will not deal with this case in this thesis, but we plan

to generalize our results to account for this case in the future.
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4.2 Massive Representations of EPS(N) with Odd N

Now we consider the case when N is odd. We still have the relations (4.20)-

(4.22) with m,n = 1, 2, . . . , (N −1)/2, but we need the following relations for the one

remaining super charge, QN
α :

{QN
α , Q

∗N
β } = δαβM, (4.23)

{QN
α , Q

N
β } = 0, and (4.24)

{QN
α , S

m
β(i)} = {QN

α , S
∗m
β(i)} = 0. (4.25)

Remark 4.2.1. • For even N , Q is spanned by Q̃am
α and Q̃∗αma or by Samα(i).

• For odd N , Q is spanned by QN
α , Q̃am

α and Q̃∗αma (or by QN
α and Samα(i)).

• Cliff(Q) is realized as a Clifford algebra by the relations given by equations

(4.20)-(4.22) and by (4.23)-(4.25).

4.3 Massless Representations of EPS(N)

From equations (4.1)-(4.10), we get the following relations for the two-component

spinors:

{Qi
α, Q

∗jβ} = 2(σµ)βαP
µδij,

{Qi
α, Q

j
β} = εαβZ

ij, and

{Q∗iα, Q∗jβ} = εαβZij.

After some calculations with Pα = (ω, ω, 0, 0)t, we have {Qi
1, Q

∗j1} = 0 and

{Qi
2, Q

∗j2} = 2ωδij. Further, from [6] we see that Zij = 0; this result can also be

found in reference [1], which also provides a brief modern treatment of extended

supersymmetry.
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4.4 General Massive Multiplets in Extended Supersymmetry

In this section we collect the main results from [12]. Our goal in the thesis is

to generalize these results for the restrictions (i)-(iv) listed above; we focus on (ii)

and (iii). Note that in this section we will follow the notation of [12], while, in the

next chapter, we will use the notation introduced earlier (following mostly [15]). The

reader should keep in mind that the representations listed below are identified with

their dimensions or with their highest weights. The correspondence V → dimV is

one-to-one for all representations considered below, but certainly fails to be injective

in general.

We have the following motivation to consider the above restrictions. When

considering the supercharges as a vector, the set of equations described by equation

(4.3) define a Clifford algebra with the invariant group SO(4N).

Case (ii): Restriction to SU(2)× Sp(2N).

We wish to decompose SO(4N) into the invariant SU(2) × Sp(2N). The lowest

dimensional supermultiplet is obtained from the Clifford vacuum | 0〉, defined by

Qi
α | 0〉 = 0

for all α and i. By applying the creation operators Q∗iα we generate 22N states, which

form a basis for the spinorial representation S of SO(4N):

| 0〉, Q∗i1α1
| 0〉, Q∗i1α1

Q∗i2α2
| 0〉, . . . , Q∗i1α1

. . . Q∗iNαN | 0〉.

SO(4N) branches into two irreducible representations corresponding to Bosons and

Fermions; each of the irreducible subrepresentations have dimension 22N−1. The

following is the restriction of S as a representation of SU(2)× Sp(2N) as follows

S = (N + 1, [2N ]0) + (N, [2N ]1) + · · ·+ (N + 1− k, [2N ]k) + · · ·+ (1, [2N ]N), (4.26)
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where the first label is the dimension of the SU(2) multiplet (the J spin is (N−k)/2)

and where [2N ]k =
(

2N
k

)
−
(

2N
k−2

)
is the dimension of the totally antisymmetric traceless

representation of Sp(2N). The formula for the dimensionality can be found in [15];

however, an alternative approach to derive this formula can be found in [4]. To

compare with the results from the literature, we refer the reader to equation (9) in

[12] and to table 4 with D = 4 in [29]. By the above identity we obtain a classification

of the states of given intrinsic SU(2) spin.

Case (iii): Restriction to U(1)× SU(N).

Using the decompostion above, we can further restrict the massive supermultiplet

into massless (or light-like) representations. Here we will use the inclusions

U(1)× SU(N) ⊂ SU(2)× Sp(2N) ⊂ SO(4N)

where U(1) is generated by the SU(2) spin projection, λ, and the 2N representation of

Sp(2N) decomposes under U(N) via the map U(N)→ Sp(2N) such that A 7→ (A,A),

or in the notation of invariant theory, C2N ↓U(N)= CN ⊕ CN . Physically, we may

interpret this restriction as a massive particle being expressed as the combination of

massless particles.

Our massive supermultiplet branches into 2N massless supermultiplets, each of

dimension 2N , and we have

S =

{
N

2
, [N ]0

}
+

{
N − 1

2
, [N ]1

}
+ . . .

{
N − k

2
, [N ]k

}
+ · · ·+ {0, [N ]N} ,

where the braces denote a massless supermultiplet specified by a state of maximal

spin projection, λmax, belonging to the antisymmetric representation [N ]k of SU(N),

namely

{λmax, [N ]k} =
(
λmax, [N ]k ⊗ [N̄ ]0

)
+

(
λmax −

1

2
, [N ]k ⊗ [N̄ ]1

)
+ · · ·+

+

(
λmax −

`

2
, [N ]k ⊗ [N̄ ]`

)
+ · · ·+

(
λmax −

N

2
, [N ]k ⊗ [N̄ ]N

)
.
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Example 4.4.1. For N = 4,

S = {4, 1}+ {3, 4}+ {2, 6}+ {1, 4}+ {0, 1},

which has dimension 28. Explicitly, we have the following decomposition:

S = (4, [4]0 ⊗ [4̄]0) + (7/2, [4]0 ⊗ [4̄]1)+

+ (3, [4]0 ⊗ [4̄]2) + (3, [4]1 ⊗ [4̄]0)+

+ (5/2, [4]0 ⊗ [4̄]3) + (5/2, [4]1 ⊗ [4̄]1)+

+ (2, [4]0 ⊗ [4̄]4) + (2, [4]1 ⊗ [4̄]2)+

+ (2, [4]1 ⊗ [4̄]2) + (2, [4]2 ⊗ [4̄]0)+

+ (3/2, [4]1 ⊗ [4̄]3) + (3/2, [4]2 ⊗ [4̄]1)+

+ (1, [4]1 ⊗ [4̄]4) + (1, [4]2 ⊗ [4̄]2)+

+ (1, [4]3 ⊗ [4̄]0) + (1/2, [4]2 ⊗ [4̄]3)+

+ (1/2, [4]3 ⊗ [4̄]1) + (0, [4]2 ⊗ [4̄]4)+

+ (0, [4]3 ⊗ [4̄]2) + (0, [4]4 ⊗ [4̄]0)+

+ (−1/2, [4]3 ⊗ [4̄]3) + (−1/2, [4]4 ⊗ [4̄]1)+

+ (−1, [4]3 ⊗ [4̄]4) + (−1, [4]4 ⊗ [4̄]2)+

+ (−3/2, [4]4 ⊗ [4̄]3) + (−2, [4]4 ⊗ [4̄]4).

