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Abstract

Finite Element Based Cross-Sectional Buckling Optimization for a Constant Area,

Pinned-Pinned Composite Column

Supervising Professor: Dr. D. Stefan Dancila

In archery, dynamic buckling compromises the target accuracy of arrows. For both
dynamic and quasi-static buckling, the buckling load depends on the cross-sectional
area moment of inertia, which can be increased by modifying the cross-sectional
shape of the arrow shaft. Arrows commercially available today are made up of
composite materials and have a tubular circular cross-section. In this study an effort
has been made to optimize the cross-sectional shape of the composite arrow shaft,
using finite element based, quasi-static buckling analysis keeping the length and
area of the cross-section constant. The composite column is pinned at both ends and
is assumed to be made up of ten plies with fibers oriented along the length of the
column. Four cross-sectional shapes: tubular circular, tubular equilateral triangular,
star shaped and star with beads are analyzed in this study. The composite column is
modeled in ABAQUS, and the buckling load is determined by using the “Linear
Perturbation, Buckle” analysis step. The transition from global to local buckling
characterized by a decrease in bucking load and change in the buckled shape of the
column is determined for each cross-sectional shape. The point of transition marks
the maximum load that can be sustained for that cross-sectional shape. The
maximum load for all the cross-sections is determined and compared. The tubular
circular cross-section composite column is found to provide the highest buckling
load followed by the star with bead cross-section, star shaped cross-section and
tubular equilateral triangular cross-section composite column in the respective
order. Thus of the shapes considered, the tubular circular cross-section is the

optimum shape for the cross-section of the arrow shaft.
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CHAPTER 1

Introduction

1.1 Background

Archery has been in the history of mankind from times immemorial. In ancient
times archery was used in warfare and hunting. Currently the dominant use of
archery is in hunting, competition sports, including the Olympic Games, and as a
recreational sport. Modern archery is a technological sport that combines

technology with the art of shooting arrows.

Arrows are shafted projectiles that are shot with a bow. An arrow usually consists of
a shaft with an arrowhead attached to the front end, with fletchings and a nock at

the other end.

There has been significant advancement in the construction of bows with the use of
composites. Historically arrow shafts were made of wood with solid circular cross-
sections. Tubular, circular cross-section aluminum shafts replaced the solid wooden
shafts with the advent of affordable, aircraft grade aluminum alloys. Arrows
commercially available today are made up of composites or a combination of both
aluminum and composite materials, and have tubular circular cross-sections. There
is scope for the improvement in the cross-sectional design of arrow shafts to

increase performance.

1.2 Motivation for Research

Arrows have a high commercial value and the use of composite materials in the field
of archery has brought in significant technological advancement. This study aims at
improving the target accuracy of a composite arrow while keeping the overall

weight of the arrow constant.



One of the factors that negatively affect the target accuracy of the arrows in flight is
the phenomenon of dynamic buckling. Due to dynamic buckling, the target accuracy
of the arrow may be greatly compromised. For both dynamic and quasi-static
buckling, the buckling load depends on the area moment of inertia of the column
cross section which should be increased without increasing the weight of the
column, by re-distributing the material as far from the principal axis of the cross
section as possible, while keeping the material thick enough to prevent local
buckling. Hence a quasi-static buckling analysis is carried out in this study and

attempts are made to optimize the shape of the composite column cross-section.

1.3 Objectives and Scope

The objective of this study is to optimize using the finite element method the cross
sectional shape of a constant cross-sectional area, pinned-pinned composite column

subjected to a quasi- static axial compressive load.

A composite column made up of the composite material IM7-8852, having a length
of 26 inches and cross sectional area of 0.0212058 in?is analyzed in this study. The
length and cross-sectional area of the composite column were taken from a sample
composite arrow manufactured by “Victory Archery” having an inner and outer
diameter of 0.245 inches and 0.295 inches respectively. Four cross-sectional shapes:
tubular circular, tubular equilateral triangular, star shaped and star with beads are

analyzed in this study.

1.4 Outline of Thesis

A literature survey is conducted on the relevant technologies related to arrow shafts
and summarized in Chapter 2, followed by the analytical modeling in Chapter 3
wherein an analytical expression for the prediction of global buckling load for three
of the four cross-sections is introduced. Chapter 4 details the steps involved in the

finite element modeling of the composite column using ABAQUS . The results are



presented and discussed in Chapter 5. The conclusions followed by the

recommendations for future work are covered in Chapter 6.



CHAPTER 2

Literature Survey

There has been significant technological improvement in the filed of archery with
the use of composite materials. Composite materials have a high specific strength
and specific stiffness, which is desirable in the construction of bows and arrows.
This has led to the development of modern compound bows and composite arrows.
In this chapter, prior research conducted on the buckling of arrow shafts is
summarized. Some of the patents, related to the change in cross-sectional shape of
the arrow shaft are also discussed to emphasize the commercial importance of this

study.

References 1-4 represent the relevant technical publications addressing mechanics

of the bow and arrow system.

In these references, the vibration response of a tubular circular arrow shaft during
and after being fired from the bow is analysed. However little effort has been made
to fully prevent the vibrations of the arrow shaft by eliminating dynamic buckling.
This study discusses the possible cross-sectional shapes that can prevent the
buckling of arrow shafts thereby avoiding the excitation of lateral vibrations in
arrows. This work is relevant to arrows shot from a compound and centershot bow

for which the phenomenon of dynamic buckling is undesirable.

References 5-7 represent US Patents that are related to variation in cross-sectional

shape of the arrow shaft.

In Ref. 5 (US Patent 5,273,293) an arrow with longitudinally extended flutes as

shown in Fig. 2.1 is disclosed.



Figure 2.2 Fluted arrow comprising of 3 lobes (Ref. 6)



Figure 2.3 Tubular enlongate shaft with interior walls (Ref. 7)

In Ref. 6 (US Patent 6,595,880) a fluted arrow as shown in Fig. 2.2, comprising of

three lobes on its cross-section is disclosed.

In Ref. 7 (US Patent 8,915,806) an arrow comprising of a tubular elongate shaft that
has interior walls which intersect the shaft at rounded edge as shown in Fig. 2.3 is

disclosed.

In all the above mentioned patents, the cross sectional shape of the arrow shaft is
modified and it is claimed that a higher target accuracy and reduction in weight can

be achieved. However, these claims are not supported by any technical proof.



