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Out of the night that covers me,

Black as the pit from pole to pole,

I thank whatever gods may be

For my unconquerable soul.

In the fell clutch of circumstance

I have not winced or cried aloud.

Under the bludgeonings of chance

My head is bloody, but unbowed.

Beyond this place of wrath and tears

Looms but the Horror of the shade,

And yet the menace of the years

Finds, and shall find me unafraid.

It matters not how strait the gate,

How charged with punishments the scroll,

I am the master of my fate,

I am the captain of my soul.

− William Ernest Henley, Invictus
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Abstract

On the Quantum Spaces of Some Quadratic Regular

Algebras of Global Dimension Four

Richard Gene Chandler Jr, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Michaela Vancliff

A quantum P3 is a noncommutative analogue of a polynomial ring on four

variables, and, herein, it is taken to be a regular algebra of global dimension four. It

is well known that if a generic quadratic quantum P3 exists, then it has a point scheme

consisting of exactly twenty distinct points and a one-dimensional line scheme.

In this thesis, we compute the line scheme of a family of algebras whose generic

member is a candidate for a generic quadratic quantum P3. We find that, as a

closed subscheme of P5, the line scheme of the generic member is the union of seven

curves; namely, a nonplanar elliptic curve in a P3, four planar elliptic curves and two

nonsingular conics.

Afterward, we compute the point scheme and line scheme of several (nongeneric)

quadratic quantum P3’s related to the Lie algebra sl(2,k). In doing so, we identify

some notable features of the algebras, such as the existence of an element that plays

the role of a Casimir element of the underlying Lie-type algebra.
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5.4.5 A Gröbner Basis for the Line Scheme of Hq(sl(2,k)) . . . . . . 117

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Biographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



List of Illustrations

Figure Page

4.1 The Point Scheme of H(sl(2,k)) . . . . . . . . . . . . . . . . . . . . . 62

4.2 The Point Scheme of H(sl(1|1)) . . . . . . . . . . . . . . . . . . . . . . 68

4.3 The Point Scheme of H(slk(2,k)) . . . . . . . . . . . . . . . . . . . . . 78

4.4 The Point Scheme of Hq(sl(2,k)) . . . . . . . . . . . . . . . . . . . . . 90

ix



Chapter 1

Introduction

Algebraic geometry has long been a tool in the study of commutative algebras.

In the 1980’s, a movement began that had the goal of extending the study of algebraic

geometry to noncommutative algebras. This movement has grown significantly since

1990; this is mainly due to the work of Artin, Tate and Van den Bergh that introduced

a method of encoding the multiplication of a noncommutative algebra using geometry.

In [3], Artin, Tate and Van den Bergh defined the notion of a point module

and a line module. These modules have the property that there are points and lines

in projective space associated to them. In lieu of associating geometry directly to a

noncommutative algebra, Artin, Tate and Van den Bergh associated the geometry to

these modules.

The collection of all points associated to the point modules of an algebra is

known as the point scheme. In [3], Artin, Tate and Van den Bergh gave a method

for computing the point scheme of an algebra; one could then determine the point

modules from these points. They did not, however, parametrize the line modules by a

scheme. This was accomplished in 2002 by Shelton and Vancliff in [29, 30] for certain

kinds of algebras.

Artin, Tate and Van den Bergh’s geometry has been exceptionally useful in

the study of Artin-Schelter regular algebras (also called AS-regular algebras). These

algebras are considered to be noncommutative analogues of polynomial rings owing

to the fact that the Gorenstein condition required in the definition of Artin-Schelter

regularity is a symmetry condition that replaces the symmetry condition of commuta-
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tivity of polynomial rings. Shelton and Vancliff’s construction of the line scheme gives

us a method of parametrizing the line modules by a scheme for certain Artin-Schelter

regular algebras of global dimension four; these algebras are quadratic domains, have

four generators, six defining relations, and the same Hilbert series as that of the

polynomial ring on four variables.

Quadratic Artin-Schelter regular algebras of global dimension four have become

known as quadratic quantum P3’s. Artin was the first to introduce the terminology

“quantum P2” in [1] to refer to an AS-regular algebra of global dimension three. The

name came about from the increased number of such algebras emerging from the field

of quantum mechanics at the time.

Our first consideration in this thesis will be a family of algebras defined by

Cassidy and Vancliff in [5] whose generic member is a candidate for a generic quadratic

quantum P3. In the mid-1990’s, Van den Bergh proved that if a generic quadratic

quantum P3 exists, then its point scheme consists of twenty distinct points (counted

with multiplicity) and has a one-parameter family of line modules (cf. [34]); in the

language of Shelton and Vancliff in [29, 30], a generic quadratic quantum P3 has a

one-dimensional line scheme.

Many algebras with a point scheme consisting of twenty distinct points are

known; likewise, many algebras with a one-dimensional line scheme are known. How-

ever, it was not until 2001 that an algebra with both these properties was discovered;

Shelton and Tingey defined such an algebra in [28]. Unfortunately, Shelton and

Tingey found this algebra with the aid of a computer-algebra program and trial-and-

error; it was the only known example for nearly a decade.

In 2010, Cassidy and Vancliff defined a new type of algebra known as a graded

skew Clifford algebra. In [5], they gave examples of several families of regular graded

skew Clifford algebras; the first family is the one we consider in Chapter 3 of this

2



thesis. The generic member of this family has a point scheme consisting of twenty

distinct points and a one-dimensional line scheme; furthermore, the algebra given by

Shelton and Tingey in [28] is a member of this family. However, the methods used

by Cassidy and Vancliff computed only the dimension of the line scheme, not the line

scheme itself.

In Chapter 3 of this thesis, we compute the line scheme of this family of algebras

and, for a generic member, find it to be the union of a nonplanar elliptic curve in a

P3, four planar elliptic curves and two nonsingular conics. We will also describe the

lines in P3 determined by the line scheme and describe some distinguished properties

of the algebras highlighted by this geometry. Further analysis of the line scheme has

led to the conjecture that the algebras in this family are not truly generic quadratic

quantum P3’s. The analysis did however give a candidate for the line scheme of

a generic quadratic quantum P3 (or perhaps a class of generic quadratic quantum

P3’s); namely the union of two nonplanar elliptic curves in a P3 and four planar

elliptic curves.

Our second consideration in this thesis concerns certain algebras related to the

Lie algebra sl(2,k), where k is an algebraically closed field of characteristic zero.

These algebras include the Lie superalgebra sl(1|1), a color Lie algebra obtained via

a cocycle twist of sl(2,k) and a quantum analogue of the universal enveloping algebra

of sl(2,k), denoted Uq(sl(2,k)). Each of these algebras, and sl(2,k) itself, appear in

quantum mechanics in some fashion.

In order to analyze these algebras in Chapter 4 by using Artin, Tate and Van

den Bergh’s geometry, we first pass to the universal enveloping algebra of the algebra

(this step does not apply to Uq(sl(2,k))). This process gives an associative k-algebra

on three generators. However, these algebras are not graded; hence, they are not

quadratic quantum P3’s. We instead associate Artin, Tate and Van den Bergh’s ge-
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ometry to a graded algebra that maps onto the ungraded universal enveloping algebra

(respectively quantized universal enveloping algebra); we then show that this graded

algebra is a quadratic quantum P3 by showing that it is either an Ore extension, or

a normal extension, of an AS-regular algebra of global dimension three.

The geometry we use is able to identify distinguished elements of the quadratic

quantum P3’s we consider (and therefore of the (respectively quantized) universal

enveloping algebra). In particular, an element analogous to a Casimir element is

identified in U(sl(1|1)) and Uq(sl(2,k)). Furthermore, in the case of U(sl(1|1)), the

geometry motivated work which led to the realization of the associated quadratic

quantum P3 being a twist by an automorphism of the coordinate ring of quantum

2× 2 matrices.
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Chapter 2

Preliminary Concepts

Herein, we will assume that k is an algebraically closed field; additional as-

sumptions on k will be imposed in Chapters 3 and 4. We will begin by examining

some basic definitions regarding abstract algebra and define what is meant by a reg-

ular algebra. We will then examine some concepts from algebraic geometry as well

as Artin, Tate and Van den Bergh’s construction for using algebraic geometry with

noncommutative algebras. We will conclude with a brief explanation of graded skew

Clifford algebras and Lie-type algebras.

Let B ⊂ A indicate that the set B is a subset of the set A, where possibly

A = B. We denote the set of positive integers by N. Also, let km×n denote the set of

all m × n matrices with entries in k and Mn(k) denote the set of all n × n matrices

with entries in k. If M ∈ km×n, then we write Mij to denote the ijth entry of M .

For a subset A of a field or vector space, we write A× for the nonzero elements of A.

2.1 Abstract Algebra

The definitions, results and examples in this section can be found in books such

as [10], [14], [18], and [26].

2.1.1 Algebras and Modules

Definition 2.1.1.1. Associative k-Algebra

An associative k-algebra A is a vector space over k and a ring such that k is contained

5



in the center of A, and α(ab) = (αa)b = a(αb), for all α ∈ k and a, b ∈ A. If ab = ba

for all a, b ∈ A, then we call A a commutative algebra.

Example 2.1.1.2.

1. Let A = k[x1, ..., xn] be the collection of all polynomials in the variables x1, ..., xn

with coefficients in k. As a vector space, dim(A) =∞, and A is a commutative

algebra under standard polynomial multiplication.

2. If A = Mn(k), then A is an n2-dimensional vector space and is a noncommuta-

tive algebra under standard matrix multiplication.

3. The free k-algebra on generators x1, ..., xn, denoted k〈x1, ..., xn〉, is the k-algebra

whose vector-space basis consists of all words in x1, ..., xn, including the empty

word. Addition and scalar multiplication is defined in the standard way, but the

multiplication of two basis elements is done via concatenation. Multiplication

is then extended to the entire algebra using distribution.

Any k-algebra on n generators can be viewed as a quotient of the free k-algebra

on n generators.

Example 2.1.1.3.

1. Defining relations of the polynomial ring k[x1, ..., xn] can be chosen to be of the

form xixj = xjxi for i, j = 1, ..., n. Thus, k[x1, ..., xn] = k〈x1, ..., xn〉/I, where

I = 〈xixj − xjxi : i, j = 1, ..., n〉.

2. Consider A = M2(k). A vector space basis for A is {Eij : i, j = 1, 2}, where

Eij is the 2 × 2 matrix with a 1 in the ijth entry and 0 elsewhere. For such

matrices, EijEkl = δjkEil, where δjk is the kronecker-delta. So, we may express

A as

k〈E11, E12, E21, E22〉
〈EijEkl − δjkEil, E11 + E22 − 1 : i, j = 1, 2〉

.
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Notice that E11 = E12E21 and E22 = E21E12. So, E11 and E22 are redundant as

generators and we obtain the isomorphic algebra

k〈E12, E21〉
〈 E2

12, E
2
21, E12E21 + E21E12 − 1 〉

.

Definition 2.1.1.4. Positively Graded, Connected k-Algebra

A k-algebra A is called positively graded if A =
⊕∞

i=0Ai, where Ai is a subspace of

A for all i and AiAj ⊂ Ai+j. We call the elements of A×i the homogeneous elements

of degree i. We denote the degree of an element x ∈ A by deg(x). We say that A is

connected if A0 = k.

Example 2.1.1.5. The polynomial ring A = k[x1, ..., xn] is a positively graded, con-

nected k-algebra with Ai =
⊕

i1+···+in=i kx
i1
1 · · ·xinn , for all i.

If we view an algebra A as a quotient of the free algebra, then A is graded if

and only if the defining relations of A are homogeneous.

Example 2.1.1.6.

1. If deg(x) = deg(y) = 1, then k[x, y] = k〈x, y〉/〈yx− xy〉 is graded.

2. If deg(x) = deg(y) = 1, then A = k〈x, y〉/〈x−y2〉 is not graded. However, if we

change the grading of the generators of A so that deg(x) = 2 and deg(y) = 1,

then A is graded.

3. If deg(x) = deg(y) = deg(z) = 1, then A = k〈x, y, z〉/〈xy − yx, xz + zx +

z2, yzy − y3〉 is graded.

Definition 2.1.1.7. Quadratic Algebra

We call a graded k-algebra A quadratic if it is generated by degree-one elements and

each of its defining relations is homogeneous of degree-two.
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Example 2.1.1.8.

1. If deg(x) = deg(y) = 1, then k[x, y] = k〈x, y〉/〈yx− xy〉 is quadratic.

2. If deg(x) = deg(y) = 1, then A = k〈x, y〉/〈x − y2〉 is not quadratic since its

defining relation is not homogeneous of degree-two. If we change the grading

of the generators of A so that deg(x) = 2 and deg(y) = 1, then A is still not

quadratic since one of its generators is not of degree-one.

3. If deg(x) = deg(y) = deg(z) = 1, then A = k〈x, y, z〉/〈xy − yx, xz + zx +

z2, yzy − y3〉 is not quadratic since one of its defining relations is homogeneous

of degree-three.

Definition 2.1.1.9. Left A-Module

Let A be a k-algebra. A left A-module is an abelian group, (M,+), and an action of

A on M such that for all a, b ∈ A and m,n ∈M :

(i) (a+ b)m = am+ bm,

(ii) (ab)m = a(bm),

(iii) a(m+ n) = am+ an, and

(iv) 1m = m, where 1 is the unity element in A.

A right A-module is defined in a similar manner.

Example 2.1.1.10.

1. If A = k, then any k-vector space is an A-module.

2. If A = k[x, y], then M = k[X] is an A-module under the action defined by

xf = Xf and yf = 0, for all f ∈M .

Definition 2.1.1.11. Cyclic Module

If A is a k-algebra and M is a left A-module, then we call M cyclic if there exists an

m ∈ M such that M = Am. In this case, M ∼= A/Ann(m), where Ann(m) = {a ∈

A : am = 0} is called the (left) annihilator of m.

8



Definition 2.1.1.12. Graded A-Module

If A =
⊕∞

i=0Ai is a graded k-algebra and M is a left A-module, then M is called

a graded module if M =
⊕∞

j=−∞Mj, where Mj is a subspace of M , for all j, and

AiMj ⊂Mi+j, for all i, j.

Example 2.1.1.13. If A = k[x, y] and M = k[X] as in Example 2.1.1.10, then M is

cyclic since M = A · 1. Also, Ann(1) = 〈y〉 ⊂ A and M = k[X] ∼= k[x, y]/〈y〉. If we

define deg(x) = deg(y) = deg(X) = 1, then M becomes a graded A-module.

For graded modules, we often want a convenient way to summarize the dimen-

sion of each homogenous degree-i subspace of the module. For this purpose, one tool

that we use is the Hilbert series.

Definition 2.1.1.14. Hilbert Series

Let A be a graded k-algebra and M =
⊕∞

i=nMi be a graded A-module. The Hilbert

series of M is HM(t) =
∑∞

i=n dimk(Mi)t
i.

Note that we are also allowed to discuss the Hilbert series of a graded k-algebra,

A, since A is a module over itself.

Example 2.1.1.15.

1. If A = k[x1, ..., xn] =
⊕∞

i=0Ai where Ai =
⊕

i1+···+in=i kx
i1
1 · · ·xinn for all i, then

a basis for Ai is Bi = {xi11 · · ·xinn : i1 + · · · + in = i}. So, a basis for A is

B =
⋃∞
i=0 Bi, and dimk(Ai) =

(
i+n−1

i

)
. Thus, HA(t) =

∑∞
i=0 dimk(Ai)t

i =∑∞
i=0

(
i+n−1

i

)
ti = 1

(1−t)n .

2. If A = k[x1, x2, x3, x4] and M = A/〈x1, x2 − x3, x4〉, then M is a graded A-

module with action x1f = 0, x2f = x2f, x3f = x2f, x4f = 0 for all f ∈ M ,

where x2 is the image of x2 in M . Also, M ∼= k[x2], as a vector space, so

dimk(Mi) = 1, for all i, and HM(t) =
∑∞

i=0 t
i = 1

1−t .
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2.1.2 Tensor Products

Given two vector spaces M and N , the direct sum M ⊕ N gives us a way to

“add” two vector spaces such that dimk(M⊕N) = dimk(M)+dimk(N). A method of

“multiplying” two vector spaces, which we will denote by M⊗N , is a way to combine

modules in such that dimk(M ⊗N) = dimk(M) dimk(N) holds.

Definition 2.1.2.1. Tensor Product of Vector Spaces

Let M and N be k-vector spaces. The vector space generated by the Cartesian

product of M and N is

F(M ×N) =

{
r∑
i=1

qi(mi, ni) : r ∈ N, qi ∈ k,mi ∈M,ni ∈ N, for all i

}
.

Let K be the subspace of F(M ×N) generated by the elements

(m1 +m2, n)− (m1, n)− (m2, n), (m,n1 + n2)− (m,n1)− (m,n2),

(qm, n)− q(m,n), (m, qn)− q(m,n),

for all m,m1,m2 ∈ M , n, n1, n2 ∈ N and q ∈ k. The tensor product of M and N is

M ⊗N = F(M ×N)/K. We denote (m,n) +K ∈M ⊗N by m⊗ n.

Under this construction, M ⊗N has the following properties:

(i) (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n,

(ii) m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2, and

(iii) q(m⊗ n) = (qm)⊗ n = m⊗ (qn) = (m⊗ n)q.

The reader should note that not every element of M ⊗N is of the form m⊗ n;

however, if B1 = {m1, ...,mr} is a basis for M and B2 = {n1, ..., ns} is a basis for

N , then B = {mi ⊗ nj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} is a basis for M ⊗ N . Hence,

dimk(M ⊗N) = dimk(M) dimk(N) as desired.
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Proposition 2.1.2.2. If M,N,Q,M1,M2, ..., N1, N2, ... are vector spaces, then:

(i) (M ⊗N)⊗Q ∼= M ⊗ (N ⊗Q),

(ii) (
⊕∞

i=1Mi)⊗N ∼=
⊕∞

i=1 (Mi ⊗N) , and

(iii) M ⊗ (
⊕∞

i=1Ni) ∼=
⊕∞

i=1 (M ⊗Ni) .

These properties tell us that the tensor product is associative and distributes

across direct sums. Using the tensor product, we can now define a k-algebra from a

vector space V .

Definition 2.1.2.3. Tensor Algebra

Let V be a k-vector space. Define T k(V ) =
⊗k

i=1 V and T (V ) =
⊕∞

k=0 T
k(V ). We

call T (V ) the tensor algebra on V .

Addition and scalar multiplication are defined on T (V ) using the addition and

scalar multiplication on the tensor product. Multiplication is defined via concatena-

tion; that is, if u = u1 ⊗ · · · ⊗ un and w = w1 ⊗ · · · ⊗ wm, then

uw = u1 ⊗ · · · ⊗ un ⊗ w1 ⊗ · · · ⊗ wm.

This, together with Proposition 2.1.2.2, verifies that T (V ) is a k-algebra. Further-

more, T (V ) is a graded k-algebra with (T (V ))k = T k(V ) and, if V =
⊕N

i=1 kvi, then

T (V ) ∼= k〈v1, ..., vN〉.

Example 2.1.2.4. If A = k[x, y] ∼= k〈x, y〉/〈xy − yx〉 and V = kx ⊕ ky, then A ∼=

T (V )/〈x⊗ y − y ⊗ x〉.

Let V be a k-vector space with basis B = {v1, ..., vn}. The dual space to

V is V ∗ = {f : V → k
∣∣ f is k-linear}, which has basis B∗ = {z1, ..., zn}, where

zi(vj) = δij, the kronecker-delta. Since V ∗ is also a k-vector space, we may form the

vector space V ∗ ⊗ V ∗ as described above. This vector space has a natural action on
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V ⊗V defined via (zi⊗ zj)(vk⊗ vl) = zi(vk) · zj(vl). Given this action and a subspace

W of V ⊗ V , we define a subspace of V ∗ ⊗ V ∗ by W⊥ = {f ∈ V ∗ ⊗ V ∗ : f(w) =

0, for all w ∈ W}. With this in mind, we now define the Koszul dual of a quadratic

algebra.

Definition 2.1.2.5. Koszul Dual

Let A be a finitely-generated quadratic k-algebra. It follows that A ∼= T (V )/〈W 〉,

where V is a finite-dimensional vector space and W is a subspace of V ⊗ V . The

Koszul dual of A is the k-algebra A! = T (V ∗)/〈W⊥〉.

For any finite-dimensional vector space U and subspace S of U , we have that

dim(U) = dim(S) + dim(S⊥). Therefore, if we assume that dim(V ) = n < ∞ and

dim(W ) = m, then dim(W⊥) = dim(V ⊗ V ) − dim(W ) = n2 −m. So, in order to

determine the Koszul dual of a finitely-generated quadratic k-algebra, we need only

find n2−m linearly independent elements of T 2(V ∗) that vanish on the generators of

W .

Example 2.1.2.6. Let A = k[x1, x2] ∼= k〈x1, x2〉/〈x1x2 − x2x1〉 ∼= T (kx1 ⊕ kx2)/〈x1 ⊗

x2 − x2 ⊗ x1〉. Here dim(V ) = 2 and dim(W ) = 1, so dim(W⊥) = 22 − 1 = 3.

Hence, we seek three linearly independent elements of T 2(kz1 ⊕ kz2) that vanish on

x1 ⊗ x2 − x2 ⊗ x1, where {z1, z2} is the dual basis to {x1, x2}. In particular,

(z1 ⊗ z1)(x1 ⊗ x2 − x2 ⊗ x1) = z1(x1)z1(x2)− z1(x2)z1(x1) = 0,

(z2 ⊗ z2)(x1 ⊗ x2 − x2 ⊗ x1) = z2(x1)z2(x2)− z2(x2)z2(x1) = 0,

(z1 ⊗ z2 + z2 ⊗ z1)(x1 ⊗ x2 − x2 ⊗ x1) = z1(x1)z2(x2)− z1(x2)z2(x1)

+ z2(x1)z1(x2)− z2(x2)z1(x1) = 0.
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So, the Koszul dual of A is

A! =
T (kz1 ⊕ kz2)

〈 z1 ⊗ z1, z2 ⊗ z2, z1 ⊗ z2 + z2 ⊗ z1 〉
∼=

k〈z1, z2〉
〈 z21 , z22 , z1z2 + z2z1 〉

,

which is the exterior algebra on two generators.

2.1.3 Regularity

All of the graded algebras we will consider in Chapters 3 and 4 are known as

regular algebras. In noncommutative algebra, one would like to have an analogue of

objects and concepts from commutative algebra. In particular, polynomial rings are

central objects in commutative algebra so it would be desirable to have a noncom-

mutative analogue; many believe that regular algebras are the “correct” analogue.

Definition 2.1.3.1. Global Dimension

Let A be a k-algebra.

(i) An A-module P is called projective if, given any two A-modules M and N , an A-

module epimorphism g : M → N and an A-module homomorphism f : P → N ,

there exists an A-module homomorphism h : P →M such that gh = f ; that is,

the diagram

P

f
��

h

~~
M

g // // N // 0

of A-module homomorphisms commutes.

(ii) Let M be an A-module, P0, P1, ... be projective A-modules and d0, d1, ... be A-

module homomorphisms such that di : Pi → Pi−1, for i ≥ 1, and d0 : P0 → M .

We call the sequence

· · · dn+1 // Pn
dn // · · · d3 // P2

d2 // P1
d1 // P0

d0 //M // 0

a projective resolution of the module M if Im(dk) = ker(dk−1), for all k.
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(iii) The projective dimension of an A-module M , denoted pdim(M), is the infimum

of the length of all projective resolutions of M , not including d0 or the trivial

maps at the beginning or end of the resolutions.

(iv) The left (respectively right) global dimension of A is the supremum of the pro-

jective dimensions of all left (respectively right) A-modules. If A is positively

graded and connected, then the global dimension of A, denoted gldim(A), is

gldim(A) = pdim(Ak) = pdim(kA), where Ak (respectively kA) is the trivial left

(respectively right) A-module (cf. [3]).

Definition 2.1.3.2. Polynomial Growth

Let A =
⊕∞

i=0Ai be a positively graded, connected k-algebra. We say that A has

polynomial growth if there exist positive a, b ∈ R such that dimk(An) ≤ anb, for all n.

Definition 2.1.3.3. Gorenstein Condition [2]

We say that a positively graded, connected k-algebra A of finite global dimension

satisfies the Gorenstein condition if

(i) the projective modules in a minimal projective resolution, X, of Ak are finitely-

generated A-modules, and

(ii) the sequence obtained by applying the functor HomA(·, A) to the modules in

X is a projective resolution of a graded right A-module isomorphic to the right

trivial module kA.

Definition 2.1.3.4. Artin-Schelter Regular Algebras [2]

Suppose that A =
⊕∞

i=0Ai is a positively graded connected k-algebra generated by

A1. We say that A is Artin-Schelter (AS) regular of global dimension d if

(i) gldim(A) = d <∞,

(ii) A has polynomial growth, and

(iii) A satisfies the Gorenstein condition.
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The Gorenstein condition imposes a symmetry condition on A. So, it acts

as an analogue of the commutative property inherent to polynomial rings. This is

one of the motivating reasons for claiming that regular algebras are the “correct”

noncommutative analogue of polynomial rings. In fact, polynomial rings satisfy these

conditions.

Example 2.1.3.5. If A = k[x1, x2], then

0 // A
d2 // A2 d1 // A

d0 //
Ak // 0

is a minimal projective resolution of Ak, where

d1 (a1, a2) =
[
a1 a2

] [x1
x2

]
and d2 (a) = a

[
x2 −x1

]
,

a1, a2, a ∈ A and d0 is the canonical map; so gldim(A) = 2. Applying HomA(·, A)

to this resolution yields a projective resolution of kA where the maps are left multi-

plication by the matrices in the original resolution. So, A is Gorenstein and A has

polynomial growth since dimk(An) ≤ n + 1 ≤ 2n, for all n ≥ 1. Therefore, A is a

regular algebra of global dimension two.

In this thesis, we will use the terminology “quadratic quantum P3” to refer to

an AS-regular algebra of global dimension four. A second type of regularity that we

will briefly use is known as Auslander regularity.

Definition 2.1.3.6. Auslander Regular Algebra (cf. [23])

Let A be a noetherian k-algebra.

(i) An A-module M satisfies the Auslander-condition if, for all q ≥ 0,

q ≤ inf
{
i : ExtiA(N,A) 6= 0

}
,

for all A submodules N of Extq(M,A).
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(ii) The algebra A is said to be Auslander regular of global dimension d if gldim(A) =

d <∞ and every finitely generated A-module satisifes the Auslander-condition.

By [23] and [24, Proposition 1.3], if a quadratic k-algebra A is Auslander regular

and has polynomial growth, then it is Artin-Schelter regular.

