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ABSTRACT

Manipulating the K-Space

for Reduction of Respiratory Induced Motion Artifacts

Maida Ranjbar, M.Sc.

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Ananth Madhuranthakam

Respiratory induced motion artifacts, particularly those occurring in the ab-

domen and lung, pose a hefty problem in current diagnostic MR imaging. Applica-

tion of images plagued with such artifacts not only hinder diagnosis, but may result

in the enforcement of undesirably large safety margins in radiation therapy due to

un-captured tumor characteristics that are concealed by the artifact. While several

methods such as gated scans, breath-hold scans, variation of the K-Space acquisi-

tion trajectory, and reducing the scan time via partial acquisition or parallel imaging

have been proposed as a solution, a robust and yet simple to implement remedy still

remains to be proposed. This work investigates the application of partial K-Space

acquisition/completion methods to correct for motion induced artifacts occurring in

MR images of the abdomen; if feasible, the application of such methods to motion

correction permits for the amelioration of the artifact ridden image, without a great

deal of additional burdens in the clinical application of the imaging.
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Our study uses the mDIXON breath-hold sequence to image an abdomen phan-

tom mounted on an MRI compatible motion platform, programmed by trajectories

that mimic undesirable common motions such as coughs/hick-ups, constant inhale

and exhale that often occur during breath-hold scans. By performing a parametric

study of the resulting artifact to the parameters that characterize the programmed

motion trajectory, we categorize the motion artifact in terms of the underlying motion

that it originated from. A set of tools are then developed that permit for the manip-

ulation, and correction of the K-Space and the resulting image. The developed set of

tools provide a mechanism that permits for the study of the evolution of the image

with the acquisition of the K-Space. Using our tools, regions in the K-Space that

are acquired during the occurrence of the motion can be isolated, and manipulated

to compensate for the motion. By applying our methodology to our experimental

data obtained in the RTR 3T MR scanner, we show that even the simplest methods

such as zero padding can lead to a reduction in the intensity of the observed artifacts,

there-by permitting for an amelioration of the obtained image.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter Page

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . 3

2.2 DIXON methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 K-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Partial Fourier Techniques . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Motion Induced Artifacts . . . . . . . . . . . . . . . . . . . . . 27

2.7 A Review of Currently Available Methods to Reduce Respiratory Mo-

tion Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Prospective methods . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 Retrospective Methods . . . . . . . . . . . . . . . . . . . . . . 31

3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Motion Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Programmed Motion Trajectories . . . . . . . . . . . . . . . . . . . . 40

v



3.4 MRI sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 K-Space Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Methods for K-Space Correction . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Correction via zero padding . . . . . . . . . . . . . . . . . . . 52

3.6.2 Correction via the conjugate symmetry rule . . . . . . . . . . 52

3.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 First Set of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Second Set of Experiments . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Motion before and after the center of K-Space acquisition . . . 70

4.2.2 Motion occurring during the scan and continuing to the end . 74

5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix

A. MATLAB code for Raw Data Analysis tool . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



LIST OF ILLUSTRATIONS

Figure Page

2.1 A two-point Dixon reconstruction of gradient echo data acquired on a

0.5 T scanner. Reproduced from [1]. Water image presents the water

components while the fat image presents those of fat. However, there are

parts, appearing as bright, in each of images corrupted by the presence

of the other. This is caused by the off-resonance frequency ω across the

head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Cartesian acquired K-Space and its corresponding imageFOV. Re-

produced from [2]; In the cartesian K-Space, the extent of K-Space that

is acquired (kx,max and ky,max) is inversely proportional to the image res-

olution. FOV in each direction is inversely proportional to the distance

(∆kx and ∆ky) between the collected lines in K-Space . . . . . . . . . 15

2.3 The impact of undersampling the K-Space on the Image. Reproduced

from[2]; (a) For a full FOV, and a high-resolution image, it is necessary

to acquire a fully sampled K-Space with the distance between phases

satisfing the 1
FOV

(b) By decreasing ky,max, the resolution of the image

is reduced (c) increasing the distance between frequency encoding lines

maintains image resolution while reducing scan time . . . . . . . . . . 16

vii



2.4 Demonstration of SENSE. Reproduced from[3]; (a) Image of a phantom

obtained. (b) image obtained from reciever coils 1 and 2. The arrow

heads (triangles) highlight regions closer to the reciever coil, and there-

fore appear as bright in the image. The arrow points shows the darker

sides of the image, further away from the receiver coils. (c) image as

obtained by coil 1: s1,1 and s1,2 denote the signal intensities at locations

1 and 2 in the image reconstructed from coil 1. Points closer to coil 1

s1,1 will appear brighter than those further away such as s1,2. (d) image

as obtained by coil 2: points closer to coil 2 s2,2 will appear brighter

than those further away s2,1. (e) reconstructed image from the under-

sampled K-Space for coil 1. a1 in this image corresponds to the point

s1,1 in panel c). As a result of wraping due to under-sampling the K-

Space, the spatial location is reported falsely. (f) reconstructed image

from the under-sampled K-Space for coil 2. a2 represents the point s2,1

in panel (d). (g) two points on the phantom, with unknown intensities

p1 and p2. (h) SENSE reconstructed image. (i) intensity corrected image 20

2.5 Convolution rule for the GRAPPA algorithm. Reproduced from[2]. The

first row corresponds to the image domain. Multiplication of a fully sam-

pled K-Space image by the corresponding coil sensitivity profile (middle)

will result in a single coil image(right). The corresponding K-Space is

shown in the second row. The same relationship is found, with the con-

volution of the first (object) with the coil sensitivity K-Space (middle),

giving single-coil k-space. As observed (right), many of the points are

affected by the coil sensitivity . . . . . . . . . . . . . . . . . . . . . . . 22

viii



2.6 The GRAPPA reconstruction scheme. (a) the under-sampled K-Space

acquired by each coil is presented in a different color. The dotted black

box is a set of data points including some targets (empty circles) and

some source points (solid dots) that shows the combination of data

points from K-Spaces in which GRAPPA reconstruction acts. (b): auto-

calibration signals (ACS) acquired near the center of the K-Space. (c)

The kernel passes through the ACS regions of each coil to calculate

the GRAPPA weights. (d) Calculated weights are used to estimate the

target points. The final K-Space would be fully sampled. (e) Multiple

channel images then are combined to create a full FOV image . . . . . 34

3.1 Layout of the motion platform as secured to the MRI couch . . . . . . 37

3.2 Motion platform with the abdomen phantom mounted on it. The phan-

tom is secured with the rubber bands in order to avoid unwanted motion

of the phantom during the data acquisition process . . . . . . . . . . . 38

3.3 Motion platform with phantom and the body coil; the body coil includes

32 RF channels and sits on top of the phantom to provide a multichannel

MR scan. The set up is ready for undergoing the data acquisition . . . 39

3.4 The general sinusoidal wave trajectory and its characteristic variables . 42

3.5 Attempted trajectories for the first set of experiments; first two rows

are the trajectories that last for three seconds and occur at start (first

column), in the middle (second column) and at the end (last column) of

the data acquisition process; amplitudes are respectively 1 and 2 cm for

the first and second rows. Third and fourth rows have the same order,

while the duration of the motion is extended to 6 seconds. The last row

presents drift failures with amplitude of 1 cm (left) and 2 cm (right) . 44

ix



3.6 Trajectories for the second set of experiments; (a) and (b) are one sharp

sinusoidal wave before (a) and after (b) the center of K-Space; the sec-

ond row shows the trajectories with motion starting during the scan and

countinuing until the end. Panel (c) has the most corrupted data be-

tween, and (d) has the motion occur after the center of K-Space. Panel

(e) has the least corrupted data and results in an image similar to the

stationary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Indices for K-y and K-z acquisition; (a) shows Ky points being acquired

as a function of the scan time, (b) represents how Kz are acquired from

minimum number 1 kz point to maximum number of 71 kz points. Not

all Kz points are acquired for every Ky and this makes processing more

difficult; Kx plane is composed of 456 points, acquired simultaneously

meaning that for every single point in Kz graph (b) there are 456 points

in frequency encoding direction that are filled almost at the same time,

(c) Depicts one of the lines ofKz from (b) to make it easier to understand

the way each kz line is acquired . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Reproduced from ’http://mriquestions.com/field-of-view-fov.html’; The

distance between two enteries of a 2D K-Space (here ∆k) is inversely

related to the extent of FOV and pixel size (∆w) and from symmetry

considerations an inverse relation exist between kFOV (= 2Kx,max) and

spatial resolution (pixel size) in image domain (∆w). The K-Space, and

image are assumed to be quadrangular meaning FOV x = FOV y =

FOV and ∆x=∆y=∆w . . . . . . . . . . . . . . . . . . . . . . . . . . 50

x

http://mriquestions.com/field-of-view-fov.html


3.9 Coil averaged image vs. scanner reconstructed DICOM: simple averag-

ing over coils does not lead to a reasonable image (first row); a guess

image is defined and weighting factors are assigned to each coil defined

using the error of the coil image and the guess image. Channels with a

lower error are given a higher weighting. The image at the bottum is

the scanner reconstructed image to be compared with the result of our

simplified version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Flow chart for processing and correcting the raw data . . . . . . . . . 58

4.1 Contribution of the central and periphery of the K-Space to the final

image. Presented in each row are the K-Space, the corresponding image,

its error with the reference/stationary image, and the reference image.

The top row corresponds to the image obtained after the removal of

the center of K-Space and the bottom row corresponds to the image

obtained after removal of the periphery of the K-Space . . . . . . . . . 61

4.2 Comparison of the motion artifacts due to motion occurring at the start,

middle and end of the scan. The first column presents the final image

(first row) and the associated error due to occurrence of motion at the

start of the scan. The column presents the final image and its associated

error due to the motion occurring at the middle of the scan, and the

last column corresponds to the final image and its associated error due

to motion occurring at the end of the scan . . . . . . . . . . . . . . . . 63

xi



4.3 Impact of the duration of motion on the motion artifact. The first

column represents the final image (first row) and its error with the

stationary (second row) due to a 3 seconds trajectory occurring at the

start of the scan. The second column presents the final image and its

error occurring at the middle of the scan. The last column presents

the final image and its error due to a motion consistent over the entire

duration of the scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Comparison of motion artifacts for drifts of 1 cm and 2 cm respectively.

Presented in the first column are the final image and the error for a 1

cm drift. The second column presents the final image and its error for

a 2 cm drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Regions of interest in the phantom. ROI 1 contains homogeneous tissue

for two organs, including their boundary. ROI 2 contains homogeneous

tissue representing a single organ. ROI 3 is composed of fat with the

largest level of ringing observed in the previous figures . . . . . . . . . 67

4.6 Comparison of motion artifacts for motion occurring before and after

the middle of the scan time. Top row presents the image and the corre-

sponding K-Space obtained from the motion trajectory (red) occurring

prior to the middle of the scan. The bottom row presents the image and

its corresponding K-Space as obtained from the motion trajectory after

the middle of the scan . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Correction multiplier and the corrected K-Spaces. Presented in the

figure are the K-Space corrupted by motion, the zero-padded K-Space

and their respective errors with the K-Space of the stationary image . 72

xii



4.8 Comparison of the image prior to zero padding and after zero padding.

Top row presents images corresponding to motion occurring prior to the

center of the scan. Bottom row presents Reconstructed images after the

center of the scan. Presented in each row are the artifact ridden image,

the corrected/zero padded image, and their respective errors with the

stationary profile as well as the corrected K-Space . . . . . . . . . . . 73

4.9 K-Space and final image for motion that occurs near the start of the scan

and continues well until the end. The first row presents the corrupted

K-Space, the zero padded K-Space and their errors with respect to the

stationary reference. The second row presents images corresponding to

the K-Spaces presented in the first row . . . . . . . . . . . . . . . . . . 75

4.10 K-Space and final image for motion that occurs at the middle of the the

scan and continues well until the end. The first row presents the cor-

rupted K-Space, the zero padded K-Space and their errors with respect

to the stationary reference. The second row presents images correspond-

ing to the K-Spaces presented in the first row . . . . . . . . . . . . . . 76

4.11 K-Space and final image for motion that occurs near the end of the scan

of the the scan and continues well until the end. The first row presents

the corrupted K-Space, the zero padded K-Space and their errors with

respect to the stationary reference. The second row presents images

corresponding to the K-Spaces presented in the first row . . . . . . . . 77

xiii



LIST OF TABLES

Table Page

3.1 The sequence properties input for m-DIXON-W-BH SENSE. We note

that the scan mode we have used is in 3D and spans 131 slices permitting

for a FOV of 400x229x229 voxels after zero filling. . . . . . . . . . . . 48

4.1 RMSE of the object image with respect to the reference stationary. εSS

represents the background noise and is computed as the RMSE of two

measurements of the stationary phantom. εA,T represents the RMSE of

the image obtained from motion of amplitude A (in cm) at time T (in s).

εA represents the drift of intensityA occurring at time T . The RMSE has

been calculated according to RMSE = 1
m·n

√∑M−1
i=1

∑N−1
j=1

[
Iij − I2s,(i,j)

]2
withM , N are the number of pixels in the X and Y direction respec-

tively, and Is,(i,j) representing the stationary reference image. . . . . . 68

xiv



CHAPTER 1

Introduction

Aside from the numerous advances in hardware and software for Magnetic Res-

onance Imaging, motion artifacts are still among the main obstacles to be overcome

in order to acquire a well qualified image. A plethora of strategies aim at addressing

this issue, with each method having its own weakness; for example, gated and trigger-

ing scans [4] integrate information regarding the motion into the acquisition system.

While such strategies are promising, they also tend to result in long acquisition times,

with belows either being too sensitive to noise, or prone to shallow breathing errors.

Complex sequence designs involving complicated acquisition techniques such as spiral

K-Space [5][6], present an elegant way to capture and integrate information regarding

the motion into the scan acquisition and post-processing. However, such methods are

fundamentally challenging and currently outside of day to day clinical applications.

Signal averaging [6] presents another approach leading to higher SNRs via acquisi-

tion and averaging of several data sets. While such methods may yield improvements

when imaging large structures with little motion, a detailed structure that moves

periodically or continuously will be averaged out or distorted in the final image.

By accelerating the data acquisition process, fast imaging attempts to complete

the scan prior to the occurence of motion in the region of interest. Breath-hold scans

present one such acquisition strategy [7] [8] [9] [10]. Here, under ideal circumstances,

the patient is educated to hold his breath while performing the scan. Success of

such an approach relies heavily on the patient’s ability to control his breathing, and
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presents a difficulty for many individuals [11]. Suppression of the signal from the type

of tissue (water or fat) with the largest motion associated with it would also have an

additional positive impact on reducing motion artifacts. This is the strategy behind

the mDIXON breath-hold sequences that are employed in this report to study motion

artifacts in MR images of the abdomen [12] [1][6].

This study investigates the possibility for the reduction of motion artifacts in

MR images as applied to tumor detection in the abdomen. This work has involved

several hours of measurement at the RTR MR Scanner at UTSW, and the develop-

ment of a set of tools in MATLAB for the analysis, manipulation, reconstruction and

correction of scanner raw data. We use an MRI abdomen phantom, coupled with an

MRI compatible motion platform [13], to simulate and study the various motion arti-

facts that arise from types of motions in common to breath-hold scans. By studying

the artifacts that appear in the corrupted images, we attempt to classify the resulting

artifact in terms of the underlying type of motion that it originated from. Once the

type of artifact has been identified, we attempt to reduce the impact of the resulting

artifacts in the final image via manipulation of the K-space.