CHAPTER 3

Analytical Modeling

The purpose of this chapter is to introduce an analytical model that is used for
accurately predicting the global buckling load of a constant area, pinned-pinned

composite column with fibers oriented along the length of the column.

Buckling can be defined as the phenomenon of structural instability, characterized
by the occurrence of adjacent equilibrium positions. Euler derived the formula that
gives the maximum axial load at which a pinned-pinned, slender, ideal column

buckles. It is given by

m°El
T (3.1)

where,
Per: critical load
E :Young’'s modulus
[ :leastarea moment of inertia for the cross section

L :length of the column

An ideal column is one that is perfectly straight, homogeneous and free from initial
stress. The formula to predict the buckling load for a pinned-pinned composite

column with fibers oriented along its length is given by:

2
R4 Ell

A (3.2)

Where,
P critical load

E1: modulus of elasticity along the longitudinal direction



[: least area moment of inertia for the cross section

L: length of the composite column

When subjected to an axial compressive load, the column buckles about the
principal axis having the least area moment of inertia. Hence cross sectional shapes

having centroids as principal points are considered in this study.

All regular polygons have centroids as principal points. Hence solid regular
polygonal cross-sections with varying number of sides are analyzed. The circle is

considered as the limiting case of a regular polygon with an infinite number of sides.

The area moment of inertia for a solid regular polygonal cross-section about the

principal centroidal axis as given in Ref. 8:

nb4 180 180
Iregular polygon ( ) (3 ot ( ) 1)
- 192 n (33)

where
b: base length of the regular polygon

n: number of sides of the regular polygon (n = 3)

The relation between the side length (b) and the area (A) for an n sided regular

polygon is given by the expression:

p=(* tan (120 o



Substituting (3.4) in (3.3), the area moment of inertia for an n sided solid regular

polygonal cross-section about the principal centroidal axis can be expressed as:

2
I .= A—(cot(@))(tanz(@HB)
regular_polygon 4 5, n n (35)

The area moment of inertia for a solid circular cross-section in terms of area (A) is:

Icircle
47 (3.6)

Normalizing the area moment of inertia for the circle and maintaining the area
constant, the relative area moment of inertia for an n sided regular polygon about

the principal centroidal axis is expressed as follows:

7 cot(28%) (tan?(18%) +3)
n n

relative _regular _polygon = 3n

(3.7)

Using the above expression, the area moment of inertia for the solid circular cross-
section is compared with that for solid regular polygonal cross-sections having sides
3, 4, 5 and 6. It is shown that for a given cross-sectional area, a solid equilateral
triangular cross-section has a higher area moment of inertia than a solid circular

cross-section.

Based on this result, the tubular circular cross-section arrow shaft is compared with
a tubular equilateral triangular cross-section shaft with the expectation that the
tubular equilateral triangular cross-section shaft will exhibit a higher buckling load
and hence will be a better shape for the arrow cross-section. Further, a star shaped
cross-section will be analyzed followed by a star with bead cross-section and the

optimum shape will be determined.



For the tubular circular, tubular equilateral triangular and star shaped cross-section
composite columns, the thickness of the column cross section is varied and the
corresponding critical load is determined. For the star with beads cross-section

composite column, the thickness and radius of the beads are varied.

For the analytical prediction of buckling load, the area moment of inertia for a

tubular circular cross section about the principal centroidal axis is given by:

a(r'-r))
4 (3.8)

I=

The area moment of inertia for a tubular equilateral triangular cross-section about

the principal centroidal axis is given by:

3 -)
96

(3.9)

The expression for the area moment of inertia for the star shaped cross-section is

derived to be:

bR’ hb3 \/_ b*
LAY
8 2 Z\f (3.10)

where,
b: side length of the equilateral triangle at the center,
h: height of the three rectangular lobes measured from the base of the

triangle.

For the star with beads cross-section composite column, only the finite element

method is used in the prediction of buckling load.

10



CHAPTER 4

Finite Element Analysis

Finite element method solutions predicting the buckling load of composite column were
obtained for four different cross-sectional shapes in ABAQUS. The length and area of the
cross-section are taken to be 26 inches and 0.0212058 in® respectively. The material of
the column is assumed to be IM7-8552. The area of the cross-section is assumed to be
uniform along the length of the column. The material properties used in this analysis are:
E;=22.99 Msi, E;= 1.3 Msi, Es= 1.3Msi, V2= 0.316, vi3= 0.316, Vo3= 0.316, G2 =
0.69 Msi, G3= 0.69 Msi, Gy3= 0.43 Msi. A “Linear Perturbation, Buckle” analysis was
used in ABAQUS to predict the buckling load of the composite arrow shatft.

4.1 Tubular Circular Cross- Section Composite Column

The thickness of the tubular circular cross-section composite column was varied,

keeping the length and area of the cross-section constant.

The tubular circular cross-section composite column was modeled in ABAQUS using
the S8R (8 noded doubly curved thick shell, reduced integration) and C3D20R (20

noded quadratic brick element, reduced integration) element types.

The variation of the thickness and the corresponding shell radius used to model the
tubular circular cross-section composite column using S8R element type is shown in

Table 4.1.

The variation of the thickness and the corresponding inner and outer radii used to
model the tubular circular cross-section composite column using C3D20R element

type is shown in Table 4.2

11



Table 4.1: Variation of the thickness and the corresponding shell radius for S8R type

tubular circular cross-section composite column

Thickness Shell Radius
(in) (in)
0.0250 0.135000
0.0200 0.168750
0.0150 0.225000
0.0100 0.337500
0.0093 0.362904
0.0087 0.387932
0.0084 0.401787
0.0081 0.416668
0.0078 0.432693
0.0077 0.438313
0.0076 0.44408
0.0075 0.450000
0.0050 0.675000

12



Table 4.2: Variation of the thickness and the corresponding inner and outer radii for

C3D20R type tubular circular cross-section composite column

Thickness Inner Radius Outer Radius
(in) (in) (in)
0.0820 0.000159 0.082159
0.0810 0.001167 0.082167
0.0800 0.002188 0.082188
0.0750 0.007500 0.082500
0.0700 0.013214 0.083214
0.0650 0.019423 0.084423
0.0600 0.026250 0.086250
0.0550 0.033864 0.088864
0.0500 0.042500 0.092500
0.0450 0.052500 0.097500
0.0400 0.064375 0.104375
0.0350 0.078929 0.113929
0.0300 0.097500 0.127500
0.0250 0.122500 0.147500
0.0200 0.158750 0.178750
0.0150 0.217501 0.232501
0.0100 0.332501 0.342501
0.0093 0.358254 0.367554
0.0087 0.383582 0.392282
0.0084 0.397587 0.405987
0.0081 0.412618 0.420718
0.0078 0.428793 0.436593
0.0077 0.434463 0.442163
0.0076 0.440280 0.447880
0.0075 0.446251 0.453751
0.0050 0.672502 0.677502

13



Figure 4.1 Ply stack plot for the tubular circular cross-section composite column

Ten equal plies each having a thickness of one-tenth the wall thickness and 0° fiber
orientation were used to model the composite column as shown in Fig. 4.1. In this
study, thickness is considered to be a continuous variable, although from a practical

standpoint thickness can only be an integer multiple of individual ply thickness.