2.1.4 Ore Extensions and Twists by Automorphisms

In this subsection, we will look at two methods of obtaining new algebras from

existing ones. The first, known as an Ore extension, allows one to append a new

generator to an algebra and obtain an algebra of higher global dimension. The second,

twisting by an automorphism, creates a new graded algebra from a known graded

algebra that will have the same vector space structure and quantum space (which

will be defined in Section 2.3).

Definition 2.1.4.1. Ore Extension [14]

Let A be a k-algebra.

(i) Let ϕ be an endomorphism of A. We call a linear map δ : A → A a left

ϕ-derivation on A if δ(ab) = ϕ(a)δ(b) + δ(a)b, for all a, b ∈ A.

(ii) Let ϕ be an endomorphism of A and δ be a left ϕ-derivation on A. We shall

write B = A[x;ϕ, δ] provided that

(a) B is a k-algebra, containing A as a subalgebra,

(b) x is an element of B,

(c) B is a free left A-module with basis {1, x, x2, x3, ...}, and

(d) xa = ϕ(a)x+ δ(a), for all a ∈ A.

Such an algebra is called an Ore extension of A.
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Example 2.1.4.2. Let B = k[x, y] = k〈x, y〉/〈xy − yx〉. Define linear maps ϕ :

k〈x, y〉 → k〈x, y〉 and δ : k〈x, y〉 → k〈x, y〉 as follows:

ϕ(x) = x, ϕ(y) = qy, δ(x) = 0, δ(y) = q−1y2,

where q ∈ k×. We must first show that ϕ and δ descend to maps on B; we show that

ϕ and δ map 〈xy − yx〉 to itself. Since B is a polynomial ring, ϕ naturally descends

to an endomorphism of B. We must show that δ descends to a left ϕ-derivation on

B:

δ(xy − yx) = δ(xy)− δ(yx) = ϕ(x)δ(y) + δ(x)y − ϕ(y)δ(x)− δ(y)x

= q−1xy2 + 0− 0− q−1y2x ∈ 〈xy − yx〉,

and it follows that δ(〈xy − yx〉) ⊂ 〈xy − yx〉. Thus, δ is a left ϕ-derivation on B.

Therefore, the Ore extension A = B[z;ϕ, δ] is well defined. Explicitly, we have that

A =
k〈x, y, z〉

〈xy − yx, xz − zx, zy − qyz − q−1y2〉
.

We now turn our attention to twisting an algebra by an automorphism.

Definition 2.1.4.3. Twist by an Automorphism [4]

Let A be a graded k-algebra and τ ∈ Aut(A) with τ(Ai) = Ai, for all i. We define

the twist of A by τ as the k-algebra Aτ where:

• Aτ ∼= A as a k-vector space, and

• the multiplication in Aτ , denoted ?, is defined by a ? b = aτ d(b), where a ∈ Ad,

b ∈ Ai, and a, b are the elements in Aτ corresponding to a and b, respectively.
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Example 2.1.4.4. Let A = k〈x, y〉/〈yx − qxy〉, where q ∈ k× and A is graded in the

standard way. Define an automorphism τ : A → A by τ(x) = x and τ(y) = qy. It

follows that

y ? x = yτ(x) = yx = qxy = x(qy) = xτ(y) = x ? y,

so, Aτ ∼= k[x, y].

By [4, Corollary 8.5], the quantum space (defined in Section 2.3) of an algebra

is invariant under twisting. So, if two k-algebras have the same quantum space, then

it is possible that the algebras are isomorphic to, or twists of, one another. This will

motivate some of our work in Chapter 4.

2.2 Projective Algebraic Geometry

We now continue our preliminary chapter with some discussion of basic ideas

from algebraic geometry. We will focus mainly on the definition of projective space.

The definitions, results and examples in this section can be found in books such as

[9], [11], [15], and [16].

Definition 2.2.0.1. Projective n-Space

Define an equivalence relation on kn+1 \ {0} by (α0, ..., αn) ∼ (β0, ..., βn) if and only

if there exists λ ∈ k× such that βi = λαi, for all i. Projective n-space is Pn =

(kn+1 \ {0})/ ∼.

Definition 2.2.0.2. Projective Variety

If f1, ..., fm ∈ k[x0, ..., xn] are homogeneous, then the projective algebraic variety

determined by f1, ..., fm is V(f1, ..., fm) = {p ∈ Pn : fi(p) = 0, for all i}.
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Example 2.2.0.3. If V = V(x− y) ⊂ P2, then (α, α, β) ∈ V for all α, β ∈ k, not both

zero. So, if α = 0, then we obtain the point (0, 0, 1) ∈ P2. If α 6= 0, we may take

α = 1 and obtain the line of points {(1, 1, β) : β ∈ k}. Thus,

V = {(1, 1, β) : β ∈ k} ∪ {(0, 0, 1)}.

It should be noted that only the zero locus of homogeneous polynomials is well

defined in projective space. Furthermore, it will be useful in our analysis to look only

at irreducible varieties.

It is also possible to obtain a projective variety from an affine variety. If V ⊂ kn

is an affine variety, then the projective closure in Pn of V is denoted P(V ) and is the

smallest projective variety in Pn that contains V .

We will also be discussing projective schemes in this thesis. The official defini-

tion of a scheme is attributed to Groethendiek; details can be found in [15, 16]. Herein,

it is enough to consider a projective scheme as a projective variety that encodes the

multiplicity of the points in the scheme.

Example 2.2.0.4. If V = V(x) and W = V(x2) in P2, then as projective varieties,

V = W = {(0, 1)}. However, V 6= W as projective schemes as we consider V to be a

point and W a double point (or a point with multiplicity 2).

2.3 Artin, Tate and Van den Bergh’s Geometry

In this section we define the geometry developed by Artin, Tate and Van den

Bergh in [3] and discuss how Shelton and Vancliff added to the field with their work

in [29, 30].

Definition 2.3.0.1. Point Module [3]

Let A =
⊕∞

i=0Ai, with A0 = k, be an associative graded k-algebra, generated by A1,
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with dim(A1) = n < ∞. A graded right A-module M =
⊕∞

j=0Mj is called a point

module if M is cyclic, generated by M0 and dimk(Mj) = 1, for all j.

To every point module M over A, one can associate a point in Pn−1 as follows.

Assume that M =
⊕∞

j=0 kmj, where mj ∈ M×
j . Since M is graded, m0a = αam1,

where αa ∈ k, for all a ∈ A1; since M is cyclic, there exists a ∈ A1 such that αa 6= 0.

Define a k-linear epimorphism ϕ : A1 → k by ϕ(a) = αa. If U = ker(ϕ), then

k ∼= A1/U and so dimk(U) = n − 1. The annihilator of U , denoted U⊥, in A∗1 is

one-dimensional; thus, P(U⊥) is zero-dimensional and is, hence, a point in P(A∗1).

Example 2.3.0.2. If A = k[x1, x2, x3, x4] and M = A/(x1A+ (x2 − x3)A+ x4A), then

M is a point module of A with associated point (0, 1, 1, 0) ∈ P3.

The collection of all such points, counted with multiplicity, that can be associ-

ated to the point modules of a quadratic k-algebra A is called the point scheme of A

[3]. Following the method in [3], under certain hypotheses one can compute the point

scheme by first writing the defining relations of a quadratic algebra A with generators

x1, ..., xn, as a matrix equation of the form Nx = 0, were x = (x1, ..., xn)T . The point

scheme of A can be identified with the zero locus in P(A∗1) of the maximal minors of

N .

Definition 2.3.0.3. Line Module [3]

Let A =
⊕∞

i=0Ai, with A0 = k, be an associative graded k-algebra, generated by

A1, with dim(A1) = n < ∞. A graded right A-module L =
⊕∞

j=0 Lj is called a line

module if L is cyclic, generated by L0 and dimk(Lj) = j + 1, for all j.

Similar to a point module, to every line module one can associate a line in Pn−1.

Since L is cyclic, A maps onto L in a natural way. Also, because both A and L are
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graded, A1 � L1. The kernel, U , of this map has dimension n−2; so, P(U⊥) ⊂ P(A∗1)

is one-dimensional and is, hence, a line in P(A∗1).

Example 2.3.0.4. If A = k[x1, x2, x3, x4] and L = A/(x1A + (x2 − x3)A), then L is a

line module of A with associated line {(0, 1, 1, α) ∈ P3 : α ∈ P1}.

By [29], the collection of all such lines that can be associated to the line modules

of a quadratic quantum P3, A, is called the line scheme, L, of A; L can be realized as

a subscheme of P5. The method of computing the line scheme of a quadratic quantum

P3, A, is given in [30]. We outline the procedure here.

1. Compute the Koszul dual of A to obtain a quadratic k-algebra on the dual

generators z1, . . . , z4 with 10 defining relations.

2. Rewrite the defining relations as M̃z = 0 where M̃ is a 10 × 4 matrix and

z = (z1 · · · z4)T .

3. Produce a 10 × 8 matrix from M̃ by concatenating two 10 × 4 matrices; the

first is obtained by replacing every zi in M̃ with ui ∈ k and the second by using

vi ∈ k.

4. Each of the 45 8 × 8 minors of this matrix is a bihomogeneous polynomial of

bi-degree (4, 4) in the ui and vi and so each minor is a linear combination of

products of polynomials of the form Nij = uivj − ujvi, for 1 ≤ i < j ≤ 4.

5. Apply the map

N12 7→M34, N13 7→ −M24, N14 7→M23,

N23 7→M14, N24 7→ −M13, N34 7→M12,

to the polynomials to yield quartic polynomials in the six Plücker coordinates,

Mij, for 1 ≤ i < j ≤ 4.

6. The line scheme of A may be realized as the scheme of zeros of these 45 poly-

nomials and the Plücker polynomial P = M12M34 −M13M24 +M14M23.
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Note that the scheme of all lines in P3 is parametrized by V(P ) ⊂ P5. This

is known as the Plücker embedding. The task of recovering the lines in P3 that

correspond to line modules from the line scheme is done for specific algebras in Section

3.3.1 and Chapter 4. For more information on Plücker coordinates, the reader is

referred to [15].

In this thesis, given a quadratic quantum P3, A, we use the term “quantum

space” to refer to the collection of all point modules and line modules of A.

2.4 Graded Skew Clifford Algebras

The family of algebras that we will consider in Chapter 3 was defined in [5].

This family is an example of a type of algebra that Cassidy and Vancliff defined in

[5] that generalizes the notion of a graded Clifford algebra [20]. Before defining this

type of algebra, we must generalize the notion of a symmetric matrix.

Definition 2.4.0.1. µ-Symmetric Matrix [5]

Let µij ∈ k×, where 1 ≤ i, j ≤ n, such that µijµji = 1 for all i 6= j. We write

µ = (µij) ∈ Mn(k). A matrix M ∈ Mn(k) is called µ-symmetric if Mij = µijMji for

all i, j.

In this thesis, we will assume that µii = 1 for all i.

Example 2.4.0.2.

1. If µ ∈ Mn(k) with µij = 1 for all i, j, then µ-symmetric matrices are precisely

symmetric matrices.

2. If µ =

1 1/3 −i
3 1 i

i −i 1

, then M =

5 1 0

3 8 8

0 −8i i

 is a µ-symmetric matrix.
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We will also need the definition of a normalizing sequence in order to generalize

the concept of a graded Clifford algebra.

Definition 2.4.0.3. Normalizing Sequence [26, §4.1.13]

For a k-algebra A, we call {b1, ..., bm} ⊂ A a normalizing sequence in A if 〈b1, ..., bm〉 6=

A, b1 is normal in A (i.e., Ab1 = b1A) and the image of bk+1 is normal in A/〈b1, ..., bk〉,

for all k.

Example 2.4.0.4. Let A = k〈x1, x2〉/〈x1x2− x2x1− x21〉. Notice that x2 is not normal

in A but x1x2 = (x2 + x1)x1, so x1 is normal in A. Also, A/〈x1〉 ∼= k[x2] and so x2 is

normal in A/〈x1〉. Thus, {x1, x2} is a normalizing sequence of A.

With these concepts, we may now give the definition of a graded skew Clifford

algebra.

Definition 2.4.0.5. Graded Skew Clifford Algebra [5]

Let µ ∈Mn(k) be as above and M1, ...,Mn be µ-symmetric matrices. A graded skew

Clifford algebra A = A(µ,M1, ...,Mn) associated to µ and M1, ...,Mn is a graded

k-algebra on degree-one generators x1, ..., xn and on degree-two generators y1, ..., yn

with defining relations given by the following:

(a) xixj + µijxjxi =
∑n

k=1(Mk)ijyk for all i, j = 1, ..., n, and

(b) any additional relations needed to guarantee the existence of a normalizing se-

quence that spans ky1 + · · ·+ kyn.

Like a graded Clifford algebra, we may associate some geometry to a graded

skew Clifford algebra through the quadratic forms related to the defining matrices.

This geometry will be in the spirit of Artin, Tate and Van den Bergh’s geometry.
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To each µ-symmetric matrix Mk, we can associate a noncommutative quadratic

form qk ∈ S = k〈z1, ..., zn〉/〈zjzi − µijzizj : 1 ≤ i, j ≤ n〉 via

qk = [z1 · · · zn] Mk [z1 · · · zn]T .

The collection of all such quadratic forms is called a quadric system. We say that a

quadric system Q is right base-point free if S/〈Q〉 has no point modules or fat point

modules [5].

The family of graded skew Clifford algebras we consider will consist of regular

algebras. In [5], Cassidy and Vancliff gave some equivalent conditions for a graded

skew Clifford algebra to be regular. We now list those below.

Theorem 2.4.0.6. [5] A graded skew Clifford algebra A = A(µ,M1, ...,Mn) is a quadratic

Auslander regular algebra of global dimension n that satisifies the Cohen-Macaulay

property with Hilbert series 1/(1 − t)n if and only if the associated quadric system

{q1, ..., qn} is normalizing and base-point free; in this case, A is Artin-Schelter regu-

lar, a noetherian domain and unique up to isomorphism.

The k-algebras we consider in Chapter 3 were constructed in [5] to be AS-

regular. Details of the construction of these k-algebras may be found in [5].

2.5 Lie-Type Algebras

We finish our preliminary material with discussions on Lie-type algebras. We

will first consider the traditional Lie algebra, then consider the Lie superalgebra and

conclude with the definition of a color Lie algebra.
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2.5.1 Lie Algebras and Universal Enveloping Algebras

Definition 2.5.1.1. Lie algebra (cf. [17])

Assume that char(k) 6= 2. A k-vector space g with an operation g× g→ g, denoted

(x, y) 7→ [x, y] and called the bracket of x and y, is called a Lie algebra over k if:

(i) the bracket operation is bilinear,

(ii) [x, y] = −[y, x], for all x, y ∈ g, and

(iii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ g.

The final condition in the above definition is known as the Jacobi identity and

generalizes the notion of associativity from an associative k-algebra.

Example 2.5.1.2.

(a) If g = gl(2, k) is the vector space of all 2 × 2 matrices with entries in k, then g

becomes a Lie algebra with bracket defined by [X, Y ] = XY −Y X, for all X, Y ∈

gl(2,k). If we take {E11, E12, E21, E22} as the standard basis of gl(2,k), then the

bracket is defined by [Eij, Ekl] = δjkEil − δilEkj, where δjk is the kronecker-delta.

(b) If h = kx ⊕ ky ⊕ kz, then h becomes a Lie algebra under the bracket [x, y] = z

and [x, z] = 0 = [y, z]; h is known as the Heisenberg Lie algebra.

(c) Define sl(2,k) = {M ∈ gl(2,k) : tr(M) = 0}, where tr(M) is the trace of M .

Every element of sl(2,k) is of the form[
a b

c −a

]
,

where a, b, c ∈ k; hence, sl(2,k) is a three-dimensional vector space with basis

elements

e =

[
0 1

0 0

]
, f =

[
0 0

1 0

]
, h =

[
1 0

0 −1

]
.
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The vector space sl(2,k) becomes a Lie algebra under the commutator bracket

induced by gl(2,k). Using the basis {e, f, h}, the Lie bracket on sl(2, k) is defined

by

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

The geometric constructions of Artin, Tate and Van den Bergh require an asso-

ciative algebra. So in order to associate geometry to a Lie algebra, we will associate

the geometry instead to its universal enveloping algebra.

Definition 2.5.1.3. Universal Enveloping Algebra of a Lie Algebra (cf. [17])

If g is a finite-dimensional Lie algebra with basis {x1, ..., xn}, then the universal

enveloping algebra of g is the associative k-algebra defined by

U(g) =
k〈x1, ..., xn〉

〈xixj − xjxi − [xi, xj] : i, j = 1, ..., n〉
.

This definition of U(g) is sufficient for the purposes of this thesis. A more

general definition that does not rely on the selection of a basis of g is given in [17].

Example 2.5.1.4. If h is the Heisenberg Lie algebra, then

U(h) =
k〈x, y, z〉

〈xy − yx− z, xz − zx, yz − zy〉
.

Consideration of U(g) when studying the modules of g is quite natural as the

category of modules of U(g) is equivalent to the category of modules of g [17].

The universal enveloping algebra of certain Lie algebras contain a distinguished

element known as the Casimir element. For details on the construction of this element,

the reader is again referred to [17]. The distinguishing feature of this element is that it

is central in U(g) and, in the case of U(sl(2,k)), it generates the center of U(sl(2,k)).
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Example 2.5.1.5. Let so(3,k) be the Lie-algebra with basis {E32−E23, E13−E31, E21−

E12} and bracket defined by [X, Y ] = XY − Y X, for all X, Y ∈ so(3,k). Under the

identification x1 = E32 − E23, x2 = E13 − E31, and x3 = E21 − E12, the bracket is

given by

[x1, x2] = x3, [x3, x1] = x2, [x2, x3] = x1.

The universal enveloping algebra of so(3,k) is

U(so(3,k)) =
k〈x1, x2, x3〉

〈x1x2 − x2x1 − x3, x3x1 − x1x3 − x2, x2x3 − x3x2 − x1〉
,

and the Casimir element is ω = x21 + x22 + x23. Notice that ω is central in U(so(3,k)).

2.5.2 Lie Superalgebras and Universal Enveloping Algebras

Definition 2.5.2.1. Superspace (cf. [7])

A superspace is a Z2-graded k-vector space; that is, a superspace is a k-vector space

V with subspaces V0 and V1 such that V = V0 ⊕ V1. We call V0 the even part of V

and V1 the odd part of V .

Example 2.5.2.2. The k-vector space

km|n = {(α1, α2, ..., αm; β1, β2, ..., βn) : αi, βj ∈ k, for all i, j}

is a superspace with

V0 = {(α1, α2, ..., αm; 0, 0, ..., 0) : αi ∈ k, for all i}

and

V1 = {(0, 0, ..., 0; β1, β2, ..., βn) : βj ∈ k, for all j}.

Given a superspace V and x ∈ V , if x ∈ Vi, then we say that |x| = i is the

parity of x. If |x| = 0, then we call x even; if |x| = 1, then we call x odd. If x has

parity, we also say that x is homogeneous.
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Definition 2.5.2.3. Lie Superalgebra (cf. [7])

Let char(k) = 0. A superspace g = g0 ⊕ g1 with an operation g × g → g, denoted

(x, y) 7→ [x, y] and called the superbracket of x and y, is called a Lie superalgebra

over k if:

(i) [gi, gj] ⊂ gi+j (mod 2), for all i, j,

(ii) the bracket operation is bilinear,

(iii) [x, y] = −(−1)|x||y|[y, x], for all homogeneous x, y ∈ g, and

(iv) (−1)|x||z|[x, [y, z]]+(−1)|x||y|[y, [z, x]]+(−1)|y||z|[z, [x, y]] = 0, for all homogeneous

x, y, z ∈ g.

The last condition above is known as the super-Jacobi identity. Note that the

above also implies that g0 has a Lie algebra structure with the induced bracket.

Example 2.5.2.4. If gl(m|n) denotes the k-vector space of (m + n) × (m + n) block

matrices of the form [
A B

C D

]
,

where A ∈ km×m, B ∈ km×n, C ∈ kn×m and D ∈ kn×n, then gl(m|n) has a superspace

structure with

g0 =

{[
A 0

0 D

]
: A ∈ km×m, D ∈ kn×n

}
, g1 =

{[
0 B

C 0

]
: B ∈ km×n, C ∈ kn×m

}
.

Furthermore, gl(m|n) is a Lie superalgebra with bracket [X, Y ] = XY −(−1)|X||Y |Y X,

for all homogeneous X, Y ∈ gl(m|n).

The concepts of a universal enveloping algebra and Casimir element generalize

from Lie algebras to Lie superalgebras.

Definition 2.5.2.5. Universal Enveloping Algebra of a Lie Superalgebra (cf. [7])

If g is a finite-dimensional Lie superalgebra with basis {x1, ..., xn} of homogeneous el-
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ements, then the universal enveloping algebra of g is the associative k-algebra defined

by

U(g) =
k〈x1, ..., xn〉

〈xixj − (−1)|xi||xj |xjxi − [xi, xj] : i, j = 1, ..., n〉
.

The Casimir element of a Lie superalgebra supercommutes in the algebra; that

is, if ω is the Casimir element and x ∈ U(g) has parity, then xω = (−1)|x|ωx.

2.5.3 Color Lie Algebras and Universal Enveloping Algebras

Before defining a color Lie algebra, we must first define a bicharacter map. If

G is an abelian group, then ε : G×G→ k× is an antisymmetric bicharacter map if:

(a) ε(g, h)ε(h, g) = 1, for all g, h ∈ G,

(b) ε(g, hk) = ε(g, h)ε(g, k), for all g, h, k ∈ G, and

(c) ε(gh, k) = ε(g, k)ε(h, k), for all g, h, k ∈ G.

Definition 2.5.3.1. Color Lie Algebra [27]

Let ε be a bicharacter map on G and assume that char(k) = 0. By a color Lie

algebra g, we mean g =
⊕

g∈G gg is a G-graded space over k, equipped with a bilinear

multiplication [·, ·] : g× g→ g such that:

(i) [gg, gh] ⊂ ggh, where g, h ∈ G,

(ii) [x, y] = −ε(g, h)[y, x], where x ∈ gg, y ∈ gh, and g, h ∈ G, and

(iii) ε(k, g)[x, [y, z]] + ε(g, h)[y, [z, x]] + ε(h, k)[z, [x, y]] = 0 where x ∈ gg, y ∈ gh,

z ∈ gk and g, h, k ∈ G.

This last condition is known as the color-Jacobi identity. Note that if we take

G to be the field Z2 = {0, 1} and take ε(g, h) = (−1)gh, where g, h ∈ Z2, then we may

realize Lie superalgebras as a subclass of color Lie algebras. As such, the definition
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of the universal enveloping algebra of a color Lie algebra is a natural generalization

of that of the universal enveloping algebra of a Lie superalgebra.

Definition 2.5.3.2. Universal Enveloping Algebra of a Color Lie Algebra (cf. [27])

If g is a finite-dimensional G-graded color Lie algebra over k with basis {x1, ..., xn} of

homogeneous elements, then the universal enveloping algebra of g is the associative

k-algebra defined by

U(g) =
k〈x1, ..., xn〉

〈xixj − ε(g, h)xjxi − [xi, xj] : xi ∈ gg, xj ∈ gh, g, h ∈ G, i, j = 1, ..., n〉
.
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Chapter 3

A Family of Quadratic Quantum P3’s

In this chapter we will examine a family of algebras whose generic member is

a candidate for a generic quadratic quantum P3. This family was originally defined

in [5]; it was constructed in such a way that the generic member has a point scheme

consisting of twenty distinct points and a one-dimensional line scheme. Prior to

Cassidy and Vancliff constructing this family, the only known example of such an

algebra was the algebra found by Shelton and Tingey in [28]. However, techniques

used in [28] and [5] determined only the dimension of the line schemes of these algebras

and not the line scheme itself.

3.1 The Family of Algebras A(γ)

Definition 3.1.0.1. The Family of Algebras A(γ) [5]

Let γ ∈ k× and write A(γ) for the k-algebra on generators x1, x2, x3, x4 with defining

relations:

x4x1 = ix1x4, x23 = x21, x3x1 = x1x3 − x22,

x3x2 = ix2x3, x24 = x22, x4x2 = x2x4 − γx21,

where i2 = −1.

By construction of A(γ) in [5], A(γ) is a regular noetherian domain of global

dimension four with Hilbert series the same as that of the polynomial ring on four

variables. The special member A(1) is the algebra introduced in [28]. It should be
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noted that the polynomials given in [28] that define the point scheme of A(γ) have

some sign errors. Moreover, A(1) was studied in [13] in the context of finding the

scheme of lines associated to each point of the point scheme; the entire line scheme

was not analyzed. Thank you to B. Shelton and M. Vancliff for providing their notes

on a potential approach toward computing the line scheme of the algebra defined in

[28].

It is useful to observe that A(γ) ∼= A(−γ), for all γ ∈ k×, under the map that

sends x2 7→ −x2 and xk 7→ xk, for all k 6= 2. In fact, there exist two antiautomor-

phisms of A(γ) defined by ψ1 : x1 ↔ x3, x2 ↔ x4, and ψ2 : x2 ↔ λx3, x4 ↔ λx1,

where λ ∈ k× and λ4 = γ.

3.2 The Quantum Space of A(γ)

In this section we will compute both the point scheme and line scheme of A(γ).

The method follows that of [3] and [29, 30]. We will assume that char(k) 6= 2 in

this section. Let e1, ..., e4 denote the four elementary points in P3; that is, ei =

V(xj, xk, xl), where {i, j, k, l} = {1, 2, 3, 4}.

3.2.1 The Point Scheme of A(γ)

Theorem 3.2.1.1.

(a) For every γ ∈ k×, the point scheme of A(γ) is p(γ) = {e1, e2, e3, e4} ∪ Zγ, where

Zγ = V( x84 − 4x44 + γ2, x23 − ix3x24 − 1, γx2 − 2ix34 + x3x
5
4 ). We call the points

belonging to Zγ the generic points of p(γ).

(b) If γ2 6= 4, then p(γ) has twenty distinct points.

32



(c) If γ2 = 4, then p(γ) has exactly twelve distinct points; the eight closed points of Zγ

have multiplicity two and the elementary points e1, e2, e3, e4 each have multiplicity

one.

Proof. Following [3], we write the defining relations of A(γ) in the form Mx = 0,

where M is a 6 × 4 matrix and x is a column vector given by xT = (x1, x2, x3, x4).

Thus, we may take M to be the matrix

M =



x4 0 0 −ix1
0 x3 −ix2 0

x1 0 −x3 0

0 x2 0 −x4
x3 x2 −x1 0

γx1 x4 0 −x2


.

The point scheme of A(γ) can be identified with the zero locus in P(A(γ)∗1) of the

4× 4 minors of M . The polynomials that define p(γ) are listed in Appendix 5.1.1.

