
COMPARISON OF MACHINE LEARNING ALGORITHMS IN SUGGESTING

CANDIDATE EDGES TO CONSTRUCT A QUERY

ON HETEROGENEOUS GRAPHS

by

ROHIT RAVI KUMAR BHOOPALAM

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2016

ii

Copyright © by Rohit Ravi Kumar Bhoopalam 2016

All Rights Reserved

iii

Acknowledgements

I am grateful to my supervising professor Dr. Chengkai Li for giving me an

opportunity to work under him. Without his excellent guidance, patience and continuous

support this work would not have been possible.

I would like to thank Dr. Vassilis Athitsos and Dr. Dimitrios Zikos for serving as

my committee members and for their invaluable comments, suggestions, and support.

I would like to especially thank Nandish for the constant guidance and comments

he provided throughout this work. I would also like to thank the whole team of IDIR lab for

all the suggestions they provided me.

Finally, I would like to express my gratitude to my parents for their

encouragement and invaluable support through out.

April 21, 2016

iv

Abstract

COMPARISON OF MACHINE LEARNING ALGORITHMS IN SUGGESTING

CANDIDATE EDGES TO CONSTRUCT A QUERY

ON HETEROGENEOUS GRAPHS

Rohit Ravi Kumar Bhoopalam, MS

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Chengkai Li

Querying graph data can be difficult as it requires the user to have knowledge of

the underlying schema and the query language. Visual query builders allow users to

formulate the intended query by drawing nodes and edges of the query graph, which can

be translated into a database query. Visual query builders help users formulate the query

without requiring the user to have knowledge of the query language and the underlying

schema. To the best of our knowledge, none of the currently available visual query

builders suggest what nodes/edges to include into their query graph for users. We

provide suggestions to users via machine learning algorithms and help them formulate

their intended query.

No readily available dataset can be directly used to train our algorithms, so we

simulate the training data using Freebase, DBpedia, and Wikipedia and use them to train

our algorithms. We also compare the performance of four machine learning algorithms,

namely Naïve Bayes (NB), Random Forest (RF), Classification based on Association

Rules (CAR), and a recommendation system based on singular value decomposition

(SVD), in suggesting the edges that can be added to the query graph. On an average,

v

CAR requires 67 suggestions to complete a query graph on Freebase while other

algorithms require 83-160 suggestions. Moreover, Naïve Bayes requires an average of

134 suggestions to complete a query graph on DBpedia while other algorithms require

150-171 suggestions.

vi

Table of Contents

Acknowledgements .. iii	

Abstract .. iv	

List of Illustrations ... ix	

List of Tables ... x	

Chapter 1 INTRODUCTION .. 1	

Chapter 2 DATA PREPERATION ... 5	

2.1 Generating Positive Edges ... 6	

2.1.1 Freebase .. 8	

2.1.2 DBpedia ... 8	

2.2 Injecting Negative Edges .. 8	

2.3 Generating Query log using Freebase and DBpedia .. 9	

Chapter 3 OVERVIEW OF RDP .. 10	

Chapter 4 MACHINE LEARNING MODELS ... 12	

4.1 Naïve Bayes (NB) ... 12	

4.1.1 Training NB Classifier .. 12	

4.1.1.1 Training Data Format .. 12	

4.1.1.2 Implementation ... 13	

4.1.2 Using the Built Model ... 13	

4.2 Random Forest (RF) ... 14	

4.2.1 Training RF Classifier .. 14	

4.2.1.1 Training Data Format .. 14	

4.2.1.2 Implementation ... 14	

4.2.1.3 Ensemble .. 14	

4.2.1.4 Bootstrapping .. 14	

vii

4.2.1.5 Splitting Each Node .. 15	

4.2.1.6 Number of Trees ... 15	

4.2.2 Using the Built Model ... 15	

4.3 Classification based on Association Rules (CAR) .. 15	

4.3.1 Training CAR Classifier .. 16	

4.3.2 Using the Built Model ... 17	

4.3.2.1 Finding Matching Rules .. 17	

4.3.2.2 Scoring Candidate Edges ... 17	

4.4 Recommendation System based on Singular Value Decomposition (SVD) 18	

4.4.1 Training SVD Classifier .. 18	

4.4.1.1 Training Data Format .. 18	

4.4.1.2 Singular Value Decomposition .. 18	

4.4.1.3 Implementation ... 19	

4.4.2 Using the Built Model ... 20	

4.4.2.1 Scoring Candidate Edges ... 20	

Chapter 5 TESTING MODEL ACCURACY ... 21	

5.1 Splitting Data into Train and Test Data ... 21	

5.1.1 Training the classifiers ... 21	

5.1.2 Testing the classifiers .. 21	

5.2 Accuracy on Test Query Log .. 22	

5.2.1 Accuracy of Classifiers on Freebase Test Query Log 23	

5.2.2 Accuracy of Classifiers on DBpedia Test Query Log 24	

Chapter 6 EXPERIMENTAL SETUP AND RESULTS ... 27	

6.1 Building the model on the query log .. 27	

6.2 Testing the Models on Target Query Graphs .. 27	

viii

6.2.1 Target Query Graphs ... 27	

6.2.1.1 Freebase Target Query Graphs .. 27	

6.2.1.2 DBpedia Target Query Graphs ... 28	

6.2.2.1 Experimental Setup for Finding Number of Suggestions 31	

6.2.3 Experimental Results ... 31	

6.2.3.1 Results on Freebase Target Queries .. 31	

6.2.3.2 Results on DBpedia Target Queries ... 34	

Chapter 7 CONCLUSION AND FUTURE WORK ... 35	

References .. 36	

Biographical Information .. 38	

ix

List of Illustrations

Figure 1-1 Adding an Edge in the Passive Mode ... 2	

Figure 1-2 Automatic Edge Suggestions in the Active Mode ... 3	

Figure 2-1 Sample Query Session ... 5	

Figure 2-2 Query Log ... 6	

Figure 2-3 Sample Data Graph .. 7	

Figure 2-4 Screen shot of a Wikipedia article ... 7	

Figure 6-1 Web Service Setup ... 31	

Figure 6-3 Efficiency of All Methods on Freebase: Time .. 32	

Figure 6-4 Efficiency of All Methods on DBpedia: Number of Suggestions 33	

Figure 6-5 Efficiency of All Methods on DBpedia: Time ... 33	

x

List of Tables

Table 5-1 Accuracy of NB and RF on Freebase Test Query Log 23	

Table 5-2 Accuracy of CAR and SVD on Freebase Test Query Log 24	

Table 5-3 Accuracy of CAR-POS and SVD-POS on Freebase Test Query Log 24	

Table 5-5 Accuracy of CAR and SVD on DBpedia Test Query Log 25	

Table 5-6 Accuracy of CAR-POS on DBpedia Test Query Log 26	

Table 6-1 Number of target queries generated for Freebase ... 28	

 1

Chapter 1

INTRODUCTION

The database community has recognized the importance of graphical query interfaces

