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ABSTRACT

PROBABILISTIC LOCALIZATION OF MOBILE AD HOC NETWORKS

Publication No.

RUI HUANG, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Gergely V. Záruba and Sajal K. Das

The mobile ad hoc network localization problem deals with estimating the physical

location of the nodes that do not have a direct way (e.g., GPS) to determine their own

locations. Being an enabling technology that is considered essential to the success of

the future implementation of ad hoc networks in the real world, localization is a funda-

mental problem that needs to be solved with the best possible accuracy and efficiency.

For this research, we study the localization problem in its various incarnations such as

localization through static beacons, mobile beacons, dynamically deployed beacons and

link longevity estimation based on relative locations. We will show the fundamental dif-

ficulty of the localization problem using computational complexity theories. We will also

propose a probabilistic framework that serves as an approximation framework for this

difficult problem. We will demonstrate the effectiveness of this framework via analysis

and simulation.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

Mobile Ad Hoc Networks (MANETs) are infrastructure-less networks that form

on the fly as network nodes move in and out of each other’s transmission range. Since

MANET serves as an abstract model and concept that can be seen as a superset of diverse

sub-areas such as sensor networks, mesh networks or an enabler for pervasive computing,

it has attracted heavy research interest in the past several years. A major advantage of

MANETs over regular wired or wireless networks is in their infrastructure-less nature as

they can potentially be deployed more rapidly and less expensively than infrastructure-

based networks. However, the lack of an underlying explicit infrastructure also becomes a

major disadvantage in adapting MANETs to a wider array of applications, since existing

network algorithms and protocols are not “plug-in” solutions for such dynamic networks.

New algorithms need to be, and are being designed for such fundamental network tasks

as addressing, topology discovery and routing.

Location discovery is emerging as one of the more important tasks as it has been ob-

served and shown that (semi-) accurate location information can greatly improve the per-

formance of other MANET tasks such as routing, energy conservation, or maintaining net-

work security. For instance, algorithms such as LAR [42], GRID [51], and GOAFR+ [46]

rely on the location information to provide more stable routes during unicast route dis-

covery. The availability of location information is also required for geocast (multicast

based on geographic information [37]) algorithms such as LBM [43], GeoGRID [52] and

PBM [56]. To minimize the power consumption, the GAF algorithm [83] uses location

1
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information to effectively modify the network density by turning off certain nodes at par-

ticular instances. Furthermore, in [31], the authors have shown that wormhole attacks

can be effectively prevented when location information is available. As more algorithms

are being proposed to exploit the location information in the network, it is clear that

obtaining such information efficiently and accurately becomes of greater importance.

This work deals with localization problem in general. In particular, we propose

a probabilistic approach to a number of sub-problems within the localization domain.

In this chapter, We first establish the importance of location discovery under various

flavors of MANET by surveying some of its important applications. We then discuss

the underlying difficulty of the localization problem, and the various measurement types

available to solve this problem. Finally, we describe the overall organizational structure

that will serve as the road map to the rest of this work.

1.2 Survey of Applications

There have been numerous algorithms proposed for MANETs that rely on local-

ization data. In this section, we provide a brief survey of them; we divided them into

four categories based on their functionalities: unicast routing, multicast routing, energy

consideration, and network security.

1.2.1 Unicast Routing

Routing is a specially challenging task for MANETs because their frequent infras-

tructural change implies the underlying instability of any established routes. As such,

routes are needed to be frequently rediscovered, reestablished, and repaired. In general,

routing (i.e., route discovery and repair) involves flooding the routing control packets

throughout the network. Flooding can often be quite expensive in terms of delay and

bandwidth usage it incurs, both of which can greatly affect the network performance.
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Thus, there is a strong incentive to design efficient routing algorithms that minimize the

overhead caused by any unnecessary flooding. Unicast routing based on location infor-

mation, often called geometric routing or location based routing, has shown to be a viable

solution to this problem.

Location-Aided Routing (LAR) [42] protocol is the first MANET routing algorithm

proposed that uses location data. In LAR, every node is assumed to know its own

location, and each individual location is then broadcast throughout the network. Thus,

at any time t, every node knows the locations of any other nodes at some previous time

< t. Based on this location information and an estimated velocity, a node can derive

an estimated location range, called “expected zone”, of a target node at the current

time. The routing request packets can be directed to search for the target node only at

this expected zone. Global flooding is performed only after the location based routing

request has failed. Limiting route discovery to a smaller expected zone with LAR reduces

the number of routing requests compared to the standard flooding scheme, in which the

routing request packets have to cover the entire network.

GRID [51] protocol uses location information as a way to form geographical clusters

within the network. Based on node locations and their residency within a pre-determined

grid system, nodes within the same grid block are grouped into a cluster. A cluster head

(“gateway” in [51]) is then selected for each grid block. The cluster head is responsible

to service the routing packets. Furthermore, the cluster head can monitor the status

of existing routes and reroute packets as deemed necessary. Since the cluster formation

effectively simplifies the network topology, the routing overhead is reduced. A critical

requirement of forming such clusters is the availability of node location information.

In [46], the authors provide some theoretic bound to the geometric routing problem

and propose an algorithm called GOAFR+. Assuming that node locations are known,

GOAFR+ first tries to greedily route the packet by forwarding it to the neighbor located
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closest to the destination. However, such greedy selection does not guarantee message

delivery since the intermediate node closest to the destination might not have a route to

it. In such cases, GOAFR+ explores the boundaries of the faces of a planarized network

graph by employing the local right hand rule (i.e., always turn right) to escape the local

minimum. This method of escaping local minimums is also called “parameter routing,”

which is used in a number of other location based routing protocols as well.

Performance-wise, simulations performed by [42] and [51] show up to 50% of re-

duction in routing packets when using geometric routing compared to standard flooding.

Since the overhead of flooding is proportional to network density, it is observed that the

amount of this performance increase becomes more significant when network density is

increased. Furthermore, although the routing performance is impacted by the localiza-

tion error, such impact is observed to be minimal. This indicates that in the case of

routing highly precise location data is not required. After all, location data is used by

routing algorithms to give a direction that guides the routing packets; imprecise location

data can still be used as long as the general direction is valid.

1.2.2 Multicast Routing

Similar to unicast routing, multicast routing can also benefit from location data.

Multicast routing using geometric information is often referred to in the literature as

geocast routing. The Location-Based Multicast (LBM) algorithm [43] is a multicast ex-

tension to the unicast Location-Aided Routing (LAR). Like LAR, which forwards the

routing requests according to the location of the destination node, LBM forwards the

requests according to the direction of the geocast region that contains all the multicast

destinations. GeoGRID [52] is the multicast extension to GRID [51]. Like in GRID,

location information is used by GeoGRID to identify the grid block where nodes re-

side. Multicast is done through the gateway node selected at each grid block. Based
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on the location of the source node and the geocast region, LBM and GeoGRID define

a “forwarding region” that contains the intermediate nodes responsible for forwarding

requests. The size and shape of the forwarding region have a direct impact to the overall

performance. Shapes such as rectangles and cones have been proposed in [43].

While the standard shapes such as rectangles and cones work well in most cases,

there are situations where viable routes exist only outside the forwarding region. For

instance, a network can be partitioned into two sub-networks connected only through a

narrow linkage due to some obstacles (e.g., two islands connected by a bridge). When the

source and the destination are in separate partitions, a geometrically defined forwarding

region is unlikely to cover the linkage. To prevent routing failure in such case, a routing

zone based on Voronoi diagrams was proposed in [77], which partitions the network

graph based on the proximity of the nodes. Again, the proximity information relies on

localization information.

The Position-Based Multicast (PBM) protocol proposed in [56] attempts to op-

timize the multicast tree it generates by minimizing the overall path length and the

overall bandwidth usage; two often contradictory objectives. To minimize the overall

path length, PMB takes a greedy approach using location information. At each interme-

diate node, the packet is forwarded to a set of neighbors based on their overall distances

to the multicast destinations. In particular, a set of the neighbors with the minimum

overall distance to every destination is selected as the next set of forwarding nodes. To

take in account of the bandwidth usage, the greedy selection also weighs in the size of

the forwarding set in order to minimize that as well. PBM also uses parameter routing

to deal with local minimums. Both greedy routing and parameter routing employed by

PBM rely on the location information.
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1.2.3 Power Management

MANET is often being used as the model for sensor networks. Due to the recent

emergence of interest in pervasive computing, sensor networks have been receiving heavy

research efforts. One of the major challenges of sensor networks is power management.

Since sensors are commonly small in size and battery powered, conserving the energy

would prolong their service time and thus the lifespan of the entire network. The Ge-

ographical Adaptive Fidelity (GAF) algorithm [83] is a network topology management

algorithm with reducing energy consumption as its primary objective. The idea behind

GAF is that there are often a large number of nodes that are redundant during packet

routing in MANET. If the redundant nodes can be identified, they can then turn off their

radio to save energy. For GAF, the identification of redundant nodes is accomplished by

analyzing the relative location information among the neighboring nodes. More specifi-

cally, GAF divides the network into virtual grids such that all nodes in grid block A are

the neighbors of all nodes in grid block B. This way, all nodes within the same virtual

grid block can be considered equivalent. To conserve energy during packet routing, GAF

only turns on the radio for one of the nodes in each grid block. The active node is period-

ically “round-robinned” to achieve load-balancing. Analysis and simulations performed

in [83] show that GAF can reduce overall energy consumption by 40% to 60%.

1.2.4 Security

In [31], the authors proposed a technique called “packet leashes” to defend against

wormhole attacks in MANETs. A wormhole attack is a type of security breach where an

adversary intercepts incoming packets and tunnels them to another part of the network

via a single long-range directional wireless link or through a direct wired link. From

there, the adversary can retransmit the packets to the network. Note that this type of

“capture-and-retransmit” attack can be immune to common packet encryption methods
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since adversaries do not need to read the packet content. Wormhole attacks can severely

disrupt ad hoc routing protocols such as AODV or DSR, and cause a denial of service

to the network. The core of “packet leashes” is based on two assumptions: i) all nodes

know their own locations, and ii) all nodes are synchronized. To enable packet leashes,

the sender node encloses its location and transmission time-stamp within the packet. At

the receiver node, the packet leash is validated against the receiver’s own location and

clock. In particular, the sender location information gives the distance from the original

sender to the receiver, and the time-stamp gives the transmission duration of the packet.

Based on the transmission duration and signal propagation model, factored in some error

tolerance, the receiver can validate the estimated distance the packet has traveled against

the true distance to tell if the packet is indeed coming from the original sender or an

imposter at some other location. Thus, the location information and time-stamp provide

a virtual leash to limit the effective range of the packet so that it cannot be exploited by

wormhole attackers.

From the previous discussion of the location-dependent algorithms that encompass

a number of different domains, it is quite obvious that providing location information

(i.e., localization) to MANET is becoming an increasingly important task. In fact, local-

ization is now widely regarded as an “enabling technology” for MANET that needs to be

addressed before other location-dependent techniques can be realized in the real world

[66].

1.3 Challenges

A direct way of obtaining location information at MANET nodes is to install GPS

receivers on each node. However, this is currently impractical as GPS receivers are still

relatively expensive, power-hungry, and require clear line of sight (i.e., making indoor us-
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age impossible) to several earth-bound satellites. In sensor networks devices are imagined

as small as possible while operating on a very restricted power source, thus it may not

be feasible to install GPS receivers onto all sensor nodes. Localization in MANET refers

to the problem of finding the locations of those non-GPS enabled nodes based on limited

information such as some known beacon locations and ranging distances or angles among

the neighbors. The localization problem is hard for a number of reasons as explained in

the following subsections.

1.3.1 Geometric limitations

To pinpoint its exact location, a node needs to know the locations of at least three

beacons together with its distance from each of these beacons. Alternatively, nodes could

calculate their own location based on a distance and an (absolute) angle measurement

from one beacon. Even if obtaining such measurements were possible and the measure-

ments were exact, guaranteeing that (several) beacons surround each node is impossible

as MANETs may be randomly deployed and in general only a small percentage of nodes

are indeed beacons. Thus, many localization algorithms take advantage of multi-hop

information, i.e., estimating node locations based on other nodes’ location estimates.

1.3.2 Measurement Availability

For localization algorithms that require distance or angle measurements, certain

sensory devices will need to be available to provide such readings. However, it is likely

that not all nodes have the same sensory capacity. In other words, there is a need for

the localization algorithm to work in a heterogeneous environment with different location

sensory capabilities.
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1.3.3 Measurement Error and Error Propagation

Even when distance or angle of arrival measurement devices are available, there is

a general consensus that those measurements are prone to errors. For instance, a dis-

tance measurement based on received signal strength indication (RSSI) reading is prone

to multi-path fading and far field scattering. The error can be especially high when there

are a significant number of obstacles in-between the sender and the receiver. Further-

more, since many localization algorithms require measurements from nodes several hops

away, the measurement error is likely to aggregate along the path and may eventually

completely throw off the location estimate.

In spite of its hardness, there has been an increasing amount of research effort

targeting the localization problem in recent years. The amount of effort is well justi-

fied because localization is considered an enabling technology that needs to be resolved

with the best possible outcome upon which other location-dependent technologies for

MANETs can be successfully employed. Thus, researchers have been working on the

problem in both hardware (i.e., improving the devices measurement accuracy) and soft-

ware (i.e, improving the localization algorithm).

1.4 Common Measurement Types

In this section, we survey the types of measurement data currently available to

the localization problem. There are five general types of measurement as follows: i)

connectivity only, ii) RSSI (radio signal strength indicator) ranging, iii) ToA (time of

arrival) ranging, iv) AoA (angle of arrival), and v) Interferometric ranging.
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1.4.1 Connectivity Only Measurement

At a minimum, a node can detect connectivity to its neighbors, i.e., its one-hop

neighborhood. The connectivity only measurement is a binary reading between two

nodes of either “true” or “false” indicating whether they are neighbors. Based on this

connectivity information, one can derive the general proximity of the nodes and use it as

a way to localize the network.

1.4.2 RSSI Ranging Measurement

A node can be localized using multilateration if the distances (i.e., the ranges) to

three or more known locations are obtained. The distances can be obtained, e.g., by

measuring RSSI (received signal strength indication) or ToA (time of arrival). In RSSI,

the receiver measures the received signal strength and compares it with the transmit-

ted signal strength. The difference (in dB) is then applied to the inverse of the signal

propagation model to provide a distance measurement. Sensors that measure RSSI are

widely available to mobile devices. Indeed, most off-the-shelf technologies implicitly pro-

vide such information (e.g., most WiFi, Bluetooth and IEEE802.15.4 chipsets do). The

drawback of RSSI based measurements is that they can be very inaccurate because an

exact model of the propagation environment is often unavailable.

In the outdoor environment with minimal obstacles, signal propagation decay is

proportional to dnp, where d is the distance the signal has traveled and np is a path loss

exponent. However, in the actual environment where obstacles exist, multipath signals

and shadowing become two major sources of noises that impact the actual RSSI. In

general, those noises are commonly modeled as a random process during localization.
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Let Pi,j be the RSSI (in dB) obtained at the receiver node j from the sender node i. Pi,j

is commonly modeled as a Normal distribution [66]

Pi,j = N(P̄i,j , σ
2
dB) (1.1)

where P̄i,j is the mean power in dB and σ2
dB is the variance caused by noise factor such

as shadowing. P̄i,j is further defined as the power reduction from a reference location:

P̄i,j = P0 − 10nplog10(di,j/d0) (1.2)

where P0 is the power at a reference location at the distance d0 (commonly d0 = 1m).

np is an environment-dependent path loss exponent that is assumed to be known from

prior measurements (theoretically np = 2). di,j is the Euclidean distance between nodes

i and j.

1.4.3 ToA Ranging Measurement

Although ToA is used for radio signals in GPS, it is mostly used in context of

acoustic signals in inexpensive ToA tracking (as propagation speeds are five orders of

magnitude less). ToA measures the time acoustic signals travel from the sender to the

receiver. The distance between nodes is obtained by multiplying this time with the signal

propagation speed. In spite of the additive noise and multipath, in general distance

measures based on ToA are more accurate than RSSI based measures. However, special

acoustic transceivers have to be employed on each node and synchronization among the

nodes needs to be established. Sensor network clock synchronization algorithms accurate

to the order of 10µs have been reported [74]. As mentioned earlier, ToA may also be
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used together with radio signals, but current technology is not mature enough to provide

a satisfactory precision over smaller distances inexpensively.

Let i be the sender node and j be the receiver node, ToA measurement Ti,j is often

modeled as a Normal distribution [66]:

Ti,j = N(di,j/c, σ
2
T )

where di,j is the euclidean distance between i and j, c is the signal propagation speed,

and σ2
T is the variance caused by noise.

1.4.4 AoA Measurement

A node can be localized if the angles between itself and two beacons are known.

Thus, it is possible to localize the network based on the angle information (i.e., bearing,

or angle of arrival (AoA). Currently, there is no off-the-self device that offers AoA sensing

capability. However, a number of prototype devices are available. For instance, Cricket

Compass [69] is a small form device that uses ultrasonic measurements and fixed beacons

to obtain acoustic signal orientations. In [61], a rotating directional antenna is attached

to an 801.11b base station. By measuring the maximum received signal strength, a

median error of 22◦ can be obtained from the sensor. The challenge here is to design an

AoA sensing device that has small form factor and low energy consumption. In [14], the

authors outline a solution with a ring of charge-coupled devices (CCDs) to measure AoA

with relatively low energy consumption.

In general, AoA is also modeled as a Normal distribution. Let the true angle

between the sender i and j be ai,j , the AoA measurement between i and j is therefore

Ai,j = N(ai,j , σ
2
a)
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where σ2
a is the angle variance. Theoretical results for acoustic-based AoA estimation

show a standard deviation σa between 2◦ to 6◦, depending on the range [65]. An RSSI

based AoA method with σa on the order of 3◦ has been reported [2].

1.4.5 Interferometric Ranging Measurement

Interferometric ranging is a “widely used technique in both radio and optical as-

tronomy to determine the precise angular position of celestial bodies as well as objects

on the ground [47].” Interferometric ranging exploits the property that the relative phase

offset between two receivers determines their distances to the two simultaneous senders.

Due to the recent advance in hardware, it is now possible to implement interferometric

ranging sensors in a much smaller form factor so that it can be used for localization [55].

Because there has been relatively little work on localization using interferometric ranging,

we devote a separate chapter (Chapter 3) to study some of its fundamental properties.

1.5 Content Overview and Organization

In this work, we propose a probabilistic localization framework for a number of

related yet different sub-problems of localization. In Chapter 2, we introduce the general

ad hoc localization problem, in which the nodes collaborate together to derive their

locations from a small subset of beacon nodes. Our solution to this problem involves a

probabilistic framework based on particle filters that take into account imprecise location

information. The framework also supports localization of networks with heterogeneous

sensor types. We also introduce some of the basic theoretic concepts of localizability and

error bounds in collaborative localization.

In Chapter 3, we proceed to study localization using interferometric ranging in

detail. In particular, we provide some fundamental complexity proofs of this problem.

We show that localization using interferometric ranging is an NP-Hard problem. We also
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propose an iterative localization algorithm designed to work with interferometric ranging

sensors.

We consider the mobility issue in ad hoc networks in Chapter 4. Because of node

movement, the established communication link between two mobile nodes is temporary

and can be disconnected. Since the link disconnection affects routing, it is desirable to

predict its occurrence so that backup routes can be established ahead of time without

interrupting the service. We present three measurement based link longevity predictors

based on extended Kalman filters.

We cover the dynamic beacon deployment for localization in Chapter 5. The dy-

namic beacon deployment problem looks for a strategy to deploy beacons one after an-

other so that the entire network can be localized. We show that a superset of this

problem is NP-Complete, and thus the beacon deployment problem itself is likely to be

NP-Complete as well. We then propose a greedy approximation algorithm with logarith-

mic approximation ratio to this problem. In reality, the beacons need to be deployed

in an online fashion, in which the algorithm does not know the impact of the deployed

beacon until after it has been deployed. Thus, we have to modify the greedy algorithm to

work in the online environment. We also propose a deployment strategy that explicitly

considers the localization error using the concept of Cramer Rao bounds (CRB).

Other than the traditional collaborative methods, a mobile beacon can be used to

localize networks. In Chapter 6, we apply our probabilistic framework of particle filters

to the localization problem using mobile beacons. We adapt the localization protocol

so that the filtering runs exclusively on the mobile beacon itself. Thus, we alleviate the

sensors from the computational resource needed to perform localization. It also provides

a more secure environment for localization.

While there have been various localization algorithms proposed for the mobile bea-

con problem, relatively little work has been done in the path planning of the mobile
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beacon. In Chapter 7, we study both the static and dynamic path planning problem for

localization. For the static path planning, we propose two new path types that provide

better localization coverage and accuracy than previous ones without increasing the path

length. We also study the dynamic path planning using a similar greedy strategy as the

beacon deployment problem. We show that while the static paths would work better

in uniformly deployed sensor networks, the dynamic paths are better suited to heavily

clustered networks.



CHAPTER 2

GENERAL AD HOC LOCALIZATION PROBLEM

In this chapter, we study the localization problem in its most general and well-

studied form. We assume that a small subset of the nodes know their locations, for

instance, via an onboard GPS receiver, and the question is to derive the locations of

all other nodes using some kind of measurement such as RSSI ranging. This problem

has been heavily studied because it can serve as an abstract model of many real-world

localization problems in the field of sensor networks, ad hoc networks and pervasive

computing. Furthermore, this highly abstract model has the advantage of being closely

related to the graph realization problem, which has been studied in the past 20 years in

the domain of graph theory.

2.1 Problem Definition

A network is commonly modeled as a graph, in which network devices are repre-

sented as vertices and communication links between devices as edges. Depending on the

actual network scenario, the graph can be either directed (indicating an asymmetric be-

havior of the communication links) or undirected (indicating symmetric communication

links). As typical of other works in localization, we only consider the undirected graphs

in the network graph, although some results can be extended to directed graphs as well.

Within the context of a network graph, we define the general ad hoc localization problem

(GAHLP) as the task of estimating the physical location of all nodes given that only

a subset of nodes (i.e., beacons or anchors) know their exact location. More formally,

given a network graph G = (V, E) where a subset of the nodes {V } are location-aware

16
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Figure 2.1. A symmetric network of 80 regular nodes (circles) and 20 beacons (squares).
A link exists between two nodes if they are neighbors. The node connectivity (nodal
degree) of this network is 7.6.

beacons {Vbeacon}, the objective of a general ad hoc localization algorithm (GAHLA) is

to find the locations of regular nodes {V } − {Vbeacon}.

Figure.2.1 shows such a network graph with 80 regular nodes and 20 beacons. The

beacons and regular nodes are depicted as squares and circles, respectively.

This is the localization problem formulated in the most general form, and it is

also the most widely studied by researchers. There are two variations of this problem: i)
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when regular nodes are stationary, and ii) when the regular nodes are mobile. The mobile

scenario is generally more difficult because node movement could invalidate previously

obtained localization result. In the mobile case, either the localization algorithm has

to run continuously or a separate correction algorithm is needed to accommodate the

location change.

In this chapter, we study the GAHLP in the following three sub-areas: i) theoretic

results derived from graph theory, ii) impact of different measurement types and noises,

and iii) the actual localization algorithms.

2.2 Theoretic Hardness

The solution of GAHLP depends on the measurement type. Four out of the five

types of measurements listed in Chapter 1, namely connectivity (i.e., a binary state in-

dicating if two nodes are neighbors), RSSI and ToA ranging (i.e., the distance between

two neighbors), and angle of arrival (AoA), have been previously studied in their com-

putational hardness. However, GAHLP, even in stationary networks, is very hard for all

the measurement types. Its hardness can be illustrated by a number of recent results in

graph theory. In this section, we give a brief overview of the primary results in this field.

For the localization problem, the analysis of theoretic hardness asks two questions:

i) how difficult it is to tell whether a network can be localizable (i.e., the localizability),

and ii) how difficult it is to actually localize it (i.e., the realization). The branches of graph

theory that study these two questions are called rigidity theory and graph realization.

Rigidity theory deals with the first question that asks under what condition a graph will

be rigid in the sense that there exists a unique localization result given the measurements.

The test of graph rigidity is important because if the graph cannot be localized with a

unique localization then it would be pointless trying to localize it. If the graph passes

the localizability test, graph realization deals with the actual algorithm that localizes the
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network in Euclidean space. Note that it is a common practice in the theoretic analysis

to assume that measurements are 100% accurate.

2.2.1 Localizability

We first consider the localizability test under the distance measurement (i.e., rang-

ing).

Definition 2.2.1. In d dimensions, a set of points are said to be in general positions if

they do not lie in a proper subspace (i.e., three points in the plane do not lie on a line,

and four points in space do not lie in a plane) [3].

In the localizability test, we assume that the nodes are in general positions within

the network graph. This assumption eliminates the special cases where some nodes are

located at “unfortunate” locations. Those special cases are rare since with probability of 1

the nodes are in general positions within the continuous space. The next two definitions

contain the qualifier “generically,” meaning that we are considering nodes in general

positions.

Definition 2.2.2. A graph is generically locally rigid (also called first-order rigid) if

it does not admit a continuous deformation other than global rotation, translation, and

reflection [25, 3].

Thus, the rigidity in general refers to the situation in a graph where there are

no continuous motions of the vertices satisfying distance constraints on edges. While a

locally rigid graph does not admit a continuous deformation, it can still admit discontin-

uous deformation such as in Figure 2.2, which would make it unlocalizable. To achieve

localizability, we need additional conditions:

Definition 2.2.3. A graph is generically globally rigid (also called second-order rigid

or redundantly rigid) if the removal of any one edge would result in a graph that is also

generically locally rigid [3].
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Figure 2.2. A locally rigid graph can still be unlocalizable.

Definition 2.2.4. A graph is k− connected if it remains connected upon removal of any

set of less than k vertices [3].

Based on the above definitions, the following theorem gives the necessary and

sufficient condition for distance-constrained network localizability in two dimensions.

Theorem 2.2.5. The network is localizable in two dimensions if and only if the network

graph is redundantly rigid and triconnected [29, 4].

Theorem 2.2.5 holds only for two dimensions. The sufficient condition for higher

dimension is currently unknown. To test the localizability, there exists a polynomial time

algorithm (O(n2), where n is the number of vertices) that tests for the first-order rigidity

(see [29] for one implementation). However, it is a known NP-Complete problem to test

for the second-order rigidity of a graph [72]. A related but even more difficult problem is

the node localizability, which asks if a particular node (instead of the entire network) is

localizable. No sufficient condition of node localizability is currently known even in the

two dimensional case, and thus no deterministic algorithm exists.

2.2.2 Realization

Given a network that is localizable, the graph realization problem asks for an

algorithm to actually localize the network. The hardness of graph realization has been

shown under the measurement of distance, angle and connectivity.
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Theorem 2.2.6. Graph realization is NP-Hard under distance measurement.

Proved in [18] using a reduction from the known NP-Complete Set Partition prob-

lem.

Theorem 2.2.7. Graph realization is NP-Hard under angle measurement.

Proved in [8] using a reduction from the known NP-Complete 3SAT problem.

Theorem 2.2.8. Graph realization is NP-Hard under unit disk connectivity measure-

ment.

Proved in [7, 45] using a reduction from the known NP-Complete 3SAT problem.

In Chapter 3, we will show that the graph realization is also NP-Hard under inter-

ferometric ranging measurement.

The above theorems clearly indicate the difficulty of the localization problem re-

gardless of the measurement types. Based on the theoretic hardness of the problem, it is

clear that any localization algorithm needs to be some form of stochastic optimization.

2.3 Measurement Noise and Cramer-Rao Bounds (CRB)

The above theoretic results indicate the general intractability of GAHLP even in

the ideal case where measurements (such as edge distances) are 100% accurate. Thus,

all proposed solutions have been some forms of stochastic optimization. Unfortunately,

measurements in the real world are a far-cry from being accurate, and any optimization

method has to deal with not only different measurement types but also noise. In this

section, we study the impact of noise on the localization problem.

The localization inaccuracy attributed to the measurement types and noise can be

mathematically qualified using Cramer-Rao Bounds (CRB) [65]. The CRB is a lower

bound on the covariance of any unbiased location estimator that uses measurements

such as RSSI, ToA, or AoA. Thus, the CRB indicates a lower bound of the estimation

accuracy of a given network scenario regardless of the localization algorithm. In other
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words, with CRB we have a way to tell the best any localization algorithm can do given

a particular network, measurement type and measurement noise scenario. CRB formulas

of individual measurement types such as RSSI, ToA and AoA under most common noise

models (mostly Gaussian) are currently known.

To illustrate how a CRB formula is derived, let us use RSSI as an example. Recall

from Chapter 1 that RSSI can be modeled as a Normal distribution

Pi,j = N(P̄i,j , σ
2
dB) (2.1)

where

P̄i,j = P0 − 10nplog10(di,j/d0) (2.2)

Given an instance of the GAHLP with n unlocalized nodes and m beacons, the CRB of a

problem instance can be obtained by constructing a covariance matrix (also called Fisher

Information Matrix (FIM)) of all unknowns. In the two dimensional case, the problem of

n unlocalized nodes constitutes 2n unknowns, namely, x1, x2, ..., xn, y1, y2, ..., yn. When

the measurement model of RSSI is given as in equation (2.1) and (2.2) and assuming a

bi-directional connectivity where node i can hear node j iff j can hear i, the FIM for

RSSI is in the form of

FIM =







Fxx Fxy

Fyx Fyy







where Fyx = F T
xy. Each element in the FIM can be obtained by taking the partial

derivatives of the probability density function given by the specific measurement model
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with respect to the corresponding unknowns. In the case of RSSI measurements, the

element is given as

[Fxx]k,l =











γ
∑

i∈H(k) (xk − xi)
2/d4

k,i k = l

−γIH(k)(l)(xk − xl)
2/d4

k,l k 6= l

[Fxy]k,l =











γ
∑

i∈H(k) (xk − xi)(yk − yi)/d
4
k,i k = l

−γIH(k)(l)(xk − xl)(yk − yl)/d
4
k,l k 6= l

[Fyy]k,l =











γ
∑

i∈H(k) (yk − yi)
2/d4

k,i k = l

−γIH(k)(l)(yk − yl)
2/d4

k,l k 6= l

Here, γ is a constant derived from the parameters in the measurement model of

Equation (2.1) and (2.2), where γ = ( 10np

σdB log10
)2. H(k) is the set of neighboring nodes of

a node k, that is, i ∈ H(k) iff node i can hear k. IH(k)(l) is a binary indicator function

that returns 1 if l is in H(k) and 0 otherwise.