This study is structured as follows: chapter 2 presents the underlying theoret-

ical foundations including a brief overview of the MRI concepts and methods that

the rest of this study is built upon. We then proceed to present our experimental

methodology in chapter 3, and our approach for studying and correcting the motion

artifact. Chapter 4 presents some of our results from two of our experiments. We

summarize our results in Chapter 5 and present extensions and future avenues of

research for our work.
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CHAPTER 2

Theoretical Foundations

Magnetic resonance imaging provides a superb contrast of the various struc-

tures while giving no dose to the patient. The variation between tissue properties

such as T1, T2 and proton density is what is being measured with MRI and what

provides a great variety of contrast in the final image. Scan parameters such as rep-

etition time, echo time, and flip angle, can be manipulated to suppress or enhance

the contribution of a tissue parameter based on the desired clinical or research goal

of the final image. Sequence design arises from manipulation of such parameters to

address a certain goal. This study uses an MR sequence (m-DIXON BH-W SENSE)

created to investigate the effect of respiratory induced organ motion in MR images of

the abdomen. In this chapter, we advance towards a presentation of such a sequence

by covering some of the underlying theory behind MRI and the K-Space, as well as

common imaging techniques such as parallel imaging and DIXON methods. We will

then discuss motion induced artifacts in MRI, and the various techniques (including

methods and sequences) that aim to correct for it. Such techniques are used in the

subsequent chapter to analyze our experimental results which are presented in chapter

4.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging is based on quantum mechanics and should there-

fore be explained using quantum mechanical notions. Signals arising from the energy

exchange between nucleons and a rotating electromagnetic field at a certain frequency
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are emitted from the nuclei and used to generate an image; when particles of non-zero

spin are placed in a strong external magnetic field, due to the spin angular momen-

tum, their spins tend to align in the direction parallel or anti-parallel to the applied

magnetic field. When an RF pulse at the larmor frequency (the frequency of rotation

of the spins) is applied, the spin of each particle is forced out of perfect alignment and

the population of the spins begins to rotate in a cone-shaped trajectory. The Gyro

magnetic ratio γ is a parameter unique to each nuclei and determines the shape of

this trajectory. The Gyro-magnetic ratio (magnetogyric ratio) is related to the spin

angular momentum as well as the rate of precessing around the external magnetic

field by :

µ = γS (2.1)

Or

ν = γB (2.2)

where the spin S and magnetic moment µ are collinear and directly proportional to

one another and the gyro-magnetic ratio γ. When placed in a magnetic field with

strength B, a particle with a net spin can absorb a photon of frequency ν. The

frequency ν depends on the gyromagnetic ratio γ of the particle. For hydrogen,

γ = 42.58MHz/T .

T1 relaxation time, also referred to as spin-lattice relaxation time, is a way to

measure how fast the longitudinal magnetization loses it’s energy to the neighboring

nuclei (lattice) and returns to it’s ground state [14]. This growth of net magnetization

is governed by a time constant that describes the time required to recover 63 percent

of the signal. After about three to five T1s, the signal is approximately recovered.

This time is related to the amount of lattice structure that exist in the tissue and the
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likelihood of energy exchange between the spins and the lattice.

T2 relaxation time is the transverse relaxation that describes the progressive

dephasing of the micro dipoles following the 90 degree RF pulse. This occurs much

faster than T1 relaxation, and is easier to measure. It can be measured by reading out

the receiver coil at different times, and plotting the curve connecting them described

by an exponential decay. T2 describes the amount of time that is required to have

37 percent of the initial transverse magnetization; it is different for each tissue and

depends on the transfer of energy from spins in the higher energy state to those in

the lower energy state. T1 and T2 are independent from each other as T1 describes

the transfer of energy to the lattice while T2 describes the loss of coherent nuclear

spins due to spin-spin interaction or field inhomogeneities [15].

A common property of some elements, also called zero spins, is that they do

not have an equal number of protons and neutrons in their nuclei. NMR only works

for such isotopes, with the preference given to those of higher abundance for easier

detection [16]. Hydrogen is one such elements whose properties make it ideal for MR

imaging. As a result, we often tend to look at water because of it’s abundance in the

body and also because the high strength of the proton signals in the H2O molecule

tends to generate more accurate images.

The goal of an MRI scan is to differentiate the different structures, and observe

abnormalities. Hence, the image contrast is set according to the observed abnormal-

ity. By varying scan parameters, MR sequences try to emphasize/highlight certain

contrast characteristics of the anatomical structure of interest. Primarily, tissue den-

sity determines the contrast. However, scanning parameters such as the Echo time
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and the repetition time also plays an important role and can be varied to obtain

better results. Varying these parameters is a widely used technique for defining MRI

pulse sequences. In MR terms, by choosing a short TE and a long TR, the obtained

image will represent the proton density of the tissues so that T1 and T2 relaxation

effects are minimized. A T2-weighted imaging (here the T1 relaxation effects are

minimized), has a long TR and a short TE. This results in the water parts of tissue

to appear bright on the image while tissues with high amount of fat appear as dark.

Since most lesions are associated with water, this approach is helpful in demonstrat-

ing pathologies. On the other hand, T1 weighted imaging minimizes the effect of T2

by having a short TR and a short TE. Tissues with high fat content appear bright

while ones with water appear as dark; this is useful when one wishes to represent the

anatomy of the body.

While such approaches are useful for many applications, they can not fully cover

the necessity for separation of water and fat in MR imaging. Since we require water

signals to be represented in the image more clearly than fat, separation of fat and

water is important for diagnosis, [17]. However, fat signal often appears as bright in

most types of images. The need for a method that can separate water and fat has led

to the design of other sequences and methods. DIXON methods [18] are one group

of such methods used in this study and are described in the next section.

2.2 DIXON methods

As mentioned in the previous section, fat has a short T1 so that it appears

bright on most types of MR images. This is particularly true for T1 weighted images

where the echo time is long enough for the signal to decay considerably. The bright

appearance of fat can obscure the water parts of the body in the image. However,
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this is not desirable due to importance of water in medical diagnosis; for example,

tumors often appear as bright as fat in MR images, which can result in them being

mistaken for fat tissue. Therefore, separating fat and water regions from one another

has been a subject of great study.

A number of methods have been developed for separating water and fat regions.

The majority of existing methods are based on either chemical shift or the short T1 of

fat. Two examples of such methods are CHESS and STIR; Chemical Shift Selective

Saturation (CHESS) is a widely used clinical method that tunes an RF pulse to the

fat resonance frequency with a spoiler gradient saturater. This causes dephasing of

fat protons and results in a signal produced from only water protons [19]. Short T1

Inversion Recovery (STIR) is based on the short T1 relaxation time of fat in compar-

ison to almost all other tissues present in the body. STIR tries to invert water and

fat magnetization and applies a delay time to zero the fat longitudinal magnetization

(due to its shorter T1). However, at the time of RF excitation, longitudinal magneti-

zation of water is not zero and is the signal acquired by receiver coils. Therefore, the

image is primarily acquired from water signal and not fat. However, while nulling fat

magnetization, STIR also weakens the signal from other tissues. Additionally, unless

additional adjustment is provided, STIR is also sensitive to B1 non-uniformity [20].

Another approach for separating water and fat is water excitation. Water ex-

citation focuses on fat elimination and uses a short series of RF pulses to excite only

water protons and create an image from water only; water excitation is widely used

for the evaluation of cartilage muscloskele in the musculoskeletal system [21]. Spec-

troscopic methods can also be used to quantify the portions of fat and water in the

imaged tissue. These methods aid in diagnosis as they permit to determine the rel-
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ative proportionality of each material (such as fat and water) present in the imaged

object.

A widely used set of methods which provide a melange of the above strategies

to separate water and fat are DIXON methods. DIXON methods are widely used for

abdomen imaging. These methods attempt to address the differences in water and fat

resonance frequencies (chemical shift) using the adjustment of the echo time (TE).

DIXON methods separate water and fat by creating in-phase and out-of-phase sets

of images. They do this by by acquiring 2, 3 or more echoes (also called number of

points in Dixon methods) at different TEs; mathematical operations are then applied

to extract water only and fat only images.

Dixon [12] uses a two point method which is sensitive to inhomogeneity of B0,

so that a small fluctuation in B0 can result in a deprecated image. This strategy has

been the basis for development of a series of methods in water and fat suppression

methods in MRI with the modified versions of the DIXON method are less sensitive

to B0 and B1 heterogeneity than CHESS/Fat-Sat methods. This work utilizes the

multi-point DIXON method (mDIXON) which is available on the Philips 3T RTR

scanner. The mechanisms of the mDIXON sequence are similar to 2P and 3P DIXON

methods so that we will provide a quick survey of the theory behind these methods.
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2.2.0.1 Initial two Point Dixon Method

In this method a linear combination of two images is used to distinguish water

and fat regions. Assuming that only water and fat are present (see figure 2.2.0.1 [1]),

the obtained image will have the form:

I = Iw + e−iωfTEiIf (2.3)

where Iw is the water component, and If is the lipid/fat component in the obtained

image I. If the echo-time TE, i is chosen such that its product with the larmor

frequency ωf is a multiple of π, i.e. TEωf ∈ [2n, (2m+ 1)π, 2π] for n,m ∈ Z, then

the two images will have the form:

I1 = Iw + If (2.4)

I2 = Iw − If (2.5)

(2.6)

As a result, the water and fat components Iw and If can be extracted by subtraction

so that:

Iw =
1

2
(I1 + I2) (2.7)

If =
1

2
(I1 − I2) (2.8)

(2.9)

A basic problem that arises from the assumption that the image has the form

given by equation 2.10 is shown in the white highlighted region outlined in figure

2.2.0.1. Here, we see a non-water, non-fat region that appears in both images due to

the off-resonance frequency ω in the head. Three point Dixon methods try to address

this problem by using three linear combinations of the components Iw and If .
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Figure 2.1. A two-point Dixon reconstruction of gradient echo data acquired on a
0.5 T scanner. Reproduced from [1]. Water image presents the water components
while the fat image presents those of fat. However, there are parts, appearing as
bright, in each of images corrupted by the presence of the other. This is caused by
the off-resonance frequency ω across the head.

2.2.0.2 Three Point Dixon Methods

Three point Dixon methods attempt to account for the off-resonance frequency

by introducing a phase term φ. Three images I1, I2 and I3, taken at intervals of

ωTE, i = 0, π, 2π, will have the form:

I1 = Iw + If (2.10)

I2 = (Iw − If )eiφ (2.11)

I3 = (Iw + If )e
2iφ (2.12)

The phase corrected image is then given by[1]:

Îw =
1

2
((Iw(1 + eiφ) + If (1− eiφ)) (2.13)

Symmetrically acquired echoes in three-point -DIXON cause a certain type of

artifact that are addressed in a study by Reeder and colleagues [22] who introduced
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IDEAL (Iterative Decomposition of Water and Fat With Echo Asymmetry and Least-

Squares Estimation), and claim that the noise performance on any water-fat sepa-

ration method is a function of the proportion of water and fat in any given voxel

and the relative position of acquired echoes to the spin echo. They have modified

the three point DIXON to perform an optimization for the phase encoding gradi-

ents. Their technique uses alternative water/fat phase-encoding strategies. This

multi-point method has different phase encoding values than three point to overcome

optimization issues in the three point-DIXON and also gives the user the chance of

measuring spectral width of the fat resonance [23]. This method has lower SNR in

comparison to three-point DIXON, at the cost of longer scan times.

2.3 K-Space

K-Space is an array of collected signals representing spatial frequencies, with

radio-frequency pulses being responsible for their generation. Each entry is a data

point from the scanner with its value (it’s brightness) representing the relative con-

tribution of spatial frequency of that entry to the final image.

Although the K-Space and it’s corresponding MR image look very different, all

the information of the acquired image is included in K-Space. The resolution of the

image, FOV and even the time duration of the scan can be determined from exploring

the K-Space. It is possible to reduce the scan time by reducing the total number of

acquired points in the K-Space [24] (more effectively in the phase encoding direction).

The K-Space is presented in a format similar to figure 3.4. The kx and ky axes

of the K-Space correspond to the horizontal (x) and vertical (y) axes in the figure.

However, unlike an image which reports pixel intensities as function coordinates, the
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K-Space reports amplitudes of the spatial frequencies in the x and y directions. Ac-

cordingly, a point in the K-Space does not correspond to its counterpart pixel (x,y)

in the image domain; instead, it contains the spatial frequency and phase information

related to every pixel in the final image domain. Conversely, each pixel in the image

domain is related to all the points in K-Space.

Graphically, high frequency amplitudes are assigned to the outer edges in the

K-Space while those for lower frequencies are found near the center. Accurate re-

construction and presentation of the image requires a good knowledge of the lower

frequencies amplitudes. Hence, the center of the K-Space contains the most signifi-

cant information regarding the image.

2.3.0.3 K-Space Structure

The study of MR motion artifacts and the manipulation of K-Space requires

certain terminology which we will now describe to permit for a better understanding

of the subsequent sections of this study.

Imaging a 3D subject involves encoding frequency amplitudes and phases over

three directions (dimensions); the frequency encoding direction and the first and the

second phase encoding directions. The frequency encoding directionds is acquired in

one repetition time (TR) by using an additional magnetic field gradient that slightly

distorts the main magnetic field (B0). The slope of the distortion is later used for

spatial encoding in the direction of the distortion. The encoding works by relating

the resonance frequency to image pixel locations. In this study, this direction is de-

fined to be the x-direction (in-plane localization). Therefore, lines of K-Space in the
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x-direction are assigned to be the frequency encoding direction. The other two direc-

tions are deemed as the first and second phase encoding directions.

Each line in the frequency encoding direction consists of signal amplitudes mea-

sured at succesive points in time following TE. Varying the phase encoding gradients

before the start of the next TR will take us to the next line in phase encoding di-

rection. This will be continued by each line, there-by adding a certain amount to

the phase encoding gradient until the entire K-Space is completed. The result is a

traceable phase change in K-Space lines that is used to encode in this direction.

2.3.0.4 Properties of the K-Space & Scan Time

Certain mathematical property of K-Space required it to have conjugate sym-

metry; i.e. two points along the diagonal and equidistant from the center are complex

conjugates. As we will see, this is a property that we can use to try and correct for

motion artifacts; if we have half of the K-Space, then theoretically we should be able

to predict and calculate the other half.

Removing some of the lines in K-Space will result in a reduced scan time. Long

scan times are one of the clinical problems of using MRI; parallel imaging methods

are an ever increasingly used strategy to try and overcome this issue. By acquiring

only a portion of the K-Space and using the coil sensitivity maps as an additional

source of information, parallel imaging methods aim to reduce scan times. The next

section will present several key methods of current use in parallel imaging.

13



2.4 Parallel Imaging

Parallel imaging is a commonly used imaging method to reduce scan acquisition

times. In this method, the spatial location of receiver coils in relation to the subject

and also the sensitivity maps of the coils are used as an extra piece of information

for spatially localizing the MR signals either in image domain/time domain. By in-

cluding this information during the spatial encoding, some of the K-Space lines in

phase encoding direction can be omitted. Sensitivities of receiver coils are then used

to assist covering for the missing information. This, in-turn can potentially result in

a significant decrease in the image acquisition time at the price of SNR. From the

hardware side of things, the main requirement is the need for a scanner with inde-

pendent receiver coils and sources.

Two parallel imaging methods include SENSE and GRAPPA [11]. As described

below, these methods aim to reconstruct an image from a partially acquired K-Space.

The study of how this image reconstruction is performed is beneficial to our cause

- correction for motion from a K-Space that contains partially corrupted sections

due to motion. As a result, we provide a quick survey of parallel imaging methods.