to the usability of data management systems. For querying graph databases, there exists a few

systems which allow users to build queries by drawing nodes and edges of query graphs, which

can be translated into underlying database queries. In these existing systems, a user has to go

through an alphabetically sorted list of edge labels and select the edge label she is interested in

adding to her query graph. This requires the user to know the exact edge label that she wants to

add to her query graph, so that she can find her edge using binary search. Oftentimes, due to

the lack of knowledge of the data and the schema, the user has to sequentially go through the

list of edges.

This problem can be reduced by using a visual query builder system like Orion [1].

Orion supports two modes of operation. One is the passive mode, whereby adding an edge, a

ranked list of edge types is shown in a pop-up. This ranking of edge types is based on the

relevance to the user’s query intent. Figure 1-1 shows Orion’s passive mode of operation,

where a ranked list of edge labels is suggested for a newly added edge between two nodes.

These suggestions are displayed in a pop-up box. The other mode of operation is the active

mode, in which the Orion suggests a top-k ranked list of edges based on user’s query intent.

Figure 1-2 shows the snapshot of a partially constructed query graph in an active mode, where

the nodes and edges are suggested based on the partially constructed query graph. The white

nodes and the edges incident on them are the suggestions given by the Orion.

The query construction process of an Orion user can be summarized as a query

session, which consists of positive and negative edges that correspond to edge suggestions

accepted and ignored by the user, respectively. This iterative process of suggesting edges to

the user based on the partially constructed query graph can be viewed as a classification

problem. Given a partially constructed query graph as an input to our algorithm, we are

 2

interested in suggesting an edge or a group of edges to the user, and the edges are the classes

that we want to find. Thus, we can model this problem of suggesting edges to the user based on

partial query graph as a classification problem. Furthermore, we are only interested in using the

classifiers that can provide scores to the set of edges (or classes) based on the partial query

graph (or input data), so that we can sort the edges based on these scores and suggest a

ranked list of edges to the user. In our problem, the number of classes is equal to the number of

distinct positive edges.

Figure 1-1 Adding an Edge in the Passive Mode

Orion’s edge ranking algorithm is Random Decision Path (RDP), which ranks the

candidate edges based on the query log of past query sessions. RDP ranks the candidate

edges based on their correlation with the current query session. RDP uses different random

subsets of the query session to construct multiple decision paths. This idea of RDP is inspired

by the ensemble learning method of the random forests, which uses multiple random subsets of

features to construct multiple decision trees. Chapter 3 of this thesis gives an overview of RDP.

We also implemented other edge ranking methods by adapting machine learning

algorithms, namely Naïve Bayes (NB), Random Forests (RF), Recommendation System based

on Singular Value Decomposition (SVD) and Classification based on Association Rules (CAR).

Using NB or RF, we can find the probability that an edge 𝑒 is a class associated with query

 3

session 𝑄, i.e., 𝑃(𝑒|𝑄). We can use these probability values of all the edges as a score to rank

the candidate edges. Similarly, we can generate the score for each edge using association rules

in CAR and cosine similarity in SVD to rank the candidate edges. Chapter 4 discusses in detail

the implementation of these four machine learning classifiers.

Figure 1-2 Automatic Edge Suggestions in the Active Mode

To the best of our knowledge, there exists no dataset that can be directly used to train

our machine learning classifiers, so we simulated query logs for both Freebase [2] and DBpedia

[3] data graphs using Wikipedia. The premise is that the various relationships between entities

found in consecutive sentences of Wikipedia articles represent co-occurring properties that

simulate the positive edges in a query session. Chapter 2 discusses the method used to

simulate the query logs.

We conducted experiments to compare RDP with other edge ranking methods---RF,

NB, CAR and SVD on both Freebase and DBpedia data graphs. On average, RDP requires 43

suggestions to complete a query graph, while other methods require 67 to 160 suggestions on

Freebase data graph. Moreover, RDP requires 126.6 suggestions to complete a query graph on

DBpedia data graph while other algorithms require 134 to 171 suggestions. Chapter 6

discusses the experimental setup and results in detail. We also found the accuracy of four

 4

adapted machine learning algorithms by dividing the data into train and test set. Train set is

used to build the model and the test set is used to find the accuracy of the models. Results of

these experiments are discussed in Chapter 5.

Overall, the contribution of this research is as follows:

• We present a method to simulate the query log for both Freebase and DBpedia

data graphs using Wikipedia articles.

• Four machine learning methods, namely NB, RF, SVD, and CAR, are adapted

to suggest candidate edges that can be used to build a query graph.

• We compare Orion’s RDP with the four machine learning algorithms we

adapted.

 5

Chapter 2

DATA PREPERATION

The query construction process of a user using a visual builder, where the user accepts

or ignores the suggestions made by the system, can be summarized as a query session. A

query session consists of positive and negative edges that correspond to edge suggestions

accepted and ignored by the user, respectively. Numerous such query sessions, which captures

user’s query intent, can be called a query log. We need such a query log, which can be used to

build our classifiers, so that given a user’s partially built query session, our classifiers can find a

class for the partially built query session (suggest an edge).

Figure 2-1 Sample Query Session

Figure 2-1 shows a query session, where the nodes in the orange color and the edges incident

among them represents a partial query graph, nodes in the blue and grey color along with the

edges incident on them represents the edge suggestions. Furthermore, the edges incident on

the blue color represent the positive edges, they are the edges accepted by the user to be

added to the current query session. Moreover, the edges incident on the grey nodes represent

the negative edges, the edges the user has ignored. Figure 2-2 shows a query log, which has

eight query sessions, representing the eight query intents of users. In the query session, 𝑤1 of

 6

the query log, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑓𝑜𝑢𝑛𝑑𝑒𝑟 are the positive edges, and 𝑛𝑎𝑡𝚤𝑜𝑛𝑎𝑙𝚤𝑡𝑦 is the negative

edge.