To obtain the CRB matrix, we invert the FIM and examine its diagonal elements.

Let the σ2
i be the location variance of the ith unknown node, where σ2

i = V ar(xi) +

V ar(yi). Then, the CRB gives a lower bound of σ2
i as

σ2
i ≥ (FIM−1)i,i + (FIM−1)i+n,i+n

For the sample network given in Figure 2.1, the CRB of the localization error is

shown in Figure 2.3 as rings of radius = σi. Here, we assume the measurement model

to be RSSI with the path loss exponent np = 1 and the standard deviation of the noise

σdB = 0.7. A ring with smaller radius (i.e., a smaller CRB) signals that more accurate

localization result can be theoretically obtained. Conversely, a larger ring indicates a

larger localization variance and thus a less accurate result. In the figure, two types of
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nodes do not have rings. First, all beacons have a CRB of 0. There are also regular

nodes that have infinite CRB indicating that those nodes are theoretically impossible to

localize. The latter case can be seen at nodes 38, 48, 49 and 78 in the top left corner.

At the minimum, three beacons are needed to localize a connected network. However,

those nodes at the top left corner are isolated to a different partition. Since they are

connected to only one beacon (node 91), those nodes clearly cannot be localized. Other

than those cases, the CRB rings at the main network partition clearly show the level of

localization difficulty under various scenarios. In general, we observe that nodes closer

to the beacons tend to have a smaller CRB than the ones that are several hops away.

Even smaller CRB can be obtained when a node is closer to more than one beacon. All

of the above observations match our common intuition about localization difficulty.

The CRB of ToA and AoA measurements can be similarly calculated [66, 65]. It is

important to note that CRB is essentially a theoretic bound that depends on the measure-

ment model. In the real world, its usefulness is limited by how accurate the measurement

model reflects the reality. Nevertheless, CRB can be a useful tool in comparing various

localization algorithms. It can be used to validate how close a particular algorithm can

come to this theoretic lower bound and to see if there is any room for improvement in

the algorithm design. In Chapter 5 and 7, we also provide an innovative usage of CRB

in which we incorporate CRB as part of the algorithm.

2.4 Survey of Localization Algorithms

While there are various ways of classifying general ad hoc localization algorithms

(GAHLA), we feel it is more logical to classify them according to the measurement

assumptions as the four types: i) connectivity-only, ii) range-based, iii) angle-based, and

iv) hybrid. Note that we omit the localization algorithms that use interferometric ranging

here because they will be covered in Chapter 3. A comparison between the more well-
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Figure 2.3. The CRB of the sample network is depicted as rings of the radius = σi. There
are two exceptions: i) beacons, depicted as squares, have 0 CRB, and ii) some regular
nodes have infinite CRB (such as node 38, 48, 49 and 78 at the top left corner) indicating
that they cannot be localized.
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known algorithms such as DV-Hop, Euclidean and Multi-lateralization can be obtained

from [49]. The comparison here is done in the context of specific constraints of sensor

networks, such as error tolerance and energy efficiency; results indicate that there is no

single algorithm that performs “best” and that there is room for further improvement.

2.4.1 Connectivity-Based Algorithms

A number of localization methods rely on connectivity information only. These

types of methods are also referred to as “range-free” methods in the literature. The

Centroid method [11] estimates the location of an unknown node as the average of its

neighbors’ locations. The APIT method [27] estimates the node location by isolating the

area using various triangles formed by beacons. The DV-Hop method [58] counts the hop

numbers to beacons and uses them as crude estimates for distances. Range-free methods

require no additional hardware, but they generally only work well when networks are

dense. Sparse networks by nature contain less connectivity information, and thus they

are more difficult to localize accurately.

2.4.2 RSSI and ToA Range-Based Algorithms

Range-based methods include the ad hoc positioning system (APS) methods such

as DV-Distance and Euclidean proposed in [58, 59]. In [70], ranging data are exchanged

between the neighbors to refine the initial location guess. While those methods compute

the absolute node locations, the GPS-Free method [12] calculates the relative node lo-

cations from the distance measurements. Compared to range-free methods, range-based

methods give more accurate location estimates when ranging data is reliable. However,

depending on the deployment environment, ranging techniques based on RSSI tend to be

error-prone and strong filtering is required. The ranging error could ultimately destroy

the localization accuracy if it is allowed to propagate through the network unbounded.
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Different methods generally exploit the trade-off between the estimation accuracy

and the estimation coverage. For instance, given the same network scenario, the Eu-

clidean method is capable of generating more accurate location estimates of a smaller

subset of nodes, whereas the DV-Hop method has better coverage but worse accuracy.

Regardless of the tradeoff, a common characteristic shared by distance-based GAHLAs

is that they require a relatively high network density in order to achieve better results.

Based on the extensive simulation of DV-Distance, Euclidean and multilateration meth-

ods performed in [14], it can be concluded that those distance-based GAHLAs “require

an average degree of 11-12 nodes within the ranging neighborhood in order to achieve

90% localization coverage with 5% accuracy [14].”

2.4.3 Angle-Based Algorithms

Even though the future of AoA sensing devices is still unclear, some works have

been published on localization using angle information. Simulation studies in [14] also

show that when AoA (angle of arrival) of the signals is used in addition to the distance

measurement, the localization accuracy and coverage can be drastically improved. This

should not come as a surprising conclusion, as nodes need to communicate with only one

neighbor to perform localization if they can obtain both AoA and distance measurements.

The work in [14] also presents three variations of a weighted mean square error algorithm

that localizes the nodes, each of which is designed to work with one of the three measure-

ment types: i) distance-only measure, ii) distance plus a more accurate AoA measure

(up to 8◦ of precision) and iii) distance plus a less accurate AoA measure (up to 60◦

of precision). The less accurate AoA measurement method is sometimes referred to as

sectoring. Simulations in [14] show that the localization accuracy and coverage can be

greatly improved with such coarse sectoring measurement as well.
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2.4.4 Hybrid Algorithms

A combination of the above techniques can be employed to form a hybrid method.

For instance, a hybrid method is proposed in [1] that uses both APS and MDS (multi-

dimensional scaling).

2.5 Probabilistic Localization

The localization algorithm proposed in this chapter is a probabilistic method em-

ploying importance sampling techniques (particle filters). Here, each unknown node’s

location is viewed as a probability distribution over the deployment area. The goal of the

localization algorithm is to shape the distribution based on a sequence of measurement

until the distribution becomes focused and collapses onto a small area. The probabilistic

method and particle filters have been used in visual target tracking [34] and computer

vision location systems [20, 80] in the context of robotics. The particle filter method is

also used in [54] to obtain the mobile node location based on received signal strengths

from several known-location base stations in wireless cellular networks. The probability

grid system in [76] is a centralized probabilistic localization algorithm that updates the

distribution based on a grid system.

Perhaps the closest to our work are the Monte Carlo localization (MCL) method

[30] and the in-door location tracking algorithm [84]. In [30], a similar probabilistic

and particle filter approach was taken to localize mobile nodes in ad hoc networks. As

nodes move in and out of range of each other, the probability distribution is updated via

particle filtering based on the connectivity information. However, our work differs with

theirs in that we consider sensory based (RSSI or AoA) localization while the localiza-

tion in [30] is range-free. Given the different measurement models, the filtering process

is also completely different. Furthermore, our method works for both stationary and
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mobile networks, while the model in [30] is designed for mobile networks only. Finally,

localization in [30] only occurs when a regular node hears from a beacon directly, while

our algorithm allows collaborative localization among regular nodes.

The indoor location tracking problem in [84] deals with a known environment thus

different obstacles can be represented in a floor-plan and thus a signal strength (RSSI)

map can be obtained via measurements and calculations ahead of time. The location

tracking problem then becomes a decision-making problem, where a solution may use

a measurement model that compares the current RSSI with the signal strength map

to find the location with the highest probability of matching the current RSSI reading.

While roots are similar, the solution described in this work is designed for out-door

environments and infrastructure-less networks where major continuous obstacles (such as

walls) are assumed to be minimum, and fairly reliable distance estimates can be obtained

from RSSI readings and the signal propagation model. The probability distributions of

location estimates are updated solely from the distance and location estimates from

neighbors.

To our best knowledge, our work is the first that incorporates multiple sensory data

for localization using the same algorithmic framework. The need for such collaboration

is established in [14], but the authors only consider the limited case when both ranging

and angle readings are available at the same node. Our work is more general in that

we consider the cases when the nodes can either have ranging, angle, both, or just

connectivity-only. The same particle filter framework allows the nodes with different

sensory capacities to collaborate during localization.

2.6 Particle Filter Framework for Location Estimation

In this chapter, we propose a localization method based on Bayesian filters using

Monte Carlo sampling (also known as particle filters) introduced in [26]. Our method can
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be considered as a probabilistic approach in which the estimated location of each node

is regarded as a probability distribution captured by samples, thus the term particles.

The distribution of particles (the probability distribution of a node’s location over the

area) is continuously updated as the node receives location estimates from its neighbors

along with certain types of sensory readings such as RSSI and AoA. (More precisely

particles represent samples drawn from a continuous probability density function, thus

using the term “probability distribution” is justified.) Essentially, nodes estimate their

own locations by exchanging the location distributions directly with their neighbors.

Figure 2.4 demonstrates how our method solves the AHLP in a simple scenario

(where RSSI based distance measurements are used). Here, nodes 2, 3, and 4 are beacon

nodes, while nodes 0 and 1 are regular nodes. Of the beacons, node 0 can receive signals

only from nodes 1 and 4, and node 1 can receive signals from only nodes 0, 2, and 3.

From the signal strength readings, the regular nodes estimate their distances to their

neighbors. The probability distribution of the estimated location is represented by the

particles (dots) in the graph. In sub-figure (a), where node 1 is removed, node 0 can only

receive signals from node 4; thus as the particle distribution indicates, the probability

distribution where node 0 is most likely located concentrates on a circle around node 4.

In sub-figure (b), where node 0 is removed, node 1 can receive signals from node 2 and

3; thus the most likely locations for node 1 center around two areas where “transmission

circles” around node 2 and 3 intersect. Intuitively, in order to localize itself, a regular node

needs to receive location information from a minimum of three beacons either directly

or indirectly. In both case (a) and case (b), the exact location of node 0 and 1 cannot

be deduced because they do not receive location information from all three beacons. In

(c) and (d), where all nodes are available, node 0 and 1 are able to communicate to each

other and exchange their particle distributions. Thus, their probability densities will
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represent their actual locations much closer even though neither node receives location

information from all three beacons directly.

2.6.1 Classic Monte Carlo Sampling-Based Bayesian Filtering

This section describes the theoretical background behind Bayesian filtering and

how it can be applied to location estimation using RSSI. Let us envision a grid system

superimposed over the entire tracking area, and let the state st be the location of the

node to be tracked in the grid system at time t . Our goal is to estimate the posterior

probability distribution, p(st|d1, . . . , dt), of potential states, st, using the RSSI measure-

ments, d1, . . . , dt. The calculation of the distribution is performed recursively using a

Bayes filter:

p(st|d1, . . . , dt) =
p(dt|st) · p(st|d1, . . . , dt−1)

p(dt|d1, . . . , dt−1)

Assuming that the Markov assumption holds, i.e., p(st|st−1, . . . , s0, dt−1, . . . , d1) = p(st|st−1),

the above equation can be transformed into the recursive form:

p(st|d1, . . . , dt) =
p(dt|st) ·

∫

p(st|st−1) · p(st−1|d1, . . . , dt−1)dst−1

p(dt|d1, . . . , dt−1)
,

where p(dt|d1, . . . , dt−1) is a normalization constant. In the case of the localization of a

mobile node from RSSI measurements, the Markov assumption requires that the state

contains all available information that could assist in predicting the next state and thus,

an estimate of the non-random motion parameters of the nodes is required as part of the

state description. Starting with an initial, prior probability distribution, p(s0), a system

model, p(st|st−1), representing the motion of the mobile node (the mobility model), and

the measurement model, p(d|s), it is then possible to drive new estimates of the proba-

bility distribution over time, integrating one new measurement at a time. Each recursive

update of the filter can be broken into two stages:
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(a) (b)

(c) (d)

Figure 2.4. Location distribution in simple scenarios with distance measures. Four
cases include (a) particle distribution of node 0 when node 1 is not present, (b) particle
distribution of node 1 when node 0 is not present, (c) particle distribution of node 0
when node 1 is present, and (d) particle distribution of node 1 when node 0 is present.
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Prediction: Use the system model to predict the state distribution based on previ-

ous readings

p(st|d1, . . . , dt−1) =

∫

p(st|st−1) · p(st−1|d1, . . . , dt−1)dst−1

Update: Use the measurement model to update the estimate

p(st|d1, . . . , dt) =
p(dt|st)

p(dt|d1, . . . , dt−1)
p(st|d1, . . . , dt−1)

To address the complexity of the integration step and the problem of representing

and updating a probability function defined on a continuous state space (which therefore

has an infinite number of states), the approach presented here uses a sequential Monte

Carlo filter to perform Bayesian filtering on a sample representation. The distribution

is represented by a set of weighted random samples and all filtering steps are performed

using Monte Carlo sampling operations. Since we have no prior knowledge of the state

we are in, the initial sample distribution, pN(s0), is represented by a set of uniformly dis-

tributed samples with equal weights, {(s
(i)
0 , w

(i)
0 )|i ∈ [1, N ], w

(i)
0 = 1/N} and the filtering

steps are performed as follows:

Prediction: For each sample, (s
(i)
t−1, w

(i)
t−1), in the sample set, randomly generate a

replacement sample (s̃
(i)
t , w

(i)
t ) according to the system (mobility) model p(st|st−1). This

results in a new set of samples corresponding to p(st|d1, . . . , dt):

{(s̃
(i)
t , w

(i)
t )|i ∈ [1, N ], w

(i)
t = 1/N}

Update: For each sample, (s̃
(i)
t , w

(i)
t ), set the importance weight to the measurement

probability of the actual measurement, w̃
(i)
t = p(dt|s̃

(i)
t ). Normalize the weights such that

∑

i η · w̃
(i)
t = 1.0, and draw N random samples for the sample set {(s̃

(i)
t , η ·w̃

(i)
t )|i ∈ [1, N ]}
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according to the normalized weight distribution. Set the weights of the new samples to

1/N , resulting in a new set of samples {(s
(i)
t , w

(i)
t )|i ∈ [1, N ], w

(i)
t = 1/N} corresponding

to the posterior distribution p(st|d1, . . . , dt).

2.6.2 Modified Particle Filtering for Location Estimations

To apply the filter to the localization problem a system model and a measurement

model must be provided. We select a simplistic model that assumes at any point in time

that the node moves with a random velocity drawn from a Normal distribution with a

mean of 0m/s and a fixed standard deviation σ. No information about the environment

is included in this model, and as a consequence, the filter permits the estimates to move

along arbitrary paths. Thus, our system model is simply p(st|st−1) = N(0, σ), where

N is a Normal distribution. Note that while such a system model should work well in

stationary networks and networks where user mobility is extremely uncertain; there could

be better models for mobile networks. In reality, mobile nodes follow a certain kind of

movement profile instead of random motion. The system model should closely resemble

the current movement profile of the node. However, since it is difficult to obtain a reliable

movement profile when the location is unknown, the assumption of random movement is

probably the best we can make at this stage. (Note that a more accurate mobility model

would greatly improve the estimate of the filter.)

When a reading, m, is obtained from the RSSI or AoA sensor, the particle filter

undergoes a correction step, in which the measurement is used to correct the output

of the system model. In particular, the correction step modifies the particle distribution

X so that it becomes more consistent with the current measurement. In our case the

correction is calculated based on both the measurement reading as well as the location

distribution of the neighbors. In other words, when node u receives a measurement

reading m from node v, the correction step updates the location distribution of Xu based
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on m and Xv. The correction step is challenging due to the fact that both m and Xv

are imprecise. The measurement reading m could be noisy due to environmental and

sensory characteristics. The location distribution Xv could also be imprecise unless v is

a beacon. Thus, the correction step needs to modify the particle distribution Xu so that

it becomes more consistent with m while taking into account the inherent impreciseness

of Xu and Xv.

After each correction step, the estimated location of the node is obtained by esti-

mating the “mode” of the particle distribution. In the particle distribution, we define the

mode by comparing the distances between samples. The particle that is the closest to all

other particles (i.e., the mode of the density) is selected to be the most likely estimated

location at the current time. For stationary networks, we can monitor the expected lo-

cation over multiple updates and set the stop condition when the change of the location

becomes sufficiently small for the application using the location data. Alternatively, we

can monitor the filter’s uncertainty (in terms of variance in particles’ locations) and set

the stop condition when it falls below a certain threshold. For mobile networks, the

particle filter can run continuously to keep track of locations as nodes move.

Algorithm 1 shows the pseudo-code for the particle filter update algorithm. Note

that the method to find the new location x′
u depends on the sensory capacity of the

receivers. We can now consider three different types of behavior for the correction step

depending on what sensors are available: RSSI, AoA, or none (connectivity-only). We

then analyze both the RSSI and the AoA methods in the context of the AHLP with and

without measurement noise. Finally, we explain the Decompress step, which is necessary

to reduce the communication overhead.



36

Algorithm 1 Particle Filter Update

Xu ←Uniform particle distribution over the deployment area
repeat

for all neighbors v in the neighbor set do
Receive(idv , Xv, m)
Decompress Xv

for all xu ∈ Xu do
Randomly select a xv ∈ Xv

Find location x′
u based on xv, m, stdev(Xu) and stdev(Xv)

Update xu with N(x′
u, ((stdev(Xu) + stdev(Xv))/2)2)

end for
end for

until var(Xu) is below a threshold

2.6.3 RSSI Sensor Availability

When an RSSI sensor is available, we obtain a distance estimate from the inverse

of the signal propagation model Pi,j. A Gaussian noise can be added to the model, but

we disregard it when calculating the inverse and let it be reduced by the particle filter.

(This does not mean that we are ignoring noise in our evaluation as noise will indeed be

added to the RSSI measurements in the simulation model).

As shown in Figure 2.5(a), we let node v be the sender and node u be the receiver.

For each particle xu in the current location distribution Xu, we randomly select a particle

xv in the sender’s location distribution Xv and calculate their distance D(xu,xv). We then

measure the difference between D(xu,xv) and D(RSSI), and select a new location for re-

sampling based on the difference as well as the variances of the particle distribution Xv

and Xu. For instance, before the update step xu and xv are located at point A and B,

respectively. Thus, D(xu,xv) = |AB|. Let A′ be the location of xu based on the RSSI

reading on the same line, i.e., D(RSSI) = |A′B|. Intuitively, if the location estimate given

by the distribution Xv is accurate and the actual location for node v is indeed at xv,

then the new location for particle xu should be at point A′. Conversely, if the location
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Figure 2.5. Particle filter update of (a) RSSI and (b) AoA.

estimate of the distribution Xu is accurate, the new location for xu should stay at A.

Therefore, we select the new location based on the perceived accuracy, i.e., the variances,

of the distributions of Xu and Xv. Let the standard deviation of a distribution X be

stdev(X). We select the new location of xu, x′
u, along the line |AA′| such that

|Ax′
u|

|x′
uA

′|
=

stdev(Xu)

stdev(Xv)

A new particle is then randomly re-sampled using a Normal distribution centered at x′
u

with the standard deviation being the average of those of Xu and Xv. We consider the

standard deviations of both Xu and Xv during re-sampling because the spread of both

distributions affects the spread of the updated distribution X ′
u.

2.6.4 AoA Sensor Availability

When an AoA sensor is available, we compare the standard deviations of the

sender’s and receiver’s distribution as before, but in this case, we modify the receiver’s

particles based on the arrival angle. Again, let v be the sender and u be the receiver.

Shown in Figure 2.5(b), for each particle xu in the current location distribution Xu and
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particle xv in the sender’s location distribution Xv, the angle of arrival between xu and

xv can be calculated along with the distance D(xu,xv) = |AB|. We draw a line through

B according to the current angle of arrival reading and select a point A′ by maintaining

the distance so that |A′B| = |AB|. The new particle location x′
u is then located on the

arc between point A and A′ with the radius being |AB|. If the location estimate from v

is more accurate, then x′
u should be closer to point A′ along the arc. Conversely, if the

location estimate from u is more accurate, then xu should be closer to A. Thus, the new

location of xu, x′
u, is the following:

6 ABx′
u

6 x′
uBA′

=
stdev(Xu)

stdev(Xv)

Similarly to the way done at the RSSI sensors, a new particle is re-sampled from the

selected location based on a Normal distribution with the standard deviation equaling

the average of stdev(Xu) and stdev(Xv). When both RSSI and AoA sensors are available,

the aforementioned update steps can be effectively combined. In such case, the particles

are first updated based on the RSSI reading followed by an update based on the AoA

readings. Thus, both sensor readings are applied to the location estimation.

2.6.5 Connectivity-Only Nodes

We also consider a third type of nodes: connectivity-only nodes, where neither RSSI

nor AoA sensors is available. Those nodes have to rely on pure connectivity information

to estimate their locations. One approach is to use a variation of the Centroid method

[11], where nodes estimate their locations by simply averaging all their neighbors’ loca-

tions. Intuitively, such a method should work reasonably well when the network is well

connected (so that there are more location data from the neighbors to work with) and
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the beacon ratio is high (so that the location data from the neighbors are more accurate).

We adopt the same idea here but adapt it to the context of particle filtering.

We consider the same scenario as before, where node u receives a location update

message from a neighbor v, Let xu be a random particle within the location distribution

Xu before the update. Let xv be a random particle at neighbor’s distribution Xv. Since

there is no sensor reading on ranging or angle, we can’t tell exactly the distance or the

direction between u and v; but we know they are sufficiently close since the nodes are

in each other’s transmission range. In this case, we update particle x′
u’s location (to

between xu and xv) as:

|xux
′
u|

|x′
uxv|

=
stdev(Xu)

stdev(Xv)
· c

Again, when Xu is perceived as more accurate (i.e., when stdev(Xu) is smaller), x′
u

becomes closer to the previous location xu; otherwise, x′
u moves closer to xv. We multiply

the weighting factor with a constant 0 < c < 1, so that the new location is closer the

previous location. Thus, we are able to retain the location information through a sequence

of location updates from different neighbors.

2.6.6 Analysis

In this section, we attempt to infer, by simple geometric analysis, whether RSSI or

AoA sensors would be preferred for localization. We also consider the presence of noise.

In particular, our goal is to derive a relationship between the noise parameters of each

sensor type, so that their impact can be compared during simulation.

Let us first consider the perfect scenario where no measurement noise interferes with

the sensor reading. Recall, that to precisely locate a node, at least three RSSI readings

from different beacons are required, while only two AoA readings are needed. When both

measurement types are available, only one RSSI reading and one AoA reading from the
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Figure 2.6. Location range for 2 hops of (a) RSSI and (b) AoA. The shaded area indicates
the range of all possible locations.

same beacon are required to locate the node. In such cases, AoA readings should provide

better coverage (i.e., locating more nodes) than RSSI readings.

In networks where connectivity is low and/or beacon ratio is low, it is likely that

nodes have to estimate their location based on other nodes’ estimates. Let us consider

how well location data is propagated in all sensor type cases. Let node u be a beacon

and v and w be regular nodes. Let u connect to v and v connect to w, but let there be

no connection between u and w. Therefore, w has to infer its possible location based on

the indirect information from v. In the case of RSSI sensors, the possible range of w is

a hollow disk with inner radius (r − s) and outer radius (r + s), where r is the distance

between u and v, and s is the distance between v and w (Figure. 2.6(a)). In the case of

AoA sensors, the possible location of the intermediate node v is a beam with the origin

at u’s location. To derive the possible locations of w, we have to draw a beam with the

origin at every possible point of the previous beam. Thus, the possible range of w is an

area bounded only by the beams and the network boundaries (Figure. 2.6(b)).
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From the above discussion we can infer that RSSI sensors are better suited for

localization when location data need to propagate through multiple hops. AoA sensors,

however, are better when beacons are only a single hop away. Thus, when networks are

sparse and/or beacon ratio is low RSSI sensors are better suited. When networks are

dense and/or beacon ratio is high, AoA sensors would be a better choice.

When noise is added to the measurement readings, the precise location of nodes

cannot be obtained even when the minimal geometric requirements are met. Instead,

location needs to be estimated and the accuracy of this estimate is affected by the noise

(and thus the noise model in simulation and mathematical evaluations). Furthermore,

unlike the ideal scenario where the minimal geometric requirement is sufficient to localize

the node, the accuracy of the estimated location improves with readings from additional

neighbors. As in other related works [58, 60], we qualify the noise in terms of a noise

ratio, which presents noise as a percentage of the unbiased measure. In the case of RSSI,

a noise ratio of x over the unbiased distance D would depend on the actual reading:

D′ = D · Uniform(1 − x, 1 + x). In other words, the distance measured at the receiver

contains an error in the range (−xD, xD), uniformly distributed. The error in the dis-

tance measurement accounts for the power loss due to factors such as multi-path fading

and far field scattering. Modeling noise in this way with a uniform distribution is a dras-

tic simplification; however we have chosen this simplified model so that our result can be

effectively compared to results of other GAHLAs (as this method has been excessively

used in the AHLP literature). The AoA measurement noise is modeled in a similar way

using a uniform distribution; with a noise ratio of y, the measured AoA at the receiver

is then A′ = A · Uniform(1− y, 1 + y).

To compare the estimates based on RSSI and AoA under noisy environment con-

ditions, we need to establish a relationship between the noise ratios x and y. In other

words, with a given x for RSSI, a corresponding y for AoA needs to be selected to gen-
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Figure 2.7. Finding similar error range between RSSI and AoA.

erate a more or less similar noisy environment. Figure 2.7 shows how such a relationship

could be established. Here, we consider a scenario in which a node is localized from three

beacons equal distances away. Let the actual location of the node be A and the location

of one of the beacons be B; thus, the actual distance between them is D = |AB|. Let

us first consider the RSSI sensor, where x is the noise ratio. The range of all possible

estimated locations should be within a circle of radius D ·x centered at the actual location

A.

Now consider the case of the AoA sensor. To replicate a similar range from the same

three neighbors by an AoA sensor, the closest range that can be possibly formed is to

project the AoA error, y, along the line AB so that the entire circle is covered (by selecting

the beam angle appropriately). Doing so with all three beacons, the actual location error

range forms an outer hexagon that encloses the circle. Here, sin(y) = |AA′|/|AB|,

where |AA′|/|AB| = x. Thus, a relationship can be established between the RSSI noise

parameter x and the AoA noise parameter y in that y = arcsin(x). Note that this

relationship does not generate an identical error range between the two sensor types; in
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fact, the error range from AoA will always be greater. However, since it is not feasible to

find the noise parameter that generates an identical error range that would work for all

cases, our simplification can be justified. After all, our intention is to provide a relatively

similar error range so we can reasonably compare the results from the two sensor types.

2.6.7 Compressing and Decompressing Particle Filter Distribution

The previous sections make the assumption that a complete set of particles is re-

ceived from each of the neighbors. Since the complete distribution consists of a large

number of particles with their location data, doing so is obviously not very practical.

Therefore, we propose a simple yet effective compression mechanism that allows a repre-

sentative for the particle distribution to be transmitted in a compact form.

Given a particle distribution X, we locate the most likely value, x̂, as the particle

in the distribution that has the minimum overall distance to other particles, i.e., x̂ =

arg minx∈X (
∑

y∈X |x− y|). In other words, x̂ is the most representative particle of the

entire distribution. From x̂, we count the number of particles n within a predefined

range r. We then calculate the variance, σ2 within those n particles. Thus, we obtain a

quadruple (x̂, r, n, σ2). From there, we remove the n particles in the previous quadruple

from the distribution and repeat the process of finding the expected value, a larger range

(explained later) and the variance. By continuing the same process until all particles

have been covered, we obtain a sequences of quadruples that approximates the original

particle distribution. When the quadruples are received by the receivers, a decompressing

step is executed to reproduce the distribution by randomly generating particles based on

the expected value, range, particle number and variance for each quadruple. Using this

method the particle distribution can keep all of its “modes”, even when the distribution

shows several likely location areas for the node.
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Algorithm 2 Range Increase for Particle Compression

Q← number of quadruples desired
R← max range that covers the entire area
minQuota← |X|/Q
rIncrement← R1/3/Q
xCount← 0
r ← 0
curRange← 0
q′ ← 1
for q = 1 to Q do

maxRange← q · rIncrement3/2

while curRange < maxRange AND the number of particles in curRange +
xCount < minQuota · q do

curRange← q′ · rIncrement3/2

q′ ← q′ + 1
end while
rq ← curRange
xCount← xCount + number of particles in curRange

end for

For each broadcast, a fixed number of aforementioned quadruples are transmit-

ted. Figure 2 shows the algorithm used to progressively increase the range r for each

quadruple. The algorithm starts with an initial range of R1/2/Q and a minimum quota

of particle size |X|/Q for each quadruple. As each quadruple is defined, a running sum,

xCount, keeps track of the total number of particles covered thus far. At each step, the

range is incremented exponentially at each quadruple by r := r3/2, unless the running

sum already exceeds the minimum quota. The algorithm guarantees that all particles are

covered by the predefined number of quadruples, and the overall trends of the original

distribution are maintained. Meanwhile, by using a quota limit with the exponential

range increment, denser particle areas are preserved in more detail. Our experiments

in section 2.7.6 will show that the compression method reduces the amount of data ex-

change by nearly 90 percent without a significant increase in the location estimates’ error.

Figure 2.8 shows a typical compressed distribution, where circles represent ranges.
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Figure 2.8. Compressing the particle filter distribution.

