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ABSTRACT 

 

MULTI-CHANNEL ALL-OPTICAL SIGNAL PROCESSING 

 

Lu Li, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Michael Vasilyev 

We experimentally demonstrate, for the first time to our knowledge, a stand-alone all-

optical regenerator capable of simultaneous 2R regeneration of multiple WDM channels.  

Recently, our group has proposed an all-optical 2R regeneration scheme for multiple WDM 

channels [1]. This novel multi-channel regenerator is a modified configuration of Mamyshev 2R 

regenerator [2], in which a conventional highly-nonlinear-fiber (HNLF) is replaced by a novel 

group-delay-managed (GDM) nonlinear medium. The proposed multi-channel regeneration scheme 

uses multiple concatenated GDM unit cells, where each unit cell contains a piece of HNLF and a 

periodic-group-delay device (PGDD). Afterwards, the proof-of-principle experiment has also been 

demonstrated by using a recirculating loop to emulate of cascading multiple “fiber + PGDD” unit 

cells [3, 4]. However, the recirculating-loop-based regenerator is impractical and not useful in a real 

WDM systems. To make proposed regenerator practical, we build a GDM nonlinear medium with 

4 or 6 “fiber + PGDD” unit cells, assisted by bi-directional Raman pumping.  

In this dissertation, we build a stand-alone all-optical multi-channel regenerator and present 

our experimental results on 3-channel all-optical 2R regeneration with 100 GHz spacing and 200 

GHz spacing, as well as 100-GHz-spaced 12- and 16-channel 2R regeneration. We first investigate 

2R regeneration performance for 3 channels in a GDM nonlinear medium containing four “fiber + 

PGDD” unit cells in 200 GHz spacing case and 100 GHz spacing case. The experimentally observed 
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2 dB eye-opening improvement confirms that few-channel performance is not degraded by narrower 

100 GHz channel spacing. Then, the 100-GHz-spaced multi-channel regeneration experiments were 

performed with as many as 12 channels (12 × 10 Gb/s), and, further, 16 channels (16 × 10 Gb/s) by 

employing a GDM medium with 6 unit cells. All 16 channels demonstrate eye-opening 

improvement better than 5 dB at BER level of 10–9.  

In addition, we make investigations of a nonlinear-optical-loop-mirror (NOLM) based all-

optical regenerator that can be used in phase-encoded systems. We experimentally demonstrate, for 

the first time to our knowledge, a NOLM-based phase-preserving amplitude regeneration of high-

duty-cycle (50%) RZ-DPSK signals degraded by amplitude jitter and amplified spontaneous 

emission (ASE) noise, confirmed by a 1.5 dB eye-opening improvement.  

To show the path to extending the multi-channel regeneration capability to more advanced 

modulation formats, we propose a novel all-optical scheme of 16-QAM signal regeneration. The 

scheme consists of phase-sensitive amplifiers (PSAs), which are used to de-multiplex two 

quadratures, and new 2R regenerators, which are used for two-level amplitude signals. In the 

simulation, the capability of the regenerator has been demonstrated by constellation analysis. The 

modeling results show regenerated out signals have more than 4 dB signal-to-noise ratio (SNR) 

improvement on all 16 states compared to the degraded input signals.  
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CHAPTER 1  

INTRODUCTION 

As optical signal propagates in optical fibers, its strength becomes week due to the 

fiber attenuation. Then optical amplifiers are used to compensate the loss. The 

optical amplifiers add amplified spontaneous emission (ASE) noise to optical 

signals while amplifying them. After accumulation of ASE noise as well as other 

impairments in fiber communication lines, the degraded signal needs to be reset to 

its original shape to remove all noise and distortions for further transmission. This 

re-shaping process is called signal regeneration, which can be classified as: 1R (re-

amplifying), 2R (re-amplifying + re-shaping), and 3R (re-amplifying + re-shaping 

+ re-timing). It is achieved by employing either conventional electronic repeaters 

or all-optical regenerators. The electronic repeater consists of an optical transmitter-

receiver pair and is based on opto-electro-opto (OEO) processing. It receives 

optical signal, converts it to electrical signal that is subsequently regenerated, and 

then uses this electrical signal to modulate another transmitter for re-transmission, 

which is quite complex. Moreover, electronic repeater or regenerator is inherently 

single-channel device, meaning that the same number of electric regenerators is 

required as the number of WDM channels, making the whole regeneration system 

very bulky, costly and power consuming. Moreover, electronic processing becomes 

extremely challenging when symbol rate is beyond 80 Gb/s, leaving all-optical 

regeneration the only option for signal regeneration. 
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Besides working with much higher (Terabit/s) maximum rates than their 

optoelectronic counterparts, all-optical regenerators can be data-rate independent 

and can simplify network management, which is also very advantageous. On the 

other hand, the electronic regenerators can offer more advanced capabilities (e.g., 

forward error correction) and lower manufacturing cost. Thus, to be practically 

viable, an all-optical regenerator must be less expensive, more compact and power 

efferent, which can be done only by processing many WDM channels in a single 

device to replace a large number of electronic regenerators. Therefore, 

compatibility with WDM channels becomes the most important challenge for all-

optical regenerators [5, 6]. This challenge, however, is of fundamental nature. This 

is because strong optical nonlinearity is required for regenerators to form nonlinear 

power transfer function. This means that the cross-phase modulation (XPM) and 

four-wave mixing (FWM) interactions among the WDM channels are also taking 

place due to strong nonlinearity, which harms the WDM operation performance. 

While the re-timing function of 3R regenerator can, at least in principle, be 

performed for all WDM channels by a single device [7–9] (though under rather 

impractical assumptions of synchronized clock rates for all channels), the WDM 

operation of a 2R regenerator has remained a fundamental obstacle up until now. 

Since multi-channel all-optical 2R regeneration is important yet 

challenging, the efforts on overcoming this problem have intensified over the last 

decade and people are trying different kinds of technologies to expand single-
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channel regenerator to multi-channel case. They can be roughly arranged into three 

approaches: space-division multiplexing, polarization and bidirectional 

multiplexing, and using low-duty-cycle pulses (time-division multiplexing).  The 

space-division multiplexing is to use spatial degrees of freedom to isolate WDM 

channels from interaction with each other. The incoming WDM channels are de-

multiplexed into different fibers for a subsequent regeneration, which means it still 

requires many single-channel regenerators for multi-channel regeneration [8, 10–

13]. Obviously, this technique does not take advantage of optical parallelism and 

cannot reduce regeneration cost per channel. The polarization and bidirectional 

multiplexing use other degrees of freedom, such as polarization [14] and opposite 

direction [15, 16] of propagation, to increase the number of channels for 

regeneration. However, it is limited by a small number of channels. For example, 

this approach has led to the demonstration of simultaneous regeneration of 4 

channels in the same nonlinear fiber [17]. The low-duty-cycle or time-division 

multiplexing approach employs very low spectral efficiency in WDM transmission, 

which can help minimize interaction among the WDM channels either by placing 

the channels far from each other in frequency domain, or by separating the bits far 

from each other in time domain (i.e., using low-duty-cycle pulses). For the time-

domain-separation method, the low duty cycle suppresses the interaction by 

ensuring that neighboring-channel pulses very rarely overlap in time.[18–20] For 

frequency-domain-spacing method, the interaction is suppressed by the presence of 
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substantial dispersion of the fiber, which makes the neighboring-channel pulse 

streams rapidly walk off from each other, thereby eliminating FWM and reducing 

XPM to merely a constant phase shift proportional to the average power of the 

neighboring channel. Since the dispersion also causes the different frequency 

components of the data-carrying pulses within each WDM channel to walk off from 

each other, this distorts the pulse shape and eliminates the regenerative effect of the 

optical nonlinearity unless the ratio of the bandwidth of each WDM channel to the 

inter-channel spacing, known as spectral efficiency, is very small. None of the three 

approaches discussed above has shown any potential for increasing the number of 

regenerated channels beyond 4, unless the channels carry identical data and are 

synchronized in time [21], which is impractical. 

