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The objective of this study was to develop an interactive software application for 

image reconstruction and analysis of the corneal data from an in vivo confocal microscope 

(Heidelberg Retinal Tomograph with Rostock Corneal Module, HRT-RCM). The optical 

sectioning ability of confocal microscopy gives high resolution optical section images at 

different depths within a thick tissue, thereby eliminating the need for physical sectioning. 

This ability of 4-dimensional (x, y, z and t) imaging makes confocal microscopy uniquely 

suited for imaging the cornea at the cellular level. The new program was developed to 

overcome the drawbacks of the original application “Confo” developed in the C++ 

programming environment. Since it was developed in C++, the original program was 

cumbersome and modifications or addition of new features required extensive programming 

experience in C++. The new application was developed on MATLAB platform because of its 

well-known user-friendly programming environment, extensive tool box for image 

processing and analysis, and more widespread availability and use.  

The MATLAB tool allows user to input 3-D confocal files produced by the HRT-

RCM. A series of images parallel to the epithelium of the cornea acquired in a sequence are 
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stored in a single “.vol” (Volume) file, with each image having header information (image 

number and timestamp for depth calculation) of 384 bytes, followed by actual image data of 

384X384 pixels.  This new software decodes the volume file, and provides interactive 

visualization of the 3-D confocal dataset. In addition, a plot of image versus depth is 

generated using a user-selected region of interest. This curve can be used for quantitative 

measurements of sub corneal layers (epithelial, stromal and endothelial thicknesses) and 

assessment of stromal haze. These strategies can help corneal researchers and clinicians to 

visualize and quantify the cellular events of corneal wound healing following incisional 

surgery, endothelial keratoplasty, corneal crosslinking procedures, infectious keratitis and 

refractive surgical procedures such as photorefractive keratectomy (PRK) and laser-assisted 

in situ keratomileusis (LASIK).  

A new feature of this tool is to pick the center of the desired Region of Interest (ROI) 

from the image stack for curve calculation, in contrast to confo which always positions the 

ROI on the center of the image for curve calculation. Different sizes and positions of ROIs 

are sometimes required while assessing a more convex cornea or off center apex in the scan.  

In vivo corneal examinations of rabbit cornea (on different days of wound healing) 

and of mouse cornea are performed and presented to demonstrate the above mentioned 

capabilities of the tool. 
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Chapter 1 

INTRODUCTION 

 

The eye is one of the most important sensory organs of the human body. It provides 

vision, a process in which the light reflected from the objects in the environment is translated 

into a mental image.[1] The main optical components of the eye are the cornea and the lens, 

which focus light onto the sensory neurons in the retina. 

1.1 Cornea 

The Cornea is a clear, protective outer layer of the eye which acts as a barrier against 

dust, germs and other particles from entering into the eye. It also acts like a “lens” for the 

light to pass through and is capable of filtering out damaging ultraviolet rays from the sun. 

Cornea provides tensile strength to the front of the eye and serves as a refractive interface, 

thereby contributing to about two/thirds of the optical power of the eye.[2] 

1.2 Anatomy and Physiology of Cornea  

The cornea separates air with index of refraction of 1.00 and aqueous humor with an 

index of refraction of 1.33.  It has several sublayers (Fig 1.1(a)) including[3, 4] 

(1) The epithelium (~50 µm) – It is the superficial protective layer of the cornea with 5 to 7 

layers of regenerative stratified squamous cells. This layer gets oxygen and nutrients 

from tears, and is an important component of the total refractive power of the eye 

because it is at the air/tissue interface. 
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(2) The stroma (~500 µm) – Stroma makes up 90% of a corneal thickness and is composed 

of regularly arranged collagen fibrils with sparsely distributed interconnected 

keratocytes or corneal corpuscles, cells important for wound healing. The anterior 

portion of the stroma is Bowman’s layer[23], which is made of randomly aligned 

collagen fibrils forming an acellular condensed region resistant to deformation, injury, 

and passage of foreign and infecting bodies. The posterior portion is bordered by 

Descemet’s membrane, which is composed of collagen fibers.[2] 

(3) The endothelium (~5 µm) – The posterior surface of the cornea is covered by a single 

layer of endothelial cells, which regulates the solute transport between the aqueous 

humor and stromal compartments of cornea.   
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Figure 1.1 Cross section of Cornea 

Figures 1.1(b), 1.1(c), 1.1(d) are corneal images of a rabbit collected using in vivo 

confocal microscopy, reconstructed from the current software “Cornea1”. Figure 1.1(b) 

shows a cross section of the cornea, and figures 1.1(c) and 1.1(d) shows the Epithelium and 

Endothelium of the cornea, respectively. 
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1.3 Common Corneal Disorders 

(1) Myopia: It is also known as near-sightedness or short-sightedness, a condition where 

the light coming into the eye does not fall on the retina, and is instead focused in front 

of the retina which causes the vision to be out of focus. This does not cause problems 

when looking at closer objects.     

(2) Hyperopia: It is also known as farsightedness or long-sightedness, a reverse condition 

of myopia, mainly caused by the abnormal shape of cornea. This causes blurred vision 

because the light entering into the eye is focused behind the retina. 

(3) Astigmatism: A condition where the light entering the eye is refracted more in one 

direction than the other, creating different focal points in different planes.  The vision 

is distorted to some degree at all distances.[3]   

(4) Keratoconus: It is a degenerative disorder caused when the dome shaped cornea thins 

into a conical shape. This occurs when the collagen fibers holding the cornea in place 

become loose and degrade. 

(5) Fuchs’ dystrophy: It is a genetic disorder where the endothelial cells degenerate to 

form bumps called “Guttae”, these get accumulated on the Descemet’s membrane. 

This damages the other cells in the layer causing dysfunction of the endothelium.            

(6) Bullous Keratopathy: A pathological condition developed because of Fuchs’ 

dystrophy or corneal trauma. Because of the dysfunctional endothelium, the stroma 

swells and fluid filled bullae are formed in the epithelium leading to discomfort, loss 

of contrast, glare and corneal ulcers causing pain. 

(7) Infectious keratitis: Keratitis can be infectious if caused by bacteria, viruses, fungi or 

parasites. It can be induced by noninfectious stimuli such as wearing contact lenses, 

minor injuries, etc.[15, 16, 17] The bacteria (e.g. Micrococcaceae, Streptococcus, 

Pseudomonas, and Enterobacteriaceae) or virus (e.g. herpes simplex and herpes 
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zoster[27]) invade the cornea, breaking down the epithelium and causing ulcers, 

swelling or inflammation which lead to temporary or permanent reduction in 

vision.[5]  

1.4 Treatment 

In addition to treatment with antibiotics or steroid drops, procedures including 

incisional surgery, penetrating keratoplasty[22], endothelial keratoplasty, corneal crosslinking 

procedures and refractive surgical procedures such as photorefractive keratectomy (PRK) and 

laser-assisted in situ keratomileusis (LASIK)[6] are used to treat some of the above 

mentioned corneal pathophysiological conditions. These procedures concentrate on 

correcting the shape of the cornea (PRK and LASIK), improving the strength of the collagen 

fiber bonding (corneal crosslinking[28]) or even transplant all or part of the affected corneal 

tissue (Keratoplasty). 

One important tool that is used to access corneal pathology and monitor the response 

to various treatments is in vivo confocal microscopy.[18, 19, 20] 

1.5 Confocal Microscopy 

Confocal microscopy, an optical imaging technique, is well established for its high 

resolution and contrast.[7] It has several advantages over conventional light microscopy, with 

the ability to image within tissue with increased axial and lateral resolution. A conventional 

light microscope collects all of the light reflected by the specimen within the volume 

illuminated whereas a confocal microscope rejects the out of focus information through a 

“pinhole” concept, where the light from the targeted plane reaches the detector and the light 

from above and below the focal plane is suppressed by the pinhole (Fig 1.2). This technique 

was first defined by Marvin Minsky in 1955.[4, 8] 
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Figure 1.2 Principle of Confocal Microscopy 

1.6 In Vivo Confocal Microscopy of the Cornea 

Confocal microscopy with a laser source for excitation is extensively used for 

fluorescence applications in in vitro and ex vivo studies of cell biology.[9] However, confocal 

imaging is also ideally suited for in vivo examinations because of its noninvasive optical 

sectioning ability, which eliminates the need for sectioning and straining procedures.[4] This 

unique technique is used for a number of clinical applications to study corneal tissue in living 

subjects. Three main confocal instruments with different hardware and software architectures 

have been developed for corneal imaging. These are the tandem scanning confocal 

microscope (TSCM, a spinning disk confocal), the Confoscan 4 (scanning slit system), and 

the Heidelberg Retina Tomograph with Rostock Cornea Module (HRT-RCM, a scanning 

laser system).[7] 

The TSCM is a modified version of the first scanning confocal microscope described 

by Petran and Hardravsky. This microscope uses a modified Nipkow disk containing 

thousands of optically conjugate (source/detector) pinholes arranged in Archimedean 

spirals.[7, 10] A full field confocal image is reconstructed from the light that is transmitted 
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through and received from each conjugate pair of pinholes as the disc rotates.[4] For corneal 

imaging, the system also has specially designed surface contact lens. The position of the focal 

plane inside the cornea is calibrated by moving the lens inside the objective casing, using a 

computer controlled motor drive. A technique called Confocal Microscopy Through Focusing 

(CMTF) was developed for TSCM systems to obtain quantitative 3D information from the 

cornea; the technique also allows 3D visualization of the corneal tissue.[7] CMTF scans are 

obtained by optically sectioning the cornea in a direction perpendicular to the z-axis; i.e. from 

epithelium to endothelium, at a constant lens speed. The z-axis intensity profile obtained 

from CMTF scans provides information about depth and thickness of corneal cell layers, 

since different corneal sublayers produce different reflective intensities when imaged using 

confocal microscopy.[11] Less than 1% of the transmitted light is recovered with the TSCM 

due to the spinning disc design. This a technical drawback of TSCM system for in vivo 

imaging, since this produces a low signal to noise ratio.[12] 

The Confoscan 4 is a variable slit confocal microscope. In this microscope, the 

pinholes are replaced with independent adjustable slits and the beam splitter is replaced with 

a 2-sided mirror which scans the image of the slit over the cornea.[14] This design improves 

the amount of light reaching the detector thereby increasing the image contrast. A better 

signal to noise ratio (SNR) than TSCM is also achieved, but at the expense of axial 

resolution.[7] The confoscan is user-friendly with automatic alignment and scanning 

software. However, it uses a non-contact objective, thus there is significant movement of the 

cornea during imaging, and quantitative CMTF imaging is unreliable.  

The HRT-RCM is a laser scanning confocal microscope with a 670 nm laser beam as 

a light source that scans the tissue in a raster pattern (Fig 1.3). The resulting backscattered 

signal from the cornea is detected with a PMT. The HRT-RCM has a 63X objective lens with 
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0.9 NA numerical aperture that produces high resolution and contrast images. Its axial 

resolution is 7.6 µm, which is better than other in vivo confocal systems (9 µm for TSCM and 

24 µm for Confoscan).[7, 13] 

 

Figure 1.3 HRT-RCM (Heidelberg Retinal Tomograph with Rostock Corneal 

Module) 

Despite these advantages, certain limitations exist for the HRT-RCM. The system 

produces automated z-scans of 60µm using an internal lens drive; however, for a larger z-

scan distances the focal plane must be changed by manually rotating a thumbscrew drive. 

Also, the standard HRT software collects a maximum of 100 images in a sequential scan. 