2.7 Simulation Results

We have conducted a number of simulation experiments to validate the effectiveness

of our solution. During the following discussions we will concentrate on the performance

of the filter based on the AoA reading (pure AoA as well as mixed sensors of both AoA and

RSSI co-existing in the same network); detailed results on the performance of the pure

RSSI based filter can be found in [33]. While our particle filter framework has no such

restriction, we assume a network in which all nodes have an identical transmission power.

Thus, we can effectively control the network connectivity by varying the transmission

range. A certain percentage of nodes (simulation factor) are designated as beacons that

know their coordinates. When a node is located within the transmission range of another

node, we assume that it is capable of receiving a signal from the sender. The received

signal strength (RSSI) depends on the distance to the sender (based on the employed

signal propagation model) and a noise model. The measured AoA reading is affected by

a noise model and its parameters as well.
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The signal propagation model we use is the general free space propagation model

of P = c · d−2, where the power of the received signal P is inversely proportional to the

second power of the distance d, and c is constant that includes transmission power and

frequency among others. When the received signal strength P is below a threshold Pmin,

it is considered too weak to be captured by the receiver thus the link breaks. Note, that

the selection of c and Pmin does not affect the overall simulation results, as long as the

same values are used in the observation model of the filters. For the particle filter itself,

we use a total number of 200 particles at each node. We randomly place 100 nodes into

an isotropic (square) network. Noise is added to both RSSI and AoA readings using the

models outlined in Section 2.6.6 .

Regardless of the sensor types available, nodes localize themselves by running our

particle filter framework using the location exchanges among neighbors. The location

information is exchanged between the neighbors at half-second time intervals. In other

words, on average a node is able to obtain the location information from all of its neigh-

bors every half second. The 0.5 second time interval is further randomized by a truncated

Normal distribution N(0.5, 0.5) to simulate the unpredictability of message arrival time

in real networks. We simulate each type of scenario 50 times; the results are averaged,

and a 95% confidence interval is calculated and displayed (using vertical bars in our fig-

ures). Estimation errors in our graphs are given as a ratio to the transmission range, i.e.,

an average error of 1 means that in average the location estimate’s error is the same as

the nominal transmission range. We start by showing simulation results on stationary

multihop networks, and then move to mobile ad hoc networks.

2.7.1 Localization Error Characteristics

To study the localization error characteristics, we plot the error obtained using

four different localization methods: particle filter using RSSI ranging, DV-Hop, DV-
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Distance and Euclidean for the sample network of Figure 2.1. The result is shown in

Figure 2.9. Note that while the particle filter method gives an estimate for all nodes,

the DV-Hop, DV-Distance and Euclidean methods only give estimate for a subset of

nodes that they can localize. The figures do not show the error for those unlocalized

nodes. From the localized nodes in the figures, we observe that the error of the DV-

based methods (Figure 2.9(a) and 2.9(b)) tend to spread out among all nodes. This is

because the DV-based methods attempt to localize from the global information (the hop

count for DV-Hop and the hop distance for DV-Distance). Since the global information

only provides an average case, the localization is rather crude and thus results into similar

error characteristics regardless of beacon proximity. The particle filter (Figure 2.9(d) and

the Euclidean (Figure 2.9(c)) methods are based on the local information and thus are

more fine-grained. They produce more accurate localization when the nodes are closer

to beacons. Higher error occurs at the area where the beacon placement is not ideal such

as the lower left corner of the sample network.

2.7.2 Connectivity

The primary performance metric for any location algorithm is the estimation error,

which indicates how close the estimated location is to the actual location. We compare

the estimation error of our particle filter algorithm, including several combinations of

RSSI, AoA, and connectivity-only nodes, against results of the existing methods. Here,

we use a noise parameter of x = 20%, and a beacon ratio of 10%. One advantage of

our method is that it produces the location estimate along with a variance indicating

its quality. Thus, by varying the variance threshold, we are able to control the effective

estimation coverage; the lower the coverage, the better the estimation accuracy. The

estimation error in our figures is therefore plotted against the desired coverage.
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(a)

 

(b)

 

(c)

 

(d)

Figure 2.9. Localization error characteristics. The lines show the difference between the
estimated location and the real location of (a) DV-Hop, (b) DV-Dist, (c) Euclidean, and
(d) Particle Filter.
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Figure 2.10 shows the estimation error against coverage using four different varia-

tions of the particle filter algorithm while varying network connectivity. For each varia-

tion, we modify the sensor types within the network as follows: (a) 100% of the nodes

have RSSI only capacity, (b) 100% of the nodes have AoA only capacity, (c) 50% of the

nodes have RSSI and 50% of the nodes have AoA capacity, and (d) 100% of the nodes

have both RSSI and AoA capacity. As shown in Figure 2.10, network connectivity plays

an important role determining the localization accuracy. In particular, nodes in sparser

networks tend to be more difficult to be localized (i.e., resulting in higher estimation er-

ror) primarily due to two reasons. First, it is less likely for the nodes in sparser networks

to be one-hop away from the beacons. Thus, more nodes would have to rely on location

data from beacons several hops away. Furthermore, as the network becomes sparser, it is

likely to become disconnected. The location data from the beacons might not be able to

propagate to all nodes. In the extreme cases, which are much more common in sparser

networks, there might be nodes that do not meet the minimum geometric requirement

of localization; therefore, those nodes cannot be localized.

In Figure 2.10(a), where the localization relies solely on the RSSI sensor data, the

estimation error from the particle filter method is plotted along with the results from

DV-Hop, DV-Distance and Euclidean methods that produce location estimates with a

fixed coverage. Thus, their estimation errors are shown as single data points in the

figure. Comparing the single data points of the above methods, the comparable plot

(when degree = 4.61) from the particle filter method closely follows the single data

points from the DV and Euclidean methods. In general, algorithms such as Euclidean

would trade-off coverage for accuracy, while algorithms such as DV-Hop would trade-off

accuracy for coverage. Instead of relying on different GAHLAs for different trade-off

objectives, our particle filter algorithm is capable of exploiting such trade-off by selecting

the coverage based on the filter variance. Such characteristics make the particle filter
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Figure 2.10. Effect of network connectivity on the estimation error. Four cases include
(a) RSSI 100%, AoA 0%, (b) RSSI 0%, AoA 100%, (c) RSSI 50%, AoA 50%, and (d)
RSSI 100%, AoA 100%.

solution versatile in adapting to the different localization requirements. For instance,

for applications that prefer accuracy over coverage, only those estimates with smaller

variances can be considered valid estimates. Conversely, for applications that prefer

better coverage, estimates with larger variances can also be considered as valid.

Figure 2.10(b) shows result where only AoA sensors are available. It can be ob-

served that the estimation error becomes high when the network is sparse. As explained

in the aforementioned analysis, this can be attributed to the fact that AoA sensors are

less capable of propagating location information through multi-hops. However, when
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both RSSI and AoA sensors are implemented (as shown in Figure 2.10(c) and 2.10(d)),

the estimation error can be drastically reduced. In particular, when the average degree

is greater than 4.61, the 50% RSSI and 50% AoA sensor combination outperforms the

cases of 100% RSSI or AoA sensors (Figure 2.10(c)). This indicates that mixing different

sensor data can be very beneficial in ad hoc localization. When all nodes have both RSSI

and AoA capacity, the performance is even better (Figure 2.10(d)). This result confirms

the results of [14], where the authors claim that localization results can be drastically

improved when both RSSI and AoA capability are available at all nodes.

2.7.3 Beacon Ratio

The effect of the beacon ratio on the estimation error is shown in Figure 2.11.

Again, we consider four different types of sensor configuration. As expected, a higher

beacon ratio lowers the overall estimation error in all cases. Furthermore, when half of the

nodes have RSSI sensor capacity and the other half have AoA capacity (Figure 2.11(c)),

the result is better than using just one sensor type (Figure 2.11(a) and 2.11(b)). This

further proves the advantage of using mixed type of sensors in ad hoc localization.

2.7.4 Noise

The effect of the noise ratio x on the location estimates is shown in Figure 2.12. In

general and as expected, a lower noise ratio leads to a lower estimation error. However,

there is an exception in the cases when only RSSI sensors are used and the coverage is

high (Figs.2.12(a) and 2.12(c)). In those cases, higher noise ratio, such as 0.2 versus 0.1

and 0.01, would actually result in lower estimation error when the coverage exceeds 30%.

This is indeed a side-effect of the noise model (recall that the noise model is based on a

simple uniform distribution). A higher noise ratio means a node could hear from more

neighbors because the uniform noise sometimes increases the actual transmission range.
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Figure 2.11. Effect of beacon ratio on the estimation error. Four cases include (a) RSSI
100%, AoA 0%, (b) RSSI 0%, AoA 100%, (c) RSSI 50%, AoA 50%, and (d) RSSI 100%,
AoA 100%.

Therefore, when the noise ratio is high, even though the distance estimates become less

accurate, more neighbors can be heard. In other words, more nodes are likely to obtain

their general locations, but those location estimates are not very accurate.

Another observation to be made is that the estimation error difference between

various noise ratios decreases as the actual estimation error increases. For instance, the

difference between the four noise ratios is quite small when the coverage is 100% and only

AoA sensors are used (Figure 2.12(b)). We can also observe that when only AoA sensors

are used, fewer nodes can localize themselves simply because of the geometric limitation
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Figure 2.12. Effect of noise ratio on the estimation error. Four cases include (a) RSSI
100%, AoA 0%, (b) RSSI 0%, AoA 100%, (c) RSSI 50%, AoA 50%, and (d) RSSI 100%,
AoA 100%.

of the AoA method. Thus, the average localization error for all nodes increases, and such

increase is attributed more to the geometric limitation than to the signal noise. Thus,

the effect of the noise ratio becomes less apparent.

2.7.5 Mixed Sensor Types

To further evaluate the localization result of mixed sensor types, we added two

additional types of sensor configurations that include connectivity-only nodes. In par-

ticular, we consider networks with one third of the nodes having RSSI, one third having

AoA sensors, and one third connectivity-only. We will also consider networks in which all
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nodes are connectivity-only. For these experiments we use a moderately connected (av-

erage degree 7.66) network, a beacon ratio of 10%, and a noise ratio of 20%. Figure 2.13

shows the localization performance of the network with the above configuration versus

the other four types of sensor configurations we have seen earlier. In terms of overall esti-

mation error versus coverage (Figure 2.13(a)), networks with one third connectivity-only

nodes perform reasonably well. Compared to networks with 100% RSSI capacity, the

networks with one third connectivity-only nodes have higher localization error when the

coverage is low, but they catch up when the coverage increases. This means that while

the estimated locations of individual nodes might not be as accurate as in the networks

with 100% RSSI sensors, more nodes are capable of identifying their rough locations.

When all nodes are connectivity-only nodes, our particle filter framework still gives rea-

sonable estimates. About half of the nodes are localized within 60% of the transmission

range, and all the nodes are localized within 100% of the transmission range.

Figure 2.13(b) shows how the estimation error behaves for different types of sensor

configurations as a function of time. For each of the simulation runs, we capture esti-

mated locations at every second and compare them to the actual locations. As expected,

the estimated locations become more accurate as more information is exchanged among

neighbors. As such, location information from beacons eventually propagates throughout

the network and allows regular nodes to localize themselves. Note that the convergence

happens smoothly in all sensor configurations. This can be attributed to our filter update

methods that rely on the variances of the particle distributions. The differences between

the variances allow the nodes with more accurate location information to impact the

nodes with less accurate location information, and not vice versa.
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Figure 2.13. Results on mixed sensor types. The figure shows (a) estimation error and
(b) convergence.

2.7.6 Compression vs. No Compression

Figures 2.14(a) and 2.14(b) demonstrate the effectiveness of our compression

algorithm on transmitting the particle distribution. The same scenario of localizing using

RSSI ranging was repeated when a complete particle distribution is transmitted instead

of the compressed version. The results are compared side by side. While the localization

algorithm works better when the complete distribution is sent, the differences are rather

minimal. While the original particle distribution consists of 200 particles, each of which

contains two decimal numbers to designate the location, the compressed version consists

of 10 quadruples, each of which contains five decimal numbers. The compression method

achieves a total bandwidth saving of 87.5% at each location exchange. Given that the

network bandwidth can be expensive, one can easily justify the minimal tradeoff of

performance using our compression scheme.

2.7.7 Results on Mobile Networks

Previous works on the AHLP generally do not contain extensive simulation and

analysis when the network is indeed mobile (as the definition of MANETs implies). As
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Figure 2.14. Effect of compressing particle distributions. The figure shows (a) filter
convergence and (b) estimation error.

discussed earlier, most previous methods are specifically designed to work in stationary

sensor networks, in which it is sufficient to complete one round of localization and there

is no requirement for further adjustment when the topology changes. Thus, adapting

them to work in mobile networks can be quite challenging (see Section 2.8.2 for a more

detailed discussion on this). In the worst case, the entire localization scheme has to be

redone every time the network changes. Our method however, is specifically designed to

work in mobile networks. In our case, since the entire GAHLA relies on simple location

exchange between the neighbors and there is no complicated multi-phase operation, we

can let the same particle filter framework run continuously as nodes move about.

For our mobile node localization simulations we set the population to 100 nodes

with an original average degree of 7.6. We use the epoch-based mobility model of [57] to

simulate node movement, which is widely accepted as a good mobility model for ad hoc

networks (in general it is deemed more realistic than a Brownian motion model). The en-

tire movement path of the node is defined by a sequence of “epochs,” i.e., (e1, e2, · · · , en).

The duration of each epoch is I.I.D. exponentially distributed with a mean of 1/λ; within

each epoch nodes move with a constant velocity vector. At the end of each epoch, nodes
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randomly select a new velocity vector. The direction of the movement is I.I.D. uniform

between 0 and 2π. The absolute value of the velocity is I.I.D. normal with mean µ and a

variance of σ2. Our simulation uses a fixed mean and a fixed variance such that µ = σ.

The results are obtained by using two different means and standard deviations of 5m/s

and 20m/s. The expected amount of time a node maintains its current velocity is set to

5 seconds (λ = 5).

Figure 2.15 shows the filter convergence on mobile networks for the first 30 sec-

onds. In both low (5m/s), and highly (20m/s) mobile networks, the estimation error

drops quickly in the first several seconds. This represents the phase when the nodes

localize themselves initially. In slowly moving networks (Figure 2.15(a)), the estimation

error stays around the same level after the initial localization, which indicates that the

localization process is happening quickly enough to adapt to the location change. In the

networks with rapid node movements (Figure 2.15(b)) however, rapid location change

increases the overall estimation error. It is interesting to note that network mobility

tends to have less impact in the case when AoA sensors and/or connectivity-only nodes

are used. In fact, while the stationary networks with RSSI-only nodes outperform the

stationary networks with AoA-only nodes, the opposite is true for mobile networks. This

indicates that for our particle filter framework nodes with AoA sensors tend to adapt to

mobility faster than nodes with RSSI sensors.

For comparison, we also implemented the Monte Carlo localization (MCL) method

proposed in [30], which is another probabilistic localization method based on particle

filtering. MCL is designed for mobile networks and relies only on the connectivity in-

formation, and thus behaves much like connectivity-only node scenario in our algorithm.

The main difference is that MCL uses the beacon locations (up to two hops away) as the

measurement, whereas our algorithm uses both beacon and regular node locations (one

hop away). As shown in Figure 2.15, MCL has lower initial localization error because
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Figure 2.15. Filter convergence in mobile networks. Two cases are considered: (a) average
speed = 5 m/s and (b) average speed = 20 m/s.

the location information from the beacons two hops away can be used directly. Our algo-

rithm uses the location information from the beacons more than one hop away indirectly

via the exchange of the location distributions among the neighbors, and thus it would

take more iterations to converge. However, our algorithm has the advantage that the

location information from the beacons is implicitly contained in the location distribution

of each node. Via the exchange of location distributions, the beacon information essen-

tially propagates freely and there is no limiting factor of two hops like MCL. Thus, we

observe in Figure 2.15 that once particles collapse, our algorithm has lower localization

error than MCL.

In mobile networks, the frequency of filter updates can have an impact on the local-

ization accuracy. Since the nodes are constantly moving, the current location estimation

can become obsolete very quickly. Thus, the particle filters need to be updated at a

sufficient frequency to keep up with the node movement. The effect of the filter update

frequency on the localization error is shown in Figure 2.16. Here, we use an average node

movement speed of 20 m/s and varies the filter update frequency from 0.1 to 0.5 seconds

(previous simulations use 0.5 seconds). As expected, localization error generally increases
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Figure 2.16. Effect of update interval size in mobile networks (average speed = 20 m/s).

with larger interval size. However, the increase is minimal in the case of 100% RSSI and

100% AoA as well as MCL, since they converge faster than others. (We argue that by

increasing the update rate appropriately, an arbitrarily rapid mobility could be tracked.

Indeed, the update rate should be determined based on the current local mobility rate

of nodes.)

2.8 Discussion

Most previous general ad hoc localization algorithms (GAHLA) attempt to pinpoint

each node at a single location. While this is the ultimate goal of any GAHLA, it is

fundamentally impossible for most topological scenarios. Thus, the challenge in the

AHLP really lies in estimating the location of nodes, especially those that are more than

one hop away from the beacons. In such cases, a node might not know its exact location,

but it may estimate a number of possible locations (thus obtaining partial information).

A probabilistic approach provides a natural way of representing such partial information.

In particular, the node location may not be presented as a fixed value but as a probability

distribution. Initially, a node unaware of its own location has its location distribution

uniformly spread over the entire deployment area. As the localization process proceeds,
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the location distribution is updated and it is expected to converge to a more concentrated

location estimate (ideally to a single high probability location). In this work, we have

applied such a probabilistic model using various measurements and particle filtering as the

method of updating the location distributions. We showed that the probabilistic method

achieves much better balance of the trade-off between the estimation error and coverage

when considering the limitation of DV-Hop/DV-Distance (high estimation error) and

Euclidean (low coverage). Our method has the following advantages over most existing

GAHLAs:

1. Provide a measure of estimation quality. DV based algorithms can generate location

estimates covering only a subset of nodes. The coverage of the estimates depends

on the nature of the algorithm. There is always trade-off between the coverage

and the quality of the estimates. Some algorithms (such as DV-Hop) give better

coverage, while others (such as Euclidean) give better estimates. Our method,

however, generates location estimates for all nodes in the network. Each estimate

has a variance associated with it serving as a quality measure. Thus, the coverage

of our estimates is not a fixed value but a function of the variances. In practice,

certain applications might desire better estimation quality while other might desire

better coverage. For instance, location-aided routing protocols [42] might only

need a very rough location estimation of the destination node when the request

is still far away. But as the request moves closer to the destination node, more

accurate location estimation is needed. Previously, different GAHLAs had to be

applied separately to accomplish the two objectives. Our method produces results

satisfying both scenarios and does it in the same probabilistic framework.

2. Single phase operation. Many algorithms employ multiple phases during the local-

ization process. For instance, DV-Hop requires a first phase to calculate per-hop

distance and a second phase to propagate the result. Multilateration methods [71]
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require three phrases: initial estimation, grouping, and refinement. Our method,

however, has the advantage of a single phase operation. From the implementation

point of view, our algorithm can be easily implemented in a distributed asyn-

chronous fashion because nodes do not have to collectively maintain the state in-

formation of “which phase are we in?” From the functional point of view, the

probabilistic nature of our method simplifies the algorithm by eliminating the need

for multiple phases. In multilateration methods, an initial estimate is obtained

based on a certain measure (distance or hops) to beacons followed by the phase of

further refinement. The initial location estimate suffers because information from

regular nodes is not used. The refinement phase is needed so that information from

regular nodes can be incorporated into the estimates. Our method does not need

separate phases, as the information from regular nodes is automatically applied as

soon as it becomes available. In particular, regular nodes become more and more

certain of their locations (their location variances decrease) allowing their estimates

to be used by neighboring nodes.

3. Simple communication model and fast convergence. Our method employs a sim-

ple computation and communication model which relies solely on local broadcast

(broadcast to neighbors only). This allows our method to be naturally integrated

into periodical Hello messages (as generally used by mobile nodes in ad hoc net-

works to declare their existence); we do not require a new type of control message.

Furthermore, our simulations show that compared to existing methods such as APS,

our method generally converges with less message-overhead.

4. Mobile ready. Because our algorithm eliminates multiple phases and uses a sim-

ple communication model, it can be applied directly to mobile networks. While

previous works do not generally provide simulation result for mobile scenarios, we



62

demonstrate via simulation that our method can be effectively used in mobile ad

hoc networks.

5. Extensibility. The core of our algorithm is a probabilistic framework based on

particle filtering that is extremely versatile. The framework can be easily extended

to different signal and network models. For instance, unlike DV-Hop, our method

does not assume that all nodes have the same transmission range. Unlike Centeriod

or APIT, our method does not require a greater range for GPS nodes, which allows

it to work in homogeneous networks. The framework is not tied to particular signal

propagation model or a particular sensory data.

To the best of our knowledge, our work is the first that incorporates multiple sensory

data for localization using the same algorithmic framework and enables localization for

nodes in both static as well as mobile multihop networks. The need for such algorithms

is established in [14], but the authors only consider the limited case when both RSSI and

AoA are available at nodes. Our work is more general in that we consider the cases when

the nodes can either have RSSI, AoA, both, or no sensory data at all. The same particle

filter framework allows the nodes with different sensory capacities to collaborate in the

localization.

2.9 Summary

In this chapter, we proposed a particle filter framework that solves the localization

problem in both stationary and mobile ad hoc networks. Compared to previous local-

ization algorithms, our framework is general enough to accommodate different sensory

capacities regardless of the availability of ranging (such as RSSI) or sectoring (such as

AoA). More importantly, our framework allows the networks consisting of nodes with

different sensor types to collaborate in the localization process. By leveraging the filter

variances, regular nodes localize themselves by simple location data exchanges with their
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neighbors without having to go through an initial localization phase and a refinement

phase; the filter variances also give a measure of the estimation accuracy. The differen-

tiation in estimation accuracy could be very useful as different applications might have

different accuracy requirements.

Our analysis and simulation studies showed that in stationary networks AoA sen-

sors, by themselves, do not work well when the network connectivity or the beacon ratio

is low. While using only AoA sensors would result in poorer localization, good results

can be achieved by combining AoA only sensors and RSSI only sensors in the same

network. In fact, networks where 50% of the nodes have only AoA sensors and 50%

of the nodes have only RSSI sensors can achive better localization result than networks

dominated by one type of sensors. Furthermore, our analysis shows that employing AoA

sensors is highly beneficial in mobile networks, especially when the network mobility is

high. Simulation studies also validate the effectiveness of incorporating different sensor

capacities (RSSI, AoA, or connectivity-only) using the same particle filter framework.

With our framework, reasonable results can be obtained even if one third of the nodes

are connectivity-only.

While this work addresses network mobility, we believe that there is room for

further evaluation. In particular, our current framework assumes that particle filters are

continuously updated with the same rate. The update rate however could be tied to

the mobility in such a way that the location updates are executed on demand. This

way, when the node movement is minimal, we could eliminate the unnecessary updates,

and thus reduce the network traffic and save the power consumption by switching off

the sensors. Furthermore, we are currently using a rather simplistic movement model in

the particle filter (Gaussian displacement). This model could be improved by learning

movement patterns (models) and their parameters (such as velocity and acceleration); we

are targeting our research at those enhancements for mobile networks in the near future.



CHAPTER 3

LOCALIZATION USING INTERFEROMETRIC RANGING

3.1 Problem Definition

Chapter 2 introduced the general localization problem in ad hoc networks based

on the measurement data of connectivity, TOA and RSSI ranging, or AoA. In most

cases, the nodes collaborate to derive the location based on the anchor locations and the

sensory data observed. Unfortunately, it has been shown that the localization problem is

NP-Complete when localized from either ranging [18], angle [8] or unit-disk connectivity

[45]. Thus, the localization problem is treated in many cases as a stochastic optimization

problem, for which a distributed solution is more desirable.

Other than the already investigated sensory types, a new sensory type called inter-

ferometric ranging has recently been proposed [55]. Interferometric ranging is a “widely

used technique in both radio and optical astronomy to determine the precise angular

position of celestial bodies as well as objects on the ground [47].” Its original design is to

work with large scale systems where objects are thousands of miles apart. However, there

have been recent advances in hardware design that allow interferometric ranging to be

performed on cheaper hardware, making it a promising new technique for localizing ad

hoc and sensor networks. Interferometric ranging exploits the property that the relative

phase offset between two receivers determines the distances between the two senders. By

synchronizing the transmission at the two senders, the distance difference (also called the

q-range) can be measured very accurately using interferometric ranging.

64
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A B 

C D 

Figure 3.1. The interferometric ranging measurement. The measurement gives a q-range
dABCD = dAD− dBD + dBC − dAC . Here, node A and B are the senders, and node C and
D are the receivers.

Definition 3.1.1. A q-range obtained from interferometric ranging from two senders A

and B, and two receivers C and D is the distance difference dABCD = dAD−dBD +dBC−

dAC + e, where e is the measurement error (Figure 3.1).

Definition 3.1.2. Given a q-range dABCD, A, B, C and D are also referred to as the

components of the q-range, in which A and B are the senders and C and D are the

receivers.

Note that based on the above definitions, A is interchangeable with B since both

are senders, and C is interchangeable with D since both are receivers. Thus, dABCD =

−dBACD = −dABDC = dBADC .

A major advantage of interferometric ranging is that the measurement could be

extremely accurate compared to noise-prone RSSI readings. In a recent experiment [55],

in which 16 nodes are deployed in a 4x4 grid over a 18x18 meters flat grassy area with

no obstruction, the maximum q-range error was shown to be around 0.1 meters while

the medium error was less than 0.04 meters. However, interferometric ranging is more

difficult to implement partially due to the following reasons:

1. Precise time synchronization is needed at all four components of a q-range.
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2. Frequencies of the transmissions need to be precisely calibrated.

3. A significantly larger number of measurements are needed for localization than

using direct ranging techniques.

4. Since each measurement involves four nodes, more collaboration is required between

nodes.

Those difficulties rooted in the physical characteristics of interferometric ranging

devices affect the algorithmic design of the localization algorithm. In this chapter, we

concentrate on the algorithmic aspects of the problem, and in particular, the last two

difficulties. In other words, we only consider how to localize the network from a set of

given q-ranges, and we do not consider how those q-ranges are obtained. A detailed

overview of the physical characteristics of interferometric ranging is given in [55].

In this chapter, we will start by reviewing some fundamental complexity results on

localization using interferometric ranging. We show in Section 3.3 that there is a polyno-

mial time algorithm that checks for a necessary condition under which a network can be

localized. We also show that the localization problem itself is NP-Complete when using

interferometric ranging as the measurement. In Section 3.4, we further derive a sufficient

condition that guarantees a unique localization of a node based on local interferomet-

ric readings. Using the condition, we propose an iterative localization algorithm that

localizes the network from a small number of seeding anchors. The performance of the

localization algorithm and its error propagation behavior are validated using simulations

in Section 3.5.

3.2 Previous Works

The large number of measurements required for localization using interferometric

ranging are illustrated by the following theorem (and proof) given in [47].



67

Theorem 3.2.1. In a network of n nodes, there is a maximum of n(n−3)/2 independent

interferometric measurements that can be obtained [47].

Theorem 3.2.1 shows the number of measurements available using interferometric

measurements is O(n2). Considering the localization problem in relative coordinates, for

a network of n nodes there are 2n − 3 unknowns in 2 dimensions and 3n− 6 unknowns

in 3 dimensions 1. Thus, the smallest network that can be localized using interferometric

measurements is a fully-connected network with a population of n = 6, where there are

9 independent measurements available to cover 9 unknowns.

Furthermore, for interferometric ranging not all measurements are useful. Some

measurements are dependent on others, and only independent measurements are useful

in localization. For instance, for the four nodes A, B, C and D in Figure 3.1, if all nodes

are completely connected (i.e., any two can be the senders or the receivers), then there

are only two independent q-ranges, e.g., dABCD = dAD − dBD + dBC − dAC (when A and

B are the senders) and dADBC = dAC−dDC +dDB−dAB (when A and D are the senders).

All other q-ranges are dependent upon those two, that is, they can be expressed as linear

combinations of those two (a different basis set could be picked as well).

Given a set of interferometric measurements (i.e., q-ranges), a localization algo-

rithm attempts to find the sensor locations that satisfy the measurements. There have

been a limited number of localization algorithms proposed for interferometric ranging.

A genetic algorithm approach was taken in [55]. An algorithm was proposed in [67] that

uses both interferometric and RSSI ranging. Both algorithms try to optimize for a global

solution given an entire set of interferometric measurements. Intuitively, finding a global

solution to the localization problem is often difficult because of the large search space

and the large number of constraints given by the interferometric measurements. Thus,

1This is because the relative coordinates are invariant under translation, rotation and reflection.
Thus, in 2 dimensions, we have 2n − 3 degrees of freedom, where translation, rotation and reflection
each reduce one degree of freedom.
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it is desirable to find the solutions in some subspaces first and then incrementally build

up to the global solution. We make use of an iterative approach to localize the network,

which was first introduced in [18].

3.3 Complexity Results

In this section, we provide some complexity results on localization using interfer-

ometric ranging. We will show when using interferometric readings as the measurement

the complexity of the localization problem is NP-Complete. In the remainder of this

section dealing with the complexity, we assume that the q-range measurement error e is

insignificant, and all q-ranges give the precise distance difference. We will reconsider the

measurement error in the subsequent sections.

First, we extend Theorem 3.2.1 to give a polynomial time algorithm that determines

the number of independent interferometric readings.

Theorem 3.3.1. Given a network of n nodes and a set of interferometric readings (q-

ranges), there is a polynomial time algorithm that determines how many of them are

independent (the set’s dimension).

Proof. We start by denoting each node in the network with an integer ID starting from

0 to n − 1, and let A, B, C and D be variables containing a unique ID. Considering a

vector space consisting of all possible q-ranges, the algorithm needs to identify the total

number of independent q-ranges from a given set of vectors {dABCD}. To do this, one can

use the Gaussian elimination method if the given vectors can be written as some linear

combination of a set of basis vectors. The classification algorithm given in [47] provides

a way to accomplish this, as follows.