Figure 2-2 Query Log

To the best of our knowledge, query log for large graphs are not publicly available

which can be used to build our classifiers. In this chapter, we discuss the process of generating

such query log.

2.1 Generating Positive Edges

We use Wikipedia articles to generate the positive edges of a query session. Each

Wikipedia article describes an entity in detail and refers to other Wikipedia articles by wikilinks.

Multiple entities mentioned in a window of consecutive sentences of a Wikipedia article can be

considered to be related in some way. We find such pairwise relationships between all the

entities mentioned in our window of consecutive sentences of an article. Our premise is that

these consecutive co-occurring relationships simulate the positive edges of a user’s query

session. The intuition is that a user may also have such closely related facts as their query

intent.

 7

Figure 2-3 Sample Data Graph

Figure 2-4 Screen shot of a Wikipedia article

To find co-occurring positive edges, we map entities mentioned in Wikipedia articles to

nodes of the data graphs, such as Freebase and DBpedia. We consider all the edges present

among these nodes as the positive edges of the query session. This will result in a lot of noise

because the actual sentence of the Wikipedia articles might actually mention only a subset of

these relationships. We remove this noise by filtering the co-occurring edges which have low

support in our query log.

Figure 2-3 show a sample data graph consisting of few nodes and edges related to

Jerry Yang. Figure 2-4 shows a few sentences of the Jerry Yang’s Wikipedia article. The

wikilinks present in the article, electrical engineering, Stanford Univeristy and Phi Kappa Psi can

be directly mapped to three nodes of the sample data graph. All the edges among these three

nodes, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑎𝑙𝑚𝑎𝑀𝑎𝑡𝑡𝑒𝑟, and 𝑓𝑟𝑎𝑡_𝑚𝑒𝑚𝑏𝑒𝑟 co-occur and they simulate the positive edges

of a query session.

 8

2.1.1 Freebase

 Freebase is a graph database system designed to be a public repository of the world’s

knowledge [3]. There could be edges representing the relationship between two nodes in both

the directions, which are equivalent to each other, we remove edges in one such direction, by

keeping the other. We also remove numeric entities, as we do not handle queries with relational

operations such as greater than or lesser than. Nodes of freebase can easily be mapped to

entities of the wikilinks of Wikipedia.

2.1.2 DBpedia

DBpedia is a structured database created using the information from Wikipedia to make

this information available on the web [4]. Similarly, we preprocess the DBpedia data and we can

map DBpedia data to wikilinks of Wikipedia.

2.2 Injecting Negative Edges

The above mentioned method only generates positive edges of a query session. It is

crucial to simulate edges that were not accepted by the users, which can represent the negative

edges of the query session. A negative edge of the query session is an edge that does not

occur in the current query session, but co-occurs with one of the positive edges in a different

query session. Thus, we add all the negative edges for a query session. These negative edges

and the positive edges simulated using the above method must be used to rank the candidate

edges, since the candidate edges are correlated with both accepted and ignored edges of a

query session.

P1: <𝑎𝑙𝑚𝑎𝑀𝑎𝑡𝑡𝑒𝑟, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑓𝑜𝑢𝑛𝑑𝑒𝑑>

P2: <𝑎𝑙𝑚𝑎𝑀𝑎𝑡𝑡𝑒𝑟, 𝑓𝑜𝑢𝑛𝑑𝑒𝑑, 𝑓𝑟𝑎𝑡_𝑚𝑒𝑚𝑏𝑒𝑟>

Let us consider the above two positive query sessions, P1 and P2, generated using the

method described in section 2.1. Then, we inject the negative edges as shown in the below

equations, New P1 and New P2.

New P1: <𝑎𝑙𝑚𝑎𝑀𝑎𝑡𝑡𝑒𝑟, 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑓𝑜𝑢𝑛𝑑𝑒𝑑, 𝑓𝑟𝑎𝑡_𝑚𝑒𝑚𝑏𝑒𝑟>

 9

New P2: <𝑎𝑙𝑚𝑎𝑀𝑎𝑡𝑡𝑒𝑟, 𝑓𝑜𝑢𝑛𝑑𝑒𝑑, 𝑓𝑟𝑎𝑡_𝑚𝑒𝑚𝑏𝑒𝑟, 𝑑𝑒𝑔𝑟𝑒𝑒>

P1 and P2 has at least one positive edge in common, so the edge present in P1 and

not present in P2, 𝑑𝑒𝑔𝑟𝑒𝑒 will be added as a negative edge to P2. Similarly, 𝑓𝑟𝑎𝑡_𝑚𝑒𝑚𝑏𝑒𝑟 is a

negative edge for P1 and it will be added to P1 to make the updated P1, New P1.

2.3 Generating Query log using Freebase and DBpedia

We generate query log for both Freebase and DBpedia using the Wikipedia articles as

discussed in the secion 2.1 and 2.2. Query log generated using Freebase and Wikipedia is

called Freebase query log, and query log generated using DBpedia and Wikipedia is called

DBpedia query log. We use the query log generated using this method is used to build our

machine learning classifiers.

 10

Chapter 3

OVERVIEW OF RDP

Orion’s edge ranking algorithm, Random Decision Paths (RDP), is a novel method for

measuring the relevance of a candidate edge with a query session. Formulation of RDP is

motivated by the random forests [5]. However, there are important differences between RDP

and random forests in standard definition and application, and in our experimentation RDP

outperforms the standard random forest.

To understand the similarities and differences between RDP and random forests, let us

briefly review decision trees and random forests. A decision tree 𝐷 can be seen as a classifier

that maps patterns to classes: 𝐷 𝑥 = 	𝑎𝑟𝑔𝑚𝑎𝑥@	𝑃(𝑦|𝑥), where x is the pattern and y is the class

of that pattern. A leaf node 𝐿 stores the precomputed probabilities 𝑃B(𝑦) of each class 𝑦 while

building a decision tree. In the classification phase, a pattern 𝑥 is used to traverse the built tree

𝐷 and when a leaf node 𝐿 is reached, the tree outputs 𝑃C 𝑦 𝑥 = 	𝑃B(𝑦). A random forest 𝐹 is

built using multiple decision trees, where a best feature among a random subset of features is

used to split each node. In the classification phase, a random forest 𝐹 defines a probability

𝑃E(𝑦|𝑥), as the average 𝑃C 𝑦 𝑥 over all trees 𝐷 ∈ 𝐹.