We leave checking that the dimensions work out to the reader.
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CHAPTER 5

Representation Theoretic Results

We denote by S = S(z1, ..., zn,M) the massive spinor representation of the Clif-

ford subalgebra Cliff(Q) of ESP (N). Recall that Cliff(Q) is generated by Qi
α and

Q∗iα. We denote by S(z1, ..., zn,M) the corresponding (induced) massive represen-

tation of ESP (N). Note that S(z1, ..., zn,M) depends on the n central parameters

z1, z2, ..., zn, and the mass M , where n = bN/2c. For simplicity, we will assume,

unless otherwise stated, that N is even.

Definition 5.0.1. If λ ∈ R, then Cλ denotes the U(1)-module with underlying space

C and action defined by exp(
√
−1ϕ) · z = exp(

√
−1λϕ)z.

In all results below, the restrictions V ↓G×g for a Lie group G and a Lie algebra

g should be understood as restrictions to the tensor product of the corresponding

associative algebras, i.e. as V ↓A(G)⊗U(g), and we will also use the symbol � for the

outer tensor products.

5.1 Induced Representations

E. Wigner induced representations of the Poincaré group analytically using the

“Mackey machine” [25]; the following is a brief summary of this process which has

been adapted from [31]. We will then present the appropriate version of this process

for the subsupergroup that we are working with in this thesis, which has been adapted

from [12]. There is also an algebraic version of induced representations, which might

be more consistent with the language of this thesis; we refer the reader to [7] for

details on algebraic induction.
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5.1.1 Induction from a Closed Subgroup

We let G be a separable Lie group and let K be a closed subgroup of G, and we

assume the existance of an invariant measure dµ on G/K. Then for a given unitary

representation, π0, of K we define the Hilbert space of functions, on which π0 acts,

by

V =

{
ϕ : G→ X | ϕ(gk−1) = π0(k)ϕ(g),

∫
G/K

||ϕ(g)||2dµ(g) <∞
}
,

where the first condition defines the action of π0 and the second condition is the norm

on V with X a complex Hilbert space.

Claim 5.1.1. We can define a left-action on V by G such that [π(h)ϕ](g) = ϕ(h−1g),

for any h, g ∈ G.

Proof. We need only show that if ϕ ∈ V , then π(h)ϕ ∈ V .

[π(h)ϕ](gk−1) = π(h)ϕ(gk−1)

= ϕ(h−1gk−1)

= π0(k)ϕ(h−1g)

= π0(k)π(h)ϕ(g)

= π0(k)[π(h)ϕ](g)

Now we construct a map s : G/K → G such that s(gK) ∈ gK and we define a

Borel measurable set S = s(G/K). Then for any g ∈ G, we have a unique form of g,

g = sk−1 for some k ∈ K; here we have denoted s(gK) by s. Further, we define the

measure dµ(s) = dµ(g). Now we construct a restriction of ϕ such that ζ(s) = ϕ(s) and

ϕ(g) = ϕ(sk−1) = π0(k)ϕ(s) = π0(k)ζ(s). Thus, V = L2(S, dµ(s);X) and any ζ ∈ V

is called a Wigner state. The action of G on V is πW (h)ζ(s) = π(h)ϕ(s) = ϕ(h−1s).
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Definition 5.1.2. We call the representation h 7→ π(h) of V the representation of G

induced by the representation of π0 of K.

5.1.2 Inductions from Q and Lp to EPS(N)

Following [12], we denote the Lorentz group by L and we let π0 be an irreducible

unitary representation of the subsupergroup (Lp n R1,3, g0) acting on the complex

Hilbert superspace V0(p, z, h), where z = (zk) is an eigenvalue of Zij and h is some

label of Lp. We construct the Hilbert superspace V (p, z, h) of V0(p, z, h)-valued L2

functions on L with the following property: for any φ ∈ V (p, z) and any g ∈ L,

φ(gh) = π0(h−1)φ(g).

Then the action of the extended Poincaré supergroup on V (p, z, h) is defined

by

(hφ)(g) = φ(h−1g)

(aφ)(g) = exp(
√
−1Adg(p)ηa

η)φ(g)

(Qi
αφ)(g) = π0(Adg−1(Qi

α))φ(g)

Zijφ(g) = zkφ(g),

where h ∈ L, a ∈ R1,3, and for any g ∈ L. This leads to an induction type of

functor from the category of representations of the subsupergroup (Lp n R1,3, g0) to

the category of representations of EPS(N). We denote this functor by IndEPSLp .

For our consideration we will need another induction functor, namely the one

from the category of representations of Q to the category of representations of EPS(N).

Let us denote this functor by IndEPSQ , or simply by Ind. For detailed study of the

two indiction functors IndEPSLp and IndEPSQ we refer the reader to §4 of [5] and §3, §5

of [28].
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In particular we have this important property: every simple (unitary) represen-

tation of EPS(N) is isomorphic to a quotient of the induced representation Ind(S)

of a (unitary) Cliff(Q)-representation S. For this reason, for the remainder of this

chapter we focus on the simple representations of Cliff(Q) and their decompositions

as G-representations for some special Lie groups G.

5.2 Restriction to U(1)× U(2N)

In order to prove some of the results we will need the definition of the Euler

operator E on the exterior algebra
∧
V of the finite-dimensional vector space V =

C2N . Fix a basis {e1, ..., en} of V , and a dual basis {ϕ1, ..., ϕn} of the dual vector

space V ∗; namely, ϕi(ej) = δij. For vectors v ∈ V and v∗ ∈ V ∗ introduce the exterior

product operator ε(v) and the interior product operator ι(v∗) on
∧
V as follows

ε(v)(v1 ∧ ... ∧ vk) = v ∧ v1 ∧ ... ∧ vk,

ι(v∗)(v1 ∧ ... ∧ vk) =
k∑
i=1

(−1)iv∗(vi)v1 ∧ ... ∧ v̂i ∧ ... ∧ vk

where v̂i denotes the omition of vi. In what follows we set χ = 1
2
(NId− E) and call

it the helicity operator

Definition 5.2.1. The skew-symmetric Euler operator on
∧
V is defined as

E =
n∑
i=1

ε(ei)ι(e
∗
i ).

