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ABSTRACT 

 

SECOND ORDER ALGORITHM FOR SPARSELY  

CONNECTED NEURAL NETWORKS 

 

Parastoo Kheirkhah, M.S. 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Michael T. Manry 

A systematic two-step batch approach for constructing a sparsely connected neural 

network is presented. Unlike other sparse neural networks, the proposed paradigm uses orthogonal 

least squares (OLS) to train the network. OLS based pruning is proposed to induce sparsity in the 

network. Based on the usefulness of the basic functions in the hidden units, the weights connecting 

the output to hidden units and output to input units are modified to form a sparsely connected 

neural network. The proposed hybrid training algorithm has been compared with the fully 

connected MLP and sparse softmax classifier that uses second order training algorithm. The 

simulation results show that the proposed algorithm has significant improvement in terms of 

convergence speed, network size, generalization and ease of training over fully connected MLP. 

Analysis of the proposed training algorithm on various linear and non-linear data files is carried 

out. The ability of the proposed algorithm is further substantiated by clearly differentiating two 

separate datasets when feed into the proposed algorithm. The experimental results are reported 

using 10-fold cross validation. Inducing sparsity into a fully connected neural network, pruning of 

the hidden units, Newton’s method for optimization, and orthogonal least squares are the subject 

matter of the present work. 
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Chapter 1  

INTRODUCTION 

From an artificial intelligence point of view, machine learning is a subfield that recently 

has seen rapid growth. Today, with all the technical advances and booming growth of data than 

any other time in the human history, machine learning lies at the core of data science that will play 

a crucial role in the technical innovation for future. Recent machine learning applications have 

been far reaching and highly impactful. It's the heart of autonomous vehicle control [1], speech 

processing [2], natural language processing [3] and [4], computer vision [5], cancer prognosis and 

predictions [6], astronomy [7]. 

A neural network can be thought of as a complicated mathematical function that has 

various constants called weights and biases, which must be determined. Training a neural network 

is the process of finding a set of weight so that for a given set of inputs, the outputs produced are 

very close to some target values. Learning algorithms for training neural networks are generally 

divided into two types, supervised and unsupervised learning. In supervised learning, a training 

dataset or desired outputs of the neural network is provided for the purpose of training. On the 

other hand, unsupervised learning has to make sense of the inputs without outside help. The 

network is only provided with the input dataset and it has to find out some of the characterization 

of the data and learn to reflect these properties in its output. 

Sparse modeling or representation is attracting an increasing attention in problems with 

very high dimension, often larger than the sample size. These problems are usually ill-posed, 

prone to over-fitting and, if no correcting action is taken, likely to yield poor models. Sparse 

methods can be a helpful solution to remedy these problems. Sparsity has also played a central 

role in the success of many machine learning algorithms and techniques such as matrix 

factorization [8] [9]. In sparse models, although only a small fraction of non-zero values remain in 

the representation, this is sufficient to achieve equivalent results to non-sparse models. So far, 
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numerous sparsity measurements have been developed [10]. Also, various methods have been 

proposed to achieve sparse solutions of machine learning problems as in [11] and [12]. 

With the rapid growth of the scale of data science, various forms of online and offline 

data, there is a need for efficient computational models. Sparsity is one promising solution that 

provides efficient input representation. On the other hand neural networks are immensely 

successful in parallelizing massive computation.  By placing sparsity in the neural network 

models, we empower them to compute and process much more data.  Sparse neural networks are 

much smaller in size and hence computationally very efficient and can deal with much larger data 

with higher dimensions. However, the challenge lies in making the data sparse. Efficient 

representation of data is a key component in its later stage of classification. Sparse coding [13] 

provides an efficient representation that is localized, oriented and receptive to band-pass fields 

similar to those found in primary visual cortex. Efficient sparse coding algorithms as in [12] have 

shown extremely promising results with the sparse auto-encoder network. In [12], a novel fast 

algorithm is proposed to solve L1 and L2 constrained least square problems. The algorithm learns 

large sparse codes and has been applied to natural images, speech and video. However, the 

training requires heuristically picked, difficult to tune, hyper-parameters and box constraints. In 

the present investigation, we propose an efficient algorithm that optimally designs the sparse 

neural network model. 