Both of these limitations prevent the use of CMTF for imaging and analysis. As detailed 

below, we previously developed hardware and software modifications to address these 

limitations and allow CMTF imaging with the HRT-RCM. 

1.7 Previous Work 

(a) Hardware modifications: The thumbscrew was removed and a Newport TRA25CC 

Motorized Actuator with DC Servo motor drive enclosed in a custom-made housing 

was attached to the HRT scan head to allow hands-free control of focusing using a 
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joystick. Also, the HRT-RCM was mounted on a slit lamp stand for more flexible 

positioning (Fig 1.4).[7, 14]  

                  Figure 1.4 (A) HRT-RCM 

with          thumbscrew 

(arrow) 

                 (B) Modified HRT-RCM 

 

(b) Software modifications: Larger sequence z-scans, up to a maximum of 14,525 

images can be obtained using Beta “Streaming” software from Heidelberg 

Engineering. All images in the sequence are combined into a single “.vol” (Volume) 

file with each image containing 384 bytes of header information followed by 384 X 

384 pixel data. The header information is decoded using the software to generate the 

CMTF stacks. The data structure for the “.vol” file is included in Appendix A for 

reference.  
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Chapter 2 

METHODS 

 

2.1 Goals 

The previous application “Confo” effectively reconstructs the 2D (front, side and top) 

and 3D views of corneal image stacks from the HRT-RCM. It has a user interface built on the 

Microsoft Visual C++ (version 6.0) object oriented programming environment. Since it was 

developed in C++, the program was cumbersome and any modification or addition of features 

requires extensive programming experience in C++.  

The main goals of this thesis project were to: (a) develop and test a new CMTF 

application in a more user friendly and widely available programming environment, with all 

effective features for providing quantitative data from CMTF image stacks, and (b) add a new 

feature for interactively selecting the center of the desired Region of Interest (ROI) from the 

image stack for curve calculation (Confo always positions the ROI on the center of the image 

for curve calculation). This new feature is needed since different sizes and positions of ROIs 

are sometimes required while assessing a more convex cornea.  

2.2 Software Development 

2.2.1 MATLAB  

The current application was developed using MATLAB, since it is a widely available 

software platform. MATLAB is a matrix based technical programming language that is very 

user-friendly and easier to learn compared to Visual C++. Its built-in graphics simplifies the 

process of visualizing, animating, and projecting 2D and 3D images and plots of data. The 
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extensive toolbox for Image processing and analysis also makes it an ideal choice for the 

present project. The high level language in MATLAB includes features for developing and 

sharing code, error handling, object-oriented programming (OOP), and a unit testing 

framework (performance tests on code can be done). MATLAB applications can be 

integrated with those written in other languages (C/C++, .Net, Python). Also, these other 

programming languages can interact with MATLAB by using functions to call MEX-files. 

MATLAB runs on Windows (with any Intel or AMD x86 processor supporting SSE2 

instruction set), MAC (with all Intel-based Macs with an Intel Core 2 or later) and LINUX 

(with any Intel or AMD x86 processor supporting SSE2 instruction set) and takes up a 

minimum of 1GB disc space.  

The MATLAB compiler allows developers to compile their User Interface (UI) 

programs as executables that are standalone applications.  All the applications built on the 

MATLAB compiler use MATLAB Runtime, which allows sharing of the executable to users 

who do not have a MATLAB license. MATLAB Runtime is a set of standalone MATLAB 

libraries which enables compiled applications to run on computers which do not have the full 

version of MATLAB. 

2.2.2 System Specifications 

MATLAB version R2015a, 64-bit was used for building the program. A computer 

with Microsoft Windows 10 Home (Version 1511), 64-bit Operating System and; x64 based 

Intel core processor was used for programming because of its widespread availability and 

use. A minimum RAM (Random Access Memory) of 8GB is required to run the program. 
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2.2.3 Event Driven Programming 

In a computer environment, event driven programming is where the control and 

execution of the program happens when certain user actions (mouse clicks, key presses) 

called “events” are triggered. Building an app is writing an event driven program, where the 

app is static on the screen until the user interacts with it. In response to these user actions, 

callback functions are executed in the background and the final result is displayed on the 

screen. These functions are coded to give user desired output in response to the respective 

event triggered. 

Every callback in the event driven program is a function that requires data on which 

to operate, and stores the output in a form usable by other callbacks. All the callback 

functions coordinate with each other and work together to achieve the final task of the app.  

MATLAB supports two methods for writing event driven programs:  

1) Writing the code from scratch  

2) Using GUIDE, the MATLAB Graphical User Interface Design Environment 

The present application was developed by writing the code from scratch, because for 

this specialized application and the author of the code needed more control over the program. 

Also, editing and formatting of the code was more intuitive. 

Objects are high level interacting units that combine data with its actions.4 The 

MATLAB UI controls objects such as push buttons, sliders and popup menus which have 

been used to build this application. The user interacts with these objects during program 

execution, and respective callbacks are executed. When an object is created its properties and 

callback functions should be defined. Properties have information about the object and the 

data that is associated with the object. Examples of properties are appearance, location and 
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size, type of control object, callback execution control, identifiers, interactive control, 

creation and deletion control, parent/child, font style, etc.   

2.2.4 Program Architecture 

Figure 2.1 Program architecture of the application “Cornea1” 
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The program is data centered and user defined functions are developed for decoding 

the data from the volume files of the HRT RCM microscope (Fig 2.1). Image and signal 

processing techniques are used in the background of the application and data is provided to 

the front panel objects to update the application. Some Matrix operations and Mathematical 

calculations are performed to extract the timestamp of the image and to calculate the depth.  

2.2.5 User Interfaces 

“Cornea1” has a flexible user interface with all the application settings being user-

selectable through window prompts, dropdown menus and dialog boxes (Fig 2.2). After 

setting up the desired application settings, the user performs image and data analysis on 

screen.  

The user interfaces include a dropdown menu to open a volume file, a drop down 

menu to select different filtering masks, a prompt to enter the speed of the microscope lens to 

calculate the image depth, a prompt to enter the baseline for haze area calculation, a 

dropdown menu to select the category of ROI (centered or off centered) followed by buttons 

to select different sizes of ROI, different buttons to calculate epithelial, stromal and 

endothelial depths and thicknesses; start, stop and area buttons to select end points of haze on 

the intensity graph and to calculate the area between those end points, a button to produce a 

output text file of all data analysis performed, and different sliders to interactively move 

through the 3D data stack in all directions and to pick the layers of interest in the stack. 
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Figure 2.2 User Interfaces 
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The user can also interactively drag a rectangular object on the screen to select the 

desired ROI for Intensity curve generation, as shown in the following figure (Fig 2.3). 

 

Figure 2.3 Interactive ROI selection 

2.3 Experimental Models 

2.3.1 Animal Models  

New Zealand white rabbits and normal C57BL/6 mice were used as subjects for 

transcorneal freeze injury. A stainless steel probe of (3mm diameter for rabbit and 1mm 

diameter for mice) cooled with liquid nitrogen was applied to the anterior and central corneal 

surface of one eye per animal (three times for 10 seconds each time on rabbit eye and two 

times for 5 seconds each on mice eye). Therefore a region of cell death in the central cornea 

was created. One drop of gentamicin antibiotic solution was then applied twice a day for 3 

days after the surgery. Rabbits were also used as subjects for PRK (Phorefractive 
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keratectomy). A VISX STAR S4/IR Excimer Laser System was used to remove the 

epithelium of central region of the cornea (8 mm diameter) from one eye of each rabbit; the 

contralateral eye served as a control. The animal then received a standard 6 mm diameter, 9 

diopter spherical myopic photocorrection using the same laser system. Finally, normal 

C57BL/6 mice (25-30g, 10-14 weeks old) were used to test the system on a smaller cornea 

with higher radius of curvature. All rules and guidelines of ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research were followed.  

2.3.3 In vivo Confocal Microscopy 

Rabbits with transcorneal freeze injury, normal C57BL/6 mice and rabbits treated 

with PRK were anesthetized using intramuscular ketamine (50 mg/kg) and xylazine (5.0 

mg/kg) prior to scanning. Also, a drop of proparacaine a topical anesthetic was applied to the 

eye being scanned. Genteal was applied on the tip of HRT-RCM objective lens to serve as a 

thin liquid cushion to eliminate bright surface reflections. The lens was then aligned with 

central region of the cornea and CMTF scans from epithelium to endothelium were obtained 

with a constant lens speed of 60 µm per second for rabbit cornea and 30 µm per second for 

mouse cornea. During each scan, images were continuously written to a “.vol” file at a rate of 

approximately 30 frames per second. A minimum of four scans at different gain settings (0, 6 

and 10) were performed with a step size of ~2 µm between the images for a lens speed of 60 

µm/sec for rabbit cornea and a step size of ~1 µm between the images for a lens speed of 30 

µm/sec for mouse cornea. The “automatic brightness” function of HRT II software was 

turned off (by unchecking the corresponding box) and the gain level was controlled using the 

slider above the ‘automatic brightness’ box. A pixel size of 1.04X1.04 µm (x, y) was 

obtained for each 384X384 pixel image in a scan, with a field of view was 400X400 µm. 
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Chapter 3 

RESULTS 

3.1 Image and Signal Analysis 

The images (volume files) from the microscope are decoded using the header file 

information; (the header file is included in Appendix B for a detailed data structure 

description). The image stack was stored in the form of a 3D matrix with length ‘x’ (384 

pixels), width ‘y’ (384 pixels) and depth ‘z’ being the number of image slices. The x and y 

values are default as mentioned in the header file.    

3.1.1 Intensity Curve Calculation and Representation  

The intensity of each slice is calculated by taking the average of all 384X384 pixels of 

each 2-D image and plotting it against its respective image slice number. We get peaks in the 

graph whenever the average intensity of a certain slice or a set of consecutive slices is high. 

The first peak in the graph is normally the front of the epithelium, the second peak 

corresponds to the basal lamina and the third peak corresponds to the posterior surface of the 

endothelium (which marks the end of cornea). These peaks are produced because the back 

scattered intensities of the corresponding layers are high compared to the rest of the volume 

in the cornea (due to changes in refractive index). A graph showing the intensity plot is 

showed in the following figure (Fig 3.1). 
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Figure 3.1 Intensity plot from a normal rabbit cornea 

3.1.2 Intensity Curve Calculation Based on ROI Selection 

The two categories of ROI in the application are: (a) centered (b) off centered. 

(a) Centered ROI (Fig 3.2): The intensity of each slice in the stack is calculated by 

picking the pixels from the center of the image, with pixel location (192,192) being 

the center of the ROI irrespective of the size of the ROI. The size of the ROI is user 

selectable with selections limited to 50X50, 100X100, 200X200, and 384X384. The 

intensity of each slice is then calculated as the average of the intensities of pixels in 

the selected ROI, a graph is then plotted with slice intensity versus slice number. 
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Figure 3.2 Different sizes of centered ROI and corresponding intensity graph from a normal 

rabbit cornea 

(b)  Off centered ROI (Fig 3.3): The calculation of intensity of each slice remains the 

same as mentioned above for all sizes of ROI, except that the center pixel of ROI is 

now user selectable.   

  Figure 3.3 Off centered ROI selections and corresponding intensity graph from a normal 

rabbit cornea 



21 
 

3.1.3 Image Depth Calculation 

The timestamp of each image from the header is decoded into a matrix ([year; month; 

date; hour; minute; second; millisecond]) to determine the exact time of acquisition. Since the 

images were taken in a sequence, the timestamp of the images are also in a sequence and has 

the same year, month, date and hour. The minutes and seconds are converted to milliseconds 

and the sum of the minutes, seconds and milliseconds is then calculated for each slice. This 

allows calculation of the time difference between slices. The relative z-position (µm) of each 

image in the stack is then calculated based on the known scan speed (distance = velocity X 

time). 