Random forests can be applied to our problem, but they have a few undesirable

properties. Each pattern is a query session consisting of a few positive and negative edges.

Since query session contains a relatively lesser number of edges than the total number of edge

types, while traversing a tree using the query session, a vast majority of the test for the

presence of an edge will result in a “no.” This means that the query session does not contain

the edge specified in the test at that node of the tree. This leads to a highly unbalanced trees,

where the path corresponding to all “no” results gets the majority of the training examples. At

classification time, most of the time an input pattern 𝑥 ends up at all-no paths, and thus the

class probabilities 𝑃C 𝑦 𝑥 do not vary much from the prior probabilities.

 11

RDP algorithm is mathematically equivalent to constructing a random forest on the fly,

given a query session 𝑄𝑆 to classify. This random forest is explicitly built to classify the given

query session 𝑄, and this random forest is discarded afterwards; a new random forest is built for

every 𝑄. The tests at each tree node considers only the edges that appear in 𝑄. This way, the

probabilities stored at leaf nodes are computed from the training examples that are similar to 𝑄,

as they share at least some edges with 𝑄. This way of building the random forest will have

probabilities at leaf node more accurate than random forest constructed offline, without the

knowledge of 𝑄. Our experimental results also validate this belief of RDP.

At the same time, since the query session 𝑄 is known, constructing full random forest is

not necessary, and the RDP exploits this fact to save significant computational time. For any

given query session 𝑄, RDP builds only one path of the decision tree 𝐷, since computing the

output for any other paths of 𝐷 is useless. Therefore, out of every tree of the random forest,

RDP only needs to compute and store a single path. Consequently, the random forest built in

this method is reduced to a set of decision paths, and this set of decision paths is called

“random decision paths” (RDP) [1].

 12

Chapter 4

MACHINE LEARNING MODELS

We have modeled the problem of suggesting candidate edges based on user’s current

query session as a classification task. Furthermore, we are interested in suggesting top-k

candidate edges to user based on the query session, instead of suggesting only one candidate

edge. Hence, we have to use machine learning classifiers which can provide an estimate of

membership of a query session over a set of classes than predicting only one class for the

given query session. Using these estimates of membership over a set of classes as a score we

can sort the candidate edges and suggest top-k ranked edges to users. This category of

machine learning classifiers which has the capability of estimating the membership of data over

a set of classes is known as probabilistic classifier. [6]

We use four such probabilistic classifiers, namely Naïve Bayes (NB), Random Forest

(RF), Classification based on Association Rules (CAR), and a recommendation system based

on Singular Value Decomposition (SVD) to compare its performance with that of Orion’s RDP

algorithm. This chapter explains the method followed to build these four classifiers.

4.1 Naïve Bayes (NB)

 Naïve Bayes is a supervised classification algorithm which works on the principle of

Bayes theorem. NB assumes the conditional independence among all of its features.

4.1.1 Training NB Classifier

 Supervised classification algorithms require training data to have labels. The labels are

the classes that our algorithms are trained to classify. They learn to classify such labels using

the features of the training data. To train the NB classifier, we have to convert each query

session into a form where we will have the training instances and their corresponding labels.

4.1.1.1 Training Data Format

Let us consider a query session which consists of 5 edges, where 𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟

and 𝑚𝑢𝑠𝑖𝑐 are positive edges and 𝑒𝑑𝑢𝑐𝑎𝑡𝚤𝑜𝑛 and 𝑛𝑎𝑡𝚤𝑜𝑛𝑎𝑙𝚤𝑡𝑦 are negative edges.

 13

<𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦>

We want to train our NB classifier on multiple such query sessions, and we want our

classifier to suggest an edge given a set of positive and negative edges. We have to convert our

query session into multiple data instances, where for each data instance we take out one

positive edge from the query session and we mark that positive edge as the label for the current

data instance. Conversion of our sample query session into multiple training data instances is

shown below, where the edge on the right hand side is the label for the set of edges on the left

hand side of out data instances.

<𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦> → 𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔

<𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦> → 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟

<𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦> → 𝑚𝑢𝑠𝑖𝑐

Each query session in our query log is converted into a number of training data

instances, where the number of training data instances generated from a query session is equal

to the number of positive edges in that query session. In the above example the query session

has three positive edges, so three training samples can be generated from this query session.

4.1.1.2 Implementation

 We used scikit-learn library of python, which is an open source library consisting the

implementation of various machine learning algorithms. We used the GaussianNB algorithm

which assumes the likelihood of the features to be a Gaussian.

4.1.2 Using the Built Model

 After a NB model has been built using the training data, to find the class of a query

session, we directly give the query session as an input to our model without any modifications to

the data as in the training phase. The NB can provide the probability of data belonging to all the

 14

classes. We can sort these classes based on the probability of the data belonging to their

respective classes and return these as these ranked edges.

4.2 Random Forest (RF)

 Random Forests are the ensembles of the multiple decision trees, where each tree is

built using the data generated by bootstrapping and each node uses a random subset of

features to find the best split.

4.2.1 Training RF Classifier

4.2.1.1 Training Data Format

 We convert each query session into multiple training data instances as explained in

Training Data Format section of Naïve Bayes.

4.2.1.2 Implementation

 We used the ‘RandomForestClassifier’ algorithm implemented in sickit-learn, which is

an open source library developed in Python programming language.

4.2.1.3 Ensemble

Ensembles are the combination of multiple classifiers with an intuition that this

combination of classifiers will perform better than using an individual classifier. We have used

bagging of decision trees with bootstrapping, which is one of the most widely used. [7]

4.2.1.4 Bootstrapping

 To build ensembles of the decision trees, we have used random samples with

replacement of the training data to train each decision tree. Using bootstrapping each tree will

be trained on different training samples, number of original training samples will be equal to the

number of training samples generated using the random sampling with replacement technique.

 Bootstrapping will decrease the variance of the model without increasing the bias of the

model. Using the same data to build an ensemble of decision trees, without bootstrapping will

lead to a high correlation between the trees and they get highly sensitive to noise in the training

 15

data. Bootstrapping will lead to a better model than training all the classifiers with the same data

and the averaging of many the trees with bootstrapping will not be sensitive to noise. [8]

4.2.1.5 Splitting Each Node

 To split each node of the tree we use random subset of features of length square root of

total number of features to find the best split. Square root of total number of features is a

recommended number of features to be used for splitting each node for a classification task and

that of one third of number of features is recommended for a regression task. [8]

We are using Gini impurity as a criterion to find the best split among the random subset

of features. The feature which gives the lower Gini impurity value will be chosen to split the

node.