Given a vector dABCD = dAD − dBD + dBC − dAC in a vector space, it has been

shown in [47] that any vector dABCD should satisfy the condition A < B, A < C < D, B 6=
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C, B 6= D in order to be independent since dABCD +dBACD = 0 and dABCD−dCDAB = 0.

Thus, we can convert any q-ranges not satisfying the above condition to a q-range that

does. Furthermore, any such vector dABCD that satisfies the above condition belongs to

one of the following six classes:

• Class 0: {012D|2 < D}

• Class 1: {0B1D|1 < B < D}

• Class 2: {01CD|2 < C < D}

• Class 3: {0B1D|1 < D < B}

• Class 4: {0BCD|1 < B, 1 < C < D, B 6= C, B 6= D}

• Class 5: {ABCD|0 < A < B, A < C < D, B 6= C, B 6= D}

Among the six classes, Class 0 and Class 1 form a basis set that only contains

independent vectors. Vectors in Class 2 through 5 can be written as linear combinations

of those in the first two classes as follows:

• Class 2: d01CD = −d012C + d012D

• Class 3: d0B1D = −d01DB + d0D1B

• Class 4: d0BCD = −d0B1C + d0B1D

• Class 5: dABCD = −d0ACD + d0BCD

Using the above algorithm, any given q-range in the set {dABCD} can be written

as a linear combination of the q-ranges in Class 0 and Class 1 (i.e., a basis set), with −1,

1, or 0 as the coefficient at each term.

Given a set of N q-range vectors, we construct a M-by-N matrix A, where M is

the total number of Class 0 and Class 1 vectors. For every q-range i, we run the above

reduction algorithm to reduce it to a linear combination of Class 0 and Class 1, and then

insert the coefficients (−1, 1, or 0) into the ith column of the matrix A. We can then

use Gaussian elimination on matrix A (or some other techniques in linear algebra to

find the rank), which will indicate the number of independent columns of A. Since for a
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network of n nodes there are 2n−3 unknowns in 2 dimensions and 3n−6 unknowns in 3

dimensions, we can compare the total count with 2n− 3 or 3n− 6 to determine whether

the network is localizable in 2 dimensions or 3 dimensions.

For each q-range in a total of N q-ranges, the algorithm to find the coefficients in

a column of A runs in constant time. The complexity of constructing the matrix A is

therefore O(N). From the constructed matrix A, the complexity of running Gaussian

elimination is O(N3). Thus, the overall complexity is O(N + N3) = O(N3), polynomial

time.

As argued in the previous section, the problem of localizing a network of n nodes in

2 dimensions involves 2n−3 unknowns. Therefore, if there are at least 2n−3 independent

q-ranges, then we will have a system of 2n−3 independent equations to sufficiently solve

for the 2n − 3 unknowns. Thus, the polynomial time algorithm enables us to check for

a necessary condition of network localizablity under interferometric readings. However,

since each q-range is not a linear but a quadratic equation, having 2n − 3 independent

q-ranges is only a necessary but not sufficient condition of network localizablity. Since

testing the network localizablity using edge weights (distances) is a known NP-Complete

problem [72], it is likely that network localizablity using interferometric ranging is also

NP-Complete.

The results above assume a general graph. In reality, ad hoc and sensor networks

resemble unit disk graphs. How many independent q-ranges are we expecting in unit disk

graphs then? Simulations on randomly deployed unit disk graphs show that the number

of independent q-ranges increases linearly with the network connectivity (average nodal

degree) as depicted in Figure 3.2.

The following theorem shows that even with a known localizable network, the lo-

calization itself is NP-Complete when using interferometric ranging as the measurement.
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Figure 3.2. The number of q-ranges available in a unit disk graph. In a randomly placed
unit disk graph of size n, the number of independent q-ranges increase linearly to the
network connectivity (average node degree).

Theorem 3.3.2. Given a network that is localizable using a set of interferometric read-

ings (q-ranges), the actual localization of the network is an NP-Complete problem.

Proof. When a solution instance (certificate) is given (i.e., when all node locations are

known), there is a polynomial time algorithm to validate such an instance by simply

looping through all the q-ranges. Thus, the localization problem is in NP. We now show

the problem is NP-Complete.

We reduce our proof from the NP-Complete realization problem of wheel graphs.

A wheel graph, Wn, is a graph of n nodes in which (without losing generality due to node

numbering) nodes 1 through n − 1 form a cycle (not necessarily on a circle), and node

0 (hub) is connected to all nodes. The edges on the cycle are called the rim edges, and

edges connecting from the hub are called spokes. Figure 3.3(a) shows such a graph with

n = 6.

It has been shown in [18] that it is NP-Complete to localize the wheel graph Wn

when the edge weights (including spokes and rim edges) are known. To show that it

is also NP-Complete to localize a network using interferometric readings (q-ranges), we

construct a polynomial time reduction from Wn. We then claim that the reduced graph,
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Figure 3.3. Wheel graph and its reduction. The figure shows (a) wheel graph W6 and
(b) reduction from wheel graph.

called Ŵn, is localizable using the q-ranges obtainable from the edge weights of Wn. And

finally we show that such reduction leads to the conclusion that localizing using q-ranges

is NP-Complete.

The reduction from Wn to Ŵn works as follows. Observe that Wn consists of a

sequence of triangles formed by two spokes and a rim edge. On every edge of each triangle,

we create an additional node equal distance away from both end points. We then add

additional edges to completely connect all six nodes (three original nodes and three newly

created nodes) within the triangle. For instance, in Figure 3.3(b), we create three new

nodes D, E, and F within △ABC such that dAD = dDB = dAB

2
, dBE = dEC = dBC

2
and

dAF = dFC = dAC

2
. The subgraph consisting of those six nodes are completely connected.

Clearly, this step is polynomial in n.

We claim that the graph Ŵn is localizable in 2 dimensions using interferometric

ranging. To support our claim we need to determine how many interferometric readings

(q-ranges) are present in Ŵn. First, observe that by our construction, the weight of every

newly created edge in the triangle subgraph can be determined geometrically from three
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edge weights dAB, dBC and dAC that are given by the original Wn graph. Thus, within

each triangle subgraph of n = 6, we have all available q-ranges for a complete graph of

n = 6. Conversely, from those available q-ranges, we can derive the original edge weights

dAB, dBC and dAC . For instance, we can calculate dAC from the following four q-ranges:

dAECB = dAB − dEB + dEC − dAC

= dAB −
dBC

2
+

dBC

2
− dAC

= dAB − dAC (3.1)

dCDAB = dBC − dDB + dAD − dAC

= dBC −
dAB

2
+

dAB

2
− dAC

= dBC − dAC (3.2)

dBADF = dBF − dAF + dAD − dBD

= dBF −
dAC

2
+

dAB

2
−

dAB

2

= dBF −
dAC

2
(3.3)

dBECF = dBF − dEF + dEC − dBC

= dBF −
dAB

2
+

dBC

2
− dBC

= dBF −
dAB

2
−

dBC

2
(3.4)
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Combining (3.1) with (3.2), and (3.3) with (3.4), we have

dAECB + dCDAB = dAB + dBC − 2 · dAC (3.5)

dAC

2
= −dBECF + dBADF −

dAB

2
−

dBC

2
(3.6)

Combining (3.5) with (3.6), and solving for dAC, we have

dAC =
−2 · dBECF + 2 · dBADF − dAECB − dCDAB

3

It has been shown in [18] that Wn is localizable when all of its edge weights are

given. Since, using the q-ranges of Ŵn available to us, we can derive that every edge

weight of Wn, Wn is localizable using the q-ranges. If Wn is localizable using q-ranges,

so is Ŵn because by our reduction the location of every newly added node in Ŵn can

be uniquely determined from the location of the existing nodes in Wn. Thus, Ŵn is

localizable using q-ranges.

If there is a polynomial time algorithm, A, that performs the actual localization of

Ŵn using q-ranges, the original wheel graph Wn can then be localized under edge weights

by running our polynomial time reduction to produce Ŵn and then running A to localize

Ŵn, all in polynomial time. However, since localizing the wheel graph Wn using edge

weights is NP-Complete as shown in [18], A does not to exist unless P = NP . Thus,

localization using interferometric ranging (q-ranges) is NP-Complete.

3.4 Iterative Localization Using Interferometric Ranging

Based on the above complexity result, it is clear that localization using interfero-

metric ranging is fundamentally intractable. Any algorithm that solves this problem will

need to be some form of a heuristic (e.g., described as an optimization process). How-
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ever, even as an optimization problem, the problem is difficult because of the large search

space. In this section, we try to provide an optimization solution by localizing the nodes

incrementally based on a sufficient (but not necessary) condition of node-localizability in

terms of interferometric ranging.

Lemma 3.4.1. A node i can be localized using interferometric ranging with high proba-

bility under the following two conditions:

1. i is a component of at least three mutually independent q-ranges, and

2. all of the other three components in each q-range are localized.

Proof. Let node i be a component in the three q-ranges. For each of the three q-ranges,

let the other three components be node A, B and C. Thus, the q-range is in one of the

following forms, depending on whether i is a sender or a receiver:

• dABiC = dAC − dBC + dBi − dAi

• diABC = diC − dAC + dAB − diB

Since A, B and C are already localized, the distances dAB, dAC and dBC can be calculated

from the node locations. Thus, the q-range can be reduced to the following:

• c1 = dABiC + dBC − dAC = dBi − dAi

• c2 = diABC + dAC − dAB = −diB + diC

Here, c1 and c2 are two constant values. Thus, each q-range reduces to a partial

(either a left-side or a right-side) hyperbola on which the location of node i resides. Since

the three q-ranges are mutually independent, each of the partial hyperbolas they generate

is unique. Ignoring the special cases that might cause multiple overlapping points among

the three hyperbolas (such as when all the focus points of the hyperbolas are collinear),

with high probability the intersection of three unique partial hyperbolas is a unique point.

Thus, node i can be localized.
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Lemma 3.4.2. Any three q-ranges with node i as a common receiver (sender) are inde-

pendent if

1. each q-range has a distinct pair of senders (receivers), and

2. there are in total at least four distinct senders (receivers).

Proof. First consider the trivial case where the dependency is in two q-ranges. Two types

of dependencies exist in this case: dABCD + dBACD = 0 and dABCD − dCDAB = 0. Based

on the condition given, dABCD + dBACD = 0 would not happen because they do not have

a distinct pair of senders. dABCD − dCDAB = 0 would not happen due to the lack of a

common receiver (sender).

Now consider the case when the three q-ranges are dependent. Since there are four

distinct senders (receivers) in the three q-ranges, not all of the four senders (receivers)

can appear multiple times in the q-ranges. Let j be the sender (receiver) that appears

only once in the q-ranges. Thus, there is only one q-range that includes the distance

between node i and j, dij . However, since j only appears once, the other two q-ranges do

not include dij. Since dij is a unique term, the q-range that includes j cannot be written

as a linear combination of the other two.

Thus, all three q-ranges must be independent.

Lemma 3.4.1 and 3.4.2 give the condition under which a node can be localized

with high probability using interferometric ranging from its neighbors. If such condition

is satisfied, the node can be localized with only the local neighborhood information

without the complexity of a global optimization problem. Once the node is localized, its

location information can be used to further localize other nodes. This gives an iterative

localization algorithm shown as Algorithm 3, which is similar to the iterative trilateration

protocol (ITP) proposed in [18], however with different conditions.
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Algorithm 3 Iterative Localization Using Interferometric Ranging

Require: every node knows its 1-hop neighbor
for all Localized nodes do

broadcast its location and 1-hop neighbor set
end for
for all Unlocalized nodes i do

Ssenders ← φ
Receive broadcasts and construct local connectivity map
Find nodes s1, s2 and r such that es1,i, es2,i, es1,r, and es2,r exist in the local map
if (s1, s2) /∈ Ssenders and (s2, s1) /∈ Ssenders then

add (s1, s2) to Ssenders

end if
if Ssenders contains at least 3 pairs and at least 4 distinct senders then

negotiate to obtain q-ranges using each pair as senders or receivers
determine its location
broadcast its location and 1-hop neighbor set

end if
end for

Algorithm 3 requires all nodes to have their 1-hop connectivity information, which

can be collected by observing ”Hello” messages from the neighbors. Before starting the

localization process, a small number of localized nodes (anchors) need to be deployed.

Due to the condition listed in Lemma 3.4.1 and 3.4.2, those anchors need to be close to

each other such that the nearby unlocalized nodes can be localized. The anchors then

broadcast their locations and 1-hop connectivity information. When an unlocalized node

hears the broadcast, it builds a local connectivity map, which is needed to validate the

condition required by Lemma 3.4.1 and 3.4.2. In particular, when there are at least three

distinct pairs of potential interferometric senders (s1, s2), each of which shares a common

receiver r, then the node can be localized. When the node detects that the localization

condition is satisfied, it contacts the potential sender pairs and the corresponding receiver

to schedule an interferometric reading. When at least three readings are obtained, the

node computes its location, and then broadcasts it to its neighbors so that the newly

discovered location can be used to localize the neighbors in the next round. The localiza-
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tion algorithm continues until all nodes are localized or the next round does not produce

any newly localized node.

Simplicity is the real advantage of the above iterative algorithm. Instead of trying

to solve for a global solution for all unlocalized nodes in the network at once, the algorithm

computes the locations based on the local information only and then progressively builds

up a global solution. The algorithm is also distributed in nature and can be implemented

directly on each sensor. However, since the conditions dictated by Lemmas 3.4.1 and 3.4.2

are not sufficient conditions for a node to be localized, the algorithm does not guarantee

to localize a node even though the node could be theoretically localized. For a randomly

deployed sensor network, the ratio of the localizable nodes to the population using the

iterative algorithm is a function of the network density. Fortunately, our simulations

show that this ratio is reasonably high when compared to the localization ratio of the

iterative trilateration protocol (ITP) in [18] that uses direct RSSI ranging.

To compute nodes’ locations after the sufficient number of q-ranges are obtained,

we run a simple simulated annealing algorithm [41]. The simulated annealing approach

is taken because i) in reality the system is often over-determined by multiple q-ranges

which contain errors, and ii) the location function to be optimized is non-linear with

multiple local minimums. Since the localization is performed using local q-ranges only,

we are able to drastically limit the search space to be the area within the range of all

components involved in the transmission. Simulations show that the simulated annealing

algorithm converges quickly to the correct solution.

3.5 Simulation Results

To evaluate the behavior of the iterative localization algorithm using interferometric

ranging, we have conducted a number of simulations in various of settings. Our simulation

environment consists of a network of n sensors randomly deployed in a square area of 1
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unit square. The sensors are assumed to be homogeneous, i.e., they all have the same

transmission range. To start the localization process, we deploy four anchors to the center

of the unit square (the anchors have the same transmission range as the sensors). The

results obtained are the average of 30 independent runs.

3.5.1 Coverage and Rounds

We first look at the localization coverage of the iterative algorithm and the number

of rounds executed by the algorithm. We compare the result against that of the iterative

trilateration protocol (ITP) proposed in [18]. The node localization condition of the ITP

is that an unlocalized node needs to be the neighbor of at least three localized nodes. The

localization condition stated in Lemma 3.4.1 and 3.4.2 is stricter since it requires three

independent q-ranges. At the minimum, an unlocalized node needs to neighbor with

four localized nodes to satisfy such a condition 2. Thus, it is expected that for the same

network the localization coverage produced by the iterative algorithm for interferometric

ranging is lower than that of the trilateration.

As validated in Figure 3.4(a), for a fixed transmission range, the number of nodes

localized using the interferometric condition is indeed smaller than that of the trilatera-

tion condition. However, the difference is not particular great and can be overcome by

increasing the network density. As shown in Figure 3.4(a), by increasing the node density

(by increasing the population to n = 160), the interferometric localization condition can

reach a coverage similar to what trilateration reaches at n = 100. In terms of density, the

network of n = 100 has a degree of 12 when the transmission range is set to 0.2, which

results in 90% coverage under the trilateration condition. The equivalent coverage can

be obtained under the interferometric condition by increasing the density to 19 degrees

2Three localized nodes, along with the unlocalized node, would generate a maximum of two indepen-
dent q-ranges instead of three.
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Figure 3.4. Coverage and rounds of the iterative localization method. The figure shows
(a) localization coverage and (b) the number of rounds required.

when using n = 160 with the same transmission range. The number of rounds required

to complete the iterative algorithm is shown in Figure 3.4(b).

3.5.2 Localization Error

The iterative localization algorithm allows us to study the error propagation be-

havior of interferometric ranging. In particular, we are interested in how the error from

the interferometric measurement affects the localization error and how the error is aggre-

gated and propagated through the network. Figure 3.5(a) shows the average localization

error at each round for a network of 100 nodes using the iterative algorithm (transmission

range set to 0.25 units). A Gaussian noise of N(0, σ) is added to the interferometric mea-

surement. The standard deviations are derived by the actual hardware devices in [55].

Figure 3.5(a) indicates a linear increase of the localization error of the nodes localized

at each additional round. Thus, it is more desirable that most nodes are localized with

limited rounds. The number of nodes localized at each round is shown in Figure 3.5(b).

In our simulation scenario, most nodes are localized within 5 rounds. Nevertheless, the

simulation indicates that the error propagation behavior poses a significant constraint
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Figure 3.5. Localization error of the iterative localization method. The figure shows
(a) localization error of the nodes localized at each round and (b) the number of nodes
localized at each round.

on how effectively the interferometric measurement can be applied to the localization

problem. In order to achieve more precise localization, the effect of error propagation

has to be controlled.

3.6 Summary

Interferometric ranging has been recently proposed as a viable measurement type

to solve the localization problem in sensor networks. However, in addition to constraints

imposed on the hardware devices, interferometric ranging also imposes new challenges to

the algorithmic design of localization. In this chapter, we formally proved that localiza-

tion using interferometric ranging is an NP-Complete problem. Compared to heuristics

on direct RSSI or TOA ranging (both of which problems are also NP-Complete) it can

be argued that heuristics on localization using interferometric ranging are even more

difficult (however this added difficulty is polynomial). Whereas each direct ranging mea-

surement is a function of two locations, the interferometric measurement is a function of
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four. Thus, localization using interferometric ranging requires a considerably larger set

of measurements.

Previous interferometric localization algorithms try to use optimization to obtain

a global solution either by using a genetic algorithm approach [55] or by reducing the

search space with additional RSSI readings [67]. The difficulty of the problem still limits

their solutions to smaller networks (16 nodes in [55] and 25 nodes in [67]). The iterative

algorithm proposed in this paper allows networks of larger size to be localized using

interferometric ranging. However, our simulations indicate that error propagation can be

a potentially significant problem. In order to localize large networks using interferometric

ranging from a small set of anchors, future localization algorithms need to find a way to

effectively limit the error propagation.



CHAPTER 4

LINK LONGEVITY ESTIMATION

4.1 Problem Definition

In mobile ad hoc networks, links are established on the fly as mobile nodes are

moving in and out of the transmission ranges of each other. This node mobility not only

invalidates previous localization results as demonstrated in Chapter 2, it also infers a

constantly changing network connectivity graph. Due to the distributed nature of ad

hoc networks, a route between two arbitrary nodes is likely a combination of multiple

links over several intermediate nodes. The selection of the sequence of links between

nodes is the task of the ad hoc routing protocol. Due to link failures caused by node

movement, routes can be disrupted while in service. Loss of links can invalidate routing

entries, which in turn can cause undesired latencies in packet delivery. Availability of a

good estimation of link longevity between neighboring nodes could permit the selection

of a more stable route, thus enabling a better enforcement of quality of service (QoS)

provisioning contracts.

In this chapter, we consider the problem of predicting the expecting link uptime

between two mobile nodes. We refer to this as the link longevity problem. This prob-

lem can be seen as a special case of localization among two neighboring nodes. Instead

of estimating the absolute node locations in this case, we want to estimate the relative

mobility between the nodes. In particular, the link longevity does not depend on the

absolute mobility but the relative mobility between two nodes. For the link longevity

problem, we propose three link longevity estimators that could be embedded into mo-

bile nodes. In our approach, link longevity estimates do not require knowledge of the

83
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mobility patterns/models of nodes. The foundation of all three designs lies in extended

Kalman filtering, where a linear process model is implemented to represent the state

transition, while a non-linear measurement model is included to account for the received

signal strength indication measurements. We provide the mathematical background for

our estimators and their input/output vectors, and show various performance metrics

using extensive simulations. We conclude that our filters provide good estimates for the

remaining up-time of wireless links.

4.2 Related Works

There are a number of previous works addressing the link longevity problem based

on probability models [57, 37]. Their contribution lies in defining node mobility models

and performing a mathematical analysis on these models to quantify statistical properties

of the longevity of links. In [57], the link longevity is measured as the probability of the

link remaining available for a time t. The probabilistic model is then used as the basis

to form and maintain clusters within ad hoc networks to maximize the cluster stability.

The probability calculation assumes that all nodes move according to an epoch based

movement pattern. For each node, the movement history is divided into a sequence of

epochs. Within each epoch, the node moves at a randomly selected (but constant) direc-

tion and velocity. The pure probability based model is extended in [36] by incorporating

a measurement model. First, the link longevity, in terms of remaining time (t) in which

the link remains available, is measured under the assumption that the nodes maintain

their constant velocities. A probability model is then applied to calculate the probability

of the link availability at time t by considering the cases of temporal velocities.

A non-probabilistic solution is proposed in [79], in which the link longevity estima-

tion is used to measure the stability of the entire route so that a handoff can be triggered

in anticipation. The longevity estimation relies on a Global Positioning System (GPS)
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receiver at each node to provide the location and velocity data. The remaining connection

time between two nodes is calculated from the GPS data assuming that the nodes main-

tain their headings and speeds. If GPS data is not available other measurement-based

models could be used. In [54], the location, velocity and acceleration of a mobile node

are estimated by measuring the received signal strength indication (RSSI) from multiple

base stations in a cellular network. The measured power levels are fed into a Kalman

filter. Since base station locations are assumed to be well-known in a cellular network,

mobile nodes can use them as reference points.

RSSI measurements can also be used to estimate the location of mobile nodes in

ad hoc networks. In [58], the authors propose a method of propagating the location data

from nodes that are GPS-equipped (beacons). Other non-GPS nodes (regular nodes) can

then deduce their distances to the GPS nodes by measuring the RSSI from neighboring

nodes. The actual location can then be calculated using trilateration methods from the

distance information. The method is further improved in [60] by assuming non-GPS nodes

are equipped with devices that measure the incoming signal directions. The directional

information allows the receivers to obtain the angle of arrival (AoA) of the signal thus

allowing more accurate location estimates.

In this chapter we present a measurement-based approach to the link longevity

problem. Unlike the probability-based solutions that rely on a particular mobility model

[57, 36], we propose an estimator (to be embedded into the mobile nodes) that operates

regardless of the mobility model. The estimator’s basis is a Kalman filter [40] used to

estimate the relative location of two nodes based solely on simple signal properties like

RSSI. The information obtained from the filter is then used to derive the expected time

the link will remain available. A major advantage of Kalman filters is that they can

quickly and efficiently compute estimates. Therefore, they are particularly suited for

ad hoc networks due to the potentially limited computing power of mobile nodes. Our
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solution is similar to the estimator in [54], but it is designed to work in the distributed

ad hoc environment, where all nodes are mobile and the relative location needs to be

determined. Furthermore, unlike the measurement-based location estimators [58, 60],

our solution is geared towards estimating the link longevity in time t instead of the exact

node locations. This means that a node will not only need to determine the locations of

other nodes but also a change in their movement patterns.

The remainder of the chapter is organized as follows. Section 4.3 describes three

different link longevity estimator designs including detailed process models used by the

Kalman filters. Section 4.4 presents the simulation results and compares the three estima-

tors under different movement and noise conditions. Section 4.5 concludes this chapter.

4.3 Kalman Estimator Designs

This section outlines three different designs of an ad hoc link longevity estimator.

Each of the designs is based on extended Kalman filters [75]. In all three designs, a

linear process model is implemented to represent the state transition. The process model

assumes that nodes maintain their current direction and velocity between each state

update. Corrections to the errors in the process model are made via the measurement

model of the filter. The need for the extended Kalman filter arises due to the measure-

ment model’s inherent non-linearity (radio signal power levels are not linear with the

propagation distance). Each filter design is unique: they rely on input from different

types of sensors and/or keep their state information in different variables in the process

model.

4.3.1 Design I

Our first filter design assumes that both the incoming signal strength and its di-

rection are observable at mobile nodes. Using a signal propagation model, the distance
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and direction to a transmitting node can be estimated from the received signal strength

(RSSI sensor) and the direction of the received signal (direction sensor). Given the mea-

surements the estimator is able to track the relative location and velocity in both x and y

directions. Therefore, the state variable of the filter at time t is (xt, yt, vx, vy), where xt

and yt represent the relative displacement at time t, while vx and vy represent the relative

velocity. By further assuming that nodes move at a constant velocity, a new state can be

derived from the previous state using a linear process update function xt+1 = xt + vx∆t

and yt+1 = yt + vy∆t, where ∆t is the observation interval. The state transition matrix

is therefore


















1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1



















.

Given a pre-determined transmission range, the expected time of link termination can

be calculated from the state variables.

Hardware-wise, sensors that measure RSSI are widely available for mobile devices.

Indeed most off-the-shelf technologies implicitly provide such information (e.g., most

Wi/Fi cards provide RSSI). However, sensors that measure the signal direction require

much more sophistication to antenna design (which cannot be easily justified for location

estimation only). Nevertheless, our first model provides a simple yet precise estimator

design to which subsequent designs can be referenced and compared.

4.3.2 Design II

Our second design relaxes some of the previous assumptions by requiring only the

availability of an RSSI sensor, thus only relying on easy-to-measure properties. In this

case, it is not possible for the receiver to estimate the relative position and velocity of the
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sender. Yet, the relative distance to the sender and the rate of the distance change over

time ∆t can be estimated. Figure 4.1 explains how the rate of distance change is related

to the location and velocity of the nodes. Let us consider two nodes, n0 and n1 that

are moving with absolute velocity (vx0, vy0) and (vx1, vy1) in some Descartes coordinate

system. Let Dt be the distance between n0 and n1 at time t, and Rt be the rate of the

distance change at t. Here, we define Rt to be positive if the nodes are moving away

from each other and negative otherwise. In general, let θx and θy be the angles from the

displacement line (away from the other node) moving counter-clockwise to the x and y

components of the absolute velocity. Rt can be calculated as the sum of the portions from

all four velocity segments as Rt = vx0cos(θx0) + vy0cos(θy0) + vx1cos(θx1) + vy1cos(θy1).

For the Kalman filter design, we denote the state variables to be (Dt, Rt). Note that

in reality Rt is not constant over time (even at a constant velocity) since both nodes move

simultaneously. Nevertheless, the process model maintains that R is a constant, resulting

in the following process update function: Dt+1 = Dt +Rt∆t. The state transition matrix

is therefore






1 ∆t

0 1







To assess the error that this assumption incurs, it is important to note that as the change

to Rt decreases Dt increases. Because a link longevity estimate is more useful when the

nodes are further away (i.e., when Dt is large), this assumption, though incorrect, should

have minimal impact on the overall results (as it was verified by our simulation studies).

4.3.3 Design III

The third design - similarly to the second - requires only the availability of RSSI

sensors at nodes. However, in this case we derive the new distance estimates based on a

history of previous estimates. Since our underlying assumption is that the nodes move
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Figure 4.1. Calculating Rt from velocity segments.

at constant speeds and headings, it is possible to derive the new distance estimate based

on previous estimates. For the filter based on k previous states, where k > 1, the state

space consists of the following variables: (D2
t−k, . . . , D2

t−1, D2
t , S2). The variables Dt−k,

. . . , Dt−1, Dt are the distance estimates at time t−k, . . . , t−1, and t, respectively, while

S is the relative speed between the two nodes. Given the relative velocity as vx and vy,

S is simply
√

v2
x + v2

y . The new state is derived under the assumption that vx and vy are

constant.

The new state is calculated from the previous state as follows. A new estimate

D̂2
t+1 can be calculated from each historical reading D2

t−i(1 ≤ i ≤ k) as well as the latest

reading D2
t . Since relative velocities are assumed to be constant, we can envision the

receiver as stationary while the sender is moving at S to a fixed direction. From Figure

4.2, let A be the stationary location of the receiver, and B, C and D be the relative

location of the sender at time t− i, t and t+1 respectively. Thus, Dt−i = AB, Dt = AC,

and D̂t+1 = AD. BC and CD can be derived from the assumption that S is constant
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and that the filter runs with a period of ∆t. By solving the triangulation in Figure 4.2,

a new estimate of D̂2
t+1 can be found as

D̂2
t+1 = −

D2
t−i

i
+

i + 1

i
D2

t + (i + i)S2∆t2

Note that the above estimate D̂2
t+1 is obtained from D2

t and a single previous reading

of D2
t−i. We can then repeat the above calculation for all D2

t−i(1 ≤ i ≤ k) and average a

total number of k estimates. The new distance estimate D2
t+1 is therefore the following:

D2
t+1 =

k−1
∑

i=0

−D2
t−k+i

k(k − i)
+

D2
t

k
·

k−1
∑

i=0

k + 1− i

k − i
+

S2∆t2

k
·

k−1
∑

i=0

(k + 1− i)

The above equation translates to following state transition matrix:



























0 1 0 . . . . . . 0

... 0 1 . . . . . .
...

...
...

...

Tk−1 . . . . T0 V W

0 . . . . . . . . 0 1



























Here, Ti = −1
k(k−i)

, V = 1
k
·
∑k−1

i=0
k+1−i

k−i
, and W = ∆t2

k
·
∑k−1

i=0 (k + 1− i).

By averaging the estimates from all k previous values, we expect the estimator to

be less prone to abnormal sensor readings. Meanwhile, it will take longer to adapt to

the change of the movement pattern. Variable k provides this design with an additional

parameter (besides the Kalman filter variances) to adjust the filter to the environment.