Theorem 5.2.2. The restriction of S to U(1)× U(2N) is given by the formula

S ↓U(1)×U(2N)=
2N⊕
k=0

Ck �
k∧
C2N .

Note that the action of the helicity operator χ on Ck is given by multiplication by

N−k
2
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Proof. From Corollary 5.5.3 in [15] we have

S ↓GL(2N)=
2N⊕
k=0

k∧
C2N .

Now we use the fact that the commutant of GL(n) in End(S) is the algebra generated

by the Euler operator E on
∧
C2N . Now using Theorem 2.2.5 we complete the

proof.

5.3 Restriction to SU(2)× Sp(2N)

Recall from §2.4 that Hk = H
(∧k C2N

)
denotes the k-harmonic subspace of∧

C2N . The space Hk is an irreducible representation of Sp(2N), which is isomorphic

to the k-th fundamental representation. Finally, we recall that F (N−k) denotes the

finite dimensional slC(2)-representation with highest weight N − k and dimension

N − k + 1. Considering that the representations of SU(2) and slC(2) are in 1-1

correspondence, by Theorem 2.4.9, we have the following theorem.

Theorem 5.3.1. The restriction of S to SU(2)× Sp(2N) is given by the formula

S ↓SU(2)×Sp(2N)=
N⊕
k=0

F (N−k) �Hk.

Note that the above theorem provides a rigorous representation theory inter-

pretation of the identity (4.26) from [12] as explained in the next section.

5.4 Restriction to U(1)× SU(N)

We first note that to obtain the restriction of S to U(1)×SU(N) is a branching

rule problem for Sp(2N) ↓U(N). This branching problem in general is difficult, but for

the representations we consider, it is relatively easy. To obtain the needed branching

rule we will directly look at the branching U(2N) ↓U(N). We first note the obvious

fact.
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Lemma 5.4.1. The standard U(2N)-representation, C2N , as a U(N)×U(N)-module

decomposes as

C2N ↓U(N)×U(N)= CN � CN .

Consider now the embedding U(N) → U(N) × U(N) defined by A 7→ (A,A).

Then, using this embedding, we have C2N ↓U(N)= CN ⊕ CN .

Theorem 5.4.2. The restriction of S to U(1)× SU(N) is given by the formula

S ↓U(1)×SU(N)
∼=

2N⊕
k=0

k⊕
p=0

Ck �

(
p∧
CN ⊗

k−p∧
CN

)
.

Note that χ|Ck =
(
N−k

2

)
Id.

Proof. From Theorem 5.2.2 we see that to find S ↓U(1)×SU(N) it is enough to find(∧k C2N
)
↓U(N). But(
k∧
C2N

)
↓U(N)=

(
k∧

(CN ⊕ CN)

)
↓U(N)=

k⊕
p=0

(
p∧
CN ⊗

k−p∧
CN

)
.

Now combining the last identity with Theorem 5.2.2 we obtain the desired result.

5.5 Interpretation of [12] in Representation Theoretic Terms

In this section we describe the main results in [12] (and in [29]) in rigorous

mathematical language.

5.5.1 Massive Supermultiplets

We start with the equation

22N = (N + 1, [2N ]0) + (N, [2N ]1) + · · ·+ (N + 1− k, [2N ]k) + · · ·+ (1, [2N ]N),

see (4.26), which classifies the intrinsic states of given intrinsic SU(2) J-spin. The

left hand side of the identity is the unique, up to isomorphism, simple module S of
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Cliff(Q), and the right hand side coincides with the right hand side of the isomor-

phism in Theorem 5.3.1. In other words, (N + 1− k, [2N ]k) corresponds to the outer

tensor product F (N−k) � Hk. Hence, the above equation corresponds to the canon-

ical decomposition of
∧

C2N as a (G,Comm(G))-module, where G = GL(2N) and

Comm(G) is the commutant of G in End(
∧
C2N).

5.5.2 Massless Supermultiplets

We now look at the equation

22N =

{
N

2
, [N ]0

}
+

{
N − 1

2
, [N ]1

}
+ . . .

{
N − k

2
, [N ]k

}
+ · · ·+ {0, [N ]N} ,

where the braces denote a massless supermultiplet specified by a state of maximal

spin projection, λmax, belonging to the antisymmetric representation [N ]k of SU(N),

namely,

{λmax, [N ]k} =
(
λmax, [N ]k ⊗ [N̄ ]0

)
+

(
λmax −

1

2
, [N ]k ⊗ [N̄ ]1

)
+ · · ·+

+

(
λmax −

`

2
, [N ]k ⊗ [N̄ ]`

)
+ · · ·+

(
λmax −

N

2
, [N ]k ⊗ [N̄ ]N

)
.

The J-spin projection N−k
2

is given by the action of 1
2
(NId−E), where E is the Euler

operator, see Definition 2.4.3 and the discussion thereafter. The second component

of
{
N−k

2
, [N ]k

}
corresponds to the representation

∧k C2N of U(N) (equivalently, of

SU(N)). By Theorem 5.4.2, we can write the following physics-mathematics corre-

spondences: {
N − k

2
, [N ]k

}
↔

N+k⊕
i=k

Ci �

(
k∧
CN ⊗

i−k∧
CN

)
,

(
N − k

2
− `

2
, [N ]k ⊗ [N̄ ]`

)
↔ Ck+` �

(
k∧
CN ⊗

∧̀
CN

)
.
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5.5.3 Examples

Example 5.5.1. Let N = 4 and q = 2 (i.e. 0 < z1 = z2 = M). Then G =

SU(2)× Sp(4). By the above, S has dimension 28 and

S ↓SU(4)= 24 · 24 = 24 ([4]0 + · · ·+ [4]4) .