If x1 = 0, then computing a Gröbner basis using the polynomials in Appendix

5.1.1 yields the polynomials:

x3x
3
4, x23x

2
4, x33x4, x2x

3
4, x2x3x

2
4, x2x

2
3x4,

x2x
3
3, x22x

2
4, x22x3x4, x22x

2
3, x32x4, x32x3.

An easy computation shows that these polynomials vanish precisely if the xi pairwise

vanish, for i = 2, 3, 4; that is, e2, e3, e4 ∈ p(γ). If x1 6= 0, we may take x1 = 1. A

Gröbner basis computation yields the polynomials

ix4(γ
2 − 4x44 + x84), ix3(γ

2 − 4x44 + x84), x23 − ix3x24 − 1, γx2 − 2ix34 + x3x
5
4.

If, in addition, x4 = 0, we obtain that e1 ∈ p(γ). Otherwise, we see that

Zγ = V( γ2 − 4x44 + x84, x
2
3 − ix3x24 − 1, γx2 − 2ix34 + x3x

5
4 )
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gives the remaining points of the point scheme.

Since x84−4x44+γ2 = 0 if and only if (x44−2)2 = 4−γ2, we see that x84−4x44+γ2

has eight distinct zeros if and only if γ2 6= 4; if γ2 = 4 then x84− 4x44 + γ2 has exactly

four distinct zeros, each of multiplicity two. Given a zero, x4, of x84 − 4x44 + γ2, the

equation x23 − ix3x24 − 1 = 0 has a unique solution for x3 if and only if x44 = 4, which

is not a solution of x84 − 4x44 + γ2 = 0 since γ 6= 0; hence, there are two roots of

x23− ix3x24−1, each of multiplicity one. Finally, given zeros x3 and x4 of x84−4x44 +γ2

and x23 − ix3x24 − 1, the equation γx2 − 2ix34 + x3x
5
4 = 0 has a unique solution.

If the point scheme of a quadratic algebra with four generators and six defining

relations is finite, then it consists of twenty points counted with multiplicity (cf. [34]).

Therefore, (b) and (c) are proved.

Corollary 3.2.1.2. Let A = A(γ) and V = A1.

(a) The points in P(V ∗) × P(V ∗) on which the defining relations of A vanish are of

the form (e1, e2), (e2, e1), (e3, e4), (e4, e3) and

(
(1, α2, α3, α4), (1, iα2α

−2
3 , α−13 ,−iα4)

)
,

where (1, α2, α3, α4) ∈ Zγ and i2 = −1.

(b) For all γ ∈ k×, there exists an automorphism σ : p(γ) → p(γ) which, on closed

points, is defined by: e1 ↔ e2, e3 ↔ e4, and

σ(1, α2, α3, α4) = (1, iα2α
−2
3 , α−13 ,−iα4),

for all (1, α2, α3, α4) ∈ Zγ. Hence, on the closed points of p(γ), σ has two orbits

of length two and n orbits of length four, where n = 4 if |Zγ| = 16 and n = 2 if

|Zγ| = 8.
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Proof. Part (a) is easily reached by computation. The existence of the map in (b)

follows from (a) and [22, Theorem 4.1.3]. The size of the orbits may be verified by

computation.

3.2.2 The Line Scheme of A(γ)

For this section, we assume that char(k) = 0.

In [30], a method was given for computing the line scheme of any quadratic

algebra on four generators that is a domain and has Hilbert series the same as that of

the polynomial ring on four variables. In this subsection, we summarize that method

while applying it to A(γ); further details may be found in [30].

The first step in the process is to compute the Koszul dual of A(γ). Let

{z1, z2, z3, z4} be the basis of V ∗ dual to {x1, x2, x3, x4}. The Koszul dual of A(γ) is

the k-algebra A(γ)! on generators z1, z2, z3, z4 with defining relations:

z1z2 = 0, z2z1 = 0,

z3z4 = 0, z4z3 = 0,

iz4z1 = −z1z4, iz3z2 = −z2z3,

z3z1 = −z1z3, z4z2 = −z2z4,

z21 + z23 = −γz2z4, z22 + z24 = −z1z3.

One then rewrites these relations in the form of a matrix equation similar to

that used in Section 3.2.1; in this case, however, it yields the equation M̂z = 0, where

zT = (z1, . . . , z4) and M̂ is a 10× 4 matrix whose entries are linear forms in the zi.

One then produces a 10 × 8 matrix from M̂ by concatenating two 10 × 4 ma-

trices, the first of which is obtained from M̂ by replacing every zi in M̂ by ui ∈ k,

and the second is obtained from M̂ by replacing every zi in M̂ by vi ∈ k, where
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(u1, . . . , u4), (v1, . . . , v4) ∈ P3. For A(γ), this process yields the following 10 × 8

matrix:

M(γ) =



0 u1 0 0 0 v1 0 0

u2 0 0 0 v2 0 0 0

0 0 0 u3 0 0 0 v3

0 0 u4 0 0 0 v4 0

u3 0 u1 0 v3 0 v1 0

0 u4 0 u2 0 v4 0 v2

−u4 0 0 iu1 −v4 0 0 iv1

0 −u3 iu2 0 0 −v3 iv2 0

u1 0 u3 γu2 v1 0 v3 γv2

0 u2 u1 u4 0 v2 v1 v4



.

Each of the forty-five 8× 8 minors of M(γ) is a bihomogeneous polynomial of

bidegree (4, 4) in the ui and vi, and so each such minor is a linear combination of

products of polynomials of the form Nij = uivj − ujvi, where 1 ≤ i < j ≤ 4. Hence,

M(γ) yields forty-five quartic polynomials in the six variables Nij. Following [30],

one then applies the map:

N12 7→M34, N13 7→ −M24, N14 7→M23,

N23 7→M14, N24 7→ −M13, N34 7→M12,

to the polynomials, which yields forty-five quartic polynomials in the Plücker coordi-

nates Mij on P5.

The line scheme L(γ) of A(γ) may be realized in P5 as the scheme of zeros of

these forty-five polynomials in the Mij together with the Plücker polynomial P =

M12M34 − M13M24 + M14M23. For A(γ), these polynomials were found by using

Wolfram’s Mathematica and are listed in Appendix 5.1.2.

In the remainder of this section, we compute and describe L(γ) as a subscheme

of P5. The lines in P(V ∗) that correspond to the points of L(γ) are described in

Section 3.3.
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3.2.3 Computing the Closed Points of the Line Scheme of A(γ)

Our procedure in this subsection focuses on finding the closed points of the line

scheme L(γ) of A(γ); in the next subsection, we will prove that L(γ) is reduced and

so is given by its closed points. We denote the variety of closed points of L(γ) by

L′(γ).

Subtracting the polynomials 5.1.2.19 and 5.1.2.20 produces M14M23M
2
24. If

M14 = M23 = M24 = 0, then M12 = 0 = M34, so there is a unique solution in this

case. This leaves six cases to consider:

(I) M14M23 6= 0, M24 = 0, (IV) M23 6= 0, M14 = 0 = M24,

(II) M23M24 6= 0, M14 = 0, (V) M14 6= 0, M23 = 0 = M24,

(III) M14M24 6= 0, M23 = 0, (VI) M24 6= 0, M14 = 0 = M23.

We will outline the analysis for (I), (II), (IV) and (VI); the other cases follow

from these four cases by using the map ψ1 defined in Section 3.1. In applying the

map ψ1, the reader should recall that Mji = −Mij for all i 6= j.

Case (I): M14M23 6= 0 and M24 = 0.

With the assumption that M24 = 0, a computation of a Gröbner basis yields several

polynomials, one of which is M2
13M14M23. Hence, M13 = 0, and another computation

of a Gröbner basis yields several polynomials, two of which are:

M14M23 +M12M34,

M4
34 −M2

14M
2
34 −M2

23M
2
34 + γM14M23M

2
34 +M2

14M
2
23,

so that, in particular, M12M34 6= 0. Using the first polynomial to substitute for

M14M23, and using the assumption that M34 6= 0, we find that the second polynomial

vanishes if and only if M2
12 + M2

34 + γM14M23 −M2
14 −M2

23 = 0. Another computa-
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tion of a Gröbner basis yields only these polynomials, so that this case provides the

component

L1 = V( M13, M24,M14M23 +M12M34, M
2
12 +M2

34 + γM14M23 −M2
14 −M2

23 ).

In Theorem 3.2.3.1, we will prove that L1 is irreducible if and only if γ2 6= 16. Here

we show that if γ2 = 16, then L1 is the union of two nonsingular conics. Since

A(4) ∼= A(−4), it suffices to consider γ = 4. In fact, let α ∈ k and let

Q = M2
12 +M2

34 + γM14M23 −M2
14 −M2

23 + 2α(M14M23 +M12M34),

and associate to Q the symmetric matrix
1 0 0 α

0 −1 α + γ
2

0

0 α + γ
2
−1 0

α 0 0 1

 ,

which has rank at most two if and only if Q factors. This happens if and only if

(γ, α) = (±4,∓1). It follows that if γ = 4, then

Q = (M12 −M34 +M14 −M23)(M12 −M34 −M14 +M23),

and L1 = L1a ∪ L1b, where

L1a = V( M13, M24, M14M23 +M12M34, M12 +M14 −M23 −M34 ),

L1b = V( M13, M24, M14M23 +M12M34, M12 −M14 +M23 −M34 ),

and each of L1a and L1b is a nonsingular conic, since using the last polynomial in

each case to substitute for M12 in M14M23 +M12M34 yields a rank-3 quadratic form

in each case. Moreover, L1b is ψ1 applied to L1a.

Case (II): M23M24 6= 0 and M14 = 0.

With the assumption that M14 = 0, a computation of a Gröbner basis yields several
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polynomials, two of which are M13M23M
2
24 and M23M24M

2
34. Hence, M13 = M34 = 0.

With these additional criteria, another computation of a Gröbner basis yields exactly

three polynomials: M12f , M23f , M24f , where f = M3
12 −M12M

2
23 − iM23M

2
24. Thus,

f = 0. It follows that this case yields the irreducible component

L2 = V( M13,M14, M34, M
3
12 −M12M

2
23 − iM23M

2
24 )

of L′(γ).

Case (III): M14M24 6= 0 and M23 = 0.

This case is computed by applying ψ1 to case (II), giving

L3 = V( M12, M13, M23,M
3
34 −M2

14M34 + iM14M
2
24 ).

Case (IV): M23 6= 0 and M14 = 0 = M24.

If, additionally, M12 6= 0, then M13 = 0 and Mi4 = 0 for all i = 1, 2, 3. It follows

that M2
12 = M2

23, and so these assumptions yield a subvariety of L2. Hence, we may

assume that M12 = 0. It follows that this case yields the irreducible component

L4 = V( M12, M14, M24, M
2
23M34 + iγM2

13M23 −M3
34 )

of L′(γ), so L4 is ψ2 applied to L2.

Case (V): M14 6= 0 and M23 = 0 = M24.

This case is computed by applying ψ1 to case (IV), giving the irreducible component

L5 = V( M23, M24, M34, M12M
2
14 − iγM2

13M14 −M3
12 )

of L′(γ), which is also ψ2 applied to L3.

Case (VI): M24 6= 0 and M14 = 0 = M23.

Using M14 = 0 = M23, a computation of a Gröbner basis yields several polynomials,
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one of which is M12M34−M13M24 whereas the others are multiples of M2
12 +M2

34. In

particular, two of those polynomials are: M12M24(M
2
12 +M2

34) and M2
34(M

2
12 +M2

34).

It follows that M2
12 +M2

34 = 0, so that this case yields the component L6 = L6a ∪L6b

of L′(γ), where

L6a = V( M14, M23, M12M34 −M13M24, M12 + iM34 ),

L6b = V( M14, M23, M12M34 −M13M24, M12 − iM34 ),

and each of L6a and L6b is a nonsingular conic, since using M12 ± iM34 to substitute

for M12 in M12M34−M13M24 yields a rank-3 quadratic form in each case. Moreover,

L6b is ψ1 applied to L6a.

Having completed this analysis, we can see that the point

V( M12, M14, M23, M24, M34 ),

that was found earlier, is contained in L4 ∩ L5 ∩ L6. We summarize the above work

in the next result.

Theorem 3.2.3.1. Let L′(γ) denote the reduced variety of the line scheme L(γ) of

A(γ). If γ2 6= 16, then L′(γ) is the union, in P5, of the following seven irreducible

components:

(I) L1 = V( M13, M24, M14M23 +M12M34, M
2
12 +M2

34 + γM14M23−M2
14−M2

23 ),

which is a nonplanar elliptic curve in a P3.

(II) L2 = V( M13, M14, M34, M
3
12−M12M

2
23− iM23M

2
24 ), which is a planar elliptic

curve.

(III) L3 = V( M12, M13, M23, M
3
34−M2

14M34 + iM14M
2
24 ), which is a planar elliptic

curve.

(IV) L4 = V( M12, M14, M24, M
2
23M34 + iγM2

13M23 − M3
34 ), which is a planar

elliptic curve.

40



(V) L5 = V( M23, M24, M34, M12M
2
14−iγM2

13M14−M3
12 ), which is a planar elliptic

curve.

(VIa) L6a = V( M14, M23, M12M34 −M13M24, M12 + iM34 ), which is a nonsingular

conic.

(VIb) L6b = V( M14, M23, M12M34 −M13M24, M12 − iM34 ), which is a nonsingular

conic.

If γ = 4, then L′(γ) is the union, in P5, of eight irreducible components, six of which

are L2, L3, L4, L5, L6a, L6b (as above) and two of which are

L1a = V( M13, M24, M14M23 +M12M34, M12 +M14 −M23 −M34 ),

L1b = V( M13, M24, M14M23 +M12M34, M12 −M14 +M23 −M34 ),

which are nonsingular conics.

Proof. The polynomials were found in the preceding work, as was the geometric

description for L1a, L1b, L6a and L6b, so here we discuss only the geometric description

of the other components.

(I) Write q1 = M14M23 +M12M34 and q2 = M2
12 +M2

34 + γM14M23−M2
14−M2

23

viewed in k[M12,M14,M23,M34]. Since

q2 = M2
12 − (γ/2)M12M34 +M2

34 −
(
M2

14 − (γ/2)M14M23 +M2
23

)
modulo q1, and since char(k) 6= 2, we may take the Jacobian matrix of this system of

two polynomials to be the 2× 4 matrix[
M34 M23 M14 M12

2M12 − (γ/2)M34 −(2M14 − (γ/2)M23) −(2M23 − (γ/2)M14) 2M34 − (γ/2)M12

]
.

Assuming that all the 2 × 2 minors are zero, we find that M2
34 = M2

12 (from

columns one and four) and M2
23 = M2

14 (from columns two and three). Substituting

these relations into the minor obtained from the last two columns yields that either
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(γ ± 4)M12M14 = 0 or γM12M14 = 0, so M12M14 = 0 (since γ(γ2 − 16) 6= 0).

Substitution into q1 implies that there is no solution, and so the Jacobian matrix has

rank two at all points of V(q1, q2). It follows that V(q1, q2), viewed as a subvariety of

P3 = V(M13,M24), is reduced, and so L1 is reduced. Following the method of the proof

of [32, Proposition 2.5], if V(q1, q2) is not irreducible, then there exists a point in the

intersection of two of its irreducible components, and so the Jacobian matrix has rank

at most one at that point, which is a contradiction. Hence, V(q1, q2) is irreducible,

and thus nonsingular since it is reduced. Moreover, its genus is 4− 2− 2 + 1 = 1. It

follows that V(q1, q2) is an elliptic curve, and the same is true of L1.

(II) Viewing h = M3
12−M12M

2
23−iM23M

2
24 as a polynomial in k[M12, M23, M24],

the Jacobian matrix of h is a 1 × 3 matrix that has rank one at all points of V(h)

(since char(k) 6= 2), so V(h) is nonsingular in P2 = V(M13, M14, M34).

(III), (IV), (V) These cases follow from (II) by applying ψ1 or ψ2 as appropriate.

3.2.4 Description of the Line Scheme of A(γ)

In this subsection, we prove that the line scheme L(γ) of A(γ) is reduced and

so is given by L′(γ) described in Theorem 3.2.3.1.

Lemma 3.2.4.1. For all γ ∈ k×, the irreducible components of L(γ) have dimension

one; in particular, L(γ) has no embedded points.

Proof. By [5], A(γ) is a regular noetherian domain that is Auslander-regular and

satisfies the Cohen Macaulay property and has Hilbert series the same as that of the

polynomial ring on four variables. Hence, by [29, Remark 2.10], we may apply [29,

Corollary 2.6] to A(γ), which gives us that the irreducible components of L(γ) have

dimension at least one. However, by Theorem 3.2.3.1, they have dimension at most
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one, so equality follows. Let X1 denote the 11-dimensional subscheme of P(V ⊗ V )

consisting of the elements of rank at most two, and, for all γ ∈ k×, let X2 denote

the 5-dimensional linear subscheme of P(V ⊗ V ) given by the span of the defining

relations of A(γ). By [29, Lemma 2.5], L(γ) ∼= X1 ∩ X2 for all γ ∈ k×. Since Xi

is a Cohen Macaulay scheme for i = 1, 2, and since dim(X1 ∩X2) = 1, the proof of

[29, Theorem 4.3] (together with Macaulay’s Unmixedness Theorem) rules out the

possibility of embedded components.

Theorem 3.2.4.2. For all γ ∈ k×, the line scheme L(γ) is a reduced scheme of degree

twenty.

Proof. Let X1 and X2 be as in the proof of Lemma 3.2.4.1, and let X = X1 ∩ X2.

Since deg(X1) = 20 by [15, Example 19.10], Bézout’s Theorem for Cohen Macaulay

schemes ([11, Theorem III-78]) implies that deg(X) = 20. However, since L(γ) ∼= X

by [29, Lemma 2.5], the reduced scheme X ′ of X is isomorphic to L′(γ). Since the

degrees of the irreducible components of L′(γ) in Theorem 3.2.3.1 are as small as

possible, deg(X ′) ≥ 4 + 12 + 4 = 20; that is, 20 = deg(X) ≥ deg(X ′) ≥ 20, giving

deg(X) = deg(X ′). As X has no embedded points by Lemma 3.2.4.1, it follows that

X = X ′, so X is a reduced scheme. Thus, L(γ) is reduced and has degree twenty

since deg(L′(γ)) = 20.

We now offer two alternative proofs for the statement that L(γ) is reduced. The

first proof follows the same general format as the one above. The distinction is that

in the above proof, the computation of the degree of X ′ uses the degree of curves in

L′(γ). The new proof computes curves in X ′ directly and makes use of their degrees.

Proof. Let X, X1 and X2 be as in the proofs of Lemma 3.2.4.1 and Theorem 3.2.4.2.

Since deg(X1) = 20 by [15, Example 19.10], Bézout’s Theorem for Cohen Macaulay
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schemes ([11, Theorem III-78]) implies that deg(X) = 20. The polynomials that

define X, called the Van den Bergh polynomials, are given in Appendix 5.1.4. For

more information on the construction of these polynomials, the reader is referred to

[29, 30].

We now compute X ′, the variety of closed points of X. Computing a Gröbner

basis for the polynomials in Appendix 5.1.4 yields several polynomials, one of which

is y2y5y6. We make use of a symmetric argument to that in Section 3.2.3. If γ2 6= 16,

then this computation yields the following irreducible components:

• X1 = V( y1, y2, y
2
3 + γy3y6 − y25, y24 − y4y5 − y26 ), which is a nonplanar elliptic

curve in a P3,

• X2 = V( y1, y5, y3 + γy6, y
2
2y4− iγy24y6 + iy36 ), which is a planar elliptic curve,

• X3 = V( y1, y4, y6, y
2
2y3 + iy23y5 − iy35 ), which is a planar elliptic curve,

• X4 = V( y2, y6, y4 + y5, y
2
1y3 − iy23y5 + iy35 ), which is a planar elliptic curve,

• X5 = V( y1, y2, y5, y
2
1y4 + iγy24y6 + iγy36), which is a planar elliptic curve,

• X6a = V( y5, y6, y
2
2 + iy3y4, y2 − y1), which is a nonsingular conic,

• X6b = V( y5, y6, y
2
2 + iy3y4, y2 + y1), which is a nonsingular conic.

If γ = 4, then X ′ is determined by X2,X3,X4,X5,X6a,X6b, and two nonsingular

conics:

X1a = V( y1, y2, y3 − 2y4 − y5 + 2y6, y
2
4 − y4y5 − y26 ), and

X1b = V( y1, y2, y3 + 2y4 + y5 + 2y6, y
2
4 − y4y5 − y26 ).

Verification that these components are elliptic curves and conics is done following the

method in Section 3.2.3.

Having found these components, we see that, for all γ ∈ k×, deg(X ′) = 4 +

12 + 4 = 20. Therefore, 20 = deg(X) ≥ deg(X ′) = 20 which implies that X = X ′
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and the scheme is reduced, since X has no embedded points by Lemma 3.2.4.1. Since

L(γ) ∼= X, L(γ) is also reduced.

We now give a second alternative proof to Theorem 3.2.4.2. This method makes

use of the coordinate ring of L(γ) and computing the dimension of the local rings

associated to L(γ). For this proof, we assume that char(k) 6= 2.

Proof. Suppose char(k) 6= 2. Consider the coordinate ring of L(γ) defined as R =

k[M12, ...,M34]/I, where I is the ideal generated by the polynomials in Appendix

5.1.2. Let f = M12 + M13 + iM14 + iM23 + M24. Since the intersection of L(γ) with

V(f) consists of finitely many points, we may use f to compute the degree of L(γ);

note that none of the intersection points are intersection points of the components of

L(γ). The points of intersection of L(γ) and V(f) are given by the following:

(a) V( M12, M13, M23, M34 − 1, M14 − iM24, M
3
24 −M2

24 − 1 ),

(b) V( M13, M24, M23−1, M12+iM14+i, i(M14+1)M34−M14, 2M4
14+(6−γ)M3

14+

(9− 2γ)M2
14 + (6− γ)M14 + 2 ),

(c) V( M13, M14, M34, M23 − 1, M12 +M24 + i, M3
24 + 4iM2

24 − 4M24 − 2i ),

(d) V( M14, M23, M13− 1, M12 +M24 + 1, (M24 + 1)M34 +M24, (M24 + 1)4 +M2
24 ),

(e) V( M12, M14, M24, M13 − 1, M23 − i, M3
34 +M34 + γ ), and

(f) V( M23, M24, M34, M13 − 1, M12 + 1 + iM14, 2M
3
14 − 4iM2

14 + (γ − 3)M14 + i ).

The method of computation for these points of intersection is the same as

the method in the proof of Theorem 3.2.3.1 and Theorem 3.2.1; however, in this

computation, we did not make use of Gröbner bases; this allows us to assume only

that char(k) 6= 2 for this proof, instead of char(k) = 0 as before. For a generic k,

there will be exactly twenty intersection points. The reader should note that cases
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(a) and (b) were also described explicitly in [8]. We will use the same method of

computation for all cases.

Let J denote the ideal of k[M12, ...,M34] that is generated by the polynomials

in Appendix 5.1.2 and f . Also, let mij (respectively, J) represent the image of Mij

(respectively, J) in the localized ring in each case.

(a) In this case, it is straightforward to see that M14,M24,M34 are each nonzero.

Setting M34 = 1 in J yields several polynomials, some of which are:

−m14(−m13m14 +m2
13m23 + im13m14m23 + im13m

2
23 +m13m23m24 + im14m23m24),

m14(−im13m14 + im2
13m23 −m13m14m23 −m13m

2
23 + im13m23m24 +m14m23m24),

m23m24 −m2
14m23m24 −m13m14m

2
24 + γim13m14m23,

−im13m14m24 +m2
14m24 + im23m24 +m14m23m24 − im14m

2
24 + γm13m14m23.

Since m14 is nonzero in this case, we can invert it and obtain that the following

polynomials belong to J :

−m13m14 +m2
13m23 + im13m14m23 + im13m

2
23 +m13m23m24 + im14m23m24,

−im13m14 + im2
13m23 −m13m14m23 −m13m

2
23 + im13m23m24 +m14m23m24.

The polynomial 2im14m23m24 is a linear combination of these polynomials. Since

char(k) 6= 2 and m14 and m24 are nonzero, we can invert them and obtain that

m23 ∈ J . Now, using the third polynomial above, we see that m13 ∈ J . Finally,

the fourth polynomial then implies thatm14−im24 ∈ J . This allows the remaining

generators of J to be written as multiples of the generator m3
24 −m2

24 − 1.

Therefore, the localized ring associated to these intersection points is isomorphic

to a polynomial ring in one variable x with exactly one relation: x3− x2− 1 = 0;

thus, the ring has dimension three.
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(b) In this case, we can see that M14,M23,M34 are nonzero. Setting M13 = 1 in the

ideal yields several polynomials, some of which are:

m14(−m13 + im2
13 −m13m14 + im13m24 +m14m24 − im13m14m34),

−m14(im13 +m2
13 + im13m14 +m13m24 + im14m24 −m13m14m34),

m14(m14m24 − im13m14m24 +m2
14m24 − im14m

2
24 + im24m34 + γm13m14).

As before, since m14 is nonzero, we can invert it. So, the first and second polyno-

mials tell us that m24 ∈ J and this implies, together with the third polynomial,

that m13 ∈ J . This now allows all the remaining generators of J to be written as

multiples of the generator

2m4
14 + (6− γ)m3

14 + (9− 2γ)m2
14 + (6− γ)m14 + 2.

Therefore, the localized ring associated to these intersection points is isomorphic

to a polynomial ring in one variable with exactly one relation of degree four (as

char(k) 6= 2), and so has dimension four.

(c) In this case, M12,M23,M24 are nonzero. Setting M23 = 1 yields several polyno-

mials, some of which are:

(i+m13 + im14 +m24)(m13 − im2
13 +m13m14 − im13m24 +m14m24 + im13m14m34),

(i+m13 + im14 +m24)(−m13 + im2
13 −m13m14 + im13m24 +m14m24 − im13m14m34),

−m14m24 + im13m14m24 −m2
14m24 + im14m

2
24 − im24m34 − γm13m14,

m14 −m13m24 − im34 −m13m34 − im14m34 −m24m34.

Note that the image of M12 in J is −m13− im14− i−m24. Since the image of M12

is nonzero in J , we can invert it. So, using the first and second polynomials, and

the fact that m24 is nonzero in J , we obtain that m14 ∈ J . This, combined with

the third polynomial, implies that m34 ∈ J and this, together with the fourth

polynomial, implies that m13 ∈ J . This now allows all the remaining generators

of J to be written as a multiple of the generator

−2 + 4im24 + 4m2
24 − im3

24.
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Therefore, the local ring associated to these intersection points is isomorphic to

a polynomial ring in one variable with exactly one relation of degree three, and

so has dimension three.