3.1.4 Corneal Sublayer Thickness Calculation 

The maxima of the intensity peaks corresponding to the epithelial, basal laminal, 

endothelial layers are selected by the user and the respective depths are calculated as 

mentioned above. The thicknesses are then calculated as follows: epithelial thickness is the 

difference between basal laminal depth and epithelial depth, stromal thickness is the 

difference between the endothelial depth and basal laminal depth, and the corneal thickness is 

the difference between the endothelial depth and epithelial depth.  

3.1.5 Haze Area Calculation 

The haze area is calculated based on the user selected start and end points of the haze 

and the baseline value. Images from the start point to the end point are picked and their 

corresponding intensities and depths are noted. The area of the haze is calculated using the 

following equation: 

                                                                 𝐴 =  ∑(∆𝑑 ∗ 𝐼)                                                             

(3.1) 
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                                                              ∆𝑑 = (𝑑2 − 𝑑1)                                                                       

(3.2) 

                                                                 𝐼 =
𝐼1+𝐼2

2
− 𝐵                                                        

(3.3) 

Where ‘∆d’ is the difference between the depths of two consecutive images of the 

haze and ‘I’ is the average of the respective images of the haze minus the user-input baseline 

value ‘B’ (Fig 3.4). 

 

Figure 3.4 Stromal haze (6150 µm) of a normal rabbit cornea  

3.1.6 Filtering Techniques 

For display purposes, pixel averaging can be used reduce the noise in the data. 

Different sizes of averaging masks (3, 5, 7, and 9) can be selected by the user. The resulting 
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filtered image stack has image in the front view plane which is the average of the consecutive 

images in the y-axis direction of the original data stack and image in the side view plane is 

the average of consecutive images in the x-axis direction of the original data stack. The 

number of consecutive images for averaging is selected by the user. 

3.1.7 Text File 

A text file is generated with the Intensity Curve data, application setting parameters 

and values of all data analysis performed using the application. The text file is saved with the 

name similar to its volume filename and is stored in the format shown below. 
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3.1.8 Interactive 2D and 3D Image Visualization 

The front view, side view, top view and 3D view of the image stack is projected on 

the display for the user to inspect the structures inside the tissue in all directions, which is 

familiar to most clinicians (Fig 3.5)[24]. The front view is a 2D image reconstructed from the 

row of each original image at a given y-axis position. The side view is a 2D image 

reconstructed from the column of each original image at a given x-axis position. Top view is 

the 2D image that is in the image sequence of the data stack. All of these views are projected 

together to form the 3D view of the image stack at given x, y and z axis positions, thus 

making it easy for the user to interactively pick the volume of interest by dragging the x, y, 

and z axis sliders. Note that the side view and front view use the pixel averaging described in 

section 3.1.6 to reduce noise in the displayed image. 

 

            Figure 3.5 2D and 3D views of normal rabbit cornea 
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3.2 Experimental Results 

3.2.1 Corneal Sublayer Thickness Measurements 

Epithelial, stromal and corneal thicknesses of rabbit and mouse cornea were 

calculated using the new application cornea1, and directly compared to the values obtained 

from the previous application. The values were identical, verifying that the program can 

make similar corneal thickness calculations. 

 

Figure 3.6 (a) Sublayer thickness of normal rabbit cornea from “Confo” 
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Figure 3.6 (b) Sublayer thickness of normal rabbit cornea from “Cornea1” 

The highlighted parts of the figures (Fig 3.6(a) and (b)) show the corneal sublayer 

thicknesses (epithelial thickness of 50.6 µm, stromal thickness of 339.4 µm and corneal 

thickness of 390.0 µm) of a rabbit cornea. The measured epithelial, stromal and corneal 

thickness of mouse cornea were 43.5µm, 79.7µm and 123.2µm, respectively, in both the 

applications (not shown).  

3.2.2 Cell Activation and Wound Healing 

The 2D and 3D CMTF images (Fig 3.7) of the rabbit cornea on the 7th day after a 

freeze injury show significant changes in the cell morphology when compared to normal 

rabbit cornea (Fig 3.6). There is a considerable increase in stromal thickness and stromal haze 

area of the injured cornea compared to the normal rabbit cornea in figure 3.6. The increase in 

the stromal haze area is due to the highly refractive, scattered and elongated corneal 

keratocytes (Fig 3.7) which indicates fibroblast activation and migration during wound 

healing[25]. 
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Figure 3.7 2D and 3D images of rabbit cornea on 7th day after freeze injury 
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3.2.3 Different ROI Selections 

(a)  Different sizes of ROI: An increased area under the curve and high number of random 

spikes in the intensity graph can provide an indication of corneal cell layers during the 

healing stage. Using all of the pixels from the image for the average intensity might 

sometimes reduce overall area under the curve, thereby resulting in a smoothened curve 

which masks this pattern. This signal reduction can be due to shading on the edges of 

the images. Therefore selecting a more limited central region of the image will exclude 

edges which results in appropriate output. The following figures will illustrate the 

condition. 

Figure 3.8 Reduced area under intensity curve 
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In the above figure (3.8 (a) and (b)) are the intensity curves of a rabbit cornea on 

the 14th day of healing after a freeze injury. Fig 3.8 (a) is the intensity curve obtained 

when all of the pixels (384X384) were used and Fig 3.8 (b) is the intensity curve 

obtained from the center100X100 pixels. A sharp decrease in the overall area under 

the curve and in the number of peaks is observed from in Fig 3.8 (a) when compared 

to Fig 3.8 (b). 

(b) Different positions of ROI: Sometimes the scans might not be performed with scan 

aligned with the apex of the cornea resulting in off centered corneal image data or in 

some cases the analysis requires the optimal region of interest to be selected from 

different portions of the image. In these situations image analysis might need different 

ROI positions in addition to different sizes to select desired ROI from the image. The 

following figures (Fig 3.9 (a), (b), (c)) of mouse cornea scanned after a freeze injury 

demonstrates the use of ROI position. 

It is observed that the fibrotic cells have migrated from the corners toward the 

center of the corneal wound during healing.[18, 19, 20] In this case the data of interest 

is concentrated on the corners of the images and different ROI positions are required 

to select the desired data. The measured average intensity of the image (image 27 

from the CMTF stack) from 384X384 pixels was 46.83, from centered 100X100 

pixels was 52.47 and, from user selected ROI was 87.15, which shows an increase in 

the average intensity with each selection.               
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Figure 3.9 (a) Mouse cornea on 3rd day after a freeze injury with corresponding 

intensity graph generated from 384X384 pixels 

     

Figure 3.9 (b) Mouse cornea on 3rd day after a freeze injury  with corresponding 

intensity graph from a centered 100X100 ROI 
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Figure 3.9 (c) Mouse cornea on 3rd day after a freeze injury with corresponding 

intensity graph from user selected 100X100 ROI 

3.2.4 Interactive Sliders and ROI Selections  

We need different ROI sizes and positions because corneal geometry varies 

between species, i.e. some are more curved than others.  For example in the case of a 

mouse cornea which is more dome shaped, if the scan is performed from the front of the 

cornea to the back, the initial images in the stack will have dark pixels around the edges 

that surround the corneal pixels from the central region. These dark pixels reduce the 

overall average intensity of the image making the peaks in the intensity graph less 

distinguishable. The user selectable ROI sizes and positions can resolve this problem 

allowing user to select only the desired portion of corneal data from the image stack and 

then generate the intensity plot with more easily distinguishable peaks. Additionally the 

interactive x-axis, y-axis and z-axis sliders allows user to crop the 3D corneal volume[21] 

to inspect the details of cornea cells avoiding the curved edges. The figures of mouse 

cornea shown in Fig 3.10 demonstrate these results. 
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                Figure 3.10 (a) Dome shaped normal mouse cornea with indistinguishable intensity 

peaks 

           Figure 3.10 (b) Volume of interest from a normal mouse cornea with distinguished 

stromal peak 
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3.2.5 Haze Area Measurement of Rabbit Cornea after PRK (Photorefractive 

Keratectomy) 

PRK was performed on rabbit corneas as mentioned in Methods in Chapter 2. Scans 

of rabbit cornea before the surgery and on the 21st day after the surgery were collected, and 

corneal haze was then measured and compared. Both the measurements were done from the 

top to bottom of the corneal stroma with a baseline of 10. The haze area of normal rabbit 

cornea was 1736 (Fig 3.11 (a)) and the haze area of the same rabbit cornea after the surgery 

was 9655 (Fig 3.11 (b)), this increased haze area indicates increased light scattering due to 

fibrosis during wound healing.  

 

Figure 3.11 (a) Stromal haze (1736) of normal rabbit cornea 
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Figure 3.11 (b) Stromal haze (9655) of a rabbit cornea on 21 day after PRK 
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Chapter 4 

DISCUSSION AND FUTURE WORK 

 

4.1 Discussion 

In vivo confocal microscopy provides optical sectioning ability with high axial 

resolution, which makes it useful for in vivo corneal imaging. Apart from confocal 

microscopy, high-frequency ultrasound and spectral domain optical coherence tomography 

are other techniques used for accurate measurements of corneal sublayer thicknesses. 

However, quantitative 3D confocal microscopy additionally provides a series of high-

resolution en face images that allow assessment of depth-dependent changes in cell 

morphology, density and reflectivity.[7] 

High resolution and high contrast images can be obtained from the commercially 

available HRT-RCM microscope, but there are hardware and software limitations. The 

limitations are that the focal plane movement over large distances is achieved through a 

thumbscrew that is manually rotated. This might cause motion artifacts and is not 

quantitative. In addition the software can collect only 100 images in a sequential scan, 

resulting in large step size between the images in a full thickness scan thereby decreasing the 

resolution for sublayer thickness calculation. All of these problems were addressed in the 

previous studies, but certain software limitations still existed.  Specifically, since the software 

was developed in C++, it was cumbersome, thus modifications or addition of new features 

required extensive programming experience in C++. Also, the software does not have the 

ability to pick the user selectable ROI for generating the intensity curve. 
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 Different sizes and positions of ROI are required because (a) the flat field z-scans 

might not always be taken through the apex of the cornea (resulting in images with off 

centered corneal data), (b) the corneal shape might differ (the edges of the initial images in 

the stack of a dome shaped cornea might include out of plane data), (c) selecting pixels from 

the center region of corneal image is preferred because including all the pixels from the 

image might sometimes decrease the haze area due to shading artifacts. 

A new application was developed on the MATLAB platform to overcome the above 

mentioned limitations. MATLAB was chosen because of its well-known user-friendly 

programming environment, extensive tool box for image processing and analysis, and more 

widespread availability and use. A new feature of this application is to pick the desired ROI 

of different sizes from the image stack for curve calculation.  

The new application still has limitations. First, the response time for interactive 

display of the application is slow. In addition, the corneal image stack is displayed using an 

orthogonal projection instead of cabinet projection (preferred in clinical use). Also, the 

reconstructed 2D and 3D images look distorted if there is a lot of patient movement during 

the scan.    
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4.2 Future Work 

Short term goals: 

(1) To increase the application speed. 

(2) To change the present 3D view to a cabinet view to make it efficient for 

clinical use. 

Long term goals  

(1) In rare cases, because of the slight movement of cornea or the microscope, the 

images produced to form a stack may not be in proper alignment. Software 

called ‘ImageJ’ is currently being used to align the images in the stack.  