24 ↓SU(2)×Sp(4) = (3, [4]0) + (2, [4]1) + (1, [4]2) (5.1)

= (3, 1) + (2, 4) + (1, 5) (5.2)

Example 5.5.2. Let N = 4 and q = 1 (i.e. 0 < z2 < z1 = M). Then G =

Sp(2) × Sp(2) ∼= SU(2) × SU(2). Considering the branching U(4) ↓SU(2)×SU(2), we

get

[4]0 ↓SU(2)×SU(2) = (1, 1) (5.3)

[4]1 ↓SU(2)×SU(2) = (2, 1) + (1, 2) (5.4)

[4]2 ↓SU(2)×SU(2) = 2(1, 1) + (2, 2). (5.5)

So, 24 = (3, 1, 1) + (2, 2, 1) + (2, 1, 2) + (1, 1, 1) + (1, 2, 2).

Below we provide a table which organizes the combinations of N and q which

have representations with Jmax up to 2:
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Dim Jmax N q N q N q N q N q N q N q N q

216 4 8 0

214 7/2 7 0 8 1

212 3 6 0 7 1 8 2

210 5/2 5 0 6 1 7 2 8 3

28 2 4 0 5 1 6 2 7 3 8 4

26 3/2 3 0 4 1 5 2 6 3

24 1 2 0 3 1 4 2

22 1/2 1 0 2 1

.
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Appendix A

Finite-Dimensional Irreducible Representations of slC(2)

In this appendix, we list some standard facts from the representation theory of

g = slC(2), and we fix the base field to be C. For the reader’s convenice some proofs

are included.

A.1 Explicit Construction

The matrices

x =

 0 1

0 0

 , y =

 0 0

1 0

 , and h =

 1 0

0 −1


form a basis for g and satisfy the commutation relations

[h, x] = 2x, [h, y] = −2y, and [x, y] = h.

Let h be the subalgebra of diagonal matrices of g, i.e. h = Ch. Let α ∈ h∗ be defined

by α(h) = 2. We identify h∗ with C through the map cα 7→ 2c.

Lemma A.1.1. Let V be a g-module and let v0 ∈ V be such that xv0 = 0 and

hv0 = λv0 for some λ ∈ C. Set vj = yjv0 for j ∈ Z>0 and vj = 0 for j < 0. Then

yvj = vj+1, hvj = (λ− 2j)vj, and xvj = j(λ− j + 1)vj−1 for j ∈ Z>0.

Let V be a finite-dimensional g-module. Then we decompose V into generalized

eigenspaces for the action of h:

V =
⊕
λ∈C

Vλ,

where Vλ =
⋃
k≥1 Ker(h− λId)k|V is the λ-weight space of V .

Definition A.1.2. If Vλ 6= 0, then λ is called a weight of V with weight space Vλ.
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In particular, v ∈ Vλ then (h− λ)kv = 0 for some k ≥ 1. As linear transforma-

tions on V ,

x(h− λ) = (h− λ− 2)x and y(h− λ) = (h− λ+ 2)x.

Hence, (h− λ− 2)kxv = x(h− λ)kv = 0 and (h− λ+ 2)kyv = y(h− λ)kv = 0. Thus,

xVλ ⊂ Vλ+2 and yVλ ⊂ Vλ−2

for all λ ∈ C.

Lemma A.1.3. Suppose V is a finite-dimensional g-module and 0 6= v0 ∈ V satisfies

hv0 = λv0 and xv0 = 0. Let k be the smallest non-negative integer such that ykv0 6= 0

and yk+1v0 = 0. Then λ = k and the space W = SpanC{v0, yv0, . . . , y
kv0} is a

(k + 1)-dimensional g-module.

We can provide a specific action of g on the subspace W , from the previous

lemma, in matrix form as follows. For k ∈ Z>0, we define the (k + 1) × (k + 1)

matrices

Xk =



0 k 0 0 . . . 0

0 0 2(k − 1) 0 . . . 0

0 0 0 3(k − 2) . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . k

0 0 0 0 . . . 0


, Yk =



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0


, and

Hk = Diag[k, k − 2, . . . , 2− k,−k], which satisfy

[Hk, Xk] = 2Xk, [Hk, Yk] = −2Yk, and [Xk, Yk] = Hk.

Proposition A.1.4. Let k ≥ 0 be an integer. Then the representation (ρk, F
(k)) of

g on Ck+1 defined by

ρk(x) = Xk, ρk(h) = Hk, and ρk(y) = Yk

2



is irreducible.

Corollary A.1.5. The weights of a finite-dimensional g-module V are integers.
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Appendix B

Tensor Analysis

In this chapter we mainly follow [2]. Let the ground field be F = R or C.

B.1 Tensor Spaces

Definition B.1.1. Let V and W be vector spaces and f : V → W . Then we call f

a homomorphism, if for all v1, v2 ∈ V and a ∈ F,

• f(v1 + v2) = f(v1) + f(v2) and

• f(av1) = af(v1).

Definition B.1.2. The set of homomorphisms from V → W forms a vector space,

which we denote by L(V,W ).

Remark B.1.3. The sum of homomorphisms is (f + g)(v) = f(v) + g(v), and the

scalar product of a ∈ F and f ∈ L(V,W ) is (af)(v) = a(f(v)) for any v ∈ V .

Definition B.1.4. We call L(V,R) the dual space of V , and we denote it by V ∗.

Remark B.1.5. For each basis {ei} of V there is a unique basis {εi} of V ∗ such that

εiej = δij, where

δij =


1 , i = j

0 , otherwise

.

.

Definition B.1.6. The linear functionals εi : V → R are called the dual basis to the

basis {ei}.

Remark B.1.7. When dimV <∞, (V ∗)∗ ∼= V as vector spaces.
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Definition B.1.8. If {ei | i = 1, . . . , d} is a basis of V (v =
∑d

i=1 a
iei) and {εi | i =

1, . . . , d} is the corresponding dual basis (τ =
∑d

i=1 biε
i), then the natural pairing on

V is

〈v, τ〉 =
d∑
i=1

biε
i

(
d∑
j=1

ajej

)

=
d∑
i=1

d∑
j=1

bia
j(εiej)

=
d∑
i=1

d∑
j=1

bia
jδij

=
d∑
i=1

bia
i.

Definition B.1.9. Let U and V be vector spaces. Then the tensor product of U and

V is a vector space U ⊗ V together with a bilinear map from U × V → U ⊗ V such

that τ : (u, v) 7→ u⊗ v and satisfying the universal mapping property :

Given any vector space W and bilinear map β : U × V → W , there exists a

unique linear map B : U ⊗ V → W such that β = B ◦ τ

U × V U ⊗ V

W

τ

β
B . (B.1)

Remark B.1.10. Let U , V , and W be three vector spaces and let τ : (U⊗V )×W →

U ⊗ (V ⊗W ) such that τ(u⊗ v, w) = u⊗ (v ⊗ w). Then the the universal mapping

property is satisfied. Further, (U ⊗ V ) ⊗W ∼= U ⊗ (V ⊗W ). In this way, we can

iteratively take tensor products of vector spaces.