As verified by simulations, the third design is expected to show better performance with

a larger k when the node movement pattern is more predictable and the sensor reading

is noisier.
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4.4 Simulation Results

To evaluate the three link longevity estimators, we have implemented them in our

own C++ based discrete event simulation engine. All our simulations involve two mobile

nodes moving within a 2000m side-length square. The node movement model is based

on the epoch model used in [57] with the following properties:

1. The entire movement path of the node is defined by a sequence of ”epochs,” i.e.,

(e1, e2, · · · , en).

2. The duration of each epoch is I.I.D. exponentially distributed with a mean of 1/λ.

3. Within each epoch, the node moves at a constant velocity.

4. At the end of each epoch, nodes randomly select a new velocity vector. The direc-

tion of the movement is I.I.D. randomly chosen from a uniform distribution between

0 and 2π. The absolute value of the velocity is I.I.D. normally distributed with a

mean µ of and a variance of σ2.

Note that since immobile nodes do not cause any difficulties for our model, we eliminate

the idle time between epochs from the original model, and thus the nodes are always on

the move. For our simulations, we use µ = 10m/s and σ2 = 10.

When a node hits the border of the square, its bounces back at the same angle.

Of the two mobile nodes simulated, one is designated as the sender and the other as

the receiver. The sender continuously transmits signals, and the receiver continuously
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monitors the incoming signal. The signal propagation model is given by p = c · d−2, in

which the power of the received signal p is inversely proportional to the second power

of the distance d. Here, c is an arbitrary constant. When the received signal power p is

below a threshold pmin, it is considered too weak to be captured by the receiver thus the

link breaks. For our simulations, we select c = 106 and pmin = 1. Note that the c and

pmin selection does not affect the overall simulation results, as long as the same values are

used in the observation model of the filters. In fact, the same can be said about all other

signal propagation models - all we require is a model that represents the receiving power

as a function of distance. Given our signal model, the threshold pmin = 1 translates to

a transmission range of 1000m when noise is not considered. To estimate the time when

the link will be cut the receiver processes the sensor data every 0.1 seconds. The sensor

data is then feed into all three estimators simultaneously to obtain their estimations for

comparison.

Noise is incorporated based on the noise model in [62]. The model considers the

fact that radio signals hardly ever propagate in line-of-sight paths. Instead, they tend to

bounce off from nearby structures along the way due to multipath fading and far field

scattering. The actual distance of signal propagation at time t is given by dt = d′
t + mt,

where d′
t is the geometric distance between the two nodes and mt the extra distance

covered due to signal reflection. mt is recursively defined as

mt = mt−1 + P0N(0, σ0
2) + P1N(0, σ1

2),

where P0 and P1 are the probability of the whether or not the signal bounces off a different

structure, and N is a Gaussian distribution with a zero mean. Since the distance can

change more drastically when the signal bounces off a different (than before) structure,
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Figure 4.3. Convergence of estimation error.

it can be assumed that σ0
2 >> σ1

2. Furthermore, mt should be non-negative for all t.

For our simulations, we use P0 = 0.1 and P1 = 0.9.

4.4.1 Estimator Convergence

Figure 4.3 shows how the link longevity estimator of the three different designs

converges in a typical scenario when the sender and receiver are pulling away from each

other at constant velocities. The figure shows the error of the estimations as the filters

analyze the incoming signals. Clearly, the first design converges the quickest due to

its extra signal direction sensor. Of the estimators relying solely on the RSSI sensor,

the estimator based on the third design takes longer to converge than the estimator of

the second design but it provides better estimates (due to the availability of previous

estimates). Of the two different versions of the third design, the one that relies more on

historical estimates (k = 8) converges a little quicker than the other which relies on less

available previous estimates (k = 3).

4.4.2 Effect of Node Movement

Figure 4.4 and 4.5 show the effect of node mobility on the estimators by varying

the mean of the epoch duration (1/λ). For this simulation, we keep the variances of the
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movement model constant at σ0
2 = 50 and σ1

2 = 5. We let the sender and receiver run

for a duration of 106 seconds of simulation time. For each simulation run, we obtain the

results by varying 1/λ from 20 to 200. As the mean (1/λ) epoch length increases, the

node movement becomes more predictable, and thus the link longevity becomes easier to

predict. To qualify the results, we define an estimation to be acceptable if it is within the

range of +/− 10 seconds when the link actually breaks. Furthermore, we denote Tsuccess

to be the time before the actual link breakage when the different estimators converge to

the acceptable range. There are also cases where the estimators never manage to produce

acceptable estimations before link breakages. As such, we let Psuccess be the probability

that an acceptable estimation can be obtained in average. Essentially, Tsuccess indicates

how good the estimations are, and Psuccess indicates how fast they are obtained.

Figure 4.4 and 4.5 show the effect of node movement on Tsuccess and Psuccess. The

figures indicate that the extra direction sensor in the first design greatly contributes

to its superior performance. The second is not far behind from the first in terms of

Psuccess. The two versions of the third design do not have a great performance in terms of

Psuccess. However, they outperform the first design in Tsuccess, indicating that in general

the estimators based on the third design take longer to adjust to the movement updates.

The figures also indicate that the more sensor data is processed the better the precision of

the estimate will be. Furthermore, the gap in terms of Psuccess between k = 8 and k = 3

increases slightly indicating that a larger k is more appropriate when node movement is

more predictable.

4.4.3 Effect of Signal Noise

The effect of sensor noise on Tsuccess and Psuccess is captured in Figures 4.6 and 4.7.

For these simulations we have set the mean of the epoch duration to 1/λ = 50. We then
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Figure 4.4. The effect of node movement on Tsuccess.
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Figure 4.5. The effect of node movement on Psuccess.

vary the variance σ0
2 of the noise model from 10 to 90. The other variance σ1

2 is set to

one tenth of the current σ0
2 value.

Figure 4.6 shows that the quality of the estimations varies little as the noise in-

creases. Meanwhile, Figure 4.7 indicates that it takes longer for the estimators to converge

to the acceptable range with increasing noise. Since all of the estimator designs are based

on Kalman filters, it is not surprising that they are rather resilient to noise, even though

our noise model is not Gaussian. However, noise does have an effect on the estimators

in that it takes longer to obtain acceptable estimations in a noisier environment. Com-

paring the two cases of the third design (where k = 3 and k = 8) we can observe that a

larger k is better suited for a noisier environment.
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Figure 4.6. The effect of noise on Tsuccess.
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Figure 4.7. The effect of noise on Psuccess.

4.5 Summary

This chapter has presented three different estimators that predict the link longevity

in ad hoc mobile networks. These extended Kalman filter based estimators obtain their

estimates by tracking node movement using RSSI measurements. Since Kalman filters

are known to be light-weighted, these estimators are especially suitable for mobile nodes

with strict resource constraints. Our simulations demonstrate that all estimators are

capable of producing useable estimations, even though their performance is subject to

the underlying predictability of node movement and sensor noise. The simulations also

indicate that estimators fed with a radio signal direction sensor provide only slightly

better estimates than estimators based solely on RSSI readings.



CHAPTER 5

DYNAMIC BEACON DEPLOYMENT FOR LOCALIZATION

In Chapter 2, the theoretical analysis of the general ad hoc localization problem

(GAHLP) based on graph theory illustrated the difficulty of the localization problem

when the network is sparse. In particular, when a ranging measurement is used, the

network connectivity induced graph needs to be redundantly rigid and triconnected in

order for the network to be 100% localized [29, 4]. For a sparse network such criteria might

not be easily satisfied especially considering sensor networks are commonly deployed in

random fashion. Thus, a question emerges asking what is the optimal way of deploying

additional regular nodes and/or beacons such that the entire network can be localized.

We refer to this problem as network deployment problem (NDP). In practice, it is often

impossible to strategically deploy sensor nodes one-by-one with localizability in mind. For

instance, sensor networks for military applications could be mass deployed from airplanes.

In such case, one of the methods to obtain location information is by positioning a number

of beacons after the sensors have been deployed. Since beacons are often more expensive,

there is a strong economical incentive to minimize their numbers.

5.1 Problem Definition

In this chapter, we consider the beacon deployment problem according to the fol-

lowing model. We assume that a certain number of unlocalized sensors already reside

somewhere in a deployment area. The beacon deployment (BD) problem deals with the

question of optimally deploying beacons to localize those nodes. The beacons are as-

sumed to be deployed one at a time in an online fashion. After a beacon is deployed, we

97
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assume that it can identify the sensor nodes that it covers. This model can be realized

in a number of ways. For instance, a mobile robot equipped with a GPS receiver can

be sent to cover the deployment area. A computer onboard the robot can run an online

algorithm to solve the beacon deployment problem. When this algorithm decides that a

beacon should be deployed at a certain location, it will instruct the robot to go to that

location and broadcast its coordinates there. Then, the algorithm decides on the next

beacon location and moves there, repeating the above process. Since all beacon locations

are served by a single mobile robot, the beacon deployment algorithm has the complete

history of the previously deployed beacon locations as well as information on the number

of nodes covered by each beacon to help it make the next decision. Alternatively, we

can use a data dissemination method such as HEAP [10], where the beacon deployment

algorithm is hosted on a centralized node at a fixed location. The result of each beacon

deployment is disseminated through a virtual tree imposed on the sensor network, until

it reaches the centralized node at the root of the tree.

In particular, we initially consider a simplified version of the beacon deployment

(BD) problem in which we deploy beacons to the initial network such that all nodes in

the network can be localized directly from the beacons. By directly, we mean that the

nodes are to be localized from the beacons 1-hop away. No multihop information is used

in the localization. The goal is to minimize the number of beacons while keeping the

network localized. Later on, we will relax the 1-hop requirement to allow localized sensor

nodes to serve as virtual beacons to help localizing other nodes.

5.2 Related Works

Localization has been studied in various contexts. In this section, we concentrate

on the problem of localization by deploying beacons.
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Based on the network localizability analysis described in Chapter 2, an incremental

node deployment strategy is proposed in [25]. With ranging measurement as the edge

weight, the algorithm first finds redundantly rigid and triconnected subgraphs. Each of

the subgraphs found can then be localized by deploying three beacons. The problem

of this algorithm lies in that it is not really designed as a distributed algorithm. In

particular, the method to identify the subgraphs is strictly centralized.

An adaptive beacon placement algorithm is proposed in [9], where beacons are

deployed sequentially based on empirically data of the perceived localization error. The

perceived error is obtained by observations among neighboring beacons. When beacons

are densely deployed over an area, the perceived localization error among them should

reflect the error characteristics of the terrain or environment, which can then be applied

to estimate the localization error of the actual sensor nodes. In [9] two beacon deployment

algorithms are proposed, MAX and GRID, both of which deploy the beacons to locations

where the estimated error is perceived to be at its maximum. The two algorithms differ

in the size of the area they consider. Further work in [10] provides a framework to

realize the adaptive algorithm in the real world by proposing a distributed algorithm to

disseminate the perceived localization error into a centralized location.

The authors of [35] describe a beacon deployment strategy with a different objec-

tive: to minimize the number of deployed beacons (cameras) to localize mobile objects.

They ask the question: “given the workspace and an error threshold, what is the min-

imum number, and placement of cameras so that the error in localization is less than

the threshold at every point in the workspace? [35]”. Two cameras, by the means of

angle measurement, are needed to localize nodes. The goal is to minimize the number of

cameras so that the overall error is below a threshold. While this method is not designed

to localize sensors, it introduces the notion of explicit error thresholds as part of the

design.
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5.3 Our Contribution

In this chapter, we first show some computational complexity results of the beacon

deployment (BD). We then propose a number of approximation methods to solve the

problem. The approximation algorithms are presented in both offline and online versions.

The offline version solves a simplified (although still a theoretically hard) problem by

assuming that sensor node locations are known. The offline version is studied because it

serves as the performance guideline to the online version. The online version deals with

the realistic scenario of progressively deploying beacons to localize sensors of unknown

locations. Finally, using simulations, we show that the results of the proposed offline and

online algorithms, in terms of the total number of beacons deployed, is reasonably close

to the optimum especially at higher sensor densities. More precisely, our contributions

are:

1. We show that the general optimal beacon deployment problem without geometric

constraints is NP-Complete (when the number of sensor nodes is the factor).

2. We propose an approximation algorithm based on the set cover problem to solve

the beacon deployment problem that requires each sensor node to be covered by

at least k beacons. We show that this algorithm has a logarithmic approximation

ratio to the optimal solution.

3. We extend the approximation algorithm to explicitly deal with issues that impact

localization accuracy such as availability of beacons, measurement errors, and rel-

ative position of beacons. Our method minimizes the number of beacons (i.e.,

minimizes equipment cost) under the accuracy constraint explicitly specified as a

threshold to the Cramer Rao Bounds (CRB).

Our work on the online version of the deployment method is closest to that of

[9], both of which select the beacon location to minimize the localization uncertainty.

The primary difference is that while the work in [9] measures the uncertainty using
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empirical data, we choose to use the more theoretically sound concept of error bounds.

Furthermore, the algorithms in [9] use connectivity measurements (i.e., Centroid method)

only. Our methods work with ranging measurements based on RSSI or ToA, and can be

easily extended to support AoA.

5.4 Complexity of BD

The offline version of the BD problem asks for the minimum number of beacons

needed to localize a given network. The network is “given” in the sense that we know

all node locations. The offline version seems pointless since by definition all nodes have

already been localized. But we study this problem so that we have a base for comparison

(an optimal performer) for the online algorithms.

The condition for a node being localizable depends on the measurement type. Con-

sider the trivial case where all nodes have ranging and signal direction measurement ca-

pacity; here one measurement from any beacon (i.e., one neighboring beacon) is sufficient

to localize a node. If nodes have capabilities for only signal direction measurements, two

beacon neighbors are required. Three beacon neighbors are required if only ranging mea-

surements are available. In general, let the number of beacons required for a particular

measurement type be k; we denote BD(k) as the version of beacon deployment problem

where sensor nodes require measurements from k beacons, i.e., each sensor should have

at least k beacon-neighbors for the sensor network to be localizable. In the following

discussions we are going to assume that the deployment space for beacons is defined by

a grid, i.e., we discretize the location space beacons can occupy from a continuous search

space, so that we now deal with a combinatoric optimization problem. We denote Vsensor

as the set of sensors, and Vgrid as the set of all grid locations.

BD(k) is clearly NP, since when given a solution candidate (a certificate), a polyno-

mial time algorithm can validate this solution in O(k · |Vsensor| · |Vgrid|). BD(k), in fact, is
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a special case of the multiset covering (MSC) problem with special geometric constraints.

We define MSC(k) as the problem of finding the minimum number of sets that would

cover each element at least k times. The MSC is a general case of the set covering (SC)

problem, which is known to be NP-Complete [22]. Here, each vertex vgrid ∈ Vgrid can

be viewed as a set containing the vertices in Vsensor such that there is an edge between

vgrid and vsensor ∈ Vsensor. Thus, the trivial case when k = 1 is just the set covering

problem. The following theorem shows that the problem remains NP-Complete when

k > 1 (intuitively, k > 1 is a harder problem).

Theorem 5.4.1. The offline version of the MSC(k) problem is NP-Complete.

Proof. We superpose a square (n by n) grid over the deployment area of the sensors;

we assume that beacons can only reside at grid points. We use Vsensor to denote the set

of sensor nodes in the grid. Note that sensors can reside anywhere in the deployment

square and do not have to reside at the grid points. We then construct an augmented

network Ĝ = ({Vsensor, Vgrid}, Ê), where Vgrid contains all possible deployment locations

of beacons. The augmented edge set Ê contains all the edges formed between Vgrid and

Vsensor. An edge exists in Ê if two nodes are within the transmission range. The solution

to MSC is the minimum subset of Vgrid such that Vsensor can be localized.

To show MSC(k) is NP-Complete when k ≥ 1, we reduce it from the NP-Complete

vertex covering (VC) problem [22]. Given an instance of the vertex covering problem on

a graph GV C = (VV C , EV C), we create an instance of MSC(k) as follows:

1. For every vertex in VV C , create a vertex in Vgrid of the MSC(k) instance.

2. For every edge in EV C of the vertex covering instance, create a vertex in Vsensor of

the MSC(k) instance, and connect this vertex to the two corresponding vertices in

Vgrid to which this edge is adjacent in the original vertex covering instance.
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3. Create an additional k − 1 vertices in Vgrid and fully connect them to every vertex

in Vsensor. We denote these additional vertices as {v′
1, v

′
2, . . . , v

′
k−1}.

Figure 5.1 illustrates such reduction. This reduction can be done in polynomial

O(k · |VV C | · |EV C |) time. We need to show that a solution to the VC instance implies

a solution to the reduced MSC(k) instance, and vice versa. This can be validated by

the claim that for any non-trivial case where |Vsensor| >> k, the solution to the re-

duced MSC(k) instance must contain all the additional vertices {v′
1, v

′
2, . . . , v

′
k−1}. Each

vertex in Vsensor = {e1, e2, ...} connects to two vertices in {v1, v2, ...} ⊆ Vgrid. For a ver-

tex in Vsensor to be covered by k vertices in , at least k − 2 connections need to come

from the additional vertices of {v′
1, v

′
2, . . . , v

′
k−1}. If there are exactly k − 2 vertices in

{v′
1, v

′
2, . . . , v

′
k−1} used, all of the vertices in {v1, v2, ...} will have to be used to give k cov-

ers. Since we are considering the nontrivial case where |Vsensor| >> k, it is always better

to use all of the {v′
1, v

′
2, . . . , v

′
k−1} vertices to give k − 1 covers and find the remaining 1

cover from {v1, v2, ...}. Thus, a solution to the original vertex cover problem where the

number of vertex cover is s would result in a solution of s+k−1 to the reduced MSC(k).

Conversely, a solution of s′ to the reduced MSC(k) would result in a solution of s′−k +1

to the vertex cover problem. Since vertex cover problem is NP-Complete, so is MSC(k) .

Note that the above complexity result is given for the multiset covering (MSC)

problem, which does not consider the geometric constraints. The beacon deployment

(BD) problem is a special case of MSC in which the cover sets have to follow constraints

on the euclidean distance. When k = 1, the BD problem is also referred as the geometric

disk covering problem (GDC), which is known to be NP-Complete [39]. Thus, although

no yet proven, it is expected that BD(k) is also NP-Complete when k > 1.
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Figure 5.1. Reduction from vertex covering to MSC(k).

5.5 Offline Approximation of BD(k)

For the set covering (SC) problem, there is a well-known greedy algorithm with

approximation ratio to the optimal solution of O(ln(|X|)), where |X| is the size of the

superset [17]. At each step, the greedy algorithm selects a set that covers the maximum

number of uncovered members in the superset X, until the entire superset has been

covered. The greedy algorithm performs close to the lower bound of the approximation

ratio, as it has been shown in [19] that the unweighted set cover problem cannot be

approximated within a factor (1− ǫ) ln(|X|), for any ǫ > 0.

Based on the greedy algorithm for set covering, we can give a pseudo code for the

BD(k) offline greedy algorithm as shown in Algorithm 4. At each step, the algorithm
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selects a beacon location, gmax, from the available grid locations that covers the most

sensor nodes that have not been k-covered:

gmax ← arg max
g∈U
|{s : ps < k, s ⊣ g}|

The algorithm stops once all sensor nodes have been k-covered and returns the set of

beacon locations selected. In terms of complexity, the outer loop at line 7 runs at most

O(min(k · |Vsensor|, |Vgrid|)) times, and the loop statements between line 8 and 13 can

be implemented to run in O(|Vsensor| · |Vgrid|). Thus, the overall runtime complexity is

O(min(k · |Vsensor|, |Vgrid|) · |Vsensor| · |Vgrid|)

Even through BD(k) is a generalization of the set covering problem where k > 1,

the same logarithmic approximation ratio can be obtained, as stated by the following

theorem.

Algorithm 4 Greedy Offline Approximation of BD(k)

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: operator i ⊣ j: location i can be covered by broadcast from location j
4: initialize ps ← 0 for all s ∈ Vsensor

5: U ← Vgrid

6: C ← Ø
7: while ∃s ∈ Vsensor : pe < k do
8: select gmax ← arg maxg∈U |{s : ps < k, s ⊣ g}|
9: for all s : ps < k, s ⊣ gmax do

10: ps ← ps + 1
11: end for
12: U ← U − {gmax}
13: C ← C

⋃

{gmax}
14: end while
15: return C
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Theorem 5.5.1. The greedy offline approximation algorithm of BD(k) has an approxi-

mation ratio of ln(|Vsensor|) + 1.

Proof. Let the cost of each selection of g ∈ Vgrid be 1. We distribute that cost into the

s ∈ Vsensor that g covers at each step. Let cj
s be the distributed cost when s is covered

for the jth time. In particular, at the jth time, if s is covered by g, then

cj
s =

1

rg

where rg is the reward in selecting g at this step. Based on the algorithm, the reward rg

is calculated by counting the number of vertices s : ps < k that it covers.

Since all vertices s ∈ Vsensor are covered k times, the total cost of the greedy algo-

rithm |C| is therefore

|C| =
∑

s∈Vsensor

k−1
∑

j=0

cj
s

≤ k ·
∑

s∈Vsensor

ck−1
s

The inequality holds here because the greedy choice always chooses the selection with the

maximum reward and thus ensures a non-decreasing order of the cost cj
s for a particular

s as j increases. The maximum cost of covering s always occurs when it is covered at

the kth, the final, time (when j = k − 1).

The optimal algorithm C∗ also needs to cover each s at least k times. Thus,

|C| ≤
∑

g∗∈C∗

∑

s⊣g∗

ck−1
s (5.1)

where s ⊣ g∗ means that s is covered by g∗.
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Let ui be the size of the set {s : s ⊣ g∗, ps < k − 1} after g1, g2, . . . , gi has been

selected by the greedy algorithm. Thus, u0 contains all s covered by g∗ since ps = 0

initially. As the greedy algorithm makes its selections to cover more vertices covered by

g∗ , ps increases. Thus ui decreases until it becomes 0 at step i = l. Expressing the cost

in terms of ui, we have
∑

s⊣g∗

ck−1
s =

l
∑

i=1

(ui−1 − ui) ·
1

rgi

where ui−1−ui is the number of nodes s ⊣ g∗ that are covered by gi for the kth time, and

1
rgi

is the distributed cost of the selection gi. Because of the greedy choice, gi is chosen

at step i because it gives the maximum reward. Meanwhile, the reward of selecting g∗ at

this step is exactly ui−1. Thus, ui−1 ≤ rgi
. Consequently, we have

∑

s⊣g∗

ck−1
s ≤

l
∑

i=1

(ui−1 − ui) ·
1

ui−1

≤

l
∑

i=1

(H(ui−1)−H(ui))

≤ H(u0)−H(ul)

≤ H(u0)−H(0)

≤ H(u0)

≤ H(|{s : s ⊣ g∗}|) (5.2)

where H(n) is the harmonic number of the integer n.



108

Combining inequality of 5.1 and 5.2, we have

|C| ≤
∑

g∗∈C∗

∑

s⊣g∗

ck−1
s

≤
∑

g∗∈C∗

H(|{s : s ⊣ g∗}|)

≤ |C∗| ·H(max(|{s : s ⊣ g∗}|))

Since the maximum number of sensor nodes s any grid location g can cover is |Vsensor|,

we have

|C| ≤ |C∗| ·H(|Vsensor|)

≤ |C∗| · (ln(|Vsensor|)− 1)

which gives us an approximation ratio of ln(|Vsensor|)− 1.

Figure 5.2(a) depicts a simple scenario illustrating the operation of the offline greedy

algorithm. The scenario consists of two sensor nodes a and b, shown as circles, residing in

a deployment area of a 5x5 grid. The task is to deploy the minimum number of beacons,

shown as squares, so that each sensor node connects to at least three beacons (k = 3).

The coverage radius of the beacons is 3 (i.e., a beacon at (0, 0) will cover sensors at (0, 1),

(0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) and (3, 0)). As seen in Figure 5.2(a),

a sequence of three beacons are deployed by the offline greedy algorithm. Initially, the

node potentials are pa = 0, pb = 0, and the set U contains all 25 grid points. The first

beacon is selected at grid (2, 1) as a greedy choice because the beacon would cover both

sensor nodes. Evidently, there is more than one grid point that covers both, but we

simply choose one of them. After the first beacon location is selected, the potentials

of both sensor nodes increase to 1 (pa = 1 and pb = 1). The selected location (2, 1) is
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(a)

 

(b)

Figure 5.2. Example of the greedy approximation of BD(k). The figure shows two cases:
(a) offline and (b) online.

removed from the set U and added to the cover set C. Since both potentials (pa and pb)

are not k yet, a second beacon is inserted and its location is greedily selected from the

remaining grid points in U . The algorithm continues until both potentials reach k (when

both sensor nodes are k covered).

5.6 Online Approximation of BD(k)

The offline algorithm of solving BD(k) assumes that the locations of the sensor

nodes are known, which essentially defeats the purpose of the beacon deployment. How-

ever, as shown even this simplified problem is NP-Complete when trying to minimize the

number of beacons. In this section, we remove the node position knowledge assumption.

We consider this problem to be an online problem in the sense that we have to select

the next beacon location based on the feedback (i.e., how many sensor nodes have been

covered) of the previous beacon locations. (In the offline version the feedback result is
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known before the beacon is deployed.) Our basic assumption of the online version is that

sensor nodes are uniformly distributed over the entire deployment area. We also assume

knowledge on the population of the sensor nodes. Based on these assumptions, we can

design a greedy online deployment algorithm, Algorithm 5, that selects beacon locations

by maximizing the coverage probability.

The online greedy algorithm maintains ps,g as the probability of the sensor node

s residing at grid location g. Assuming that sensor nodes are uniformly distributed,

ps,g is initialized to 1/|Vgrid|, where |Vgrid| is the size of the potential beacon locations.

To select the next beacon’s location, the algorithm first sums up all the neighborhood

probabilities ps,g for each grid point; a greedy choice is then made to pick the grid point

with the maximum overall ps,g value:

gmax ← arg max
g∈U

∑

g′⊣g

∑

s

ps,g′

In reality, the greedy choice might not be the best one, since it is unforeseeable how

many sensor nodes it will cover until the beacon is deployed. However, as more beacons

are deployed and feedback is received, the probability distribution ps,g will be refined to

reflect the actual sensor location. For each of the sensor nodes that are already covered

k times, the ps,g value is set to 0, indicating that the k-cover condition of this node is

satisfied. For all other sensor nodes, the procedure AdjustProbability (Algorithm 6) is

called to adjust the ps,g values based on the latest beacon choice. If a sensor node is

not within the range of the newest beacon, the algorithm raises the probability of the

grid points that are within the range of the beacon compared to those that are not. If a

sensor node is within the range of the latest beacon, the reverse is done. The purpose of

AdjustProbability is to reduce the scope of the possible location for each sensor node and

thus help the algorithm to make better choices in subsequent iterations. The algorithm
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stops when all the probabilities (ps,g) become zero, i.e., when all sensor nodes are k

covered. Figure 5.2(b) depicts a possible outcome of the online greedy algorithm given

the same scenario of localizing two sensor nodes in a 5 by 5 grid and k = 3. The shown

instance of the online algorithm took four beacons (one more than the offline version) to

complete the k-cover.

Algorithm 5 Greedy Online Approximation of BD(k)

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: ps,g: the probability of the sensor s residing close the grid location g
4: operator i ⊣ j: location i can be covered by broadcast from location j
5: initialize ps,g ← 1/|Vgrid| for all s ∈ Vsensor and g ∈ Vgrid

6: U ← Vgrid

7: C ← Ø
8: while ∃s ∈ Vsensor, g ∈ Vgrid : ps,g > 0 do
9: select gmax ← arg maxg∈U

∑

g′⊣g

∑

s ps,g′

10: for all s ∈ Vsensor do
11: if s is covered by k beacons then
12: ps,g ← 0 for all g
13: else
14: AdjustProbability(p, s, gmax)
15: end if
16: end for
17: U ← U − {gmax}
18: C ← C

⋃

{gmax}
19: end while
20: return C

The initialization phase of Algorithm 5 has a runtime of O(|Vsensor| · |Vgrid|). The

condition of the outer loop at line 8 can be validated in O(|Vsensor| · |Vgrid|). Within the

outer loop, the greedy selection step at line 9 has a runtime of O(|Vsensor| · |Vgrid|), and the

for loop at line 10 also has a runtime of O(|Vsensor| · |Vgrid|) (the runtime of the function

AdjustProbability is O(|Vgrid|). Thus, the total run time of each iteration of the outer

loop is O(|Vsensor| · |Vgrid|). In the worst case, the algorithm will cover all grid points, in



112

Algorithm 6 AdjustProbability(p, s, g)

1: sum← 0
2: if s ⊣ g then
3: for all g′ : g′ 6⊣ g do
4: sum← sum + ps,g′

5: ps,g′ ← 0
6: end for
7: I ← set of all g′ : g′ ⊣ g, ps,g′ > 0
8: for all g′ ∈ I do
9: ps,g′ ← ps,g′ + sum/|I|

10: end for
11: else
12: for all g′ : g′ ⊣ g do
13: sum← sum + ps,g′

14: ps,g′ ← 0
15: end for
16: I ← set of all g′ : g′ 6⊣ g, ps,g′ > 0
17: for all g′ ∈ I do
18: ps,g′ ← ps,g′ + sum/|I|
19: end for
20: end if

which case the outer loop will execute in O(|Vgrid|) time. Overall, the worse case runtime

complexity of the algorithm is O(|Vsensor| · |Vgrid|
2).

One note on the actual implementation: although the online greedy algorithm as-

sumes that the sensor nodes are uniformly distributed, it is equally effective if the spatial

distribution of sensors is known before the deployment process starts. One can simply

adjust the initial probability distribution to match the perceived location distribution.

If it is expected that the sensor nodes are more likely to concentrate on a smaller area

in the deployment region then the probability distribution should be adjusted to give

higher probability to the locations within this area. A more accurate initial probability

distribution will enable the online algorithm to make better decisions.
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5.7 Measurement Quality

Our prior analysis makes the simple assumption that for a particular measurement

model (i.e., ranging, angle, or both), k measurements are required to localize the node.