This feature of image alignment could be incorporated into the software 

thereby eliminating the use of other applications. In addition, a Fourier 

Transform algorithm could be used to quantify cell alignment during wound 

healing – currently this is also performed using ImageJ. 

(2) To develop techniques to reduce the noise in the images, to correct motion 

artifacts caused by tissue movements due to heartbeat, respiration or 

involuntary patient movements during the scan.  
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APPENDIX A 

APPLICATION INSTALLATION 

The program is compiled using MATLAB compiler, and all the MATLAB runtime 

libraries required to run the application without MATLAB are included in the application 

package. The application package comes in a folder called cornea1, since the app is named as 

“Cornea1” and the version is 1.0. The folder has three sub folders 1) for_redistribution 2) 

for_redistribution_files_only 3) for_testing and a file “packaging log”.  

 

Figure A-1 Application folder – cornea1 

The first folder “for_redistribution” consists the application “MyAppInstaller_mcr”, 

running this application on the system installs the actual app “Cornea1”.  
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Figure A-2 Application installer 

As the application is run by double clicking the ‘MyAppInstaller_mcr’, a prompt pops 

up asking the user to allow installation or not.  

 

Figure A-3 Prompt asking for user control 

User clicks on “Yes” to start the installation then a window with the description of the 

application opens as shown in figure 2.5. It takes more than 60 seconds for the following 

window to appear on the screen after the user allows the installation. 
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Figure A-4 Window with description of the application 

User then clicks on “Next” to continue the installation. The following window as 

shown in figure 2.6 opens, asking for installation options.  

 

Figure A-5 Window asking for installation options 
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In the first option “Choose installation folder:” the path to store the installation folders 

is set as default. In the second option the User checks the box for “Add shortcut to desktop” 

to have the application on desktop for easy access. 

User then clicks next to continue installation, a window asking if necessary software 

like MATLAB Runtime were installed on PC, for running the application efficiently. The 

application does not require any other software since the MATLAB Runtime libraries are 

already included in the application package.  

 

Figure A-6 Window asking for required software 

User then clicks “Next”, a window confirming all the above steps pops up with 

installation key. User clicks install and the progress of the installation is as shown in the 

following window in figure 2.9. 
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Figure A-7 Confirmation window 

 

Figure A-8 Installation progress 

 A window confirming the successful completion of installation pops up, user selects 

finish to complete the installation.    
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APPENDIX B 

HEADER INFORMATION 

File format: The structure of the image file is described below. C syntax is used to describe 

the data structures. 

The following basic types are used: 

1) BYTE 8 bit unsigned char  

2) short 16 bit signed integer 

3) DWORD 32 bit unsigned integer 

4) float 32 bit IEEE floating point number 

All data types are stored in the Little Endian format (least significant byte is stored in 

the first position and is located at the lowest memory address/offset). 

The file consists of N images, which are stored in succession in the file. The number 

of images can be calculated from the file size and the size of a single image. 

struct IMAGEFILE 

{ 

IMAGE images[N];                                                                 // N = filesize/sizeof(IMAGE) 

}; 

 

Each image consists of a header of 384 bytes, followed by the actual image data. The 

image data are stored in 384 lines with 384 pixels each. Each pixel is represented by an 8-bit 

value. 

 

struct IMAGE 

{ 
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HEADER header; 

BYTE data[384][384]; 

}; 

The image header consists of the actual header data (COREHEADER) and is always 

384 bytes in size. The unused portion of the header (filler) is filled with zeroes. 

struct HEADER 

{ 

COREHEADER hd; 

BYTE filler[384 – sizeof(COREHEADER)]; 

}; 

 

The header is structured as follows: 

struct COREHEADER 

{ 

BYTE version[12];                                                                       // Version ID (“RCM-COM-

100”) 

short width;                                                                   // Width of the image in pixels (always 

384) 

short height;                                                                // Height of the image in pixels (always 

384) 

short depth;                                                                                             // Bits per pixel 

(always 8) 

DWORD imgNum;                                                   // Sequential image number beginning 

with 0 

TIMESTAMP timestamp;                                                              // Time the image was 

acquired 

short eye;                                                                                             // Eye: “L” = left, “R” = 

right 

}; 

 



45 
 

struct TIMESTAMP 

{ 

short year;                       // 

Year 

short month;                     // Month 

(1-12) 

short day;             // Day 

(1-31) 

short hour;             // Hour 

(0-23) 

short minute;                   // Minute (0-

59) 

short second;                    // Second 

(0-59) 

short millisec;            // Millisecond (0-

999) 

}; 
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APPENDEX C 

SOURCE CODE 

 

(a) The main UI program “cornea1” 

function cornea1 

 

% //the function displays top, front, side and 3D views of the corneal data taken from a 

% HRT-RCM confocal microscopy and provides interactive features allowing 

% user to scroll through the 3D stack while using sliders, to choose from a set of different  

% smoothening masks and 

% calculates subcorneal thicknesses and desired haze area under the curve 

% also generates a output text file// 

% See also: imagedata, depth, avgintens, avgsmooth, box3 

 

f = figure('Visible','off','Position',[5,5,1600,750]); % creating a figure window to build the 

GUI 

 

Img1 = axes('Units','pixels','Position',[30 415 300 300]); % axes  for displaying x-y plane or 

top view of corneal stack 

Img2 = axes('Units','pixels','Position',[1060 375 350 350]); % axes  for plotting image number 

versus average intensity  of the respective image 

Img3 = axes('Units','pixels','Position',[30 30 300 300]); % axes  for displaying y-z plane or 

side view of corneal stack 

Img4 = axes('Units','pixels','Position',[430 415 300 300]); % axes  for displaying x-z plane or 

front view of corneal stack 

Img5 = axes('Units','pixels','Position',[430 30 300 300]); % axes  for projecting 3D view of 

corneal stack 

 

%Slider to scroll through the 3D stack in z direction 

slider = uicontrol('Style', 'Slider',... 
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    'Parent', f,... 

    'String', 'Image No.',... 

    'Position', [1046 320 378 20],... 

    'Callback',@slider_callback); 

 

%Slider to scroll through the 3D in x direction 

slider1 = uicontrol('Style','Slider',... 

    'Parent',f,... 

    'Position',[15 370 330 20],... 

    'Callback',@slider1_callback); 

 

%Slider to scroll through the 3D in y direction 

slider2 = uicontrol('Style','Slider',... 

    'Parent',f,... 

    'Position',[350 400 20 330],... 

    'Callback',@slider2_callback); 

 

%Slider to scroll through the 3D in reverse y direction 

slider3 = uicontrol('Style','Slider',... 

    'Parent',f,... 

    'Position',[380 400 20 330],... 

    'Callback',@slider3_callback); 

 

%Slider to scroll through the 3D in reverse x direction 

slider4 = uicontrol('Style','Slider',... 

    'Parent',f,... 

    'Position',[15 345 330 20],... 



48 
 

    'Callback',@slider4_callback); 

 

%Popup menu to select any desired ROI or centered 

%ROI from the stack 

hpopup = uicontrol('Style','Popupmenu',... 

    'Parent',f,... 

    'Position',[970 675 50 25],... 

    'String',{'Centered','ROI'}); 

 

%Popup menu to select any desired mask size for smoothening 

hpopup1 = uicontrol('Style','Popupmenu',... 

    'Parent',f,... 

    'Position',[800 675 50 25],... 

    'String',{'1','3','5','7','9'},... 

    'Callback',@popup1); 

 

%Button to select a 50X50 ROI from the stack 

hbutton=uicontrol('Style','Pushbutton',... 

    'Parent',f,... 

    'String','50X50',... 

    'Position',[970 625 50 25],... 

    'Callback',@button); 

 

%Button to select a 100X100 ROI from the stack 

hbutton1=uicontrol(gcf,'Style','Pushbutton',... 

    'Parent',f,... 

    'String','100X100',... 
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    'Position',[970,575,50,25],... 

    'Callback',@button1); 

 

%Button to select a 200X200 ROI from the stack 

hbutton2=uicontrol(gcf,'Style','Pushbutton',... 

    'Parent',f,... 

    'String','200X200',... 

    'Position',[970,525,50,25],... 

    'Callback',@button2); 

 

%Button to select a 384X384 ROI from the stack 

hbutton3=uicontrol(gcf,'Style','Pushbutton',... 

    'Parent',f,... 

    'String','384X384',... 

    'Position',[970,475,50,25],... 

    'Callback',@button3); 

 

%Button to select desired speed 

hbutton15=uicontrol(gcf,'Style','Pushbutton',... 

    'Parent',f,... 

    'String','Speed',... 

    'Position',[970,425,50,25],... 

    'Callback',@button15); 

 

%Button to calculate epithilial depth 

hbutton4 = uicontrol('Style','Pushbutton',... 

    'Parent',f,.... 
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    'Position',[1440 700 80 20],... 

    'String','Epithelium',... 

    'Callback',@button4); 

 

%Button to calculate  basal lamina depth 

hbutton5 = uicontrol('Style','pushbutton',... 

    'Parent',f,.... 

    'Position',[1440 640 80 20],... 

    'String','Basal Lamina',... 

    'Callback',@button5); 

 

%Button to calculate endothilial depth 

hbutton6 = uicontrol('Style','Pushbutton',... 

    'Parent',f,.... 

    'Position',[1440 580 80 20],... 

    'String','Endothelium',... 

    'Callback',@button6); 

 

%Button to calculate epithilial thickness 

hbutton7 = uicontrol('Style','Pushbutton',... 

    'Parent',f,.... 

    'Position',[1440 520 80 20],... 

    'String','Epi thickness',... 

    'Callback',@button7); 

 

%Button to calculate stromal thickness 

hbutton8 = uicontrol(gcf,'Style','pushbutton',... 
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    'Parent',f,.... 

    'Position',[1440 460 80 20],... 

    'String','Stromal thickness',... 

    'Callback',@button8); 

 

%Button to calculate corneal thickness 

hbutton9 = uicontrol(gcf,'Style','Pushbutton',... 

    'Parent',f,.... 

    'Position',[1440 400 80 20],... 

    'String','Corneal thickness',... 

    'Callback',@button9); 

 

%Button to generate a output text file 

hbutton10 = uicontrol('Style','Pushbutton',... 

    'Parent',f,.... 

    'Position',[1440 30 80 20],... 

    'String','Text file',... 

    'Callback',@button10); 

 

%Button to select the start point on intensity plot for Haze area calculation 

hbutton11 = uicontrol('Style','Pushbutton',... 

    'Parent',f,.... 

    'Position',[1441 340 40 20],... 

    'String','Start',... 

    'Callback',@button11); 

 

%Button to select the stop point on intensity plot for Haze area calculation 
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hbutton12 = uicontrol('Style','Pushbutton',... 

    'Parent',f,.... 

    'Position',[1479 340 40 20],... 

    'String','Stop',... 

    'Callback',@button12); 

 

%Button to select the baseline for Haze area calculation 

hbutton13 = uicontrol('Style','Pushbutton',... 

    'Parent',f,... 

    'Position',[1440 280 80 20],... 

    'String','Baseline',... 

    'Callback',@button13); 

 

%Button for Haze area calculation 

hbutton14 = uicontrol('Style','Pushbutton',... 

    'Parent',f,... 

    'Position',[1440 220 80 20],... 

    'String','Area',... 