4.1.1 Meshing

The mesh of the tubular circular cross-section composite column modeled using S8R
element type is shown in Fig. 4.2. The number of elements used to mesh the
composite column using S8R element type to obtain a converged solution is 6360.

The maximum aspect ratio in the modeling of the composite column is less than 10.

The mesh of the tubular circular cross-section composite column modeled using
C3DZ20R element type is shown in Fig. 4.3. The number of elements used to mesh the
composite column using C3D20R element type to obtain a converged solution is

8840. The maximum aspect ratio in the meshing of the composite column is 10.

14



Figure 4.2 Mesh of S8R type tubular circular cross-section composite column

Figure 4.3 Mesh of C3D20R type tubular circular cross-section composite column

15



4.1.2 Applied Load and Boundary Conditions

Coup

# Control points: m Set-16 [y
f Suface: sSuf9 [y

Constrained degrees of freedom:
@u B Fus DR R [

Influence radius: © To outermost point on the region
O Specify:

[7] Adjust control points to lie on surface

CSYS (Global) [y A

Figure 4.4 Coupling constraints for S8R type tubular circular cross-section
composite column
Pinned-pinned boundary conditions are imposed on the tubular circular cross-
section composite column. For the modeling of the composite column using shell
elements a “coupling” constraint is used in ABAQUS to constrain the edges of one
end of the column with respect to the center of the circular cross-section as shown

in Fig 4.4.

The displacements along the y and z directions were constrained at both ends of the
composite column as shown in Fig. 4.5 to simulate the pinned-pinned boundary
condition. At the bottom surface of the column the displacements along the x, y and
z directions were constrained about the center as shown in Fig. 4.6, to prevent the

lateral displacement of the column.

16



Nar

Type:  Displacement/Rotation

csvs: (Glebal) [y A
fu
v
W
R
UR2
R

Note: The displacement value will be
maintained in subsequent steps.

Figure 4.5 Constrains to simulate pinned- pinned boundary conditions for S8R type

tubular circular cross-section composite column

Name: BC-1

Type:  Displacement/Rotation
Step:  Initial

Region: Set-17 [y

oSS (Glebal) fy A
@u

@uw

S
s

URL
UR2
UR3

Note: The displacement value will be
maintained in subsequent steps.

Figure 4.6 Constraint to prevent the lateral displacement of S8R type tubular

circular cross-section composite column
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Vector: (1,-9538¢-19,0005192) [y
asvs: [Gobel Y]

Magnitude: |1

Tractionis defned per unt | deformed area ]
171 Follow rotation

Figure 4.7 Uniform, general shell edge load for predicting buckling load of S8R type

tubular circular cross-section composite column

A uniform, general shell edge load of unit magnitude is applied to top edge of the
tubular circular cross-section composite column as shown in Fig. 4.7, for the

prediction of buckling load.

For the tubular circular cross-section composite column modeled using C3D20R
type elements, the surface at one end of the composite column, is constrained about
the center of the circle using the “beam” type multi-point constrains as shown in
Fig. 4.8 and the x, y and z displacements about that point are constrained as shown

in Fig 4.9 to prevent the lateral displacement of the composite column.
The displacements along the y and z directions were constrained at both ends of the

composite column as shown in Fig. 4.10 to effectively simulate the pinned-pinned

boundary condition.

18



Name: Constraint-1
Type:  MPC Constraint

§ Control point: m_Set-3 [y
f Slavenodes: s Set3 [y

MPC Type: | Beam -

sYs (Global) [ A

Figure 4.8 Beam type multi-point constraints for C3D20R type tubular circular

cross-section composite column

Neme: BC-2
Type:  Displacement/Rotation
Step:  Iniil

Region: Set:5 [y

Cs¥s: (Global) [y A

Note: The displacement value will be
‘maintained in subsequent steps.

Figure 4.9 Constrain to prevent the lateral displacement of C3D20R type tubular

circular cross-section composite column
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Name: BC-3
Type:  Displacement/Rotation

Step: Initial
Region: Set-10 [}

Vs (Glabal) [y A
bu

displacement value il be:
intained in subsequent steps.

Figure 4.10 Constrains to simulate pinned-pinned boundary conditions for C3D20R

type tubular circular cross-section composite column

Name:  BuckiPressure
Type:  Pressure

Step:  buckling (Buckle)

Region: Suf2 [y

Distibution: Uniform [

Magnitude: |1

Figure 4.11 Uniform pressure for predicting buckling load of C3D20R type tubular

circular cross-section composite column
A uniform pressure of unit magnitude is applied at the top surface of the composite

column as shown in Fig. 4.11, to predict the buckling load for the tubular circular

cross-section composite column.

20



4.2 Tubular Equilateral Triangular Cross-Section Composite Column

The tubular equilateral triangular cross-section composite column was modeled in
ABAQUS using the C3D20R (20 noded quadratic brick element, reduced integration)

element type.

The variation of thickness and the corresponding inner and outer sides used to

model the composite column is shown in Table 4.3.