(d) In this case, M12,M13,M24,M34 are nonzero and M24 6= −1. Setting M13 = 1

yields several polynomials, some of which are:

m24(m23 + im14m23 + im2
23 +m23m24 − im14m23m24 +m14m34),

−m34(−im23 +m14m23 +m2
23 − im23m24 −m14m23m24 + im14m34),

m14m
2
23 +m23m24 + im14m23m24m34 −m14m

2
34.

We can invert m24 and −m34 in the first and second polynomials and take a linear

combination of the resulting polynomials to obtain 2im14m34 ∈ J and we again

invert m34 to obtain that m14 ∈ J . This, together with the third polynomial,

implies that m23 ∈ J . This allows the remaining generators to be written as

multiples of the generator

1 + 4m24 + 7m2
24 + 4m3

24 +m4
24.

Therefore, the local ring associated to these intersection points is isomorphic to

a polynomial ring in one variable with exactly one relation of degree four, and so

has dimension four.

(e) In this case, M13,M23,M34 are nonzero. Taking M13 = 1 yields several polyno-

mials, some of which are:

−2m14m23m24,

−m2
14m23m24 −m14m

2
24 +m23m24m

2
34 + γim14m23m34,

m34(−im14m24 +m2
14m24 +m14m23m24 − im14m

2
24 + im23m24m34 + γm14m23),

im23 −m14m23 −m2
23 + im23m24 +m14m23m24 − im14m34.

We may invert m23 in the first polynomial to obtain that m14m24 ∈ J . This

fact, together with linear combinations of the next two polynomials, and the

fact that m23 and m34 are invertible, implies that m14,m24 ∈ J . Finally, the
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last polynomial now tells us that m23 − i ∈ J . It follows that the remaining

generators of J can be written as multiples of the generator −m34 − m3
34 − γ.

Therefore, the local ring associated to these intersection points is isomorphic to

a polynomial ring in one variable with exactly one relation of degree three, and

so has dimension three.

(f) In this case, M12,M13,M14 are nonzero. Taking M13 = 1 yields several polyno-

mials, some of which are:

−2m14m23m24,

m12(m14m24 + im2
14m24 + im14m23m24 +m14m

2
24 −m23m24m34 − γim14m23),

m12(−m14m24 − im2
14m24 − im14m23m24 −m14m

2
24 +m23m24m34 − γim14m23),

m23 + 2im14m23 − 2m2
14m23 + 2im2

23 − 2m14m
2
23 −m3

23 −m14m24 + 2m23m24+

+im14m23m24 +m2
14m23m24 + 2im2

23m24 +m14m
2
23m24 +m23m

2
24 − im14m23m

2
24,

im23 −m14m23 −m2
23 + im23m24 +m14m23m24 − im14m34.

Since m14 is nonzero, we can invert it, and so the first polynomial tells us that

m23m24 ∈ J . We may also invert m12; so this, together with m14 being nonzero

and using the second and third polynomials, tells us that m23 ∈ J . All this,

together with the fourth polynomial, implies that m24 ∈ J and finally the fifth

polynomial then implies that m34 ∈ J . These facts allow us to write the remaining

generators as multiples of the generator −1 − 3im14 + 4m2
14 + 2im3

14 + iγm14.

Therefore, the local ring associated to these intersection points is isomorphic to

a polynomial ring in one variable with exactly one relation of degree three, and

so has dimension three.

So, from the work above, we see that the degree of L(γ) is 3+4+3+4+3+3=20.

From our work in Section 3.2.3, we know that L′(γ) has degree twenty. Therefore,

L(γ) = L′(γ) (as L(γ) has no embedded points by Lemma 3.2.4.1).
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3.3 The Lines in P3 Parametrized by the Line Scheme of A(γ)

In this section, we describe the lines in P(V ∗) that are parametrized by the

line scheme L(γ) of A(γ). We also describe, in Theorem 3.3.3.1, the lines that pass

through any given point of the point scheme; in particular, if p is one of the generic

points of the point scheme (that is, p ∈ Zγ), then there are exactly six distinct lines

of the line scheme that pass through p. Since we will use results from Section 3.2.3,

we resume the assumption that char(k) = 0.

3.3.1 The Lines in P3

In this subsection, we find the lines in P(V ∗) that are parametrized by the line

scheme. We first recall how the Plücker coordinates M12, . . . ,M34 relate to lines in P3;

details may be found in [9, §8.6]. Any line ` in P3 is uniquely determined by any two

distinct points a = (a1, . . . , a4) ∈ ` and b = (b1, . . . , b4) ∈ `, and may be represented

by a 2× 4 matrix [
a1 a2 a3 a4

b1 b2 b3 b4

]

that has rank two; in particular, the points on ` are represented in homogeneous

coordinates by linear combinations of the rows of this matrix. In general, there are

infinitely many such matrices that may be associated to any line ` in P3, and they

are all related to each other by applying row operations.

The Plücker coordinate Mij is evaluated on this matrix as the minor aibj − ajbi

for all i 6= j, and the Plücker polynomial P = M12M34 −M13M24 +M14M23 vanishes

on this matrix.

Since dim(V ) = 4, we identify P(V ∗) with P3. By Theorem 3.2.4.2, L(γ) is given

by Theorem 3.2.3.1. We continue to use the notation ej introduced in Section 3.2.1.
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(I) In this case, γ2 6= 16 and the component is L1, which is a nonplanar elliptic curve

in a P3 (contained in P5), where

L1 = V( M13, M24, M14M23 +M12M34, M
2
12 +M2

34 + γM14M23 −M2
14 −M2

23 ).

It follows that any line ` in P(V ∗) given by L1 is represented by a 2× 4 matrix of the

form:

(∗)

[
a1 0 a3 0

0 b2 0 b4

]
,

where aj, bj ∈ k for all j and a21b
2
2+a23b

2
4−γa1b2a3b4−a21b24−b22a23 = 0. In particular, if

p ∈ `, then p = (λ1a1, λ2b2, λ1a3, λ2b4), for some (λ1, λ2) ∈ P1, such that a21b
2
2 +a23b

2
4−

γa1b2a3b4 − a21b24 − b22a23 = 0. It is easily verified that p lies on the quartic surface

V( x21x
2
2 + x23x

2
4 − γx1x2x3x4 − x21x24 − x22x23 )

in P(V ∗) for all (λ1, λ2) ∈ P1. Hence, the lines parametrized by L1 all lie on this

quartic surface in P(V ∗) and are given by:

V( x3, x2 ± x4 ), V( x4, x1 ± x3 ), and V( x1 − αx3, x2 − βx4 )

for all α, β ∈ k such that (α2 − 1)(β2 − 1) = γαβ. The case γ = 4 is discussed below

in cases (Ia) and (Ib).

(II) In this case, the component is L2, which is a planar elliptic curve, where

L2 = V( M13, M14, M34, M
3
12 −M12M

2
23 − iM23M

2
24 ),

so any line in P(V ∗) given by L2 is represented by a 2× 4 matrix of the form:[
a1 0 a3 a4

0 1 0 0

]
,
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such that a31 − a1a23 + ia3a
2
4 = 0. It follows that L2 parametrizes those lines in P(V ∗)

that pass through e2 and meet the planar curve V(x2, x
3
1 − x1x23 + ix3x

2
4); this planar

curve is a (nonsingular) elliptic curve since char(k) = 0.

(III) In this case, the component is L3, which may be obtained as ψ1 applied to

L2. Hence, L3 parametrizes those lines in P(V ∗) that pass through e4 and meet the

planar elliptic curve V(x4, x
3
3 − x21x3 + ix1x

2
2).

(IV) In this case, the component is L4, which may be obtained as ψ2 applied to

L2. Hence, L4 parametrizes those lines in P(V ∗) that pass through e3 and meet the

planar elliptic curve V(x3, x
3
4 − x22x4 + iγx21x2).

(V) In this case, the component is L5, which may be obtained as ψ1 applied to L4.

Hence, L5 parametrizes those lines in P(V ∗) that pass through e1 and meet the planar

elliptic curve V(x1, x
3
2 − x2x24 + iγx23x4).

(VI) In this case, the component is L6 = L6a ∪ L6b, where

L6a = V( M14, M23, M12M34 −M13M24, M12 + iM34 ),

L6b = V( M14, M23, M12M34 −M13M24, M12 − iM34 ),

which are nonsingular conics. Following the argument from case (I), any line in P(V ∗)

given by L6a is represented by a 2× 4 matrix of the form:[
a1 a2 a3 a4

αa1 βa2 βa3 αa4

]
,

such that α, β, aj ∈ k for all j, a1a2 = ia3a4 and α 6= β. A calculation similar to that

used in (I) verifies that every point of the line lies on the quadric V(x1x2− ix3x4). It

follows that L6a parametrizes one of the rulings of the nonsingular quadric V(x1x2 −

ix3x4); namely, the ruling that consists of the lines V(δx1 − εx4, δx3 + iεx2) for all
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(δ, ε) ∈ P1. Since L6b may be obtained by applying ψ1 to L6a, we find L6b parametrizes

one of the rulings of the nonsingular quadric V(x3x4− ix1x2); namely, the ruling that

consists of the lines V(δx3 − εx2, δx1 + iεx4) for all (δ, ε) ∈ P1.

(Ia) and (Ib) In this case, γ = 4 and the component is L1 = L1a ∪ L1b, where

L1a = V( M13, M24, M14M23 +M12M34, M12 +M14 −M23 −M34 ),

L1b = V( M13, M24, M14M23 +M12M34, M12 −M14 +M23 −M34 ),

which are nonsingular conics. Following the argument from case (I), any line in P(V ∗)

given by L1a is represented by a 2× 4 matrix of the form (∗) such that a1b2 + a1b4 +

b2a3 = a3b4. A calculation similar to that used in (I) verifies that every point of the

line lies on the nonsingular quadric

Qa = V( x1x2 + x1x4 + x2x3 − x3x4 )

in P(V ∗). Hence, the lines parametrized by L1a all lie on Qa and are:

V( x3, x2 + x4 ) and V( x1 − αx3, (α + 1)x2 + (α− 1)x4 )

for all α ∈ k, which yields one of the rulings on the quadric Qa. Applying ψ1 to these

lines, it follows that the lines parametrized by L1b are:

V( x1, x2 + x4 ) and V( x3 − αx1, (α− 1)x2 + (α + 1)x4 )

for all α ∈ k, which yields one of the rulings on the nonsingular quadric

Qb = V( x3x4 + x2x3 + x1x4 − x1x2 ).

3.3.2 The Intersection Points of the Line Scheme of A(γ)

The intersections of the irreducible components of L(γ) are straightforward to

compute and are listed in Appendix 5.1.3.
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For i = 1, ..., 6, let Ei ∈ P5 denote the point with the ith coordinate nonzero

and all other coordinates equal zero. If γ ∈ k is generic, then the distinct intersection

points of the components of L(γ) are E2, E3, E4, E5, E1 ± E4, E3 ± E6, E4 ± E6,

E1 ± E3.

Since A(γ) is a graded skew Clifford algebra, A(γ) contains a normalizing se-

quence of four linearly independent homogeneous degree-two elements. One such

normalizing sequence is {x22, x21, x3x4 + x4x3, x1x2 + x2x1}. We conjecture that the

intersection points of the components of L(γ) correspond to right ideals of A(γ) that

have a “large intersection” with the normalizing sequence. We explore this idea below.

Denote A = A(γ). Using Section 3.3.1, we obtain the following correspondences

between the intersection points of L(γ) and right ideals of A:

(i) E2! x2A+ x4A,

(ii) E3! x2A+ x3A,

(iii) E4! x1A+ x4A,

(iv) E5! x1A+ x3A,

(v) E1 ± E4! x4A+ (x1 ∓ x3)A,

(vi) E3 ± E6! x2A+ (x1 ± x3)A,

(vii) E4 ± E6! x1A+ (x2 ∓ x4)A,

(viii) E1 ± E3! x3A+ (x2 ± x4)A.

Below we express each of the degree-two subspaces of the ideals above as a span

of basis elements of A(γ). This is easily verified computationally.

(x2A+ x4A)2 = kx4x3 ⊕ kx2x4 ⊕ kx2x3 ⊕ kx22 ⊕ kx2x1 ⊕ kx1x4 ⊕ kx21,

(x2A+ x3A)2 = kx3x4 ⊕ kx2x4 ⊕ kx2x3 ⊕ kx22 ⊕ kx2x1 ⊕ kx1x3 ⊕ kx21,

(x1A+ x4A)2 = kx4x3 ⊕ kx2x4 ⊕ kx22 ⊕ kx1x4 ⊕ kx1x3 ⊕ kx1x2 ⊕ kx21,

(x1A+ x3A)2 = kx3x4 ⊕ kx2x3 ⊕ kx22 ⊕ kx1x4 ⊕ kx1x3 ⊕ kx1x2 ⊕ kx21,

(x4A+ (x1 ± x3)A)2 = kx1x4 ⊕ kx4x2 ⊕ kx4x3 ⊕ kx22 ⊕ k(x21 ± x1x3)

⊕ k(x1x2 ± ix2x3)⊕ kx3x4,
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(x2A+ (x1 ± x3)A)2 = kx2x1 ⊕ kx22 ⊕ kx2x3 ⊕ kx2x4 ⊕ kx1x2

⊕ k(x1x3 ± x23)⊕ k(x1x4 ± x3x4),

(x1A+ (x2 ± x4)A)2 = kx21 ⊕ kx1x2 ⊕ kx1x3 ⊕ kx1x4 ⊕ kx2x1

⊕ k(x22 ± x2x4)⊕ k(x2x3 ± x4x3),

(x3A+ (x2 ± x4)A)2 = kx3x1 ⊕ kx2x3 ⊕ kx21 ⊕ kx3x4 ⊕ k(x2x1 ± x4x1)

⊕ k(x22 ± x2x4)⊕ kx4x3.

One can easily see that the intersection of any of these ideals with the nor-

malizing sequence above is of cardinality 2. Furthermore, when checking the ideals

corresponding to other points of the line scheme that are not intersection points, the

intersection is either of cardinality 0 or 1.

3.3.3 The Lines of L(γ) that Contain Points of p(γ)

In this subsection, we compute how many lines in P(V ∗) that are parametrized

by L(γ) contain a given point of p(γ). By [29, Remark 3.2], if the number of lines is

finite, then it is six, counting multiplicity; hence, the generic case is considered to be

six distinct lines. The reader should note that a result similar to Theorem 3.3.3.1 is

given in [13, Theorem IV.2.5] for the algebra A(1), but that result is false as stated

(perhaps as a consequence of the sign errors in the third relation of (3) on Page 797

of [28]).

Theorem 3.3.3.1. Suppose γ ∈ k×, and let Zγ be as in Theorem 3.2.1.1.

(a) For any j ∈ {1, . . . , 4}, ej lies on infinitely many lines that are parametrized by

L(γ).

(b) Each point of Zγ lies on exactly six distinct lines of those parametrized by L(γ).
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Proof. Since (a) follows from (II)-(V) in Section 3.3.1, we focus on (b). Let p =

(1, α2, α3, α4) ∈ Zγ. It follows that αj 6= 0 for all j. Suppose that γ2 6= 16.

Let α = 1/α3 and β = α2/α4, so (α2 − 1)(β2 − 1) = γαβ, by 5.1.1.15 in

Appendix 5.1.1. Hence, p ∈ V(x1 − αx3, x2 − βx4), which is a line that corresponds

to an element of L1. Clearly, no other line given by L1 contains p.

Let r2 = (1, 0, α3, α4) and let `2 denote the line through e2 and r2. By 5.1.1.9,

we have 1−α2
3+iα3α

2
4 = 0, so r2 ∈ V(x2, x

3
1−x1x23+ix3x

2
4). Thus, `2 corresponds to an

element of L2, and p ∈ `2. Conversely, let r′2 = (b1, 0, b3, b4) ∈ V(x2, x
3
1−x1x23+ix3x24).

If p lies on the line through r′2 and e2, then there exists (λ1, λ2) ∈ P1 such that

p = (λ1b1, λ2, λ1b3, λ1b4). Thus, λ1b1 6= 0 and αi = bi/b1 for i = 3, 4. Hence,

r′2 = (b1, 0, b1α3, b1α4) = (1, 0, α3, α4) = r2. It follows that no other line given by L2

contains p.

Let r4 = (1, α2, α3, 0) and let `4 denote the line through e4 and r4. By 5.1.1.2,

we have α3
3 − α3 + iα2

2 = 0, so r4 ∈ V(x4, x
3
3 − x21x3 + ix1x

2
2). Thus, `4 corresponds

to an element of L3, and p ∈ `4. An argument similar to that of L2 proves that no

other line given by L3 contains p.

Let r3 = (1, α2, 0, α4) and let `3 denote the line through e3 and r3. By 5.1.1.5,

we have α3
4−α2

2α4 + iγα2 = 0, so r3 ∈ V(x3, x
3
4−x22x4 + iγx21x2). Thus, `3 corresponds

to an element of L4, and p ∈ `3. An argument similar to that of L2 proves that no

other line given by L4 contains p.

Let r1 = (0, α2, α3, α4) and let `4 denote the line through e1 and r1. By 5.1.1.8,

we have α3
2−α2α

2
4+iγα

2
3α4 = 0, so r1 ∈ V(x1, x

3
2−x2x24+iγx23x4). Thus, `4 corresponds

to an element of L5, and p ∈ `4. An argument similar to that of L2 proves that no

other line given by L5 contains p.

By 5.1.1.1, we have α2 = ±iα3α4, so either p ∈ V(x1x2−ix3x4) or p ∈ V(ix1x2−

x3x4) (but not both, since α3α4 6= 0). In the first case, p ∈ V(α4x1 − x4, α4x3 + ix2)
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and, in the second, p ∈ V(α4x1 − x4, iα4x3 + x2). These lines correspond to elements

of L6a and L6b respectively. Since each quadric has only two rulings, and since each

irreducible component of L6 parametrizes only one of the rulings in each case, no

other line given by L6 contains p.

If, instead, γ = 4, the only adjustment to the above reasoning is in the case of

the lines parametrized by L1. Since γ = 4, the polynomial 5.1.1.15 factors, so

(†) (α2 + α4 + α2α3 − α3α4)(α2 − α4 − α2α3 − α3α4) = 0,

that is, (
(1 + α3)α2 + (1− α3)α4

)(
(1− α3)α2 − (1 + α3)α4

)
= 0,

which provides exactly two lines (of those parametrized by L1) that could contain p.

These lines are

V( x1 − (1/α3)x3, ((1/α3) + 1)x2 + (1/α3)− 1)x4 )

and

V( x3 − α3x1, (α3 − 1)x2 + (α3 + 1)x4 ),

which correspond to elements of L1a and L1b respectively. If the first factor of (†) is

zero, then p belongs to the first line, whereas if the second factor of (†) is zero, then

p belongs to the second line. If both factors of (†) are zero, then α2 = α3α4, which

forces α3α4 = 0, by 5.1.1.1, and this contradicts p ∈ Zγ. It follows that p belongs to

exactly one line of those parametrized by L1.

For all γ ∈ k×, it is a straightforward calculation to show that the six lines

found above are distinct.
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Considering Theorems 3.2.3.1, 3.2.4.2 and 3.3.3.1 in the case where γ2 6= 16, we

arrive at the following conjecture.

Conjecture 3.3.3.2. The line scheme of the most generic quadratic quantum P3 is

isomorphic to the union of two spatial elliptic curves and four planar elliptic curves.

(Here, spatial elliptic curve means a nonplanar elliptic curve that is contained in a

subscheme of P5 that is isomorphic to P3.)

58



Chapter 4

Different Flavors of sl(2,k)

In this chapter we examine the quantum spaces of several quadratic quantum

P3s that can be traced back, in some fashion, to the Lie algebra sl(2, k). The first

algebra discussed is sl(2,k) itself; we will summarize some known results on its quan-

tum space. The quantum spaces of the remaining algebras will then be discussed in

the same fashion. We assume that char(k) = 0 in this chapter.

4.1 The Lie Algebra sl(2,k)

Let sl(2,k) be as defined in Section 2.5.1. In order to associate any geometry

to sl(2,k), we first pass to its universal enveloping algebra, U(sl(2,k)), defined as

U(sl(2,k)) =
k〈e, f, h〉

〈 he− eh− 2e, hf − fh+ 2f, ef − fe− h 〉
.

Note that the Casimir element in U(sl(2,k)) is Ω′ = h2 − 2h+ 4ef .

However, we are unable to associate Artin, Tate and Van den Bergh’s geometry

to U(sl(2, k)) directly since it is not graded. Therefore, we consider a graded k-algebra

obtained from U(sl(2, k)) by homogenizing using a central variable.

4.1.1 The Quadratic Quantum P3 Associated to U(sl(2,k))

Definition 4.1.1.1. The Quadratic Quantum P3 Associated to U(sl(2,k))

The quadratic quantum P3 associated to U(sl(2,k)) is the k-algebra

H(sl(2,k)) =
k〈e, f, h, t〉

〈he− eh− 2et, hf − fh+ 2ft, ef − fe− ht, te− et, tf − ft, th− ht〉
.
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Theorem 4.1.1.2. The k-algebra H(sl(2,k)) is AS-regular; in fact, H(sl(2,k)) is an

iterated Ore extension of k[e, t].

Proof. Define C = k[e, t] and linear maps σ1 : k〈e, t〉 → k〈e, t〉 and δ1 : k〈e, t〉 →

k〈e, t〉 by

σ1(e) = e, σ1(t) = t, δ1(e) = 2et, δ1(t) = 0.

We must show that σ1 and δ1 descend to an automorphism of C and a left σ1-

derivation of C, respectively. Since C is a polynomial ring, σ1 naturally descends to

an automorphism of C. We see that δ1 descends to a left σ1-derivation of C since

δ1(et− te) = σ1(e)δ1(t) + δ1(e)t− σ1(t)δ1(e)− δ1(t)e = 2et2 − 2tet;

it follows that δ1(〈et−te〉) ⊂ 〈et−te〉. Therefore, B = C[h;σ1, δ1] is an Ore extension

of C and

B =
k〈e, h, t〉

〈 he− eh− 2et, et− te, ht− th 〉
.

Now, define linear maps σ2 : k〈e, h, t〉 → k〈e, h, t〉 and δ2 : k〈e, h, t〉 → k〈e, h, t〉 by

σ2(e) = e, σ2(h) = h+ 2t, σ2(t) = t,

δ2(e) = −ht, δ2(h) = 0, δ2(t) = 0.

We see that σ2 and δ2 descend to an automorphism on B and a left σ2-derivation of

B, respectively, since:

σ2(et− te) = et− te,

σ2(he− eh− 2et) = (h+ 2t)e− e(h+ 2t)− 2et = he− eh− 4et+ 2te,

σ2(ht− th) = (h+ 2t)t− t(h+ 2t) = ht− th,

δ2(et− te) = σ2(e)δ2(t) + δ2(e)t− σ2(t)δ2(e)− δ2(t)e = −ht2 + tht,
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δ2(ht− th) = σ2(h)δ2(t) + δ2(h)t− σ2(t)δ2(h)− δ2(t)h = 0,

δ2(he− eh− 2et) = σ2(h)δ2(e) + δ2(h)e− σ2(e)δ2(h)− δ2(e)h− 2σ2(e)δ2(t)− 2δ2(e)t

= −h2t− 2tht+ hth+ 2ht2;

it follows that σ2(〈he− eh− 2et, et− te, ht− th〉) ⊂ 〈he− eh− 2et, et− te, ht− th〉

and δ2(〈he − eh − 2et, et − te, ht − th〉) ⊂ 〈he − eh − 2et, et − te, ht − th〉. Hence,

A = B[f ;σ2, δ2] = H(sl(2,k)) is an Ore extension of B. By [25], A is Auslander

regular and Cohen Macaulay; by definition of Cohen Macaulay [23, Definition 5.8], A

has polynomial growth and is, hence, AS-regular by [23].

Corollary 4.1.1.3. The k-algebra H(sl(2,k)) is a quadratic quantum P3.

Proof. Since A = H(sl(2, k)) is an iterated Ore extension of k[e, t], A is Auslander

regular by [25]. By [23, Theorem 4.8], A is a domain and, thus, t is a normal regular

element of A. If follows that A is a normal regular extension of k[e, f, h], in the

language of [22], and so is AS-regular of global dimension four (cf. [22, Theorem 2.6,

Corollary 2.7] and the paragraph after [22, Definition 3.1.1]). Hence, H(sl(2, k)) is a

quadratic quantum P3.

4.1.2 The Quantum Space of H(sl(2, k))

In this section we discuss both the point scheme and the line scheme ofH(sl(2,k)).

We will then examine some properties of U(sl(2,k)) that can realized through the

quantum space of H(sl(2,k)). For ease of notation, we will define x1 = e, x2 = f ,

x3 = h, x4 = t.
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4.1.2.1 The Point Scheme of H(sl(2,k))

Theorem 4.1.2.1. [21] The point scheme of H(sl(2, k)) is

p = V(x4) ∪ V(x1, x2, x3) ∪ V(x4, 4x1x2 + x23).

Figure 4.1: The Point Scheme of H(sl(2,k))

We state the following result as a corollary to the work in [21].

Corollary 4.1.2.2. Let A = H(sl(2,k)) and V = A1.

(a) The closed points in P(V ∗)×P(V ∗) on which the defining relations of H(sl(2,k))

vanish are of the form (p, p), where p ∈ p.

(b) There exists an automorphism σ : p → p which, on the closed points, is defined

by σ(p) = p.

Proof. Part (a) is easily computed by computation. The existence of the map in (b)

follows from (a) and [22].

The conic V(t, h2 + 4ef) ⊂ p corresponds to a distinguished central element of

H(sl(2, k)); namely, Ω = h2 − 2ht+ 4ef = h2 + 2(ef + fe). The points on the conic
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are of the form p(α1, α2) = (4α2
1,−α2

2, 4α1α2, 0) for α1, α2 ∈ k. We associate Ω to

points of this form since

Ω( p(α1, α2) , σ(p(α1, α2)) ) = 0.

It is easily computed that Ω is central in H(sl(2,k)) and that the image of Ω in

U(sl(2,k)) ∼= H(sl(2,k))/〈t− 1〉 is the Casimir element, Ω′ = h2− 2h+ 4ef , which is

the generator of the center of U(sl(2,k)).

4.1.2.2 The Line Scheme of H(sl(2,k))

Theorem 4.1.2.3. [30] The line scheme, L, of H(sl(2,k)) consists of two components:

(I) L1 = V(M14,M24,M34) counted with multiplicity 4, and

(II) L2, counted with multiplicity one, which is given by the zero locus of the fol-

lowing polynomials:

M2
12 −M13M23, 2M13M24 −M12M34, 2M12M24 −M23M34,

M12M34 + 2M14M23, M13M34 + 2M12M14, M2
34 + 4M14M24.