    'Callback',@button14); 

 

%Normalizing the Units of the objects in GUI 

set([f,Img1,Img2,Img3,Img4,Img5,slider,slider1,slider2,slider3,slider4,hbutton,hbutton1,hbut

ton2,hbutton3,hbutton4,hbutton5,hbutton6,hbutton7,hbutton8,hbutton9,hbutton10,hbutton11,

hbutton12,hbutton13,hbutton14,hbutton15,hpopup,hpopup1],'Units','normalized'); 

 

set(f, 'Visible', 'on'); %set the figure visibility on 

movegui(f,'center'); %To display application in the center of screen 
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%declaring the global variables 

global xco, yco, datx, daty, h, check, d, speed, D, D1, D2, z, Epi_ImgNo, BL_ImgNo, 

Endo_ImgNo, filename, pathname, Img_no, Img_no1, intensity, intensity1, intensity2, 

intensity3, in, areaa2, no_of_images, data, N, p, pa, p1, p2 % declaring global variables to be 

used by all sub functions 

 

hFileMenu = findall(f, 'tag', 'figMenuFile'); 

hOpenMenu = findall(hFileMenu, 'Label', '&Open...'); 

set(hOpenMenu, 'Callback',@openFile); 

 

function openFile(~,~) 

delete(p1); 

delete(p2); 

delete(p); 

delete(pa); 

delete(h); 

%function to select the input volume file from the computer 

[filename,pathname,~] = uigetfile('.vol'); 

[imagenum,~,data,no_of_images] = imagedata(filename,pathname); 

%displaying the input filename on figure window 

set(f,'name',filename); 

N = zeros(1,no_of_images); 

for i1 = 1:no_of_images % loading image numbers into an array 

N(i1) = imagenum(i1).sequence; 

end 

 

%function to calculate the depth of each slice in the image stack 

[d,speed] = depth(filename,pathname); 
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%setting slider values 

set(slider, 'Min', 1); 

set(slider, 'Max', no_of_images); 

set(slider, 'SliderStep',[1, 1]/(no_of_images-1) ); 

set(slider, 'Value',1); % set to beginning of sequence 

 

set(hpopup1,'value',1); 

T = [1 0 0 0; 0 1 0 0; 0 0 1 0]; 

bbox = [1 384 1 384 1 no_of_images]; 

pa = box3(Img5,data,T ,bbox); 

colormap(gray(256)); 

view(Img5,28,18); 

% obliqueview(Img5,'xz'); 

set(Img5,'ZDir','reverse'); 

xlim(Img5,[1 390]); ylim(Img5,[1 390]); zlim(Img5,[1 no_of_images+2]); 

axis(Img2,[0 no_of_images 0 300]); 

 

% displaying the side view 

p = image(data(:,:,1)','Parent',Img1); 

set(Img1,'ydir','normal'); 

xlabel(Img1,'x'); 

ylabel(Img1,'y'); 

colormap(Img1,gray(256)); 

 

% function to update the slider value continuously 
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cr = zeros(384,no_of_images); 

for i4 = 1:384 

    for j4 = 1:no_of_images 

        cr(i4,j4) = data(384,i4,j4); 

    end 

end 

 

% projecting the y-z slice or the side view 

 

%p1 = image(img,'Parent',Img3); 

 

p1 = image(cr,'Parent',Img3); 

colormap(Img3,gray(256)); 

set(Img3,'Ydir','normal'); 

 

 

cr1 = zeros(no_of_images,384); 

for i6 = 1:384 

    for j6 = 1:no_of_images 

        cr1(j6,i6) = data(i6,1,j6); 

    end 

end 

 

% displaying the front view 

p2 = image(cr1,'Parent',Img4); 

colormap(Img4,gray(256)); 
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check = 3; 

intensity3 = avgintens(192,192,384,384,filename,pathname); 

int = intensity3; 

plot(Img2,N,int); 

title(Img2,['window:' num2str(384) 'X' num2str(384)]); 

axis(Img2,[0 no_of_images 0 300]); 

set(hpopup,'value',1); 

 end 

 

% callback function for slider 

addlistener(slider,'ContinuousValueChange',@slider_callback); 

 

function slider_callback(slider, ~) 

delete(p); 

delete(pa); 

delete(h); 

    nz = get(slider,'Value'); 

    z = round(nz); 

    nx = get(slider1,'Value'); 

    x = round(nx); 

    ny = get(slider2,'value'); 

    y = round(ny); 

    ny1 = get(slider3,'Value'); 

    y1 = round(ny1); 

    nx1 = get(slider4,'Value'); 

    x1 = round(nx1); 
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% data1 = zeros(384,384,no_of_images); 

% for k3 = 1:no_of_images 

%     data1(:,:,k3) = dat(:,:,no_of_images-k3+1); 

% end 

T = [1 0 0 0; 0 1 0 0; 0 0 1 0]; 

bbox = [x1 x y y1 z no_of_images]; 

pa = box3(Img5,data,T ,bbox); 

set(Img5,'ZDir','reverse'); 

colormap(gray(128)); 

% obliqueview(Img5,'xz'); 

 

 

p = image(data(:,:,z)','Parent',Img1); 

colormap(gray(256)); 

set(Img1,'Ydir','normal'); 

title(Img1,['image: ' num2str(z-1) ', depth: ' num2str(d(z))]); 

 

%creating a vertical cursor 

x = ([z,z]); 

y = ([0,300]); 

 

%if else statement to get the ROI selection 

    if check == 0 

        int = intensity; 

        plot(Img2,N,int,x,y); 

        title(Img2,['intensity: ' num2str(int(z)) ',window:' num2str(50) 'X' num2str(50)]); 

    elseif check == 1 
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        int = intensity1; 

        plot(Img2,N,int,x,y); 

        title(Img2,['intensity: ' num2str(int(z)) ',window:' num2str(100) 'X' num2str(100)]); 

    elseif check == 2 

        int = intensity2; 

        plot(Img2,N,int,x,y); 

        title(Img2,['intensity: ' num2str(int(z)) ',window:' num2str(200) 'X' num2str(200)]); 

    else 

        intensity3 = avgintens(192,192,384,384,filename,pathname); 

        int = intensity3; 

        plot(Img2,N,int,x,y); 

        title(Img2,['intensity: ' num2str(int(z)) ',window:' num2str(384) 'X' num2str(384)]); 

    end 

 

axis(Img2,[0 no_of_images 0 300]); 

end 

% end of slider callback function 

 

% callback functio for slider1(side view) 

set(slider1, 'Min', 1); 

set(slider1, 'Max', 384); 

set(slider1, 'SliderStep',[1, 1]/(384-1)); 

set(slider1, 'Value', 384); % set to beginning of sequence 

 

addlistener(slider1,'ContinuousValueChange',@slider1_callback); 

function slider1_callback(slider1,~) 

  delete(p1); 
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  delete(pa); 

 

    nx = get(slider1,'Value'); 

    x = round(nx); 

    nz = get(slider,'Value'); 

    z = round(nz); 

    ny = get(slider2,'Value'); 

    y = round(ny); 

    ny1 = get(slider3,'Value'); 

    y1 = round(ny1); 

    nx1 = get(slider4,'Value'); 

    x1 = round(nx1); 

 

T = [1 0 0 0; 0 1 0 0; 0 0 1 0]; 

bbox = [x1 x y y1 z no_of_images]; 

pa = box3(Img5,data,T ,bbox); 

set(Img5,'ZDir','reverse'); 

colormap(gray(256)); 

% obliqueview(Img5,'xz'); 

cr = zeros(384,no_of_images); 

for i5 = 1:384 

    for j5 = 1:no_of_images 

        cr(i5,j5) = datx(x,i5,j5); 

    end 

end 

 

p1 = image(cr,'Parent',Img3); 
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set(Img3,'Ydir','normal'); 

colormap(gray(256)); 

end 

% end of slider1 callback function 

 

% callback function function for slider2 (front view) 

set(slider2, 'Min', 1); 

set(slider2, 'Max', 384); 

set(slider2, 'SliderStep',[1,1]/(384-1)); 

set(slider2, 'Value', 1); % set to beginning of sequence 

 

addlistener(slider2,'ContinuousValueChange',@slider2_callback); 

function slider2_callback(slider2,~) 

     delete(p2); 

     delete(pa); 

 

    ny = get(slider2,'Value'); 

    y = round(ny); 

    nz = get(slider,'Value'); 

    z = round(nz); 

    nx = get(slider1,'Value'); 

    x = round(nx); 

    ny1 = get(slider3,'Value'); 

    y1 = round(ny1); 

    nx1 = get(slider4,'Value'); 

    x1 = round(nx1); 
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T = [1 0 0 0; 0 1 0 0; 0 0 1 0]; 

bbox = [x1 x y y1 z no_of_images]; 

pa = box3(Img5,data,T ,bbox); 

set(Img5,'ZDir','reverse'); 

colormap(gray(256)); 

%obliqueview(Img5,'xz'); 

 

cr1 = zeros(no_of_images,384); 

for i7 = 1:384 

    for j7 = 1:no_of_images 

        cr1(j7,i7) = daty(i7,y,j7); 

    end 

end 

 

p2=image(cr1,'Parent',Img4); 

colormap(gray(256)); 

end 

% end of slider2 callback 

 

% callback function for slider3 (for scrolling through the stack in reverse y direction) 

set(slider3, 'Min', 1); 

set(slider3, 'Max', 384); 

set(slider3, 'SliderStep', [1,1]/(384-1)); 

set(slider3, 'Value', 384); % set to beginning of sequence 

 

addlistener(slider3,'ContinuousValueChange',@slider3_callback); 

function slider3_callback(slider3,~) 
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delete(pa); 

 

    ny = get(slider2,'Value'); 

    y = round(ny); 

    nz = get(slider,'Value'); 

    z = round(nz); 

    nx = get(slider1,'Value'); 

    x = round(nx); 

    ny1 = get(slider3,'Value'); 

    y1 = round(ny1); 

    nx1 = get(slider4,'Value'); 

    x1 = round(nx1); 

 

T = [1 0 0 0; 0 1 0 0; 0 0 1 0]; 

bbox = [x1 x y y1 z no_of_images]; 

pa = box3(Img5,data,T ,bbox); 

set(Img5,'ZDir','reverse'); 

colormap(gray(256)); 

%obliqueview(Img5,'xz'); 

end 

%end of slider3 callback 

 

% callback fuction for slider4 (for scrolling through the image stack in reverse x direction) 

set(slider4, 'Min', 1); 

set(slider4, 'Max', 384); 

set(slider4, 'SliderStep',[1,1]/(384-1)); 

set(slider4, 'Value', 1); % set to beginning of sequence 
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addlistener(slider4,'ContinuousValueChange',@slider4_callback); 

function slider4_callback(slider4,~) 

delete(pa); 

 

    ny = get(slider2,'Value'); 

    y = round(ny); 

    nz = get(slider,'Value'); 

    z = round(nz); 

    nx = get(slider1,'Value'); 

    x = round(nx); 

    ny1 = get(slider3,'Value'); 

    y1 = round(ny1); 

    nx1 = get(slider4,'Value'); 

    x1 = round(nx1); 

 

T = [1 0 0 0; 0 1 0 0; 0 0 1 0]; 

bbox = [x1 x y y1 z no_of_images]; 

pa = box3(Img5,data,T ,bbox); 

set(Img5,'ZDir','reverse'); 

colormap(gray(256)); 

%obliqueview(Img5,'xz'); 

end 

% end of slider4 callback 

 

% callback function for hbutton (selecting 50X50 ROI) 

function button(~,~) 
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    Itemselected = get(hpopup,'value'); %variable that determines if the ROI is centered or off 

centered 

    if Itemselected == 1 

        intensity = avgintens(192,192,50,50,filename,pathname); 

    elseif Itemselected == 2 

        h = imrect(Img1,[10 10 50 50]); %creating a 50X50 rectangle to select an off centered 