 4.2.1.6 Number of Trees

 We built the RF using 40, 80, 120, 160 & 200 trees. The accuracy of the random forest

on test data improves with number trees used increases, but the time taken to train large

number of trees increases with the increase in the number of trees.

4.2.2 Using the Built Model

 After the RF model has been built, to classify the class of a query session, we can

directly give that query session as an input to our model without any modifications to the data

like we expand in training phase. We use the ‘predict_proba’ function implemented in scikit-

learn random forest implementation to get the score for the belongingness of the query session

for each class. We can rank all classes based on this score and return ranked list as the

predicted edges for the given query session.

4.3 Classification based on Association Rules (CAR)

 Classification Rule mining is finding rules from the database to build an accurate

classifier with a predetermined target of finding the classes. Association rules are generated

using minimum support and confidence cutoffs without any predetermined target. To the best of

 16

our knowledge, combining these two concepts to build a classification model was first proposed

by Liu, Hsu, and Ma. [9]

 Inspired by this concept of combining classification with association rules, we built a

classifier using the association rules.

4.3.1 Training CAR Classifier

 We have to generate the rules of the form <𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡, 𝑐𝑙𝑎𝑠𝑠_𝑦> which is represented

as,	𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 → 𝑐𝑙𝑎𝑠𝑠_𝑦. The antecedent is a set of edges and class_y is the label. Given a

query session we want to suggest an edge, so the class labels are nothing but the all possible

positive edges in the query log. Hence we can use the same method of generating the training

samples from a given query session as discussed in the 4.1.1.1 Training Data Format.

Let us consider the query session <𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦>

the rules generated from the above query session are shown below.

< director, music, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 > → starring

< starring, music, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 > → director

< starring, director, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 > → music

The left-hand-side of the rules are the antecedents and the right-hand-side of the rules are the

class labels. Class labels are positive edges of the query session.

We generated a query log by using Apriori algorithm with a minimum support value

(minquerysup). Each query session present in the query log has the support more than or equal

to the minquerysup used to generate the query log. The antecedent of the rules generated

should have a minimum support value (minrulesup), so that the rule can be considered as an

association rule. We have used the same value of minquerysup as the required value of

minrulesup, hence all the rules generated satisfies the minrulesup value and can be considered

association rules. We do not use a minimum confidence value for considering a rule to be an

association rule, instead we use the confidence of the rule to predict the class. Hence, we

consider all the rules generated by the above method to be the association rules.

 17

We find the confidence values of all the association rules in the training phase of the

algorithm. We use these confidence values in the classification phase of CAR.

4.3.2 Using the Built Model

 In the training phase of CAR, we find all the association rules from the query log and

the confidence of each rule is also found. In the classification phase of CAR, we first find all the

matching rules of the given query session then we use the scoring function to rank the

candidate edges, and we return a ranked list of candidate edges.

4.3.2.1 Finding Matching Rules

 A matching rule is an association rule which has at least one edge of the query session

in the rule’s antecedent. Consider an association rule in the format 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 → 	𝑐𝑙𝑎𝑠𝑠_𝑌 and a

query session (QS), then the length of the intersection of antecedent set & QS set should be at

least one to consider the rule 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 → 	𝑐𝑙𝑎𝑠𝑠_𝑌 as a matching rule. Using this notion of

matching rules, we find all the matching rules using the association rules & query session.

4.3.2.2 Scoring Candidate Edges

Once we find all the matching rules for a given query session, we assign scores to all

the candidate edges using the matching rules, query session, and the confidence of these

matching rules as shown in Algorithm 1. We sort the candidate edges based on their assigned

scores in the decreasing order and we return the sorted list of candidate edges as the output of

 18

the CAR algorithm. In other words, we rank our candidate edges using the scores of the

candidate edges calculated using the algorithm shown in Algorithm 1.

4.4 Recommendation System based on Singular Value Decomposition (SVD)

4.4.1 Training SVD Classifier

 We use singular value decomposition to find the reduced the low-dimensional

representation of the query log. Then we use this reduced space representation of the query log

& the edges to find the neighborhood of a given query session, and we sort the candidates

based on a score generated using the neighbors of the query session.

4.4.1.1 Training Data Format

 We form a matrix from the query log, where the rows represent each query session of

the query log and the columns represents the unique edges, both positive edges and negative

edges of the query log. Let m×n be the dimensions of the matrix, m is the number of query

sessions present in our query log and n is the number of unique edges present in the query log.

For a query session of the query log, we mark all the columns corresponding to the all the

edges present in this query session as one.

 Let us consider a sample query session present in our query log to be,

<𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟,𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦>. This query session contains five edges, so

the row corresponding to this query session will contain one in only five columns corresponding

to edges 𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟,𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛	𝑎𝑛𝑑	𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦. We use the sparse matrix format

representation, so we add one to the columns corresponding to the edges present in the row,

values of the rest of the columns will be considered to be containing zeroes.

4.4.1.2 Singular Value Decomposition

 Singular value decomposition is a matrix factorization technique that factors a m×n

matrix A into three matrices as follows

𝐴 = 𝑈×𝑆×𝑉′

 19

where U and V are two orthogonal matrices of dimensions m×r and n×r, respectively. r is the

rank of the matrix A. S is a diagonal matrix of size r×r, values of S are stored by the decreasing

order of their magnitude. We can use U, S and V matrices to get the dimensionality reduction of

the matrix A, and to generate a lower rank approximation of matrix A.

 Lower rank approximation is found by considering top-k values of matrix S and slicing

the matrix S to get a matrix 𝑆P of dimensions k×k. Similarly, matrices U and V can be sliced to

get matrix 𝑈Pof dimensions m×k and matrix 𝑉P of dimensions n×k respectively.[10]

4.4.1.3 Implementation

 We use the ‘svd’ method implemented in python numpy library to find the singular value

decomposition matrices of our query log.

We find the matrices U, S and V and reduce them the dimensions and we use the value of k as

100.