The following corollary describes the lines in P3 that are parametrized by the

line scheme. That is, it describes the lines in P3 that correspond to line modules of

H(sl(2,k)). It should be noted that the corollary below was originally proved in [21]

by using Borel subalgebras. However, it may also be proved using a technique similar

to that in Section 3.3.1.

Corollary 4.1.2.4. [21] The lines in P3 that are parametrized by the line scheme of

H(sl(2,k)) are the lines in the pencil of quadrics Q(δ) = V(x23 + 4x1x2 − δ2x24), for

all δ ∈ P1.
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4.2 The Lie Superalgebra sl(1|1)

Consider the Lie superalgebra gl(1|1) as in Example 2.5.2.4. The supertrace of

a matrix

M =

[
a b

c d

]
is str(M) = a − d. Define sl(1|1) = {M ∈ gl(1|1) : str(M) = 0}. Every element of

sl(1|1) is of the form [
a b

c a

]
,

for all a, b, c ∈ k; hence, sl(1|1) is a three-dimensional k-vector space with basis

elements

e =

[
0 1

0 0

]
, f =

[
0 0

1 0

]
, h =

[
1 0

0 1

]
.

The vector space sl(1|1) becomes a Lie superalgebra under the supercommutator

bracket induced by gl(1|1). Using the basis {e, f, h}, the Lie superbracket on sl(1|1)

is defined by

[e, f ] = h, [h, e] = 0 = [h, f ], [e, e] = [f, f ] = [h, h] = 0.

The universal enveloping algebra of sl(1|1) is

U(sl(1|1)) =
k〈e, f, h〉

〈 ef + fe− h, he− eh, hf − fh, e2, f 2 〉
.

Motivated by Le Bruyn and Smith’s work in [21], and in order to obtain a graded

algebra that maps onto U(sl(1|1)) that has the potential to be a quadratic quantum

P3, we construct the algebra given in the following section.
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4.2.1 The Quadratic Quantum P3 Associated to U(sl(1|1))

Definition 4.2.1.1. The Quadratic Quantum P3 Associated to U(sl(1|1))

The quadratic quantum P3 associated to U(sl(1|1)) is the algebra

H(sl(1|1)) =
k〈e, f, h, t〉

〈 ef + fe− ht, he− eh, hf − fh, et− te, ft− tf, ht− th 〉
.

Note that U(sl(1|1)) ∼= H(sl(1|1))/〈t− 1, e2, f 2〉.

Theorem 4.2.1.2. The k-algebra H(sl(1|1)) is AS-regular; in fact, H(sl(1|1)) is an Ore

extension of k[e, h, t].

Proof. Define B = k[e, h, t] and linear maps σ : k〈e, h, t〉 → k〈e, h, t〉 and δ :

k〈e, h, t〉 → k〈e, h, t〉 by

σ(e) = −e, σ(h) = h, σ(t) = t, δ(e) = ht, δ(h) = 0, δ(t) = 0.

Since B is a polynomial ring, σ naturally descends to an automorphism on B. We

see that δ descends to a left σ-derivation of B since

δ(eh− he) = σ(e)δ(h) + δ(e)h− σ(h)δ(e)− δ(h)e = hth− h2t,

δ(et− te) = σ(e)δ(t) + δ(e)t− σ(t)δ(e)− δ(t)e = ht2 − tht,

δ(ht− th) = 0,

and so δ(〈et− te, eh−he, ht− th〉) ⊂ 〈et− te, eh−he, ht− th〉. Hence, A := B[f ;σ, δ]

is an Ore extension where

A ∼=
k〈e, f, h, t〉

〈 ef + fe− ht, he− eh, hf − fh, et− te, ft− tf, ht− th 〉
= H(sl(1|1)).

Thus, by [25], A is Auslander regular and Cohen Macaulay; by definition of Cohen

Macaulay [23, Definition 5.8], A has polynomial growth and is, hence, AS-regular by

[23].
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Corollary 4.2.1.3. The k-algebra H(sl(1|1)) is a quadratic quantum P3.

Proof. Since A = H(sl(1|1)) is an Ore extension of k[e, h, t], A is Auslander regular

by [25]. By [23, Theorem 4.8], A is a domain and, thus, t is a central regular element

of A. It follows that A is a central regular extension of k[e, f, h], in the language of

[22], and so is AS-regular of global dimension four (cf. [22, Theorem 2.6, Corollary

2.7] and the paragraph after [22, Definition 3.1.1]). Hence, H(sl(1|1)) is a quadratic

quantum P3.

4.2.2 The Quantum Space of H(sl(1|1))

We will now examine the point scheme and line scheme of H(sl(1|1)). The

process used to determine these is the same as that outlined in Section 3.2. Define

x1 = e, x2 = f , x3 = h, x4 = t.

4.2.2.1 The Point Scheme H(sl(1|1))

Theorem 4.2.2.1. The point scheme of H(sl(1|1)) is

p = V(x3, x4) ∪ V(x3x4 − 2x1x2),

that is, the union of a nonsingular quadric and a line in P3.

Proof. The polynomials that define p are listed in Appendix 5.2.1. The zero locus

of these polynomials is easily computed to be V(x3, x4) ∪ V(x3x4 − 2x1x2) using the

logic in the proof of Theorem 3.2.1.1. It remains to show that the point scheme is

given by its closed points.

The Jacobian matrix of the point scheme is J(x1, x2, x3, x4), which is given in

Appendix 5.2.2. If p is a multiple point contained in a d-dimensional, irreducible

component of p, then the (3 − d) × (3 − d) minors of J(p) vanish [15]. An easy
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computation shows that the only points where such minors vanish are the points

e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0) in V(x3x4 − 2x1x2).

By [9], the multiplicity of the point p ∈ p is the vector-space dimension of

Op,p. Thus, by Bertini’s Theorem, we may intersect the scheme with a generic,

complementary-dimensional linear scheme that intersects p at p and then compute

the dimension of the local ring at p to determine the multiplicity.

The coordinate ring of p is k[x1, x2, x3, x4]/I, where I is the ideal generated by

the polynomials in Appendix 5.2.1. Consider the projective line

L = V(x2 − x3, x4).

The coordinate ring of p ∩ L is k[x1, x2, x3, x4]/〈x4, x2− x3, x1x33, x21x23〉 which is iso-

morphic to k[x1, x2]/〈x1x32, x21x22〉. The points of intersection are e1 and (0, 1, 1, 0). In

order to determine the multiplicity of e1, we localize around e1 and obtain k[x2]/〈x22〉,

which is two-dimensional. Therefore, e1 has multiplicity two, which implies that e1

is a multiple point only as a consequence of it being an intersection point of two

irreducible components. Also, because of the symmetry of x1 and x2 in H(sl(1|1)),

we can conclude that the same applies to e2. Hence, p is as proposed.

Corollary 4.2.2.2. Let A = H(sl(1|1)) and V = A1.

(a) The points in P(V ∗)×P(V ∗) on which the defining relations of H(sl(1|1)) vanish

are of the form (p, p), if p ∈ V(x3x4 − 2x1x2), and are of the form

((α1, α2, 0, 0), (α1,−α2, 0, 0)),

if (α1, α2, 0, 0) ∈ V(x3, x4).

(b) There exists an automorphism σ : p → p which, on the closed points, is defined

by σ(p) = σ(p1, p2, p3, p4) =


(p1, p2, p3, p4), p ∈ V(x3x4 − 2x1x2)

(p1,−p2, 0, 0), p ∈ V(x3, x4)

.
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Figure 4.2: The Point Scheme of H(sl(1|1))

Proof. Part (a) is easily computed by computation. The existence of the map in (b)

follows from (a) and [22].

4.2.2.2 The Line Scheme of H(sl(1|1))

In this section we compute the closed points of the lines scheme of H(sl(1|1)),

called the line variety, using the same process as in Section 3.2.2. In Section 4.2.3, we

show that H(sl(1|1)) is isomorphic to a twist of an algebra in the family discussed in

[30, §3.1]; thus, the line scheme of H(sl(1|1)) is a reduced scheme by the work in [30].

Theorem 4.2.2.3. The line variety, L, of H(sl(1|1)) has dimension three and is given

by the irreducible components:

(I) L1 = V( M34, M13M24 −M14M23 ),

(II) L2 = V( M14, M23, M
2
34 + 2M13M24, 2M12 +M34 ),

(III) L3 = V( M13, M24, M
2
34 + 2M14M23, 2M12 −M34 ).
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Proof. The polynomials that define L are given in Appendix 5.2.3. A Gröbner basis

for these polynomials is given in Appendix 5.2.4. Polynomial 5.2.4.10 tells us that in

order for these polynomials to vanish, either M34 = 0 or 2M13M24+2M14M23+M2
34 =

0. We will use the polynomials in Appendix 5.2.4 to analyze L.

If we assume that M34 = 0, computing a Gröbner basis yields that the polyno-

mials that define the line scheme vanish only if M13M24 −M14M23 = 0. So this case

yields the irreducible component L1.

If M34 6= 0, then we may assume M34 = 1, which implies that 2M13M24 +

2M14M23 + 1 = 0. Computing a Gröbner basis with degree reverse-lexicographical

ordering yields the polynomials:

M23M24, M14M24, M23(2M14M23 + 1), M14(2M14M23 + 1),

2M13M24 + 2M14M23 + 1, M13M23, M13M14, 2M12 + 4M14M23 + 1.

To examine the zero locus of these polynomials further, we consider two sub-

cases: M14 = 0 and M14 6= 0.

If M14 = 0, then M23 = 1 + 2M13M24 = 1 + 2M12 = 0. Since this was

computed using a Gröbner basis with degree reverse-lexicographical ordering, we

may rehomogenize these polynomials with respect to M34 to obtain the irreducible

component L2 [9].

If M14 6= 0, then M13 = M24 = 1 + 2M14M23 = 2M12 − 1 = 0. We then

rehomogenize with respect to M34 to obtain the irreducible component L3.

Therefore, the line variety is as proposed.

The following corollary describes the lines in P3 that are parametrized by the

line variety of H(sl(1|1)). That is, it describes the lines in P3 that correspond to line

modules of H(sl(1|1)).
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Corollary 4.2.2.4. The lines in P3 that are parametrized by the line variety ofH(sl(1|1))

are:

(i) those that intersect the line V(x3, x4) from the point scheme, and

(ii) those that belong to the rulings of the quadric V(2x1x2 − x3x4) from the point

scheme.

Proof. Let (a1, a2, a3, a4), (b1, b2, b3, b4) ∈ P3 be distinct points and let

` =

[
a1 a2 a3 a4

b1 b2 b3 b4

]
represent the projective line between them.

(i) If ` is given by L1, then M34 = 0 when evaluated on ` which implies that we

may assume, for some α ∈ k, that

` =

[
a1 a2 a3 a4

b1 b2 αa3 αa4

]
, or

[
a1 a2 a3 αa3

b1 b2 b3 αb3

]
.

Applying row operations, we find that we may assume that

` =

[
c1 c2 c3 c4

c1 c2 0 0

]
,

where c1, .., c6 ∈ k. From this representation of `, we can see that ` intersects

V(x3, x4) if and only if ` is given by L1.

(ii) If ` is given by L2, then M14 = M23 = 0; an argument similar to that of (i)

allows us to assume that

` =

[
a1 0 0 a4

0 a2 a3 0

]
,

for some (a1, a4), (a2, a3) ∈ P1. By requiring further that M2
34 + 2M13M24 =

2M12 +M34 = 0 when evaluated on `, we see that 2a1a2−a3a4 = 0. So, ` passes

through (a1, 0, 0, a4) and (0, a2, a3, 0), both of which lie on the quadric V(2x1x2−
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x3x4); in fact, for any point p = (a1, δa2, δa3, a4) belonging to `, where δ ∈ P1,

we see that p ∈ V(2x1x2 − x3x4). Thus, ` belongs to one of the rulings of the

quadric V(2x1x2 − x3x4). In particular, ` ∈ {V(µx1 − x4, 2x2 − µx3) : µ ∈ P1}.

By a symmetric argument, ` is given by L3 if and only if ` belongs to the other

ruling of V(2x1x2 − x3x4), namely, {V(µx1 − x3, 2x2 − µx4) : µ ∈ P1}.

4.2.3 Twisting Oq(M2) to H(sl(1|1))

When computing the quantum space of H(sl(1|1)), it was noticed that the

quantum space was isomorphic to that of Oq(M2), the coordinate ring of quantum

2 × 2 matrices (see Definition 4.2.3.1). Since the quantum space is invariant (up

to isomorphism) under twisting by an automorphism, this led to a conjecture that

H(sl(1|1)) is a twist by an automorphism of Oq(M2), for some q ∈ k×.

Definition 4.2.3.1. The Coordinate Ring of Quantum 2× 2 Matrices [12]

The coordinate ring of quantum 2× 2 matrices is

Oq(M2) =
k〈a, b, c, d〉

〈ab− qba, cd− qdc, ac− qca, bd− qdb, bc− cb, ad− da− (q − q−1)bc〉
,

where q ∈ k×, q2 6= 1.

Lemma 4.2.3.2. [33]

(i) The point scheme of Oq(M2) is V(ad− bc) ∪ V(b, c).

(ii) The line scheme of Oq(M2) parametrizes all the lines in P3 that belong to V(ad−

bc) and those lines that intersect V(b, c).

Theorem 4.2.3.3. The algebra H(sl(1|1)) is isomorphic to a twist by an automorphism

(cf. Definition 2.1.4.3) of the algebra Oi(M2), where i2 = −1.
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Proof. Let A = Oi(M2) and τ : A→ A be the automorphism defined by

τ(a) = ia, τ(b) = b, τ(c) = c, τ(d) = −id.

Also, let Aτ be the algebra obtained by twisting A by τ , with multiplication, ?, defined

by x ? y = xτ(y), for all x, y ∈ Aτ1, where x, y are the elements of Aτ1 corresponding

to x and y in A1. It follows that:

a ? b− b ? a = ab− iba = 0,

a ? c− c ? a = ac− iac = 0,

b ? c− c ? b = bc− cb = 0,

b ? d− d ? b = −ibd− db = −i(bd− idb) = 0,

c ? d− d ? c = −icd− dc = −i(cd− idc) = 0,

a ? d+ d ? a− 2b ? c = −iad+ ida− 2bc = −i(ad− da− 2ibc) = 0.

Therefore,

Aτ ∼=
k〈a, b, c, d〉

〈 ab− ba, ac− ca, bc− cb, bd− db, cd− dc, ad+ da− 2bc 〉
.

This algebra is isomorphic to H(sl(1|1)) under the isomorphism ϕ : Aτ →

H(sl(1|1)) defined by

ϕ(a) = e, ϕ(b) =
h√
2
, ϕ(c) =

t√
2
, ϕ(d) = f.

This result leads to the identification of a distinguished supercommuting ele-

ment of H(sl(1|1)) (and therefore of U(sl(1|1))). The element ad − ibc ∈ Oi(M2),

called the quantum determinant, is central in Oi(M2); its image in H(sl(1|1)) is
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i
(
ef − ht

2

)
, which, by Corollary 4.2.2.2(a), corresponds to the quadric V(2ef −ht) in

the point scheme of H(sl(1|1)). We consider 2ef − ht = 2
(
ef − ht

2

)
∈ H(sl(1|1)).

Like in sl(1|1), we consider e and f to be odd elements of H(sl(1|1)) and h to

be an even element; we also take t to be an even element of H(sl(1|1)). Thus,

e(2ef − ht) = 2e(ht− fe)− eht = eht− 2efe = hte− 2efe = −(2ef − ht)e,

f(2ef − ht) = 2(ht− ef)f − fht = htf − 2ef 2 = −(2ef − ht)f,

h(2ef − ht) = (2ef − ht)h,

t(2ef − ht) = (2ef − ht)t.

So, the quantum space is indeed identifying a distinguished super-commuting

element of H(sl(1|1)). Note that the image of this element in U(sl(1|1)) is 2ef − h =

ef − fe; this element also super-commutes within U(sl(1|1)).

It is as if the element 2ef−h ∈ U(sl(1|1)) is playing the role of a Casimir element

of a Lie superalgebra, but the Casimir element of U(sl(1|1)) is not well-defined since

the Killing Form on sl(1|1) is degenerate. Hence, the geometry we associated to

H(sl(1|1)) was able identify a “generalized Casimir” element of U(sl(1|1)).

4.3 The Color Lie Algebra slk(2,k)

Let {e, f, h} be the standard basis of sl(2,k) and define

a1 =
i

2
(e− f), a2 = −1

2
(e+ f), a3 =

i

2
h,

so that the bracket on sl(2,k) is defined by

[a1, a2] = −a3, [a2, a3] = a1, [a1, a3] = −a2.

Let G = Z2 × Z2 and define a G-grading on sl(2,k) by sl(2,k) =
⊕

g∈GXg,

where

X0 = {0}, X(1,0) = ka1, X(0,1) = ka2, X(1,1) = ka3.
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Define a bicharacter map ε : G×G→ k× by ε ((α1, α2), (β1, β2)) = (−1)α1β2−α2β1 .

The color Lie algebra slk(2,k), called Klein sl(2,k), is the ε-Lie algebra with

bracket

[a1, a2] = a3, [a3, a1] = a2, [a2, a3] = a1.

For more details on the construction of slk(2,k) from sl(2,k), the reader is referred

to [6].

The universal enveloping algebra of slk(2,k) is

U(slk(2,k)) =
k〈a1, a2, a3〉

〈 a1a2 + a2a1 − a3, a2a3 + a3a2 − a1, a3a1 + a1a3 − a2 〉
.

4.3.1 The Quadratic Quantum P3 Associated to U(slk(2, k))

Following the example of [21], we homogenize U(slk(2, k)) using a central vari-

able.

Definition 4.3.1.1. The Quadratic Quantum P3 Associated to U(slk(2,k))

The quadratic quantum P3 associated to U(slk(2,k)) is the k-algebra H(slk(2,k)) on

generators a1, a2, a3, a4 with defining relations

a1a2 + a2a1 = a3a4, a2a3 + a3a2 = a1a4, a3a1 + a1a3 = a2a4,

a1a4 = a4a1, a2a4 = a4a2, a3a4 = a4a3.

Unlike H(sl(2,k)) and H(sl(1|1)), H(slk(2,k)) does not appear to be an Ore

extension of a polynomial ring. Instead, we make use of a result of Le Bruyn, Smith

and Van den Bergh in order to prove regularity.

Theorem 4.3.1.2. The algebra H(slk(2, k)) is a quadratic quantum P3.
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Proof. A computation using Bergman’s Diamond Lemma shows that a basis for

U(slk(2, k)) is B = {ai11 ai22 ai33 : i1, i2, i3 = 0, 1, 2, ...}. Let D = H(slk(2,k)). Note

that A = D/〈a4〉 is a skew-polynomial ring on three variables and therefore is an

AS-regular algebra. We will prove that D is a central regular extension of A in the

sense of [22].

Suppose a4f = 0 inD for some f ∈ D. We may assume f = g1+g2+· · ·+gm ∈ D

is homogeneous, where each of the gi are scalar multiples of monomials with the

generators of D in increasing order. Let f̄ denote the image of f in D/〈a4 − 1〉.

Since a4f = 0 in D, we have f̄ = 0 in D/〈a4 − 1〉 ∼= U(slk(2,k)). Since the gi are

written with the generators in increasing order, f̄ = 0 must belong to the defining

relations of U(slk(2,k)) and implies that an element of the form aj11 a
j2
2 a

j3
3 , for some

j1, j2, j3 = 0, 1, 2..., is missing from B, which is a contradiction. Therefore such an f

cannot exist and so a4 is regular in D.

It follows that D is a central regular extension of A and by [22] is therefore an

AS-regular algebra of global dimension four (cf. [22, Theorem 2.6, Corollary 2.7] and

the paragraph after [22, Definition 3.1.1]). Moreover, A is a skew-polynomial ring, so

it is Auslander regular. Hence, by [23, Section 5.10], D is also Auslander regular and

satisfies the Cohen Macaulay property.

Let S3 be the symmetric group on {1, 2, 3} and define ρ = (1 2 3) ∈ S3. The

map ϕ : H(slk(2,k))→ H(slk(2,k)) defined by

ϕ(aj) = aρ(j), ϕ(a4) = a4,

for j = 1, 2, 3 is an automorphism of H(slk(2,k)). We will make use of both ϕ and

ϕ−1 in our analysis of the quantum space of H(slk(2, k)).
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4.3.2 The Quantum Space of H(slk(2,k))

To the compute the quantum space of H(slk(2,k)), we follow the same process

as for H(sl(1|1)).

4.3.2.1 The Point Scheme of H(slk(2,k))

Theorem 4.3.2.1. The point scheme, p, of H(slk(2,k)) is the union of three lines and

five points:

(i) p1 = V(a1, a4),

(ii) p2 = V(a2, a4),

(iii) p3 = V(a3, a4),

(iv) p4 = V(a1, a2, a3),

(v) p5 = V(a2 + a1, a3 + a1, a4 − 2a1),

(vi) p6 = V(a2 + a1, a3 − a1, a4 + 2a1),

(vii) p7 = V(a2 − a1, a3 − a1, a4 − 2a1),

(viii) p8 = V(a2 − a1, a3 + a1, a4 + 2a1),

where the points e1 ∈ p2 ∩ p3, e2 ∈ p1 ∩ p3, e3 ∈ p1 ∩ p2 are counted with multiplicity

three and all other points are reduced.

Proof. The polynomials that define p are listed in Appendix 5.3.1. A Gröbner basis

for these polynomials is given in Appendix 5.3.2. The zero locus of these polynomials

is easily computed to be
⋃8
i=1 pi using the logic in the proof of Theorem 3.2.1.1. It

remains to determine the multiplicity of the points in p.

The Jacobian matrix of the point scheme is J(a1, a2, a3, a4), which is given is

Appendix 5.3.3. We must examine the zero locus of the 2×2 minors to determine the

multiplicity of points in p1, p2, p3, and the zero locus of the 3× 3 minors to determine

the multiplicity of points in p4, ..., p8 [15]. An easy computation shows that the only

points where the minors vanish are the points e1, e2, and e3. So, e1, e2, e3 are the only

possible multiple points in the scheme.
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The existence of the automorphism ϕ gives a symmetry between a1, a2 and a3

in H(slk(2,k)). So, we need only compute the multiplicity of e1; the symmetry gives

that this will be the multiplicity of e2 and e3.

The coordinate ring of the point scheme is k[a1, a2, a3, a4]/I, where I is the ideal

generated by the polynomials in Appendix 5.3.2. Consider the projective plane

P = V(a2 − a3 − a4).

The coordinate ring of p ∩ P is the commutative algebra on a1, ..., a4 with defining

relations

a54 = 0, 2a3a
3
4 + a44 = 0,

4a23a
2
4 − a44 = 0, 8a33a4 + a44 = 0,

a2 − a3 − a4 = 0, 2a1a
3
4 + a44 = 0,

4a1a3a
2
4 − a44 = 0, 8a1a

2
3a4 + a44 = 0,

16a1a
3
3 − a44 = 0, 4a21a

2
4 − a44 = 0,

8a21a3a4 + a44 = 0, 2a21a
2
3 + a31a4 = 0.

The points of intersection of p and P are e1 and (0, 1, 1, 0). In order to determine

the multiplicity of e1, we localize around e1 and obtain a commutative algebra on

generators a2, a3, a4 with relations

a24 = 0, a3a4 = 0, a4 + 2a23 = 0, a2 − a3 − a4 = 0,

that is isomorphic to a polynomial ring on one variable x, with exactly one relation,

x3, and so has dimension three. Therefore, by Bertini’s Theorem and [9], e1 has

multiplicity three; symmetry tells us that e2 and e3 also have multiplicity three.
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Figure 4.3: The Point Scheme of H(slk(2,k))

Corollary 4.3.2.2. Let A = H(slk(2, k)) and V = A1.

(a) The points in P(V ∗)×P(V ∗) on which the defining relations of H(slk(2,k)) vanish

are of the form (p, p), if p ∈
⋃8
i=4 pi, and are of the form

(
(α1, α2, α3, 0) , ((−1)δj2α1, (−1)δj3α2, (−1)δj1α3, 0)

)
,

if (α1, α2, α3, 0) ∈ pj, for j = 1, 2, 3, where δjk is the Kronecker-delta.

(b) There exists an automorphism σ : p→ p which, on the closed points, is defined by

σ(p) = σ(p1, p2, p3, p4) =


(p1, p2, p3, p4), p ∈ pj , j = 4, ..., 8

((−1)δj2p1, (−1)δj3p2, (−1)δj1p3, 0), p ∈ pj , j = 1, 2, 3

.

Proof. Part (a) is easily computed by computation. The existence of the map in (b)

follows from (a) and [22].
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4.3.2.2 The Line Scheme of H(slk(2,k))

We now discuss the line variety of H(slk(2,k)). That is, we examine the closed

points of the line scheme.

Theorem 4.3.2.3. The line variety, L, of H(slk(2,k)) has dimension two and is given

by the union of the thirteen irreducible components:

(I) L0 = V( M14, M24, M34 ),

(II) L1 = V( M12, M34, M14 −M24, M13 −M23 ),

(III) L2 = V( M12, M34, M14 +M24, M13 +M23 ),

(IV) L3 = V( M34, M14 + 2M23, 2M13 +M24, 2M23 −M24 ),

(V) L4 = V( M34, M14 + 2M23, 2M13 +M24, 2M23 +M24 ),

(VI) L5 = V( M13, M24, M34 −M14, M12 +M23 ),

(VII) L6 = V( M13, M24, M34 +M14, M12 −M23 ),

(VIII) L7 = V( M24, M34 + 2M12, M14 − 2M23, 2M12 −M14 ),

(IX) L8 = V( M24, M34 + 2M12, M14 − 2M23, 2M12 +M14 ),

(X) L9 = V( M14, M23, M24 −M34, M13 −M12 ),

(XI) L10 = V( M14, M23, M24 +M34, M13 +M12 ),

(XII) L11 = V( M14, M24 − 2M13, M34 − 2M12, M34 + 2M13 ),

(XIII) L12 = V( M14, M24 − 2M13, M34 − 2M12, M34 − 2M13 ).

Proof. The polynomials that define L are given in Appendix 5.3.4. A Gröbner ba-

sis for these polynomials is given in Appendix 5.3.5. Using Polynomial 5.3.5.3, we

consider the following seven cases:
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(i) M14 = M24 = M34 = 0,

(ii) M34 = 0, M14M24 6= 0,

(iii) M24 = 0, M24M34 6= 0,

(iv) M14 = 0, M14M34 6= 0,

(v) M14 = M24 = 0, M34 6= 0,

(vi) M14 = M34 = 0, M24 6= 0,

(vii) M24 = M34 = 0, M14 6= 0.