ROI 

        setResizable(h,false); 

        fcn = makeConstrainToRectFcn('imrect',get(Img1,'XLim'),get(Img1,'YLim')); 

        setPositionConstraintFcn(h,fcn); 

        c = wait(h); % reading the co-ordinates of left bottom vertex of the 50X50 ROI 

        if isempty(c) 

        return 

        else 

        xco = round(c(1)); 

        yco = round(c(2)); 

        end 

        intensity = avgintens(xco,yco,50,50,filename,pathname); %function to calculate the 

average intensity with provided ROI 

        delete(h); 

    end 

 

if isempty(z) 

    z=1; 

end 

x = ([z z]); 

y = ([0 300]); 

plot(Img2,N,intensity,x,y); 
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axis(Img2,[0 no_of_images 0 300]); 

title(Img2,['intensity: ' num2str(intensity(z)) ',window:' num2str(50) 'X' num2str(50)]); 

check = 0; %check is a conditional variable "if ROI is 50X50 check is 0" 

end 

% end of hbutton callback 

 

%callback for hbutton1 (selecting 100X100 ROI) 

function button1(~,~) 

delete(h); 

Itemselected = get(hpopup,'value');%variable determining if the ROI is centered or off 

centered 

    if Itemselected == 1 

        intensity1 = avgintens(192,192,100,100,filename,pathname); 

    elseif Itemselected == 2 

        h = imrect(Img1,[10 10 100 100]);%creating a 100X100 rectangle to select an off 

centered ROI 

        setResizable(h,false); 

        fcn = makeConstrainToRectFcn('imrect',get(Img1,'XLim'),get(Img1,'YLim')); 

        setPositionConstraintFcn(h,fcn); 

        c = wait(h);% reading the co-ordinates of left bottom vertex of the 100X100 ROI 

        if isempty(c) 

        return 

        else 

        xco = round(c(1)); 

        yco = round(c(2)); 

        end 

        intensity1 = avgintens(xco,yco,100,100,filename,pathname);%function to calculate the 

average intensity with provided ROI 
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        delete(h); 

    end 

 

if isempty(z) 

    z=1; 

end 

x = ([z z]); 

y = ([0 300]); 

plot(Img2,N,intensity1,x,y); 

axis(Img2,[0 no_of_images 0 300]); 

title(Img2,['intensity: ' num2str(intensity1(z)) ',window:' num2str(100) 'X' num2str(100)]); 

check = 1; %updating the conditional variable "if ROI is 100X100 then check is 1" 

end 

%end of hbutton1 callback 

 

%callback for hbutton2 (selecting 200X200 ROI) 

function button2(~,~) 

delete(h); 

Itemselected = get(hpopup,'value');%variable determining if the ROI is centered or off 

centered 

    if Itemselected == 1 

        intensity2 = avgintens(192,192,200,200,filename,pathname); 

    elseif Itemselected == 2 

        h = imrect(Img1,[10 10 200 200]);%creating a 200X200 rectangle to select an off 

centered ROI 

        setResizable(h,false); 

        fcn = makeConstrainToRectFcn('imrect',get(Img1,'XLim'),get(Img1,'YLim')); 

        setPositionConstraintFcn(h,fcn); 
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        c = wait(h);% reading the co-ordinates of left bottom vertex of the 200X200 ROI 

        if isempty(c) 

        return 

        else 

        xco = round(c(1)); 

        yco = round(c(2)); 

        end 

        intensity2 = avgintens(xco,yco,200,200,filename,pathname);%function to calculate the 

average intensity with provided ROI 

        delete(h); 

    end 

 

if isempty(z) 

    z = 1; 

end 

x = ([z z]); 

y = ([0 300]); 

plot(Img2,N,intensity2,x,y); 

title(Img2,['intensity: ' num2str(intensity2(z)) ',window:' num2str(200) 'X' num2str(200)]); 

axis(Img2,[0 no_of_images 0 300]); 

check = 2; %updating the conditional variable "if ROI is 200X200 then check is 2" 

end 

%end of hbutton2 callback 

 

%callback for hbutton3 (selecting 384X384 ROI) 

function button3(~,~) 

delete(h); 
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intensity3 = avgintens(192,192,384,384,filename,pathname);  %function to calculate the 

average intensity with provided ROI 

if isempty(z) 

    z=1; 

end 

x = ([z z]); 

y = ([0 300]); 

plot(Img2,N,intensity3,x,y); 

title(Img2,['intensity: ' num2str(intensity3(z)) ',window:' num2str(384) 'X' num2str(384)]); 

axis(Img2,[0 no_of_images 0 300]); 

check = 3; %updating the conditional variable "if ROI is 384X384 then check is 3" 

end 

%end of hbutton3 callback 

 

%callback function for hbutton4 (epithelium depth) 

function button4(~,~) 

    delete(h); 

    D = d(z); 

    Epi_ImgNo = z-1; 

        uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 680 80 19],... 

        'String',num2str(D)); 

end 

%end of hbutton4 callback 

 

%callback function for hbutton5 (basal lamina depth) 
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function button5(~,~) 

    delete(h); 

    D1 = d(z); 

    BL_ImgNo = z-1; 

        uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 620 80 19],... 

        'String',num2str(D1)); 

end 

%end of hbutton5 callback 

 

%callback for hbutton6 (endothelium depth) 

function button6(~,~) 

    delete(h); 

    D2 = d(z); 

    Endo_ImgNo = z-1; 

        uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 560 80 19],... 

        'String',num2str(D2)); 

end 

%end of hbutton6 callback 

 

% callback for hbutton7 (for calculating epithelial thickness) 

function button7(~,~) 

    delete(h); 

T = D1 - D; % difference of stromal depth and epithelial depth is the epithelial thickness 
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uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 500 80 19],... 

        'String',num2str(T)); 

end 

%end of hbutton7 callback 

 

% callback for hbutton8 (for calculating stromal thickness) 

function button8(~,~) 

    delete(h); 

T = D2 - D1; % difference of endothelial depth and stromal depth is the stromal thickness 

uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 440 80 19],... 

        'String',num2str(T)); 

end 

%end of hbutton8 callback 

 

% callback for hbutton9 (for calculating endothelial thickness) 

function button9(~,~) 

    delete(h); 

T = D2 - D; % difference of endothelial depth and epithelial depth is the endothelial thickness 

uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 380 80 19],... 

        'String',num2str(T)); 

end 
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%end of hbutton9 callback 

 

% callback for hbutton11 (for selecting the start point of Haze area) 

function button11(~,~) 

    delete(h); 

    Img_no = z-1; 

uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 320 40 19],... 

        'String',num2str(Img_no)); 

end 

%end of hbutton11 callback 

 

% callback for hbutton12 (for selecting the stop point of Haze area) 

function button12(~,~) 

    delete(h); 

    Img_no1 = z-1; 

uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1425 320 40 19],... 

        'String',num2str(Img_no1)); 

end 

%end of hbutton12 callback 

 

% callback for hbutton13 (promt for entering the desired baseline) 

function button13(~,~) 

    delete(h); 
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    prompt = {'Enter baseline:'}; %prompt to enter the baseline 

    dlg_title = 'Input'; 

    num_lines = 1; 

    defaultans = {'17'}; %default baseline is '17' 

    in = inputdlg(prompt,dlg_title,num_lines,defaultans); 

    in = cellfun(@str2num,in); 

 

    uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 260 80 19],... 

        'String',num2str(in)); 

end 

%end of hbutton12 callback 

 

% callback for hbutton14 (for calculating the area under the Haze) 

function button14(~,~) 

    delete(h); 

persistent inten inte 

             if check==0 

             inten = intensity; 

             elseif check == 1 

             inten = intensity1; 

             elseif check == 2 

             inten = intensity2; 

             else 

             inten = intensity3; 

             end 
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inte = zeros(1,no_of_images); 

        for i = 1:no_of_images 

            if inten(i)<=in 

               inte(i) = 0; 

            else 

            inte(i) = inten(i)-in; 

            end 

        end 

areaa = zeros(Img_no1-Img_no,1); 

depdiff = zeros(Img_no1-Img_no,1); 

intdiff = zeros(Img_no1-Img_no,1); 

         for jj = 2:no_of_images 

             depdiff(jj-1) = d(jj) - d(jj-1); 

             intdiff(jj-1) = (abs(inte(jj) + inte(jj-1)))/2; 

             areaa(jj-1) = depdiff(jj-1).*intdiff(jj-1); 

         end 

 areaa2 = (sum(areaa(Img_no+1:Img_no1))); 

        uicontrol('Style','text',... 

        'Parent',f,.... 

        'Position',[1385 200 80 19],... 

        'String', num2str(areaa2)); 

 

 x = (Img_no+1:Img_no1+1); 

 y = inten(Img_no+1:Img_no1+1); 

 

 axis(Img2,[0 no_of_images 0 300]); 

 plot(Img2,N,inten,'b'); 
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 hold (Img2,'on'); 

 area(Img2, x, y,in); 

 axis(Img2,[0 no_of_images 0 300]); 

 hold (Img2,'off'); 

end 

% end of hbutton14 callback 

 

% callback for hbutton15 (to input desired lens speed) 

function button15(~,~) 

    [d,speed] = depth(filename,pathname); %calculate depth of each image with specified lens 

speed 

end 

% end of hbutton15 callback 

 

% callback for hpopup1 (to select user prefered smoothening mask) 

function popup1(hpopup1,~) 

delete(h); 

Itemselected = get(hpopup1,'value'); %variable determining the user selected smoothening 

mask 

datx = zeros(384,384,no_of_images); 

daty = zeros(384,384,no_of_images); 

 

    if Itemselected ==1 

        datx = data; 

        daty = data; 

    elseif Itemselected ==2 

        [datx,daty] = avgsmooth(filename,pathname,3); %function to smoothen the data using a 

3X3 mask 
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    elseif Itemselected == 3 

        [datx,daty] = avgsmooth(filename,pathname,5); %function to smoothen the data using a 

5X5 mask 

    elseif Itemselected ==4 

        [datx,daty] = avgsmooth(filename,pathname,7); %function to smoothen the data using a 

7X7 mask 

    elseif Itemselected ==5 

        [datx,daty] = avgsmooth(filename,pathname,9); %function to smoothen the data using a 

9X9 mask 

    end 

 

%updating the side view with smoothened image 

x = get(slider1,'value'); 

x = round(x); 

datmx = zeros(384,no_of_images); 

for x1 = 1:384 

    for x2 = 1:no_of_images 

datmx(x1,x2) = datx(x1,x,x2); 

    end 

end 

image(datmx,'parent',Img3); 

 

%updating the front view with smoothened image 

y = get(slider2,'value'); 

y = round(y); 

 

datmy = zeros(no_of_images,384); 

for y1 = 1:384 
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    for y2 = 1:no_of_images 

datmy(y2,y1) = daty(y1,y,y2); 

    end 

end 

image(datmy,'parent',Img4); 

 

end 

%end of hpopup1 callback 

 

%callback for hbutton10 (to generate a output text file) 

function button10(~,~) 

 