Table 4.3: Variation of thickness and corresponding inner and outer sides for the
tubular equilateral triangular cross-section composite column

Thickness | Inner Side | Outer Side
(in) (in) (in)

0.0638 0.000288 | 0.221298
0.063 0.003081 0.221319
0.0620 0.006623 | 0.221397
0.0610 0.010224 | 0.221534
0.0600 0.013887 | 0.221733
0.0550 0.033257 | 0.223783
0.0500 0.054769 | 0.227975
0.045 0.079138 | 0.235022
0.0400 0.107433 | 0.245997
0.0350 0.141338 | 0.262582
0.0300 0.183658 | 0.287582
0.0250 0.239443 | 0.326045
0.0200 0.318789 | 0.388071
0.0150 0.445259 | 0.497221
0.0145 0.462375 | 0.512604
0.0140 0.480651 0.529149
0.0135 0.500217 | 0.546983
0.0130 0.521222 | 0.566255
0.0129 0.525610 | 0.570297
0.0128 0.530064 | 0.574405
0.0127 0.534586 | 0.578580
0.0126 0.539176 | 0.582824
0.0125 0.543837 | 0.587139
0.0100 0.689539 | 0.724181
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Ten equal plies each having a thickness of one-tenth the wall thickness and 0° fiber

orientation were used to model the composite column as shown in Fig. 4.12.

Figure 4.12 Ply stack plot for the tubular equilateral triangular cross-section
composite column

4.2.1 Meshing

Figure 4.13 Mesh of C3D20R type tubular Equilateral triangular cross-section
composite column
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The mesh of the tubular equilateral triangular cross-section composite column
modeled using C3D20R element type is shown in Fig. 4.13. The number of elements
used to mesh the composite column to obtain a converged solution is 19494. The

maximum aspect ratio in the modeling of the composite column is 10.

4.1.2 Applied Load and Boundary Conditions

Pinned-pinned boundary conditions are imposed on the tubular equilateral
triangular cross-section composite column. The surface at one end of the composite
column is constrained about the centroid of the triangle using the “beam” type
multi-point constrains as shown in Fig. 4.14. The %, y and z direction displacements
are constrained about the centroid as shown in Fig 4.15 to prevent the lateral

displacement of the composite column.

Type:  MPC Constraint
f Control point: m_Set-1 [y

g sl es: s Setd [y

MPC Type: Beam [
CSYS (Global) [y L

Figure 4.14 Beam type multi-point constraint for C3D20R type tubular equilateral

triangular cross-section composite column
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Neme: BC1

Type:  Displacement/Rotation
Step:  buckling (Buckle)
Region: Set:3

Use BC for

© Stress perturbation and buckling mode calculation

Stress perturbation only

O Buckling mode calculation only
CSYs: (Glabal)
Distribution:  Uniform

@u:

Glb]

@z

Note: The displacement value will be
maintained in subsequent steps.

Figure 4.15 Constrain to prevent the lateral displacement of C3D20R type tubular

equilateral triangular cross-section composite column

Type:  Displacement/Rotation
Step:  buckling (Buckle)
Region: Set-4
UseBCfor
© Btress perturbation and buckling mode caiculation;
(© Stress perturbation only
© Buckling mode caleulation only
CS¥S: (Global)
Distibution: Uniform
Out:
U
@z
[ ure:
Rz
[ urs: radians

Note: The displacement value willbe
mai bsequent steps.

Figure 4.16 Constrains to simulate pinned-pinned boundary conditions for C3D20R

type tubular equilateral triangular cross-section composite column
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The displacements along the y and z directions were constrained at both ends of the
composite column as shown in Fig. 4.16 to effectively simulate the pinned-pinned

boundary conditions.

A uniform pressure of unit magnitude is applied at the top surface of the composite
column as shown in Fig. 4.17, under the “Linear Perturbation, Buckle” analysis step
to predict the buckling pressure and thereby predict the buckling load for the

tubular equilateral triangular cross-section composite column.

Figure 4.17 Uniform pressure for predicting the buckling load of C3D20R type

tubular equilateral triangular cross-section composite column
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4.3 Star Shaped Cross-Section Composite Column

The star shaped cross section composite column was modeled in ABAQUS using the

C3D20R (20 noded quadratic brick element, reduced integration) element type.

The thickness of the star shaped cross section composite column was varied,
keeping the length of the column and area of the cross-section constant. The
variation of thickness and the corresponding height of the rectangular lobes used to

model the composite columns are shown in Table 4.4.

Table 4.4: Variation of thickness and corresponding height of the lobes for the star

shaped cross section composite column

Thickness Height
(in) (in)
0.221298 0.000000
0.220000 0.000376
0.200000 0.006475
0.150000 0.025473
0.100000 0.056252
0.050000 0.134155
0.040000 0.170941
0.030000 0.231290
0.020000 0.350543
0.019000 0.369289
0.018000 0.390102
0.017000 0.413346
0.016000 0.439478
0.015000 0.469075
0.010000 0.705417
0.005000 1.412998
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Ten equal plies each having a thickness of one-tenth the wall thickness and 0° fiber

orientation were used to model the composite column as shown in Fig. 4.18.

Figure 4.18 Ply stack plot for the star shaped cross-section composite column

4.2.1 Meshing

Figure 4.19 Mesh of C3D20R type star shaped cross-section composite column
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The mesh for the star shaped cross-section composite column modeled using
C3DZ20R element type is shown in Fig. 4.19. The maximum aspect ratio in the

meshing of the star shaped cross-section composite column is 10.

4.1.2 Applied Load and Boundary Conditions

Note: The displacement value will be:
maintained in subsequent steps.

Figure 4.20 Constrain to prevent the lateral displacement of C3D20R type star
shaped cross-section composite column

Neme: BC-2

Type:  Displacement/Rotation
Step:  Iniil

Region: Set-4 [y

csvs: (Global) 3 A
du
w
@
Cur
bR
B[V

Note: The displacement value will be
maintained in subsequent steps.

Figure 4.21 Constrains to simulate pinned-pinned boundary conditions for C3D20R
type star shaped cross-section composite column
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Pinned-pinned boundary conditions are imposed on the star shaped cross-section
composite column. The x, y and z displacements about the centroid are constrained

as shown in Fig 4.20 to prevent the lateral displacement of the composite column.

The displacements along the y and z directions were constrained at both ends of the
composite column as shown in Fig. 4.21 to effectively simulate the pinned-pinned

boundary condition.

A uniform pressure of unit magnitude is applied at the top surface of the composite
column as shown in Fig. 4.22 under the “Linear Perturbation, Buckle” analysis step

to predict the buckling load for the star shaped cross-section composite column

Figure 4.22 Uniform pressure for predicting the buckling load of star shaped cross-

section composite column
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4.4 Star With Beads Cross-Section Composite Column

The star with beads cross-section composite column was modeled in ABAQUS using

the C3D20R (20 noded quadratic brick element, reduced integration) element type.