We will analyze L using the polynomials in Appendix 5.3.5.

(i) If M14 = M24 = M34 = 0, then all the polynomials vanish and we obtain the

irreducible component L0.

(ii) If M34 = 0 and M14M24 6= 0, then Polynomial 5.3.5.44 tells us that either

M12 = 0 or M14 + 2M23 = 0.

• If M12 = 0, then computing a Gröbner basis yields the polynomials:

M2
24(M14 −M24)(M14 +M24), M23M24(M14 −M24)(M14 +M24),

M2
23(M14 −M24)(M14 +M24), M14M24(M14 −M24)(M14 +M24),

M14M23(M14−M24)(M14+M24), (M14−M24)(M14+M24)
(
M2

14 +M2
24

)
,

M13M24 −M14M23, M14M23(M13M14 −M23M24),

M13M
3
14 −M23M

3
24, (M13M14 −M23M24)(M13M14 +M23M24).

So, either M14 −M24 = 0 or M14 +M24 = 0. Computing another Gröbner

basis with each of these polynomials yields the irreducible components L1

and L2, respectively.

• If M12 6= 0, then M14 + 2M23 = 0. Since M14 6= 0, we know that M23 6= 0.

Computing a Gröbner basis yields the polynomials

M2
24(2M23 −M24)(2M23 +M24), M23M24(2M23 −M24)(2M23 +M24),

(2M23 −M24)(2M23 +M24)
(
4M2

23 +M2
24

)
, M13M24 + 2M2

23,

M23

(
8M13M

2
23 +M3

24

)
,

(
4M13M23 −M2

24

) (
4M13M23 +M2

24

)
,

80



M12M24(2M23−M24)(2M23+M24), M12M23(2M23−M24)(2M23+M24),

M12

(
8M13M

2
23 +M3

24

)
, M12M23(2M13 −M24)(2M13 +M24),

M2
12(2M23 −M24)(2M23 +M24), M2

12M23(2M13 +M24).

So either 2M23−M24 = 0 or 2M23 +M24 = 0. Computing another Gröbner

basis with each of these polynomials yields the irreducible components L3

and L4, respectively.

(iii) This case can be analyzed using the automorphism ϕ−1. Applying this auto-

morphism to each of the components L1, L2, L3 and L4 yields the components

L5, L6, L7 and L8, respectively.

(iv) This case can be analyzed using the automorphism ϕ. Applying this automor-

phism to each of the components L1, L2, L3 and L4 yields the components L9,

L10, L11 and L12, respectively.

(v) This case yields no solution. If M14 = M24 = 0, then computing a Gröbner basis

yields several polynomials, one of which is M34. But this case assumes M34 6= 0,

and so the variety component is empty.

(vi) This case yields no solution. If M14 = M34 = 0, then computing a Gröbner basis

yields several polynomials, one of which is M24. But this case assumes M24 6= 0,

and so the variety component is empty.

(vii) This case yields no solution. If M24 = M34 = 0, then computing a Gröbner basis

yields several polynomials, one of which is M14. But this case assumes M14 6= 0,

and so the variety component is empty.

Therefore, the line variety is as proposed.

We will again make use of the automorphism ϕ when describing the lines in P3

that correspond to line modules of H(slk(2,k)). We will explicitly compute the lines
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given by L0,...,L4. The remaining lines are obtained in the same manner as L5, ...,L12

in the above proof.

Corollary 4.3.2.4. The lines in P3 that are parametrized by the line variety ofH(slk(2,k))

are:

(i) all lines in V(a4),

(ii) all lines in V(a1 − a2) that pass through (1, 1, 0, 0),

(iii) all lines in V(a1 + a2) that pass through (1,−1, 0, 0),

(iv) all lines in V(a4 − 2a3) that pass through (1,−1, 0, 0),

(v) all lines in V(a4 + 2a3) that pass through (1, 1, 0, 0),

(vi) all lines in V(a1 − a3) that pass through (1, 0, 1, 0),

(vii) all lines in V(a1 + a3) that pass through (1, 0,−1, 0),

(viii) all lines in V(a4 − 2a2) that pass through (1, 0,−1, 0),

(ix) all lines in V(a4 + 2a2) that pass through (1, 0, 1, 0),

(x) all lines in V(a2 − a3) that pass through (0, 1, 1, 0),

(xi) all lines in V(a2 + a3) that pass through (0, 1,−1, 0),

(xii) all lines in V(a4 − 2a1) that pass through (0, 1,−1, 0), and

(xiii) all lines in V(a4 + 2a1) that pass through (0, 1, 1, 0).

Proof. Let (b1, b2, b3, b4), (c1, c2, c3, c4) ∈ P3 be distinct points and let

` =

[
b1 b2 b3 b4

c1 c2 c3 c4

]

represent the projective line through them.

If ` is given by L0, then M14 = M24 = M34 = 0 when evaluated on ` which

implies that we may assume that

` =

[
b1 b2 b3 0

c1 c2 c3 0

]
.
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From this representation of `, we can see that every point of ` belongs to V(a4). So,

` is given by L0 if and only if ` belongs to V(a4).

If ` is given by L1, then M12 = M34 = 0; by an argument similar to the one

above, we may assume that

` =

[
d1 d2 0 0

0 0 d3 d4

]
,

where (d1, d2), (d3, d4) ∈ P1. By requiring further that M14 −M24 = M13 −M23 = 0

when evaluated on `, we see that (d1 − d2)d3 = 0 = (d1 − d2)d4. So, d1 = d2, which

implies that ` passes through (1, 1, 0, 0) and belongs to the plane V(a1 − a2).

If ` is given by L2, then me may assume that

` =

[
d1 d2 0 0

0 0 d3 d4

]
,

as above. By requiring further that M14+M24 = M13+M23 = 0, we see that d2 = −d1.

So ` passes through (1,−1, 0, 0) and belongs to the plane V(a1 + a2).

If ` is given by L3, then M34 = 0 implies that

` =

[
d1 d2 d3 d4

d5 d6 0 0

]
,

where d1, ..., d6 ∈ k. By requiring further that M14 + 2M23 = 2M12 + M24 = 2M23 −

M24 = 0 when evaluated on `, we see that


d4d5 + 2d3d6 = 0

2d3d5 + d4d6 = 0

(d4 − 2d3)d6 = 0.

If d6 = 0, then d3 = d4 = 0. Applying row operations on ` yields that

` =

[
1 0 0 0

0 1 0 0

]
,
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which is the line V(a3, a4). This line is also given by L0.

If d6 6= 0, then d4 = 2d3 and we may take d6 = 1. Thus, d3(d5 + 1) = 0

which implies that d3 = 0 or d5 = −1. If d3 = 0, we again obtain the line V(a3, a4).

Otherwise, using row operations, we may assume that

` =

[
0 d7 d3 2d3

1 −1 0 0

]
,

where d7 ∈ k. Thus, L3 also gives all lines that pass through (1,−1, 0, 0) and belongs

to V(a4 − 2a3).

If ` is given by L4, then

` =

[
d1 d2 d3 d4

d5 d6 0 0

]
,

as above. By requiring further that M14 + 2M23 = 2M12 + M24 = 2M23 + M24 = 0

when evaluated on `, we see that
d4d5 + 2d3d6 = 0

2d3d5 + d4d6 = 0

(d4 + 2d3)d6 = 0.

So, as in the case of L3, the component L4 gives the line V(a3, a4) and lines, `, of the

form

` =

[
0 d7 d3 −2d3

1 1 0 0

]
.

Thus, L4 gives all lines that pass through (1, 1, 0, 0) and belong to V(a4 + 2a3).

To analyze the lines given by the remaining components, one may now use ϕ

and ϕ−1. To obtain the lines given by L5, ...,L8, one may apply ϕ−1 to the lines

described by L1, ..,L4, respectively. To obtain the lines given by L9, ...,L12, one may

apply ϕ to the lines described by L1, ...,L4, respectively.
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We finish this section by remarking that, unlike H(sl(2,k)), H(sl(1|1)) or

Hq(sl(2,k)) (which is discussed in the next section), the quantum space ofH(slk(2, k))

does not contain a distinguished conic or quadric. In the case of the other algebras,

certain conics and quadrics in the point schemes identified distinguished elements of

the algebra, including an analogue of a Casimir element for each underlying Lie-type

algebra. This suggests that slk(2,k) lacks such an element.

4.4 Quantum sl(2,k)

The final algebra we will analyze is a quantum analogue of U(sl(2,k)), denoted

Uq(sl(2, k)); it is a type of algebra known as a quantum group that plays a central

role in mathematical physics.

Definition 4.4.0.1. Quantum sl(2,k) (cf. [31])

Quantum sl(2,k) is the k-algebra

Uq(sl(2,k)) =
k〈E,F,K,K−1〉〈

KE − q2EK, KF − q−2FK, EF − FE − K2−K−2

q2−q−2

〉 ,
where q ∈ k× and q4 6= 1.

It should be noted that this is not the current official version of a quantized

sl(2,k); that version replaces the relation EF − FE − K2−K−2

q2−q−2 = 0 with EF − FE −
K−K−1

q−q−1 = 0 in the defining relations (cf. [19]). We thank S. P. Smith of the University

of Washington for bringing to our attention that if A denotes the graded algebra

defined below in Definition 4.4.1.1 and if Oq denotes the current official version of

quantized sl(2,k) (cf. [19]), then the ring of degree-zero elements in A[(KT )−1] is

isomorphic to Oc, where c2 = q.

In order to recover U(sl(2,k)) from Uq(sl(2, k)), we make the change of variable

K = qH . We then do the following:
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• Note that

lim
q→1

K2 −K−2

q2 − q−2
= lim

q→1

q4H+2 − q2

q2H+4 − q2H
= lim

q→1

(4H + 2)q4H+1 − 2q

(2H + 4)q2H+3 − 2Hq2H−1
= H.

So, in the limit, we obtain the relation EF − FE −H = 0.

• Note that d
dq

(KE−q2EK) = d
dq

(qHE−q2EqH) = HqH−1E−2qEqH−q2EHqH−1.

Taking q = 1 yields the relation HE − EH − 2E = 0. A similar construction

holds for the relation KF − q−2FK = 0 yielding HF − FH + 2F = 0.

4.4.1 The Quadratic Quantum P3 Associated to Uq(sl(2, k))

Definition 4.4.1.1. The Quadratic Quantum P3 Associated to Uq(sl(2,k))

The quadratic quantum P3 associated to Uq(sl(2,k)) is the k-algebra Hq(sl(2, k)) on

generators E,F,H, T , with defining relations

KT = TK, KE = q2EK, KF = q−2FK,

ET = q2TE, FT = q−2TF, EF − FE =
K2 − T 2

q2 − q−2
,

where q ∈ k× and q4 6= 1.

Note that Uq(sl(2,k)) ∼= Hq(sl(2,k))/〈KT − 1〉. The regularity of this algebra

is readily seen as it is an Ore extension of a skew polynomial ring, as shown in the

next result.

Theorem 4.4.1.2. The k-algebra Hq(sl(2,k)) is AS-regular; in fact, Hq(sl(2,k)) is an

Ore extension of the skew polynomial ring

B =
k〈E,K, T 〉

〈 KT − TK, EK − q−2KE, ET − q2TE 〉
.

Proof. Define linear maps σ : k〈E,K, T 〉 → k〈E,K, T 〉 and δ : k〈E,K, T 〉 →

k〈E,K, T 〉 by

σ(E) = E, σ(K) = q2K, σ(T ) = q−2T,
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δ(E) =
T 2 −K2

q2 − q−2
, δ(K) = 0, δ(T ) = 0.

These maps descend to an automorphism of B and a left σ-derivation of B, respec-

tively, since

σ(KT − TK) = KT − TK,

σ(EK − q−2KE) = q2EK −KE,

σ(ET − q2TE) = q−2ET − TE,

δ(KT − TK) = σ(K)δ(T ) + δ(K)T − σ(T )δ(K)− δ(T )K = 0,

δ(EK − q−2KE) = σ(E)δ(K) + δ(E)K − q−2 (σ(K)δ(E) + δ(K)E)

=

(
T 2 −K2

q2 − q−2

)
K −K

(
T 2 −K2

q2 − q−2

)
,

δ(ET − q2TE) = σ(E)δ(T ) + δ(E)T − q2 (σ(T )δ(E) + δ(T )E)

=

(
T 2 −K2

q2 − q−2

)
T − T

(
T 2 −K2

q2 − q−2

)
;

it follows that σ(〈KT − TK,EK − q−2KE,ET − q2TE〉) ⊂ 〈KT − TK,EK −

q−2KE,ET − q2TE〉 and δ(〈KT − TK,EK − q−2KE,ET − q2TE〉) ⊂ 〈KT −

TK,EK − q−2KE,ET − q2TE〉. So, Hq(sl(2,k)) ∼= B[F ;σ, δ] is an Ore extension

of B. By [25], A is Auslander regular and Cohen Macaulay; by definition of Cohen

Macaulay [23, Definition 5.8], A has polynomial growth and is, hence, AS-regular.

Corollary 4.4.1.3. The k-algebra Hq(sl(2, k)) is a quadratic quantum P3.

Proof. Since A = Hq(sl(2,k)) is an Ore extension of B, A is Auslander regular by

[25]. By [23, Theorem 4.8], A is a domain and, thus, T is a normal regular element of

A. It follows that A is a normal regular extension of A/〈T 〉 (in the language of [22]),

which is a skew polynomial ring, and so A is AS-regular of global dimension four
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(cf. [22, Theorem 2.6, Corollary 2.7] and the paragraph after [22, Definition 3.1.1]).

Hence, Hq(sl(2,k)) is a quadratic quantum P3.

We will make use of an automorphism ϕ : Hq(sl(2,k)) → Hq(sl(2,k)) defined

by:

ϕ(E) = F, ϕ(F ) = E, ϕ(K) = T, ϕ(T ) = K.

4.4.2 The Quantum Space of Hq(sl(2,k))

Again, the quantum space of Hq(sl(2,k)) is computed as before. To ease nota-

tion, we define x1 = E, x2 = F , x3 = K, and x4 = T .

4.4.2.1 The Point Scheme of Hq(sl(2,k))

Theorem 4.4.2.1. For every q ∈ k× and q4 6= 1, the point scheme, p(q), of Hq(sl(2, k))

is the union of a line, two conics and two points:

(i) p1 = V(x3, x4),

(ii) p2 = V(x3, q
4x24 + (q4 − 1)2x1x2),

(iii) p3 = V(x4, q
4x23 + (q4 − 1)2x1x2),

(iv) p4 = V(x1, x2, x3 + x4), and

(v) p5 = V(x1, x2, x3 − x4).

Proof. The polynomials that define p(q) are given in Appendix 5.4.1. A Gröbner basis

for these polynomials is given in Appendix 5.4.2. The zero locus of these polynomials

are easily computed to be
⋃5
i=1 pi using the logic in Theorem 3.2.1.1.

The Jacobian matrix, Jq(x1, x2, x3, x4), of p(q) is given in Appendix 5.4.3; be-

cause of the size of the matrix, we present it in terms of its individual columns. We

examine the zero locus of the 2× 2 minors to determine the multiplicity of points in
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p1, p2, p3 and the zero locus of the 3 × 3 minors to determine the multiplicity of the

points in p4 and p5 [15]. The only place where the minors vanish are e1, e2 ∈ p1∩p2∩p3.

If we examine the multiplicity of e1, we may make use of the automorphism ϕ

to deduce that the multiplicity of e2 is equal to that of e1.

The coordinate ring of the point scheme is k[x1, x2, x3, x4]/I, where I is the

ideal generated by the polynomials in Appendix 5.4.2. Consider the projective plane

P = V(x2 − x3 − x4).

The coordinate ring of p(q) ∩ P is k[x1, x2, x3, x4] with defining relations

x23x
2
4 + x3x

3
4 = 0, x33x4 − x3x34 = 0, x2 − x3 − x4 = 0,

x1x3x
2
4 = 0, x1x

2
3x4 = 0, x21x3x4 = 0,

x1x
3
4 − 2q4x1x

3
4 + q8x1x

3
4 + q4x3x

3
4 + q4x44 = 0, x21x

2
4 − 2q4x21x

2
4 + q8x21x

2
4 + q4x1x

3
4 = 0,

x1x
3
3 − 2q4x1x

3
3 + q8x1x

3
3 + q4x43 + q4x3x

3
4 = 0, x21x

2
3 − 2q4x21x

2
3 + q8x21x

2
3 + q4x1x

3
3 = 0.

The points of intersection of p and P are

(
− q4

(q4−1)2 , 1, 0, 1
)
,
(
− q4

(q4−1)2 , 1, 1, 0
)
, ( 0, 0, 1, −1 ), ( 1, 0, 0, 0 );

by inverting x1 + q4

(q4−1)2x3 + q4

(q4−1)2x4, we will determine the multiplicity of e1. This

yields a ring that is isomorphic to a commutative ring on generators x, y with relations

x2 = 0, xy = 0, y2 = 0, which is three-dimensional. Thus, e1 is a multiple point only

as a consequence of it being an intersection point of three components; because of

the automorphism ϕ, we can conclude the same applies to e2.

Therefore, the point scheme is as proposed.
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Figure 4.4: The Point Scheme of Hq(sl(2,k))

Corollary 4.4.2.2. Let A = Hq(sl(2,k)) and V = A1.

(a) The points in P(V ∗)×P(V ∗) on which the defining relations of Hq(sl(2, k)) vanish

are of the form (p, p), if p ∈ p1 ∪ p4 ∪ p5, and are of the form(
(α1, α2, α3, α4) , (α1, q

4(−1)jα2, q
−2α3, q

2α4)
)
,

if (α1, α2, α3, α4) ∈ pj, for j = 2, 3.

(b) There exists an automorphism σ : p → p which, on the closed points, is defined

by σ(p) = σ(p1, p2, p3, p4) =


(p1, p2, p3, p4), p ∈ p1 ∪ p4 ∪ p5

(p1, q
4(−1)jp2, q

−2p3, q
2p4), p ∈ pj, for j = 2, 3

.

Proof. Part (a) is easily computed by computation. The existence of the map in (b)

follows from (a) and [22].

In the case of H(sl(2,k)) and H(sl(1|1)), the embedded conic and the quadric

in their respective point schemes corresponded to a Casimir element of the underlying

Lie-type algebra. The same is true of Hq(sl(2,k)).

The quantum Casimir element of Uq(sl(2,k)) is

Ωq = EF + FE +

(
q4 + 1

q4 − 1

)(
K2 +K−2

q2 − q−2

)
.
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The image of this element in Hq(sl(2,k)) is

Ω′q = x1x2 + x2x1 +

(
q4 + 1

q4 − 1

)(
x23 + x24
q2 − q−2

)
.

Let p ∈ p2 \ V(x1); we may express p in the form

p =
(
(q4 − 1)2α2

1,−q4α2
4, 0, (q

4 − 1)2α1α4

)
and

σ(p) =
(
(q4 − 1)2α2

1,−q8α2
4, 0, q

2(q4 − 1)2α1α4

)
,

where α1, α2, α4 ∈ k. An easy computation shows that

Ω′q(p, σ(p)) = −q8(q4 − 1)2α2
1α

2
4 − q4(q4 − 1)2α2

1α
2
4 +

(
q4 + 1

q4 − 1

)
q2(q4 − 1)4α2

1α
2
4

q2 − q−2
= 0.

Similarly, if p ∈ p3 \ V(x1), then

p =
(
(q4 − 1)2α2

1,−q4α2
3, (q

4 − 1)2α1α3, 0
)
,

σ(p) =
(
(q4 − 1)2α2

1,−α2
3, q
−2(q4 − 1)2α1α3, 0

)
,

and

Ω′q(p, σ(p)) = −(q4 − 1)2α2
1α

2
3 − q4(q4 − 1)2α2

1α
2
3 +

(
q4 + 1

q4 − 1

)
q−2(q4 − 1)4α2

1α
2
3

q2 − q−2
= 0.

So the quantum Casimir element vanishes on the points in each conic; we may

conclude that the geometry is identifying Ω′q as a distinguished central element of

Hq(sl(2,k)) and is, therefore, identifying Ωq as a distinguished central element of

Uq(sl(2, k)).

4.4.2.2 The Line Scheme of Hq(sl(2,k))

Theorem 4.4.2.3. The line variety of Hq(sl(2,k)) is L(q) =
⋃3
i=1 Li where
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(I) L1 = V( M13, M23, M34 ),

(II) L2 = V( M14, M24, M34 ), and

(III) L3 is given by the zero locus of the seven polynomials:

q4M2
34 +M14M24(−1 + q4)2,

M12M34 +M14M23 −M13M24,

q4M2
34 +M13M23(−1 + q4)2,

−M12M24M34 +M13M
2
24 +M23M

2
34q

4,

(−M2
23 +M2

24)M34q
4 +M12M23M24(−1 + q4)2,

−M12M13M34 +M2
13M24 +M14M

2
34q

4,

(M13 −M14)(M13 +M14)M34q
4 +M12M13M14(−1 + q4)2.

Proof. The polynomials that define the line scheme are given in Appendix 5.4.4.

A Gröbner basis for these polynomials is given in Appendix 5.4.5; we will use the

polynomials in Appendix 5.4.5 to analyze L(q).

Polynomial 5.4.5.1 implies that in order for all the polynomials to vanish, either

M34 = 0 or q4M2
34 + (q4 − 1)2M14M24 = 0.

(a) If M34 = 0 = q4M2
34 + (q4 − 1)2M14M24, then M14 = 0 or M24 = 0. If M14 = 0 =

M24, then all the polynomials vanish and we obtain the component L2.

If M14 = 0 and M24 6= 0, then Polynomial 5.4.5.42 implies that M13 = 0. A

computation with a Gröbner basis yields the polynomials

M12M
2
23M24, M12M23M

2
24, M2

12M23M24.

Since we are assuming M24 6= 0, either M12 = 0 or M23 = 0. This yields the

components V1 = V(M12,M13,M14,M34) and V2 = V(M13,M14,M23,M34).
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If M24 = 0 and M14 6= 0, then Polynomial 5.4.5.42 implies that M23 = 0. A

computation with a Gröbner basis yields polynomials

M12M13M
2
14, M12M

2
13M14, M2

12M13M14.

Since we are assuming M14 6= 0, either M12 = 0 or M13 = 0. This yields the

components V3 = V(M12,M23,M24,M34) and V4 = V(M13,M23,M24,M34).

(b) If M34 = 0 but q4M2
34 + (q4 − 1)2M14M24 6= 0, then M14M24 6= 0. Polynomial

5.4.5.30 implies that M13 = 0. A computation with a Gröbner basis yields the

polynomials

M14M23, M12M
2
23M24, M12M23M

2
24, M2

12M23M24.

Since we are assuming M14M24 6= 0, we see that M23 = 0 and all the polynomials

vanish. So, we obtain the component L1. Note that V2, V4 ⊂ L1.

(c) If M34 6= 0 but q4M2
34 + (q4 − 1)2M14M24 = 0, then we may take M34 = 1.

Computing a Gröbner basis with degree, reverse-lexicographic ordering yields

the polynomials

(
q4 − 1

)2
M14M24 + q4, M12−M13M24 +M14M23,

(
q4 − 1

)2
M13M23 + q4,

−M12M24 +M13M
2
24 +

q4M23

(q4 − 1)2
, −M12M13 +M2

13M24 +
q4M14

(q4 − 1)2
,

−
(1 + q4)

(
(q4 − 1)

2
M12M23M24 + q4 (M2

24 −M2
23)
)

(q4 − 1)2
,

(q4 − 1)
2
M12M13M14 + q4(M13 −M14)(M13 +M14)

(q4 − 1)2
.

Multiplying these polynomials by powers of q4 − 1 and rehomogenizing with re-

spect to M34 shows that L3 is as proposed.
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The following corollary describes the lines in P3 that are parametrized by the

line variety of Hq(sl(2, k)). We thank S. P. Smith of the University of Washington

for his suggestion to consider a pencil of quadrics in P3.

Corollary 4.4.2.4. Let L(q) =
⋃3
i=1 Li be the line variety of Hq(sl(2,k)) as above.

Denote x1 = E, x2 = F , x3 = K, and x4 = T . The lines in P3 that correspond to

line modules of Hq(sl(2,k)) are precisely those in the pencil of quadrics

Qq(α, β) = V
(
αq4(x23 + x24) + α(q4 − 1)2x1x2 + βq4x3x4

)
,

where (α, β) ∈ P1. More precisely,

(i) L1 gives all lines in V(x3),

(ii) L2 gives all lines in V(x4), and

(iii) L3 gives the union of the following three families of lines:

(a) those in V(x2) that pass through e1,

(b) those in V(x1) that pass through e2, and

(c) those of the form V(x1−a1x3−b1x4, x2−a2x3−b2x4), where a1, a2, b1, b2 ∈ k,

q4 + (q4 − 1)2a1a2 = 0 and a1a2 = b1b2.

Proof. Let (a1, a2, a3, a4), (b1, b2, b3, b4) ∈ P3 be distinct points and let

` =

[
a1 a2 a3 a4

b1 b2 b3 b4

]
represent the projective line through them.

(i) If ` is given by L1, then M13 = M23 = M34 = 0; an argument similar to (i)

allows us to assume that

` =

[
a1 a2 0 a4

b1 b2 0 b4

]
.

From this representation of `, we can see that every point of ` belongs to V(x3).

So, ` belongs to V(x3) if and only if ` is given by L1.
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(ii) Applying the automorphism ϕ to the lines described by L1 gives that L2 gives

all lines in V(x4).

(iii) Assume that ` is given by L3.

If M34 = 0, then we may assume that

` =

[
c1 c2 c3 c4

c5 c6 0 0

]
,

where c1, ..., c6 ∈ k. Requiring the polynomials defining L3 to vanish yields the

following system of equations:

c24c5c6 = 0, c23c5c6 = 0,

c3c
2
4c5c

2
6 = 0, c23c4c

2
5c6 = 0,

c3c4c
2
6(c1c6 − c2c5) = 0, c3c4c

2
5(c1c6 − c2c5) = 0.

If c5c6 6= 0, then c3 = 0 = c4 and we again obtain V(x3, x4). If c5c6 = 0, then

c1c3c4c
3
6 = 0 = c2c3c4c

3
5. Since (c5, c6, 0, 0) ∈ P3, exactly one of c5 and c6 are

zero. This implies that, if c5 = 0, then c1c3c4 = 0 and we make take c6 = 1.

Hence,

` =

[
c1 0 c3 c4

0 1 0 0

]
.

The cases where c3 = 0 or c4 = 0 are described by L1 and L2. We need only

discuss

` =

[
0 0 c3 c4

0 1 0 0

]
.

We see that ` belongs to V(x1) and passes through e2. By a similar argument,

if c6 = 0, then ` belongs to V(x2) and passes through e1.