Our design philosophy is to build small but powerful networks that have minimum 

human intervention to tune the hyper-parameters. We include sparsity into the family of multi-

layer perceptron neural networks in which the parameters are found in an optimal method. Based 

on the simulation results on various benchmark and real life datasets, the proposed algorithm 

performs better than its counterparts. In this paper, we formulate an optimized sparse connected 

MLP structure that has optimal parameters and is relatively easy to implement.  
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Chapter 2  

THE MULTILAYER PERCEPTRON 

The multi-layer perceptron (MLP) is a feed forward artificial neural network that maps 

sets of input data onto a set of outputs and is widely used for regression and classification 

problems. The MLP is a modification of the linear perceptron. The MLP is used for regression and 

classification applications such as parameter estimation, document analysis and recognition, 

finance and manufacturing and data mining [14]. 

A conventional MLP consists of multiple layers of hidden units, with each layer 

connected to the next one. Except for the inputs, each node is a neuron (or processing element) 

with an activation function [15] and [16]. Figure 1 illustrates the structure of an MLP having an 

input layer, a hidden layer and an output layer.  

A. Notation 

We denote the number of hidden units by Nℎ, the number of outputs by M and the 

number of inputs by N. In order to handle hidden units thresholds and output units thresholds, the 

input vector 𝒙𝑝 is augmented with an extra element 𝒙𝑝(N + 1), where 𝒙𝑝(N + 1) = 1. Here, the 

input vector is 𝒙𝑝 ∈ ℝN+1 , and the M-dimensional desired output vector is 𝒕𝑝. The training dataset 

consists of {𝒙𝑝 , 𝒕𝑝} pairs in which we denote a particular pattern with an index 𝑝 ∈

 {1, 2, . . . , N𝑣}. Figure 1-1 is the architecture of a MLP. 
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Figure 2-1: Illustration of a fully connected multilayer perceptron architecture 

In the figure above, the bypass weight 𝑤𝑜𝑖(𝑖, 𝑛) converts the 𝑛𝑡ℎ input to the 𝑖𝑡ℎ output 

coefficient. The output hidden weight 𝑤𝑜ℎ(𝑖, 𝑘) converts the 𝑘𝑡ℎ hidden unit to the 𝑖𝑡ℎ output. The 

output weight matrix, 𝐖𝐨, is augmented as  [𝐖𝑜ℎ ⋮   𝐖𝑜𝑖]. One commonly used activation function 

in the neural network is the sigmoid function. The MLP’s net function for the 𝑝𝑡ℎ pattern and the 

𝑘𝑡ℎ hidden unit is represented as 

 𝑛𝑝(𝑘) = ∑ 𝑤(𝑘, 𝑛)𝑥𝑝(𝑛)

Nℎ

𝑛=1

 (2.1) 

where 𝑤(𝑘, 𝑛) denotes the input weight connecting the 𝑘𝑡ℎ hidden unit to the 𝑛𝑡ℎ input. In the 

vector format equation (2.1) can be written as 

 𝒏𝑝 = 𝐖 ∙  𝒙𝑝 
(2.2) 

in which 𝐖 is an Nℎby (N + 1) matrix and 𝒏𝑝 is the Nℎ-dimensional net function vector. 

𝑥𝑝(1) 

 

𝑥𝑝(1) 

𝑥𝑝(2) 

𝑥𝑝(N) 

𝑥𝑝(N + 1) = 1 

𝑦𝑝(1) 

𝑦𝑝(M) 

Input Layer 

Hidden Layer 
Output Layer 

𝑤(1,1) 

𝑤𝑜ℎ(1,1) 

𝑤𝑜𝑖(1,1) 

 

𝑤𝑜𝑖(M, N + 1) 

𝑂𝑝(Nℎ) 

𝑂𝑝(1) 
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The activation function output for the 𝑝𝑡ℎ pattern and the 𝑘𝑡ℎ hidden unitis denoted as 

𝑂𝑝(𝑘) where 𝑂𝑝(𝑘) = 𝑓(𝑛𝑝(𝑘)) and 𝑓(∙) denotes the hidden layer’s activation function 

 𝑓(𝑛𝑒𝑡) =
1

1 + 𝑒−𝑛𝑒𝑡
 (2.3) 

The 𝑖𝑡ℎoutput for the 𝑝𝑡ℎ patternin the M-dimensional output vector, 𝒚𝑝, is 

 𝑦𝑝(𝑖) = ∑ 𝑤𝑜𝑖(𝑖, 𝑛) ∙ 𝑥𝑝(𝑛) + ∑ 𝑤𝑜ℎ(𝑖, 𝑘) ∙ 𝑂𝑝(𝑘)

Nℎ

𝑘=1

N+1

𝑛=1

 (2.4) 

which can be written in vectorized form as 

 𝒚𝑝 =  𝐖𝑜𝑖 ∙ 𝒙𝑝 + 𝐖𝑜ℎ ∙ 𝑶𝑝 
(2.5) 

The functional link net (FLN) consists of input and output layers, but no hidden layers. 