For multi-channel all-optical 2R regeneration, our group in collaboration 

with Prof. T. I. Lakoba from the University of Vermont proposed a scheme 

extending the principle of Mamyshev 2R regenerator [1] to arbitrary number of 

channels. It adapts Mamyshev regenerator to WDM operation by replacing the 

nonlinear medium with a group-delay-managed (GDM) nonlinear medium, 

consisting of several “fiber + periodic-group-delay device (PGDD)” unit cells. This 

novel nonlinear medium provides a special dispersion map that enables the 

accumulation of large amounts of self-phase modulation (SPM), which is beneficial 

for regeneration, while eliminating XPM and FWM interaction among WDM 

channels. The proposed multi-channel all-optical 2R regenerator has been 
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experimentally demonstrated for simultaneous 8 or 12-channel regeneration using 

a recirculating loop [3, 4], i.e., by placing one “fiber + PGDD” unit cell into a 

recirculating loop and letting the signals propagate through this cell multiple times 

to simulate many unit cells. Such recirculating loop regenerator was a great proof-

of-principle demonstration, but was not a stand-alone device per se, and could not 

be used in a practical communication system. This dissertation focuses on building 

a stand-alone multi-channel all-optical regenerator without a recirculating loop on 

experimental demonstration of simultaneous 2R regeneration of multiple WDM 

channels. The first step is to investigate a few channels (3 channels in our case) 

with a relatively wide channel spacing (200-GHz) [22]. Then the number of 

channels increases to 12 and channel spacing decreases to 100-GHz [23]. Finally, 

we demonstrate GDM-based multi-channel 2R regenerator with 16-channel 

regeneration with 100-GHz spacing. Furthermore, to show the path to extending 

the multi-channel regeneration capability to more advanced modulation formats we 

study the phase-preserving amplitude regenerator in experiments and 16-QAM all-

optical regenerator in simulation [24]. 

The structure of this dissertation is as follows. The second chapter gives an 

overview of nonlinear effects in optical fiber and fiber communication. In addition, 

it also gives introduction to all-optical regeneration, including amplitude 

regeneration and phase regeneration. In third chapter, we explain our proposed 

multi-channel all-optical 2R regenerator. We focus on the experimental setup and 
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results for simultaneous 3-, 12- and 16-channel 2R regeneration. In fourth chapter, 

we discuss another type of all-optical regenerator, which can be used in phase-

encoded systems, its experimental setup and results. The fifth chapter describes a 

novel scheme for 16-QAM all-optical regeneration and preliminary numerical 

results. The last chapter discusses the future scope of this research work and 

summarizes the dissertation.  
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CHAPTER 2  

OVERVIEW OF ALL-OPTICAL REGENERATION IN FIBERS 

In the past century, optical fibers were developed to transmit data at a high capacity 

over a long distance due to their very low attenuation (<0.18 dB/km) and large 

bandwidth (>1 THz). With the increasing capacities, optical signals have a higher 

requirement on optical signal-to-noise ratio (OSNR) and become more sensitive to 

amplitude and phase noise, which means more frequent regenerations are needed 

along the transmission link. This chapter describes the properties of optical fibers 

and nonlinear effects that can be used to reshape the optical signal into its original 

forms. 

2.1 Fiber Losses 

The most important parameter for fibers, cables or any transmission media is the 

attenuation or loss, a measure of power loss during transmission. If Pin is the input 

power of a fiber of length L, the output power is given by 

,)exp(nout LPP i                                                           (2.1) 

where the attenuation constant α is used to measure the total fiber losses. α can be 

expressed in units of dB/km using the relation 

.log
10

in

out











P

P

L
                                                         (2.2) 

The beauty of optical fiber is its low loss, which makes it a perfect transmission 

medium for optical information carriers. A typical standard single-mode fiber 
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(SSMF) has a minimum loss of ~0.2 dB/km near 1550 nm. Fig. 2.1 shows the loss 

spectrum of a SSMF made in 1979. There are several contributions to the loss 

spectrum. Among them, material absorption and Rayleigh scattering are major 

factors. While Rayleigh scattering limits the use of wavelengths below 800 nm, the 

material absorption increases significantly above 1700 nm. In addition, the loss 

spectrum exhibits a strong peak near 1.39 μm and several other smaller peaks, 

originating from OH-ion vibrations. According to the loss spectrum, there are two 

low-loss windows: 1310 nm and 1550 nm. The O-band, or original band, covers 

1260 nm to 1360 nm while C-band, or conventional band, covers 1530 nm to 1565 

nm. Recently, the commercially available SSMFs have reached a maximum 

attenuation of 0.17 dB/km at 1550 nm and 0.31 dB/km at 1310 nm [25]. 

 

Fig. 2.1. Loss spectrum of a single-mode fiber produced in 1979.  

(Revised from Ref. [26]). 
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2.2 Dispersion in Single-Mode Fibers 

Optical fiber’s refractive index is frequency-dependent, which is called chromatic 

dispersion. In another word, the light waves of different wavelengths travel in the 

fibers at different speeds, thus causing group delay between them. Therefore, fiber 

dispersion plays a critical role in the propagation of optical pulses, which have 

many different frequency components. If a pulse has a spectral width ∆ω, the pulse 

broadening ∆T for a fiber of length L is governed by 

.




















g

L

d

d

d

dT
T                                                       (2.3) 

Using T = L / υg, where υg is the group velocity, defined as [27] 

,
1















 d

d

g

                                                                   (2.4) 

we find that ∆T is governed by 

,22

2













 L

d

d
LT                                                    (2.5) 

where parameter β2 = d2β /dω2 is known as the GVD parameter. It represents 

dispersion of the group velocity and is responsible for pulse broadening. In optical 

communications, another dispersion parameter D is more often used in practice, 

which is defined as 

,
21

22
























c

d

d
D

g

                                                      (2.6) 
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where c is speed of light, and λ is the wavelength. Then ∆T can be also expressed 

in term of D,  

.















 DL

L

d

d
T

g

                                                  (2.7) 

Equation (2.7) is often used to calculate the group delay between different 

frequency components. Both β2 and D are the parameters used to describe the 

dispersion. They have a different sign and are directly connected through equation 

(2.6). Both β2 and D are wavelength dependent, so that there is possibility of β2 = 

D=0 at a specific wavelength. That wavelength is called zero-dispersion 

wavelength and is denoted as λD. For a silica fiber, if wavelength λ < λD, then β2 > 

0 (or D < 0), the fiber is said to exhibit normal dispersion. If wavelength λ < λD, 

then β2 < 0 (or D > 0), the fiber is said to exhibit anomalous dispersion. In the 

normal dispersion regime, short wavelength (blue-shifted) components of an 

optical pulse travel slower than long wavelength (red-shifted) components of the 

same pulse. By contrast, the opposite occurs in the anomalous dispersion regime in 

which β2 < 0 (or D > 0). The zero-dispersion wavelength is a very important 

property of fibers. People have modified the λD of fibers for different purposes and 

applications. The anomalous-dispersion regime is of considerable interest for the 

study of nonlinear effects because it is in this regime that optical fibers support 

solitons through a balance between the dispersive and nonlinear effects. 
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Fig. 2.2. Variation of D and β2 with the wavelength for fused silica.  

(Revised from Ref. [28]) 

2.3 Nonlinearities of Fiber 

In optics, the term nonlinear propagation means that the properties of the medium 

depend on the strength of propagating optical field. In principle, any dielectric 

medium can behave like a nonlinear medium if the electromagnetic field is strong 

enough. Fundamentally, origin of nonlinearity relies on anharmonic motion of 

bound electrons under the influence of an applied field. The total polarization P 

induced by electric dipoles is not linear but satisfies more general relation as 

  ,: 3)3(2)2()1(

0  EEEP                                               (2.8) 
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where ε0 is the permittivity of vacuum and χ(k) (k = 1, 2, . . .) is the kth order 

susceptibility. In optical fiber, the second χ(2) term becomes zero, since its material 

SiO2 is centro-symmetric. Therefore optical fibers do not exhibit second-order 

nonlinear effects, and the lowest-order nonlinear effects in fibers originate from 

third-order susceptibility χ(3). Such a medium as silica is called a Kerr medium and 

it manifests the power dependence of the refractive index, responsible for the Kerr 

effect. The simple form of refractive index can be written as 

,)( 20 InnIn                                                                (2.9) 

where n0 is the linear refractive index, n2 is the nonlinear-index coefficient, and I is 

the optical intensity. The higher-order terms may exist, but are neglected here. 

According to chapter 2 in Ref. [29], the nonlinear-index coefficient can be written 

as 

,)Re(
8

32 )3(

0

2 xxxx
ncn

n 


                                                    (2.10) 

where c is the speed of light in vacuum. We will discuss three different Kerr effects 

in this chapter: Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM) and 

Four-Wave Mixing (FWM).  

The nonlinear effects grow with propagation distance.  For a longer fiber link, 

more light-matter interaction occurs, leading to stronger nonlinear effects. On the 

other hand, due to the fiber loss, the light intensity decreases according along the 
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fiber length. Therefore, the effective length Leff is often used in nonlinear optics. 

For an actual fiber length L, its effective length is defined as, 

,)(
0

effin  


L

z
dzzPLP                                                               (2.11) 

where z is the distance, Pin is the input power at z = 0.  Using the optical power P(z) 

at the distance z alone the link (see equation (2.1)), the effective length Leff is 

obtained as, 

.
)exp(1

eff





z
L                                                               (2.12) 

In the case of no amplification, Leff ≈ 1/α when the fiber length is very long. 