Definition B.1.11. Let V ⊗k be the k-fold tensor product of V with itself, for k =

0, 1, . . . , where V ⊗0 = F. Then we define the tensor algebra as

T (V ) =
⊕
k≥0

V ⊗k.
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Multiplication respects the grading: V ⊗k × V ⊗m → V ⊗(k+m) such that

(x1 ⊗ · · · ⊗ xk, y1 ⊗ · · · ⊗ ym) 7→ x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ ym for xi, yj ∈ V .

B.2 Homomorphisms on Tensor Spaces

Definition B.2.1. • We call the real-valued multilinear functions on

V ∗1 × · · · × V ∗n × Vn+1 × Vn+` tensors over V1 ⊗ · · · ⊗ Vn ⊗ V ∗n+1 ⊗ V ∗n+`,

and we call the vector spaces they form tensor spaces.

• The number n, in the space given above, is called the contravariant degree of

the tensor space, and

• The number `, in the space given above, is called the covariant degree.

• We call the degree of a tensor the ordered pair with content contravariant degree

then covariant degree.

Example B.2.2. The degree of the example above is (n, `).

Definition B.2.3. • By convention, we consider the trivial case of a tensor with

degree (0, 0) to be a scalar, T 0
0 = F.

• Two more trival cases are tensors with degree (1, 0) or (0, 1). We call a tensor

with degree (1, 0) a contravariant vector, and we call a tensor of degree (0, 1) a

covariant vector.

• We call a tensor with degree (r, 0) a contravariant tensor, and we call a tensor

with degree (0, s) a covariant tensor, for r, s > 1.

Remark B.2.4. Note that T (V ⊕ V ∗) =
⊕

k,` T `k .

Remark B.2.5. For dimF(V ) < ∞, A ∈ T 1
1 , and for a fixed τ ∈ V ∗, A(τ, v) is a

linear function of v ∈ V , so we denote by B : V ∗ → V ∗ the function defined by

A(τ, v) = 〈v,Bτ〉.
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Hence, for each tensor of type T 1
1 we get an epimorphism on V ∗. Conversely, if B is

an epimorphism, then we define a tensor A ∈ T 1
1 by A(τ, v) = 〈v,Bτ〉.

Remark B.2.6. For A ∈ T 1
1 , the action of B on V ∗ (or V with dim(V ) = dim(V ∗) =

d) can be viewed as a partial evaluation: for τ =
∑d

i=1 biε
i ∈ V ∗,

Bτ =

(
d∑
i=1

d∑
j=1

Bi
jei ⊗ εj

)
τ

=
d∑
i=1

d∑
j=1

d∑
k=1

Bi
jbk(ei ⊗ εj)εk

=
d∑
i=1

d∑
j=1

d∑
k=1

Bi
jbkε

j〈ei, εk〉

=
d∑
i=1

d∑
j=1

d∑
k=1

Bi
jbkε

jδki

=
d∑
i=1

d∑
j=1

Bi
jbiε

j

Example B.2.7. Let V and W be vector spaces with basis {ei | i = 1, . . . , D} and

{Ei | i = 1, . . . , d}, respectively. Then for v ∈ V and w ∈ W the tensor product of

two vectors, v ⊗ w, can be represented by a matrix. We begin with the general form

of the tensor product of two vectors.

v ⊗ w =

(
D∑
i=1

aiei

)
⊗

(
d∑
j=1

bjEj

)

=
D∑
i=1

aiei ⊗
d∑
j=1

bjEj

=
D∑
i=1

d∑
j=1

aibj(ei ⊗ Ej)

=
D∑
i=1

ai

d∑
j=1

bj(ei ⊗ Ej)
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At this point we must realize the size of our matrix. Our column vectors above have

size D × 1 and d × 1, respectively. Recall that the matrix product is defined for

(1× d)× (D × 1) = 1× 1 or (1×D)× (d× 1) = 1× 1 if, and only if, D = d.

However, the tensor product of our two vectors can be defined as (d× 1)× (1×

D) = d×D or as (D × 1)× (1× d) = D × d – with no restrictions on D or d.

Specifically, we consider V = R2 and W = R3 with v = e1 + 2e2 ∈ V and

w = 3E1 + 2E2 + E3. Then choosing the 2 × 3 matrix, we let ei ⊗ Ej represent an

elementary matrix which has its non-zero entry in the (i, j)th position. Then we have:

v ⊗ w = (e1 + 2e2)⊗ (3E1 + 2E2 + E3)

= e1 ⊗ (3E1 + 2E2 + E3) + 2e2 ⊗ (3E1 + 2E2 + E3)

= e1 ⊗ 3E1 + e1 ⊗ 2E2 + e1 ⊗ E3 + 2e2 ⊗ 3E1 + 2e2 ⊗ 2E2 + 2e2 ⊗ E3

= 3(e1 ⊗ E1) + 2(e1 ⊗ E2) + (e1 ⊗ E3) + 6(e2 ⊗ E1) + 4(e2 ⊗ E2) + 2(e2 ⊗ E3)

= 3

 1 0 0

0 0 0

+ 2

 0 1 0

0 0 0

+

 0 0 1

0 0 0


+ 6

 0 0 0

1 0 0

+ 4

 0 0 0

0 1 0

+ 2

 0 0 0

0 0 1


=

 3 2 1

6 4 2

 .

In summary,

 1

2

⊗ ( 3 2 1

)
=

 3 2 1

6 4 2

.

We may extend this concept to the tensor product of more than two vectors.

Then we should be careful about which two vectors spaces will form our matrix and

which vectors are not explicitely being used, say, in a partial evaluation. To this end,

we make clever use of index notation in practice.
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Definition B.2.8. If T is a tangent space at a point q on a d-dimensional manifold

and if the bases are obtained as coordinate vector fields with respect to two systems

of coordinates (xi) and (yi) at q, then ei = ∂
∂xi

, εi = dxi, fi = ∂
∂yi

, φi = dyi,

aji = ∂xj

∂yi
, and bij = ∂yi

∂xj
all evaluated at q, for i, j ∈ {1, . . . , d}. Further, Ay,ijk =∑d

i=1

∑d
j=1

∑d
k=1A

x,q
np

∂yi

∂xq
∂xn

∂yj
∂xp

∂yk
.