The radius of the beads was varied for different values of thickness, keeping the
length of the column and area of the cross-section constant. The variation of radius
of the beads and the corresponding height of the lobes for different values of

thicknesses are shown in Tables 4.5 - 4.11.

Table 4.5: Variation of radius of beads and the corresponding height of the lobes for

thickness = 0.015 inches

Thickness Radius of Height
(in) Bead (in) (in)
0.015000 0.015000 0.436300
0.015000 0.018000 0.418681
0.015000 0.019500 0.408444
0.015000 0.022500 0.385122
0.015000 0.030000 0.310264
0.015000 0.045000 0.089751

Table 4.6: Variation of radius of beads and the corresponding height of the lobes for

thickness = 0.011 inches

Thickness Radius of Bead Height
(in) (in) (in)
0.011000 0.029700 0.418617
0.011000 0.030800 0.400717
0.011000 0.031900 0.382125
0.011000 0.033000 0.362841
0.011000 0.034100 0.342866
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Table 4.7: Variation of radius of beads and the corresponding height of the lobes for
thickness = 0.010 inches

Thickness Radius of Bead Height
(in) (in) (in)
0.010000 0.027000 0.503239
0.010000 0.030000 0.452534
0.010000 0.031000 0.434375
0.010000 0.033000 0.396170
0.010000 0.034000 0.376126
0.010000 0.040000 0.242657

Table 4.8: Variation of radius of beads and the corresponding height of the lobes for
thickness = 0.009 inches

Thickness Radius of Height
(in) Beads(in) (in)
0.009000 0.033300 0.449961
0.009000 0.034200 0.430224
0.009000 0.034200 0.409921
0.009000 0.035100 0.389052
0.009000 0.036000 0.367618
0.009000 0.036900 0.345618
0.009000 0.037800 0.323052

Table 4.9: Variation of radius of beads and the corresponding height of the lobes for
thickness = 0.008 inches

Thickness Radius of Height
(in) Beads (in) (in)
0.008000 0.035200 0.430975
0.008000 0.036000 0.409408
0.008000 0.036800 0.387339
0.008000 0.037600 0.364767
0.008000 0.038400 0.341692
0.008000 0.039200 0.318115
0.008000 0.040000 0.294035
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Table 4.10: Variation of radius of beads and the corresponding height of the lobes

for thickness = 0.007 inches

Thickness Radius of Height
(in) Beads(in) (in)
0.007000 0.037100 0.428103
0.007000 0.037800 0.405274
0.007000 0.038500 0.382004
0.007000 0.039200 0.358295
0.007000 0.039900 0.334146
0.007000 0.040600 0.309557

Table 4.11: Variation of radius of beads and the corresponding height of the lobes

for thickness = 0.005 inches

Thickness Radius of Height (in)
(in) beads (in)

0.005000 0.042000 0.346620

0.005000 0.043000 0.294213

0.005000 0.043500 0.267539

0.005000 0.044500 0.213247
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Ten equal plies each having a thickness of one-tenth the wall thickness and 0° fiber
orientation were used to model the rectangular lobes of the composite column as
shown in Fig. 4.23.

The beads of the star with beads cross-section composite column were modeled
using ten equal plies each having a thickness of (radius of beads/10) and 0° fiber
orientation as shown in Fig. 4.24.

Section: "SolidCompositeSection”
Plotof plies 1 to 10, of 10.

Figure 4.23 Ply stack plot for the rectangular lobes of star with beads cross-section
composite column

Section: "BeadCompositeLayup”

Plotof plies 1 to 10, of 10.

Figure 4.24 Ply stack plot for the beads of star with beads cross-section composite
column
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4.4.1 Meshing

Figure 4.25 Mesh of C3D20R type star with beads cross-section composite column

The mesh of the star with beads cross-section composite column is shown in
Fig.4.25. The maximum aspect ratio in the meshing of the star with beads cross-

section composite column is 10.

4.4.2 Applied Load and Boundary Conditions

Pinned-pinned boundary conditions are imposed on star with beads cross-section
composite column. The displacements along the x, y and z directions were
constrained about the centroid as shown in Fig 4.26 to prevent the lateral

displacement of the composite column.
The displacements along the y and z directions were constrained at both ends of the

composite column as shown in Fig. 4.27 to effectively simulate the pinned-pinned

boundary conditions.
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8C3
Type:  Displacement/Rotation

Step: Inital
Region: Set:5 [y

(Glebal) A

Figure 4.26 Constrain to prevent the lateral displacement of C3D20R type star with

beads cross-section composite column

Name:  8C-2
Type  Displacement/Rotation
Step:Initial

Region: Set-7 [y

]

Figure 4.27 Constrains to simulate pinned-pinned boundary conditions for C3D20R

type star with beads cross-section composite column
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A uniform pressure of unit magnitude was applied at the top surface of the
composite column as shown in Fig. 4.28, under the “Linear Perturbation, Buckle”

analysis step to predict the buckling load for the star with beads cross-section

composite column.

Figure 4.28 Uniform pressure for predicting the buckling load of star with beads

cross-section composite column
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CHAPTER S

Results And Discussion

The relative area moment of inertia for regular polygonal cross-sections,

normalizing the area moment of inertia of a circle is given in Table 5.1 and Fig. 5.1.

From Table 5.1 and Fig. 5.1 we can conclude that for a given cross-sectional area, the
composite column with a solid equilateral triangular cross-section provides a higher

buckling load than a solid circular cross section composite column.

Based on the above results, a tubular circular cross section composite column was
compared with the tubular equilateral triangular cross section composite column to

determine the optimum shape of the cross section.

Table 5.1 Relative area moments of inertia for regular polygonal cross-sections

Number of sides (n) Shape of cross-section Relative area moment of
inertia [ for constant area
3 Equilateral 1.20920
Triangle
4 Square . 1.04720
5 Regular 1.01697
Pentagon
6 Regular 1.00767
Hexagon
00 Circle . 1.00000
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0.8
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Number of sides

Relative area moment of inertia

Figure 5.1 Relative area moments of inertia for regular polygonal cross-sections

The cross-sectional area moment of inertia should be increased so as to increase the
buckling load of the composite column. This can be done without increasing the
weight of the column by re-distributing the material as far from the principal axis of
the cross section as possible, while keeping the material thick enough to prevent

local buckling.

The transition between global and local buckling cannot be easily predicted using an
analytical method, hence a finite element approach is used to determine the
thickness for which the transition takes place. The transition point determines the

maximum possible load that can be sustained for the cross section.