Each measurement is treated equally. This assumption is valid only when two conditions

are satisfied: i) the measurements are not collinear and ii) the measurements are perfect

without any noise. While the first condition can be validated during the localization

process after the beacons are deployed, it is much more difficult to satisfy the second

condition. After all, measurement noise is not the exception but the reality. In reality,

however, noisy measurements imply that not all measurements should be treated equally.

Certain measurement might contain more useful information than others. Take localiza-

tion using ranging for instance, the following two factors impact the localization accuracy

due to noisy measurements:

1. Distance between the sender and the receiver. With ranging using RSSI, the amount

of noise increases as the distance increases.

2. Angle between the measurements. Intuitively, we would prefer the ranging mea-

surements to come from more “spread out” beacons.

We have performed some experiments to better understand the impact of the second

factor. In these experiments, we intend to localize a node by measuring the noisy ranging

readings from beacons located at a unit circle (eliminating the effect of beacon distance).

By varying the noise ratio and the angle between each measurement at each run, we

collect the error of the estimated location after the trilateration. All our results have a

95% confidence that the error between the mean and the sample average is less than 5%

of the mean.

In Figure 5.3(a), results are shown when exactly three beacons are used with a

fixed pair-wise angle (estimation error is measured on the unit of the unit disk graph).

For instance, if the angle is set to be 20◦, each of the three ranging readings are 20◦
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Figure 5.3. Impact of the beacon location on ranging based localization. The figure
shows the cases when (a) setting the pair-wise angle and (b) limiting the angle range.

apart. The experiment shows that increasing the pair-wise angle greatly helps reducing

the localization error until the angle exceeds about 60◦ after which the error stabilizes.

Thus, for this particular scenario, localization error can be minimized if a pair-wise angle

greater than 60◦ can be used.

The experiment shown in Figure 5.3(b) sets an upper limit on the angle range

allowed during localization. For instance, if the angle limit is set to 20◦, all readings have

to come from beacons with pairwise angles between 0◦ and 20◦. Here, we fix the noise ratio

to 0.05. The figure shows that the localization error decreases as the angle limit increases

until about 180◦ after which the error stabilizes. For the same angle limit, increasing the

number of beacons also decreases the error. However, in general the number of beacons

needs to be doubled in order to reduce the error by half. Furthermore, it would be more

economical to spread out the beacons. For example, to obtain a localization error less

than 0.1 unit in our simulations, only three beacons are needed if the angle range is

greater than 100◦, whereas six beacons are needed if the range is limited to 40◦.
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5.8 Applying Cramer Rao Bounds (CRB)

Chapter 2 introduced the concept of Cramer Rao Bounds. In the context of local-

ization, the Cramer Rao Bound (CRB) [38, 65, 66] is often used to mathematically qualify

the lower bound on the localization error. However, the CRB is not specifically designed

for the localization problem. It is in fact a more general tool to bound the covariance

of any unbiased estimator given any measurement data. For the localization problem,

the CRB is a function of the following: i) the relative locations of the sensor nodes and

the beacons, ii) the measurement model determined by the measurement type, and iii)

the noise model characterizing the terrain and the environment. Previous works have

derived the CRB formulas for a number of measurement types including RSSI ranging

[66], TOA ranging [66], AoA [65], and a hybrid of RSSI and TOA [13]. Note that the

actual localization algorithm being used has no impact on the CRB. Thus, the CRB is

essentially a bound determined solely by the particular localization scenario. It gives an

indication of how difficult a particular localization scenario is and what is the best any

localization algorithm can do given the scenario.

Figure 5.4 shows the Cramer Rao Bound (CRB) of a single sensor node based on the

RSSI ranging measurement. Here, we use the signal propagation model and noise model

given in [66]. In particular, we assume that the range measurement noise is Gaussian

with a constant variance introduced by shadowing. The received signal strength from a

beacon location i to a sensor node j that are di,jm apart is therefore

N(P0 − 10nplog10(di,j/d0), σ
2
dB)

where P0 is the received signal strength at a reference distance d0, and we use d0 = 1m.

np is the path loss exponent that is environment-dependent, and σ2
dB is the constant

variance introduced by the shadowing. As in [66], we choose np = 1 and σ2
dB = 1.7.
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Figure 5.4. The Cramer Rao Bound (CRB) of RSSI measurements. The figure shows
two cases: (a) 3 beacons and (b) 4 beacons.

In Figure 5.4 the CRB was measured within a 2 by 2 unit square, with the beacons

placed at an inner circle of radius 0.5 unit centered at (1, 1). In the case of three beacons

(Figure 5.4(a)), the beacons are placed with equal angles at (1+ cos (0)/2, 1+ sin (0)/2),

(1 + cos (2/3π)/2, 1 + sin (2/3π)/2), and (1 + cos (4/3π)/2, 1 + sin (4/3π)/2). In the case

of four beacons (Figure 5.4(b)), they are placed at the four corners: (3/2, 1), (1, 3/2),

(1/2, 1), and (1, 1/2). In either case, it is clear from Figure 5.4 that locations within

the beacon deployment radius have lower CRB. When the location exceeds the radius,

the CRB progressively becomes greater, which is consistent with the intuition that it

is more difficult to localize the nodes outside the convex hull formed by the beacons.

Furthermore, compared the case of three beacons with that of four, it is clear that

increasing the number of beacons reduces the overall CRB.

5.9 CRB-Based Approximation of BD

We raised the issue that the localization accuracy is impacted by the beacon loca-

tion and the measurement noise. Depending on the particular beacon location, the actual

localization results can vary greatly due to the measurement noise. Thus, in practice it
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might not be sufficient to only require that each sensor node is covered by k beacons

(k = 3 for 2-dimensional ranging localization), since the localization accuracy varies de-

pending on how those k beacons are placed. In this section, we address the accuracy

issue in the BD problem. In particular, we modify the offline and online approximation

algorithms presented earlier to use the CRB as the stoppage and greedy selection criteria.

Algorithm 7 shows the pseudo code of the CRB modified version of the greedy

offline algorithm. The algorithm will continue to deploy beacons until the CRBs of all

sensor nodes are reduced below a given threshold crbT . For each sensor node s, we track

the location of beacons that cover s. The CRB of s can then be calculated from the

beacon locations and stored in cs. Let function CRB(s) return the CRB of the node s

with the already deployed beacons. We also define a function called CRBP (s, g) that

returns the potential of the new CRB with a new beacon g added. (The CRBs of initially

unlocalized sensor nodes are set to infinity.) At each iteration, a greedy choice, gmax, is

made to pick the next beacon location that will cause the maximum reduction to the

CRB of the sensor nodes, i.e., maximizing CRBP (s, g)− CRB(s):

gmax ← arg max
g∈U

∑

s:s⊣g

(CRBP (s, g)− CRB(g))

The pseudo code of the modified CRB based online solution is shown in Algorithm 8.

For the online version, since the exact location of each sensor node s is unknown, we

present it as a probability distribution over the entire deployment area, where ps,g is

the probability of node s residing close to the grid location g. Furthermore, the CRB

calculation needs to based on a perceived instead of the exact sensor location. Thus, if a

sensor s is perceived to be located at g′, CRBg′(s) returns the CRB of s at g′. The greedy

beacon selection is then based on maximizing the sum of ps,g′ · (CRBP
g′(s, g)−CRBg′(s))

for all locations g′ within the range of the beacon at location g. In other words, the
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Algorithm 7 Greedy Offline Approximation of BD(crbT )

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: CRB(s): CRB of the sensor s
4: CRBP (s, g): Potential CRB of the sensor s when adding a beacon broadcast at g
5: operator i ⊣ j: location i can be covered by broadcast from location j
6: initialize cs ← inf for all s ∈ Vsensor

7: U ← Vgrid

8: C ← Ø
9: while ∃s ∈ Vsensor : CRB(s) > crbT do

10: select gmax ← arg maxg∈U

∑

s:s⊣g (CRBP (s, g)− CRB(g))
11: for all s : s ⊣ g do
12: re-calculate CRB(s)
13: end for
14: U ← U − {gmax}
15: C ← C

⋃

{gmax}
16: end while
17: return C

greedy location choice is the one that maximizes the overall CRB reduction of all sensor

nodes considering their probabilities of residing within the beacon range:

gmax ← arg max
g∈U

∑

g′⊣g

∑

s

ps,g′ · (CRBP
g′(s, g)− CRBg′(s))

Figure 5.5 shows results of the offline and online greedy algorithms of BD(crbT )

running on a simple scenario of two sensor nodes (with the same RSSI parameters as

in [66]). The CRB threshold is set to crbT = 1. The sample run for the offline version

selected three beacons while the online version picked four. Compared to results in

Figure 5.2, which were obtained using k-cover (k = 3) as the objective, it is clear that

the CRB requirement provides a better spread for the beacon locations. In the case of

the offline version, the three beacons selected in Figure 5.2(a) constitute a spread of 45◦

angle for both sensor nodes, while the beacons in Figure 5.5(a) constitute a spread of

90◦ for node a and 63◦ for node b. Wider angle spread is also observed in the online
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Algorithm 8 Greedy Online Approximation of BD(crbT )

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: CRBg′(s): CRB of the sensor s assuming it’s located at grid location g′

4: CRBP
g′(s, g): Potential CRB of the sensor s, assumed to be located at g′, when adding

a beacon broadcast at g
5: ps,g: the probability of the sensor s residing close the grid location g
6: operator i ⊣ j: location i can be covered by broadcast from location j
7: initialize ps,g ← 1/|Vgrid| for all s ∈ Vsensor and g ∈ Vgrid

8: U ← Vgrid

9: C ← Ø
10: while ∃s ∈ Vsensor, g ∈ Vgrid : ps,g > 0, CRBg(s) > crbT do
11: select gmax ← arg maxg∈U

∑

g′⊣g

∑

s ps,g′ · (CRBP
g′(s, g)− CRBg′(s))

12: for all s do
13: if s ⊣ gmax then
14: re-calculate CRBg′(s) for all g′ ⊣ gmax, ps,g′ > 0
15: end if
16: AdjustProbability(p, s, gmax)
17: end for
18: U ← U − {gmax}
19: C ← C

⋃

{gmax}
20: end while
21: return C

version. The better spread of the beacon locations dictated by the CRB requirement

would ultimately result in more accurate localization.

In practice, the threshold crbT is a system configurable variable, which should be

adjusted according to the desired localization accuracy. As expected, a lower crbT would

result in better localization accuracy at the expense of more deployed beacons. The

choice of crbT also affects the runtime complexity. In the worst case, when crbT is close

to zero, the outer loops of both offline and online versions would continue executing

until all potential beacon locations are used, i.e., O(|Vgrid|). For the offline version in

Algorithm 7, line 10 can be implemented in O(|Vsensor| · |Vgrid|). The inner loop at line 11

can also be implemented in O(|Vsensor| · |Vgrid|). Thus, the worst case runtime complexity
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of the offline version is O(|Vsensor| · |Vgrid|
2). The worst case runtime complexity of the

online version (Algorithm 8) can be similarly derived to be O(|Vsensor| · |Vgrid|
3).

The BD(crbT ) approximation methods select the beacon locations based on the

perceived CRB reduction, so there remains the question on how to obtain accurate CRB

measurements. The CRB calculation depends on the range or angle measurement model,

whose perceived error characteristics are explicitly included into the calculation. How-

ever, the error characteristics (such as shadowing and multi-path fading in RSSI) are

generally environment-specific. The CRB measurements will suffer in the case when it

is not possible to estimate those error characteristics ahead of time, or when the error

characteristics vary greatly within the deployment area due to vastly heterogeneous ter-

rain. In such cases, the empirical method introduced in [9] could be used, which allows

the beacons to estimate the error characteristics by observing each other. Based on the

generally valid assumption that environment-specific characteristics tend to be similar

around the same neighborhood, the estimated error characteristics between the beacons

should be similar to those between beacons and sensor nodes.

5.10 Indirect BD Approximation: BD-E(k) and BD-E(crbT)

The BD approximation methods introduced earlier require all sensors to be localized

by the neighboring beacons directly. By abiding such requirement, we are able to deduce

the complexity and approximation bound of this difficult problem. However, in practice it

is often desirable to relax such requirement and allow sensor nodes to localize indirectly

by observing other sensor nodes. In many cases, a sensor node does not need direct

measurement from the beacons. Instead, the measurements from the sensor nodes will

constitute a certain rigidity requirement that helps to localize the node. While enforcing
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(a)

 

(b)

Figure 5.5. Example of the greedy approximation of BD(crbT ). The figure shows two
cases: (a) offline and (b) online.

a complete rigid network [18, 25, 29] is beyond the scope of this work, we would extend

our BD approximation methods to allow such indirect localization.

In particular, we make a simple modification to the proposed BD approximation

methods to treat any localized sensors as pseudo-beacons, and thus their estimated loca-

tions can then serve as new beacon locations for other neighboring sensors. We call those

methods BD-E(k) and BD-E(crbT ) (E for Extended) accordingly. Intuitively, compared

to BD(k) and BD(crbT ), BD-E(k) and BD-E(crbT ) would reduce the number of beacons

required to localize the network when the sensors are densely populated. However, the

localization error can increase since the error of the localized nodes can now propagate

to other nodes.
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5.11 Simulation Results

We evaluate the performance of the various BD approximation methods using com-

puter simulations. The simulation environment consists of a number of sensor nodes

uniformly distributed over a deployment area of a 50 by 50 grid. For every deployment

scenario, we run each of the approximation methods and collect the number of beacons

needed to localize all sensor nodes. The beacons are assumed to have a transmission

range of 5 grid radius. For BD(k), we assume a 2-D localization which requires k = 3.

In the case of BD(crbT ), we assume the range is obtained via RSSI readings with a con-

stant Gaussian noise added. We use the same signal propagation and noise model as

in [66], with a reference distance d0 = 1m, a path loss exponent np = 1, and a noise

variance σ2
dB = 1.7. In addition to BD(k) and BD(crbT ), we also include the results of

a simple random deployment algorithm, in which the beacon locations are i.i.d. uniform

randomly selected until the stoppage criteria (k = 3 or CRB < crbT ) is satisfied. The

simulation results presented in the figures are the average of 30 different runs with the

95% confidence interval shown as the vertical error bars.

5.11.1 Network Size

Figure 5.6 compares the total number of beacons deployed for each of the approx-

imation methods while varying the number of sensor nodes residing in the deployment

area. Figure 5.6(a) shows the results of using k = 3 as the stop condition, and Fig-

ure 5.6(b) uses CRB threshold of crbT = 1. As expected, in both the k and the crbT

cases, the online approximation methods deploy more beacons than the offline versions.

However, the difference does not seem to increase as the number of sensor nodes increases.

This indicates that the online version would be preferable with a denser deployment area,

since the relative difference between the online and offline version becomes smaller as the

number of sensor nodes increases.
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Figure 5.6. Number of beacons deployed using (a) BD(k) and (b) BD(crbT ).

5.11.2 Localization Error

Different BD approximation methods produce different beacon locations, which

ultimately affect the localization accuracy. The actual localization error of each method

is shown in Figure 5.7. In the k-cover version (Figure 5.7(a)), the offline algorithm

produces the greatest amount of the error, and the random algorithm produces the least

amount of error. This is a direct result of the number of beacons deployed, since the k-

cover version does not consider how the relative beacon location impacts the localization

error. The random algorithm deploys the largest number of beacons, thus producing

the least amount of localization error. In the crbT version (Figure 5.7(b)), however, our

algorithm explicitly considers the localization error as a part of the deployment strategy.

5.11.3 CRB Threshold crbT

To demonstrate the effect of the threshold crbT in beacon deployment, we use a

scenario of 20 sensor nodes in the deployment area while varying crbT from 0.1 to 1.2. The

number of beacons deployed by the random algorithm, and offline and online version of

the BD(crbT ) approximation methods are shown in Figure 5.8(a). Note that as the crbT
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Figure 5.7. Localization error using (a) BD(k) and (b) BD(crbT ).

threshold decreases, the increase in the beacon population surpasses linearity. As shown

in Figure 5.8(b), the actual localization error decreases as the crbT lowered. Furthermore,

Figure 5.8(b) shows that the localization error stays relatively constant for all three

deployment algorithms, even though the random algorithm deploys a significantly higher

number of beacons than online and offline BD(crbT ). This result demonstrates that the

selected threshold crbT effectively controls the localization error. Thus, by selecting the

appropriate crbT , we can balance the trade-off between the localization accuracy and the

overhead associated with the number of beacons deployed.

5.11.4 Indirect Localization

Figure 5.9 shows the number of beacons deployed by the indirect localization meth-

ods BD-E(k) and BD-E(crbT ) compared to the direct methods. As expected, the indirect

methods reduce the number of deployed beacons as those localized sensors now serve as

pseudo-beacons. As the sensors become more densely populated, more nodes can share

their localization information with their neighbors. Thus, more beacons can be reduced

with increasing the number of sensors as the figure indicates.
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Figure 5.8. Results of varying the threshold crbT in BD(crbT ). The figure shows (a)
number of beacons deployed and (b) average localization error.
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Figure 5.9. Number of beacons deployed with various BD-E approximation methods.
The figure compares (a) BD-E(k) vs. BD(k) and (b) BD-E(crbT ) vs. BD(crbT ).
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5.12 Summary

In this chapter, we have studied the beacon deployment problem for localizing sen-

sors (i.e., sensor nodes). The objective is to deploy the minimum number of beacons to

localize all sensor nodes. We have shown that the multiset cover problem (MSC), a su-

perset of the beacon deployment problem, is NP-Complete. We then proposed a number

of approximation algorithms to solve the beacon deployment problem. An offline version

of the approximation algorithm greedily picks the beacon location that covers the largest

number of uncovered sensor nodes and is used as a basis for result comparison. The online

version maintains a probability distribution of the estimated node locations, and selects

a location for the beacon by maximizing the potential of reducing the overall variances

of the location distributions. We further describe a variation of the proposed algorithms

that uses Cramer Rao Bounds (CRB) as the evaluation criteria, which incorporates the

localization accuracy into the deployment problem.

While our simulations only consider the ranging using RSSI as the measurement,

the proposed framework will work for any other measurement types such as ToA and

AoA. Essentially, the k-cover and crbT requirements are independent of the measurement

types except for the model from which k and CRB are calculated. While in this work the

sensor nodes are localized via the beacons directly, we have also shown the advantage of

collaboration among sensor nodes. Using this collaboration results in smaller number of

beacons required, as sensor nodes would need to hear less of the beacons directly.



CHAPTER 6

LOCALIZATION USING A MOBILE BEACON

6.1 Problem Definition

The localization problem can also be solved using a single mobile beacon that travels

through the deployment area. Given a network graph G = (Vregular, E), the objective of

a mobile beacon-assisted localization algorithm (MBALA) is to find the location of the

nodes Vregular by a sequence of measurements provided by a mobile beacon.

The mobile beacon-assisted approach is especially suited to localize wireless sen-

sor networks (WSN). WSNs are special cases of MANETs, and the general localization

algorithms designed for MANETs work in WSNs as well. Thus, if we model the local-

ization problem in WSNs as the general ad hoc localization problem (GAHLP) defined

in Chapter 2, then all algorithms that solves GAHLP will work for WSNs. However,

many characteristics unique to WSNs make it practically infeasible to apply MANET

localization algorithms; some of the WSN specific challenges include:

1. Limited computing capacity. Sensor networks consist of nodes with very limited

computing capacity. In addition, sensors are likely to have restricted and limited

energy sources further restricting the total amount the computation that can be

performed by them. This limited local computing capacity of sensor networks

precludes any localization algorithms that require extensive computation at the

sensor nodes.

2. Limited sensory capacity. Studies have shown that more accurate localization can

be performed if nodes are capable of measuring distances and angles to their neigh-

bors. However for such operations additional hardware might be required (e.g.,
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to obtain the distance readings from neighbors, nodes have to be equipped with

sensors that measure RSSI or ToA). Angle of arrival (AoA) sensors are currently

technologically infeasible as they mostly rely on programmable directional anten-

nas. Availability of these sensory capacities just for the localization purpose may

increase the complexity and the cost of sensor nodes. Above and beyond, it may

be a strong and restricting assumption that all sensor nodes have the same sensory

capacity; thus, it is desirable to devise localization algorithms with less reliance on

a particular sensory capacity.

3. Stricter security requirements. One of the driving applications of sensor networks

is to monitor hostile battlefields for enemy activities. In such adversary environ-

ments, it is essential for localization algorithms to perform their tasks securely. For

localization algorithms that rely on sensor collaboration, it is important that the

results are not drastically skewed when a small number of sensors are compromised.

Unfortunately, most existing localization algorithms do not consider such security

requirement.

4. Deployment requirement. WSN nodes are generally deployed in an ad hoc manner;

when sensors are “spread” over a battlefield, it is often difficult to exercise any

control over the resulting topology. Thus, in the context of localization it is difficult

to obtain an ideal beacon placement strategy. For instance, it is well known that

most algorithms perform better when beacons are placed around the edge of the

network. However, such beacon deployment is often difficult to achieve. Network

mobility is another factor; unlike MANETs, sensor networks are generally viewed

as stationary once deployed (although some researchers envision mobile WSNs).

Thus, it is often sufficient for the localization algorithms to ignore the mobility

requirement of MANETs.
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Those characteristics unique to WSNs make the mobile beacon-assisted localization

more attractive. In this method, a mobile beacon travels through the deployment area

while broadcasting its location along the way. Sensors localize themselves by monitoring

information coming from the beacon. Compared to the traditional localization methods

that rely on stationary beacons and collaborating nodes, localization using a mobile

beacon has the following advantages:

1. Less reliance on the network connectivity. For a network to be uniquely localized,

the necessary condition states that the network needs to be tri-connected and re-

dundantly rigid [29, 4]. However, such condition is difficult to satisfy in a sparse

sensor network, which could render it unlocalizable without deploying additional

nodes. The mobile beacon-assisted localization method has no such constraints and

it is suitable to localize sparse networks.

2. Overcome obstacles. Obstacles residing on the deployment field such as buildings,

hills and trees could cause significant measurement error of ranging and angle.

When sensors are deployed without prior knowledge of the obstacles, the inter-

sensor measurement can be error-prone. Since the mobile beacon actually travels

through the deployment area, it can potentially “see” those obstacles and avoid

them when providing the measurement.

The incremental beacon deployment methods presented in the previous chapter can

be modeled as mobile beacon-assisted localization. For each of the new beacon location

determined by the deployed method, one can envision that the location is actually served

by a mobile beacon. The mobile beacon moves there and then localizes based on the

measurement at that location. Thus, the mobile beacon essentially acts like a sequence

of virtual beacons from which the regular nodes can be localized. Compared to deploying

physical beacons, using a mobile beacon as virtual beacons may be a less expensive

alternative hardware-wise.
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Other than serving as the mobile beacon, a robot can also perform other tasks

necessary for the operation of sensor networks. For instance, the robot can be used

to reconfigure or recalibrate sensors, synchronize the clocks, aggregate the collected data

from the sensors, deploy new sensors, and disable existing ones. Thus, in sensor networks

that already incorporate mobile robots as part of the design, enabling localization through

mobile beacons can be a cost-effective way of achieving sensor network localization.

6.2 Previous Works

The concept of localization using a mobile beacon has been implemented in a real

world scenario [16], in which an autonomous CSIRO helicopter, equipped with a GPS

receiver, was used as the mobile beacon to localize 54 Mica Motes deployed in an outdoor

environment. A simple constraint-based Centroid localization method was used in [16].

The estimated sensor locations were applied to compute the shortest paths to be used

for navigation purposes.

A straight-forward technique using the above method is described in [78], where

sensors are required to receive at least three communications with the same RSSI reading

from the beacon. Given that the same RSSI readings imply similar distances to the

beacon locations, the physical sensor location can be derived using simple geometric

functions. Computation-wise, this method is simple making it suitable for resource-

limited sensors. However, it requires the beacon to directly pass by the ranging area of

the sensor. In addition, in most cases, the beacon has to pass by the sensor twice because

the sampling positions of the beacon when the three RSSI readings are taken should not

be on the same line. This method also assumes that errors are insignificant in the RSSI

to distance translation.

Instead of computing the location directly, a probabilistic approach may be taken;

here sensor location is viewed as a probability distribution over the deployment area.
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In [73], sensors measure a series of RSSI readings from the mobile beacons and localize

themselves by a sequential update process to the probability distributions of their lo-

cations. Each sensor starts with a uniform distribution covering the entire deployment

area. As the beacon passes through, the distribution is updated to fit the received RSSI

readings (using a propagation model). The method is further improved in [68] by adding

the negative information (that is, the information that the beacon is out of range) as

well as RSSI readings from the neighbors. These probabilistic methods provide much

improved location estimates, but have the drawback of being complex. For a deployment

grid of n by n units, the time and space complexity is O(n2). As the sensors at present

time have very limited resources it is difficult to implement these methods directly for

the large deployment. Indeed, the experimental results shown in [73] are performed on

pocket PCs, which are much more powerful than common sensors.

A similar method of localizing the networks using a mobile beacon was presented

in [21]. Instead of the actual probability distribution, the possible sensor locations are

represented there with a bounding box. As the beacon passes by, the area contained

by the bounding box is progressively reduced as positive and negative information are

processed. The bounding box method drastically simplifies the probability computation,

making it possible to implement this method on sensors. However, such large simplifi-

cation has its side-effects in that it sacrifices the preciseness of the distribution for its

simplicity as it is not possible to describe multiple possible locations with a single box.

There is also an additional problem when noise from the ranging sensors is considered.

This method may work well when ranging error is minimal, however when erratic errors

are present (which is inevitable when using RSSI ranging), there might be situations

where no bounding box exists to satisfy all readings.

In [64], the authors proposed a localization algorithm based on an extended Kalman

filter. The localization is performed by storing the location states of every sensor as a
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vector within a mobile robot and updating this state vector based on the RSSI measure-

ments obtained as the robot moves within the deployment area. The authors implemented

the method using Mica2 motes as the sensors and a Lego MindStorm robot as the mo-

bile beacon. Our work is similar to that of [64], but we use a particle filtering method

instead. Furthermore, we view the localization problem of each sensor as a local opti-

mization problem, in which a solution is provided when the sensor hears at least three

non-collinear beacon broadcasts. The model used in [64], however, views the problem as

a global optimization.

6.3 Localization Using a Randomly Moving Beacon

Recognizing various drawbacks of previous mobile beacon-assisted localization meth-

ods, we propose a hybrid approach that uses a single mobile beacon to localize nodes in

WSNs. We propose a probabilistic framework where sensory readings are processed using

a Monte Carlo filtering technique to compute the probability distributions as densities

of particle samples. In our method, the localization is performed entirely at the mobile

beacon instead of the sensors. During localization, the sensors are only responsible for

relaying the sensory data and localization results. For a sensor deployment over a large

area, unmanned vehicles or airplanes can serve as mobile beacons. Localization can be

performed by a computer onboard or at the base station after the mobile beacon relaying

the sensory data back via a secure channel. Our method also supports sensors of different

sensory capacity such as ranging, angle or connectivity only, and allows them to co-exist

in the same network. Our Monte Carlo filtering technique allows those different types of

sensors to collaborate during localization.

By sampling a random process with a random variable and maintaining the out-

comes (samples) of the random variable, the probability density of the random process

can be approximated. In our case the random variable is two dimensional and takes a
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value according to the probability of a node’s physical location. For instance, when a

node is not yet localized, the best estimate about its location’s random variable is that

it is uniformly distributed and thus the location distribution can be approximated as a

set of randomly placed samples over the entire deployment area. When a node receives a

transmission from the mobile beacon, it will obtain a distance reading d from the beacon

as well as the beacon’s location; the random variable’s underlying distribution now is

modified to a uniform distribution over a circle around the beacon and thus samples will

be placed on a ring around the beacon with radius d. When a second distance read-

ing from the beacon (residing at a different location) is overheard, the random variable

(optimally) becomes a discrete random variable with two equal probabilities at the in-

tersection points of two rings (the sample set will concentrate on the intersection points

of two rings). The exact location can be found when the third broadcast is overheard,

assuming all three beacon locations are not collinear.

Overall, there are advantages and disadvantages of using sample points to rep-

resent probability densities. While preciseness of actual distributions is somewhat lost

by approximating them with sample points, the real advantage of using sample points is

that we free ourselves from the complexity of individual distributions (as all distributions

would have to be described by mathematical formulas even in the presence of errors). To

represent more complex distributions, or to represent distributions more precisely, only

the population of the sample set has to be increased. Compared to the bounding box

method in [21], sample sets give much better resolution and can deal with distributions

with several significant “modes”. (For instance, the bounding box cannot precisely de-

scribe the actual distribution of the two intersecting rings as described above.) Without

the loss of generality in the following discussion we will assume that all sensors and the

mobile beacon have the same transmission range. (Our model is easily extended to cases

where this is not true; however for the sake of a simple discussion we will keep the pre-
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vious assumption.) A pair of sensors or a sensor and the beacon can overhear each other

if they are in each other’s range, i.e., when they are neighbors.

Algorithm 9 presents a pseudo-code for our localization algorithm. Sensors are

responsible for collecting the range sensory data from neighbors, i.e., this data contains

at least one-hop connectivity information. The same data will also include the range

or AoA readings from the neighbors if such sensors are available. Such data can be

easily collected by observing “Hello” messages from neighbors. The sensors will await

the arrival of the beacon, and transmit the collected one-hop sensory data to the beacon.

All localization processing is done at the beacon and the result is transmitted back when

a sensor is successfully localized.