 20

4.4.2 Using the Built Model

 Given a query session we find the top 100 similar rows of the query log using the 𝑈P,

𝑆Pand 𝑉P matrices. Cosine similarity is the similarity method that we have used to find the top

100 query sessions from the query log.

4.4.2.1 Scoring Candidate Edges

 Once we find the top 100 query sessions of the query log for a given query session, we

assign scores to all the candidate edges using the Algorithm 2. Algorithm 2 uses the cosine

similarity between the given query session and each query session of the top 100 query

sessions to find the score of the candidate edges. We sort the candidate edges based on their

scores in the decreasing order and we return this sorted list of candidate edges as the output of

the SVD algorithm. In other words, we rank our candidate edges using the scores of the

candidate edges calculated using the Algorithm 2.

 21

Chapter 5

TESTING MODEL ACCURACY

In the previous chapter we discussed the approach of building four models, namely NB,

RF, CAR and SVD. In this chapter we will discuss the approach we took to test our training

method to build four machine learning classifiers.

5.1 Splitting Data into Train and Test Data

 We divided our query log into two parts, namely training query log and test query log.

We selected 80% of the query log randomly without repetitions as training query log and the

remaining 20% was considered test query log. We built our classifiers using the train query log

and we tested them on the test query log.

5.1.1 Training the classifiers

For each of the four classifiers, we used the same method of using the data as

explained in the previous chapter respectively. We built four classifiers on both Freebase train

query log and DBpedia train query log, thus generating eight different models.

5.1.2 Testing the classifiers

For testing the four classifiers trained using the train query log, we converted the test

query session of test query log into multiple test query instances. The number of test query

instances that can be created from a test query session is equal to the number of positive edges

present in that query session. This process of converting the query session is very similar to the

method we used to train our NB, RF and CAR. Let us consider a sample test query session of

the test query log to be, <𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟,𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 >.

We can generate three test query instances from the above test query session as

shown below.

<𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟,𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦> → 𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔

<𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔,𝑚𝑢𝑠𝑖𝑐, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦> → 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟

 22

<𝑠𝑡𝑎𝑟𝑟𝑖𝑛𝑔, 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦> → 𝑚𝑢𝑠𝑖𝑐

Even though the SVD classifier was trained without generating the training data as

shown in the above method, while testing the SVD classifier we use this method of testing. We

follow this method because after removing one positive edge from the query session and it as

an input to the classifier, we expect the classifier to suggest us the positive edge that we

removed from the query session. Since, this expectation holds true and is same for all the four

classifiers that we have built, we use the same method to test all the classifiers.

5.2 Accuracy on Test Query Log

 We tested our four classifiers on both Freebase Test Query log and DBpedia Test

Query log using the above method of giving input to the classifiers.

 The accuracy of a classifier is found using the formula,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑡𝑒𝑠𝑡	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

Accuracy of CAR and SVD was not very high as NB and RF, but the edge that we were

expecting the model to predict was usually one among the top-5 or top-10 ranked edges

returned by the CAR and SVD. So to capture this fact that the CAR and SVD were able to rank

our expected edge in top-5 or top-10, we are finding the top-5 accuracy and top-10 accuracy as

defined by the following two formulae,

𝑇𝑜𝑝5	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	

=
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑎𝑠𝑒𝑠	𝑤ℎ𝑒𝑟𝑒	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑒𝑑𝑔𝑒	𝑤𝑎𝑠	𝑖𝑛	𝑡𝑜𝑝5	𝑟𝑎𝑛𝑘𝑒𝑑	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑝10	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	

=
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑎𝑠𝑒𝑠	𝑤ℎ𝑒𝑟𝑒	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑒𝑑𝑔𝑒	𝑤𝑎𝑠	𝑖𝑛	𝑡𝑜𝑝10	𝑟𝑎𝑛𝑘𝑒𝑑	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

 23

5.2.1 Accuracy of Classifiers on Freebase Test Query Log

Algorithm Test Accuracy

NB 97.90 %

RF 40 98.00 %

RF 80 98.29 %

RF 120 98.33 %

RF 160 98.40 %

RF 200 98.41 %

Table 5-1 Accuracy of NB and RF on Freebase Test Query Log

 The accuracy of a classifier is found using the NB is 97.9%, which means in 97.9% of

the total number of test instances, the NB has predicted the missing positive edge of the test

query session. RF was trained with 40, 80, 120, 160 and 200 trees and in Table 5-1, list them

as RF 40, RF 80, RF 120, RF 160 and RF 200 respectively.

As shown in Table 5-2, the accuracy of CAR and SVD were relatively lower than NB

and RF, when we consider the Top5 Accuracy and Top10 Accuracy the performance of SVD

and CAR are comparable with NB and RF classifiers.

We also generated CAR model with a variation of using only positive edges in the

antecedent and ignoring all the negative edges, called CAR-POS.

CAR-POS model built using only positive edges has performed better than CAR model

built using both positive edges and negative edges on Freebase.

 24

Algorithm Test Accuracy

CAR Accuracy 11.24 %

CAR Top5 Accuracy 48.22 %

CAR Top10 Accuracy 63.69 %

SVD Accuracy 15.92 %

SVD Top5 Accuracy 69.18 %

SVD Top10 Accuracy 97.57 %

Table 5-2 Accuracy of CAR and SVD on Freebase Test Query Log

Algorithm Test Accuracy

CAR-POS Accuracy 19.02 %

CAR-POS Top5 Accuracy 63.27 %

CAR-POS Top10 Accuracy 81.44 %

Table 5-3 Accuracy of CAR-POS and SVD-POS on Freebase Test Query Log

5.2.2 Accuracy of Classifiers on DBpedia Test Query Log

The accuracy of a classifier is found using the NB is 98.66%, which means in 98.66% of the

total number of test instances, the NB has predicted the missing positive edge of the test query

session. RF test accuracy has consistently improved with an increase in number of trees in both

Freebase test query log and DBpedia test query log.

 25

Algorithm Test Accuracy

NB 98.66 %

RF 40 95.50 %

RF 80 96.19 %

RF 120 96.37 %

RF 160 96.53 %

RF 200 96.54 %

Table 5-4 Accuracy of NB and RF on DBpedia Test Query Log

Algorithm Test Accuracy

CAR Accuracy 18.80 %

CAR Top5 Accuracy 43.79 %

CAR Top10 Accuracy 64.26 %

SVD Accuracy 16.72 %

SVD Top5 Accuracy 58.21 %

SVD Top10 Accuracy 96.4 %

Table 5-5 Accuracy of CAR and SVD on DBpedia Test Query Log

Similar to Table 5-2, in Table 5-5, the accuracy of CAR and SVD were relatively lower

than NB and RF, when we consider the Top5 Accuracy and Top10 Accuracy the performance of

SVD and CAR are comparable with NB and RF classifiers.