If M34 6= 0, we may take M34 = 1 and we may assume

` =

[
a1 a2 1 0

b1 b2 0 1

]
.
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By requiring that the polynomials that define L3 vanish on `, we see that q4 +

(q4− 1)2a1a2 = 0 = q4 + (q4− 1)2b1b2, and hence, a1a2 = b1b2. Also, we see that

any point on a line ` with this representation belongs to V(x1−a1x3−b1x4, x2−

a2x3 − b2x4).

The lines given by L1 and L2 are precisely those in Qq(0, 1). The lines given by

L3 of the form [
0 0 c3 c4

0 1 0 0

]
and

[
0 0 c3 c4

1 0 0 0

]
,

for c3c4 6= 0, belong to Qq

(
1,− c23+c

2
4

c3c4

)
. If ` = V(x1 − a1x3 − b1x4, x2 − a2x3 − b2x4),

where a1, a2, b1, b2 ∈ k, q4 + (q4 − 1)2a1a2 = 0 and a1a2 = b1b2, then ` belongs to

Qq

(
1,− (q4−1)2

q4
(a1b2 + a2b1)

)
.

If α 6= 0, then we may take α = 1. If β2 6= 4, then Qq(1, β) has rulings{
V
(
x1 − µq4 (x3 − δ1x4) , µ(q4 − 1)2x2 + x3 − δ2x4

)
: µ ∈ P1

}
and {

V
(
x2 − µq4 (x3 − δ1x4) , µ(q4 − 1)2x1 + x3 − δ2x4

)
: µ ∈ P1

}
,

where δ1 and δ2 are distinct solutions of δ2 + βδ + 1 = 0.

If β2 = 4, then

Qq(1, β) = V

(
q4
(
x3 +

β

2
x4

)2

+ (q4 − 1)2x1x2

)
which is a rank-three quadric and so has only one ruling, namely{

V
(
x1 − µq4

(
x3 +

β

2
x4

)
, µ(q4 − 1)2x2 + x3 +

β

2
x4

)
: µ ∈ P1

}
.

The lines in each of these rulings are given by L3. Therefore, the lines corre-

sponding to line modules of Hq(sl(2,k)) are as proposed.
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Chapter 5

Appendix

In this Appendix, we list the polynomials that define the various schemes discussed throughout

this thesis.

5.1 A(γ)

5.1.1 The Polynomials Defining the Point Scheme of A(γ)

5.1.1.1. x21x
2
2 + x23x

2
4,

5.1.1.2. x1
(
x33 − x21x3 + ix1x

2
2

)
5.1.1.3. x2

(
x33 − x21x3 + ix1x

2
2

)
5.1.1.4. x4

(
x33 − x21x3 + ix1x

2
2

)
5.1.1.5. x1

(
x34 − x22x4 + iγx21x2

)
5.1.1.6. x2

(
x34 − x22x4 + iγx21x2

)
5.1.1.7. x3

(
x34 − x22x4 + iγx21x2

)
5.1.1.8. x1

(
x32 − x2x24 + iγx23x4

)
5.1.1.9. x2

(
x31 − x1x23 + ix3x

2
4

)
5.1.1.10. iγx21x

2
3 − x21x2x4 − x2x23x4

5.1.1.11. ix22x
2
4 − x1x22x3 − x1x3x24

5.1.1.12. x31x4 + γx21x2x3 − x1x23x4 + ix22x3x4

5.1.1.13. x32x3 + γx1x
2
2x4 − x2x3x24 + iγx21x3x4

5.1.1.14. iγx31x3 + γx21x
2
2 − 2x1x2x3x4 + ix32x4

5.1.1.15. x21x
2
2 − x22x23 − γx1x2x3x4 − x21x24 + x23x

2
4
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5.1.2 The Polynomials Defining the Line Scheme of A(γ)

5.1.2.1. M12M34 −M13M24 +M14M23

5.1.2.2. 2M13M14M23M24

5.1.2.3. M12(γM13M14M23 + iM12M14M24 + iM23M24M34)

5.1.2.4. M12(γM13M14M23 − iM12M14M24 − iM23M24M34)

5.1.2.5. M13(γM13M14M23 + iM12M14M24 + iM23M24M34)

5.1.2.6. M13(γM13M14M23 − iM12M14M24 − iM23M24M34)

5.1.2.7. M13(γM13M14M23 + iM12M14M24 − iM23M24M34)

5.1.2.8. M14(γM13M14M23 + iM12M14M24 + iM23M24M34)

5.1.2.9. M23(γM13M14M23 + iM12M14M24 + iM23M24M34)

5.1.2.10. M23(γM13M14M23 − iM12M14M24 − iM23M24M34)

5.1.2.11. M24(γM13M14M23 + iM12M14M24 + iM23M24M34)

5.1.2.12. M34(γM13M14M23 + iM12M14M24 + iM23M24M34)

5.1.2.13. M12(M12M13M23 +M13M14M34 + iM14M23M24)

5.1.2.14. M12(M12M13M23 +M13M14M34 − iM14M23M24)

5.1.2.15. M13(M12M13M23 +M13M14M34 + iM14M23M24)

5.1.2.16. M14(M12M13M23 +M13M14M34 + iM14M23M24)

5.1.2.17. M14(M12M13M23 +M13M14M34 − iM14M23M24)

5.1.2.18. M23(M12M13M23 +M13M14M34 + iM14M23M24)

5.1.2.19. M24(M12M13M23 +M13M14M34 + iM14M23M24)

5.1.2.20. M24(M12M13M23 +M13M14M34 − iM14M23M24)

5.1.2.21. M24(M12M13M23 −M13M14M34 + iM14M23M24)

5.1.2.22. M34(M12M13M23 +M13M14M34 + iM14M23M24)

5.1.2.23. M2
13M23M24 +M13M14M

2
23 −M13M14M

2
34 + iM14M23M24M34
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5.1.2.24. M2
12M13M23 + iM12M14M23M24 −M2

13M14M24 −M13M
2
14M23

5.1.2.25. iγM12M13M
2
23 − γM14M

2
23M24 −M12M14M24M34 −M23M24M

2
34

5.1.2.26. iγM13M14M23M34 −M13M14M
2
24 −M2

14M23M24 +M23M24M
2
34

5.1.2.27. iγM12M13M14M23 −M2
12M14M24 +M13M23M

2
24 +M14M

2
23M24

5.1.2.28. γM13M
2
14M23 +M12M13M23M34 + iM12M

2
14M24 +M13M14M

2
34

5.1.2.29. γM2
14M

2
23 +M2

12M14M23 +M12M
2
14M34 +M12M

2
23M34 +M14M23M

2
34

5.1.2.30. −iγM12M
2
13M23 + γM13M14M23M24 +M2

12M13M24 + iM12M14M
2
24 +M13M24M

2
34

5.1.2.31. iγM3
13M14 +M3

12M13 + iM2
12M14M24 −M12M13M

2
14 +M2

13M24M34

5.1.2.32. γM12M13M14M23 +M2
12M14M24 −M12M13M

2
23 −M13M14M23M34 − iM13M23M

2
24

5.1.2.33. iγM2
13M14M34 +M2

12M13M24 + iM12M14M
2
24 − 2M13M

2
14M24 +M13M24M

2
34

5.1.2.34. iγM2
12M13M23−γM12M14M23M24−iγM2

13M14M24+M12M
2
14M24+M14M23M24M34

5.1.2.35. iγM12M
2
13M23 −M2

12M13M24 + 2M13M
2
23M24 −M13M24M

2
34 + iM23M

2
24M34

5.1.2.36. iγM2
12M13M23 −M3

12M24 +M12M
2
23M24 −M13M

2
24M34 + iM23M

3
24

5.1.2.37. γM2
14M23M34 −M12M

2
14M23 +M12M23M

2
34 −M3

14M34 + iM2
14M

2
24 +M14M

3
34

5.1.2.38. iγM3
13M23 − γM13M14M23M34 −M12M

2
13M24 − iM12M14M24M34 +M13M

2
23M34 −

M13M
3
34

5.1.2.39. γM12M
2
14M23 + iγM2

13M
2
14 +M3

12M14 +M2
12M23M34 −M12M

3
14 −M2

14M23M34

5.1.2.40. iγM2
13M

2
23 − γM14M

2
23M34 +M12M14M

2
23 −M12M14M

2
34 +M3

23M34 −M23M
3
34

5.1.2.41. iγM12M14M
2
23 + iM3

12M23 + iM2
12M14M34 − iM12M

3
23 − iM14M

2
23M34 +M2

23M
2
24

5.1.2.42. iγM12M13M23M34 − γM14M23M24M34 −M12M13M
2
24 +M2

14M24M34 − iM14M
3
24 −

M24M
3
34

5.1.2.43. iγM12M14M23M34 − iM2
12M14M23 − iM12M

2
14M34 −M12M14M

2
24 − iM12M

2
23M34 −

iM14M23M
2
34 +M23M

2
24M34

5.1.2.44. iγM12M
2
13M23−γM12M14M23M34− iγM2

13M14M34 +M2
12M14M23 +M12M

2
14M34 +

M12M
2
23M34 +M14M23M

2
34
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5.1.2.45. γM2
12M14M23+iγM12M

2
13M14+M4

12−M2
12M

2
14−M2

12M
2
23−iM12M23M

2
24+M2

13M
2
24+

M2
14M

2
23

5.1.2.46. −iγM2
13M23M34 + γM14M23M

2
34 +M2

13M
2
24 +M2

14M
2
23 −M2

14M
2
34 + iM14M

2
24M34 −

M2
23M

2
34 +M4

34

5.1.3 The Intersection Points of the Line Scheme of A(γ)

5.1.3.1. L1 ∩ L2 = V(M34,M24,M14,M13,M
2
12 −M2

23) = {E1 ± E4}

5.1.3.2. L1 ∩ L3 = V(M24,M23,M
2
14 −M2

34,M13,M12) = {E3 ± E6}

5.1.3.3. L1 ∩ L4 = V(M24,M
2
23 −M2

34,M14,M13,M12) = {E4 ± E6}

5.1.3.4. L1 ∩ L5 = V(M34,M24,M23,M13,M
2
12 −M2

14) = {E1 ± E3}

5.1.3.5. L1 ∩ L6a = V(M2
34,M24,M23,M14,M13,M12 + iM34) = ∅

5.1.3.6. L1 ∩ L6b = V(M2
34,M24,M23,M14,M13,M12 − iM34) = ∅

5.1.3.7. L2 ∩ L3 = V(M34,M23,M14,M13,M12) = {E5}

5.1.3.8. L2 ∩ L4 = V(M34,M24,M14,M13,M12) = {E4}

5.1.3.9. L2 ∩ L5 = V(M34,M24,M23,M14,M13,M
3
12) = ∅

5.1.3.10. L2 ∩ L6a = V(M34,M23,M14,M13,M12) = {E5}

5.1.3.11. L2 ∩ L6b = V(M34,M23,M14,M13,M12) = {E5}

5.1.3.12. L3 ∩ L4 = V(M3
34,M24,M23,M14,M13,M12) = ∅

5.1.3.13. L3 ∩ L5 = V(M34,M24,M23,M13,M12) = {E3}

5.1.3.14. L3 ∩ L6a = V(M34,M23,M14,M13,M12) = {E5}

5.1.3.15. L3 ∩ L6b = V(M34,M23,M14,M13,M12) = {E5}

5.1.3.16. L4 ∩ L5 = V(M34,M24,M23,M14,M12) = {E2}

5.1.3.17. L4 ∩ L6a = V(M34,M24,M23,M14,M12) = {E2}

5.1.3.18. L4 ∩ L6b = V(M34,M24,M23,M14,M12) = {E2}

5.1.3.19. L5 ∩ L6a = V(M34,M24,M23,M14,M12) = {E2}
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5.1.3.20. L5 ∩ L6b = V(M34,M24,M23,M14,M12) = {E2}

5.1.3.21. L6a ∩ L6b = V(M34,M23,M14,M13M24,M12) = {E2, E5}

5.1.3.22. L1a ∩ L2 = V(M34,M24,M14,M13,M12 −M23) = {E1 + E4}

5.1.3.23. L1b ∩ L2 = V(M34,M24,M14,M13,M12 +M23) = {E1 − E4}

5.1.3.24. L1a ∩ L3 = V(M24,M23,M14 −M34,M13,M12) = {E3 + E6}

5.1.3.25. L1b ∩ L3 = V(M24,M23,M14 +M34,M13,M12) = {E3 − E6}

5.1.3.26. L1a ∩ L4 = V(M24,M23 +M34,M14,M13,M12) = {E4 − E6}

5.1.3.27. L1b ∩ L4 = V(M24,M23 −M34,M14,M13,M12) = {E4 + E6}

5.1.3.28. L1a ∩ L5 = V(M34,M24,M23,M13,M12 +M14) = {E1 − E3}

5.1.3.29. L1b ∩ L5 = V(M34,M24,M23,M13,M12 −M14) = {E1 + E3}

5.1.3.30. L1a ∩ L6a = V(M34,M24,M23,M14,M13,M12) = ∅

5.1.3.31. L1b ∩ L6a = V(M34,M24,M23,M14,M13,M12) = ∅

5.1.3.32. L1a ∩ L6b = V(M34,M24,M23,M14,M13,M12) = ∅

5.1.3.33. L1b ∩ L6b = V(M34,M24,M23,M14,M13,M12) = ∅

5.1.3.34. L1a∩L1b = V(M24,M
2
23+M2

34,M14−M23,M13,M12−M34) = {E1±iE3±iE4+E6}

5.1.4 The Van den Bergh Polynomials Defining L(γ)

5.1.4.1. −i(y2y4y5 − iy1y3y6)

5.1.4.2. −y2y4y5 − iy1y3y6

5.1.4.3. −iy21y3 + y23y4 − y4y25 + γy3y4y6

5.1.4.4. i(y21y2 + iy2y3y4 + iγy2y4y6 − y1y5y6)

5.1.4.5. y21y2 + iy2y3y4 + iγy2y4y6 + y1y5y6

5.1.4.6. i(y1y
2
2 + iy1y3y4 + iy1y3y5 − y2y5y6)

5.1.4.7. y1y
2
2 + iy1y3y4 + iy1y3y5 + y2y5y6
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5.1.4.8. iy22y3 − y23y4 − y23y5 + y4y
2
5 + y35 + iγy22y6 − γy3y4y6 − γy3y5y6

5.1.4.9. y1y4y5 + y1y
2
5 + iy2y3y6 + iγy2y

2
6

5.1.4.10. iy1y4y5 + iy1y
2
5 + y2y3y6 + γy2y

2
6

5.1.4.11. −iy22y4 + y3y
2
4 + y3y4y5 − y3y26

5.1.4.12. y1y2y5 − y23y6 + y25y6 − γy3y26

5.1.4.13. y1y2y5 + y23y6 − y25y6 + γy3y
2
6

5.1.4.14. y24y5 + y4y
2
5 + y1y2y6 − y5y26

5.1.4.15. −y24y5 − y4y25 + y1y2y6 + y5y
2
6

5.1.4.16. iy21 − y4 − y3y24 + iy21y5 − y3y4y5 − γy24y6 − γy4y5y6 + y3y
2
6 + γy36

5.2 H(sl(1|1))

5.2.1 The Polynomials Defining the Point Scheme of H(sl(1|1))

5.2.1.1. x24(2x1x2 − x3x4)

5.2.1.2. x3x4(2x1x2 − x3x4)

5.2.1.3. x23(2x1x2 − x3x4)

5.2.1.4. x2x4(2x1x2 − x3x4)

5.2.1.5. x2x3(2x1x2 − x3x4)

5.2.1.6. x1x4(2x1x2 − x3x4)

5.2.1.7. x1x3(2x1x2 − x3x4)
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5.2.2 The Jacobian Matrix of the Point Scheme of H(sl(1|1))

2x2x
2
4 2x1x

2
4 −x34 4x1x2x4 − 3x3x

2
4

2x2x3x4 2x1x3x4 2x1x2x4 − 2x3x
2
4 2x1x2x3 − 2x23x4

2x2x
2
3 2x1x

2
3 4x1x2x3 − 3x23x4 −x33

2x22x4 4x1x2x4 − x3x24 −x2x24 2x1x
2
2 − 2x2x3x4

2x22x3 4x1x2x3 − x23x4 2x1x
2
2 − 2x2x3x4 −x2x23

4x1x2x4 − x3x24 2x21x4 −x1x24 2x21x2 − 2x1x3x4

4x1x2x3 − x23x4 2x21x3 2x21x2 − 2x1x3x4 −x1x23


.

5.2.3 The Polynomials Defining the Line Scheme of H(sl(1|1))

5.2.3.1. −M13M14(M13M24 −M14M23)

5.2.3.2. (M14M23 −M13M24)
(
2M2

12 +M13M24 +M14M23

)
5.2.3.3. M23M24(M14M23 −M13M24)

5.2.3.4. M12M13M14M34

5.2.3.5. M2
13M14M34

5.2.3.6. −M13M
2
14M34

5.2.3.7. −2M12M13M23M34

5.2.3.8. −2M2
13M23M34

5.2.3.9. −M13M14M23M34

5.2.3.10. −2M13M
2
23M34

5.2.3.11. −2M12M14M24M34

5.2.3.12. M13M14M24M34

5.2.3.13. −2M2
14M24M34

5.2.3.14. M12M23M24M34

5.2.3.15. −M13M23M24M34

5.2.3.16. M13M23M24M34

5.2.3.17. −M14M23M24M34
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5.2.3.18. M14M23M24M34

5.2.3.19. −M2
23M24M34

5.2.3.20. −2M14M
2
24M34

5.2.3.21. M23M
2
24M34

5.2.3.22. −M13M14M
2
34

5.2.3.23. −M23M24M
2
34

5.2.3.24. M12M34 −M13M24 +M14M23

5.2.3.25. −M14

(
M2

12M34 +M12M13M24 −M12M14M23 +M14M23M34

)
5.2.3.26. M23

(
M2

12M34 +M12M13M24 −M12M14M23 +M14M23M34

)
5.2.3.27. M13

(
M2

12M34 +M12M13M24 −M12M14M23 +M13M24M34

)
5.2.3.28. −M24

(
M2

12M34 +M12M13M24 −M12M14M23 +M13M24M34

)
5.2.3.29. M2

13M34(2M12 +M34)

5.2.3.30. −M2
14M34(2M12 −M34)

5.2.3.31. −M13M23

(
−M12M34 +M13M24 −M14M23 +M2

34

)
5.2.3.32. −M13M23

(
−M12M34 +M13M24 −M14M23 −M2

34

)
5.2.3.33. M14M23M34(2M12 −M34)

5.2.3.34. M2
23M34(2M12 −M34)

5.2.3.35. M13M24M34(2M12 +M34)

5.2.3.36. −M14M24

(
M12M34 −M13M24 +M14M23 +M2

34

)
5.2.3.37. −M14M24

(
M12M34 −M13M24 +M14M23 −M2

34

)
5.2.3.38. −M2

24M34(2M12 +M34)

5.2.3.39. M13M34

(
M12M34 +M13M24 +M14M23 +M2

34

)
5.2.3.40. M14M34

(
−M12M34 +M13M24 +M14M23 +M2

34

)
5.2.3.41. M23M34

(
−M12M34 +M13M24 +M14M23 +M2

34

)
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5.2.3.42. M24M34

(
M12M34 +M13M24 +M14M23 +M2

34

)
5.2.3.43. M2

34

(
2M13M24 + 2M14M23 +M2

34

)

5.2.4 A Gröbner Basis for the Line Scheme of H(sl(1|1))

The following polynomials were found by computing a Gröbner basis using Wolfram’s Math-

ematica and the polynomials given in Appendix 5.2.3.

5.2.4.1. M23M24M
2
34

5.2.4.2. M23M
2
24M34

5.2.4.3. M2
23M24M34

5.2.4.4. M14M24M
2
34

5.2.4.5. M14M
2
24M34

5.2.4.6. M14M23M24M34

5.2.4.7. M23M34

(
2M14M23 +M2

34

)
5.2.4.8. M2

14M24M34

5.2.4.9. M14M34

(
2M14M23 +M2

34

)
5.2.4.10. M2

34

(
2M13M24 + 2M14M23 +M2

34

)
5.2.4.11. M24M34

(
2M13M24 +M2

34

)
5.2.4.12. −M2

24

(
−2M13M24 + 2M14M23 −M2

34

)
5.2.4.13. M13M23M

2
34

5.2.4.14. M13M23M24M34

5.2.4.15. −M23M24(M14M23 −M13M24)

5.2.4.16. M13M
2
23M34

5.2.4.17. −M2
23

(
−2M13M24 + 2M14M23 +M2

34

)
5.2.4.18. M13M14M

2
34

5.2.4.19. M13M14M24M34
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5.2.4.20. −M14M24(M14M23 −M13M24)

5.2.4.21. M13M14M23M34

5.2.4.22. −M14M23

(
−2M13M24 + 2M14M23 +M2

34

)
5.2.4.23. M13M

2
14M34

5.2.4.24. −M2
14

(
−2M13M24 + 2M14M23 +M2

34

)
5.2.4.25. M13M34

(
2M13M24 +M2

34

)
5.2.4.26. −

(
−2M13M24 + 2M14M23 +M2

34

) (
2M13M24 + 2M14M23 +M2

34

)
5.2.4.27. M2

13M23M34

5.2.4.28. M13M23(M13M24 −M14M23)

5.2.4.29. M2
13M14M34

5.2.4.30. M13M14(M13M24 −M14M23)

5.2.4.31. M2
13

(
2M13M24 − 2M14M23 +M2

34

)
5.2.4.32. M12M34 −M13M24 +M14M23

5.2.4.33. −M24

(
−4M12M13M24 + 4M12M14M23 +M3

34

)
5.2.4.34. −M23

(
−4M12M13M24 + 4M12M14M23 +M3

34

)
5.2.4.35. −M14

(
−4M12M13M24 + 4M12M14M23 +M3

34

)
5.2.4.36. M13

(
4M12M13M24 − 4M12M14M23 −M3

34

)
5.2.4.37. 8M2

12M13M24 − 8M2
12M14M23 + 4M14M23M

2
34 +M4

34

5.3 H(slk(2,k))

5.3.1 The Polynomials Defining the Point Scheme of H(slk(2,k))

5.3.1.1. a2
(
a4a

2
1 − 2a2a3a1 − a22a4 + a23a4

)
5.3.1.2. −a1

(
a4a

2
1 + 2a2a3a1 − a22a4 − a23a4

)
5.3.1.3. a3

(
a4a

2
1 − 2a2a3a1 + a22a4 − a23a4

)
5.3.1.4. a1a4(2a1a2 − a3a4)
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5.3.1.5. −(a2 − a3)(a2 + a3)a24

5.3.1.6. −a1a4(2a1a3 − a2a4)

5.3.1.7. a2a4(2a1a2 − a3a4)

5.3.1.8. a2a4(2a2a3 − a1a4)

5.3.1.9. (a1 − a3)(a1 + a3)a24

5.3.1.10. −a24(2a1a2 − a3a4)

5.3.1.11. (a1 − a2)(a1 + a2)a24

5.3.1.12. a3a4(2a2a3 − a1a4)

5.3.1.13. a3a4(2a1a3 − a2a4)

5.3.1.14. −a24(2a1a3 − a2a4)

5.3.1.15. −a24(2a2a3 − a1a4)

5.3.2 A Gröbner Basis for the Point Scheme of H(slk(2,k))

The following polynomials were found by computing a Gröbner basis using Wolfram’s Math-

ematica and the polynomials given in Appendix 5.3.1.

5.3.2.1. a3a
2
4(2a3 − a4)(2a3 + a4)

5.3.2.2. a2a4(2a3 − a4)(2a3 + a4)

5.3.2.3. a24(a2 − a3)(a2 + a3)

5.3.2.4. a3a4(2a2 − a4)(2a2 + a4)

5.3.2.5. −a24(2a2a3 − a1a4)

5.3.2.6. a24(2a1a3 − a2a4)

5.3.2.7. a3a4(2a1a3 − a2a4)

5.3.2.8. a24(2a1a2 − a3a4)

5.3.2.9. a3
(
4a1a2a3 + 2a23a4 − a34

)
5.3.2.10. a2a4(2a1a2 − a3a4)
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5.3.2.11. a2
(
4a1a2a3 + 2a22a4 − a34

)
5.3.2.12. a24(a1 − a3)(a1 + a3)

5.3.2.13. a3a4(2a1 − a4)(2a1 + a4)

5.3.2.14. a2a4(2a1 − a4)(2a1 + a4)

5.3.2.15. a31a4 + 2a21a2a3 − a2a3a24

5.3.3 The Jacobian Matrix of the Point Scheme of H(slk(2,k))

The following matrix is determined by the polynomials in Appendix 5.3.2.