Algorithm 9 Localization procedure executed at each sensor

form a observation set Rv = (...rw...), where rw is an observation from neighbor w
send Rv to beacon upon request
receive localization result (id, x, y, var)
if id = v then

(x, y) is the location of the sensor, and var is the variance
else

forward (id, x, y, var) to the neighbor id
end if

The localization algorithm at the mobile beacon is listed as Algorithm 10. Location

distributions for sensors are stored as sample sets at the mobile beacon. We assume that

the movement of the beacon is defined by a bacon movement model. For each new location

of the beacon, there are two types of observations that are useful to localize the sensor:

i) positive observations in which a sensor can hear the beacon; ii) negative observations

where a sensor is out of range. The beacon updates the localization distributions for

both positive and negative observations. To reduce the amount of processing, we define

a critical region for each sensor v, so that the location distribution will only be updated
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when the beacon arrives at the critical region. For connectivity-only observations, it is

more useful to update the distribution as the beacon just enters or is about to leave

the sensor range. Range-based observations are useful when the movement trajectory

is not collinear. AoA-based observations do not have many restrictions as long as the

beacon does not pass directly over the sensor. Based on the above observations, we define

the critical region as a predefined outer ring of the maximum transmission range of the

beacon. The location distribution will be updated when a sensor just “arrives” in the

critical region or when the beacon changes its moving direction.

The beacon calls the UpdateFilter procedure to update the location distribution of

sensor v based on the sensor’s latest observation data Rv as well as a reference distribution

Xbeacon. The reference distribution Xbeacon is simply the current location of the beacon.

After the location distribution of sensor v is updated, the beacon will also update the

location distribution of v’s neighbors based on the one-hop observation data between the

pair of neighbors. Here, we use Xv as the reference distribution. This later step helps to

increase the localization performance as it allows the sensors to be localized even when

the beacon does not pass by them directly. Our simulations show that using the one-hop

observation data reduces the average estimation error up to 50% when the beacon can

only spend limited amount of time over the deployment area.

The beacon decides whether a sensor is localized based on the variance of the

location distribution. If the variance is reduced below a pre-define threshold Tvar (as

defined by the user or the application), the sensor is considered localized. The mode of

the particle density distribution is used as the estimated location, which is transmitted

back to the sensor. The variance of its particle distribution can also be sent back to

serve as an indicator of the estimation quality, with smaller variances indicating better

estimates. Note that the threshold Tvar could vary depending on the application that

utilizes the location information. It has been previously noted that precise locations are
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not essential for some applications [81]. In those cases, a larger threshold can be chosen

so that better localization coverage can be obtained.

Algorithm 10 Localization procedure executed at the mobile beacon

R̂← storage of all observation sets
Xv ← sample set of sensor v, initialized uniformly
Xbeacon ← sample set of the beacon reflecting the current location
move over the deployment area based on a movement model
for all sensor v in R̂ such that there is new negative observation Nv do

Xv ← FilterUpdate(Xv, Xbeacon, Nv)
end for
if the current location is in the critical area of sensor v OR beacon just changed
direction then

request Rv from v
update Rv in R̂
Xv ← FilterUpdate(Xv, Xbeacon, Rv)
if var(Xv) < Tvar then

send localization result (v, x, y, var) to v, where (x, y) is the expected location
end if
for all v’s neighbor w do

Xw ← FilterUpdate(Xw, Xv, Rw)
if var(Xw) < Tvar then

send localization result (w, x, y, var) to v, where (x, y) is the expected location
end if

end for
end if

6.3.1 System Model

To apply the classic Monte Carlo sampling-based Bayesian filtering approach de-

scribed in the previous section, we need to provide a system model and a measurement

model. For the system model, we simply assume that at any point in time the node

moves with a random velocity drawn from a Normal distribution with a mean of 0m/s

and a fixed standard deviation σ. No information about the environment is included in

this model, and as a consequence, the filter permits the estimates to move along arbitrary
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paths. Although we know that in the system sensor nodes do not move, we still have

to assign a movement model to enable particles to move closer to the actual location.

Thus, our system model is simply p(st|st−1) = N(0, σ), where N denotes the Normal

distribution.

In summary, using the above system model, at every iteration each particle s
(i)
t−1

within the sample set Xv will be randomly moved from its original location based on

the Normal distribution, resulting into particle s̃
(i)
t . The time complexity of this step is

O(N), where N = |X| is the size of the sample set; the space complexity is also O(N).

6.3.2 Measurement Model

The measurement model is used to modify the initial particle s̃
(i)
t to fit into the

latest observation. Consequently, the measurement model depends on the observation

data Rv as well as the reference distribution Xw. Here, we consider the following four

types of observation data: i) connectivity only, ii) exact ranging, iii) bounded ranging

and iv) AoA. Regardless of the observation data, the original particle s̃
(i)
t is updated by

comparing its location to the observation data using each particle in the distribution Xw

as its reference. More weights are awarded to the particles that are more consistent with

the observation. For every particle in Xv and Xw, the procedure AssignWeight is called

to award the weight according to the observation data, Rv, as follows:

1. Connectivity Only. There are two types of connectivity only observations: positive

and negative. We assume that all sensors are able to make connectivity observation

at the very minimum. When Rv is a positive reading, it means nodes v and w are in

the range of each other. Therefore, AssignWeight returns 1 if the distance between

the two samples d(s̃
(i)
t , s

(j)
t ) ≤ dmax, where dmax is the maximum range possible.

Otherwise, AssignWeight returns 0. Conversely, when Rv is negative, it means that
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the two nodes are out of range; thus AssignWeight returns 0 if d(s̃
(i)
t , s

(j)
t ) ≤ dmax,

and 1 otherwise.

2. Exact Ranging. When relatively reliable ranging data can be obtained using meth-

ods like ToA, the ranging observation can be used directly to update the weights.

Let the distance reading be d̂. We compare the observed distance d̂ with the sample

distance d(s̃
(i)
t , s

(j)
t ). In this case, we use the following evaluation equation

AssignWeight =











1− (
|d(s̃

(i)
t ,s

(j)
t )−d̂|

dmax
)2, |d(s̃

(i)
t , s

(j)
t )− d̂| ≤ dmax

0, otherwise

Compared to the earlier case where only connectivity data is available, the above

equation will award more weight to the particles more consistent with the observed

distance d̂. Also, the weight increases quadratically as the distance difference de-

creases. We note that more complex methods could be used; however our simula-

tions indicate that this simple method works as well as more complicated models.

3. Bounded Ranging. Ranging readings using methods such as RSSI are known to

be unreliable due to multipath fading and scattering. In reality, the received sig-

nal strength would be usually weaker than what is expected based on the signal

propagation model in the ideal environment. The distance estimate derived from

such RSSI reading would be usually larger than the actual distance. In such cases,

using the exact distance reading could adversely influence the location distribution.

Thus, we use the bounded ranging observation, in which we merely regard the ac-

tual distance to be bounded by the observed distance. Let the observed distance

reading be d̂. For the bounded ranging observation, AssignWeight returns 1 when

d(s̃
(i)
t , s

(j)
t ) ≤ d̂, and 0 otherwise.
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4. AoA. The AoA observation is similar to the exact ranging. Let â be to observed

AoA reading, and a(s̃
(i)
t , s

(j)
t ) be the AoA between the two particles. We use the

following equation

AssignWeight =











1− (
|a(s̃

(i)
t ,s

(j)
t )−â|

π
)2, |d(s̃

(i)
t , s

(j)
t )− d̂| ≤ dmax

0, otherwise

The above equation will only award weight to a particle if its calculated distance

to the reference particle is in range. More weight is awarded to the particles that

are more consistent with the AoA reading.

When the weights of all particles in Xv have been assigned, they are normalized so that

the sum of all weights becomes one. Then, particles are re-sampled with the probability

governed by the weight distribution. The new particle is generated using a Normal

distribution centered at s̃
(i)
t and a standard deviation being the average of the standard

deviation of the previous distributions Xv and Xw. The average is used here because our

measurement model is influenced by both the original distribution Xv and the reference

distribution Xw. As a common technique to avoid local minima, we also spread 5% of

the particles randomly.

Overall, the time complexity of the measurement step is O(N2), and the space

complexity is O(N).

Algorithm 11 shows the FilterUpdate procedure including both the system model

and measurement model. Notice that we actually skip the sample update steps if the

variance of the reference distribution Xw is greater than the variance of the current

sample distribution. This can be justified by the observation that it is unnecessary to

update the current location samples when the reference samples are worse. Only when

the reference samples are sounder than the current location samples should we run the
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update. This serves two purposes: i) reducing the amount of unnecessary processing;

and ii) preventing the distribution to diverge when the neighbors adversely influence

each other.

Algorithm 11 FilterUpdate(Xv, Xw, Rv)

if var(Xv) < var(Xw) then
return Xv

end if
Xv ← sample set for node v to be updated
Xw ← reference sample set for node w from which Rv is observed
Rv ← observation data
for all particle (s

(i)
t−1, w

(i)
t−1) ∈ Xv do

generate s̃
(i)
t ← s

(i)
t−1 · N(0, σ)

w̃
(i)
t ← 0

for all particle (s
(j)
t , w

(j)
t ) ∈ Xw do

w̃
(i)
t ← w̃

(i)
t + AssignWeight(s̃

(i)
t , s

(j)
t , Rv)

end for
end for
Normalize weights and resample s

(i)
t based on the weights

Randomly generate p% particles
return new sample Xv := {(s

(i)
t , w

(i)
t )|i ∈ [1, N ], w

(i)
t = 1/N}

6.3.3 Security Concerns

Compared to pure distributed localization methods such as APS, our method can

be regarded as “semi-centralized.” However, unlike typical centralized algorithms which

require the presence of all observation data, our method works more like an online al-

gorithm, in which all computation is done at the beacon. This model makes it easier

to secure the localization process simply by securing the beacon itself. Let us assume

that the beacon cannot be compromised, but the individual sensors can. A compromised

sensor could attack the localization process in two ways: i) reporting false observations to
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the beacon and ii) interrupting the localization results. The report of false observations

would affect the localization of the compromised sensor itself and more importantly those

of the neighboring sensors one-hop away. However, given time, the beacon would eventu-

ally move into the range of the neighbors and thus bypass the compromised sensor. Since

the Monte Carlo sampling method is designed to work under uncertain observations, the

false observations would eventually be filtered out as more direct observations are made.

To help preventing the second type of attack, we require all messages sent by the beacon

that contain the localization results to be encrypted with the receiver’s unique key (or

public key) and signed with the beacon’s signature. This way, the compromised sensor

will not be able to falsify the localization results. Although the decryption process can

be expensive considering the limited capacity of the sensors, it needs to be performed one

time only. A compromised sensor may still elect not to forward the localization results,

however such attack can be countered by sending the localization results via multiple

paths.

6.4 Simulation Results

We have built a custom C++ discrete event simulation to evaluate the performance

of our method. While our particle filter framework has no such restriction, we model all

nodes in our simulation to have an identical transmission power. Thus, we can effectively

control the network density (average degree) by varying the transmission range. When

a node is located within the transmission range of another node, we assume that it is

capable of receiving signal from the sender. We use a sensor network consisting of 49

nodes randomly deployed in a 1000m by 1000m square. A single mobile beacon flies

through the deployment area. An epoch-based model controls the beacon movement.

Starting from a random initial location, the beacon randomly chooses a velocity based

on Normal distribution with a means of 20m/s and a standard deviation of 20m/s. The
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beacon proceeds to move at the chosen velocity for an epoch of time that is exponentially

distributed with an expected value of 20s. At the end of the epoch, the beacon chooses a

new velocity and time. When the beacon reaches the boundary of the deployment area,

it bounces back at the same incidence angle (much like a ping pong ball). While this

model is much more realistic than a random motion model, we acknowledge that it still

lacks many features of real beacon movement. For instance, airplanes or vehicles tend to

make a smooth directional changes instead of a sudden turns.

Our simulation considers the following network parameters: the network connec-

tivity is d, the signal to noise ratio is σnoise, the number of particles used is N . For each

new network scenario, we record the average estimation error and coverage, based on

availability of four different types of location sensory data: i) connectivity only, ii) exact

ranging, iii) bounded ranging and iv) angle (AoA). We also consider the scenario where

mixed types of sensory data co-exist in the same network. The final results shown in the

figures are the average of 50 independent runs of different network topologies (exceeding

95% confidence with 5% relative error). We consider a sensor localized when its sample

variance is less than a threshold Tvar . Here we use Tvar = (dmax/2)2, that is, the standard

deviation of the sample is less than half of the sensor range; this coverage criterion is

rather arbitrary, as we can adjust to either a looser or a stricter threshold based on the

actual application requirement. We also note, that the estimation error shown in the

figures is the average of all nodes, including those not being localized.

6.4.1 Base Scenario

First, our simulations concentrate on a basic scenario so that we have a benchmark

as a basis for comparison. For the basic scenario, we pick the average degree to be

c = 3.63, the noise ratio to be σnoise = 0 and the particle population to be N = 200.

Figure 6.1 shows one such network. Networks of such low connectivity are highly likely
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Figure 6.1. Base scenario of a network of connectivity = 3.63. In the figure, two sensors
are connected if a link exists in between.

to be disconnected. Previous research indicates that it can be very difficult to localize

sparse networks using collaborative localization methods such as APS [14]. However,

we will show that it is still possible to obtain reasonably good localization results using

a mobile beacon. Figure 6.2 shows the estimation error of every sensors in the same

network of Figure 6.1 after the beacon has traveled over the deployment area for 500

seconds; we assume that AoA sensory data is used. The lines drawn from the nodes

point in the figure to the estimated locations.

The average estimation error and the coverage for each of the four types of avail-

ability of sensory data are shown in Figure 6.3. As the beacon spends more time over the

deployment area, the estimation error decreases while the coverage increases, indicating

that more nodes are being localized. After 200 seconds, the average estimation error is

reduced below the set threshold. Since the basic scenario does not include any noise,
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Figure 6.2. Estimation error at the end of a 500 second run. In the figure, the lines point
to the estimated locations.

sensory data based on exact ranging and AoA are accurate and thus we expect these

results to be better. Best results are obtained using the AoA data. AoA data has an

advantage over exact ranging because it takes only two (versus three) known locations

to localize the sensor. Also note that the improvement of the estimation results slows

down with time progressing. This is expected because of the (semi-) random beacon

movement. As time advances it becomes less and less likely for the beacon to reach a

previously unvisited area. Furthermore, the sensors that are the most difficult to localize

reside at the boundary of the network, where they are less likely to be visited by the

beacon.
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Figure 6.3. Results on the base scenario. The figure shows (a) estimation error and (b)
coverage.

6.4.2 One-Hop Neighbor Observations

As stated in Algorithm 10, the localization process does not only consider direct

readings from the beacon to the sensor, it also considers one-hop neighbor observations

among sensors. Figure 6.4 shows results when one-hop neighbor observations are not

used. In this case only the sensors that could directly overhear the beacon can be lo-

calized, which has been the traditional method of localization using a mobile beacon as

proposed in [73]. However, as shown in Figure 6.4, in such case the localization results

are inferior compared to our basic case as the estimation error increases and the coverage

decreases. In particular, the difference of the estimation error peaks between 200 and 300

seconds, where up to 50% performance increase can be obtained by adding the one-hop

neighbor observations. The advantage of using one-hop neighbor observations becomes

less significant as time advances because the beacon will cover more and more previously

not visited areas. Nevertheless, this experiment demonstrates the advantage of using

one-hop neighbor observations especially when the beacon can only spend limited time

over the deployment area.
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Figure 6.4. Results when 1-hop neighbor observations are not used. The figure shows (a)
estimation error (percentage of change to the base scenario) and (b) coverage (percentage
of change to the base scenario).

6.4.3 Connectivity

Figure 6.5 contains the results when the average degree is increased from 3.63 to

5.47. We can observe that the change within the first 100 seconds is rather large; this can

be credited to the fact that fewer sensors are localized during that time, which skews the

results heavily. The change stabilizes as time advances and more sensors are localized.

At the end of the 500 seconds simulation, we observe a decrease of estimation error by

25% to 50% and an increase of coverage by 15% to 30% when the connectivity increases

to 5.47. This is to be expected as most localization methods work better on denser

networks.

6.4.4 Noise

All of our previous experiments assumed an ideal scenario where location sensory

data are not influenced by noise. Here we will consider a noisy environment with the

random noise added to measurements. In the case of ranging, when the actual distance

is D, the measured distance will be D +D ·Uniform(0, σnoise). In this case, we consider
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Figure 6.5. Results of a denser network. The figure shows (a) estimation error (percentage
of change to the base scenario) and (b) coverage (percentage of change to the base
scenario).

a situation where noise always adds to the actual distance (as described in the previous

sections). The noise to AoA, on the other hand, is two-sided as it could either be added

to or be subtracted from the actual angle. Thus, if the actual angle is A, the measured

angle will be A + A · Uniform(−arcsin(σnoise), arcsin(σnoise)) (see section 2.6.6). This

makes the noise ratio comparable to ranging and AoA in that for the same noise ratio

σnoise, the amount of noise for AoA is about twice as much as that of ranging.

Figure 6.6 shows results when the noise ratio σnoise is set to 0.5 (i.e., 50% noise). In

all cases, the estimate’s error increases and the coverage decreases when compared to the

basic scenario. The increase is less significant for the bounded ranging and connectivity

type scenarios because they rely less on the exact sensory readings. But exact ranging

and AoA suffer up to 40% performance loss. As expected from the noise model, AoA

degrades about twice as much as ranging.
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Figure 6.6. Results when noise ratio σnoise = 0.5. The figure shows (a) estimation error
(percentage of change to the base scenario) and (b) coverage (percentage of change to
the base scenario).

6.4.5 Mixed Sensory Data

Since the same Monte Carlo localization framework can be applied to different sen-

sory data, we also simulate the scenario where nodes are heterogeneous in their location

sensory capabilities. We randomly assign a certain percentage of sensors to one of three

location sensor types: exact ranging, AoA or connectivity-only; Figure 6.7 shows the re-

sults. It is interesting to note that adding AoA sensors helps to increase the localization

performance. In particular, similar performance can be achieved using 1/3 of AoA, 1/3

of ranging and 1/3 of connectivity-only when compared to the scenario where all sensors

have ranging capacity.

6.5 Summary

In this chapter, we proposed a localization method for wireless sensor networks us-

ing a probabilistic technique employing Monte Carlo sampling. We considered a scenario

where a single mobile beacon passes through the deployment area. Location of nodes is

computed on the beacon instead of the sensors. Possible sensor locations are represented
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Figure 6.7. Results of using mixed sensory data. The figure shows (a) estimation error
and (b) coverage.

by particle samples for each node, which are updated as the beacon passes through the

network. The only tasks related to localization performed directly on the sensors are

monitoring the sensory data from the neighbors and relaying localization results. This

arrangement relieves the sensors of the heavy processing needed for accurate localization.

At the same time, the use of sample sets allows us to maintain more complex location

distributions without sacrificing the resolution. Furthermore, since all computation is

done at the beacon, the localization process can be more easily secured. Our method

also allows sensors of different sensory capacities, such as ranging and AoA, to exist in

the same network. Simulations show that our method is able to obtain localization error

of less than 50% of the transmission range and over 80% coverage on very sparse net-

works of degrees less than 4. Better results can be obtained by increasing the network

connectivity.



CHAPTER 7

PATH PLANNING OF MOBILE BEACONS FOR LOCALIZATION

7.1 Problem Definition

In Chapter 6, we investigated the localization problem using a mobile beacon. We

concentrated on the design of the actual localization algorithm executed as the mobile

beacon under the simple assumption that the mobile beacon moves based on a random

waypoint model. However, it is natural to question whether the random model can

be improved. In this chapter, we study the path planning problem for localization.

In particular, we ask the question of what should be considered as a better path to

be taken by the mobile beacon with sensor localization as our primary objective. We

further distinguish the path planning problem into static path planning and dynamic

path planning. For the static paths, the mobile beacon follows a pre-determined path to

perform localization. For the dynamic path planning, the mobile beacon is allowed to

adjust its path during localization.

Note that the path planning problem we are considering here is related but ul-

timately different than the path planning and localization problem in robotics. The

problem in the field of robotics deals with the issue of localizing and navigating robots in

an unknown environment based on a certain type of signal behavior (from a per-calibrated

RSSI map or pre-localized sensors) [84, 48, 23]. The problem we are considering here

deals with localizing the sensors using a GPS-equipped mobile robot.

150
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7.2 Static Path Planning

In this section, we study the problem of static path planning for localization prior

to the beacon deployment. For this problem, we assume that, although we do not know

the exact sensor locations prior to the beacon deployment, the sensors are uniformly

distributed over a predefined deployment area. The objective of our static path planning

is to design a path to guide the mobile beacon such that i) a higher percentage of the

sensors can be localized (i.e., better coverage), ii) the localization error is minimized

(i.e., better accuracy), and iii) the travel path length of the mobile beacon is shortened.

We consider such path planning as static since it is done prior to the localization and

cannot be modified during the localization. As such, the static path planning problem is

invariant to the actual localization algorithm.

Our main contributions in this section include two new static path types, CIRCLES

and S-CURVES, that are designed with localization accuracy and coverage in mind. We

again base our static paths on the concept of Cramer Rao Bounds (CRB), an unbiased

lower bound of localization accuracy, as the evaluator of path types. We then compare

our path types to previously proposed ones using the CRB analysis. Our results show a

clear advantage of our path types over others in terms of coverage and accuracy without

increasing the path length.

7.2.1 Related Works

There has been limited amount of previous work on the path planning problem for

sensor network localization. The problem was first brought up by [73] where the authors

were primarily interested in the localization algorithm design of mobile beacons. As a

side note, the authors acknowledged the difficulty of selecting an optimal trajectory for

the beacon in that the trajectory needs to provide at least three non-collinear beacon
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broadcast locations for each sensor. However, the authors did not provide any specific

path planning method.

While the authors of [78] did not explicitly study the path planning problem, they

implicitly considered this issue during their localization algorithm design. In particular,

they provided an algorithm running on the sensor nodes that tracks the series of beacon

broadcasts to only use the non-collinear ones to localize. They did not introduce a path

planning algorithm, i.e., the mobile beacon is assumed to move randomly, thus their

method provides a passive way of extracting usable coordinates from the random path.

In [44], the authors studied three different types of static paths: SCAN, DOUBLE

SCAN, and HILBERT in relationship to localization. The results show that HILBERT

has the best localization performance as its larger number of direction changes effectively

reduces the collinearity during localization. Their results are obtained using simulations

of randomly deployed sensor networks using a Monte Carlo localization (MCL) method

[30] as the localization algorithm.

In this section, we build on the work by [44] to design additional static paths that

further reduce the collinearity. Instead of evaluating paths based on a particular local-

ization algorithm, we use the more general Cramer Rao Bounds (CRB) as the metric to

compare different paths. The CRB gives a theoretic lower bound on the best localization

error achievable by any localization algorithm. Thus, by using CRB as the metric, we

are able to provide a more fair comparison by eliminating any bias introduced in favor of

a particular localization algorithm. Under the same test case, a path type that achieves

the better overall CRB should be considered to be better.

7.2.2 Cramer-Rao Bounds (CRB)

We use the Cramer-Rao Bounds (CRB) as the evaluator of static path types. The

CRB is an effective measure to qualify the localization inaccuracy attributed to the
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measurement types and noises[65]. The CRB is a lower bound on the covariance of any

unbiased location estimator that uses noisy measurements such as RSSI, ToA, or AoA.

Thus, the CRB provides a lower bound on the estimation accuracy of a given network

scenario regardless of the localization algorithm. In other words, with CRB we have a way

to tell the best any localization algorithm can do given a particular network, measurement

type and measurement noise scenario. The CRBs of individual measurement types such

as RSSI, ToA and AoA under most common noise models (mostly Gaussian) are discussed

in more detail in [65]. Refer to Chapter 2 (Section 2.3)for a more detailed coverage on

the CRB.

7.2.3 Static Paths

In this section, we define four different static path types and compare their local-

ization performance using the CRB analysis. As in [44], we adopt a deployment area

consisting of a 480m by 480m square. To calculate the CRB, we assume a Gaussian

range measurement noise with a constant variance introduced by shadowing. The re-

ceived signal strength from a beacon location i to a sensor node j that are di,jm apart is

therefore

N(P0 − 10nplog10(db,s/d0), σ
2
dB) (7.1)

where P0 is the received signal strength at a reference distance d0. Here, we use d0 = 1m.

np is the environment-dependent path loss exponent, and σ2
dB is the constant variance

introduced by the shadowing. As in [66], we choose np = 1 and σ2
dB = 1.7.

We test four types of static paths: SCAN, HILBERT, CIRCLES and S-CURVES.

Of the four types, SCAN and HILBERT were originally proposed in [44] (we include

them for comparison purposes). We omit the third path type proposed in [44], DOUBLE
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SCAN, here as it has been shown in [44] that it does not provide a significant advantage

over SCAN or HILBERT.

For sensor network localization using a mobile beacon, the CRB values of the

sensors are influenced by the following factors:

1. Path Length. A longer path means that the mobile beacon would have more op-

portunity to broadcast its location. Thus, we expect a better overall localization

(i.e., lower CRB) with a longer path.

2. Broadcast Interval. A shorter broadcast interval means that the mobile beacon

would broadcast its location more frequently. Thus, we expect a better overall

localization with a shorter broadcast interval.

3. Broadcast Range. A larger broadcast range (transmission radius) of the mobile

beacon would allow each broadcast to cover more sensors. Thus, we expect a

better overall localization with a larger broadcast range.

The four types of static paths considered are shown in Figure 7.1. To provide a valid

comparison among them, we fix the broadcast range (45m). We set the broadcast interval

to 10m (i.e., there is one broadcast every 10 meters traveled). Therefore, the actual

number of broadcast locations is a function of the path length. Each of the four different

path types has a different path length. The solid line in Figure 7.1 shows the actual path,

and the rectangles along the path show the broadcast locations (the distance between

two rectangles is the broadcast interval). The small dots represent the locations from

where a valid localization can be performed based on the RSSI range readings. Because

of geometric constraints, a valid localization can be performed at a location only when

at least three non-collinear broadcasts are heard.
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7.2.3.1 SCAN

Of the four path types, SCAN, introduced in [44], is the most straight-forward in

which the mobile beacon simply sweeps the deployment area in straight lines from left to

right. More formally, SCAN divides the square deployment area into n by n sub-squares

(n = 8 in our case) and connects their centers using straight lines as in Figure 7.1(a). The

path resolution, R, of SCAN is defined as the side length of each sub-square (R = 60m

in our case). The drawback of SCAN is that straight lines introduce collinearity, and

because of this there are many locations where the beacon broadcasts heard are collinear.

Since the broadcast range is set to 45m and two nearby vertical lines in Figure 7.1(a) are

two resolutions apart (120m), the area near the vertical lines cannot be localized because

all beacon broadcasts come from the same vertical line and thus are collinear. To reduce

collinearity, we would have to reduce the resolution to match the broadcast range, which

would substantially increase the path length.

7.2.3.2 HILBERT

To reduce the collinearity without significantly increasing the path length, HILBERT

is proposed in [44], which makes the mobile beacon to take more turns. Same as SCAN,

HILBERT divides the 2-dimensional space into n by n sub-squares (n = 8 in our case),

but connects the centers of the sub-squares using n line segments as shown in Figure

7.1(b). The resolution of HILBERT is defined as the side length of each sub-square

(R = 60m in our case). While the path length of HILBERT is n · R longer than that of

SCAN at the same resolution, it contains shorter line segments, which reduces collinear-

ity. We can see in Figure 7.1(b) that a significantly greater area can be localized with

HILBERT compared to SCAN.
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7.2.3.3 CIRCLES

Since straight lines invariably introduce collinearity, we would like to reduce the

number of straight lines on the beacon path. Thus, we design CIRCLES which consists

of a sequence of concentric circles centered within the deployment area. We define the

resolution, R, of CIRCLES as half of the radius of the innermost circle, and we sequen-

tially increase the radius by R at each outer circle (R = 60m in our case). Note that we

could have defined a spiral like path that looks like CIRCLES, but we decided to study

CIRCLES because its resolution parameter is comparable to other path types.

As shown in Figure 7.1(c), since CIRCLES does not introduce collinearity explic-

itly, all areas within the circles can be localized. However, since the deployment area is

a square, CIRCLES would not cover the four corners effectively without adding larger

circles, which would increase the path length. Furthermore, CIRCLES has an inher-

ent scalability issue. When the deployment area increases, CIRCLES would require

the beacon path to contain larger circles. As the circles become larger, the amount of

non-collinearity is reduced, which in turn reduces the localization accuracy. Figure 7.2

illustrates such scalability issue in terms of CRB. Here, we measure the CRB of CIRCLES

at various y locations when fixing x = 240m (i.e., splitting the deployment area in the

middle). We observe that the CRB is at the minimum at the inner circle (around 240m),

but it increases gradually to the outer circles (approaching 0m to the left and 480m to

the right).

7.2.3.4 S-CURVES

S-CURVES is based on SCAN, which progressively scans the deployment area from

left to right. However, at each scan, S-CURVES takes an ‘S’ curve instead of going in

a straight line. More formally, dividing the deployment square into n by n sub-squares
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Figure 7.1. Static path types. The figure shows four path types: (a) SCAN (path length
= 3780.00m), (b) HILBERT (path length = 3840.00m), (c) CIRCLES (path length =
3195.93m), and (d) S-CURVES (path length = 3752.92m).

(n = 8), and let the resolution of S-CURVES be R (R = 60m). Then, each vertical S

curve consists of n− 1 half squares of radius R
2
, and there are a total of ⌊2(n− 1)/3⌋+ 1

S curves from left to right. The S curves are connected with short straight lines like in

SCAN.
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Figure 7.2. The CRB of CIRCLES at x = 240.

7.2.4 Evaluation

We compare the four path types based on three metrics: i) total path length, ii)

the localization coverage, and iii) the localization accuracy. Consider the path length

first. For each of the four path types, the total path length, L, is a function of R and n:

LSCAN = (n2 − 1)R

LHILBERT = n2R

LCIRCLES =
n2πR

4
+ (

n

2
− 1)R

LS−CURV ES =
(n− 1)πR

2
· (⌊2(n− 1)/3⌋+ 1)

+(n− 2)R +
Rπ

2

As seen in our test scenario, CIRCLES has the shortest path length. The other three

path types have similar path length, with S-CURVES being slightly shorter than the

other two.

Now consider the localization coverage and accuracy. Here, we compare the four

path types using Cramer Rao Bounds (CRB). For each path type, we calculate the CRB
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at various locations of the entire deployment area. We assume a 1-hop propagation of

RSSI readings, and thus the CRB at each location is a strict function of the RSSI readings

from broadcast locations 1-hop away. For those locations that cannot be localized because

of the unavailability of three non-collinear broadcast locations, the CRB will be infinity.