In addition, the nonlinear effects also depend on the light intensity in fiber and 

the intensity is inversely proportional to the area of the core. The effective cross-

sectional area Aeff is always used and can be expressed as 

,

),(
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
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
                                                        (2.13) 

where F(x,y) is the transverse profile of the fiber mode. For single-mode fibers, 

equation (2.13) can be simplified as, 

,)MFD(
4

2

eff


A                                                                (2.14) 

where MFD is mode-field diameter. For example, the effective area for the 

fundamental mode propagating in the standard single-mode fiber is ~ 80 μm2 with 
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MFD = 10 μm. Then, in terms of n2 and Aeff, the nonlinear parameter γ can be 

expressed as, 

.)(
eff

20
0

cA

n
                                                                (2.15) 

The value of γ ranges from 1 to 30 W–1km–1 depending on the fiber type and 

wavelength. 

2.3.1 Self-Phase Modulation (SPM) 

One of the most common Kerr effects is self-phase modulation. The different 

portions of a light pulse experience different amounts of phase shift due to power-

dependent refractive index. The SPM-induced phase shift φSPM is given by [29], 

,)()( effSPM tPLt                                                           (2.16) 

where P(t) is the pulse’s power within its duration. The equation (2.16) shows time-

dependent phase shift, meaning different parts of a pulse undergo different SPM 

phase shifts. The time dependence of φSPM is responsible for change in frequency 

spectrum. The difference δω is given by, 

.
)()(

eff
SPM

t

tP
L

t

t









                                                  (2.17) 

2.3.2 Cross-Phase Modulation (XPM) 

In addition to SPM, another consequence of intensity-dependent refractive index is 

cross-phase modulation (XPM). When two or more optical beams propagate 

together in a fiber, there can be an XPM-induced nonlinear phase change in each 

beam, because the nonlinear refractive index depends not only on the intensity of 
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that beam but also on the intensity of the other co-propagating beams. The XPM 

effect is always accompanied with SPM effect. Therefore, the nonlinear phase shift 

for the ith signal in the fiber with two or more optical signals is given by [28] 

.)2(eff,N 



ij

jiiL PPL                                                     (2.18) 

The first term on right side of equation (2.18) is represents SPM-induced phase 

shift, which originates from the ith-signal’s own intensity dependence. The second 

term represents XPM-induced phase shift, which comes from the interaction with 

the other signals. It is worth to mention that XPM effect is two times stronger than 

SPM (factor of 2 in the above equation), but it is only true when beams have the 

same polarization. The XPM effect has the same strength as the SPM effect when 

beams have orthogonal polarizations. In a WDM system, XPM becomes the major 

impairment and damages the system performance more than the SPM. The 

influence of the XPM effect intensifies with increasing number of channels. The 

result of XPM may be asymmetric spectral broadening and distortion of the pulse 

shape [28]. However, the XPM between channels spaced far from each other in 

frequency can be washed out due to their pulses’ walk-off in the presence of 

dispersion, which leaves the phase shift (2.18) that depends only on the average, 

not instantaneous, power of the other channel. 
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2.3.3 Four-Wave Mixing (FWM) 

Another phenomenon resulting from the Kerr effect is four-wave mixing (FWM). 

FWM is a nonlinear process by which signals at different wavelengths are mixed 

together to produce new signals at new wavelengths. Fig. 2.3 shows that two optical 

signals at frequencies ω1 and ω2, through FWM process, generate two sideband 

signals at new frequencies ω3 and ω4. The four frequencies satisfy the following 

relationship,   

.2143                                                         (2.19) 

In the language of quantum mechanism, two photons at frequencies ω1 and ω2 are 

annihilated, while two photons at frequencies ω3 and ω4 are created simultaneously. 

 

 

Fig. 2.3. Diagram of four-wave mixing 

The main features of FWM can be understood from the third-order polarization 

term in equation (2.8), 

.3)3(

0NL EP                                                                    (2.20) 

Assuming that all waves have the same linear polarization, the total electric field 

can be written as, 

Fiber

ω1 ω2 ω1 ω2

ω3 ω4
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                                             (2.21) 

where the propagation constant βj = nj ωj /c. Substituting equation (2.21) into 

equation (2.20) and using nonlinear parameter γ, one of four waves (P4) can be 

expressed as, 
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(2.22) 

where θ+ and θ– are defined as 

,)()( 43214321 tz 
                                   (2.23) 

.)()( 43214321 tz 
                                   (2.24) 

The first four terms containing E4 in equation (2.22) are responsible for the SPM 

and XPM effects, but the remaining terms result from the frequency combinations 

(sum or difference) of all four waves. 

There are two types of FWM terms in equation (2.22). The term containing θ+ 

corresponds to the case in which three photons transfer their energy to a single 

photon at the frequency ω4 = ω1 +ω2 +ω3. This term is responsible for the 

phenomena such as third-harmonic generation (ω1 = ω2 = ω3). In general, it is 

difficult to satisfy the phase-matching condition for such processes to occur in 

optical fibers with high efficiencies. The term containing θ− in equation (2.22) 

corresponds to the case of FWM. The phase-matching requirement for this process 

is Δk = 0, where 
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.2143 k                                                   (2.25) 

SPM and XPM are significant mainly for high bit-rate systems, but the FWM 

effect is independent of the bit rate and is critically dependent on the channel 

spacing and fiber dispersion. Decreasing the channel spacing increases the four-

wave mixing effect and so does decreasing the dispersion. FWM has been 

recognized as one of the limiting factors in the design of high-performance WDM 

optical transmission links with a large number of channels. In the case of equally 

spaced channels, the new frequencies coincide with the existing frequencies leading 

to in-band crosstalk. When channels are not equally spaced, most FWM generated 

components fall in between the channels and leads to crosstalk, which does not 

degrade the system performance as severely as in-band crosstalk. However, in both 

cases, in addition to the crosstalk interference, the depletion of the original signal 

waves can severely degrade multi-channel system performance. 

2.4 All-Optical Regenerators 

2.4.1 Mamyshev regenerator 

One of the most popular all-optical regenerators is the Mamyshev regenerator, 

which is used to regenerate On-Off Keying (OOK) signal [2]. The schematic of 

Mamyshev regenerator is shown in Fig. 2.4. It consists of two components: a 

nonlinear medium (e.g., highly nonlinear fiber, or HNLF) and an optical bandpass 

filter (OBPF). 
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Fig. 2.4. Schematic diagram of Mamyshev regenerator 

The operation of Mamyshev regenerator is illustrated in Fig. 2.5 for the case of 

a single channel. Assuming that a noisy input pulse (“ONE” symbol) has a full 

width half maximum (FWHM) spectral bandwidth Δν0, it experiences SPM-caused 

spectral broadening during its propagation in the HNLF. The nonlinear phase shift 

is given by:  

ΔνNL = Δν0γ𝑃0𝐿eff ,                                                         (2.26) 

where P0 is the input pulse peak power, γ is the nonlinear coefficient, and Leff is the 

effective length of HNLF. For large input power when ΔνNL>>Δν0, the spectral 

density at the HNLF output has almost constant height and becomes independent 

of the input pulse’s peak power P0. Only width of the broadened spectrum ΔνNL is 

proportional to the input peak power. Hence, the output power from the OBPF is 

also independent of input pulse’s peak power and proportional to the width of the 

OBPF. If OBPF width Δνf ≈ Δν0, one can obtain an output pulse of approximately 

the same duration as the input pulse, but input power fluctuations will not transfer 

into output signal, which constitutes the regeneration of “ONES” symbols. On the 

other hand, any noise between the pulses (i.e., taking place of “ZERO” symbols) is 

OUTIN
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too weak to cause SPM broadening and is confined within the input signal’s 

bandwidth. If the OBPF center frequency is offset from the center of the input 

signal’s spectrum, the noise between the pulses is not transmitted to filter’s output, 

which constitutes the regeneration of “ZERO” symbols. 

 

Fig. 2.5. Operation principle of Mamyshev regenerator 

From the discussion above, we know that the Mamyshev scheme requires 

strong nonlinearity to ensure large amount of SPM for optical regeneration. 

However, the nonlinearity also causes strong interaction, such as cross-phase 

modulation, between the neighboring channels, which degrades the multi-channel 

operation and eventually destroys regeneration. As a result, regular Mamyshev 

regenerator will not work for simultaneous regeneration of multiple WDM channels. 