Definition B.2.9. We say a tensor is symmetric in the pth and qth contravariant

indices, if the components with respect to every basis are unchanged when these

indices are interchanged.

Definition B.2.10. We say a tensor is symmetric in the pth and qth variables (of the

same type), if its values as a multilinear function are unchanged when these variables

are interchanged.

Definition B.2.11. We call a tensor contravariant (covariant) symmetric, if it is

symmetric in every pair of contravariant (covariant) indices.

Remark B.2.12. By convention, we take tensors of degree (0, 0), (0, 1), or (1, 0) to

be symmetric.

Definition B.2.13. We call a tensor skew symmetric in the pth and qth contravariant

indices, if the components of the tensor, with respect to every basis, are changed in

sign when these indices are interchanged.

Definition B.2.14. We call a tensor skew symmetric in the pth and qth variables (of

the same type), if A = 0, as a multilinear function, when these variables are the same

(regardless of basis).

9



Remark B.2.15. An example of a skew symmetric tensor (over three indeces) is the

Levi-Civita tensor :

εijk =


1 , ijk is an even permutation of 1, 2, 3

0 , i = j or j = k or i = k

−1 , ijk is an odd permutation of 1, 2, 3

.

Definition B.2.16. The multiplication of skew symmetric tensors is called the exte-

rior product, and the resulting algebra is called the geometric exterior algebra.

This product is denoted by ∧.

This symbol is also used to denote the space of skew symmetric tensors of type (r, 0),∧r V or the tensor space of type (0, s) which is denoted by
∧s V ∗.

Theorem B.2.17. The dimension of
∧r V is

(
d
r

)
, where d = dim(V ).

Theorem B.2.18 (Cartan). Let {ei}, for i = 1, . . . , d, be a basis of V , and let vi ∈ V ,

for i = 1, . . . , p, such that
∑p

i=1 ei ∧ vi = 0. Then there exists scalars, Aij, such that

vi =
∑p

j=1 Aijej and Aij = Aji.

Definition B.2.19. A tensorA ∈
∧p V is called decomposable if there exist v1, . . . , vp ∈

V such that A = v1 ∧ · · · ∧ vp.

Otherwise, we call A indecomposable.

Remark B.2.20. If A ∈
∧2 V , then A is decomposable if, and only if, A ∧ A = 0,

or equivalently, for all i, j1, j2, and j3,

Aij1Aj2j3 + Aij3Aj1j2 = Aij2Aj1j3 .

10



Appendix C

Representations of Associative Algebras

In this chapter, we take the ground field to be C, and we let A and B be an

associative algebra over C with unity IA and IB, respecively. Then a family, F , of

linear subspaces CIA = A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ . . . such that

Aj · Ak ⊂ Aj+k, and
⋃
j≥0

Aj = A

is called a filtration on A, and we say B is graded when B has a family, G, of subspaces

C1 = B0,B1, . . . ,Bn, . . . such that

Bj · Bk ⊂ Bj+k and
⊕
j≥0

Bj = B.

C.1 Tensor Algebra

Let V be a vector space over C. Then the tensor algebra generated by V , T (V ),

has the following universal mapping property:

Suppose A is any associatgive algebra over C and ϕ : V → A is any homomorphism

of vector spaces. Then ϕ extends uniquely to a homomorphism ϕ̃ : T (V ) → A by

the formula

ϕ̃(x1 ⊗ · · · ⊗ xk) = ϕ(x1) . . . ϕ(xk)

for xi ∈ V . Since A is associative, ϕ̃ is an algebra homomorphism. Hence,

V T (V )

A

ι

ϕ
ϕ̃ , (C.1)

where ι is the natural inclusion map.
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Definition C.1.1. The spaces {V ⊗k}k≥0 define the standard grading.

C.2 Symmetric Algebra

For any associative algebra A, the symmetric algebra, S(V ), is universal for

homomorphisms ϕ : V → A that satisfy

ϕ(x)ϕ(y) = ϕ(y)ϕ(x),

where x, y ∈ V . Hence, given any linear map ϕ : V → A as above, there is a unique

algebra homomorphism ϕ̂ : S(V )→ A such that we get the commuting diagram

V S(V )

A

γ

ϕ
ϕ̂ , (C.2)

Specifically, we construct S(V ) as the quotient of T (V ) modulo the two-sided

ideal I = 〈x⊗ y − y ⊗ x〉 for x, y ∈ V

S(V ) =
T (V )

I

with γ : T (V )→ T (V )/I being the quotient map.

C.3 Exterior Algebra

The exterior algebra,
∧
V , for a vector space V is the associative algebra gen-

erated by V that is universal relative to a homomorphism ψ from V to an associative

algebras A such that

ψ(x)ψ(y) = −ψ(y)ψ(x),

where x, y ∈ V .
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Given any homomorphism ψ : V → A as above, there exists a unique algebra

homomorphism ψ̌ : S(V )→ A such that we have the commuting diagram

V
∧

(V )

A

δ

ψ
ψ̌

. (C.3)

Specifically, we construct
∧
V as the quotient of T (V ) modulo the two sided

ideal J = 〈x⊗ y + y ⊗ x〉, for x, y ∈ V and δ the canonical quotient map:

∧
V =

T (V )

J
.

C.4 Enveloping Algebra

Definition C.4.1. If A is an associative algebra, then, using the multiplication in

A, we define the commutator [x, y] = xy − yx.

Remark C.4.2. • This product is anti-symmetric.

• Since A is associative, the commutator satisfies the Jacobi identity.

Definition C.4.3. We denote by ALie the Lie algebra with commutator whose un-

derlying vector space is A.

Remark C.4.4. Let A and B be associative algebras over C and let ϕ : A → B be

an associative algebra homomorphism. Then

[ϕ(x), ϕ(y)] = ϕ([x, y])

for x, y ∈ A. Thus, ϕ : ALie → BLie is a Lie algebra homomorphism.

Let ϕ : g → G be Lie algebra homomorphism whose image generates G as

an associative algebra with unity over C. Then we define the universal enveloping

algebra of g to be the pair (G, ϕ) satisfying the following universal mapping property :

13



Given any associative algebra A over C and a Lie algebra homomorphism ψ :

g→ ALie, there exists an associative algebra homomorphism Ψ : G→ A such that

ψ(x) = Ψ(ϕ(x))

for x ∈ g

g G

A

ϕ

ψ
Ψ . (C.4)

Remark C.4.5. • The universal enveloping algebra exists and is unique.