An input layer has enhanced input values which are created by various functional links with 

original input values [17]. In the FLN [18] notation it is possible to write equation (2.5) as 

 𝑦𝑝(𝑖) = ∑ 𝑤𝑜(𝑖, 𝑛)𝑋𝑝(𝑛)

N𝑢

𝑛=1

 (2.6) 

where N𝑢 =  N + 1 + Nℎ is the number of basis functions and 𝑋𝑝(𝑛) is the 𝑛𝑡ℎ element of the 

basis vector 𝑿𝑝. Equation (2.7) can be written in matrix format as 

 𝒚𝑝 =  𝐖𝑜 ∙ 𝑿𝑝 
(2.7) 

where 

 𝑿𝑝 = [𝒙𝑝
T ∶  𝑶𝑝

T] T (2.8) 

In Figure 2-2, the FLN model of the MLP is depicted. 
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Figure 2-2: FLN model of MLP 

B. The MLP training 

MLP utilizes first order learning techniques such as back-propagation (BP) and conjugate 

gradient (CG), and second order techniques related to Newton’s method and Levenberg-Marquardt 

(LM) for training the network. 

The problem of training a MLP can be transformed into the minimization of a well-

defined cost function. The most commonly used and the ‘traditional’ cost function is the mean 

square error, MSE, and it is denoted as E for convenience in this work. The mapping error for the 

𝑖𝑡ℎ output unit is defined as 

 𝐄𝑜(𝑖) =
1

N𝑣

∑(𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))
2

N𝑣

𝑝=1

 (2.9) 

𝑋𝑝(1) = 𝑥𝑝(1) 

𝑋𝑝(2) = 𝑥𝑝(2) 

 

𝑋𝑝(N + 1) = 𝑥𝑝(N + 1) = 1 

𝑋𝑝(N + 2) = 𝑂𝑝(1) 

𝑋𝑝(N + 3) = 𝑂𝑝(2) 

X𝑝(Nℎ + N + 1) = 𝑂𝑝(N𝑢) 

𝑦𝑝(1) 

𝑦𝑝(M) 

𝑤𝑜(1,1) 

𝑿𝑝 

𝐖𝑜 

𝒚𝑝 

𝑤𝑜(M, N𝑢) 
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where 𝑡𝑝(𝑖) is the 𝑖𝑡ℎ desired output in the M-dimensional desired output vector 𝒕𝑝 ∈  ℝM × 1. The 

MSE over a training dataset is called the training error and is given by 

 E = ∑ 𝐄𝑜(𝑖) =

M

𝑖=1

1

𝑁𝑣

∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))
2

M

𝑖=1

N𝑣

𝑝=1

 (2.10) 

1) Steepest descent and conjugate gradient 

In steepest descent all the network weights are updated in the direction of negative 

gradients of the error function [19] 

 𝐰 = vec( 𝐖, 𝐖𝑜𝑖 , 𝐖𝑜ℎ) (2.11) 

 𝐠 ≡
−𝜕E

𝜕𝐰
 (2.12) 

where 𝐠 is the negative gradient with respect to E. The weights are updated by 

 𝐰 ←  𝐰 + 𝑧. 𝐠 (2.13) 

in which 𝑧 is the scalar learning factor containing the information about the step size to be taken in 

the direction of  𝐠. 

Conjugate gradient method is the most popular iterative method for solving large systems 

of linear equations. Use of the CG is motivated by the desire to accelerate the typically slow rate 

of convergence experienced with the method of steepest descent, while avoiding the 

computational requirements associated with the evaluation, storage, and inversion of the Hessian 

in Newton’s method. CG can be considered first order as the error function is not quadratic.CG is 

effective in minimization of the quadratic functions. 

In the conjugate gradient method, the weights are not directly updated using the gradient 

vector; instead they are updated using a direction vector 𝐩 in each iteration. For the 𝑘𝑡ℎ iteration 

the vector 𝐩 is 



2-8 

 𝐩𝑘 = vec( 𝐩, 𝐩𝑜𝑖 , 𝐩𝑜ℎ) (2.14) 

and the weights are updated as 

 𝐰 ←  𝐰 + 𝑧. 𝐩𝑘 (2.15) 

2) Output weight optimization – backpropagation (OWO-BP) 

The most popular first-order learning algorithm known as back propagation algorithm 

(BP) is relatively simple and it can handle problems with basically an unlimited number of 

patterns. It is the standard algorithm for training supervised feed-forward neural nets. However, 

the BP algorithm is slow. Many improvements have been made to speed up the BP algorithm and 

some of them, such as momentum and adaptive learning constant work relatively well [20]. But as 

long as first-order algorithms are used, improvements are not dramatic. 