Additionally, learning about these different methods will permit us to have a better

understanding of their advantages and disadvantages.

When the K-Space data is collected in a Cartesian grid (see figure 2.4), the

extent of the acquired K-Space (kx,max and ky,max)) is inversely proportional to the

image resolution. The distance between neighboring entries in the K-Space (∆kx

and ∆ky) is inversely proportional to the field of view (FOVx and FOVy); therefore,

changing the distance between data points or varying the extent that the K-Space is
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Figure 2.2. The Cartesian acquired K-Space and its corresponding imageFOV. Re-
produced from [2]; In the cartesian K-Space, the extent of K-Space that is acquired
(kx,max and ky,max) is inversely proportional to the image resolution. FOV in each di-
rection is inversely proportional to the distance (∆kx and ∆ky) between the collected
lines in K-Space.

acquired, will affect the FOV and resolution of the final image.

The lines of the cartesian K-Space are acquired one by one: first over the

frequency encoding direction (kx) and then over the phase encoding direction. In this

study, the ky is chosen as the first phase encoding direction (see 2.4 as an example

in 2D). There is another phase encoding direction if the data acquisition is 3D [25];

this is chosen to be (kZ). The total time ttotal required to acquire all data points in

the 3D acquisition is given by:

ttotal = TRy ∗ TRz ∗NPE (2.14)

where TRy is the repetition time needed to acquire one line of K-Space in the first

phase encoding direction and TRz is the repetition time for the second one; NPE is

the number of lines in phase encoding gradients.
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Figure 2.3. The impact of undersampling the K-Space on the Image. Reproduced
from[2]; (a) For a full FOV, and a high-resolution image, it is necessary to acquire
a fully sampled K-Space with the distance between phases satisfing the 1

FOV
(b) By

decreasing ky,max, the resolution of the image is reduced (c) increasing the distance
between frequency encoding lines maintains image resolution while reducing scan
time.

Two ways to reduce the acquisition time are either by using a faster K-Space

data collection (reducing the TR in equation 2.14) or by reducing the extent to which

the K-Space is acquired (reducing NPE). The speed at which K-Space data can be

collected is adjusted based on the desired image contrast as well as the strength of

the magnetic field gradients that are used to encode the K-Space data. Depending

on the type of the scan and the sequence, different factors can limit the amount by

which the the acquisition time can actually be reduced. For example, spin echo [26]

already requires a long TR, so that a reduction in the acquisition time by reducing

TR would be difficult, if not impossible. Another constraint encountered for reducing

TR would be the possibility of inducing an electrical current in the patient’s body or

16



the specific absorption rate (SAR) [27].

Another approach to reduce the total scan time is to acquire less data points

in the K-Space, i.e. to reduce NPE appearing in 2.14. Depending on which of the

image properties is deemed as important, we can try reduce ky,max which in-turn

lowers image resolution, or increase the spacing between the data points in K-Space

by skipping some lines, which is equivalent to increasing ∆ky appearing in equation

2.4. This latter strategy results in a smaller FOV and aliasing or wrapping in the

final image due to violation of the Nyquist criterion [2]. In this situation, the high

frequency signal from one part of the subject is mixed with the low frequency signal

from another part and the two parts are seen at the same point in the image. This

occurs because the spacing between two consecutive points in K-Space is not small

enough to make it possible to distinguish the frequencies from the different locations

in the subject.

Addressing aliasing problems requires for the un-acquired sections of the K-

Space to be encoded. Parallel imaging is used for this application and includes a

large plethora of various methods. However, all of these methods have certain prop-

erties in common - the most obvious is the under-sampled K-Space in one or both

of phase encoding directions, and an acceleration factor which dictates the propor-

tion of lines removed.1 Increasing this factor corresponds to reducing the scan time

which results in additional aliasing in the image. The additional information needed

for image reconstruction is extracted from each coils’ position relative to the scanned

object. Used algorithms accept the under-sampled data and coil sensitivity from each

1For example, in this study, the sequence used is a 3D acquisition that has SENSE in both of its

phase encoding directions. The acceleration factors are 1.5 and 0.5
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individual coil as input and reconstruct the full FOV. Hence, multiple receiver coils

are always used when reconstructing data using parallel imaging. The coil sensitivity

describes just how sensitive a given channel is to any point on the subject’s body and

often varies from patient to patient. The sensitivity map of each coil should have as

little overlap as possible with the other coils, and their sum should cover the FOV.

2.4.0.5 SENSE

SENSE is a parallel imaging method that corrects the aliasing in the image

domain and not K-Space. The MR sequence we used in this project includes SENSE

with acceleration factor of 1.5 in y-direction and 0.5 in z-direction; In SENSE, the

Fourier transformation of the acquired, under-sampled, K-SPACE is performed and

the aliased images are generated [28]. Then, coil sensitivity profiles are used to re-

construct the unwrapped images. With the SENSE method, the homogeneity and

non-overlap of the coil sensitivity maps is not an issue; rather, the maps should be

available before starting the reconstruction process. Usually a low resolution pre-scan

is performed to collect this information [29].

Two rules are to be considered when using SENSE [3]:

• ky,max is important in determining the spatial resolution in the phase encoding

direction with higher numbers of sampled points (Ny) resulting in a higher

spatial resolution along the phase encoding direction.

• the spacing between data points in the phase encoding ∆ky determines the

corresponding FOVs in the image domain.

In SENSE, aliasing artifacts are addressed using the spatial sensitivity profile

for each coil element. The image is then a combination of each individual chan-
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nel’s image. The sensitivity profile of each element in the phased array relates the

difference between signal intensities in each coil to the spatial location of each pixel.

The sensitivity for each coil is unique and varies for each pixel in the image domain [3].

In matrix notation (see figure 2.4.0.5), we can denote a as the image pixel

intensities before reconstruction/unwrapping, p as the image pixel intensities in the

un-aliased/reconstructed image (unwrapped), and s as sensitivity maps for all the

coils at each spatial location. Values in matrix a are then related to p and s as [30]:

a1 = s1,1 ∗ p1 + s1,2 ∗ p2 (2.15)

a2 = s2,1 ∗ p1 + s2,2 ∗ p2 (2.16)

The pixel values p determined from the coil sensitivity profiles are the unkowns of

interest in the above equations, and can be obtained by inverting the sensitivity

matrix s so that:

p = s−1 · a (2.17)

SENSE reconstruction maintains the same image contrast and spatial resolu-

tion as a standard scan, but in half of the acquisition time with a reduced SNR.

The SENSE reduction factor can be as large as the number of coils. However, high

reduction factors result in undesirably low SNRs so that a significantly lower value is

typically used.

The total extent/size of acquired K-Space remains the same which maintains

image resolution. However, the distance between adjacent k-space lines that are

acquired is increased by a reduction factor R. So the signal from R locations, equally

spaced along the sub-sampled direction, overlap in/wrap-around the image. Provided

that the coil sensitivity is different at each pixel and for each coil, the weights given
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Figure 2.4. Demonstration of SENSE. Reproduced from[3]; (a) Image of a phantom
obtained. (b) image obtained from reciever coils 1 and 2. The arrow heads (triangles)
highlight regions closer to the reciever coil, and therefore appear as bright in the
image. The arrow points shows the darker sides of the image, further away from
the receiver coils. (c) image as obtained by coil 1: s1,1 and s1,2 denote the signal
intensities at locations 1 and 2 in the image reconstructed from coil 1. Points closer
to coil 1 s1,1 will appear brighter than those further away such as s1,2. (d) image as
obtained by coil 2: points closer to coil 2 s2,2 will appear brighter than those further
away s2,1. (e) reconstructed image from the under-sampled K-Space for coil 1. a1 in
this image corresponds to the point s1,1 in panel c). As a result of wraping due to
under-sampling the K-Space, the spatial location is reported falsely. (f) reconstructed
image from the under-sampled K-Space for coil 2. a2 represents the point s2,1 in panel
(d). (g) two points on the phantom, with unknown intensities p1 and p2. (h) SENSE
reconstructed image. (i) intensity corrected image.20



to the signal components will also vary (i.e. s−1 exists). Finally, we note that the

defined FOV should include the entire body part; otherwise, other parts out of FOV

will also have aliasing that has not been accounted for.

2.4.0.6 SMASH

SiMultaneous Acquisition of Spatial Harmonics uses linear combinations of coils

and benefits from sensitivity variations in the surface coil array to replace the missing

information in the unacquired phase encoding lines. Sinusoidal spatial modulations,

or ’spatial harmonics’, are formed by linear combination of measured component coil

sensitivities, and the same linear combinations are applied to component coil signals

in order to generate shifted composite MR signals that can take the place of omitted

gradient steps [31].

2.4.0.7 GRAPPA

GeneRalized Auto calibrating Partial Parallel Acquisition (GRAPPA) is a par-

allel imaging technique that samples only a limited number of phase-encoding steps

[32]. GRAPPA is a type of SMASH, where a few more lines of the K-Space are

obtained during the acquisition to eliminate the need for a separate coil sensitivity

calibration. GRAPPA yields a better SNR than SMASH and eliminates certain asso-

ciated artifacts [10]. In comparison to SENSE, GRAPPA corrects the K-Space prior

to the application of the Fourier transform while SENSE uses the sensitivity maps

as an additional piece of information to sort out signals in the image domain after a

Fourier Transform.
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Figure 2.5. Convolution rule for the GRAPPA algorithm. Reproduced from[2]. The
first row corresponds to the image domain. Multiplication of a fully sampled K-Space
image by the corresponding coil sensitivity profile (middle) will result in a single
coil image(right). The corresponding K-Space is shown in the second row. The same
relationship is found, with the convolution of the first (object) with the coil sensitivity
K-Space (middle), giving single-coil k-space. As observed (right), many of the points
are affected by the coil sensitivity.

The correction to the K-Space is based on using the acquired portions of K-

Space to predict the missing ones, with the assumption that information from any

point in the K-Space can be extracted from its neighboring points. Figure 2.4.0.7

shows that the location of the coil affects all pixels by weighting them with the coil

sensitivity profile. In the K-Space, this effect is seen by the distribution of this

information over the neighboring data points.

22



The weighting factors in the GRAPPA algorithm are obtained by acquiring sev-

eral extra lines of the K-SPACE and combining the acquired points to predict missing

ones. The set of acquired points are called source points, while missing points are

referred to as targets. The dotted black box appearing in figure 2.4.0.7 presents the

kernel used to calculate the weights from ACS (auto-calibration signal) lines by find-

ing the mathematical relationship between source and target points. This information

is used to compute the value of the target points and reconstruct a complete K-Space

for each of the coils. Correspondingly, several single-coil fully sampled K-Spaces are

obtained, the combination of whom will create a full FOV image.

In parallel imaging the number of receiver channels in the coil array limits the

maximum acceleration factor that can be used. Generally, the acceleration factor

cannot be higher than the number of coils in the array. However, in practice,it is

usually chosen to be much smaller to generate images of clinical quality. Although

much higher gains are theoretically possible, parallel imaging increases the acquisi-

tion speed by a factors of 1.5 to 3 in most clinical MRI scanners; higher factors are

currently limited by artifacts and signal-to-noise ratio (SNR) considerations. With

parallel imaging, since there is less signal acquired, the sensitivity of the images from

parallel imaging to signal loss due to gradient magnetic field dephasing is lower than

regular scans. However, the SNR lowers as the acceleration factor grows higher so

that an optimum acceleration factor must be chosen.

Unlike SENSE, GRAPPA does not solely rely on coil sensitivity profiles. This

property results in a more robust algorithm in cases where measuring sensitivity maps

is difficult. The number of ACS lines can change as well as the size of kernel which

gives flexibility to the GRAPPA algorithm. Increasing the ACS size yields more ac-
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curate weights at the price of longer scan times.

2.5 Partial Fourier Techniques

From the laws of Fourier transforms [33], we know that the K-Space is conjugate

symmetric. This means that pairs of points located on a diagonal and equidistant

from the center are complex conjugates of each other. Such two points are equal in

amplitude but opposite in phase. Using the conjugate or Hermitian symmetry rule,

and assuming that no phase error occurs during the data acquisition [8], only half

of the K-space data points are required to create a complete 2D MR image. In MR

terms, the signal intensity on the downward portion of a positive phase encode step

echo is the conjugate complex of the downward portion of the corresponding echo

acquired with a negative phase encoding step. The remaining half can be estimated

from the complex conjugate of the corresponding acquired data points. Since only half

of the data points in the K-Space are needed to reconstruct a well qualified image, it

can be expected that the imaging time and/or the minimum echo time will be reduced.

While the ideal MR K-Space may be conjugate symmetric, MR images always

have a certain level of phase error caused by B0 in-homogeneity, eddy current, motion

or spatial variation in the RF transmit as well as sensitivity coil maps [10]. To over-

come the phase error, extra points from the remaining half of the K-Space are also

acquired and used to export the phase correction maps for each data set. How much

of the K-Space is actually acquired varies from method to method. For example, in

echo-planar imaging (EPI), echoes acquired after the RF-excitation pulse will have

a different phase than those that occurred prior to the RF pulse. This introduces

an additional source of phase errors which render error estimation difficult. For EPI,
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often 6/8 to 7/8 of k-space must be sampled to accurately estimate the remaining

portion [34]. Generally, a parameter known as Partial Fourier Fraction is used to

define the ratio of the number of acquired data points to the total number of points

in the entire/filled K-Space. The Partial Fourier Fraction defined for a half-Fourier

acquisition would be 0.5; acquiring more points increases this number to 1 which is

equal to the entire space.

The most common types of partial Fourier imaging available on clinical ma-

chines are [7]:

• Phase Conjugate Symmetry (partial NEX): collects half of K-Space data

points and estimates the other half in the phase encoding direction. The total

number of phase encoding steps has been reduced which will have a direct

impact on the scan time, reducing it up to 40 percent at the expense of Signal

to Noise Ratio.

• Read Conjugate Symmetry (partial echo): the K-Space is halved in the

Frequency encoding direction and used to estimate the other half. With this

method, there is not a great deal of scan saving; however, echo time is reduced.

Additionally, this decreases gradient moments which can help reduce motion

artifacts. Major applications of this method would be in use with echo-planar

techniques for applications such as MR angiography and T1 weighted spin-echo

imaging. Unlike phase conjugate symmetry, this method increases the SNR

for a given TE. Additionally, it may accept smaller FOVs because of the lower

gradient amplitudes for a longer sampling time for a given TE.

In all of the above methods, artifacts are still a major problem and pose an un-resolved

issue for clinical and research MR use. As a result, there still remains the need for

methods that attempt to address this issue. In this study, we attempt to investigate
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methods which aim to correct for motion type artifacts via reconstructing a corrected

K-Space.

2.6 Artifacts

Artifacts refer to disparities between the true object and the represented image.

Such disparities could be the appearance or disappearance of regions, or geometric

changes in the represented region. Recognizing artifacts requires an in-depth knowl-

edge of the types of artifacts that one encounters. Therefore a good knowledge of

artifacts is helpful in distinguishing them from pathologies (or vice versa).

Artifacts can be categorized based on their cause, some of which include [35],[36]:

• Radio Frequency off-set and quadrature ghost: Radio Frequency circuitry not

detected successfully.

• Radio Frequency Noise: failure of the shielding.

• B0 in-homogeneity: the presence of metal objects near the B0 field.

• Susceptibility: variety of magnetic susceptibility of objects inside the field of

view.

• Radio Frequency in-homogeneity: when the function of RF coils is interrupted,

as would be by the presence of metal-like objects in the anatomy of subject.

• Chemical Shift: when the neighboring tissues have a large difference in chemical

shift; specially important under large B0.