We proposed a scheme that can adapt Mamyshev regenerator to a multi-channel 2R 

regenerator, in which the conventional HNLF is replaced by a novel artificial 

nonlinear medium. This part will be discussed in the next chapter. 
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2.4.2 Phase-preserving amplitude regenerators 

As we discussed previously, PSAs have the capability of improving the quality of 

phase-encoded modulation formats (e.g., DPSK) through regenerating phase 

directly. However, there is an alternative regenerator that could be used with such 

signals and can regenerate amplitude without disturbing the phase, called phase-

preserving amplitude regenerator. Compared to PSAs, even though not 

regenerating the phase per se, such regenerators are still very useful in phase-

encoded systems. This is because they do signal quality improvement in a simpler 

and cheaper way: they suppress nonlinear conversion of amplitude noise to phase 

noise, which is called Gordon-Mollenauer effect and is the main impairment of the 

phase-encoded systems. Several phase-preserving amplitude regenerator schemes 

have been recently introduced [30–33]. Among them, we think that the regenerator 

based on asymmetric nonlinear optical loop mirror (NOLM) [30, 31] is the most 

promising one because of its potential of regenerating multiple WDM channels 

simultaneously by employing a special group-delay-managed nonlinear medium 

[34].  
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Fig. 2.6. Schematic diagram of NOLM-based regenerators 

A NOLM-based phase-preserving amplitude-regenerating device usually 

consists of three basic elements: a nonlinear medium (e.g., HNLF), a highly-

asymmetric coupler and an imbalancing element, which could be amplifier, 

attenuator, or, in our case, directional attenuator (DA). Fig. 2.6 shows the schematic 

diagram of a typical NOLM-based regenerator. Signal regeneration by a NOLM is 

based on constructive and destructive interference. An incoming pulse is split by a 

coupler with the asymmetric splitting ratio into two counterpropagating pulses with 

different power levels, which propagate through a fiber loop clockwise and anti-

clockwise, respectively. According to their power levels, the pulses gather different 

amounts of SPM phase shifts before they interfere at the coupler. Therefore, the 

output power can be expressed by equation (2.27) and phase expression given by 

equation (2.28): 
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Here Pout is the output power, Pin the input power, ε the coupling ratio, α1 and α2 

are gain/loss factor clockwise and anti-clockwise. The φNL = γLPin represents the 

nonlinear phase shift in the nonlinear medium. The two equations lead to a 

nonlinear power (bottom in Fig. 2.7) and phase (top in Fig. 2.7) transfer 

characteristic curve. The characteristic shows a flattened region (the shadowed blue 

area in Fig. 2.7), where amplitude fluctuations ∆Pin are suppressed effectively so 

that ∆Pout < ∆Pin. Meanwhile, the phase is not changed after amplitude regeneration, 

according to the phase transfer curve.  

 

Fig. 2.7. Phase (upper) and power (bottom) transfer curve of NOLM  

However, so far the experimental demonstrations of NOLM-based phase-

preserving amplitude regenerators have only used pulses with relatively low duty 
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cycle (< 8%), which have low spectral efficiency and are impractical. The 

difficulties in using high-duty-cycle pulses is that XPM phase shift could cancel the 

beneficial SPM phase shift. XPM between the counter-propagating beams shifts the 

bias point of the NOLM interferometer. For low-duty-cycle RZ pulses, XPM phase 

shift is very small and its impact can be negligible. As the duty cycle increases, the 

plateau in input-output power transfer curve shifts toward higher and higher 

powers. When duty cycle reaches 50%, XPM completely cancels the beneficial 

SPM. However, the impact of this XPM can be counteracted by a linear phase bias, 

which can be introduced by playing with polarization or using an acousto-optic 

frequency shifter placed asymmetrically in the loop. In our case, we use 

polarization controllers to adjust the linear phase bias of the NOLM, which will be 

discussed in chapter 4. 
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CHAPTER 3 

A STAND-ALONE MULTI-CHANNEL ALL-OPTICAL REGENERATOR 

One of the main reasons why nonlinear-optical signal regeneration has not yet 

become a practical alternative to electronic processing is that the all-optical 

elements with nonlinear input-output relationship have remained inherently single-

channel and, hence, cannot fully utilize the parallel processing potential of optical 

fibers and amplifiers. In this chapter, we discuss our solution to this problem: an 

optical signal processor employing a novel GDM nonlinear medium where strong 

SPM is achieved without such nonlinear crosstalk, and demonstrate, for the first 

time, simultaneous all-optical regeneration of up to 16 WDM channels by one 

device. 

3.1 Multi-channel Mamyshev regenerator based on GDM nonlinear medium 

As we discussed in chapter 2, Mamyshev regenerator does not work with WDM 

channels due to nonlinear crosstalk among channels. The all-optical regeneration 

working with multi-channel (number of channel >6) has not yet been achieved, 

though its demand is urgent. Then, a radically different method of WDM 

regeneration was proposed by our group in collaboration with Prof. T. I. Lakoba 

from the University of Vermont in [1]. This approach uses the benefits of the 

dispersive walk-off between the WDM channels to avoid FWM and XPM, but at 

the same time eliminates the walk-off among the frequency components within 

each channel to preserve pulse integrity and enable accumulation of large amounts 
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of SPM. In order to adapt Mamyshev regenerator to  WDM operation, the HNLF 

in Mamyshev regenerator is divided into several small pieces, separated by 

periodic-group-delay devices (PGDDs), as shown in Fig. 3.1. Those PGDDs are 

nothing but spectrally-periodic phase filters, which are made of several cascaded 

Gires-Tournois etalons and have sawtooth-like group-delay spectra. Each section 

of HNLF and PGDD form a unit cell and several unit cells combine into the group-

delay-managed (GDM) nonlinear medium.  

 

Fig. 3.1. Schematic of our proposed multi-channel Mamyshev regenerator 

Here, the HNLF provides nonlinearity for SPM and large negative dispersion 

or a straight-line with negative slope group-delay spectrum in Figure 3.2, where the 

spectrum of the “fiber + PGDD” unit cell exhibits staircase-like behavior.  This 

novel dispersion map ensures equal delays among all frequency components within 

each channel, thereby maximizing SPM, but at the same time introduces temporal 

walk-off between different WDM channels for XPM and FWM suppression. Figure 

3.3 shows that, when multiple “fiber + PGDD” unit cells are concatenated, the 

walk-off is accumulated, effectively resulting in the creation of a new artificial 

nonlinear medium with large group velocity dispersion among different WDM 
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channels and with no dispersion within each channel. By employing the GDM 

nonlinear medium, the benefits of large SPM can be enjoyed simultaneously by 

each of many WDM channels without suffering from the FWM and XPM. In the 

future, it might be possible to implement the entire GDM on a chip using integrated-

photonics solutions for both nonlinear [35, 36] and PGDD [37–39] functions. 

 
Fig. 3.2. Group delay map of “fiber + PGDD” unit cell 

 
Fig. 3.3. Group delay map of cascaded “fiber + PGDD” unit cells 
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The idea of using dispersive delay to suppress XPM was originally proposed 

for conventional long-haul communication lines [40, 41] and later was 

demonstrated with PGDDs for dispersion-managed soliton transmission [42, 43]. 

The long-haul communication lines, however, operate in the regime where the 

nonlinearities are weak, whereas 2R regeneration inherently relies on large SPM. 

We found the optimum parameters of operation for the latter regime [44], which 

indicate that the desired 2R performance can be obtained with as few as 5 or 6 “fiber 

+ PGDD” unit cells with anomalous net dispersion of the cell and large normal 

dispersion of the nonlinear fiber. 

3.2 Three-channel Optical Regeneration Experiment 

3.2.1 Group-Delay-Managed Nonlinear Medium 

The key part of our multi-channel regeneration experiment is the group-delay-

managed (GDM) nonlinear medium. As shown in Fig. 3.4, the GDM nonlinear 

medium contains 4 unit cells in three-channel regeneration experiment. Each of 

them consists of a 1-km-long section of DCF, instead of HNLF mentioned in 

chapter 2, and one PGDD. The DCF has a dispersion of –120 ps/nm/km. According 

to Prof. Lakoba’s previous modeling, the unit cell should have a positive residual 

dispersion to enhance the regeneration. Thus, the dispersion of each PGDD is set 

to +135 ps/nm in order to have the optimum residual dispersion of +15 ps/nm for 

each unit cell. The PGDD has a loss of 3.8–4 dB. In addition to that, there are other 

losses from DCF, WDM combiners/splitters and SMF to DCF splicing, 
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contributing to the total loss of 25.5 dB. To compensate the loss of the whole 

transmission link, four Raman Pump Units (RPUs) are used to bi-directionally 

pump the GDM medium to transparency. Each of RPUs has two wavelengths of 

1440 nm and 1450 nm and two polarizations multiplexed, while four additional 

1450/1550 nm pump/signal WDM combiners/splitters are inserted to make the 

Raman pump light bypass the lossy PGDDs. 