FEM does not distinguish between global and local buckling modes. Thus, it is the
user who must classify the calculated modes, based on the deformed buckling mode

shapes.

The deformed shape for the global buckling of composite column obtained using

finite element analysis is as shown in Fig. 5.2.
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U, Magnitude
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02

+0.000e+00

Step: Buckling
Mode 1: EigenValue = 10092,
Primary Var: U, Magnitude

Figure 5.2 Deformed shape for the global buckling of composite column
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5.1 Tubular Circular Cross-Section Composite Column

The critical loads obtained by using the S8R type shell elements for different values

of thickness are given in Table 5.2.

The marked row indicates the transition from global to local buckling; it is

characterized by a change in the mode of deformation and a drop in the critical load.

Beyond the point of transition as the thickness is further reduced, the buckling load
reduces, which is not predicted by the Euler-Bernoulli’s column buckling equation.
Hence the difference between the analytical and finite element method predicted

buckling load increases drastically.

Table 5.2 Critical loads for S8R type tubular circular cross-section composite

columns
Thickness Shell Radius Critical Load Analytical %Error
(in) (in) Pcr(Ib) Pcr (1b)

0.0250 0.135000 64.4646 65.417 -1.45
0.0200 0.168750 100.051 101.702 -1.62
0.0150 0.225000 175.824 180.371 -2.52
0.0100 0.337500 383.760 405.473 -5.35
0.0093 0.362904 440.032 468.783 -6.13
0.0087 0.387932 498.458 535.652 -6.94
0.0084 0.401787 532.013 574.586 -7.41
0.0081 0.416668 568.970 617.927 -7.92
0.0078 0.432693 609.802 666.365 -8.49
0.0077 0.438313 599.849 683.783 -12.27
0.0076 0.44408 590.526 701.893 -15.87
0.0075 0.450000 572.697 720.1621 -20.48
0.0050 0.675000 289.866 1621.557 -82.12
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The variation of critical load with respect to the thickness for C3D20R type tubular

circular cross-section composite column is shown in Table 5.3

The study is carried out until the cross-section becomes a solid circle. As the

thickness becomes large only C3D20R element type is used to predict the buckling

load. Using both C3D20R and S8R element types the critical thickness for the

tubular circular cross-section composite column is obtained to be 0.0078 in.

Table 5.3 Critical loads for C3D20R type tubular circular cross-section composite

columns
Thickness Inner Radius | Outer Radius | Critical Load Analytical %Error
(in) (in) (in) Pcr (1b) Pcr (1b)

0.0820 0.000159 0.082159 11.9944 12.0114 -0.14
0.0810 0.001167 0.082167 11.9993 12.0162 -0.14
0.0800 0.002188 0.082188 12.0012 12.0284 -0.23
0.0750 0.007500 0.082500 12.1893 12.2115 -0.18
0.0700 0.013214 0.083214 12.3825 12.6328 -1.98
0.0650 0.019423 0.084423 13.2890 13.3540 -0.49
0.0600 0.026250 0.086250 14.3858 14.4637 -0.54
0.0550 0.033864 0.088864 16.0447 16.0925 -0.30
0.0500 0.042500 0.092500 18.3778 18.4397 -0.34
0.0450 0.052500 0.097500 21.7529 21.8206 -0.31
0.0400 0.064375 0.104375 26.6663 26.7600 -0.35
0.0350 0.078929 0.113929 34.0311 34.1825 -0.44
0.0300 0.097500 0.127500 45.5670 45.8434 -0.60
0.0250 0.122500 0.147500 64.8516 65.4175 -0.87
0.0200 0.158750 0.178750 100.331 101.702 -1.35
0.0150 0.217501 0.232501 176.099 180.371 -2.37
0.0100 0.332501 0.342501 384.631 405.473 -5.14
0.0093 0.358254 0.367554 441.187 468.783 -5.89
0.0087 0.383582 0.392282 499.990 535.652 -6.66
0.0084 0.397587 0.405987 533.771 574.586 -7.10
0.0081 0.412618 0.420718 571.030 617.927 -7.59
0.0078 0.428793 0.436593 612.233 666.365 -8.12
0.0077 0.434463 0.442163 603.666 683.783 -11.72
0.0076 0.440280 0.447880 589.564 701.893 -16.00
0.0075 0.446251 0.453751 575.971 720.732 -20.09
0.0050 0.672502 0.677502 278.856 1621.557 -82.80
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As the thickness is reduced, near the points of transition, the assumptions of Euler-
Bernoulli’s column buckling equation do not hold true and S8R element type

predicts the buckling load more accurately than the analytical solution.

Figure 5.3 shows the comparison of the critical load predicted by finite element
method and analytical method as the thickness of the tubular circular cross-section

is varied.

The peak of the finite element prediction displayed in the plot indicates the
transition from global to local buckling and determines the maximum buckling load

that can be sustained by the tubular circular cross-section composite column.

700
650
600
550
500
450
400 — Analytical
350
300 8
250 °© S8R
200
150
100
50
0 ¥ L L L -~
0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900
Thickness (in)

° C3D20R

Critical Load Pcr (Ib)

Figure 5.3 Plot of critical load vs. thickness for the tubular circular cross-section
composite column
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5.2 Tubular Equilateral Triangular Cross-Section Composite Column

The critical loads predicted using analytical and finite element method for different

values of thickness are shown in Table 5.4.

The maximum critical load is obtained for a thickness of 0.0129 in and has a value of

172.952 1b.