OWO is a technique to calculate output weights including hidden output weights and 

bypass weights after the input weight matrix is determined in some fashion. With the linearity 

property of the output units, as in most cases, the output weights are found by solving a set of 

linear equations. 

The OWO-BP technique iteratively solves linear equations for the output weights and 

uses back-propagation with full batching to change input weights. So, one option to train an MLP 

would be to use two stage training. 

As the output units have linear activation functions, the OWO procedure for finding the 

output weights can be realized by solving linear equations that result when gradients of E with 

respect to the output weights are set to zero (
𝜕E

𝜕𝐖𝑜
= 0) leading to a set of linear equations as 

 𝑐(𝑖, 𝑚) = ∑ 𝑤𝑜(𝑖, 𝑛)𝑟(𝑛, 𝑚)

N𝑢

𝑛=1

 (2.16) 

 𝐂 = 𝐑 ∙ 𝐖𝒐
T (2.17) 
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where 𝐂 is M by N𝑢 cross-correlation matrix and 𝐑 is N𝑢 by N𝑢 auto-correlation matrix defined as 

 𝐂 =
1

N𝑣

∑ 𝑿𝑝𝒕𝑝
T

N𝑣

𝑝=1

 (2.18) 

 𝐑 =
1

N𝑣

∑ 𝑿𝑝𝑿𝑝
T

N𝑣

𝑝=1

 (2.19) 

Equation (2.17) can be best solved through using orthogonal least squares [8] method. 

Finding the output weight matrix in this fashion is called output weight optimization (OWO) and it 

has the advantage of being fast due to linearity property of the equations and it avoids local 

minima. Therefore, in a given iteration of OWO-BP, we repeat the following steps:  

I. Performing OWO: solve the system of linear equations in (2.17) and find the 

output weight matrix 𝐖𝑜. 

II. Find the negative Jacobian matrix in equation (2.12) for 𝐖. 

III. Performing BP: update the input weights 𝐖 using equation (2.13) for the input 

weights. 

and during either stages, the other weights are not updated.  

3) Output weight optimization – hidden weight optimization (OWO-HWO) 

Hidden weights can be updated by minimizing separate error functions for each hidden 

unit. The error functions measure the difference between the desired and the actual net function. 

By minimizing many simple error functions instead of one large one, it is assumed that the 

training speed and convergence can be improved. The desired net function can be approximated 

by the current net function plus a designed net change. For the 𝑘𝑡ℎ hidden unit and 𝑝𝑡ℎ pattern, the 

desired net function is constructed as 

 𝑛𝑝𝑑(𝑘) ≅ 𝑛𝑝(𝑘) + 𝑧 ∙ 𝛿𝑝(𝑘) 
(2.20) 
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where 𝑛𝑝𝑑(𝑘) is the desired net function and 𝑛𝑝(𝑘)is the actual net function for the 𝑘𝑡ℎ hidden 

unit, 𝑧 is the learning factor and 𝛿𝑝(𝑘) is the delta function for the 𝑘𝑡ℎ hidden. In this algorithm, 

the hidden weights are to be updated as 

 𝑤(𝑘, 𝑛) ← 𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑒(𝑘, 𝑛) (2.21) 

where 𝑒(𝑘, 𝑛) is the weight change and serves the same purpose as the negative gradient element, 

−𝜕E

𝜕𝑤(𝑘,𝑛)
, in back-propagation method. The following equation can be used to solve for the changes 

in the hidden weights 

 𝑛𝑝(𝑘) + 𝑧 ∙ 𝛿𝑝(𝑘) ≅  ∑[𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑒(𝑘, 𝑛)]𝑥𝑝(𝑛)

N+1

𝑛=1

 (2.22) 

deleting the current net function and eliminating the learning factor 𝑧 from both sides we get 

 𝛿𝑝(𝑘) ≅  ∑ 𝑒(𝑘, 𝑛)𝑥𝑝(𝑛)

N+1

𝑛=1

 (2.23) 

Defining the objective function for the 𝑘𝑡ℎ hidden unit as 

 E𝛿(𝑘) =
1

N𝑣

∑ (𝛿𝑝(𝑘) − ∑ 𝑒(𝑘, 𝑛)𝑥𝑝(𝑛)

N+1

𝑛=1

)

2N𝑣

𝑝=1

 (2.24) 

taking the gradient of the above error function with respect to the weight changes we get 

 𝑔(𝑚) ≡
−𝜕E𝛿(𝑘)