 

Fig. 3.4. GDM nonlinear medium for 3-channel regeneration 

3.2.2 Three-channel Experimental Setup 

Figure 3.5 shows the schematic of three-channel regeneration experiment using 

GDM nonlinear medium. The signals are generated either in three 200-GHz-spaced 

odd ITU channels, which are 1550.92 nm, 1552.52 nm and 1554.13 nm, or in three 

100-GHz-spaced channels by interleaving one odd (1552.52 nm) and two even ITU 

channels (1551.72 nm and 1553.33 nm). All signals are OOK-modulated at 10.7 

Gb/s by a 231–1 pseudo-random bit sequence (PRBS) and carved into 50% RZ 

pulses. Another modulator is driven by a 1-GHz sine wave from an independent 

source to emulate a large (±35%) amplitude jitter. This frequency is chosen to be 

far beyond the bandwidth of Raman cross-gain saturation in 2-km-long amplifiers 

used below. After the first EDFA, 1.25-km DCF (nonlinearity γ = 5 W–1km–1) 
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ensures 2.4-bit delay between the adjacent 200-GHz-spaced channels (1.2-bit delay 

between 100-GHz-spaced channels), decorrelating their PRBS bit patterns. Most of 

the out-of-band ASE is suppressed by a cascade of a 4-nm-wide optical bandpass 

filter (OBPF) and a 50-to-100 GHz interleaver with 0.25-nm-wide passband. After 

the second, high-power, EDFA the co-polarized signals enter Mamyshev 

regenerator based on the GDM nonlinear medium. The total average power entering 

the GDM medium is 21.5 dBm (~50 mW / channel). The average output power of 

the last 1-km DCF section is 22 dBm, which indicates nearly uniform nonlinearity 

distribution among different 1-km DCF sections. Then, a 0.2-nm-wide OBPF is set 

to –0.09-nm off the center wavelength of signals to cut a portion of SPM-broadened 

spectrum. For a practical use in a WDM system, it can be replaced by a comb filter 

to achieve simultaneous regeneration for all WDM channels. Afterwards, all 

channels are characterized by a pre-amplified receiver. 

 

Fig. 3.5. Experimental setup for three-channel regeneration 
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3.2.3 200-GHz-Spaced Three-channel Results 

Figure 3.6 shows the eye diagrams of the regenerator input and output signals for 

200-GHz spacing case. Figure 3.6 (a) illustrates the back-to-back signal without 

noise and Figure 3.6 (b) shows the input signal degraded by ±35% amplitude jitter. 

The amplitude-jitter-degraded signal after regeneration is shown in Figs. 6 (c)–(e) 

for the three 200-GHz-spaced WDM channels.  

 

Fig. 3.6. Eye diagrams of RZ-OOK signals for 200-GHz spacing 

Suppression of the amplitude jitter by our 2R regenerator can be seen for all 

three 200-GHz-spacied channels. The eye opening improvement is characterized 

by measuring the BER versus the receiver input power, as shown in Fig. 3.7. In the 

200-GHz-spaced case, we observe a 3.0 dB improvement at BER level of 10–9 for 

1550.92 nm, 3.1 dB improvement for 1552.52 nm and 3.0 dB improvement for 
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1554.13 nm.  Overall, after regeneration, all three 200-GHz-spaced channels have 

a 3-dB improvement in BER measurements at 10–9 level. 

 

Fig. 3.7. BER vs. received power for 200-GHz spacing 
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spaced WDM channels, whose wavelengths are 1551.72 nm, 1552.52 nm and 

1553.33 nm. 

 

Fig. 3.8. Eye diagrams of RZ-OOK signals for 100-GHz spacing  

Again, from the eye diagrams, we observe suppression of amplitude jitter for 

all three 100-GHz-spacied channels. This suppression is confirmed by the BER 

versus the receiver input power measurement, as shown in Figure 3.9. In the 100-
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not significantly degraded by the broadened spectrum of the neighboring channel. 

Overall, all three 200-GHz spaced channels show eye-opening improvement of 

more than 3 dB while all three 100-GHz spaced channels show eye-opening 

improvement of more than 2 dB, as shown in Fig.3.10. 

 

Fig. 3.9. BER vs. received power for 100-GHz spacing 
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Fig. 3.10. Eye-opening improvements for each of the 3 channels,  

measured at BER of 10–9. 

3.3 Multi-Channel Optical Regeneration Experiment 

3.3.1 GDM Nonlinear Medium for Multi-channel Regeneration 

The GDM nonlinear medium is built of 5 complete and one partial (without PGDD) 
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GDM dispersion accumulated within each channel is only –100 ps/nm. Since more 

DCF and WDM combiners/splitters than previous three-channel case, the total loss 

of link increases to 35 dB. To compensate the big loss, eight RPUs are used to bi-

directionally pump the GDM medium to transparency. Eight additional 1450/1550 

nm pump/signal WDM combiners/splitters are inserted to make the Raman pump 

light bypass the lossy PGDDs. 

 

Fig. 3.11. GDM nonlinear medium for multi-channel regeneration 
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patterns between the even and odd WDM channels. We also decorrelate the bit 

patterns within each of the even and odd channel sets by sending the combined 

signals through a 2.5-km-long DCF, yielding a 5-bit pattern delay between the 

adjacent channels of each 200-GHz-spaced set. The dispersion within each channel 

caused by the 2.5-km DCF is completely compensated by a preceding PGDD (set 

to +300 ps/nm) for 12-channel regeneration and 67% compensated by the PGDD 

(set to +200 ps/nm) for 16-channel regeneration, while the dispersion accumulated 

between the channels is preserved. It is important to note that the proper assessment 

of the inter-channel penalties in the regenerator demands averaging the 

performance over various initial bit delays between the neighboring channels [1, 

45], which typically requires the use of two pattern generators (PGs) driven by 

independent clocks [4]. In lieu of the second PG, we decorrelate the clock 

frequencies of even and odd channels by introducing frequency modulation (FM) 

of the clock of a single PG. This is done by mixing the original 10.69 GHz sine-

wave clock at a radio-frequency (RF) single sideband (SSB) modulator with a 30-

MHz sine wave, FM-modulated with 50-kHz repetition frequency and ±100-kHz 

frequency deviation, which generates a 10.72-GHz clock with FM, as shown in 

Figure 3.9. The half-period of FM (10 s) roughly corresponds to the delay of the 

even channels by the 2-km-long SMF and ensures that, after combining, even and 

odd channels have clocks whose frequency difference constantly changes in the 

range from –200 to +200 kHz, leading to continuous variation of the relative input 
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bit delays between the adjacent 100-GHz-spaced channels from –0.64 to +0.64 bit 

periods over the span of 20-s FM period. 

 

Figure 3.12. Experimental setup for multi-channel regeneration 

All 12 or 16 WDM channels are set to be co-polarized, through polarization 
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optimum total average power entering the GDM medium is 26 dBm (~33 

mW/channel) in the 12-channel case and 27 dBm (~31 mW/channel) in the 16-

channel case. The total average power at the output of the last 1-km DCF section 

falls to 22 dBm and 22.6 dBm for 12-channel and 16-channel regeneration, 

respectively, due to the Raman gain saturation. To make sure that the observed 

regeneration effect is not originating from the relatively slow saturation response 

of the Raman gain, we use the fast electronic noise fluctuations to produce the input 

amplitude jitter. At last, the output of the GDM-based regenerator is characterized 

by a pre-amplified direct-detection receiver.  

3.3.3 12-channel Regeneration Results 

The wavelength of 12 ITU channels are from 1549.32 nm to 1558.17 nm with 100-

GHz spacing. In our experiments, due to the uneven gain ripple of RPUs for those 

channels, we have to use pre-emphasis technique to avoid ripple accumulation with 

increasing number of RPUs and optimize OSNR and Q-factor performance for all 

WDM channels [46]. Figure 3.13 shows the signal spectra for 12 channels at the 

input (blue) and output (red) of regenerator. A pre-emphasis technique has been 

used to enforce input and output of all 12 channels to be inverted versions of each 

other, indicating that all 12-channel signals have a relatively equal power at midway 

of transmission line to equalize OSNR and nonlinear phase shift among all the 

channels. 
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Fig. 3.13. Spectra ripple at input (blue) and output (red) among 12 channels 

In the presence of distortion-like nonlinearity such as SPM, this technique 

ensures all WDM channels have equal SPM nonlinear phase shifts. Figure 3.14 (a) 

shows spectra with 0.016 nm resolution before (blue) and after (red) GDM 

nonlinear medium for all 12 channels. All of them have an equal amount of 

nonlinear phase shift and similar SPM-based spectral broadening. Figure 3.14 (b) 

gives a zoom-in view on spectrum of channel #8 and shows a significant spectral 

broadening. 
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(a) 

 
(b) 

Fig. 3.14. Spectrum with 0.016 nm resolution before (blue) and after (red)  

GDM nonlinear medium: (a) 12 channels; (b) channel #8. 
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Figure 3.15 shows the eye-diagrams of degraded input signal (±35% amplitude 

jitter) and regenerated output signal for all 12 channels for optimum value of –0.05 

nm detuning of tunable filter from the input signal’s center wavelength. For all 12 

channels we can see that the regenerated output pulse has a much cleaner amplitude 

compared to the input pulse. 