L = length(filename); 

c = strcat(filename(1:L-4),'.txt'); %variable containing the file name 

fileid = fopen(c,'wt'); %creating a file ID 

%writing the data into the file 

fprintf(fileid,'@confocal\n\n'); 

fprintf(fileid,'Frame rate = 30\n'); 

fprintf(fileid,'Lens speed = %d\n',speed); 

fprintf(fileid,'No.of images = %d\n\n',no_of_images); 

fprintf(fileid,'Epi ImgNo = %d\n',Epi_ImgNo); 

fprintf(fileid,'Epi depth = %.2f\n',D); 

fprintf(fileid,'Epi thickness = %.2f\n',D1-D); 

fprintf(fileid,'BL Imgno = %d\n',BL_ImgNo); 

fprintf(fileid,'BL depth = %.2f\n',D1); 

fprintf(fileid,'Stromal thickness = %.2f\n',D2-D1); 

fprintf(fileid,'Endo Imgno = %d\n',Endo_ImgNo); 
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fprintf(fileid,'Endo depth = %.2f\n',D2); 

fprintf(fileid,'Endo thickness = %.2f\n',D2-D); 

fprintf(fileid,'Baseline = %d\n',in); 

fprintf(fileid,'Area = %.4f\n\n',areaa2); 

 

fprintf(fileid,'Image#,     Depth,     Intensity(50X50)  (100X100)  (200X200)  (384X384)\n'); 

%header for the data table 

 

final = [double(N') double(d') double(intensity') double(intensity1') double(intensity2') 

double(intensity3')]; %matrix containing image number with corresponding depth and 

intensities 

for j1=1:no_of_images 

   fprintf(fileid, '     %d       %.3f       %.3f          %.3f     %.3f     %.3f\n', final(j1,:)); 

end 

fclose(fileid); %closing the file 

end 

%end of hbutton10 callback 

end 

%end of function cornea1 
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(b) User defined sub functions used in the UI program cornea1 

 

(i) Function for decoding the header and loading data into matrix 

 

function [imagenum,time,Data,no_of_images]=imagedata(filename,pathname) 

 

% //the functions gives image number - the image number in the data 

stack,time(Year,Month(1-12),Day(1-31),hour(0-23),Minute(0-59), Second(0-59), 

Millisecond(0-999)) when the scan or the image was produced, 

% the matrix containing pixel intensities of image and the number of images in the whole 

volume file 

% filename is the volume data file and pathname is the path where the volume file is stored 

% imagenum is the index number of the image and time is the timestamp of the image  

 

%finding no. of images 

e = exist(filename,'file'); %check if the file exists in the current directory, if not moves the 

file to the current directory 

if e==0 

    copyfile(fullfile(pathname,filename),pwd,'f'); 

end 

 

size = dir(filename); 

size1 = size(1).bytes; 

images = size1/(384*384);%each image is 384*384 bytes mentioned in the heeader file, so 

number of images is file size divided by image size 

no_of_images = floor(images); 
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e = exist(filename,'file'); %check if the file exists in the current directory, if not moves the 

file to the current directory  

 

%opening data file 

 

fid = fopen(filename,'r'); 

 

%loading data 

 

s.version = 0; 

s.width = 0; 

s.height = 0; 

s.depth = 0; 

s.imagenum = 0; 

s.time = 0; 

s.eye = 0; 

s.filler = 0; 

 

Header = repmat(s,1,no_of_images); 

 

s1.image = 0; 

data = repmat(s1,1,no_of_images); 

 

s2.dt = 0; 

time = repmat(s2,1,no_of_images); 

 

s3.sequence = 0; 
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imagenum = repmat(s3,1,no_of_images); 

 

for i = 1:no_of_images 

 

Header(i).version = fread(fid,12,'*char'); 

Header(i).width = fread(fid,1,'*short'); 

Header(i).height = fread(fid,1,'*short'); 

Header(i).depth = fread(fid,1,'*short'); 

Header(i).imagenum = fread(fid,1,'*uint32'); 

Header(i).time = fread(fid,7,'*short'); 

Header(i).eye = fread(fid,1,'*short'); 

Header(i).filler = fread(fid,346); 

 

data(i).image = fread(fid, [384 384]); 

imagenum(i).sequence = Header(i).imagenum; 

time(i).dt = Header(i).time; 

end 

 

Data = zeros(384,384,no_of_images); 

for i = 1:no_of_images 

    Data(:,:,i) = data(no_of_images+1-i).image; 

end 

 

 fclose('all'); 

 

end 
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(ii) Function for calculating the average intensity of images  

 

function output = avgintens(x,y,m,n,filename,pathname) 

 

[~,~,Data,no_of_images] = imagedata(filename,pathname); 

 

output = zeros(1,no_of_images); 

if m==50 && n==50 

    z = zeros(50,50,no_of_images); 

    for i = 1:no_of_images 

        if x==192 && y ==192 

        z(1:50,1:50,i) = Data(192-24:192+25,192-24:192+25,i); 

        else 

        z(1:50,1:50,i) = Data(x:x+49,y:y+49,i); 

        end 

        output(i) = mean(mean(z(:,:,i))); 

    end 

 

elseif m==100 && n ==100 

     z = zeros(100,100,no_of_images); 

     for i = 1:no_of_images 

         if x==192 && y ==192 

         z(1:100,1:100,i) = Data(192-49:192+50,192-49:192+50,i); 
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         else 

         z(1:100,1:100,i) = Data(x:x+99,y:y+99,i); 

         end 

        output(i) = mean(mean(z(:,:,i))); 

     end 

 

elseif m==200 && n==200 

     z = zeros(200,200,no_of_images); 

     for i = 1:no_of_images 

         if x==192 && y ==192 

         z(1:200,1:200,i) = Data(192-99:192+100,192-99:192+100,i); 

         else 

         z(1:200,1:200,i) = Data(x:x+199,y:y+199,i); 

         end 

         output(i) = mean(mean(z(:,:,i))); 

     end 

 

elseif m==384 && n==384 

     for i = 1:no_of_images 

      output(i) = mean(mean(Data(:,:,i))); 

     end 

end 

end 
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(iii) Function for generating a averaged image data stack 

 

function [outputx,outputy] = avgsmooth(filename,pathname,mask) 

 [~,~,data,no_of_images]=imagedata(filename,pathname); 

  

 outputx = zeros(384,384,no_of_images); 

 outputy = zeros(384,384,no_of_images); 

 if mask==3 

     for x = 1:382;    

        outputx(x,:,:) = (data(x,:,:)+data(x+1,:,:)+data(x+2,:,:))/3; 

     end 

     for y = 1:382;    

        outputy(:,y,:) = (data(:,y,:)+data(:,y+1,:)+data(:,y+2,:))/3; 

     end 

        outputx(383,:,:) = data(383,:,:); 

        outputx(384,:,:) = data(384,:,:); 

        outputy(:,383,:) = data(:,383,:); 

        outputy(:,384,:) = data(:,384,:); 

 elseif mask == 5 

      for x = 1:380;    

        outputx(x,:,:) = (data(x,:,:)+data(x+1,:,:)+data(x+2,:,:)+data(x+3,:,:)+data(x+4,:,:))/5; 

      end 

        outputx(381,:,:) = data(381,:,:); 
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        outputx(382,:,:) = data(382,:,:); 

        outputx(383,:,:) = data(383,:,:); 

        outputx(384,:,:) = data(384,:,:); 

       for y = 1:380;    

        outputy(:,y,:) = (data(:,y,:)+data(:,y+1,:)+data(:,y+2,:)+data(:,y+3,:)+data(:,y+4,:))/5; 

       end 

        outputy(:,381,:) = data(:,381,:); 

        outputy(:,382,:) = data(:,382,:); 

        outputy(:,383,:) = data(:,383,:); 

        outputy(:,384,:) = data(:,384,:); 

 elseif mask == 7 

       for x = 1:378;    

        outputx(x,:,:) = 

(data(x,:,:)+data(x+1,:,:)+data(x+2,:,:)+data(x+3,:,:)+data(x+4,:,:)+data(x+5,:,:)+data(x+6,:,:)

)/7; 

       end 

        outputx(379,:,:) = data(379,:,:); 

        outputx(380,:,:) = data(380,:,:); 

        outputx(381,:,:) = data(381,:,:); 

        outputx(382,:,:) = data(382,:,:); 

        outputx(383,:,:) = data(383,:,:); 

        outputx(384,:,:) = data(384,:,:);   

       for y = 1:378;    

        outputy(:,y,:) = 

(data(:,y,:)+data(:,y+1,:)+data(:,y+2,:)+data(:,y+3,:)+data(:,y+4,:)+data(:,y+5,:)+data(:,y+6,:)

)/7; 

       end  

        outputy(:,379,:) = data(:,379,:); 

        outputy(:,380,:) = data(:,380,:); 
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        outputy(:,381,:) = data(:,381,:); 

        outputy(:,382,:) = data(:,382,:); 

        outputy(:,383,:) = data(:,383,:); 

        outputy(:,384,:) = data(:,384,:); 

 elseif mask == 9 

      for x = 1:376;    

        outputx(x,:,:) = 

(data(x,:,:)+data(x+1,:,:)+data(x+2,:,:)+data(x+3,:,:)+data(x+4,:,:)+data(x+5,:,:)+data(x+6,:,:)

+data(x+7,:,:)+data(x+8,:,:))/9; 

      end 

        outputx(377,:,:) = data(377,:,:); 

        outputx(378,:,:) = data(378,:,:);       

        outputx(379,:,:) = data(379,:,:); 

        outputx(380,:,:) = data(380,:,:); 

        outputx(381,:,:) = data(381,:,:); 

        outputx(382,:,:) = data(382,:,:); 

        outputx(383,:,:) = data(383,:,:); 

        outputx(384,:,:) = data(384,:,:); 

       for y = 1:376;    

        outputy(:,y,:) = 

(data(:,y,:)+data(:,y+1,:)+data(:,y+2,:)+data(:,y+3,:)+data(:,y+4,:)+data(:,y+5,:)+data(:,y+6,:)

+data(:,y+7,:)+data(:,y+8,:))/9; 

       end  

        outputy(:,377,:) = data(:,377,:); 

        outputy(:,378,:) = data(:,378,:);     

        outputy(:,379,:) = data(:,379,:); 

        outputy(:,380,:) = data(:,380,:); 

        outputy(:,381,:) = data(:,381,:); 

        outputy(:,382,:) = data(:,382,:); 
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        outputy(:,383,:) = data(:,383,:); 

        outputy(:,384,:) = data(:,384,:); 

 end 

 

(iv) Function for calculating the depth of each image 

 

function [output,speed] = depth(filename,pathname) 

prompt = {'Enter speed:'}; 

dlg_title = 'Input'; 

num_lines = 1; 

defaultans = {'60'}; 

speed = inputdlg(prompt,dlg_title,num_lines,defaultans); 

speed = cellfun(@str2num,speed); 

 

 

[~,time,~,no_of_images] = imagedata(filename,pathname); 

 

s2.T1 = 0; 

s2.T = 0; 

s2.T2 = 0; 

s2.T3 = 0; 

Time = repmat(s2,1,no_of_images); 

 

for i = 1:no_of_images 

Time(i).T1 = time(i).dt(5:7,:); 

Time(i).T = (double(Time(i).T1(1)))*60000; 

Time(i).T2 = (double(Time(i).T1(2)))*1000; 
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Time(i).T3 = Time(i).T2+Time(i).T+double(Time(i).T1(3)); 

end 

 

deltaT  = zeros(no_of_images-1,1); 

for i = 1:no_of_images-1 

    deltaT(1) = 0; 

    deltaT(i+1) = Time(i+1).T3 - Time(i).T3; 

end 

 

T = zeros (no_of_images,1); 

 

output = zeros(1,no_of_images); 

for i = 1:no_of_images-1 

T(1) = deltaT(1); 

T(i+1) = sum(deltaT(1:i+1)); 

output(1) = 0; 

output(i+1) = speed.*(T(i+1).*0.001); 

end 

end 
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(v) Function to display the CMTF image stack on 3D axis 

(1) Box3 

function h = box3(ax,vol, I2X, bbox) 

 

% Cut out a box from volumetric data and display it using texture mapping. 