 26

Algorithm Test Accuracy

CAR-POS Accuracy 15.75 %

CAR-POS Top5 Accuracy 55.63 %

CAR-POS Top10 Accuracy 78.38 %

Table 5-6 Accuracy of CAR-POS on DBpedia Test Query Log

CAR Accuracy is better than CAR-POS accuracy value on DBpedia. The CAR-POS

Top5 Accuracy and CAR-POS Top10 Accuracy is better than that of CAR model on DBpedia.

 27

Chapter 6

EXPERIMENTAL SETUP AND RESULTS

In the previous chapter we discussed the approach of testing our four classifiers,

namely NB, RF, CAR and SVD. In this chapter we will discuss the approach we took to test our

classifiers on manually generated queries.

6.1 Building the model on the query log

 As discussed in the chapter 4, we build four classifiers on the full query log for both

Freebase and DBpedia.

6.2 Testing the Models on Target Query Graphs

 Once we build our models using the Freebase and DBpedia query log, we test the

model to generate the target queries designed for both Freebase and DBpedia.

6.2.1 Target Query Graphs

 Target query graphs are a group of edges that forms a query consisting of only the

positive edges present in the query log. We generate such real world target queries manually

that could be of interest to our users, and compare our classification algorithms to check how

many suggestions are required by our machine learning algorithm to complete the target query

graph starting from a single edge as an input.

 We believe that comparing our classifiers using this method will give us an idea about

the performance of our classifiers on real world queries. Each time our model returns the ranked

edges we select only the top ranked edge as the suggested edge of our machine learning

classifiers.

6.2.1.1 Freebase Target Query Graphs

 We generated 43 target query graphs for freebase and these target query graphs are

manually generated. We believe that they fairly represent the real world scenario of user

generated queries.

 28

Number of Edges in Target Query Graphs Number of Graphs created

Two edged query graphs 6

Three edged query graphs 10

Four edged query graphs 9

Five edged query graphs 17

Six edged query graphs 1

Table 6-1 Number of target queries generated for Freebase

 Table 6-1 shows the number of target queries and the number of edges present in each

target queries. If 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟 and 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 are the two edges present in a two edged target query,

we can start to build the query from the 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟 edge and we can also start to build the query

using the 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 edge. Thus, if there are two unique edges, we will have two starting points

to build that particular query graph. Similarly, from 43 target query graphs, we can form 167

input instances from which the query graph construction can be started.

6.2.1.2 DBpedia Target Query Graphs

Similar to the Freebase, we generated 33 target query graphs for DBpedia data. Table 6-2

shows the number of target queries and the number of edges present in each target queries.

From 33 target query graphs, we can form 130 input instances from which the query graph

construction can be started.

 29

Number of Edges in Target Query Graphs Number of Graphs created

Three edged query graphs 2

Four edged query graphs 29

Five edged query graphs 2

Table 6-2 Number of target queries generated for DBpedia

	

6.2.2 Testing on Target Query Graphs

 Given a target query graph, we give the classifier only one edge as the input query

session, all possible candidate edges and the classifier returns a ranked list of candidates

edges, we then select the topmost ranked candidate edge as the edge suggested by the

classifier. If the topmost ranked candidate edge is present in our target query graph, we add this

edge as a positive edge to our query session. If the topmost ranked candidate edge is not

present in our target query graph, we then add this edge as a negative edge to our query

session. Then, we remove the topmost ranked candidate edge from the list of candidate edges

and we give this as an input along with updated query session to the classifier. This process is

repeated until we find all the edges present in our target query graph to be part of query

session.

 Using the above approach, we find the number of suggestions required for the classifier

to suggest the target query graph, starting with one edge of the target query graph in the query

session to having all the edges in the target query graphs in our query session.

Let us consider an example target graph to be,

Target graph: <director, producer, award>

 30

We start with one edge in our query session and we find all possible candidate edges and we

give this as an input to our classifiers. Let us consider the edge ‘director’ to be the input

instance as shown below.

Query Session – [director]

Candidate Edges – [writer, producer, award …]

The classifier would return a ranked candidate edge, let us consider the ranked

candidate edges to be as shown below.

Ranked Candidate Edges – [award, ...]

The ‘award’ is the top ranked edge, we check if this edge is present in our target query

graph, and it happens to be present in our target query graph, so we update our query session

and we remove the ‘award’ edge from the candidate edges and we give this as input to our

classifier to rank the candidate edges.

Query Session – [director, award]

Candidate Edges – [writer, producer, music_composer …]

Ranked Candidate Edges – [music_composer, …]

‘music_composer’ edge is not present in our target query session, thus this node is

rejected and we add this as a negative edge to our query session, we remove this edge from

the candidate edges, and we give updated query session and candidate edges as input to our

classifier.

Query Session – [director, award, 𝑚𝑢𝑠𝚤𝑐_𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟]

Candidate Edges – [writer, producer, …]

This process is repeated until all the edges present in our target query becomes part of

the query session and we record number of suggestions required by our classifier to complete

this process, we call this process as completing the target graph. We have a limit of 200

suggestions, if the classifier is taking more than 200 suggestions, we stop the process of

generating the target query graph.

 31

6.2.2.1 Experimental Setup for Finding Number of Suggestions

 We developed all the modules which ranks the candidate edges using the classifiers in

python programming language and the target query graphs generation method we developed in

java programming language. We used a Python-Flask web framework to connect these two

programs and all the ranking functions were exposed as a web API. The Java program makes a

POST request to the ranking function with candidate edges and query session through the

Flask web service and the ranking function ranks the candidate edges and returns the ranked

candidate edges. Figure 6-1, shows the depicts the process of these web API calls.

Figure 6-1 Web Service Setup

6.2.3 Experimental Results

 We ran the above explained experimental setup using all the four classifiers that we

have built on both Freebase and DBpedia target queries. An important measure of the efficiency

of a query graph completion system is the number of suggestions required to successfully

complete a target graph using the initial query session. A system that takes lesser number of

suggestions can help the user to build a query graph more accurately with lesser number of

suggestions.