 

Fig. 3.15. Eye diagrams of noise-degraded input and regenerated output signals 

The BER curves measurements are implemented to quantify the eye opening 

improvement. The bit error rates (BERs) vs the receiver input power are 

summarized for all channels in Fig. 3.16. Owing to large amount of the loaded 

broadband noise, the degraded signal hits a noise floor above BER of 10–9, but the 

regenerated signal reaches below 10–9. Thus, to quantify the regeneration 

performance, Figure 3.17 presents the eye-opening improvement not at 10–9 
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(infinite) but at 10–8 BER level (more conservative estimate). This eye-opening 

improvement in Fig. 3.17 has a minimum of 3 dB for all 12 channels. 

 

Fig. 3.16. BER vs received power for all 12 channels: solid triangles – degraded 

input; empty squares – regenerated output; solid circles – back to back  
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Fig. 3.17. Eye opening improvements measured for all 12 channels 

3.3.4 16-channel Regeneration Results 

The wavelengths of 16 ITU channels are from 1543.73 nm to 1555.75 nm with 100-

GHz spacing. Figure 3.18 shows the signal powers for 16 channels at the input (blue) 

and output (red) of regenerator. A pre-emphasis technique has also been used to 

enforce input and output power ripples of all 16 channels to be inverted versions of 

each other to optimize OSNR and nonlinear phase shift among all the channels. 
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Fig. 3.18. Power ripple at input (blue) and output (red) among 12 channels 

Fig. 3.19 (a) shows spectra with 0.016 nm resolution before (blue) and after 

(red) GDM nonlinear medium for all 16 channels. All of them have an equal amount 

of nonlinear phase shift and similar SPM-based spectral broadening. Fig. 3.19 (b) 

shows more detailed spectra of four representative channels and each of them 

shows a similar and significant spectral broadening. 
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(a) 

 
(b) 

Fig. 3.19. Spectrum with 0.016 nm resolution before (blue) and  

after (red) GDM nonlinear medium: (a) 16 channels;  

(b) channel #2, #6, #12 and #16. 
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Fig. 3.20 (a) shows the eye-diagrams of degraded input signal (±35% amplitude 

jitter) and regenerated output signal for all 16 for optimum value of –0.07 nm 

detuning of tunable filter from the input signal’s center wavelength. For all 16 

channels we can see that the regenerated output pulse much has a much cleaner 

amplitude compared to the input pulse. Figures 3.20 (b) and (c) show 5-bit and 10-

bit patterns before and after regeneration for 1555.75-nm channel. 
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Fig. 3.20. Eye diagrams of noise-degraded input and regenerated output signals:  

(a) 16 channels; (b) 5-bit pattern (1555.75-nm channel);  

(c) 10-bit pattern (1555.75-nm channel) 
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The BER measurements are implemented to quantify the eye-opening 

improvement. The BERs vs the receiver input power curves are summarized for all 

16 channels in Fig. 3.21. To quantify regeneration performance, Fig. 3.22 presents 

the eye-opening improvement at 10–9 BER level. This eye-opening improvement in 

Figs. 3.21, 3.22 has a minimum value of 5 dB for all 16 channels. 

 

Fig. 3.21. BER vs received power for all 16 channels: solid triangles – degraded 

input; empty squares – regenerated output; solid circles – back to back 
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WDM channels with 100 GHz spacing in a stand-alone Mamyshev regenerator 

based on the GDM nonlinear medium. The results show that neither increased 

number of channels nor narrow channel spacing degrades the performance of our 

multi-channel regenerator. 

 
Fig. 3.22. Eye opening improvements measured for all 16 channels 
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CHAPTER 4 

A PHASE-PRESERVING AMPLITUDE REGENERATOR  

BASED ON NOLM 

Compared to traditional on-off keying amplitude modulation, signals using phase 

encoding, e.g., return-to-zero differential phase-shift keying (RZ-DPSK), are 

preferable in communication systems due to their robustness to nonlinear effects, 

improved dispersion tolerance, and high spectral efficiency. Nevertheless, DPSK 

formatted signals still suffer amplitude jitter caused by intrachannel four-wave 

mixing, as well as from and amplitude noise conversion to phase noise, known as 

the Gordon–Mollenauer effect [47], which is the major impairment in phase-

encoded systems. One easy and simple way to deal with it is to employ phase-

preserving amplitude regeneration. In this chapter, we demonstrate the phase-

preserving amplitude regeneration of useful 50%-duty-cycle RZ-DPSK signals by 

using a NOLM. 

4.1. NOLM-based Regenerator Setup 

The setup of our NOLM-based regenerator is shown in Fig. 4.1. It consists of a 95:5 

coupler, a piece of nonlinear fiber (5.1 km of non-zero dispersion-shifted fiber, or 

NZDSF, with dispersion D = 4 ps/nm/km, nonlinearity γ = 1.5 W–1km–1, and 

attenuation α = 0.2 dB km–1), and a DA implemented by an isolator (37 dB isolation) 

instead of directional amplifiers. We call this regenerator as DA-NOLM 

regenerator. In addition, there are two polarization controllers inside and outside 
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the loop to adjust the linear phase bias, in order to adapt it to working with high-

duty-circle pulses, as we discussed in chapter 2. 

 

Fig. 4.1. Schematic diagram of DA-NOLM 

The input signal is separated into two unequal counter-propagating beams by 

95:5 coupler. The weaker beam propagates through the isolator in forward direction, 

experiencing only a small insertion loss. Because of its weak strength, signal has 

negligible SPM phase shift during its propagation through NZDSF. The stronger 

beam passes through NZDSF first and gains a relatively large nonlinear phase shift. 

Then it is greatly attenuated by the isolator (37 dB in our case). The stronger beam 

has lower power than the weaker beam when they encounter at coupler. The low-

power beam (the original “stronger beam”) with input-power-dependent phase shift 

and a higher-power beam (originally, “weaker beam”) with almost unperturbed 

phase interfere at the NOLM output. The output signal’s amplitude is thus 

determined by the interference between the counter-propagating beams while the 
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output phase is dominated by the high-power beam with unperturbed phase. This 

characteristic leads to nonlinear power and phase transfer curves, where a plateau 

can be found in both power and phase curves to achieve amplitude regeneration 

without disturbing the phase.   

4.2 Phase-Preserving Amplitude Regeneration Experiment 

4.2.1 Experiment Setup 

Fig. 4.2 illustrates the experimental setup for phase-preserving amplitude 

regeneration using DA-NOLM. The transmitter has only one wavelength of 1546 

nm from a DFB laser. The signal is DPSK-modulated at 10.7 Gb/s by a 231–1 

pseudo-random bit sequence (PRBS) pattern and then carved into 50% RZ pulses. 

The VOA 1 is placed in front of EDFA1 to adjust loaded ASE noise by varying 

attenuation. An OBPF is used to filter out out-of-band noise before launching into 

the high-power EDFA. The average input power into DA-NOLM regenerator is 

adjusted by controlling the second VOA2 in order to achieve the optimum 

regeneration. The resulting signal can either bypasses the DA-NOLM or go through 

it for regeneration. VOA3 controls the power into the receiver consisting of a pre-

amplifier EDFA2, OBPF, delay interferometer (DI), and a balanced photodetector.  
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Fig. 4.2. Experimental setup for DA-NOLM regeneration 

4.2.2 Experiment Results 

To study the performance of DA-NOLM regenerator, we implement the experiment 

with two different type of noise, namely the amplitude jitter and ASE noise. First, 

only amplitude jitter with ±30% fluctuation is introduced by shifting the bias 

voltage of Mach-Zehnder modulator (MZM) from the optimum for DPSK 

modulation. The average input power of DA-NOLM regenerator is set to 24 dBm 

for optimized regeneration. The optical signal-to-noise ratio (OSNR) in 0.1 nm 

spectral bandwidth is now set to 27.5 dB for the signal launched into the DA-

NOLM. The eye diagrams of the input signals before and after the DPSK 

demodulation are shown in Fig. 4.3 (a) and (b) while output signals shown in Fig 

4.3 (b) and (d). As we can see, the eye diagram shows a significant suppression on 

amplitude jitter after regeneration in Fig 4.3 (b), compared to the input in Fig. 4.3 

(a).  
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Fig. 4.3. Eye diagrams for amplitude-jitter-only case: (a) input before 

demodulation; (b) output before demodulation; (c) input after demodulation;  

(d) output after demodulation 

The eye opening improvement between the signals at the input and output of 

DA-NOLM is characterized by measuring the BER versus the receiver input power, 

as shown in Fig. 4.4. The reference signal has the same OSNR of 27.5 dB, but 

without the amplitude jitter, measured after bypassing the NOLM. This jitter 

reduction in eye diagrams is confirmed by a 2 dB eye-opening improvement 

observed in BER measurements at 10–9 BER level. 
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Fig. 4.4. BER vs. receiver power for amplitude-jitter-only case 