For other locations that can be localized, the CRB gives a tight lower bound of the

localization error that can be possibly achieved at the particular location. Thus, the

CRB analysis gives an estimate of both localization coverage and localization accuracy.

To perform the CRB analysis, we divide the 480m by 480m deployment area into

a system of 1m by 1m grids. We then calculate the CRB at every grid location and

construct a histogram of the CRB ranges produced by each of the four static path types.

To study the relationship between the transmission range and the path resolution, we

vary the beacon transmission range from 30m to 75m, while fixing the path resolution at

60m. Notice that varying the transmission range while fixing the path resolution can be

seen as equivalent to varying the path resolution while fixing the transmission range.

Figure 7.3 shows the results of our CRB analysis. For each of the transmission

ranges, we construct a histogram consisting of seven categories based on the CRB ranges:

[0, 0.01), [0.01, 0.02), [0.02, 0.03), [0.03, 0.04), [0.04, 0.05), [0.05, 0.5), and [0.5, inf), repre-

sented as patterned boxes from bottom to top within the histogram bar. Each category

contains the percentage of the grid locations whose CRB falls into its corresponding

range. The percentage of a category is reflected by the size of the corresponding pat-

terned box. Using the histogram, we are able to compare the static path types in terms

of localization coverage as well as localization accuracy. A histogram with a large number

of grid locations in the [0.5, inf) category (i.e., at the top of the histogram bar) indicates

a poor coverage because the CRB values within this category are large indicating that

those grid locations are difficult to localize. Conversely, a large number of grids in the first
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several categories (i.e., at the bottom of the histogram bar) indicates better localization

accuracy.

Figure 7.3(a) clearly shows the superiority of CIRCLES and S-CURVES over the

other two methods when the path resolution is higher than the transmission range. In

such cases, many grid locations can only hear consecutive beacon broadcasts from a

single path segment. Since a majority of the path segments of SCAN and HILBERT are

straight lines, collinearity becomes a major obstacle. On the other hand, CIRCLES and

S-CURVES have a minimal number of straight line segments, and collinearity is not a

significant problem during localization. The results indicate the paths taken by CIRCLES

and S-CURVES cover larger effective ground in terms of localization than SCAN and

HILBERT. Another way to look at this is that it would take a longer path (for instance,

using a smaller resolution) for SCAN and HILBERT to provide the equivalent coverage.

By increasing the transmission range (Figure 7.3(b) through 7.3(d)), the amount

of collinearity is reduced, and thus we observe performance improvement in SCAN and

HILBERT. In those cases, S-CURVES still performs as well as SCAN and HILBERT.

However, CIRCLES has the worst performance in Figure 7.3(d). This is primarily due

to the fact that we use a square as our test deployment area, and thus leave the four

corners uncovered by CIRCLES. As such, we also note that CIRCLES has significantly

shorter path length than the other three path types. Thus, CIRCLES is not best suited

for the square or rectangle deployment area. But we can expect that it would work much

better when the deployment area resembles a circle.

7.3 Dynamic Path Planning

We have introduced static path planning for localization in the previous section.

Static paths work well when the sensors are assumed to be uniformly deployed. However,

in the cases where such assumption is not valid, static paths might not be the best
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Figure 7.3. CRB ranges of the four static path types. The figure shows the CRB ranges
when the transmission range is (a) 30m, (b) 45m, (c) 60m, and (d) 75m.

solution, since the mobile beacon would attempt to cover the entire deployment area

uniformly, including those parts where sensors reside. Thus, there is a strong incentive to

dynamically adjust the path during the localization procedure (dynamic path planning).

As in the static version, we assume that the mobile beacon broadcasts its location at

a certain broadcast interval. However, instead of following a pre-determined static path,

we allow the beacon to adjust its path at each broadcast interval. We also assume that

the total number of sensors to be localized is known, and there exists a bi-directional

communication path between the sensors and the beacon. When the sensor is close

enough to hear the beacon broadcast, it is able to send an acknowledgment that contains
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its unique sensor ID back to the beacon. Based on such a model, the dynamic path

planning problem becomes very similar to the beacon deployment problem discussed in

Chapter 5 in that we will have to make an online decision on the next step based on

the feedback from the previous steps. In both beacon deployment and dynamic path

planning, the primary objective is to localize all the sensors. The secondary objective

differs in that the beacon deployment problem tries to minimize the number of deployed

beacons but the dynamic path planning problem tries to minimize the path length.

Due to the similarity between the two, we formulate the dynamic path planning

problem into the model used to solve the beacon deployment problem in Chapter 6. In

particular, we overlay a n-by-n virtual grid system onto the deployment area, which we

assume to be a square. The mobile beacon will calculate the probability of a sensor near

each grid location and then use the grid system as a guide to its dynamic path. Chapter 6

has shown that a greedy approach is quite effective in selecting the next beacon location.

We use the same greedy algorithm to solve the path planning problem. However, in the

case of path planning, we have to incorporate the distance to the destination into our

greedy selection.

7.3.1 Greedy k-cover Path Planning: PP(k)

As in the beacon deployment problem, we first assume that it is sufficient to localize

a sensor when it has heard k (k = 3 for ToA or RSSI ranging, and k = 2 for AoA) beacon

broadcasts. Thus, the mobile beacon has to provide k-cover to every sensor. At each

broadcast interval, the beacon has to decide on the path to take. Intuitively, the beacon

should take the path to the location that would result in the largest number of beacons

to be covered (i.e., maximum payoff). But unlike the beacon deployment problem, where

each potential beacon location has the same cost, the cost of potential location for the

path planning problem is proportional to the distance to the location. In other words,
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we sometimes want the mobile beacon to give up the location with the maximum payoff

for a location with less payoff but with a shorter distance.

In this section, we present both the offline and online version of the greedy k-

cover path planning algorithm. The offline version assumes that the sensor locations are

known ahead of time. The online version has no prior knowledge of the exact sensor

locations. Instead, it is given a perceived location distribution (in most cases, a uniform

distribution) of where the sensors might be. The online algorithm adjusts this location

distribution based on the feedback acknowledgment received by covered sensors as the

beacon travels. We present the offline version here so that it can serve as the basis for

comparison to the online version.

Algorithm 12 shows the offline k-cover version of the greedy algorithm. The mobile

beacon starts at a corner (0, 0) of the deployment square. The algorithm keeps the

number of covers for each sensor s as cs. At each broadcast location b, it performs a

greedy selection of the grid location gmax such that gmax covers the maximum number

of uncovered sensors while weighted against the distance needed to get there from the

current location, i.e.,

gmax ← argmax
g

|{s : cs < k, s ⊣ g}|

dg,b

Once the target grid location is selected, the beacon moves to that direction until the

next broadcast interval is reached. If there are sensors being covered at this new location,

cs is updated accordingly. The process continues until all sensors are at least k-covered,

i.e., cs >= k for all s.

Note that while the greedy selection gmax gives a direction for the beacon to travel

from the present location b, it does not mean that the beacon will follow a straight line

from b to gmax. As the beacon moves to the direction of gmax, it would likely cover
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Algorithm 12 Greedy Offline Approximation of PP(k)

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: di,j: distance between i and j
4: b: current beacon location, initialized to (0, 0)
5: tinterval: broadcast interval time
6: cs: the number of covers of sensor s
7: operator i ⊣ j: location i can be covered by broadcast from location j
8: initialize cs ← 0 for all s ∈ Vsensor

9: while ∃s ∈ Vsensor : cs < k do
10: select gmax ← arg maxg∈Vgrid

|{s:cs<k,s⊣g}|
dg,b

11: move beacon to the direction of gmax for tinterval long, and update b
12: for all s : cs < k, s ⊣ b do
13: cs ← cs + 1
14: end for
15: end while

additional sensors along the way and have different distance measures d. Thus, at each

broadcast interval, the beacon can select a different greedy location and adjust its course.

The offline algorithm knows the exact sensor locations when planning the path.

Thus, the greedy selection is quite obvious. Now consider the online version, in which

the sensor locations are initially unknown. Instead, for each sensor s, we maintain a

probability distribution, ps,g, of its likely location using the virtual grid system. We

assume that we are unaware of the sensor location before deploying the mobile beacon,

and thus the location distribution is uniform over all grid locations. As the mobile beacon

moves across the deployment area and hears more sensors along the way, we update the

location distribution accordingly.

Algorithm 13 shows the online version of the greedy path planning algorithm. The

algorithm maintains ps,g as the probability of sensor s being located close to grid location

g. ps,g is set to zero when s is successfully k-covered. Otherwise, ps,g is updated, with the

procedure AdjustProbability(p, s, b) (Algorithm 14), at each broadcast interval based on

the feedback acknowledgment the beacon receives at the present beacon location b. Note
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that the procedure AdjustProbability(p, s, b) adjusts the location distribution p based

on both positive information (i.e., acknowledgment from the sensor s is heard at grid

location g) and negative information (i.e., acknowledgment is not heard).

The online algorithm selects the greedy choice based the probability distribution

p and the distance d. In particular, the algorithm evaluates each grid location g by

summing up the probabilities of it covering sensors s. The greedy selection, gmax, is the

one out of all grid locations that has the maximum of such sums:

gmax ← arg max
g∈Vgrid

∑

g′⊣g

∑

s ps,g′

dg,b

As such, the online greedy choice is a just a generalization of the offline version in which

the exact sensor locations are not unknown. If the sensor locations are known, the online

greedy choice becomes equivalent to that of the offline algorithm.

Figure 7.4 shows the results of the offline and online greedy k-cover paths of a sensor

network of 20 nodes. Here, we overlay a 20-by-20 grid system and set the transmission

range to be 2 times the grid side length. The larger circles in the figure indicate the sensor

locations, and the smaller squares plot the trail of the mobile beacon with locations of

the squares indicating the beacon broadcast locations. As expected, the offline version

generates much shorter paths than the online version, since the online version has to

probe for the sensors along the way.

7.3.2 Greedy CRB-Based Path Planning: PP(crbT)

While the k-cover version of the path planning algorithm satisfies the basic require-

ment of localization such as k = 3 covers are required to localize from range observations,

it does not distinguish between the effectiveness of each observation. In reality, observa-

tions differ considerably in the localization accuracy they produce. In the extreme case,
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Algorithm 13 Greedy Online Approximation of PP(k)

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: di,j: distance between i and j
4: b: current beacon location, initialized to (0, 0)
5: tinterval: broadcast interval time
6: ps,g: the probability of the sensor s residing close the grid location g
7: operator i ⊣ j: location i can be covered by broadcast from location j
8: initialize ps,g ← 1/|Vgrid| for all s ∈ Vsensor and g ∈ Vgrid

9: while ∃s ∈ Vsensor, g ∈ Vgrid : ps,g > 0 do

10: select gmax ← arg maxg∈Vgrid

∑

g′⊣g

∑

s ps,g′

dg,b

11: move beacon to the direction of gmax for tinterval long, and update b
12: broadcast beacon location and listen for acknowledgments
13: for all s ∈ Vsensor do
14: if s is covered by k beacons then
15: ps,g ← 0 for all g
16: else
17: AdjustProbability(p, s, b)
18: end if
19: end for
20: end while

 

(a)

 

(b)

Figure 7.4. Example of the greedy approximation of PP(k). The figure shows two cases:
(a) offline and (b) online.
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Algorithm 14 AdjustProbability(p, s, b)

1: sum← 0
2: if s ⊣ b then
3: for all g : b 6⊣ g do
4: sum← sum + ps,g

5: ps,g ← 0
6: end for
7: I ← set of all g : g ⊣ b, ps,g > 0
8: for all g ∈ I do
9: ps,g ← ps,g + sum/|I|

10: end for
11: else
12: for all g : b ⊣ g do
13: sum← sum + ps,g

14: ps,g ← 0
15: end for
16: I ← set of all g that are not in range of b and ps,g > 0
17: for all g ∈ I do
18: ps,g ← ps,g + sum/|I|
19: end for
20: end if

the three ranging observations might be collinear, which would render the sensor unlo-

calizable. Chapter 6 introduced the concept of using Cramer Rao Bounds (CRB) as the

evaluation criteria of selecting the next beacon location. In particular, instead of merely

requiring k-cover, we require every sensor to be covered by enough beacon broadcasts so

that the CRB of the location estimate reduces below a pre-defined threshold crbT . Com-

pared to k-cover, the CRB-based evaluation criteria explicitly considers the estimation

accuracy during localization, and thus allows a better trade-off between the localization

cost and the localization accuracy.

As with the k-cover version, we provide both the offline and the online algorithm

of the path planning algorithm using crbT . For the offline algorithm (Algorithm 15),

since we know the exact sensor locations, the CRB of each sensor, CRB(s), can be

readily calculated from the relative beacon broadcast locations, the signal propagation
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model and the noise model. Before localization, we initialize CRB(s) to infinity. As the

sensors receive the beacon broadcasts while the beacon moves, the CRB is progressively

reduced. The algorithm stops once the CRBs of all sensors have reduced below the

threshold crbT . At each broadcast interval, the mobile beacon picks the direction toward

the grid location that would maximize the CRB reduction if the beacon broadcast were

to originate from there. For any sensor s, CRB(s) gives its current CRB value, whereas

CRBP (s, g) denotes the potential CRB of sensor s when adding a beacon broadcast from

grid location g. Thus, the greedy selection, gmax, is the grid location that maximizes

CRBP (s, g) − CRB(s) for all sensors while considering the distance required to move

there

gmax ← arg max
g∈Vgrid

∑

s:s⊣g CRBP (s, g)− CRB(s)

dg,d

Algorithm 15 Greedy Offline Approximation of PP(crbT )

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: di,j: distance between i and j
4: b: current beacon location, initialized to (0, 0)
5: tinterval: broadcast interval time
6: CRB(s): CRB of the sensor s
7: CRBP (s, g): Potential CRB of the sensor s when adding a beacon broadcast at g
8: operator i ⊣ j: location i can be covered by broadcast from location j
9: initialize CRB(s)← inf for all s ∈ Vsensor

10: while ∃s ∈ Vsensor : CRB(s) > crbT do

11: gmax ← arg maxg∈Vgrid

∑

s:s⊣g CRBP (s,g)−CRB(s)

dg,d

12: move beacon to the direction of gmax for tinterval long, and update b
13: for all s : s ⊣ b do
14: re-calculate CRB(s)
15: end for
16: end while
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The online version (Algorithm 16) deals with the uncertainty of the sensor location

with a probability distribution over the grid system. Let ps,g be the probability of sensor

s residing close the grid location g, which is initialized uniformly to 1/|Vgrid| for each

sensor s at each grid location g. ps,g is adjusted based on the positive and negative

feedback acknowledgment heard by the beacon at each broadcast interval using the same

AdjustProbability procedure. The greedy selection of the grid location is also based

on maximizing the CRB reduction. However, since the exact sensor location is not

known, the CRB has to be calculated by assuming a particular sensor location. Here,

let CRBg′(s) be the CRB of sensor s assuming it’s located at grid location g′, and

CRBP
g′(s, g) be the potential CRB of sensor s, assumed to be located at g′, when adding

a beacon broadcast from g. The CRB reduction based on the assumed sensor location,

CRBP
g′(s, g)−CRBg′(s), is then factored by the probability, ps,g′, that such an assumption

is true. The grid location that would generate the maximum sum of the CRB reduction

for all sensors is selected as the next grid location:

gmax ← arg max
g∈Vgrid

∑

g′⊣g

∑

s ps,g′ · (CRBP
g′(s, g)− CRBg′(s))

dg,b

7.3.3 Simulations

We have simulated the performance of the dynamic path planning methods in terms

of overall path length and localization error. To compare dynamic paths with static paths,

we have also implemented the S-CURVES static path type (Section 7.2.3.4), which we

have shown using CRB analysis in Section 7.2.4 to be superior to other proposed static

path types. The simulated deployment area is a 480m by 480m square. The transmission

range of the beacon and the sensors is set to 45m, and the broadcast interval of the

beacon is set to 20m per broadcast. Within the deployment area, we consider two types
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Algorithm 16 Greedy Online Approximation of BD(crbT )

1: Vsensor: set of all sensors
2: Vgrid: set of all grid locations
3: di,j: distance between i and j
4: b: current beacon location, initialized to (0, 0)
5: tinterval: broadcast interval time
6: CRBg(s): CRB of the sensor s assuming it’s located at grid location g
7: CRBP

g′(s, g): Potential CRB of the sensor s, assumed to be located at g′, when adding
a beacon broadcast at g

8: ps,g: the probability of the sensor s residing close the grid location g
9: operator i ⊣ j: location i can be covered by broadcast from location j

10: initialize ps,g ← 1/|Vgrid| for all s ∈ Vsensor and g ∈ Vgrid

11: while ∃s ∈ Vsensor, g ∈ Vgrid : ps,g > 0, CRBg(s) > crbT do

12: select gmax ← arg maxg∈Vgrid

∑

g′⊣g

∑

s ps,g′ ·(CRBP
g′

(s,g)−CRBg′ (s))

dg,b

13: move beacon to the direction of gmax for tinterval long, and update b
14: broadcast beacon location and listen for acknowledgments
15: for all s do
16: AdjustProbability(p, s, b)
17: if s : s ⊣ b then
18: re-calculate CRBg′(s) for all g′ ⊣ b, ps,g′ > 0
19: end if
20: end for
21: end while

of sensor locations: uniform and clustered. The uniform type assumes that the sensors

are deployed uniformly, whereas the clustered type assumes that the sensor are deployed

to form a number of clusters. The latter can be viewed as a more realistic model in the

situation where the sensors are dropped from an airplane. To measure the localization

error, we assume that RSSI ranging is used. We use the same signal model as in Section

7.2.3. As in [66], we choose np = 1 and σ2
dB = 2.5 (unless otherwise noted). The results

are the average of 30 independent runs with the 95% confidence interval plotted as the

vertical error bars.

We first obtain some preliminary results on effect of node density, measurement

noise and grid size using uniform sensor networks.
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(a)

 

(b)

Figure 7.5. Example of the greedy approximation of PP(crbT ). The figure shows two
cases: (a) offline and (b) online.

7.3.3.1 Sensor Density

Intuitively, the static paths should work better when there are a large number of

uniformly deployed sensors, since the mobile beacon has to cover virtually every part of

the network anyway. This is validated by Figure 7.6. Here, we assume a transmission

range of 45m and a grid size of 30x30. As we increase the sensor number from 10 to

100, Figure 7.6(a) shows that the average localization error stays relatively the same.

However, the path length (Figure 7.6(b)) increases for the four dynamic path planning

methods. Not surprisingly, the two online versions have longer path length than the cor-

responding offline versions. The CRB-based versions generate better localization results

at the expense of longer path length than the k-covered versions.
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Figure 7.6. Effect of varying node density of uniformly deployed sensor network. The
figure shows (a) localization error and (b) path length.

7.3.3.2 Grid Size

Since the dynamic path planning algorithms run on a virtual grid system, we are

interested in how the grid size would affect the performance. In Figure 7.7, we measure

the localization error and path length to localize 50 sensors while changing the grid size

from 20-by-20 to 60-by-60. The results indicate that a relatively small grid system is

sufficient for the path planning purpose, as the grid system serves only as a guideline to

the dynamic paths. Since the actual broadcast interval is sufficiently small (at 20m per

broadcast), the mobile beacon is able to produce a large enough number of broadcasts

to satisfy the localization criteria regardless of the grid size. Since the grid size greatly

impacts the computational complexity of the greedy selection, it is desirable to use a

smaller grid size to speed up the computation. We thus use a 30-by-30 grid size in our

following experiments.



173

 10

 15

 20

 25

 30

 35

 20  25  30  35  40  45  50  55  60

av
er

ag
e 

lo
ca

liz
at

io
n 

er
ro

r 
(m

)

grid size

S-Curve
Offline k = 3

Offline crb = 100
Online k = 3

Online crb = 100

(a)

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 20  25  30  35  40  45  50  55  60

av
er

ag
e 

pa
th

 le
ng

th
 (

m
)

grid size

S-Curve
Offline k = 3

Offline crb = 100
Online k = 3

Online crb = 100

(b)

Figure 7.7. Effect of varying grid size of uniformly deployed sensor networks. The figure
shows (a) localization error and (b) path length.

7.3.3.3 Measurement Noise

The amount of the RSSI measurement noise directly impacts the localization accu-

racy. Furthermore, it can also impact the path length of the CRB-based dynamic path

planning algorithms. More noise would cause higher CRB value; to reduce the CRB to

the predefined threshold, additional beacon broadcast locations would be required, which

in turn increases the path length. Figure 7.8 shows the results of the experiment of vary-

ing the noise parameter σdB from 1 to 3 based on the signal and noise model of Equation

7.1. The results indicate an increase in the localization error as σdB is increased. Among

the five algorithms, the CRB-based algorithms have the smallest error increase, but they

also cause longer path lengths. Comparably, the measurement noise has no impact on

the path lengths of the k-cover algorithms, but their localization error increases more

rapidly.
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Figure 7.8. Effect of varying noise parameter for uniformly deployed sensor networks.
The figure shows (a) localization error and (b) path length.

7.3.3.4 Clustered Sensor Networks

When an airplane drops a large number of sensors into a field, it is very unlikely

that those sensors form a uniform distribution. More realistically, these sensor networks

would exhibits a certain clustering behavior [28, 53]. To simulate the clusters formed by

the sensors, we use the Neyman-Scott Poisson model, provided by the spatstat package

implemented in CRAN [15], to generate clustered sensors. The Neyman-Scott Poisson

model generates the sensors in two steps. First, it generates a Poisson distributed parent

event with a certain intensity to represent the locations of the clusters. For each cluster

location, it then independently produces a Poisson number of sensors. In the version

provided by CRAN, the Neyman-Scott model needs three parameters: the parent inten-

sity λc (i.e., the mean number of clusters), the maximum cluster radius rmax , and the

child intensity λs (i.e., the mean number of sensors per cluster). In our experiments,

we use two types of sensor networks based on the Neyman-Scott model. The first type

uses λc = 5, rmax = 96m and λs = 25 representing moderately clustered networks, and

the second type uses λc = 1, rmax = 144m and λs = 75 representing highly clustered
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(a)

 

(b)

Figure 7.9. Two types of cluster based sensor networks. The figure shows (a) lightly
clustered (λc = 5, rmax = 96m and λs = 25) and (b) heavily clustered (λc = 1, rmax =
144m and λs = 75).

networks. Figure 7.9 shows a sample sensor distribution of each type. Note that in our

simulation we generate a different network for each run and average the results.

We repeated the experiment of varying the noise parameter σdB from 1 to 3 for

the two types of clustered sensor networks, and the results are shown in Figure 7.10 and

7.11. While the characteristics of localization error stay relatively static, we observe that

the path lengths are reduced compared to the case of that of uniform sensor networks.

In particular, comparing Figure 7.10(b) to 7.11(b), the path lengths are significantly

shorter when the sensors are more clustered. This indicates that dynamic path planning

algorithms are better suited for the clustered scenarios, in which the algorithms can

adjust the path to concentrate on the clustered areas. In the case of uniform sensor

networks, the dynamic path planning algorithms do not have advantage over the static

paths, since the entire deployment area has to be covered with equal importance.
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Figure 7.10. Effect of varying noise parameter for lightly cluster based sensor networks.
The figure shows (a) localization error and (b) path length.
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Figure 7.11. Effect of varying noise parameter for heavily cluster based sensor networks.
The figure shows (a) localization error and (b) path length.
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7.4 Summary

In this chapter, we studied the path planning problem for localization in sensor

networks. The path planning problem asks for good paths, in terms of maximizing the

localization accuracy while minimizing the path length, that will guide a mobile beacon

through the deployment area. We proposed two types of paths: static paths and dynamic

paths. In the case of static paths, we presented two new path types: CIRCLES and

S-CURVES that are designed with better localization accuracy and coverage in mind.

We have also proposed a new path evaluator using the unbiased Cramer Rao Bounds

(CRB). Using the CRB analysis, we showed that the path types proposed by us handle

the collinearity problem much better. When the path resolution is much larger than the

transmission range, the collinearity becomes more significant. In such cases, our solutions

significantly outperform previously proposed path types.

The static paths work well when sensors are assumed to be uniformly deployed.

However, often in the real world sensors are deployed in clusters. Thus, it is desirable

to design dynamic path planning algorithms capable of adjusting the path such that the

beacon would spend more time in the area where the sensors are more heavily populated.

Following the same approach introduced in Chapter 6, we used a greedy strategy to the

dynamic path planning problem that provides either k-cover or CRB-based threshold to

each sensor. We used simulations to show that the CRB-based method provides better

localization accuracy at the expense of longer paths. We have also validated the claim

that dynamic paths are more preferable in heavily clustered sensor networks.



CHAPTER 8

CONCLUSIONS

In this chapter, we provide a brief review of the topics and contributions covered

by this work. We then list a number of open problem in the area of localization in mobile

ad hoc networks.

8.1 Review

The scope of this work has been the localization problem in mobile ad hoc networks

(MANET). The term of localization in the domain of MANET refers to the problem of

finding the location of network nodes. In Chapter 1, we have established the need for

localization by presenting an array of proposed MANET protocols that would not work

without location information. However, localization is difficult because of its fundamental

intractability based on the underlying graph theoretic model. To further complicate the

problem, measurement data is not always available, and when it is indeed available it is

often prone to noise. Localization techniques also differ considerably depending on the

type of the measurement data, and thus a common framework is needed that works for

multiple measurement types. Under this general scope of localization, we have studied

a number of sub-problems including collaborative localization techniques (Chapter 2),

localization with the new interferometric ranging techniques (Chapter 3), link longevity

prediction problem (Chapter 4), beacon deployment problem (Chapter 5), localization

using a mobile beacon (Chapter 6), and the path planning problem for mobile beacons

(Chapter 7).
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Unlike most existing localization techniques, which often treat the estimated loca-

tions as definite solutions, we have taken a probabilistic approach that explicitly considers

the underlying location uncertainty. For instance, we used a particle filtering solution

for the general collaborative localization in Chapter 2 and for the localization using a

mobile beacon in Chapter 6, where the estimated location is not a singular value but

a probabilistic distribution represented by particles. This approach allows us to inte-

grate collaborative localization by simply exchanging particle distributions among the

neighbors. The variance of the location distribution also gives a useful measure to the es-

timated accuracy, which can then be applied to satisfy different localization requirements.

We have shown that the same probabilistic framework works for various measurement

types such as RSSI and ToA ranging, AoA, and connectivity-only even in the case where

different measurement types co-exist in the same network.

We have examined localization using interferometric ranging techniques in Chapter

3. Using computational complexity theories, we have shown that, like distance ranging,

angling, and unit disk connectivity, localization using interferometric ranging is also NP-

Complete. This demonstrates the fundamental intractability of the problem. Based

on the results from our iterative localization algorithm, we have shown that it is also

difficult to optimize in a collaborative manner due to error propagation. We studied the

link longevity problem in Chapter 4, where we have presented three types of measurement

based prediction methods using extended Kalman filters. While this problem does not

deal with absolute localization, it does implicitly cover the node mobility issue applicable

to routing (i.e., route maintenance).

We applied a similar probabilistic approach to the dynamic beacon deployment

problem in Chapter 5 and the dynamic path planning problem in Chapter 7. We have

shown that the beacon deployment problem is likely to be NP-Complete, and that there

is a greedy offline approximation with a logarithmic approximation ratio. However, in
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order to apply the greedy approximation in an online fashion, we would have to consider

the possible sensor locations, which we accomplished by using a probability distribution

based on a grid system. We have explicitly considered the localization accuracy in our

design. In particular, we have taken the theoretic Cramer Rao Bound (CRB), which

had previously only been used as a passive evaluation tool, and incorporated it into

our algorithm design. The CRB-based algorithms allow us to provide a better trade-off

between accuracy and cost during localization to various applications.

8.2 Open Problems

Most results of this work are based on modeling and simulations. Although we have

made every attempt to model our simulations as carefully as possible, they still cannot

replace experiments of physical devices in real world scenarios. However, this problem is

not unique to us. In fact, the majority of works in localization have been based on either

theoretic models or simulations. The primary reason is the cost. To perform meaningful

experiments for localization, one would normally need a large number (100+) of devices.

Although mobile ad hoc network devices (for instance, sensors) are becoming cheaper by

the day, it is still quite costly to implement them on physical devices. In addition, the

sensing capacity of the current devices are usually limited to RSSI. There is no cheap

hardware that implements AoA, ToA, or interferometric ranging, and thus most works

using those measurement types are all based on simulations. In a sense, the advances in

algorithmic work on the localization problem are currently outgrowing the advances in

hardware. Future work needs to be done to significantly improve the hardware design to

fill this gap.

Another issue related to the testing environment is that there is no common local-

ization testbed. While NS2 [63] has a module for simulating mobile ad hoc networks,

the module does not contain localization. It would be very helpful for researchers to
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implement an interface that allows a “plug-in” for future localization algorithms. This

would not only give a common testbed for different localization schemes, it would also

allow those location-depended algorithms (such as location-aided routing methods) to

be implemented as other NS2 modules and compared based on the result of localization.

The localization module should also implement the Cramer Rao Bounds(CRB) so that

the theoretic error bound can be calculated for different localization scenario.

Because interferometric ranging is a relatively new type of measurement available

to the localization problem, there are still many open problems in this area. Of the local-

ization algorithms proposed for interferometric ranging, all but the iterative algorithm

proposed in this work are centralized. There is a definite need to design distributed

localization algorithms for interferometric ranging so that it can be implemented with

reasonable efficiency and scalability. To reduce the number of beacons, the distributed

algorithms should make use of multi-hop location information, which unfortunately is

much more difficult for interferometric ranging because each measurement involves four

nodes. Furthermore, our simulations have shown that the multi-hop error propagation

has a big impact on interferometric ranging. Therefore, the control of the error propa-

gation is another issue. There is also a need for a theoretic error bound (like CRB) for

interferometric ranging. This however may be too difficult because more than two nodes

are involved in each measurement.
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