Table 5.4 Critical load for tubular equilateral triangular cross-section composite

column
Thickness | Inner Side | Outer Side Critical | Analytical | %Error
(in) (in) (in) Load Pcr (Ib)
Pcr(Ib)

0.0638 0.000288 | 0.221298 14.5050 | 14.5242 | -0.13
0.063 0.003081 | 0.221319 14.5105 | 14.5297 | -0.13
0.0620 0.006623 | 0.221397 14.5309 | 14.5501 | -0.13
0.0610 0.010224 | 0.221534 14.5667 | 14.5861 | -0.13
0.0600 0.013887 | 0.221733 14.6189 | 14.6385 | -0.13
0.0550 0.033257 | 0.223783 15.1581 | 15.1802 | -0.15
0.0500 0.054769 | 0.227975 16.2761 | 16.3034 | -0.17
0.045 0.079138 | 0.235022 18.2012 | 18.2389 | -0.21
0.0400 0.107433 | 0.245997 21.3139 | 21.3702 | -0.26
0.0350 0.141338 | 0.262582 26.2825 | 26.3732 | -0.34
0.0300 0.183658 | 0.287582 34.3555 | 34.5314 | -0.51
0.0250 0.239443 | 0.326045 48.1647 | 48.5311 | -0.75
0.0200 0.318789 | 0.388071 78.1391 | 74.8039 | 4.46
0.0150 0.445259 | 0.497221 129.207 | 132.120 | -2.20
0.0145 0.462375 | 0.512604 137.988 | 141.334 | -2.37
0.0140 0.480651 | 0.529149 147.690 | 151.557 | -2.55
0.0135 0.500217 | 0.546983 158.443 | 162.941 | -2.76
0.0130 0.521222 | 0.566255 170.399 | 175.667 | -3.00
0.0129 0.525610 | 0.570297 172.952 | 178.392 | -3.05
0.0128 0.530064 | 0.574405 171.169 | 181.181 | -5.53
0.0127 0.534586 | 0.578580 165.863 | 184.036 | -9.87
0.0126 0.539176 | 0.582824 160.687 | 186.960 | -14.05
0.0125 0.543837 | 0.587139 155.625 | 189.954 | -18.07
0.0100 0.689539 | 0.724181 63.5305 | 296.547 | -78.58
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Figure 5.4 shows the variation of critical load with the thickness for the tubular
equilateral triangular cross-section composite column.
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Thickness (in)

Figure 5.4 Plot of critical load vs. thickness for the tubular equilateral triangular
cross-section composite column

5.3 Comparison of Maximum Critical Load for Tubular Circular and Tubular
Equilateral Triangular Cross-Section Composite Columns

800
700 — HO”OW Circle
—_ Analytical
é 600 °  Hollow Circle
S C3D20R
@ 500 —Hollow Triangle
§ 400 Analytical_
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S 300 1 ¢ C3D20R
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Figure 5.5 Plot of critical load vs. thickness for tubular circular and equilateral
triangular cross section composite columns
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Figure 5.5 gives a comparison of the critical load for the tubular circular and
equilateral triangular cross-section composite columns. The maximum critical load
for the tubular circular cross-section is 609.82 Ib whereas that for the tubular
equilateral triangular cross-section is 172.952 lb. Therefore; a tubular circular
cross-section is better than a tubular equilateral triangular cross-section for the

arrow shaft.

This result is counterintuitive, as we know that for solid cross-sections having the
same area, an equilateral triangular cross-section provides a buckling load 20.92%

higher than a solid circular cross-section.

To better understand these results, the thickness is increased until the tubular
circular and tubular equilateral triangular cross-sections become solid cross-

sections and the critical loads predicted are compared.

On closer inspection we find that the variation of thickness for the tubular circular
and tubular equilateral triangular cross-sections do not follow the same path. The

thickness for a tubular circular cross-section is given by (rz- r1), whereas thickness

for a tubular equilateral triangular cross-section is given by %. The value of the

thickness for which the tubular equilateral triangle becomes a solid cross-section is
t = 0.063883 inches, whereas a tubular circular cross-section becomes a solid circle
for thickness t = 0.082158 inches. Thus as the thickness is increased the tubular
triangular cross-section becomes a solid triangular cross-section but for the same
value of thickness, the tubular circular cross-section has not converged to a solid
circle. Figure 5.6 shows that a tubular triangular cross-section converges into a solid
cross-section faster than the tubular circular cross-section due to which the critical
load for the solid equilateral triangular cross-section is 20.92% higher than that for

a solid circle.
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Figure 5.6 Comparison of the critical load vs. thickness for solid and tubular circular
and equilateral triangular cross-section columns
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5.4 Star Shaped Cross-Section Composite Column

The variation of the critical load for the star shaped cross-section composite column
with the thickness is shown in Table 5.5. The maximum critical load is obtained for a
thickness of 0.016 inches and has a value of 234.7428 lb. Figure 5.7 shows the plot

of critical load vs. thickness for the star shaped cross-section composite column

Table 5.5 Critical load for star shaped cross-section composite column

Thickness | Height (in) | Critical Load | Analytical | %Error
(in) Pcr (1b) Pcr (1b)
0.221298 0.000000 14.5092 14.524 -0.10
0.220000 0.000376 14.5205 14.523 -0.02
0.200000 0.006475 14.2851 14.289 -0.03
0.150000 0.025473 12.8132 12.818 -0.04
0.100000 0.056252 12.9067 12.912 -0.04
0.050000 0.134155 28.2440 28.245 0.00
0.040000 0.170941 41.2559 41.261 -0.01
0.030000 0.231290 69.7968 69.822 -0.04
0.020000 0.350543 151.7869 151.963 -0.12
0.019000 0.369289 167.7315 167.958 -0.13
0.018000 0.390102 186.4032 186.694 -0.16
0.017000 0.413346 208.4488 208.837 -0.19
0.016000 0.439478 234.7482 235.264 -0.22
0.015000 0.469075 186.2802 267.153 | -30.27
0.010000 0.705417 37.1674 596.405 | -93.77
0.005000 1.412998 2.3770 2374.589 | -99.90
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Figure 5.7 Plot of critical load vs. thickness for the star shaped cross-section
composite column
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5.5 Comparison of the Maximum Critical Load for the Star Shaped Cross-
Section with Tubular Circular and Equilateral Triangular Cross-Section
Composite Columns
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Figure 5.8 Plot of critical load vs. thickness for tubular equilateral triangular, tubular
circular and star shaped cross-section composite columns

Figure 5.8 shows the variation of the critical load with wall thickness for the tubular
circular, tubular equilateral triangular and star shaped cross-section composite
columns. The maximum critical load for the star shaped cross-section composite
column is 234.7482 lb, where as that for the tubular circular and tubular equilateral
triangular cross-section composite columns are 609.802 lb and 172.952 1b
respectively. Hence the star shaped cross-section is better than the tubular
equilateral triangular cross-section. However, the optimum cross-section among

these three is the tubular circular cross-section.
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5.6 Star With Beads Cross-Section Composite Column

For the star shaped cross-section composite column, the transition between local
and global buckling takes place at thickness = 0.016 in. For a thickness > 0.016
inches, irrespective of the radius of the beads, the star with beads cross-section will
have a lower area moment of inertia and hence a lower buckling load than the star
shaped cross-section without beads, as the area is distributed near the centroid in
case of the star with beads cross-section. Hence the values of thicknesses < 0.016
inches are considered for analyzing the star with beads cross-section composite

column.