• Partial volume: when the voxel size is larger than the feature that we are

interested in imaging.

• Wrapping: when the field of view is not chosen properly. This can occur in

SENSE (a type of parallel imaging) and is fixed in the post processing, using

the coil sensitivity maps (see section 2.4).
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• Motion artifacts: motion in the partial or full image FOV

-Bulk motion: occurs when the entire patient body moves, all the edges and

margins change their place in the image.

-Ghosting, blurring, ringing can all occur.

In this project, we attempt to correct for the corruptions/artifacts occurring in

abdomen MR images arising from respiration induced motion.

2.6.1 Motion Induced Artifacts

Motion artifacts [37] occur when the object or part of it moves while being

imaged. The motion results in inconsistencies in the K-Space data, and can cause

different types of artifacts such as ghosting, blurring, and ringing. The time of the

occurrence of the motion (with respect to the start of the scan time), and the du-

ration of the motion affect the type and amount of inconsistencies in the K-Space.

Such inconsistencies translate to the observed artifact in the acquired image. Some

causes of motion induced artifacts are physiological motions such as cardiac motion,

breathing and pulsation in the vascular system. These motions are also period and

last for the entire duration of the scan. An example of a motion induced artifact is

the ghosting lines in the K-Space that appear when the motion occurs during the

entire acquisition. Additionally, if the motion passes through the entire object, then

the resulting ghosting can be seen over the entire image as well. 2

The timing of the occurrence of the motion artifact also dictates some of its

characteristics. For-example, when the motion occurs between the time of RF excita-

tion to the time of echo collection (also called within view effect) blurring as well as an

increase in the noise of the image are observed. This type of artifact is usually caused

2this type of motion artifact is also called view to view effect
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by random motions in the subject such as swallowing or coughing. Such ringing type

artifacts occur frequently, and can be due to small movements.

Although many studies have attempted to address the issue of motion artifacts,

and a great number of techniques have been suggested, respiratory induced motion

artifacts still remains a serious problems in clinical MR scans of the abdomen as well

as chest. In the next section, we will provide a survey of some of the currently avail-

able methods which aim at addressing respiratory induced motion artifacts.

2.7 A Review of Currently Available Methods to Reduce Respiratory Motion Arti-

facts

One of the simplest ways to address respiration induced motion artifacts is

to try and stop the motion from occurring during active periods of data acquisi-

tion. Particularly for MRI of the abdomen, a great deal of methods exist to sup-

press the artifacts caused by respiratory motion. Among these are: breath-hold

scans, triggering and gating methods and compensation for respiratory motion. Such

methods which aim at addressing object motion by changing/adapting the sequence

are called prospective methods. A second group methods, also referred to as retro-

spective methods, try to aim at correcting for the motion induced artifacts in the

post-processing/reconstruction step of the process. Below, we will provide a short

summary of both catagories.
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2.7.1 Prospective methods

2.7.1.1 Breath-Hold Scans

One of the remedies for respiratory motion artifact in MR images is educating

the patients to hold their breath during the scan time. The used MRI sequence is

designed to satisfy the aim of having the most effective time of scan with the least

possible respiratory motion. The scan time for these breath-hold sequences are usu-

ally adjusted to be less than 20-30 seconds. Breath-hold scans are one of the most

effective ways to overcome respiratory motion artifact. Although they can lead to a

significant improvement in the the quality of the image, there are still artifacts due

to the patients’ failure to hold their breath.

2.7.1.2 Triggering and gating methods

While the patient may not be able to hold his breath for the entire duration

of the exam, breath-holding and triggering methods aim at synchronizing data ac-

quisition with the motion of the subjects [38]. Triggering or gating methods aim to

gate the sequence of image acquisition to the respiratory cycle of the object. One

such example utilizes the scanner triggered with a simulator or sensor that starts the

scan at the end of the exhale (tumor position is most stable), and stops during the

breathing cycle (the respiratory motion is most prevalent), re-starting the simulation

at the next end of subsequent exhales. Naturally, such methods will result in a longer

scan times and additional un-comfort for the patient. Additionally, motion artifacts

can still occur due to a slight drift in the patient as well as common cyclic low-depth

breathing.
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2.7.1.3 Compensation for respiratory motion

Image acquisition with compensation of respiratory motion uses the entire scan

time productively; this method monitors the breathing cycle of the subject during

the scan [39]. Parts of the K-Space that are more sensitive to motion are acquired

during the R-wave (near exhale) in the respiratory cycle while less sensitive parts

(which are high in amplitude phase) are acquired during the inhale and other parts

of the respiratory cycle. Devices such as bellows help to reorder the phase encoding

steps according to the patient’s breathing cycle. Unlike the triggering example given

above, the entire scan time is used effectively. However, like gating methods, artifacts

arising from slight drift in patient position and cyclic low depth breathing still pose

a problem.

While in most respiratory motion correction methods, information regarding

the subject’s breathing cycle is required, the above problems have resulted in much

of the research in the past decade to lean towards utilizing direct methods for motion

compensation in the respiratory cycles [40]. Examples of such methods include self-

navigation and image based navigation [41].

2.7.1.4 Self navigation

The self navigation approach uses the data acquired from the scan to estimate

respiratory motion. In this method, during the data acquisition process, the center

line of the K-Space is repeatedly measured (at-least once per K-Space segment). This

information is then used to detect and estimate the motion. Thesen and colleagues

[42] outline a self-navigated approach applied to fMRI motion correction of the head.

Their method leads to a significant decease in the variance between successively ac-
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quired datasets in comparison to other retrospective correction algorithms. However,

these methods often involve complicated sequence design and are not widely available

for the clinical use.

2.7.1.5 Image based navigation

An alternative approach to motion correction is to use real time images as the

navigator. This is a prospective approach that will give us more options for motion

corrections at the price of greater complexity and data processing. Image based

acquisition functions by programming various sequence designs; one example of such

a navigator is the three orthogonal two-dimensional spiral navigator acquisition, with

a flexible image-based tracking method based on the extended Kalman filter algorithm

for on-line motion measurement [5].

2.7.2 Retrospective Methods

The above methods all aim to lesson the impact of motion by changing/switching

the data acquisition system (real-time) based on the available motion information.

Such an approach is called the prospective correction. However, additional corrections

for motion can be made to the acquired data upon completion of the data-acquisition

process. Such post-scan post-processing methods are called retrospective correction

for motion [37][5]. Retrospective correction permits for a more comfortable scan while

more time and a greater degree of freedom is given to the data processing and recon-

struction. Correction for non-linear motion is an option with such methods; however,

this method prohibits adjustment of slice position caused by through plane move-

ments so that through-plane type artifacts still remain a problem [43].
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2.7.2.1 Cycle averaging

Another retrospective method that aims to correct for respiration induced mo-

tion is to perform scans over several breathing cycles and to average the obtained

signal over various phases in the breathing cycle, hence reporting average phase rep-

resentations of the image [44]. While such an approach leads to a higher SNR in the

final image, it additionally increases the acquisition time in a stationary situation.

Additionally, the obtained anatomy does not correspond to a real state of the pa-

tient’s anatomy. Rather, it represents an anatomy, averaged over several respiratory

cycles. Additionally, such methods require the use of external monitoring devices.

2.7.2.2 External monitoring methods

External monitoring devices such as respiratory bellows [45] or navigator belts

can be used to study the patient’s breathing pattern. However, their use often ac-

companies additional set-up times, and may not accurately reflect the motion in the

volume of interest as they rely on external-internal motion surrogates. Finding an

accurate external-internal surrogate model that relates the external anatomy to the

changing internal anatomy is difficult and a current problem in RT [46].

If it was possible to effectively rely on the information obtained from external

monitoring devices, and also avoid possible interpolation errors in the K-Space, then

the information supplied from such devices could be effectively used to correct for

the many different kinds of motion artifacts. However, use of such devices leads to a

scope of problems for respiratory motion correction such as:
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• when not well positioned, and also in case of irregular breathing patterns, scan

times are likely to increase.

• if the variation in breathing trajectories is larger than expected, adaptive win-

dowing techniques may not work. This leads to incomplete acquisitions.

• navigator monitors the surface motion. However, there are movements inside

the body not visible on the surface. The actual motion may be in a different

direction than what is monitored by the navigator.
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Figure 2.6. The GRAPPA reconstruction scheme. (a) the under-sampled K-Space
acquired by each coil is presented in a different color. The dotted black box is a set
of data points including some targets (empty circles) and some source points (solid
dots) that shows the combination of data points from K-Spaces in which GRAPPA
reconstruction acts. (b): auto-calibration signals (ACS) acquired near the center of
the K-Space. (c) The kernel passes through the ACS regions of each coil to calculate
the GRAPPA weights. (d) Calculated weights are used to estimate the target points.
The final K-Space would be fully sampled. (e) Multiple channel images then are
combined to create a full FOV image.
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CHAPTER 3

Methodology

In this chapter, we outline our methodology for the two sets of experiments

performed over the course of this study. The goal of these experiments is to inves-

tigate the possibility of correcting for the effect of motion artifacts by manipulating

the K-Space. Naturally, in order to correct for something, we must first have a better

understanding of its effect. Therefore, the first set of experiments were performed

with the goal of studying the type of artifacts that arise from various types of motion

trajectories; to do this, several sets of trajectories were programmed in an MRI-

compatible motion platform coupled with an abdomen phantom, and MR scans were

acquired using the mDIXON-BH sequence. Based on discussion of our results from

this experiment with a trained MD/Physician, a second set of experiments with a

similar set-up was performed to investigate the possibility of reducing the impact of

the artifact in the final image. To analyze our data, a set of tools in matlab was de-

veloped that permit for the manipulation of raw data files exported from the scanner,

their correction, and reconstruction of the final image. Our results pertaining to our

experiments are presented in Chapter 4.

3.1 Experimental Setup

Our experiments were performed at the UTSW Radiology Translational Re-

search (RTR) using a 3T MRI scanner (Philips, Ingenia). The experiments utilized

an MR compatible motion platform coupled with an abdomen phantom. Three MRI
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markers (vitamin E) are placed on the phantom. Since the markers are composed

primarily of oil (lipid), they appear as bright spots in the image, thereby simplifying

detection of their location. The first marker is placed in the superior direction of the

phantom at the center. Another marker was placed on the left and inferior side of

the phantom, and a third marker was placed on the inferior surface and up-anterior

side of the phantom. Use of these markers permits to accurately determine the start

and end of each plane, and aids in retrieving the locations in each plane during and

after the movement of the phantom.

The trajectories, programmed into the motion platform, were chosen to rep-

resent motion in the abdomen due to a patient’s failure to hold his breath during

the breath-hold scan. The abdomen phantom that was used in these experiments

includes organs such as the liver, kidneys, spinal chord, and is mounted on the mo-

tion platform so that its movement is synchronized with the motion platform (and

hence the input trajectory). Figures 3.1, 3.2, and 3.3 present the experimental layout.

The procedure for experimental setup is as follows.

1. Set up the motion platform and test it before transporting it to the scanner

room.

2. Compile and place all the trajectories at the required path and ensure that their

duration is equal to that of the planned scan sequence. This step is crucial as

using SENSE modifies the total acquisition time duration and should be taken

into consideration while constructing the trajectories.

3. Place vitamin E pills/markers in the phantom at desired locations. Use of

vitamin E simplifies detection in images.
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Figure 3.1. Layout of the motion platform as secured to the MRI couch.

4. Place the computer in the control room. The motion platform and phantom

are placed in the MR room and secured on the couch.

5. Place a torso 32 channel RF coil over the phantom on the plastic spacer covering

the phantom, with the phantom placed under the center of the body coil.

6. Set the iso-center at the correct location.

7. run the m-DIXON-W-SENSE sequence on the scanner specifically designed for

this study at the RTR 3T scanner.

-in the first set of experiments, SENSE is on and data is exported in par

rec format.
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Figure 3.2. Motion platform with the abdomen phantom mounted on it. The phantom
is secured with the rubber bands in order to avoid unwanted motion of the phantom
during the data acquisition process.

-in the second set of experiments, scanner reconstruction is turned off and

the raw data (format .RAW and .LIST) are exported. Additionally, scanner

reconstructed DICOM files are also exported for validation.

The above procedures require at least 30 minutes to complete.

One of the questions that we aim to investigate in these experiments is how

the intensity of the artifact changes with respect to variations in the amplitude and

duration of the motion. For this reason, we have carefully selected and programmed

several trajectories with different properties into an MRI compatible motion platform.
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Figure 3.3. Motion platform with phantom and the body coil; the body coil includes
32 RF channels and sits on top of the phantom to provide a multichannel MR scan.
The set up is ready for undergoing the data acquisition.

3.2 Motion Platform

An MRI-compatible motion platform is composed of two major parts: a con-

troller that also contains the transporting cart, and a PC with a specifically designed

interface (Labview) to communicate with the transporting cart. Signals from the PC

are sent through two cables to the platform, and are translated to motion in the

platform on the MRI table via two linear actuators. The PC remains in the control

room while the transporter, including the motion platform, phantom and connector

cables are placed inside the MRI room. The connecting cables pass through a filter
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box in order to reduce the electrical interference that may cause MR image corruption.

On the MRI table, the platform is secured to the table using four side-in-

soft-strap inserts that are used as mounting points for the plate holding the motion

platform. The phantom is placed on the platform, and a known motion trace is pro-

grammed in the platform from the control room. The Labview program permits one

dimensional trajectories between 1 cm to 12 cm. The motion trajectory can be from

the embedded waveforms available on the motion platform, or programmed into the

platform based on the interested properties of motion.

In this study, we focus on the motion of the abdomen due to the failure of

the subject to hold his breath during a breath-hold scan. While breathing induced

motion in the abdomen is complex, and consists of motion in all directions, we assume

the motion to be in the longitudinal axis and to be linearly related to the motion of

the chest or lungs in the transverse plane along the sagittal axis. This is a common

assumption in Radiation Therapy, where breathing induced tumor motion has been

found to be largest along the superior-inferior direction [46].

3.3 Programmed Motion Trajectories

Included with the motion platform are several examples of organ motion tra-

jectories derived from motion tracking of MR images from patient scans [47]. We

studied these sample traces to determine some of the characteristics of our motion

trajectories. For instance, based on these traces, the amplitude of the motion is cho-

sen to vary between 2-3 cm with the average duration of a breathing cycle assumed

to vary from 3 to 6 seconds under normal respiration.
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However, the motion traces supplied with the motion platform are complex as

they include several factors such as noise, cycle to cycle variations, drift, etc. Since

our goal is to investigate the impact of each one of these factors on the resulting

artifacts, it is sensible to choose a set of trajectories with each trajectory focusing

on only one aspect of the motion, i.e. a parametric study. For this reason, we focus

on two types of motions present in patients: sudden motions would be caused by

a patient’s cough, and continuous drift motions as would arise from a patient who

consistently maintains a low inhale or exhale over the duration of the breath-hold scan.

Several sinusoidal trajectories with variations in the period, amplitude and num-

ber of peaks were tested. Sudden motions can be modeled using a sinusoidal wave

with a short period representing the short duration of the cough, and an amplitude

representing the intensity of the cough. Drift type motions can be modeled using

a sinusoidal wave with a large period, so that there is a monotone increase in the

amplitude of the motion. Finally, simulating two or three sinusoidal peaks/coughs

in a scan permits us to study the effect of short, periodic motion that is persistent

throughout the scan.

For the sinusoidal trajectories used to simulate coughs, three factors were chosen

to characterize the trajectory:

• Time of failure: the point in time that the subject coughs. This time defines the

duration of the extent to which the K-Space was acquired prior to its corruption

by the motion.