Then, we use the same amplitude-impaired signal but add more ASE noise to 

signal by adjusting VOA1. The 0.1-nm OSNR of the signal launched into the DA-

NOLM is reduced to 20 dB. The eye diagrams and BER versus the receiver input 

power curves are shown in Figures 4.5 and 4.6, respectively. Again, we see a 

considerable eye improvement by the DA-NOLM, quantified to be 1.5 dB in BER 

measurements at 10–9 level. The 0.5-dB lower improvement figure compared to the 

amplitude-jitter-only case may have come from two factors: a) out-of-band ASE, 

not cleaned out adequately due to relatively wide 1.6-nm bandwidth of the OBPF 

after EDFA1, couples to and degrades the signal during nonlinear propagation in 

NOLM; b) the range of the fluctuations produced by the combination of the 

amplitude jitter and ASE might be wider than the regenerator’s acceptance range. 
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Fig. 4.5. Eye diagrams for ASE-degraded case: (a) input before demodulation; (b) 

output before demodulation; (c) input after demodulation;  

(d) output after demodulation 

 
Fig. 4.6. BER vs. receiver power for ASE-degraded case 
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4.3 Amplitude-to-Phase Noise Prevention Experiments using NOLM regenerators 

4.3.1 Experimental Setup 

The experimental setup for study of nonlinear phase suppression by using DA-

NOLM is shown in Fig. 4.7. The 1546-nm light from a DFB laser is DPSK-

modulated at 10.7 Gb/s by a 231-1 pseudo-random bit sequence (PRBS) pattern and 

then carved into 50% RZ pulses. The signal is loaded with ASE noise by varying 

VOA1 before launching into EDFA1. After the high-power EDFA, the average 

input power to DA-NOLM is adjusted by VOA2 for optimized regeneration. The 

input signal either bypasses the NOLM or goes through it for regeneration by switch 

SW1. A piece of 40 km NZDSF is placed after EDFA2 and is used to translate 

amplitude noise into phase noise by the Gordon-Mollenauer effect. This fiber can 

be also bypassed through switches SW2 and SW3. VOA3 controls the power into 

the receiver consisting of a pre-amplifier EDFA3, optical bandpass filter (OBPF), 

delay interferometer (DI), and a balanced photodetector.  

 

Fig. 4.7. Experimental setup for nonlinear phase prevention 
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Again, two different types of noise are used to study the regeneration 

performance in the experiment. First, we only introduce ±40% amplitude jitter by 

shifting the bias voltage of Mach-Zehnder modulator (MZM) from the optimum for 

DPSK modulation. The average input power of NOLM for maximum regeneration 

is set to 24 dBm for optimized regeneration. By adjusting VOA1, the optical signal-

to-noise ratio (OSNR) in 0.1 nm spectral bandwidth is set to 27.5 dB for the signal 

launched into the NOLM. The output power of EDFA2 is set to P2 = 11.4 dBm to 

accumulate noticeable nonlinear phase shift of ~0.75 rad in a piece of 40 km 

NZDSF (effective nonlinear length Leff  =18 km). 

4.3.2 Experimental Results 

The eye diagrams of the signals with and without passing through NOLM both 

before and after the DPSK demodulation are shown in Fig. 4.8. As we can see, the 

eye diagram shows a significant suppression on amplitude jitter after regeneration 

in Fig. 4.8 (b), comparing with input in Fig. 4.8 (a). This jitter reduction is also seen 

in the demodulated DPSK eye diagram.  



 

62 

 

Fig. 4.8. Eye diagrams for amplitude-jitter-only case: (a) input before 

demodulation; (b) output before demodulation; (c) input after demodulation;  

(d) output after demodulation  

The histograms of the demodulated eye diagram are given as well in Fig. 4.8 

(red part). They confirm the lack of additional phase jitter due to phase-preserving 

amplitude regeneration by DA-NOLM. The eye opening improvement between the 

signals with and without passing through NOLM is characterized by measuring the 

BER versus the receiver input power after 40 km transmission, as shown in Fig. 

4.9, where a 2 dB improvement is observed at 10–9 BER level. Compared to the eye 

opening improvement before the NZDSF, the eye opening improvement after the 

NZDSF is larger, owing to the reduction of the nonlinear phase noise, in addition 

to the amplitude jitter, in the DA-NOLM-assisted case.  
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Fig. 4.9. BER vs. receiver power for amplitude-jitter-only case 

Then, we turn off amplitude jitter but add more ASE noise to signal by adjusting 

VOA1. The 0.1-nm OSNR of the signal launched into the DA-NOLM is reduced 

to 17.3 dB. The eye diagrams and BER versus the receiver input power curves are 

shown in Fig. 4.10 and Fig. 4.11, respectively. Again, we see a considerable eye 

improvement by the DA-NOLM, quantified to be 1.5 dB in BER measurements at 

10–9 level.  

To summarize this chapter, we experimentally demonstrate amplitude 

regeneration of 50% duty-cycle RZ-DPSK signal by using a NOLM. An eye-

opening improvement of 1.5 dB is observed for a signal degraded by a combination 

of ASE noise and amplitude jitter. Further, we employ the NOLM regenerator 

before a 40-km-long transmission link and show that it prevents amplitude-to-phase 

noise conversion (Gordon-Mollenauer effect), resulting in a 2-dB eye-opening 

improvement. 
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Fig. 4.10. Eye diagrams for ASE-only case: (a) ASE-degraded signal; (b) 

regenerated signal. 

 

Fig. 4.11. BER vs. receiver power for ASE-only case 
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CHAPTER 5 

ALL-OPTICAL REGENERATION SCHEME FOR 16-QAM SIGNALS 

With increasing demand for higher transmission capacity and bit rates, the 

combination of amplitude and phase modulation in multilevel encoding, known as 

quadrature amplitude modulation (QAM), has come into focus of the optical 

communication research. QAM leads to higher spectral efficiency and transmission 

capacity in WDM systems, but also results in a higher sensitivity to amplitude and 

phase noise [48]. Therefore, with the growing popularity of multi-level QAM 

formats, there is need for 2R regenerations of the accumulated linear noises (e.g. 

ASE) as well as of the nonlinear phase noise converted from amplitude noise due 

to Gordon-Mollenauer effect [47].  

The difficulty of 16-QAM regeneration is in doing multi-level regeneration on 

both amplitude and phase. Recently, regeneration using phase-sensitive amplifiers 

(PSAs) become very popular because of PSA’s phase squeezing capacity. Several 

PSA-based phase regenerators of some phase-encoded modulation formats have 

been recently demonstrated [49–52]. PSA-based regenerators can be operated in 

saturated regime to achieve simultaneously amplitude and phase regeneration [53]. 

Unfortunately, saturated PSAs cannot work with any multi-level amplitude 

regeneration. Overall, the problem of regenerating the most popular 16-QAM 

format is still open. In this chapter, we propose a novel scheme for 16-QAM signal 

regeneration based on PSAs and numerically investigate performance of this 
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scheme using constellation analysis. Unlike the saturated PSA scheme, our scheme 

is potentially compatible with multi-channel operation, if the HNLF is replaced by 

the GDM medium. 

5.1 Introduction to novel 2R Regenerator 

First, we introduce a new kind of amplitude regenerator using a PSA and a piece of 

HNLF, shown in Fig. 5.1 (top). The operation principle is to use quadrature 

squeezing of PSAs and SPM-induced nonlinear phase shift. Let us assume a signal 

with only amplitude fluctuation on X quadrature. During its propagation in the 

HNLF, the signal acquires a nonlinear phase shift due to self-phase modulation. So 

does the amplitude fluctuation. By carefully controlling the phase shift, the noise 

on X quadrature is converted to the noise on Y quadrature, so that the noise on Y 

quadrature can be suppressed through squeezing of Y quadrature by a following 

PSA, to obtain an amplitude-regenerated signal at output. This regenerating process 

is shown in Fig. 5.2 (bottom).  
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Fig. 5.1. Block diagram of 16-QAM signal regeneration scheme (top) and  

polar plot of amplitude regeneration (bottom). 

Considering an input signal Ein, it only has amplitude A0 and fluctuation ∆A0 on 

X quadrature and no Y quadrature component. Then the signal goes through a piece 

of HNLF, whose nonlinear coefficient and fiber length are γ and L. The nonlinear 

phase shift introduced by self-phase modulation can be given by 

.)2( 00

2

0 AAAL           (5.1) 

At the end of the fiber, the complex form of signal with noise is given by 

.)exp()( 001  iAAE            (5.2) 
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Here we define a parameter =A0/A0, describing the ratio of noise to signal for 

amplitude. Then equation (5.2) becomes 

,)]21(exp[)1( 001  iAE                   (5.3) 

where φ0=γLA0 is the nonlinear phase shift for the signal without noise. When the 

signal is amplified by a PSA, only X quadrature is preserved, whose form is 

.)]21(cos[)1( 001  iAX                   (5.4) 

Finally, the expression of normalized amplitude fluctuation is given by 
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Compared to the input signal, the amplitude fluctuation of output signal can be 

reduced by adjusting nonlinear phase shift φ0 through equation (5.5).  Theoretically, 

we can find the optimal value of φ0 to minimize the value of equation (5.5) for any 

jitter ε. Fig. 5.2 is numerical solution of equation (5.5). For different amplitude jitter, 

the optimum phase shift should be slightly adjusted to achieve the maximum 

regeneration. 
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Fig. 5.2. Normalized noise versus SPM phase shift 

5.2 16-QAM Optical Regeneration Scheme 

Fig. 5.3 illustrates the schematic diagram of our proposed all-optical 16-QAM 

signal regeneration scheme. The basic idea of the 16-QAM signal regeneration 

scheme is to separate the information on X and Y quadrature of 16-QAM signal 

into two optical paths by using a PSA and to implement 2R regeneration separately. 