% h = box3(vol, I2X, bbox) 

% 

% vol, is a volume that is either N x M x K if it consists of scalar values 

% vol is the volume 

% I2X is a transformation matrix, see slice3 for an explanation. 

% or N x M x K x 3 if it is in RGB. The behaviour of the color handling is 

% is similar to image3 and slice3. 

% bbox is a vector [i1 i2 j1 j2 k1 k2], where i1 is the lowest index of the 

% box in the first dimension and i2 is the highest index of the box in the 

% first data dimension, j1 is the lowest in the second data dimension and 

% so on. 

% 

% SEE ALSO: slice3, image3 

 

vol = vol(bbox(1):bbox(2),bbox(3):bbox(4),bbox(5):bbox(6),:); 

 

I2Xp = I2X; I2Xp(:,4) = I2Xp(:,4) + I2X*[bbox(1) bbox(3) bbox(5) 1]'; 

h1 = slice3(ax,vol,I2Xp,1,1); 
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I2Xp = I2X; I2Xp(:,4) = I2Xp(:,4) + I2X*[bbox(1) bbox(3) bbox(5) 1]'; 

h2 = slice3(ax,vol,I2Xp,2,1); 

I2Xp = I2X; I2Xp(:,4) = I2Xp(:,4) + I2X*[bbox(1) bbox(3) bbox(5) 1]'; 

h3 = slice3(ax,vol,I2Xp,3,1); 

I2Xp = I2X; I2Xp(:,4) = I2Xp(:,4) + I2X*[bbox(1) bbox(3) bbox(5) 1]'; 

he1 = slice3(ax,vol,I2Xp,1,size(vol,1)); 

I2Xp = I2X; I2Xp(:,4) = I2Xp(:,4) + I2X*[bbox(1) bbox(3) bbox(5) 1]'; 

he2 = slice3(ax,vol,I2Xp,2,size(vol,2)); 

I2Xp = I2X; I2Xp(:,4) = I2Xp(:,4) + I2X*[bbox(1) bbox(3) bbox(5) 1]'; 

he3 = slice3(ax,vol,I2Xp,3,size(vol,3)); 

 

h = [h1,h2,h3,he1,he2,he3]; 

 

(2) Sub function slice3 in box3 

function h = slice3(ax,vol, I2X, slicedim, sliceidx, handle) 

% Display a slice from a volume in 3-D 

% h = slice3(vol, I2X, slicedim, sliceidx, handle) 

% 

% Vol is either a scalar or RGB volume, e.g. N x M x K or N x M x K x 3. 

% I2X is a transformation matrix from volume coordinates to xyz 3-D world 

% coordinates, similar to the transform used by image3. 

% 

%     [x y z 1]' = I2X * [i j k 1]' 

% 

% slicedim  is 1, 2 or 3 and corresponds to i, j and k. 

% sliceidx  the index of the slice along slicedim 

% handle    an optional handle to a previous slice to reuse 
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% h         the handle to the created slice. 

% 

% Example: 

% 

% load mri; 

% T = [1 0 0 0;0 1 0 0;0 0 2.5 0]; 

% h1 = slice3(squeeze(D),T,1,64); 

% h2 = slice3(squeeze(D),T,2,64); 

% h3 = slice3(squeeze(D),T,3,14); 

% colormap gray(88); 

% view(30,45); axis equal; axis vis3d; 

% 

% SEE ALSO: image3, imagesc3 

% 

% Author: Anders Brun, anders@bwh.harvard.edu (2003) 

% 

 

% if ndims(vol) == 3         %Scalar mode 

% elseif ndims(vol) == 4     %RGB mode 

% else 

%   error('Only scalar and RGB images supported') 

% end 

 

% Create the slice 

if slicedim == 3 % k 

  ij2xyz = I2X(:,[1 2]); 

  ij2xyz(:,3) = I2X*[0 0 sliceidx 1]'; 
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  sliceim = squeeze(vol(:,:,sliceidx,:)); 

 

elseif slicedim == 2 % j 

  ij2xyz = I2X(:,[1 3]); 

  ij2xyz(:,3) = I2X*[0 sliceidx 0 1]'; 

  sliceim = squeeze(vol(:,sliceidx,:,:)); 

 

elseif slicedim == 1 % i 

  ij2xyz = I2X(:,[2 3]); 

  ij2xyz(:,3) = I2X*[sliceidx 0 0 1]'; 

  sliceim = squeeze(vol(sliceidx,:,:,:)); 

else 

    error('Slicedim should be 1, 2 or 3') 

end 

 

 

if nargin<6 || handle == 0 

  h = image3(ax,sliceim,ij2xyz); 

else 

  h = image3(ax,sliceim,ij2xyz,handle); 

end 

 

(3) Sub function image3 in slice3 

 

function h = image3(ax,im,ij2xyz,handle) 

 

% Display a 2-D image in Matlab xyz 3-D space 
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% h = image3(C, IJ2XYZ, handle) 

% 

% C is an image, encoded with scalars or rgb-values, i.e. the dimensions of 

% C are either N x M or N x M x 3. Scalars correspond to indices in the 

% current colormap and rgb-values should be within the closed 

% interval [0,1]. Similar to the image command, image3 will treat scalars 

% differently depending on if they are doubles or uint8/uint16. Doubles are 

% indexed starting at 1 and uint8/uint16 start at 0. By setting the 

% property CDataMapping for h, different behaviours can be obtained, e.g. 

% usage of the whole range of the colormap by setting it to 'scaled'. 

% 

% The image is indexed by two positive integers, i and j, which correspond 

% to the first and second index of C. Thus i belongs to [1,N] and j belongs 

% to [1,M]. Each coordinate correspond to a pixel center. 

% 

% IJ2XYZ is a transformation matrix from image coordinates to 3-D world 

% coordinates. The transformation is described in homogeneous coordinates, 

% i.e. we have added one dimension to each coordinate that is always 1. 

% 

% If u = [i,j,1]' and r = [x,y,z,1]', the transformation is 

% 

%     r = IJ2XYZ * u 

% 

% Thus IJ2XYZ = [ix jx cx;iy jy cy; iz jz cz; 0 0 1], where cx,cy and cz 

% encode the translation of the image. The ones and zeroes ensure that 

% the result of the transformation is also a homogeneous coordinate. Yes, 

% you can skip that last row of IJ2XYZ and image3 will not care about 
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% it. :-) 

% 

% The function returns a handle, h, which is a handle to a surf object. Use 

% this handle to e.g. modify the image, make it transparent or delete it. 

% The handle can also be used as an optional argument to the image3 

% command. In this case, the the image patch is recycled, which is an 

% efficient way of e.g. changing the image data or move the image to 

% another location. 

% 

% Image3 can mimic Matlabs ordinary image command, e.g. 

%     prel = image; C = get(prel,'CData'); delete(prel); 

%     colormap(jet(64)); 

%     image(C); 

%     view(0,90); 

%     axis ij; 

%     axis image; 

% is equivalent to: 

%     prel = image; C = get(prel,'CData'); delete(prel); 

%     colormap(jet(64)); 

%     image3(C,[0 1 0;1 0 0; 0 0 0]); 

%     view(0,90); 

%     axis ij; 

%     axis image; 

% In the above example it _is_ important to hardcode the axis settings 

% to compare image and image3, otherwise Matlabs does some magic that make 

% them look different. 

% 
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% Some examples of use: 

% 

% %% Display an image with (1,1) located at (10,20,5). 

% C = rand(8,4)*64;                              % a small random image 

% R = [1 0; 0 1; 0 0]; 

% t = [10-1;20-1;5]; 

% h = image3(C,[R t]); axis equal 

% view(30,45); 

% 

% 

% %% Reuse the image h from the previous example, move (1,1) to (7,17,2). 

% %% This technique is useful in interactive applications. 

% h = image3(C,[R t-3],h); axis equal 

% 

% 

% %% Display an image centered at (15,10,0), rotated 30 degrees ccw in the 

% %% image plane. 

% C = rand(8,4)*64;                              % a small random image 

% alpha = 30;                                    % rotation, in ccw degrees 

% cx = 15; cy = 10; cz = 0;                      % the center position 

% R = [+cos(alpha/180*pi) -sin(alpha/180*pi);    % new x coordinate 

%      +sin(alpha/180*pi) +cos(alpha/180*pi);    % new y coordinate 

%      0 0];                                     % z = 0. 

% t = [cx;cy;cz] - R * [size(C,1)/2+0.5; size(C,2)/2+0.5]; % fix center 

% h = image3(C,[R t]); axis equal 

% 

% To see and manipulate the properties of the image object, use get and set 
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% 

% get(h) 

% set(h,'FaceAlpha',0.25) % Make the image transparent 

% set(h,'EdgeColor','black'); 

% set(h,'LineStyle','-'); 

% 

% SEE ALSO: imagesc3, surf 

% 

% Author: Anders Brun, anders@cb.uu.se (2008) 

 

% Hardcoded constants 

stepsize = 1; % Determines number of tiles in image. It is most efficient 

              % to set this to 1, but a higher number might render better 

              % graphics when the image is distorted a lot by the 

              % perspective mapping of the camera. All texture mapping is 

              % based on linear interpolation and does not take texture 

              % into account, at least it has been so in Matlab in the 

              % past. 

 

if ismatrix(im)         %Scalar mode 

  imsize = size(im); 

elseif ndims(im) == 3     %RGB mode 

  imsize = size(im); 

  imsize = imsize(1:2); 

else 

  error('Only scalar and RGB images supported') 

end 
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% Create the slice 

[uu,vv] = ndgrid(0:stepsize:1, 0:stepsize:1); 

% ij2xyz refers to voxel centers. Therefore we need to 

% add half a pixel to each size of the slice. 

irange = [0.5 imsize(1)+0.5]; 

jrange = [0.5 imsize(2)+0.5]; 

% Create three 2D arrays giving the ijk coordinates for 

% this slice. 

iidx = irange(1) + uu*(irange(2)-irange(1)); 

jidx = jrange(1) + vv*(jrange(2)-jrange(1)); 

 

% Map these 2D ijk arrays to xyz 

x = ij2xyz(1,1)*iidx + ij2xyz(1,2)*jidx + + ij2xyz(1,3); 

y = ij2xyz(2,1)*iidx + ij2xyz(2,2)*jidx + + ij2xyz(2,3); 

z = ij2xyz(3,1)*iidx + ij2xyz(3,2)*jidx + + ij2xyz(3,3); 

 

 

if nargin<4 || handle == 0 

  % Make a new surface 

  h = surface('Parent',ax,'XData',x,'YData',y,'ZData',z,... 

       'CData', im,... 

       'FaceColor','texturemap',... 

       'EdgeColor','none',... 

       'LineStyle','none',... 

       'Marker','none',... 
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       'MarkerFaceColor','none',... 

       'MarkerEdgeColor','none',... 

       'CDataMapping','direct'); 

   set(gca,'DataAspectRatio',[1 1 1]) 

% 

else 

  % Reuse old surface 

  set(handle,'XData',x,'YData',y,'ZData',z,'CData',im); 

  h = handle; 

end 

 

% Just to be sure... 

set(gcf,'renderer','opengl'); 

%set(gcf,'renderer','zbuffer'); 
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