• Duration of motion: this quantity permits us to study the relation between the

percentage of the K-Space that is corrupt with the type and intensity of the

resulting artifact.
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Figure 3.4. The general sinusoidal wave trajectory and its characteristic variables.

• Amplitude: this quantity is used to represent the depth of the motion (or breath-

ing) and it’s effect on the artifact in the final image. It is shown in chapter 4

that, the larger the amplitude, the more intense the artifacts will be.

Drift type trajectories represent the patient’s continuous inhale or exhale over

the entire duration of the scan. As a result, the motion is not terminated at any

point in the scan but rather represents a gradual rise or collapse of the lungs due to

the patient’s gradual but continuous inhale or exhale. Therefore, these trajectories

are represented by a slowly varying sinusoidal wave with a long period. Two factors

were chosen to characterize these trajectories:

• Time of failure: is again the moment that the patient starts to breath.

• Amplitude additionally represents the depth of breathing.

Figure 3.4 presents the parameters shown on a typical trajectory. The above param-

eters, along with their geometrical interpretation, are displayed in Figure 3.4. The

horizontal blue solid line shows the baseline position of the phantom. The time to

failure (in seconds) corresponds to the point in time where the motion occurs. The

duration of the wave represents the breathing cycle length, and varies from 3 to 6

seconds. The amplitude of the trajectory represents the intensity of the motion, or

the depth of breathing.
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3.3.0.3 Trajectories for the first series of experiments

Parallel imaging with SENSE reconstruction was enabled in the first set of ex-

periments. As a result, the duration of the scan time was 15 seconds. This is the

minimum duration for which a trajectory must be defined; indeed, in order to avoid

a sudden jump in the motion platform, the trajectories were defined for a period of

30 seconds (see next section).

By varying the parameters listed above, various trajectories are defined; for

the first set of experiments, the results of the total number of five trajectories are

presented in this report. Presented in figure 3.5 are trajectories representing short

duration motion (such as coughs or hick-ups), and longer variations as would be

caused by drifts (third row). As discussed in the previous section, a sinusoidal function

is used to represent both types of motion, with drifts having a longer period.

Based on real patient data for liver motion, the trajectories were defined to

have the following properties:

• Failure point: as the total scan time is 15 seconds, the chosen values correspond

to the start, middle, and end of the scan time. The chosen values are:

– after 1 sec,

– after 7 sec,

– at the end (12sec)

• Duration: this value represents how fast the individual manages to recover to

breath-hold state, after failure. The chosen values are:

– three seconds

– six seconds

– fifteen seconds
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Figure 3.5. Attempted trajectories for the first set of experiments; first two rows are
the trajectories that last for three seconds and occur at start (first column), in the
middle (second column) and at the end (last column) of the data acquisition process;
amplitudes are respectively 1 and 2 cm for the first and second rows. Third and
fourth rows have the same order, while the duration of the motion is extended to 6
seconds. The last row presents drift failures with amplitude of 1 cm (left) and 2 cm
(right).

• Amplitudes of 1 cm and 2 cm as reported in [47].

The above set of trajectories were programmed into the motion platform and scans

were acquired according to the procedure outlined in section 3.1. The obtained ex-

perimental results (shown in chapter 4) were presented to an MD/physician who

commented that usually, with healthy individuals, the failure of breath-hold occurs

in the period between the middle to the end of the scan with the breathing cycle con-

tinuing after failure. Additionally, since the abdomen moves downward with exhale

and returns to its upward positions at the start of inhale, it was suggested that the

direction of motion be changed in-order to simplify visualization. These recommen-
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dations were taken into account when contemplating the trajectories for the second

experiment.

3.3.0.4 Second set of Experiments

The previous set of trajectories were constructed with the goal of classifying the

resulting artifacts based on the motion type that they originated from. A second set of

experiments were performed to investigate the possibility for correcting/reducing the

impact of the artifact via manipulation of the K-Space. As the scanner reconstructed

data only contains images, manipulating the K-Space requires access to the scanner

raw data and reconstruction of the final image based on the corrected raw data. To

simplify this process, parallel imaging is turned off, and SENSE reconstruction and

aliasing corrections are not applied. As a result, the scan time increases and lasts

approximately 35 seconds. Therefore, all trajectories for the second experiment were

defined to last for at least 35 seconds.

The above trajectories were created to simulate:

• Breathing that begins at the start of the scan and continues through the en-

tire length of the scan. The breathing cycle has a period of 3 seconds, which

corresponds to the breathing cycle for a healthy individual.

• Breathing that begins at the middle of the scan and continues as normal through

the entire length of the scan as a cycle with the period of 3 seconds.

• Breathing that starts at the end of the scan.

• A short duration, sudden motion at different times during the scan (start, mid-

dle and end). This represents a cough or short breath as it often occurs during

breath-hold scans.
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Figure 3.6. Trajectories for the second set of experiments; (a) and (b) are one sharp
sinusoidal wave before (a) and after (b) the center of K-Space; the second row shows
the trajectories with motion starting during the scan and countinuing until the end.
Panel (c) has the most corrupted data between, and (d) has the motion occur after
the center of K-Space. Panel (e) has the least corrupted data and results in an image
similar to the stationary scan.

Comparison of the first and second trajectories can highlight the effect that having

a the motion prior or after the center of K-Space acquisition has on the final image.

This information can provide some insight into the effect of the timing of the motion

on the resulting image artifact (see chapter 4).

Figure 3.3.0.4 presents the motion trajectories. The first row presents the short

duration, sudden motions that occur at the start of the scan (a), and later in the scan

(b); the second row depicts the patient’s failure to hold his breath at the start (c),

middle (d), and end of the scan (e).
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3.4 MRI sequence

The MRI sequence must be chosen with the goals and characteristics of the

study in mind. The MRI sequence used in this study is m-DIXON-W-BH-SENSE

in the axial plane on an abdomen phantom. W in the name is related to m-DIXON

method and stands for water since the method is known for separating fat and water.

Axial plane refers to the imaginary horizontal plane that divides the body into su-

perior and inferior parts; i.e. the SI plane, perpendicular to the coronal and sagittal

planes. Selection of this plane permits a better visualization of organs such as liver,

spleen, and kidneys as well as the spinal cord. Finally, BH refers to breath-hold scans,

which is one of the most common strategies used to suppress respiratory motion ar-

tifacts in MR images and signifies the underlying issue that we are studying - motion

correction.

The DIXON sequences in MRI are used to suppress fat in the image. Because

of the abundance of fat in the liver (and also in our abdomen phantom), imaging the

liver is one such case where fat needs to be suppressed. DIXON sequence [1] takes

advantage of the difference in the frequencies of fat and water bound protons in MRI.

The method acquires the signal twice: once at the center of the echo (when fat and

water are in phase), and another with TE adjusted to the point where fat and water

are out of phase. These two sets of images are added together (2.10) to create water

only and fat only images according to the procedure outlined in section 2.2.

Table 3.1 reports the specifications of the used sequence. A repetition time

of 3.355 milliseconds is chosen and the reconstructed field of view after zero fill-

ing/reconstruction is 400x229x400. We note that this is different from the raw data
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size which is 171x121x71 points. The seemed increase in resolution is obtained by

zero filling the K-Space (see below section on correction methods).

Parameters m-DIXON-W-BH SENSE

Number of slices 131
Repetition time 3.355 milliseconds

FOV 400x229x400 voxels
Pixel Spacing 1x1x3.5 mm3

Water fat shift 0.262 pixel
Scan mode 3D
Scan time 15.1 seconds

SliceThickness 3.5000 mm
Acceleration factor 1.5 in y direction / 0.5 in z-direction

Table 3.1. The sequence properties input for m-DIXON-W-BH SENSE. We note that
the scan mode we have used is in 3D and spans 131 slices permitting for a FOV of
400x229x229 voxels after zero filling.

Figure 3.4 presents a K-Space trajectory obtained from the second set of exper-

iments. The presented K-Space trajectory is a partial acquisition in Z (second phase

encoding direction) by 15%, i.e. 15% of the K-Space (in kz direction) is not acquired.

Figure (a) shows the order that ky points are acquired with respect to the scanner

time. The total scanner time is 35 seconds, so that in all three graphs, the x-axis

represents the interval [0, 35s], i.e. the 10682 points. This number is represents the

total number of points acquired by the scanner over this time interval. The interval

between each pair of ky points is the TR: in this time interval, all the kx and kz

points related to the specific ky are acquired. Figure 3.4 (b) shows the trajectory that

the K-Space is acquired; for each ky point in figure (a) there is a line of kz points

acquired. Its important to note that not all kz lines have the same number of data

points, i.e. not all kz points are acquired for each ky. Indeed the oval shape of the
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Figure 3.7. Indices for K-y and K-z acquisition; (a) shows Ky points being acquired
as a function of the scan time, (b) represents how Kz are acquired from minimum
number 1 kz point to maximum number of 71 kz points. Not all Kz points are acquired
for every Ky and this makes processing more difficult; Kx plane is composed of 456
points, acquired simultaneously meaning that for every single point in Kz graph (b)
there are 456 points in frequency encoding direction that are filled almost at the same
time, (c) Depicts one of the lines of Kz from (b) to make it easier to understand the
way each kz line is acquired.

acquired K-Space highlights the fact that the number of data points collected in the

kz direction decreases near the edges of the graph. Although figure (b) is plotted us-

ing solid blue points as markers, the high density of the total number of points in the

scan time (10682 points in 35 seconds) makes distinguishing between the different ky

points difficult. Figure (c) shows a zoomed-in version of one of the lines in the second

graph and presents how the kz are being acquired with time. Per each point in the

second diagram, 171 kx points are acquired in the read-out direction perpendicular

to the ky− kz plane. In comparison to the phase encoding directions (ky and kz), the

acquisition process in this direction can be assumed as simultaneous.
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Figure 3.8. Reproduced from ’http://mriquestions.com/field-of-view-fov.html’; The
distance between two enteries of a 2D K-Space (here ∆k) is inversely related to the
extent of FOV and pixel size (∆w) and from symmetry considerations an inverse
relation exist between kFOV (= 2Kx,max) and spatial resolution (pixel size) in image
domain (∆w). The K-Space, and image are assumed to be quadrangular meaning
FOV x = FOV y = FOV and ∆x=∆y=∆w.

3.5 K-Space Manipulation

Since the K-Space and the final MR image are directly related, properties of

the K-Space correspond to properties in the image. For example, the resolution in

the image domain is related to the interval distance between two consecutive data

points in the K-Space. If the Field-of-view (FOV) is the length of MR image in each

direction (in mm or cm), then the units establishing the 2D FOV are pixels, with

the pixel size determining the resolution of the image. In figure 3.5, the pixel size is

represented as ∆w. This pixel size and accordingly FOV are inversely proportional

to the number of data points in K-Space in each direction; this relations is presented

in equations 3.1 and 3.2:

∆w =
1

kFOV
(3.1)
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∆k =
1

FOV
(3.2)

Observed from the above equations is that the extent/width of the FOV is inversely

proportional to the interval size of the frequency domain. Conversely, the width of

the K-Space is inversely related to the pixel size or spatial resolution of the image. In

most correction algorithms, this relation results in a constraint regarding how much

of the image can be recovered from an incomplete K-Space acquisition.

Many algorithms attempt to use the K-Space as a source of additional informa-

tion or a data base that can be reversely manipulated to enhance the quality of the

reconstructed image. The K-Space can even be used to estimate the motion in the

subject, and attempt to correct for the detected motion without using navigator or

gated breathing apparatus [48].

3.6 Methods for K-Space Correction

Faster MR imaging is a common desire amongst clinicians and researchers. One

of the ways to reduce scan times is via partial data acquisition methods coupled with

various reconstruction techniques [5]. In this study, we investigate the possibility of

applying some of such methods to correct for motion artifacts.

The strategies that we investigate involve removal (and perhaps correction) of

the corrupted sections of the K-Space, and reconstruction of the images from the

corrected K-Space. Many classical algorithms exist for this purpose such as: Zero

Padding (or filling), Phase Correction using conjugate symmetry, and Homodyne
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reconstruction [49]. In chapter 4, we present some of our results using zero padding

to correct for the motion.

3.6.1 Correction via zero padding

Motion artifacts arise from the acquisition of the incorrect position in the object.

The inconsistent/corrupted K-Space can lead to the effects outlined in section 2.6.

When the corrupted sections of the K-Space are set to zero, errors arising from motion

will not be present. Of course, this is not expected to completely resolve artifacts (a

portion of the K-Space has not been acquired). However, this precise reasoning lies

behind many partial acquisition correction techniques - if the acquired portion of the

K-Space is greater than 8/9, then the reconstructed image can be expected to be of

good quality.

3.6.2 Correction via the conjugate symmetry rule

When the nature of the acquired image permits, the missing points of the K-

Space may be estimated using the conjugate symmetry rule with symmetric lines pass-

ing through the center of the K-Space used to remove the phase error. Let Ms(kx, ky)

be a symmetric central region of the K-Space and Is(x, y) be its reconstructed image.

The correction method consists of three steps:

1. the image Is(x, y) is multiplied by a phase correction multiplier p∗(x, y) to pro-

duce a phase corrected image Ipk(x, y). The Fourier transform of this image will

result in the phase corrected K-Space.

2. the phase corrected K-Space can now be completed using the conjugate sym-

metry rule.

3. the phase corrected completed K-Space can now be used to generate the cor-

rected image.
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The phase correction multiplier p∗(x, y) is defined as [49]:

p∗ = e−iφ
∗
(x, y) (3.3)

where φ∗(x, y) is the argument of the image (phase) (usually the argument ofMs(kx, ky)

is used instead).

The main draw back of using the conjugate symmetry is the assumption that

the entries of K-Space are imaginary. As a result, in cases where the K-Space is real,

or close to being real, this approach will not yield much improvement.

3.7 Data Analysis

The goal of this work and the experiments performed in its frame-work is to

investigate the possibility of manipulating the K-Space to reduce motion artifacts. To

do this, we generated a set of libraries in matlab that permit for the manipulation of

the scanner obtained raw data and implementation of various correction techniques.

Thus-far zero padding has been applied with promising results presented in chapter 4.

Manipulation of the K-Space requires access to the scanner acquired raw data.

Each scan has two files associated with it whose extensions are ’.dat’ and ’.list’. The

’.list’ file contains information pertinent to the encoding of the ’.dat’ file. Our code

first reads the K-Space from these files and manipulates it according to the following

algorithm:

1. the information from multiple coils are combined to generate a guess image for

the static scan.

2. channel error weighting factors εic are computed and a final static image is

generated using the error weighting factors.
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3. raw data ’.list’ and ’.dat’ files are read and the K-Space data K(kx, ky, kz, ic, ie)

is loaded into memory for each of the coils ic and echoes ie.

4. trajectories fy(t) and fz(y(t), t) are constructed by sorting the ’.list’ information

and the K-Space trajectory is generated (see figure 3.4).

5. the motion trace/programmed trajectory s(t) is used to generate the multiplier

λ(t) varying between 0 and 1; λ = 1 when the object is static (no motion),

and λ = 0 when the object is in motion. A moving-window filter is applied to

smooth the variation between 0 and 1 to reduce ringing artifacts in the final

image.

6. for time t, the partially acquired K-Space Kic(t)(kx, ky, kz, IE) is obtained by

multiplying the raw data with the multiplier λ(t). Kic(t) represents the portion

of the K-Space acquired by the scanner at time t. Multiplication by λ(t) ensures

that the portions of the K-Space obtained during motion are neglected.