Incoming 16-QAM signal is split symmetrically into two partial signals, which are 

transmitted into two parallel arms, by a 50/50 splitter. Then each signal is 

regenerated by the following 2R regenerators, respectively. At the end, another 

50/50 coupler is used to combine the two regenerated partial signals and the 

completed 16-QAM signal is restored as an output.  
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Fig. 5.3. Schematic diagram of all-optical 16-QAM signal regeneration scheme 

In each arm, the first PSA following the coupler is used to amplify one 

quadrature of the incoming signal and to deamplify the other quadrature. Both the 

noise and the data encoded on the deamplified quadrature are erased by this PSA, 

leaving only the information encoded on the amplified quadrature. Hence, this 

arrangement effectively de-multiplexes X and Y quadrature. As shown in Fig. 5.3, 

the signal in the upper arm carries the data only from X-quadrature and the signal 

in the lower arm carries the data only from the Y-quadrature. Each signal contains 

two amplitude levels with power ratio of 1:9 plus the corresponding amplitude 

noise. Such de-multiplexing makes subsequent regeneration much easier in each 

arm. A variable phase delay is inserted in front of the second HNLF-PSA 

combination to optimize the regeneration performance. Then two 2R amplitude 

regenerators consisting of PSA and HNLF, as we discussed above, are implemented 

to suppress the amplitude noise on two amplitude levels with power ratio of 1:9. 

Similarly to the first PSA, the last PSA is use to squeeze some phase noise 
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introduced by the previous 2R regenerator. The last coupler restores the 16-QAM 

signals by combing regenerated X and Y quadrature signal at output. 

5.3 Simulation results 

In our simulation, the gains of the first, second and third PSAs in each arm are 13 

dB, 10 dB, and 10 dB, respectively. The (nonlinear coefficient  fiber length) 

products are chosen so that the average SPM phase shifts induced by the first HNLF 

for higher power level and by the second HNLF for lower power level are both 0.65 

rad. Loss and dispersion are neglected for simplicity. To quantify the regeneration 

performance, a normalized standard deviation (NSTD)    22
δδδ YX YX   is 

introduced, where X and Y are the mean values of X- or Y-quadrature amplitudes, 

and X,Y are the standard deviations of X and Y, respectively. Obviously, the NSTDs 

are related to average power, meaning that, with the same amount of white noise, 

NSTDs at different power levels have a relationship of 1 = 5 5 and 1 = 39.  
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Fig. 5.4. RA of input with 9 = 1.5% (top) and 9 = 3% (bottom) 
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The ratio of the NSTDs of the input and output signals is defined as the 

regeneration ability (RA) [54], which is used to assess the performance of 

regenerators. Fig. 5.4 shows the RA for 16-QAM regeneration scheme versus input 

power with 9 = 1.5% (top) and 9 = 3% (bottom). The RA is optimized for the 

average input power for all three power levels. The dotted, dash and solid curves 

are for the 1st, 5th and 9th power level, respectively. After optimization, the 

optimum RA value for 1st, 5th and 9th power level is 6 dB, 8 dB and 8 dB when 9  

is 1.5%, as well as 4 dB, 5 dB and 6 dB when 9  increases to 3%. 

Figs. 5.5 and 5.6 shows constellation diagrams of the noise-degraded input and 

regenerated output signals of the 16-QAM regenerator. The input signal has high-

power-level NSTD 9 = 1.5% in Fig. 5.5 and 9 = 3% in Fig. 5.6. The total number 

of symbols in the simulation is 1024. When the noise is relatively small (9 = 1.5%), 

the regenerator performs a significant suppression on scattered signal points in the 

constellation. When the noise becomes large (9 = 3%), the noise suppression is 

still obvious. However, in the latter case, output signal at the highest power level is 

regenerated better than at the lowest power level. This is because NSTD of the 

lowest power level is 9%, and this noise is too large to be reduced completely, 

which is consistent with the simulation result of RA above. Nevertheless, the better 

regeneration at the higher power level is actually beneficial because the nonlinear 

impairments in subsequent fiber spans come from the high-power levels. 
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Fig. 5.5. Constellation diagrams of input (left) and output (right) with 9 = 1.5% 

for 16-QAM regeneration scheme 

 

Fig. 5.6. Constellation diagrams of input (left) and output (right) with 9 = 3%  

for 16-QAM regeneration scheme 

To summarize, we have proposed a novel all-optical scheme for 16-QAM signal 

regeneration based on PSA and new amplitude 2R regenerators. The first PSA is 

used to de-multiplex two quadratures and two cascaded amplitude 2R regenerators 
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in each arm are used to achieve two-level amplitude regeneration. In the numerical 

simulation, the capability of the regenerator has been demonstrated for the input 

16-QAM signal with two different levels of white noise. The constellation results 

show that this scheme is able to regenerate both multi-level amplitude and phase 

simultaneously. The complex noise is reduced significantly through 16-QAM 

regeneration scheme when the NSTD δ9th are 1.5% and 3%. Our scheme is 

potentially compatible with multi-channel operation, if the HNLF is replaced by 

the GDM medium, and the PSAs are operated in frequency-non-degenerate regime. 
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CHAPTER 6  

CONCLUSIONS 

This dissertation focuses on building a stand-alone multi-channel 2R regenerator 

based on GDM nonlinear medium and experimental demonstration of simultaneous 

2R regeneration of multiple WDM channels. In addition, we also study the 

performance of DA-NOLM regenerator in experiments and propose a novel 16-

QAM all-optical regenerator in simulation. 

We have experimentally demonstrated, for the first time, to our knowledge, the 

simultaneous 2R regeneration of 100-GHz spaced 16 × 10 Gb/s WDM channels. 

This sets up two records: the highest number of simultaneously regenerated 

channels and the narrowest channel spacing. For this task, we have designed and 

built a novel GDM nonlinear medium consisting of several “fiber + PGDD” unit 

cells, bi-directionally pumped by Raman pump units. In our 3-channel experiments, 

4 unit cells and 4 RPUs are used to achieve amplitude regeneration in both 100-

GHz spacing and 200-GHz spacing cases. We have observed an eye-opening 

improvement greater than 2 dB and 3 dB for all 3 channels at 10–9 BER level in 

100-GHz spacing and 200-GHz spacing cases, respectively. In our 100-GHz-

spaced 12- and 16-channel experiments, a complete version GDM medium of 6 unit 

cells and 8 RPUs is employed to achieve optimized regeneration. We have observed 

an eye-opening improvement greater than 3 dB for all 12 channels at 10–8 BER 

level and greater than 5 dB for all 16 channels at 10–9 BER level. 
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In addition, we have also investigated a phase-preserving amplitude regenerator 

based on DA-NOLM for 50% duty-cycle RZ-DPSK signal regeneration. We have 

observed eye-opening improvement of 2.0 dB and 1.5 dB for a signal degraded by 

amplitude jitter only and a combination of ASE noise and amplitude jitter, 

respectively. By using the same DA-NOLM regenerator, we further demonstrated 

preventing of nonlinear amplitude-to-phase noise conversion of 50%-duty-cycle 

RZ-DPSK signal, resulting in 2-dB eye-opening improvement by employing a 40-

km-long transmission link. 

Furthermore, we have proposed, for the first time, to our knowledge, a novel 

all-optical scheme for 16-QAM signal regeneration, which is based on PSAs and 

new 2R regenerators. The PSAs are used for de-multiplexing two quadratures and 

phase noise suppression while the cascaded 2R regenerators are used for multi-level 

amplitude regeneration. The numerical results shows a significant regeneration on 

both amplitude and phase for all 16 states as well as robustness to variation in power.  

In future, for a phase-encoded system, a phase-preserving amplitude 

regenerator with multi-channel capability will be needed. The NOLM regenerator 

considered above can be adapted to a multi-channel operation by replacing the 

HNLF with our GDM nonlinear medium [34]. For full phase regeneration, multi-

channel PSAs can be used, based on non-degenerate FWM. For the phase-

preserving regeneration of the remaining amplitude noisethe NOLM-based multi-

channel 2R regenerators can be used. The 16-QAM regeneration scheme should be 
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further investigated and optimized. For example, replacing the 2R regenerator with 

NOLM that can do multi-level amplitude regeneration [55, 56] could simplify the 

setup and might improve the performance. 
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