• We denote the universal enveloping algebra on g by U(g).

C.5 Representations of Associative Algebras

Until the end of this appendix we fix A to be an associative algebra over C with

unity.

Definition C.5.1. A representation of A is a pair (ρ, V ), where V is a vector space

over C and ρ : A → End(V ) is an associative algebra homomorphism.

If V,W are both A-modules, then we make the vector space V ⊕W into an

A-module by the action a · (v + w) = av + aw.

Definition C.5.2. If U ⊂ V is a linear subspace such that ρ(a)U ⊂ U for all a ∈ A,

then we say that U is invariant under the representation.

In this case, we define the representations (ρU , U) and (ρV/U , V/U) by the re-

striction of ρ(A) to U and by the natural quotient action of ρ(A) on V/U , respectively.

Definition C.5.3. A representation (ρ, V ) is irreducible if the only invariant sub-

spaces are {0} and V .

Definition C.5.4. Let (ρ, V ) and (τ,W ) be representations of A. Then we denote

by HomA(V,W ) the set of all T ∈ Hom(V,W ) such that Tρ(a) = τ(a)T for all a ∈ A.
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Such a map is called a module homomorphism or an intertwining operator between

the two representations.

Lemma C.5.5 (Schur). Let (ρ, V ) and (τ,W ) be irreducible representations of an

associative algebra A. Assume that V and W have countable dimension over C. Then

dim HomA(V,W ) =


1, (ρ, V ) ∼= (τ,W )

0, otherwise

.

Definition C.5.6. A finite dimensional A-module V is completely reducible if for

every A-invariant subspace W ⊂ V there exists a complementary invariant subspace

U ⊂ V such that V = W ⊕ U .

Lemma C.5.7. Let (ρ, V ) be completely reducible and suppose W ⊂ V is an invari-

ant subspace. Set σ(x) = ρ(x) |W and π(x)(v + W ) = ρ(x)v + W for x ∈ A and

v ∈ V . Then the representations (σ,W ) and (π, V/W ) are completely reducible.

Proposition C.5.8. Let (ρ, V ) be a finite dimensional representation of the associa-

tive algebra A. The following are equivalent:

• (ρ, V ) is completely reducible.

• V = W1 ⊕ · · · ⊕Ws with each Wi an irreducible A-module.

• V = V1+· · ·+Vd as a vector space, where each Vi is an irreducible A-submodule.

Further, if V satisfies these conditions and if all the Vi in the last statement are

equivalent to a single irreducible A-module W , then every A-submodule of V is

isomorphic to a direct sum of copies of W .

Corollary C.5.9. Suppose (ρ, V ) and (σ,W ) are completely reducible representa-

tions of A. Then (ρ⊕ σ, V ⊕W ) is a completely reducible representation.

Definition C.5.10. Let [A] denote the set of all equivalence classes of irreducible

A-modules. On the other hand, let Â denote the set of all equivalence classes of

finite-dimensional irreducible A-modules.
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Definition C.5.11. Suppose that V is an A-module. For each λ ∈ [A] we define the

λ-isotypic subspace

V (λ) =
∑

U⊂V,Û=λ

U.

Fix a module F λ in the class λ for each λ ∈ Â. Then there is a tauto-

logical homomorphism Sλ : HomA(F λ, V ) ⊗ F λ → V , Sλ(u ⊗ w) = u(w). Make

HomA(F λ, V )⊗ F λ into an A-module with action x · (u⊗ w) = u⊗ (xw) for x ∈ A.

Then Sλ is an A-intertwining map. If 0 6= u ∈ HomA(F λ, V ), then Schur’s Lemma

implies that u(F λ) is an irreducible A-submodule of V isomorphic to F λ. Hence,

Sλ(HomA(F λ, V )⊗ F λ) ⊂ V(λ)

for every λ ∈ Â.
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Appendix D

Spin Representations

Let V be a finite dimensional complex vector space with a symmetric bilinear

(not necessarily non-degenerate) form β.

D.1 Clifford Algebras

For detailed information on Clifford algebras and groups, we refer the reader to

[14].

Definition D.1.1. A Clifford algebra for (V, β) is an associative algebra, Cliff(V, β),

with unity, IV , over C and a homomorphism γ : V → Cliff(V, β) satisfying the

following properties:

• {γ(x), γ(y)} = β(x, y)IV for x, y ∈ V , where {a, b} = ab+ ba is the anticommu-

tator of a, b.

• γ(V ) generates Cliff(V, β) as an algebra.

• Given any complex associative algebra A with unity IA and a homomorphism

ϕ : V → A such that {ϕ(x), ϕ(y)} = β(x, y)IA, (D.1)

there exists an associative algebra homomorphism ϕ̃ : Cliff(V, β)→ A such that

ϕ = ϕ̃ ◦ γ:

V A

Cliff(V, β)

ϕ

γ
ϕ̃ . (D.2)

To show the existence of a Clifford algebra, we begin with the tensor algebra

T (V ) and let J (V, β) be the two sided ideal of T (V ) given by 〈x⊗y+y⊗x−β(x, y)IV 〉
17



for x, y ∈ V . Then define Cliff(V, β) = T (V )
J (V,β)

and let γ : V → Cliff(V, β) be the

natural quotient map coming from the embedding V ↪→ T (V ).

Definition D.1.2. Let Cliffk(V, β) be the span of 1 and the operators γ(a1) . . . γ(ap)

for ai ∈ V and p ≤ k.

The subspaces Cliffk(V, β), for k = 0, 1, . . . , provides a natural filtration of the

Clifford algebra:

Cliffk(V, β) · Cliffm(V, β) ⊂ Cliffk+m(V, β).

Let {vi | i = 1, . . . , n} be a basis for V . Since {γ(vi), γ(vj)} = β(vi, vj)IV ,

we get that Cliffk(V, β) is tt spanned by 1 and the products γ(vi1) . . . γ(vip), where

1 ≤ i1 < i2 < · · · < ip ≤ n and p ≤ k. Further, Cliff(V, β) = Cliffn(V, β), so

dim Cliff(V, β) ≤ 2n.