Kic(t)(kx, ky, kz, ie) = λ(t) ·K(kx, ky(t), kz(y(t), t), ic, ie) (3.4)

7. an image is produced for each channel by taking the Inverse Fourier transform

of its K-Space. Images from the multiple coils are combined using the error

factors εic (from step 2) to generate a final image.

Last two steps in the above algorithm are performed for each t = Ty corresponding

to the start of a new y point acquisition. An animation of the K-Space is obtained

exhibiting the growth of the K-Space as a function of time. Studying this K-Space

permits for a deeper understanding of how the image is influenced by the points in

the K-Space.

Care must be exercised when combining the information acquired by each coil.

The number of coils displayed in the raw data varies from scan to scan, and depends
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on the quality of the image and is chosen by the scanner. Each coil creates an image

that has higher signal intensities near its location. Combination of the coils by simply

using their geometric average may not lead to an ideal image. This is presented by the

top image in figure 3.7, which shows poor comparison with the scanner reconstructed

DICOM (bottom image).

In-order to produce a more acceptable image, we combine the coils by weight-

ing them with an error weighting factor εic. For a static image (no motion during

acquisition), we combine coil information in a two step procedure to compute the

final image; first a guess image IMG1 is obtained by simply averaging over the coils,

so that:

Guess image IMG1 =
1

Nchannels

√√√√Nchannels∑
ic=1

IMGic · ¯IMGic (3.5)

Next, for each channel/coil, an error weighting factor εic is computed as the difference

between the coil image IMGic and the guess image IMG1:

error for each coil εic = IMGic − IMG1 (3.6)

The errors are then normalized such that the sum of their squares adds to unity∑Nc

ic=1 ε
2
ic = 1. The final image IMG2 is then obtained by combining the information

for each channel using the weighting factor 1
ε2ic

.

final image IMG2 =

√√√√Nchannels∑
ic=1

1

ε2ic
(IMGic · ¯IMGic) (3.7)

The result is an improvement in the final image, observed in the second pannel in

figure 3.7.

Figure 3.10 presents a flow chart of the methodology used in this work to per-

form and analyze the experiments. Motion trajectories are constructed and MRI
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scans are performed using the mDixon sequence. Scanner reconstructed DICOMs are

used as a validation, while scanner raw data is extracted and processed using our

MATLAB libraries according to the algorithm described above. When t = tf is the

final time of the scanner, the obtained image is motion corrected using zero-padding

algorithm.
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Figure 3.9. Coil averaged image vs. scanner reconstructed DICOM: simple averaging
over coils does not lead to a reasonable image (first row); a guess image is defined and
weighting factors are assigned to each coil defined using the error of the coil image
and the guess image. Channels with a lower error are given a higher weighting. The
image at the bottum is the scanner reconstructed image to be compared with the
result of our simplified version.

57



Figure 3.10. Flow chart for processing and correcting the raw data.
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CHAPTER 4

Results

This chapter presents our results and analysis for two sets of experiments per-

formed over the course of this study; the first examines the resulting type of artifacts

in terms of their underlying trajectories with the aim of investigating the type of ar-

tifacts that are most common to breath-hold exams. After consulting with a trained

physician, we performed a second set of experiments with new trajectories chosen

to investigate the potential possibility of correcting for respiratory motion artifacts

using data processing methods.

4.1 First Set of Experiments

In this set of experiments, we perform a parametric study of motion artifacts

with respect to the base parameters that characterize their motion trajectory. Ac-

cording to the methodology presented in section 3.3.0.3, variation of the artifact is

studied with respect to: the starting time of the occurrence of motion, the duration of

the motion, and its amplitude. Each one of these parameters impacts the corruption

of the K-Space and hence the final image.

The impact of the above parameters can be measured by where and how they

affect the K-Space with respect to the center of K-space acquisition. While all points

in the K-Space contribute to the image, the importance of each point in the K-Space

can be weighed by the contribution of its amplitude in the Fourier series represen-

tation of the final image. As points with lower frequencies tend to have the largest
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contributions, a good knowledge of their values is essential to the image. This can

be observed from figure 4.1 which presents the contribution of the central portion

or the outer portion of the K-Space to the final image. The top row corresponds to

an image reconstructed after removing the central portion of the K-Space. What is

observed is a heavily degraded final image (second column), highlighting the impor-

tance of the lower frequency data points found near the center of the K-Space. The

second row presents the image reconstructed after removing the periphery of the K-

Space. Although approximately 2/3 of the K-Space has been removed in this second

case, we observe a significantly sharper image than the previous, indicating the lower

importance of points located at the periphery.
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Figure 4.1. Contribution of the central and periphery of the K-Space to the final
image. Presented in each row are the K-Space, the corresponding image, its error with
the reference/stationary image, and the reference image. The top row corresponds to
the image obtained after the removal of the center of K-Space and the bottom row
corresponds to the image obtained after removal of the periphery of the K-Space.
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Variation of the artifact with respect to the starting time is dependent on the

specific region of the K-Space that is being acquired. This can be observed from the

different columns in figure 4.2; the first row in the figure represents the artifact ridden

image. The second row represents the error due to motion and is calculated as the

difference between the obtained image and the artifact-free reference/static image.

The last row depicts the motion trajectory that was programmed into the motion

platform. We observe from the figure that the greatest degradation is seen for the

trajectory depicted in the first column: since the duration of the scan is short (15 s),

the programmed motion coincides with the acquisition of points near the center of K-

Space. As these points represent information corresponding to lower frequency entries

in the Fourier series, knowledge of their correct values is necessary for an accurate

representation of the object. The second and third columns correspond to the motion

occurring at a time where points further away from the center of K-Space are being

acquired, i.e. during the acquisition of higher frequencies components. As we will

see in the next figure, a good knowledge of such information permits for an accurate

representation of small objects, sharp edges and those requiring high resolution.

62



Figure 4.2. Comparison of the motion artifacts due to motion occurring at the start,
middle and end of the scan. The first column presents the final image (first row)
and the associated error due to occurrence of motion at the start of the scan. The
column presents the final image and its associated error due to the motion occurring
at the middle of the scan, and the last column corresponds to the final image and its
associated error due to motion occurring at the end of the scan.
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Figure 4.3 presents the impact that varying the duration of motion has on the

resulting artifact. Observed in the figure is the inter-play of two effects: starting time

and velocity of the motion. Firstly, a degradation in image A (similar to the previous

image) is observed corresponding to a 3 seconds trajectory occurring at the start of

the scan. As discussed above, the degradation is due to the lack in low frequency

amplitudes. The middle column presents an even further degradation in the image (a

higher intensity of artifacts is present), particularly at the edges of the image which re-

quire accurate knowledge of higher order frequencies. This occurs because the longer

duration of motion (6 seconds) results in a larger corruption of the K-Space, while

the intensity (velocity) results in bulk motion effects. The third column in the figure

corresponds to a motion occurring over the entire duration of the scan. However, the

velocity of the motion is low (duration is twice as long as previous column), so that

the phantom movement is too slow to have a great effect on the final image. Here,

what is observed is a systematic loss in signal intensity, represented by the inverted

image observed in the error.
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Figure 4.3. Impact of the duration of motion on the motion artifact. The first column
represents the final image (first row) and its error with the stationary (second row)
due to a 3 seconds trajectory occurring at the start of the scan. The second column
presents the final image and its error occurring at the middle of the scan. The last
column presents the final image and its error due to a motion consistent over the
entire duration of the scan.
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Figure 4.4. Comparison of motion artifacts for drifts of 1 cm and 2 cm respectively.
Presented in the first column are the final image and the error for a 1 cm drift. The
second column presents the final image and its error for a 2 cm drift.

Figure 4.4 presents drifts with amplitude of 1 and 2 centimeters in first and

second columns respectively; result is an increase in the intensity of artifact from the

amplitude of the drift.
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Figure 4.5. Regions of interest in the phantom. ROI 1 contains homogeneous tissue
for two organs, including their boundary. ROI 2 contains homogeneous tissue rep-
resenting a single organ. ROI 3 is composed of fat with the largest level of ringing
observed in the previous figures.

Figure 4.5 exhibits three regions of interest (ROI) that are chosen to calculate

the root mean square. The three ROIs include properties of the figure such as:

• ROI 1 contains homogeneous tissue for two organs, including edges.

• ROI 2 contains homogeneous tissue representing a single organ.

• ROI 3 is composed of fat with the greatest ringing observed in the above figures.

From the above experimental results and their analysis we observed that:

• the intensity of the artifact increases with increasing amplitude so that a deeper

breath would result in a worsening of the artifact.
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• a quicker/higher velocity motion results in higher intensities of the artifact.

• worse artifacts occur when the motion overlaps with the center of K-Space

acquisition.

We presented and discussed our results with a trained physician/MD in the UTSW

radiation oncology department who confirmed that the artifacts observed in the above

figures mimic those encountered in daily clinical practice. Based on his suggestions,

a second set of experimental studies were designed to investigate the possibility for

motion correction using K-Space manipulation.

4.2 Second Set of Experiments

In this second set of experiments, raw-data is extracted from scanner and di-

rectly analyzed; the raw data contains the acquired K-Space for each of the NCOILS

coils, and includes the K-Space trajectory that were used to acquire the points. To

inspect visually the acquisition of the K-Space, an animation is generated from the

raw data that portrays the evolution of the image with acquisition. The repercussions

of the motion on the K-Space and the reconstructed image are then be studied from

this animation. Using the input trajectory programmed into the motion platform as

a navigator, we isolate the region of K-Space that was acquired at the time of motion.

To correct for the motion, we define a multiplier λ(t) that equals to unity when the

object is stationary and zero when the object is in motion. Multiplying the K-Space

points by this multiplier results in a K-Space that with values obtained during the

occurrence of motion suppressed. Figure 3.10 in chapter 3 presents the methodology

for the analysis of our results.
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4.2.1 Motion before and after the center of K-Space acquisition

Figure 4.6 presents the final images and their K-Spaces obtained after the oc-

currence of the trajectory profile (red curve) during the scan. The two trajectories

presented here are similar in both amplitude and duration. The only variable has

been the starting time. Since the Cartesian K-Space is symmetric (see section 2.3),

we could expect the two resulting images to be similar since they approximately occur

at the same time interval from the middle of the scan. However, as observed from

the figure, the artifacts observed in the two images are quite different; the reasoning

for this could be due to the unsymmetrical nature of the K-Space trajectory that was

presented in figure 3.4, which results in an unequal number of data points on each

side of the K-Space center.

Figure 4.7 presents the multiplier (in red) used for compensating for the mo-

tion, as well as the motion corrupted K-Spaces corresponding to the previous figure.

A filtering is applied to the step function to avoid sharp cuts in the K-Space (this

leads to ringing artifacts). The multiplier takes zero values for non-zero trajectory.

Multiplying the K-Space by this multiplier results in discard of points during the

occurrence of motion. The corrected K-Spaces are presented in the second column of

the figure, with the error presented in the third column. Observed from the figure is

the reason for the difference between the two images in figure 4.6: for motion occuring

in the first row, a portion of the center of K-Space is obtained during the motion. In

the second row, these lower frequencies are completely acquired prior to the motion.

As a result, the intensity of the artifact is greater for the first case.

By zero-padding the K-Space according to the previous figure, we can hope to

improve/alleviate the artifact. Figure 4.6 presents the corrected image for each of the
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Figure 4.6. Comparison of motion artifacts for motion occurring before and after the
middle of the scan time. Top row presents the image and the corresponding K-Space
obtained from the motion trajectory (red) occurring prior to the middle of the scan.
The bottom row presents the image and its corresponding K-Space as obtained from
the motion trajectory after the middle of the scan.

two trajectories. Since points from the center of K-Space are discarded in the first

trajectory, zero-padding does not lead to a noticeable improvement of the results.

However, zero-padding leads to an improvement in the second trajectory, where we

observe the error image to mimic the actual image (i.e. the result is a reduction in

the ringing artifact at the cost of a loss in signal intensity ).
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Figure 4.7. Correction multiplier and the corrected K-Spaces. Presented in the figure
are the K-Space corrupted by motion, the zero-padded K-Space and their respective
errors with the K-Space of the stationary image.
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Figure 4.8. Comparison of the image prior to zero padding and after zero padding.
Top row presents images corresponding to motion occurring prior to the center of
the scan. Bottom row presents Reconstructed images after the center of the scan.
Presented in each row are the artifact ridden image, the corrected/zero padded image,
and their respective errors with the stationary profile as well as the corrected K-Space.
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4.2.2 Motion occurring during the scan and continuing to the end

This second set of trajectories simulate breath-hold failures that continue to

occur until the end of the scan. The result for three such trajectories are presented

in figures 4.2.2, 4.10, and 4.11 with the duration of the trajectory decreasing for each

consecutive figure. The artifact ridden image and its K-Space are presented in the

first column, with results obtained from zero-padding presented in the second column.

Comparison of the final image for each of the three trajectories shows that

decreasing the extent of the corrupted region of the K-Space results in an improvement

in the obtained image (lower intensity of artifacts). Additionally, a smaller corrupted

region also permits for correction using zero-padding; this can be observed in figures

4.10, and 4.11 where zero-padding is seen to lead to an improvement. In the case

where at least half of the K-Space has been obtained, zero-padding seems to yield an

improvement in the results. This can be observed in figure 4.10, where the ringing

artifacts have been removed by zero-padding at the cost of a higher SNR.
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Figure 4.9. K-Space and final image for motion that occurs near the start of the scan
and continues well until the end. The first row presents the corrupted K-Space, the
zero padded K-Space and their errors with respect to the stationary reference. The
second row presents images corresponding to the K-Spaces presented in the first row.
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Figure 4.10. K-Space and final image for motion that occurs at the middle of the the
scan and continues well until the end. The first row presents the corrupted K-Space,
the zero padded K-Space and their errors with respect to the stationary reference.
The second row presents images corresponding to the K-Spaces presented in the first
row.
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Figure 4.11. K-Space and final image for motion that occurs near the end of the scan
of the the scan and continues well until the end. The first row presents the corrupted
K-Space, the zero padded K-Space and their errors with respect to the stationary
reference. The second row presents images corresponding to the K-Spaces presented
in the first row.
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CHAPTER 5

Concluding Remarks

The occurrence of motion during the data acquisition process is not only a ma-

jor problem in MRI but for all imaging modalities. The change in patient’s anatomy

is often unaccounted for during the image generation resulting in in the wrong regis-

tration of the location of the subject, thereby leading to an un-real image containing

motion artifacts. Such motion artifacts, whose properties are dependent on the char-

acteristics of the underlying motion, can hinder accurate diagnosis thereby reducing

the clinical value of the image. While many methods have been devised to address

this issue, a simple to implement and yet clinically translatable approach is yet to be

proposed.

This study investigated the potential applicability of K-Space manipulation

methods for motion artifact correction in breath-hold MR scans of the abdomen. To

do this, an MRI compatible motion platform, mounted with an abdomen phantom

was used to simulate the motion artifacts that are most common to breath-hold scans.

By representing the motion in terms of sinusoidal waves, a parametric study was per-

formed relating the artifact to underlying characteristics of the motion such as: the

timing of the failure in holding the breath, the amplitude of the motion and he dura-

tion of the motion. Data from several hours of measurements at the RTR MR scanner

(UTSW) was then processed to study the variation of the motion artifact with each

of these parameters. Additionally, a set of tools in MATLAB was developed for the

analysis, manipulation, reconstruction and possible correction of the artifact using
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the scanner generated raw data (K-Space).