0 0 3a23a
2
4 − a44 2a33a4 − 4a3a

3
4

0 4a23a4 − a34 8a2a3a4 4a2a
2
3 − 3a2a

2
4

0 2a2a
2
4 −2a3a

2
4 2a22a4 − 2a23a4

0 8a2a3a4 4a22a4 − a34 4a22a3 − 3a3a
2
4

a34 −2a3a
2
4 −2a2a

2
4 3a1a

2
4 − 4a2a3a4

2a3a
2
4 −a34 2a1a

2
4 4a1a3a4 − 3a2a

2
4

2a23a4 −a3a24 4a1a3a4 − a2a24 2a1a
2
3 − 2a2a3a4

2a2a
2
4 2a1a

2
4 −a34 4a1a2a4 − 3a3a

2
4

4a2a
2
3 4a1a

2
3 8a1a2a3 + 6a23a4 − a34 2a33 − 3a3a

2
4

2a22a4 4a1a2a4 − a3a24 −a2a24 2a1a
2
2 − 2a2a3a4

4a22a3 8a1a2a3 + 6a22a4 − a34 4a1a
2
2 2a32 − 3a2a

2
4

2a1a
2
4 0 −2a3a

2
4 2a21a4 − 2a23a4

8a1a3a4 0 4a21a4 − a34 4a21a3 − 3a3a
2
4

8a1a2a4 4a21a4 − a34 0 4a21a2 − 3a2a
2
4

3a21a4 + 4a1a2a3 2a21a3 − a3a24 2a21a2 − a2a24 a31 − 2a2a3a4


5.3.4 The Polynomials Defining the Line Scheme of H(slk(2, k))

5.3.4.1. −M14

(
2M13M

2
12 +M24M

2
12 −M13M

2
14 +M13M14M23 −M2

13M24 +M14M23M24

)
5.3.4.2. M2

12M
2
14 −M2

23M
2
14 +M13M24M

2
14 −M23M

2
24M14 −M2

12M
2
24 +M2

13M
2
24

5.3.4.3. −M14M24(M13M14 −M23M24)

5.3.4.4. M24

(
M14M

2
12 + 2M23M

2
12 −M14M

2
23 −M23M

2
24 +M13M14M24 +M13M23M24

)
5.3.4.5. 2M12M14M24M34

5.3.4.6. 2M2
14M24M34
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5.3.4.7. 2M14M
2
24M34

5.3.4.8. M14M23 −M13M24 +M12M34

5.3.4.9. −M12M14(2M12M13 +M34M13 +M12M24)

5.3.4.10. M2
14(2M12M13 +M34M13 +M12M24)

5.3.4.11. M14(2M12M13M23 −M12M24M23 −M13M34M23 −M12M14M24 +M13M14M34)

5.3.4.12. −M14

(
M34M

2
12 − 2M2

13M12 +M2
14M12 +M14M23M12 −M2

13M34 +M14M23M34

)
5.3.4.13. M14

(
M34M

2
12 +M2

14M12 +M14M23M12 +M13M24M12 +M14M23M34

)
5.3.4.14. −M14M24(2M12M13 +M34M13 +M12M24)

5.3.4.15. M14M24(2M12M13 −M34M13 +M12M24)

5.3.4.16. −M14M34M
2
12 −M23M34M

2
12 −M14M

2
23M12 +M14M

2
24M12 +M23M

2
24M12

−M13M23M24M12 +M14M
2
23M34 −M13M14M24M34

5.3.4.17. M12M24(M12M14 + 2M12M23 −M23M34)

5.3.4.18. M12(M13M14 − 2M13M23 +M23M24)M34

5.3.4.19. −M24(M12M13M14 +M12M24M14 −M13M34M14 − 2M12M13M23 +M13M23M34)

5.3.4.20. M13(M13M14 − 2M13M23 +M23M24)M34

5.3.4.21. M14M24(M12M14 + 2M12M23 −M23M34)

5.3.4.22. −M13M34M
2
12 − M24M34M

2
12 − M13M

2
14M12 + M13M14M23M12 + M2

13M24M12 −

M2
14M24M12 +M2

13M24M34 −M14M23M24M34

5.3.4.23. M14M24(M12M14 + 2M12M23 +M23M34)

5.3.4.24. −M14(2M12M13M23 −M12M24M23 +M13M34M23 −M24M34M23 −M12M14M24)

5.3.4.25. M23(M13M14 − 2M13M23 +M23M24)M34

5.3.4.26. M24

(
M34M

2
12 −M2

24M12 −M14M23M12 −M13M24M12 +M13M24M34

)
5.3.4.27. M24

(
M34M

2
12 + 2M2

23M12 −M2
24M12 −M13M24M12 −M2

23M34 +M13M24M34

)
5.3.4.28. M2

24(M12M14 + 2M12M23 −M23M34)

5.3.4.29. −M24(M12M13M14 +M12M24M14 − 2M12M13M23 −M13M23M34 +M23M24M34)
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5.3.4.30. −M14M34(2M12M13 +M34M13 −M12M24)

5.3.4.31. M2
14

(
M2

14 −M2
24 −M2

34

)
5.3.4.32. −M14M24M

2
13 +M23M24M

2
13 −M14M

2
23M13 +M14M

2
34M13 −M23M

2
34M13

+M12M23M34M13 +M14M
2
23M24 −M12M14M24M34

5.3.4.33. −M14M34(M12M14 +M23M34)

5.3.4.34. −M2
13M

2
14 +M2

23M
2
14 −M12M34M

2
14 −M23M

2
34M14 −M2

12M
2
34 +M2

13M
2
34

5.3.4.35. −M24M34(M12M24 −M13M34)

5.3.4.36. −M2
13M

2
24 +M2

23M
2
24 −M12M34M

2
24 +M13M

2
34M24 +M2

12M
2
34 −M2

23M
2
34

5.3.4.37. M14M24

(
M2

14 +M23M14 −M2
24 −M2

34 −M13M24 −M12M34

)
5.3.4.38. M14M24

(
M2

14 +M23M14 −M2
24 +M2

34 −M13M24 −M12M34

)
5.3.4.39. −M24M34(M12M14 − 2M12M23 +M23M34)

5.3.4.40. −M14M24M
2
13 + M23M24M

2
13 − M14M

2
23M13 + M23M

2
34M13 + M12M23M34M13 −

M23M24M
2
34 +M14M

2
23M24 −M12M14M24M34

5.3.4.41. M2
24

(
M2

14 −M2
24 +M2

34

)
5.3.4.42. −M34

(
M24M

2
13 −M2

34M13 +M14M23M13 −M12M34M13 +M12M24M34

)
5.3.4.43. −M14M34

(
M2

14 −M23M14 +M2
24 −M2

34 −M13M24 −M12M34

)
5.3.4.44. −M34

(
M14M

2
23 −M2

34M23 +M13M24M23 +M12M34M23 −M12M14M34

)
5.3.4.45. −M24M34

(
M2

14 −M23M14 +M2
24 −M2

34 −M13M24 +M12M34

)
5.3.4.46. −M2

34

(
M2

14 +M2
24 −M2

34

)

5.3.5 A Gröbner Basis for the Line Scheme of H(slk(2,k))

The following polynomials were found by computing a Gröbner basis using Wolfram’s Math-

ematica and the polynomials given in Appendix 5.3.4.

5.3.5.1. M24(M24 −M34)M34(M24 +M34)

5.3.5.2. M14M24M
2
34
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5.3.5.3. M14M
2
24M34

5.3.5.4. M14M23M24M34

5.3.5.5. M2
34

(
M2

14 +M2
24 −M2

34

)
5.3.5.6. M2

14M24M34

5.3.5.7. M2
24

(
M2

14 −M2
24 +M2

34

)
5.3.5.8. M23M34

(
M2

14 +M2
24 −M2

34

)
5.3.5.9. M23M24

(
M2

14 −M2
24 +M2

34

)
5.3.5.10. M14(M14 −M34)M34(M14 +M34)

5.3.5.11. M14(M14 −M24)M24(M14 +M24)

5.3.5.12. M14M23

(
M2

14 −M2
24 −M2

34

)
5.3.5.13.

(
M2

14 +M2
24 −M2

34

) (
M2

14 −M2
24 +M2

34

)
5.3.5.14. −M24

(
−M13M

2
24 +M14M23M24 +M13M

2
34

)
5.3.5.15. M23(2M13 −M24)M24M34

5.3.5.16. −M23M24

(
M2

34 + 2M14M23 − 2M13M24

)
5.3.5.17. M34

(
4M13M

2
23 − 2M24M

2
23 +M13M

2
24 −M13M

2
34

)
5.3.5.18. (M13M14 − 2M13M23 +M23M24)M2

34

5.3.5.19. M13M14M24M34

5.3.5.20. M24

(
−M23M

2
24 +M13M14M24 +M23M

2
34

)
5.3.5.21. M13M34

(
M2

24 −M2
34 + 2M14M23

)
5.3.5.22. −M23

(
M23M

2
14 − 2M13M24M14 +M23M

2
24 −M23M

2
34

)
5.3.5.23. M13M34

(
M2

14 +M2
24 −M2

34

)
5.3.5.24. M14M24(M13M14 −M23M24)

5.3.5.25. M23

(
2M13M

2
14 − 2M23M24M14 − 2M13M

2
34 +M24M

2
34

)
5.3.5.26. M13M

3
14 −M23M

3
24 − 2M13M23M

2
34 + 2M23M24M

2
34
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5.3.5.27. M23

(
2M24M

2
13 +M2

34M13 − 2M14M23M13 −M24M
2
34

)
5.3.5.28.

(
2M14M

2
13 − 4M23M

2
13 +M23M

2
24

)
M34

5.3.5.29. M14(M13 −M23)(M13 +M23)M24

5.3.5.30. (M13 −M23)(M13 +M23)
(
M2

14 +M2
24 −M2

34

)
5.3.5.31. M14M23 −M13M24 +M12M34

5.3.5.32. M24

(
4M12M

2
23 − 2M34M

2
23 −M12M

2
24 +M13M24M34

)
5.3.5.33. M2

24(M12M14 + 2M12M23 −M23M34)

5.3.5.34. M24

(
M12M

2
24 −M13M34M24 + 2M12M14M23

)
5.3.5.35. M24

(
M12M

2
14 −M12M

2
24 +M13M24M34

)
5.3.5.36. M23

(
2M12M

2
14 + 2M23M34M14 − 2M12M

2
24 +M2

24M34

)
5.3.5.37. M12M

3
14 +M23M

3
34 + 2M12M23M

2
24 − 2M23M

2
24M34

5.3.5.38. M24(2M13 +M24)(M12M24 −M13M34)

5.3.5.39. M23M24(2M12M13 +M12M24 −M24M34)

5.3.5.40. M24(2M12M13M14 − 2M12M23M24 +M23M24M34)

5.3.5.41. −M12M
3
24 +M13M

3
34 + 4M12M13M14M23

5.3.5.42. M12M
3
24 − 2M13M34M

2
24 +M13M

3
34 + 2M12M13M

2
14

5.3.5.43. 2M12M14M
2
13 + 2M23M34M

2
13 +M12M23M

2
24 −M23M

2
24M34

5.3.5.44. M24

(
2M14M

2
12 + 4M23M

2
12 −M23M

2
34

)
5.3.5.45. M2

12M
2
14 −M2

23M
2
14 −M2

12M
2
24 +M2

13M
2
24

5.3.5.46. 2M13M14M
2
12 − 2M23M24M

2
12 −M13M23M

2
34 +M23M24M

2
34

5.4 Hq(sl(2,k))

5.4.1 The Polynomials Defining the Point Scheme of Hq(sl(2,k))

5.4.1.1. −(q − 1)(q + 1)
(
q2 + 1

)
x1x

2
3x4
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5.4.1.2.
(q−1)(q+1)(q2+1)x2x

2
3x4

q4

5.4.1.3. −x2
3(x1x2q

8+x2
3q

4−x2
4q

4−2x1x2q
4+x1x2)

(q−1)q2(q+1)(q2+1)

5.4.1.4. − (q−1)(q+1)(q2+1)x1x3x
2
4

q2

5.4.1.5. (q − 1)(q + 1)
(
q2 + 1

)
x21x3x4

5.4.1.6. x3(x3−x4)x4(x3+x4)
(q−1)(q+1)(q2+1)

5.4.1.7.
(q−1)(q+1)(q2+1)x2x3x

2
4

q2

5.4.1.8. − q4x3(x3−x4)x4(x3+x4)
(q−1)(q+1)(q2+1)

5.4.1.9. − (q−1)(q+1)(q2+1)x2
2x3x4

q4

5.4.1.10.
x2
4(x1x2q

8−x2
3q

4+x2
4q

4−2x1x2q
4+x1x2)

(q−1)q2(q+1)(q2+1)

5.4.1.11. − (q−1)(q+1)(q2+1)(q4+1)x1x2x3x4

q4

5.4.1.12.
x1x3(−x2

4q
8+x1x2q

8+x2
3q

4−2x1x2q
4+x1x2)

(q−1)q2(q+1)(q2+1)

5.4.1.13.
x2x3(x1x2q

8+x2
3q

4−2x1x2q
4−x2

4+x1x2)
(q−1)q2(q+1)(q2+1)

5.4.1.14. −x1x4(x1x2q
8+x2

4q
4−2x1x2q

4−x2
3+x1x2)

(q−1)(q+1)(q2+1)

5.4.1.15. −x2x4(−x2
3q

8+x1x2q
8+x2

4q
4−2x1x2q

4+x1x2)
(q−1)q4(q+1)(q2+1)

5.4.2 A Gröbner Basis for the Point Scheme of Hq(sl(2, k))

The following polynomials were found by computing a Gröbner basis using Wolfram’s Math-

ematica and the polynomials given in Appendix 5.4.1.

5.4.2.1. x3x4(x3 − x4)(x3 + x4)

5.4.2.2. x2x3x
2
4

5.4.2.3. x2x
2
3x4

5.4.2.4. x22x3x4

5.4.2.5. x1x3x
2
4

5.4.2.6. x1x
2
3x4

5.4.2.7. x24
(
q8x1x2 − 2q4x1x2 − q4x23 + q4x24 + x1x2

)
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5.4.2.8.
(
q4 + 1

)
x1x2x3x4

5.4.2.9. x23
(
q8x1x2 − 2q4x1x2 + q4x23 − q4x24 + x1x2

)
5.4.2.10. x2x4

(
q8x1x2 − 2q4x1x2 + q4x24 + x1x2

)
5.4.2.11. x2x3

(
q8x1x2 − 2q4x1x2 + q4x23 + x1x2

)
5.4.2.12. x21x3x4

5.4.2.13. x1x4
(
q8x1x2 − 2q4x1x2 + q4x24 + x1x2

)
5.4.2.14. x1x3

(
q8x1x2 − 2q4x1x2 + q4x23 + x1x2

)

5.4.3 The Jacobian Matrix of the Point Scheme of Hq(sl(2,k))

The matrix comprised of the following columns, read from left to right, is determined by the

polynomials in Appendix 5.4.2.



0

0

0

0

x3x24
x23x4

(q − 1)2(q + 1)2
(
q2 + 1

)2
x2x24(

q4 + 1
)
x2x3x4

(q − 1)2(q + 1)2
(
q2 + 1

)2
x2x23

(q − 1)2(q + 1)2
(
q2 + 1

)2
x22x4

(q − 1)2(q + 1)2
(
q2 + 1

)2
x22x3

2x1x3x4

x4
(
2q8x1x2 − 4q4x1x2 + q4x24 + 2x1x2

)
x3

(
2q8x1x2 − 4q4x1x2 + q4x23 + 2x1x2

)



,



0

x3x24
x23x4

2x2x3x4

0

0

(q − 1)2(q + 1)2
(
q2 + 1

)2
x1x24(

q4 + 1
)
x1x3x4

(q − 1)2(q + 1)2
(
q2 + 1

)2
x1x23

x4
(
2q8x1x2 − 4q4x1x2 + q4x24 + 2x1x2

)
x3

(
2q8x1x2 − 4q4x1x2 + q4x23 + 2x1x2

)
0

(q − 1)2(q + 1)2
(
q2 + 1

)2
x21x4

(q − 1)2(q + 1)2
(
q2 + 1

)2
x21x3



,



x4
(
3x23 − x24

)
x2x24

2x2x3x4

x22x4

x1x24
2x1x3x4

−2q4x3x24(
q4 + 1

)
x1x2x4

2x3
(
q8x1x2 − 2q4x1x2 + 2q4x23 − q4x24 + x1x2

)
0

x2
(
q8x1x2 − 2q4x1x2 + 3q4x23 + x1x2

)
x21x4

0

x1
(
q8x1x2 − 2q4x1x2 + 3q4x23 + x1x2

)



,



x3
(
x23 − 3x24

)
2x2x3x4

x2x23
x22x3

2x1x3x4

x1x23
2x4

(
q8x1x2 − 2q4x1x2 − q4x23 + 2q4x24 + x1x2

)(
q4 + 1

)
x1x2x3

−2q4x23x4
x2

(
q8x1x2 − 2q4x1x2 + 3q4x24 + x1x2

)
0

x21x3

x1
(
q8x1x2 − 2q4x1x2 + 3q4x24 + x1x2

)
0



.
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5.4.4 The Polynomials Defining the Line Scheme of Hq(sl(2,k))

The following polynomials determine L(q). Note that some of these are nonzero scalar mul-

tiples of those obtained using the process outlined in [30].

5.4.4.1. M14M23 −M13M24 +M12M34

5.4.4.2. M13

(
M12M13M14q

8 − 2M12M13M14q
4 +M2

13M34q
4 −M2

14M34q
4 +M12M13M14

)
5.4.4.3. M14

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.4.4. M24

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.4.5. M12

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.4.6. M34

(
M12M13M14q

8 − 2M12M13M14q
4 +M2

13M34q
4 −M2

14M34q
4 +M12M13M14

)
5.4.4.7. (M13M23 −M14M24)M2

34q
2

5.4.4.8. (M13M23 −M14M24)M2
34q

2

5.4.4.9. M34

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.4.10. M12M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.11. M12M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.12. M13M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.13. M34

(
−M13M14M24q

8 −M13M
2
34q

4 +M2
14M23q

4 +M13M14M24q
4

+M12M14M34q
4 −M2

14M23 −M12M14M34

)
5.4.4.14. M13M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.15. M14M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.16. M34

(
M2

13M24q
8 −M12M13M34q

8 +M14M
2
34q

4 −M13M14M23q
4 −M2

13M24q
4

+M12M13M34q
4 +M13M14M23

)
5.4.4.17. M14M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.18. M23M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.19. M23M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
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5.4.4.20. M34

(
−M13M

2
24q

8 +M12M24M34q
8 +M13M

2
24q

4 −M23M
2
34q

4 +M14M23M24q
4

−M12M24M34q
4 −M14M23M24

)
5.4.4.21. M24M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.22. M34

(
−M13M23M24q

8 +M14M
2
23q

4 −M24M
2
34q

4 +M13M23M24q
4 +M12M23M34q

4

−M14M
2
23 −M12M23M34

)
5.4.4.23. M24M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.24. M2

34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.25. M2

34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.26. M14

(
M12M13M14q

8 − 2M12M13M14q
4 +M2

13M34q
4 −M2

14M34q
4 +M12M13M14

)
5.4.4.27. M12M13M14M23q

8 +M2
13M23M34q

8 −M13M14M24M34q
8 +M12M14M

2
34q

4

− 2M12M13M14M23q
4 +M12M13M14M23

5.4.4.28. M12M
2
14M23q

8 +M2
12M14M34q

8 −M13M14M23M34q
8 +M2

14M24M34q
8

+M12M13M
2
34q

4 −M12M
2
14M23q

4 −M12M13M14M24q
4 −M2

12M14M34q
4

+M12M13M14M24

5.4.4.29. M12M14M
2
23q

8 +M13M
2
23M34q

8 +M2
12M23M34q

8 −M14M23M24M34q
8

−M12M14M
2
23q

4 +M12M24M
2
34q

4 −M12M13M23M24q
4 −M2

12M23M34q
4

+M12M13M23M24

5.4.4.30. M13

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.4.31. M23

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.4.32. M12M13M14M24q

8 +M12M13M
2
34q

4 − 2M12M13M14M24q
4 +M12M13M14M24

+M13M14M23M34 −M2
14M24M34

5.4.4.33. M12M13M14M23q
8 +M12M14M

2
34q

4 −M12M13M14M23q
4 −M12M

2
13M24q

4

+M2
12M13M34q

4 +M12M
2
13M24 −M2

12M13M34 −M2
13M23M34

+M13M14M24M34

5.4.4.34. M13M14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.35. M13M14

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
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5.4.4.36. M13M
2
14M23q

12 + M2
14M

2
34q

8 −M13M
2
14M23q

8 + M12M13M14M34q
8 + M2

13M
2
34q

4 −

M2
13M14M24q

4 −M12M13M14M34q
4 +M2

13M14M24

5.4.4.37. M12M14M23M24q
8 −M12M13M

2
24q

4 +M12M23M
2
34q

4 −M12M14M23M24q
4

+M2
12M24M34q

4 +M12M13M
2
24 −M14M

2
24M34 −M2

12M24M34

+M13M23M24M34

5.4.4.38. M13M14M23M24q
12 +M13M23M

2
34q

8 −M13M14M23M24q
8 +M14M24M

2
34q

4

−M13M14M23M24q
4 +M13M14M23M24

5.4.4.39. M14M
2
23M24q

12+M2
23M

2
34q

8−M14M
2
23M24q

8+M12M23M24M34q
8−M13M23M

2
24q

4+

M2
24M

2
34q

4 −M12M23M24M34q
4 +M13M23M

2
24

5.4.4.40. −M2
13M23M24q

12 −M13M24M
2
34q

8 +M2
13M23M24q

8 +M12M13M23M34q
8

+M13M14M
2
23q

4 −M14M23M
2
34q

4 −M12M13M23M34q
4 −M13M14M

2
23

5.4.4.41. −M13M14M
2
24q

12 +M13M14M
2
24q

8 −M13M24M
2
34q

8 +M12M14M24M34q
8

−M14M23M
2
34q

4 +M2
14M23M24q

4 −M12M14M24M34q
4 −M2

14M23M24

5.4.4.42. M23M24

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.4.43. M23M24

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.4.44. M2

12M13M14q
8−M2

13M14M23q
8+M13M

2
14M24q

8−2M2
12M13M14q

4+M12M
2
13M34q

4−

M12M
2
14M34q

4 +M2
12M13M14 +M2

13M14M23 −M13M
2
14M24

5.4.4.45. (M13M23 −M14M24)
(
−M14M23q

8 +M12M34q
4 +M13M24

)

5.4.5 A Gröbner Basis for the Line Scheme of Hq(sl(2,k))

The following polynomials were found by computing a Gröbner basis using Wolfram’s Math-

ematica and the polynomials given in Appendix 5.4.4.

5.4.5.1. M2
34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.2. M24M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.3. M23M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.4. M23M24

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.5. M23M24

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
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5.4.5.6. M23M24

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.7. M2

23

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.8. M2

23

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.9. M2

23

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.10. M14M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.11. M14M23

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.12. M14M23

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.13. M14M23

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.14. M2

34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.15. M24M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.16. −M13M23M

2
24q

8 + M14M
2
23M24q

8 + 2M13M23M
2
24q

4 + M2
23M

2
34q

4 − M2
24M

2
34q

4 −

2M14M
2
23M24q

4 −M13M23M
2
24 +M14M

2
23M24

5.4.5.17. M23M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.18. M23M24

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.19. M23M24

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.20. M23M24

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.21. M13M34

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.22. (M14M23 −M13M24)

(
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.23. M14M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.24.

(
q4 + 1

) (
M13M14M23M24q

16 − 4M13M14M23M24q
12 −M4

34q
8

+6M13M14M23M24q
8 − 4M13M14M23M24q

4 +M13M14M23M24

)
5.4.5.25.

(
q4 + 1

) (
M13M14M23M24q

16 − 4M13M14M23M24q
12 −M4

34q
8

+6M13M14M23M24q
8 − 4M13M14M23M24q

4 +M13M14M23M24

)
5.4.5.26.

(
q4 + 1

) (
M13M14M23M24q

16 − 4M13M14M23M24q
12 −M4

34q
8

+6M13M14M23M24q
8 − 4M13M14M23M24q

4 +M13M14M23M24

)
118



5.4.5.27. M14M23

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.28. M14M23

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.29. M14M23

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.30. M13M14

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.31. M13M14

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.32. M13M14

(
q4 + 1

) (
M14M24q

8 +M2
34q

4 − 2M14M24q
4 +M14M24

)
5.4.5.33. M2

14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.34. M2

14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.35. M2

14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.36. M13M34

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.37. (M13M24 −M14M23)

(
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.38. −M13M

2
14M23q

8 + M2
13M14M24q

8 + M2
13M

2
34q

4 − M2
14M

2
34q

4 + 2M13M
2
14M23q

4 −

2M2
13M14M24q

4 −M13M
2
14M23 +M2

13M14M24

5.4.5.39. M13M14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.40. M13M14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.41. M13M14

(
q4 + 1

) (
M13M23q

8 +M2
34q

4 − 2M13M23q
4 +M13M23

)
5.4.5.42. M14M23 −M13M24 +M12M34

5.4.5.43. M24

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.5.44. M23

(
M12M23M24q

8 − 2M12M23M24q
4 −M2

23M34q
4 +M2

24M34q
4 +M12M23M24

)
5.4.5.45. M12M14M23M24q

16 − 4M12M14M23M24q
12 −M14M

2
23M34q

12 −M24M
3
34q

8

+ 6M12M14M23M24q
8 + 2M14M

2
23M34q

8 − 4M12M14M23M24q
4 −M14M

2
23M34q

4

+M12M14M23M24

5.4.5.46. M12M13M23M24q
16 − 4M12M13M23M24q

12 +M13M
2
24M34q

12 +M23M
3
34q

8

+ 6M12M13M23M24q
8 − 2M13M

2
24M34q

8 − 4M12M13M23M24q
4

+M13M
2
24M34q

4 +M12M13M23M24
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5.4.5.47. M12M13M14M24q
16 − 4M12M13M14M24q

12 +M2
13M24M34q

12 +M14M
3
34q

8

+ 6M12M13M14M24q
8 − 2M2

13M24M34q
8 − 4M12M13M14M24q

4

+M2
13M24M34q

4 +M12M13M14M24

5.4.5.48. M12M13M14M23q
16 − 4M12M13M14M23q

12 −M2
14M23M34q

12 −M13M
3
34q

8

+ 6M12M13M14M23q
8 + 2M2

14M23M34q
8 − 4M12M13M14M23q

4 −M2
14M23M34q

4

+M12M13M14M23

5.4.5.49. M14

(
M12M13M14q

8 − 2M12M13M14q
4 +M2

13M34q
4 −M2

14M34q
4 +M12M13M14

)
5.4.5.50. M13

(
M12M13M14q

8 − 2M12M13M14q
4 +M2

13M34q
4 −M2

14M34q
4 +M12M13M14

)
5.4.5.51. M14M23M

2
24q

16 +M13M
2
23M24q

16 + 4M2
12M23M24q

16 + 4M14M
3
23q

12

+ 4M13M
3
24q

12 − 4M14M23M
2
24q

12 + 2M23M24M
2
34q

12 − 4M13M
2
23M24q

12

− 16M2
12M23M24q

12 − 8M14M
3
23q

8 − 8M13M
3
24q

8 + 6M14M23M
2
24q

8

+ 4M23M24M
2
34q

8 + 6M13M
2
23M24q

8 + 24M2
12M23M24q

8 + 4M14M
3
23q

4

+ 4M13M
3
24q

4 − 4M14M23M
2
24q

4 + 2M23M24M
2
34q

4 − 4M13M
2
23M24q

4

− 16M2
12M23M24q

4 +M14M23M
2
24 +M13M

2
23M24 + 4M2

12M23M24

5.4.5.52. 4M2
12M13M14q

16 +M2
13M14M23q

16 +M13M
2
14M24q

16 + 2M13M14M
2
34q

12

− 16M2
12M13M14q

12 + 4M3
14M23q

12 − 4M2
13M14M23q

12 + 4M3
13M24q

12

− 4M13M
2
14M24q

12 + 4M13M14M
2
34q

8 + 24M2
12M13M14q

8 − 8M3
14M23q

8

+ 6M2
13M14M23q

8 − 8M3
13M24q

8 + 6M13M
2
14M24q

8 + 2M13M14M
2
34q

4

− 16M2
12M13M14q

4 + 4M3
14M23q

4 − 4M2
13M14M23q

4 + 4M3
13M24q

4

− 4M13M
2
14M24q

4 + 4M2
12M13M14 +M2

13M14M23 +M13M
2
14M24
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