6.2.3.1 Results on Freebase Target Queries

Figure 6-2 shows the average number of suggestions required to complete each of 167

target query graph instances for Freebase. The algorithm used in Orion, RDP performs better

than all other algorithms. RDP requires 43.5 average number of suggestions to complete the

Target Query
Graphs Web Service Ranking

Candidates
Ranked Candidate

edges

Candidate Edges &
Query Session

Ranked Candidate
edges

Candidate Edges &
Query Session

 32

target query graph, while CAR requires 67.8 average number of suggestions and the CAR-POS

algorithm requires 52.5 average number of suggestions.

Figure 6-2 Efficiency of All Methods on Freebase: Number of Suggestions

Figure 6-3 Efficiency of All Methods on Freebase: Time

0

20

40

60

80

100

120

140

160

180

Av
er
ag
e	
#	
of
	S
ug
ge
st
io
ns
	p
er
	q
ue

ry

Algorithms

Efficiency	of	All	Methods	on	Freebase:	Number	of	
Suggestions

Average	#	of	
Suggestions	
per	query

0

20

40

60

80

100

120

140

160

180

RDP SVD CAR NB RF40 RF80 RF120 RF160 RF200

Av
er
ag
e	
tim

e	
pe

r	q
ue

ry
	(i
n	
se
co
nd

s)

Algorithms

Efficiency	of	All	Methods	on	Freebase:	Time

Average	time	
per	query	(in	
seconds)

 33

Figure 6-4 Efficiency of All Methods on DBpedia: Number of Suggestions

Figure 6-5 Efficiency of All Methods on DBpedia: Time

Figure 6-3 shows the average number of time required to complete each of 167 target

query graph instances on Freebase. RDP, NB and RF significantly outperforms SVD and CAR.

0

20

40

60

80

100

120

140

160

180

200
Av

er
ag
e	
#	
of
	S
ug
ge
st
io
ns
	p
er
	q
ue

ry

Algorithms

Efficiency	of	All	Methods	on	DBpedia:	Number	of	
Suggestions

Average	#	of	
Suggestions	
per	query

0

50

100

150

200

250

300

RDP SVD CAR NB RF40 RF80 RF120 RF160 RF200

Av
er
ag
e	
tim

e	
pe

r	q
ue

ry
	(i
n	
se
co
nd

s)

Algorithms

Efficiency	of	All	Methods	on	DBpedia:	Time

Average	time	
per	query	(in	
seconds)

 34

RDP requires 7.7 seconds, NB requires 3.9 seconds and different RF implementations require

time in the range of 11.2 – 14.08 seconds.

6.2.3.2 Results on DBpedia Target Queries

Figure 6-4 shows the average number of suggestions required to complete each of 130

target query graph instances for DBpedia. RDP performs better than all other algorithms. RDP

requires 126.6 average number of suggestions to complete the target query graph, while NB

requires 134.3 average number of suggestions and the CAR-POS algorithm requires 136.1

average number of suggestions.

Figure 6-5 shows the average number of time required to complete each of 130 target

query graph instances for DBpedia. RDP, NB and RF outperforms SVD and CAR. RDP requires

119.7 seconds, NB requires 5.9 seconds and different RF implementations require time in the

range of 22.2 – 26.7 seconds.

 35

Chapter 7

CONCLUSION AND FUTURE WORK

In this work, we have compared RDP with NB, RF, CAR and SVD. We found that to

complete a target query graph, Orion’s RDP method requires an average of 43.5 suggestions

per query graph on Freebase, while the closest performing method to RDP on Freebase is

CAR-POS, which requires an average of 52.5 suggestions to complete a query graph. On

DBpedia, RDP requires an average of 126.6 number of suggestions and the closest performing

method to RDP is NB, which requires 134.3 average number of suggestions to complete a

query graph.

We have presented a method for generating query sessions using Wikipedia articles

and knowledge graphs. We also presented a method to test our classifiers using the concept of

completing a target query graphs.

We plan to carry on our future work in the following directions,

• User study should be performed by integrating the four algorithms adapted to

rank the candidate edges with Orion’s user interface. This should be compared

with RDP to find the best algorithm according to the user’s feedback.

• Query log should also be generated using other websites than using only the

Wikipedia articles.

• The actual query sessions of the users of Orion should be logged and should

be added to the query log used to build the classifiers.

 36

References

[1] Jayaram, N. (2016). Towards Better Usability of Query Systems for Massive Ultra-

Heterogeneous Graphs: Novel Approaches of Query Formulation and Query Specification

(Doctoral dissertation, University of Texas at Arlington, 2016). Arlington, TX

[2] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A

collaboratively created graph database for structuring human knowledge. ACM, 1247-

1250. doi:10.1145/1376616.1376746

[3] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann,

S. (2009). DBpedia - A crystallization point for the Web of Data. Web Semantics: Science,

Services and Agents on the World Wide Web, 7(3), 154-165.

doi:10.1016/j.websem.2009.07.002

[4] L.Breiman.Randomforests.MachineLearning,45(1):5–32  

[5] Kim, K. I., & Simon, R. (2010). Probabilistic classifiers with high-dimensional data.

Biostatistics, 12(3), 399-412. doi:10.1093/biostatistics/kxq069

[6] DIETTERICH, THOMAS G. "An Experimental Comparison of Three Methods for

Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization." An

Experimental Comparison of Three Methods for Constructing Ensembles of Decision

Trees: Bagging, Boosting, and Randomization (1999): 1-22. Kluwer Academic Publishers.

Web.

[7] Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning:

Data mining, inference, and prediction: With 200 full-color illustrations. New York: Springer.

[8] Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Classification and Association Rule Mining.

KDD-98 Proceedings. Retrieved from https://www.aaai.org/Papers/KDD/1998/KDD98-

012.pdf

 37

[9] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of Dimensionality

Reduction in Recommender System - A Case Study (Master's thesis, University of

Minnesota, 2000). Minneapolis.

 38

Biographical Information

Rohit Ravi Kumar Bhoopalam received his Bachelors in computer science and

engineering from Visvesvaraya Technological University, India, in 2011. After completing

his Bachelors degree, he worked in a couple of start-ups in Bangalore for two and a half

years. He completed his Masters degree in computer science and engineering in Spring

2016. His areas of interests include machine learning, data mining and web development.