Our experimental analysis showed that the intensity of the artifact tends to

increase with the magnitude and velocity of motion. Additionally, the time of the

occurrence of motion was found to have a great impact on the intensity of the artifact;

our results presented in chapter 4 highlighted the importance of the K-Space center

and demonstrated that when the occurrence of motion overlaps with the center of

K-Space acquisition, the corruption in the low frequency data leads to a much higher

intensity artifact than as would occur for motion else-where during the acquisition

process. While application of our tools to correct for motion using zero-padding can-

not compensate for such a scenarios, it showed promising results for cases where the

center of K-space was already acquired. Indeed, for cases where the motion occurred

after the middle of the scan, zero padding reduced the intensity of the artifact at the

cost of a higher SNR.

While zero-padding provides a simple way to compensate for the corrupted K-

Space, it does not utilize all the properties and information available from an MR

scan. Application of partial acquisition methods to motion correction may provide a

more flexible strategy for this cause. Conjugate symmetry, homodyne reconstruction

and parallel imaging methods such as GAPPA reconstruction are partial acquisition

strategies that take advantage of additional properties of the K-Space to compensate

for missing information. Such algorithms have the potential to be implemented using

our tools and may provide an improvement in our results.

For example, by taking advantage of the conjugate symmetric nature of the

K-Space, more accurate values can be substituted for the corrupted ones. However, a
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possible disadvantage of this approach is the assumption that entries in the K-Space

are imaginary. As a result, in cases where the K-Space is real, or close to real, such

an assumption will not yield improvements. Homodyne reconstruction techniques

use the same conjugate property of the K-Space but reduce the number of Fourier

transforms that are required, thereby decreasing the numerical complexity, and noise

hence speeding up the reconstruction process.

Finally, the GRAPPA reconstruction method is a promising parallel imaging

method that aims to provide an accurate estimation using coil sensitivity maps. The

corrupted points can be recalculated using a kernel that extracts phase information

from the symmetrically acquired portions of the K-Space. Implementation and ap-

plication of GRAPPA using our tools may provide a precise and robust strategy for

motion correction using K-Space manipulation.
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APPENDIX A

MATLAB code for Raw Data Analysis tool
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A.0.3 Main code
1 clear all;

2 close all;

3 src=’./09122015MR.mat/’ ; %source for the proccessed matfiles

4 images=’./images/’ ; %location to write images to

5 traj_src=’./09122015MRI/’ ; %locations where trajectories are stored

6 mfile_src=’./mfiles/’ ; %location to store matlab files (NOT USED).

7

8 series={’13’, ’14, ’15’, ’16’, ’17’, ’18’, ’21’, ’32’} %SERIES TO BE ANALYZED

9 IZ_SLICE=70; %SLICE TO BE ANALYZED

10 z_lo=41; z_hi=106; %%Z-SLICES TO BE USED IN IMAGE WEIGHTING

11 dT_mri=20.e-3; %TIME STEP OF THE MRI MOTION PLATFORM

12 t_f=35.0; %FINAL SIMLUATION/TRAJECTOR TIME

13 T_err=1.0; %error between trajectory and mri motion

14 stationary=’raw_005_rawdata.mat’;

15

16

17 %%%%

18 %%LOAD STATIONARY DATA

19 %CREATE RAW IMAGE, MEAN IMAGE, AND K_MEAN FOR STATIONARY

20 %%%%%%%

21 station=load(sprintf(’%s%s’, src, stationary));

22 station.out_dir=images;

23 station.name=’stationary’ ;

24 station.z_lo=z_lo; station.z_hi=z_hi;

25 station.sqzrawdata=squeeze(station.rawdata);

26 [station.IX, station.IY, station.IZ, station.IE, station.IC]

27 =size(squeeze(station.rawdata));

28 [S2.IMG_RAW, S2.IMG_MEAN, S2.K_MEAN]=create_avg_img(squeeze(station.rawdata), station.ky,

29 station.kz);

30 [station.IMG_MEAN, station.K_MEAN, station.err, station.IMG_RAW]

31 =create_avg_img_err(squeeze(station.rawdata), station.ky,

32 station.kz, station.z_lo, station.z_hi, S2.IMG_MEAN, 0, 0);

33 sprintf(’\nSTATIONARY READ\n’)

34

35

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 %%%%%%%%%%%%%%%%%%%%%%LOOP OVER SERIES

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 for dummy=1:length(series)

40 close all;

41 series_num=series{dummy}; %SERIES NUMBER

42 sprintf(’\n\n PROCESSING SERIES %s’, series_num)

43

44

45 traj_file=sprintf(’series_%s.txt’, series_num);

46 avi_name=sprintf(’raw_%s’, series_num);

47 mfile_name=sprintf(’%s%s.mat’, mfile_src, avi_name);

48

49

50 traj_path=sprintf(’%s%s’, traj_src, traj_file);
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51 %LOAD STATIC DATA

52 %%%%%

53 static1=load(sprintf(’%sraw_0%s_rawdata.mat’, src, series_num));

54 static1.name=sprintf(’raw_0%s’, series_num);

55 static1.out_dir=images;

56 %%%%

57 %CREATE RAW IMAGE, MEAN IMAGE, AND K_MEAN FOR STATIC PROFILES

58 %%%%

59 %ind_ic=[3:1:10 16:20 22 23];

60 static1.sqzrawdata=squeeze(static1.rawdata);

61 [static1.IX, static1.IY, static1.IZ, static1.IE, static1.IC]=size(squeeze(static1.rawdata));

62

63 %%%%

64 %GENERATE A GUESS AVERAGE IMAGE

65 %%%%

66 [S1.IMG_RAW, S1.IMG_MEAN, S1.K_MEAN]=create_avg_img(squeeze(static1.rawdata), static1.ky,

67 static1.kz);

68 %%

69 %%APPLY WEIGHTING BY CHANNELS

70 %%

71 static1.z_lo=z_lo; static1.z_hi=z_hi; %%Z-SLICES TO BE USED IN IMAGE WEIGHTING

72

73 %%%

74 %CALCULATE ERROR (OUTPUT IN static.err) AND CREATE AVERAGE IMAGE WITH CHANNELS

75 % WEIGHTED AS 1./ERR^2

76 [static1.IMG_MEAN, static1.K_MEAN, static1.err, static1.IMG_RAW]=

77 create_avg_img_err(squeeze(static1.rawdata),

78 static1.ky, static1.kz, static1.z_lo, static1.z_hi, S1.IMG_MEAN, 0, 0);

79 %%

80

81

82 %%%%

83 %FIND INDICES FOR KY AND SORT ACCORDINGLY

84 %%%%

85 IC=static1.IC;

86 [static1.f_y, static1.ind_hi_y, static1.ind_low_y, static1.dT_y, static1.T_acq_y]=

87 find_index_y(static1.ky(IC+1:end), static1.IC, static1.IE);

88 %%%%

89 %FIND INDICES FOR KZ AND SORT ACCORDINGLY

90 %%%%

91 [static1.f_z,static1.ind_hi_z, static1.ind_low_z, static1.dT_z, static1.T_acq_z, static1.TIME]=

92 find_index_z(static1.kz(IC+1:end), static1.IC, static1.IE);

93

94

95 %%%%%%

96 %%BEGIN TO FILL K-SPACE POINT BY POINT, ADVANCING AT EVERY TSTEP

97 %%%%%%

98 TSTEP=22000; %STEP SIZE TO BE USED IN THE ANIMATION

99 [static1.K_anim, static1.kxy_p, static1.IMG_anim, static1.IMG_anim_mean,

100 static1.K_anim_mean, static1.K_chan1, static1.times]=animation(static1, IZ_SLICE, TSTEP)

101 static1.DELTA_X=0.1*static1.IX;
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102 static1.DELTA_Y=0.3*static1.IY;

103 %% READ AN INTERPOLATE TRAJECTORIES

104 %%%%%%

105 [static1.traj_int, static1.time_int]=traject(traj_path, t_f, dT_mri, static1.times{end}(1));

106 %%FOR STATIC FILE ONLY

107

108 avi_path=sprintf(’%s%s/’, images, avi_name);

109 try

110 avi_path=sprintf(’%s%s/’, images, avi_name);

111 mkdir(avi_path);

112 catch

113 avi_path=sprintf(’%s%s/’, images, avi_name);

114 end

115 avi_file=sprintf(’%s%s_%d.avi’, avi_path, avi_name, IZ_SLICE);

116 static1.avi_path=avi_path;

117

118 try

119 make_movie(static1, static1.K_chan1, squeeze(static1.IMG_anim_mean(:, :, :, 1)),

120 static1.kxy_p, static1.times, avi_file, IZ_SLICE)

121 catch

122 failed=1;

123 end

124

125 %%%%%%%

126 %%CORRECT FOR MOTION

127 %%%%%%%

128

129 %CONSTRUCT MARGIN CORRECTED TRAJECTORY

130 [static1.ind_corr, static1.ind]=add_margin_traj(T_err, static1.time_int, static1.traj_int)

131 static1.ind_corr=smooth(double(static1.ind_corr), 1.5e3, ’moving’);

132 TSTEP=22000

133 [static1.K_anim_corr, static1.kxy_p_corr, static1.IMG_anim_corr, static1.IMG_anim_mean_corr,

134 static1.K_anim_mean_corr, static1.K_chan1_corr, static1.times_corr]=

135 corr_animation(static1, IZ_SLICE, TSTEP)

136

137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PPPPPLLLLLLOOOOOOOOOTTTTTTSSSSSSSS%%%%

139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

140 %%%%%%%%%%%%%%%%%%%%%%

141 %%%%% TRAJECTORIES

142 %%%%%%%%%%%%%%%%%%%%%%

143 figure();

144 plot(static1.time_int, static1.traj_int, ’b.’);

145 xlabel(’time (s)’, ’FontWeight’, ’bold’, ’FontSize’,15); ylabel(’motion amplitude(cm)’,

146 ’FontWeight’, ’bold’, ’FontSize’, 15);

147

148 title(’motion trajectory’, ’FontSize’, 20); xt = get(gca, ’XTick’);

149 set(gca, ’FontSize’, 16);

150 pngname=sprintf(’%s%s.png’, avi_path, ’trajectory’);

151 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]);

152 print(pngname, ’-dpng’);
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153

154 %%%%%%%%%%%%%%%%%

155 %%%TRAJECTORY WITH CORRECTION

156 %%%%%%%%%%%%%%%%%

157 figure();

158 tmp=static1.ind_corr ;

159 plot(static1.time_int, static1.traj_int, ’b’, ’LineWidth’, 3); hold();

160 plot(static1.time_int, tmp, ’r’, ’LineWidth’, 3);

161 xlabel(’time (s)’, ’FontWeight’, ’bold’, ’FontSize’,15); ylabel(’motion amplitude (cm) ’,

162 ’FontWeight’, ’bold’, ’FontSize’, 15); title(’motion trajectory’);

163 xt = get(gca, ’XTick’); set(gca, ’FontSize’, 16);

164

165 pngname=sprintf(’%s%s.png’, avi_path, ’trajectory_w_acq’);

166 legend({’trajectory’, ’acquisition used’}, ’FontSize’, 13);

167 title(’acquisition data used for correction (redline=1)’, ’FontSize’, 20);

168 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]);

169 print(pngname, ’-dpng’);

170

171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

172 %%%%% F_Y AND F_Z

173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

174 figure();

175 subplot(3, 1, 1); plot(static1.f_y(:, 1), static1.f_y(:, 2), ’b.’);

176 xlabel(’scanner time’); ylabel(’K-Y points’);

177 xlim([min(static1.f_y(:, 1)), max(static1.f_y(:, 1))]); ylim([min(static1.f_y(:, 2)),

178 max(static1.f_y(:, 2))]); title(’Scanner acquisition of K-Y points’);

179

180 subplot(3, 1, 2); plot(static1.f_z, ’b.’); xlabel(’scanner time’); ylabel(’K-Z points’);

181 xlim([min(static1.f_y(:, 1)), max(static1.f_y(:, 1))]); ylim([min(static1.f_z),

182 max(static1.f_z)]); title(’Scanner acquisition of K-Z points’);

183

184 subplot(3, 1, 3); plot(static1.f_z, ’b.’); xlabel(’scanner time’); ylabel(’K-Z points’);

185 xlim([min(static1.f_y(:, 1)), min(static1.f_y(:, 1))+max(static1.f_z)]);

186 ylim([min(static1.f_z), max(static1.f_z)]);

187 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]); title(’K-Z points zoomed for a

188 short time’)

189

190 pngname=sprintf(’%s%s.png’, avi_path, ’f_xy’);

191 print(pngname, ’-dpng’);

192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

194 %%%%COMPARISON OF FIGURES AT THE END OF THE SCAN TIME USING THE AVERAGING

195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

196 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

197

198 figure();

199 tmp1=S1.IMG_MEAN(:,:, IZ_SLICE, 1); tmp1=abs(tmp1)/sum(sum(abs(tmp1)));

200 tmp2=static1.IMG_MEAN(:, :, IZ_SLICE, 1); tmp2=abs(tmp2)/sum(sum(abs(tmp2)));

201 subplot(1, 3, 1); imagesc(tmp1); colormap gray; axis off; title(’averaged w/ channels’,

202 ’FontSize’, 12); axis off;

203
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204 subplot(1, 3, 2); imagesc(tmp2); colormap gray; title(’averaged w/channels w/ error

205 weighting’, ’FontSize’, 12); axis off;

206

207 subplot(1, 3, 3); imagesc(tmp2-tmp1); colormap gray; title(’absolute difference’,

208 ’FontSize’, 12); axis off;

209

210 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]);

211

212 pngname=sprintf(’%s%s’, avi_path, ’comparison_of_averaging’);

213 img=getframe(gcf);

214 imwrite(img.cdata, [pngname, ’.png’]);

215

216

217 %%%%%%%%%%%%%%%%%%%%%%%%%COMPARISON FOR MOTION CORRECTION

218 %%%%%%%%%%%

219 %%COMPARISON OF IMAGES

220 %%%%%%%%%%%

221 figure();

222 reference=station.IMG_MEAN(:, :, IZ_SLICE, 1 ); reference=abs(reference);

223

224 tmp1=static1.IMG_anim_mean{end}(:, :, IZ_SLICE, 1); tmp1=abs(tmp1)/sum(abs(tmp1(:)))

225 *sum(reference(:)) ;

226

227 tmp2=static1.IMG_anim_mean_corr{end}(:, :, IZ_SLICE, 1);

228 tmp2=abs(tmp2)/sum(abs(tmp2(:)))*sum(reference(:)) ;

229

230

231

232 subplot(1, 4,1); imshow(tmp1, []); colormap gray; axis off; title(’Image w/ motion’);

233 subplot(1, 4,2); imshow(tmp2, []); colormap gray; axis off; title(’Corrected’);

234 m1=min(min(abs(tmp2)-abs(reference )));

235 m2=max(max(abs(tmp2)-abs(reference)));

236 mapping=[m1, m2];

237 rms1=sqrt(sum(sum(abs(tmp1)-abs(reference)).^2))/sum(size(reference(:))-1);

238 rms2=sqrt(sum(sum(abs(tmp2)-abs(reference)).^2))/sum(size(reference(:))-1);

239

240

241 subplot(1, 4,3); imshow(abs(tmp1)-abs(reference), mapping) ; axis off;

242 title(’Error (w/motion)’); xlabel(sprintf(’RMS=%3.2f’, rms1));

243

244 subplot(1, 4,4); imshow(abs(tmp2)-abs(reference), mapping) ; axis off;

245 xlabel(sprintf(’RMS=%3.2f’, rms2));

246

247

248 axis off; title(’Error (corrected)’);

249 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]);

250 pngname=sprintf(’%s%s’, avi_path, ’comp_image_motion_corrected’);

251 img=getframe(gcf);

252 imwrite(img.cdata, [pngname, ’.png’]);