Let the homomorphism V → Cliff(V, β) be such that v 7→ −γ(v) satisfies

equation (D.1), so this homomorphism extends to an algebra homomorphism α :

Cliff(V, β) → Cliff(V, β) such that α(γ(v1) . . . γ(vk)) = (−1)kγ(v1) . . . γ(vk). Since

α2(v) = v for all v ∈ V , α is an automorphism, which we call the main involution of

Cliff(V, β). Further, there is a decomposition

Cliff(V, β) = Cliff+(V, β)⊕ Cliff−(V, β),

where Cliff+(V, β) is spanned by products of an even number of elements of V and

Cliff−(V, β) is spanned by products of an odd number of elements of V . Finally, α

acts by ±1 on Cliff±(V, β).

Let V be a finite dimensional complex vector space with non-degenerate, sym-

metric bilinear form Ω.

Definition D.1.3. Let S be a complex vector space and let γ : V → End(S) be a

vector space homomorphism. Then we call (S,Ω) a space of spinors for (V,Ω) if

• {γ(x), γ(y)} = Ω(x, y)IV for all x, y ∈ V .
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• The only subspaces of S that are invariant under γ(V ) are 0 and S.

If (S,Ω) is a space of spinors for (V, β), then the map γ extends to an irreducible

representation γ̃ : Cliff(V,Ω)→ End(S). Conversely, every irreducible representation

of Cliff(V,Ω) arises this way.

Remark D.1.4. The following are standard and can be found in [15].

Theorem D.1.5. If dimV = 2` is even, then, up to isomorphism, there is exactly

one space of spinors for (V,Ω), and it has dimension 2`.

Proposition D.1.6. Suppose dimV = n is even. Let (S, γ) be a space of spinors for

(V, β). Then (EndS, γ) is a Clifford algebra for (V,Ω). Thus, Cliff(V,Ω) is a simple

algebra of dimension 2n.

The map γ : V → Cliff(V,Ω) is injective, and for any basis {v1, . . . , vn} of V the set

of all ordered products γ(vi1) . . . γ(vip), where 1 ≤ i1 < · · · < ip ≤ n, is a basis for

Cliff(V,Ω).

Theorem D.1.7. If dimV = 2`+1 is odd, then there are exactly two nonisomorphic

spaces of spinors for (V,Ω), and each space has dimension 2`.

Proposition D.1.8. Suppose dimV = 2` + 1 is odd. Let (S, γ+) and (S, γ−) be

the two inequivalent spaces of spinors for (V,Ω), and let γ : V → EndS ⊕ EndS be

defined by γ(v) = γ+(v) ⊕ γ−(v). Then (EndS ⊕ EndS, γ) is a Clifford algebra for

(V,Ω). Thus, Cliff(V,Ω) is a semisimple algebra and is the sum of two simple ideals

of dimension 2n−1.

The map γ : V → Cliff(V,Ω) is injective. For any basis {v1, . . . , vn} of V the set

of all ordered products γ(vi1) . . . γ(vip), where 1 ≤ i1 < · · · < ip ≤ n, is a basis for

Cliff(V,Ω).

Definition D.1.9. Given a, b ∈ V we define Ra,b ∈ End(V ) by Ra,bv = Ω(b, v)a −

Ω(a, v)b.
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Since Ω(Ra,bx, y) = Ω(b, x)Ω(a, y) − Ω(a, x)Ω(b, y) = −Ω(x,Ra,by), we have

Ra,b ∈ so(V,Ω).

Lemma D.1.10. The homomorphisms Ra,b span so(V,Ω), for all a, b ∈ V .

Lemma D.1.11. Define a homomorphism ϕ : so(V ) → Cliff2(V,Ω) by ϕ(Ra,b) =

(1/2)[γ(a), γ(b)] for a, b ∈ V . Then ϕ is an injective Lie algebra homomorphism, and

[ϕ(X), γ(v)] = γ(Xv) for X ∈ so(V,Ω) and v ∈ V .

Definition D.1.12. We denote by C•(W ) the sum
⊕dimW

p=0 Cp(W ), where Cp(W ) is

the space of p-multilinear functions on W that are skew-symmetric.

Assume that dimV is even and fix a decomposition V = W ⊕W ∗ with W and

W ∗ maximal Ω-isotropic subspaces. Let (C•(W ), γ) be a fixed choice for the space of

spinors. Then we define the even and odd spin spaces by C+(W ) =
⊕

p even C
p(W )

and C−(W ) =
⊕

p odd C
p(W ), respectively. Then γ(v) : C±(W )→ C∓(W ) for v ∈ V ,

so the action of γ(V ) interchanges the even and odd spin spaces. Denote by γ̃ the

extension of γ to a representation of Cliff(V,Ω) on C•(W ).

Let ϕ : so(V,Ω)→ Cliff(V,Ω) be the Lie algebra homomorphism in the previous

lemma. Set π(X) = γ̃(ϕ(X)) for X ∈ so(V,Ω). Since ϕ(X) is an even element in the

Clifford algebra and since γ interchanges the spin spaces, π(X) preserves the even

and odd subspaces C±(W ).

Remark D.1.13. The labeling ± depends on a particular choice of the space of

spinors.

Definition D.1.14. Let

π±(X) = π(X) |C±(W ) .

Then we call π± the semi-spin (or half-spin) representations of so(V,Ω).
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Proposition D.1.15. For dimV = 2`, the half-spin representations π± of so(V,Ω)

are irreducible with highest weights $± = (ε1 + · · ·+ ε`−1 ± ε`)/2. The weights are

(±ε1 ± · · · ± ε`)/2,

where an even number of minus signs for π+ and an odd number of minus signs for

π− and each has multiplicity one.

Please refer to [15] pages 92 and 140 for more details about the roots of so(V ).

For dimV = 2`+1. We fix a decomposition V = W⊕Ce0⊕W ∗ with W and W ∗

maximal Ω-isotropic subspaces. Then we take the space of spinors (C•(W ), γ+), and

we define a representation of so(V,Ω) on C•(W ) by π = γ̃+ ◦ϕ, where ϕ : so(V,Ω)→

Cliff(V,Ω) is the homomorphism as in above lemma and γ̃+ is the canonical extension

of γ+ to a representation of Cliff(V,Ω) on C•(W ). We call π the spin representation

of so(V,Ω).

Proposition D.1.16. For dimV = 2` + 1, the spin represntation of so(V,Ω) is

irreducible and has highest weight $` = (ε1 + · · · + ε`−1 + ε`)/2. The weights are

(±ε1 ± · · · ± ε`)/2, and each weight has multiplicity one.
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