For different values of thickness, the radius of the beads is increased and the

transition from local to global buckling is determined as shown in Tables 5.6 - 5.12

Table 5.6 Variation of the critical load with the radius of the beads for
thickness = 0.015 in

Thickness Radius of Height (in) Pcr
(in) Bead (in) (Ib)
0.015000 0.015000 0.436300 204.5003
0.015000 0.018000 0.418681 232.6276
0.015000 0.019500 0.408444 255.6783
0.015000 0.022500 0.385122 245.9237
0.015000 0.030000 0.310264 199.3791
0.015000 0.045000 0.089751 31.88080
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Table 5.7 Variation of the critical load with the radius of the bead for

thickness = 0.011 in

Thickness (in) Radius of Height Critical Load
beads(in) (in) Pcr(lb)
0.011000 0.029700 0.418617 338.2113
0.011000 0.030800 0.400717 339.4412
0.011000 0.031900 0.382125 319.5714
0.011000 0.033000 0.362841 298.4292
0.011000 0.034100 0.342866 276.1207

Table 5.8 Variation of the critical load with the radius of the beads for

thickness = 0.010 in

Thickness (in) Radius of Height (in) Critical Load
beads (in) Pcr(lb)
0.010000 0.027000 0.503239 188.3330
0.010000 0.030000 0.452534 270.9465
0.010000 0.031000 0.434375 305.7876
0.010000 0.033000 0.396170 354.8367
0.010000 0.034000 0.376126 330.3440
0.010000 0.040000 0.242657 168.6010

Table 5.9 Variation of the critical load with the radius of the beads for

thickness = 0.009 in

Thickness (in) Radius of Height (in) Critical Load
beads (in) Pcr(lb)
0.009000 0.033300 0.449961 270.4800
0.009000 0.034200 0.430224 303.3066
0.009000 0.034200 0.409921 341.4134
0.009000 0.035100 0.389052 364.8246
0.009000 0.036000 0.367618 335.6242
0.009000 0.036900 0.345618 305.7452
0.009000 0.037800 0.323052 275.3785




Table 5.10 Variation of the critical load with the radius of the beads for

thickness = 0.008 in

Thickness (in) Radius of Height (in) Critical Load
beads (in) Pcr(lb)
0.008000 0.035200 0.430975 279.7681
0.008000 0.036000 0.409408 314.0791
0.008000 0.036800 0.387339 354.7942
0.008000 0.037600 0.364767 380.8986
0.008000 0.038400 0.341692 312.7219
0.008000 0.039200 0.318115 278.7502
0.008000 0.040000 0.294035 245.0118

Table 5.11 Variation of the critical load with the radius of the beads for

thickness = 0.007 in

Thickness (in) Radius of Height (in) Critical Load
beads (in) Pcr(lb)
0.007000 0.037100 0.428103 252.9852
0.007000 0.037800 0.405274 283.9033
0.007000 0.038500 0.382004 320.6529
0.007000 0.039200 0.358295 350.4046
0.007000 0.039900 0.334146 312.7219
0.007000 0.040600 0.309557 275.4209

Table 5.12 Variation of the critical load with the radius of the beads for

thickness = 0.005 in

Thickness Radius of Height (in) Critical Load
(in) beads (in) Pcr(lb)
0.005000 0.042000 0.346620 175.8618
0.005000 0.043000 0.294213 207.8423
0.005000 0.043500 0.267539 225.3752
0.005000 0.044500 0.213247 150.1519
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Figure 5.9 Variation of critical load with radius of beads for star with beads cross-
section composite column

Figure 5.9 shows the variation of critical load with respect the radius of the beads

for different values of thicknesses.
From Fig. 5.9, we can see that the peak of the curve that marks the maximum critical
load increases with the reduction in thickness from 0.015 inches to 0.008 inches and

decreases as the thickness is reduced below 0.008 inches.

The maximum value of the critical load for the different thicknesses and the

corresponding bead radius is shown in Table 5.13.

A plot of the maximum critical load vs. the thickness for the star with beads cross-

section composite column is shown in Fig. 5.10.
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Table 5.13 Maximum critical load for different thickness of star with bead cross-
section composite column

Thickness (in) Radius of Height (in) Maximum
beads (in) Pcr (Ib)
0.015 0.019500 0.408444 255.6783
0.011 0.030800 0.400717 339.4412
0.010 0.033000 0.396170 354.8367
0.009 0.035100 0.389052 364.8246
0.008 0.037600 0.364767 380.8986
0.007 0.039200 0.358295 350.4046
0.005 0.043500 0.267539 225.3752
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Figure 5.10 Plot of maximum critical load vs. thickness for the star with beads cross
section composite column

From Table 5.13 and Fig. 5.10 we can find that the critical load corresponding to the
thickness of 0.008 inches is the highest and has a value of 380.8986 1b.

Thus the dimensions of the star with beads cross section for which we get the
highest critical load are thickness = 0.008 inches and radius of beads = 0.0376

inches.
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5.7 Comparison of Maximum Critical Load for all the Cross-Sections
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Figure 5.11 Plot of the critical load vs. thickness for all cross-sectional shapes

The plot of the variation of critical load with the wall thickness for all the cross-

sectional shapes is shown in Fig. 5.11

From Fig. 5.11, we can see that the tubular circular cross-section composite column
has the highest peak and hence provides the highest critical load of 609.802 Ib. The
star with beads cross-section is better than the star cross-section, which is better

than the tubular equilateral triangular cross-section composite column.
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CHAPTER 6

Conclusions And Recommendations

6.1 Conclusions

From the results obtained by analyzing the four cross-sections we can conclude that
the tubular circular cross-section provides the highest buckling load. Thus among
the four cross-sectional shapes considered, the tubular circular cross-section is the

optimum shape for the composite arrow shaft.

6.2 Recommendations for Future Work

In this study, the area of the cross-section was considered to be uniform along the
length of the column. A study with a varying cross-sectional area at constant arrow

volume can be performed.
The orientation of the fibers is considered to be only along the length of the column.
A study to find the optimum composite layup for practical layups must be

undertaken.

In this study only 4 cross-sectional shapes were analyzed. Other cross-sectional

shapes can be considered and the optimum can be determined.
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