253

254
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255

256

257 %%%%%%%%%%%%%%%%%%%%%%

258 %%%COMPARISON OF K-SPACES

259 %%%%%%%%%%%%%%

260 figure(); title(’K-SPACES for Motion and Motion Corrected vs. STATIC’);

261 reference=squeeze(station.sqzrawdata(:,:,IZ_SLICE, 1, 1)); reference=abs(reference);

262 ind1=166:1:285;

263 ind2=1:1:25;

264 tmp2=squeeze(static1.K_chan1_corr(end, :, :, IZ_SLICE));tmp2=

265 abs(tmp2)/sum(sum(abs(tmp2(ind1, ind2))))*sum(sum(abs(reference(ind1, ind2)))) ;

266

267

268 %tmp2=abs(tmp2*sum(reference(:, :))/sum(tmp2(:, 1:50))); %/sum(sum(abs(tmp2)));

269 tmp1=squeeze(static1.K_chan1(end, :, :, IZ_SLICE)); tmp1=abs(tmp1)/

270 sum(sum(abs(tmp1(ind1, ind2)))) * sum(sum(abs(reference(ind1, ind2))));

271 %tmp1=abs(tmp1 * sum(reference(:, :))/sum(tmp1(:, 1:50))); %/sum(sum(abs(tmp2)));

272

273

274 subplot(1, 5,1); imshow(abs(reference), []); colormap gray; axis off; title(’reference’);

275

276 subplot(1, 5,2); imshow(abs(tmp1), []); colormap gray; axis off; title(’K-SPACE w/ motion’);

277 subplot(1, 5,3); I2=imshow(abs(tmp2), []); colormap gray; axis off; title(’K-SPACE Corrected’);

278

279 m1=min(min(abs(tmp1 )));

280 m2=max(max(abs(tmp1)));

281 mapping=[m1, m2];

282

283

284 subplot(1, 5,4); imshow(abs(tmp1)-abs(reference), [] ) ; axis off; title(’err. (w/motion)’);

285 subplot(1, 5,5); imshow(abs(tmp2)-abs(reference), []); axis off; title(’err. (corrected)’);

286

287 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]);

288 pngname=sprintf(’%s%s’, avi_path, ’comp_KSPACE_motion_corrected’);

289 img=getframe(gcf);

290 imwrite(img.cdata, [pngname, ’.png’]);

291 %%%%%%%%%%%%%%%%%%%%%%%%

292 %%%%%

293 %%%%%%%%%%%%%%%%%%%%%%%

294 end

295

A.0.4 Iterative channel reconstruction/image generation
1 function [EIMG_MEAN, K_MEAN, err, IMG_RAW]=create_avg_img_err(sqzrawdata, ky,

2 kz, z_lo, z_hi, IMG_MEAN, err, eflag)

3

4 %error is the input guess vector

5 %eflag is false, then error is calculated (false on first run). if eflag is true,

6 %then input error is used
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7

8 %THIS FUNCTION TAKES IN THE SQUEEZE RAW DATA, AND THE KY AND KZ POINTS

9 %GNERATED BY INFO, AND A GUESS MEANIMAGE (USUALLY CREATED WITH CREATE_aVG_IMG)

10 %AND OUTPUTS THE RAW IMAGE FOR THE IC CHANNELS, THE

11 %MEAN IMAGE AVERAGED AS THE GEOMETRIC SUM FOR THE IC CHANNELS, AND THE

12 %MEAN K SPACE AVERAGED OVER THE IC CHANNELS.

13 %IMG_RAW: SIZE IS SAME AS SQZRAWDATA [IX, IY, IZ, IC, IE]

14 %K_MEAN AND IMG_MEAN SIZE IS [IX, IY, IZ, IE]

15 %THE WEIGHTING IS DONE BY THE 1/ERROR^2 AND THE CREATD IMAGE IS

16 %EIMG_MEAN

17

18

19 [IX, IY, IZ, IE, IC]=size(sqzrawdata);

20 %CREATE IMAGE CORRESPONDING TO EACH CHANNEL

21 IMG_RAW=0.0*sqzrawdata;

22 for ie=1:2

23 parfor ic=1:IC

24 IMG_RAW(:, :, :, ie, ic)=fftshift(fftn(sqzrawdata(:, :, :, ie, ic)), 1);

25 end

26 end

27

28

29 if(~eflag)

30 err=zeros(IC, IE);

31 for ie=1:2

32 for ic=1:IC

33 err(ic, ie)=mean(mean(mean(abs(IMG_RAW(:, :, z_lo:z_hi, ie, ic)-

34 IMG_MEAN(:, :, z_lo:z_hi, ie)).^2)));

35

36 end

37 end

38 for ie=1:2

39 err(:, ie)=err(:, ie)/sum(err(:, ie));

40 end

41 end

42

43 EIMG_MEAN=0.0*IMG_MEAN;

44 % size(EIMG_MEAN)

45 % size(IMG_RAW)

46 for ie=1:2

47 for ic=1:IC

48 EIMG_MEAN(:, :, :, ie)=EIMG_MEAN(:, :, :, ie)+1/IC*1/err(ic, ie)^2*

49 squeeze(IMG_RAW(:,:,:,ie,ic).*conj(IMG_RAW(:,:,:,ie,ic)));

50

51 end

52 end

53 EIMG_MEAN=sqrt(EIMG_MEAN);

54 size(EIMG_MEAN)

55

56 %%INVERSE FOURIER TRANSFORM TO CREATE MEAN KSPACE

57 parfor ie=1:2
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58 K_MEAN(:, :, :, ie)=ifftn(ifftshift(EIMG_MEAN(:, :, :, ie), 1));

59 end

60 end

A.0.5 Correct K-Space
1 function [K_anim, kxy_p, IMG_anim, IMG_anim_mean, K_anim_mean, K_chan1, times]=

2 corr_animation(input, IZ_SLICE, TSTEP)

3

4 %%%THIS FUNCTION TAKES IN THE INPUT STRUCTURE, THE SPECIFIC SLICE, AND THE TIME STEP

5 %GENERATES THE OUTPUTS REQUIRED FOR THE ANIMATION

6 %times{counter}=[t, iy, iz] time of the animation, the 1:iy points have been filled,

7 and the 1:iz point

8

9 %K_anim{counter}:= animation K-space for the IC channels

10 %kxy_p{counter}:= POINTS IN THE K-SPACE THAT ARE FILLED AT THE CURRENT

11 STEP OF ANIMATION

12

13 %IMG_anim{counter}:= IMAGE GENERATED BY AVERAGING

14 THE 22 CHANNELS USING THE WEIGHTING FACTOR input.err

15

16 %k_anim_mean{counter}:=K space corresponding to IMG_anim{counter}

17

18

19 counter=1;

20

21 K_anim=zeros(input.IX, input.IY, input.IZ, input.IE, input.IC);

22 for iy=1:length(input.ind_hi_y)-1

23 low=input.f_y(iy, 1); %LOWER INDICES TO ITERATE OVER FOR TIME AND Z

24 hi =input.f_y(iy+1, 1); %HIGHER INDICES TO ITERATE OVER FOR TIME AND Z;

25 ky_p=input.f_y(1:iy, 2); %point in y THAT IS BEING ACQUIRED

26 for t=low:hi

27 iz=input.f_z(t); %INDEX OF Z

28

29 %FILL ANIMATION FOR ALL CHANNELS

30 for ic=1:input.IC

31 for ie=1:input.IE

32 %if(input.ind_corr(t))

33 K_anim(:,iy,iz,ie,ic)=input.ind_corr(t)*input.sqzrawdata(:,iy,iz,ie,ic);

34 % sprintf(’time t=%d input=%d’, t, input.ind_corr(t))

35 %else

36 % sprintf(’time t=%d K_anim not filled ic=%d’, t, ic)

37 %end

38 end

39 end

40 if (input.ind_corr(t)==1)

41 kxy_p{counter}(:, t)=[iy, iz];

42 else

43 kxy_p{counter}(:, t)=[0 , 0];

44 end
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45

46

47 if(mod(t, TSTEP) == 0 || t==input.f_y(end, 1))

48 K_chan1(counter, :, :, :)=squeeze(K_anim(:, :, :, 1, 1)); %STORE FIRST

49 %CHANNEL ANIMATION K-SPACE

50

51 sprintf(’time %d\n’, t)

52 %IMG_anim{counter}=0.0*K_anim{counter};

53

54 [IMG_anim_mean{counter}, K_anim_mean{counter}, IMG_anim]=create_avg_img_err(K_anim,

55 input.ky, input.kz, input.z_lo, input.z_hi, input.IMG_MEAN, input.err, 1);

56

57 times{counter}=[t, iy, iz];

58 counter=counter+1;

59 %K_anim{counter}=K_anim{counter-1};

60

61 end

62

63 end

64

65

66 end

67

68

A.0.6 Read and sort K-Space trajectory
1 function [f_y, ind_hi_y, ind_low_y, dT_y, T_acq_y]=find_index_y(tmp_ky, IC, IE)

2 %%%%%%

3 %%SEARCH TRHOUGH THE kyvector and find low and high indices

4 %%%%%%

5 count_lo=1;

6 count_hi=1;

7 ind_low_y=0; ind_hi_y=0;

8 low=tmp_ky(1);

9 ind_low_y(1)=1;

10 for j=1:length(tmp_ky)

11 if (tmp_ky(j) ~= low)

12 ind_hi_y(count_hi)=j-1;

13 count_hi=count_hi+1;

14 low=tmp_ky(j);

15 ind_low_y(count_hi)=ind_hi_y(count_hi-1)+1;

16 end

17 end

18 ind_hi_y(end+1)=length(tmp_ky);

19

20

21 %%CALCULATE TOTAL ACQUISITION TIME FOR Y

22 dT_y=ind_hi_y-ind_low_y+1;

23 dT_y=dT_y/IE/IC; %TIME VECTOR FOR Y

90



24 T_acq_y=sum(dT_y); %%TOTAL ACQUISITION TIME FOR Y

25 %%CREATE f_y(t)=NSLICE SHEET ACQUIRED AT TIME f_y(j)=(time, ky_point)

26 ti=1;

27 for j=1:length(ind_hi_y)

28 f_y(j, :)=[ti, tmp_ky(ind_hi_y(j))];

29 ti=ti+dT_y(j);

30 end

31 end

32

33 %%%%%%%%%%%%%%%%%%%%%%%

34

35 function [f_z, ind_hi_z, ind_low_z, dT_z, T_acq_z, TIME]=find_index_z(tmp_kz, IC, IE)

36 count_lo=1;

37 count_hi=1;

38 ind_low_z=0; ind_hi_z=0;

39 low=tmp_kz(1);

40 ind_low_z(1)=1;

41 for j=1:length(tmp_kz)

42 if (tmp_kz(j) ~= low)

43 ind_hi_z(count_hi)=j-1;

44 count_hi=count_hi+1;

45 low=tmp_kz(j);

46 ind_low_z(count_hi)=ind_hi_z(count_hi-1)+1;

47 end

48 end

49 ind_hi_z(end+1)=length(tmp_kz);

50

51 %%CALCULATE TOTAL ACQUISITION TIME FOR Y

52 dT_z=ind_hi_z-ind_low_z+1;

53 dT_z=dT_z/IE/IC; %TIME VECTOR FOR Y

54 T_acq_z=sum(dT_z); %%TOTAL ACQUISITION TIME FOR Y

55 ti=1; TIME=[];

56 TIME(1)=ti;

57 f_z=0;

58 for j=1:length(ind_hi_z)

59 f_z(j)=tmp_kz(ind_hi_z(j));

60 ti=ti+dT_z(j);

61 TIME(j)=ti;

62 end

63 end

A.0.7 Create Animation
1 function [output]=make_movie(input, K_anim, IMG_anim, kxy_p, times, avi_file, IZ_SLICE)

2

3 IX=input.IX;

4 IY=input.IY;

5 IZ=input.IZ;

6 IE=input.IE;

7 IC=input.IC;
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8 DELTA_X=input.DELTA_X;

9 DELTA_Y=input.DELTA_Y;

10

11

12 vidObj=VideoWriter(avi_file);

13 open(vidObj);

14

15 for counter=1:length(kxy_p)

16 if (counter==1)

17 hfig= figure(’unit’,’pixel’,’position’,[DELTA_X*2 100 2*

18 IX+6*DELTA_X 4*IY+6*DELTA_Y],’menubar’,’none’);

19

20 ax1 = axes(’parent’,hfig,’unit’,’pixel’,’position’,[2*DELTA_X 4*

21 IY-DELTA_Y 2*IX+DELTA_X IY]);

22

23 xlim([1, IY]); xlabel(’KY indices’); ylabel(’KZ indices’);

24 hold(ax1);title(’K SPACE Completion’)

25

26 ax2 = axes(’parent’,hfig,’unit’,’pixel’,’position’,[2*DELTA_X 3*IY-3*

27 DELTA_Y IX IY], ’XTickLabel’, ’’,

28

29 ’YTickLabel’, ’’); xlim([0, IX]); ylim([0, IY]); hold(ax2);

30

31 ax3 = axes(’parent’,hfig,’unit’,’pixel’,’position’,[4*DELTA_X+IX 3*

32 IY-3*DELTA_Y IX IY], ’XTickLabel’,’’, ’YTickLabel’, ’’); hold(ax3);

33

34 ax4=axes(’parent’,hfig,’unit’,’pixel’,’position’,[2*DELTA_X 2*IY-5*DELTA_Y 2*IX+DELTA_X IY]);

35 xlabel(’time ’); ylabel(’motion’);hold(ax4);

36

37 mTextBox=uicontrol(’style’, ’text’);

38 mTextBoxPosition=get(mTextBox, ’Position’); ;

39 mTextBox.Position=[2*DELTA_X 5*IY-0.1*DELTA_Y 2*IX+DELTA_X DELTA_Y];

40 mTextBox.FontSize=20;

41 mTextBox.FontWeight=’bold’;

42 mTextBox.BackgroundColor=’white’;

43 set(gcf, ’units’, ’normalized’, ’outerposition’, [0 0 1 1]);

44 end

45 text_box=sprintf(’time %5d IY %3d IZ %3d \n’, input.times{counter}(1),

46 input.times{counter}(2),input.times{counter}(3) );

47

48 set(mTextBox, ’String’, text_box);

49

50 plot(ax1, kxy_p{counter}(1, :), kxy_p{counter}(2, :), ’b.’);

51 axes(ax2); hold(ax2); imagesc(abs(IMG_anim{counter}(:,:,IZ_SLICE)’));

52 colormap gray; ax2.XTickLabel=’’; ax2.YTickLabel=’’;

53

54 axes(ax3); hold(ax3); imagesc(squeeze(abs(K_anim(counter, :,:,IZ_SLICE)))’);

55 colormap gray; ax3.XTickLabel=’’; ax3.YTickLabel=’’;

56

57 axes(ax4); hold(ax4); plot(input.time_int(1:input.times{counter}(1)),

58 input.traj_int(1:input.times{counter}(1)),’r.’); xlim([0,input.time_int(end)]);
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59 xlabel(’time (s)’); ylabel(’motion amplitude (cm)’);

60

61 currFrame = getframe(hfig);

62 for dum=1:10

63 writeVideo(vidObj,im2double(currFrame.cdata));

64 end

65 pngname=sprintf(’%simg_ZSLICE_%d_t_%d_IY_%d_IZ_%d.png’, input.avi_path, IZ_SLICE,

66 input.times{counter}(1), input.times{counter}(2), input.times{counter}(3));

67

68 print(pngname, ’-dpng’)

69

70 end

71 close(vidObj);

72 output=1;

73 end
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