𝜕𝑒(𝑘, 𝑚)
=  −2 (𝑐𝛿(𝑘, 𝑚) − ∑ 𝑒(𝑘, 𝑛)𝑟(𝑛, 𝑚)

N+1

𝑛=1

) (2.25) 

where 

 𝑐𝛿(𝑘, 𝑚) =
1

N𝑣

∑ (𝛿𝑝(𝑘) ∙ 𝑥𝑝(𝑚)) ,

N𝑣

𝑝=1

𝑟(𝑛, 𝑚) =
1

N𝑣

∑ 𝑥𝑝(𝑛)𝑥𝑝(𝑚)

N𝑣

𝑝=1

 (2.26) 

equating equation (2.25) to zero (
−𝜕E𝛿(𝑘)

𝜕𝑒(𝑘,𝑚)
= 0) we would have 

 ∑ 𝑒(𝑘, 𝑛)

N+1

𝑛=1

𝑟(𝑛, 𝑚) = 𝑐𝛿(𝑘, 𝑚) (2.27) 
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or in matrix format 

 𝐆ℎ𝑤𝑜 ∙ 𝐑𝒊 = 𝐆 (2.28) 

where 𝐆ℎ𝑤𝑜is the matrix of hidden weight changes, 𝐑𝒊 is the N + 1 by N + 1 input auto-

correlation matrix, and 𝐆 is the negative gradient matrix. Similarly we can have 

 𝐆ℎ𝑤𝑜 = 𝐆 ∙ 𝐑𝑖
−1 (2.29) 

Solving equation (2.29) for 𝐆ℎ𝑤𝑜 and finding the hidden weight changes we can update 

the hidden weights [21] by 

 𝐖 ←  𝐖 + 𝑧 ∙ 𝐆ℎ𝑤𝑜  (2.30) 

C. Second order training 

Second order methods have better convergence than first order methods; however, some 

care must be taken when employing them because the full network Hessian is inherently rank 

deficient that can create problems in training. Second order algorithms, such as Newton’s 

algorithm [22] and Levenberg-Marquardt (LM) algorithm [23], use Hessian matrix to perform 

better estimations on both step sizes and directions, so that they can converge much faster than 

first order algorithms. 

1) Newton’s method 

Newton’s algorithm is the basis of a number of popular second order optimization 

algorithms including Levenberg-Marquardt [23] and BFGS. It is derived from a second order 

Taylor series approximation to the error function about the point 𝒘 [22]. Using Newton’s method 

in the MLP, we need to calculate the necessary first and second derivatives of E with respect to the 

weights. Newton’s algorithm is an iterative method where in each iteration it 

I. calculates the Newton’s weight change vector, 𝒆 = ∆𝐰 , and 

II. updates the weights with this weight change vector. 
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The weight change vector is calculated by solving the linear equations of 

 𝐇 ∙ 𝒆 = 𝐠 (2.31) 

where 𝐠 is the vector of negative gradient and 𝐇 is the Hessian of the objective function calculated 

with respect to all the weights in the network and has elements defined as 

 ℎ(𝑛, 𝑚) =
𝜕2E

𝜕𝑤(𝑘, 𝑛)𝜕𝑤(𝑙, 𝑚)
=

2

N𝑣

∑ ∑
𝜕𝑦𝑝(𝑖)

𝜕𝑤(𝑘, 𝑛)
∙

𝜕𝑦𝑝(𝑖)

𝜕𝑤(𝑙, 𝑚)

M

𝑖=1

N𝑣

𝑝=1

 (2.32) 

Equation (2.31) can be solved using conjugate gradient or orthogonal least squares and 

the weight changes can be found. The weights are then updated as 

 𝐰 ←  𝐰 + 𝒆 (2.33) 

Second order algorithms related to Newton’s method often have non-positive definite or 

singular Hessian matrices which may result in unstable training. In this case the Levenberg-

Marquardt (LM) algorithm is used.  

2) Levenberg–Marquardt (LM) 

Levenberg–Marquardt algorithm is regarded as one of the most efficient algorithms for 

training small and medium sized patterns. It is a standard technique used to solve nonlinear least 

squares problems. The LM algorithm is very computationally intensive due to the large size of the 

Hessian matrix so its use in training large networks is often limited. This method is a compromise 

between the following two methods 

 Gauss-Newton’s method, which converges rapidly near a local or global 

minimum, but may also diverge;  

 Gradient descent, which is assured of convergence through a proper selection of 

the step-size parameter, but converges slowly. 

Generally in the gradient descent method, the sum of the squared errors is reduced by 

updating the parameters in the steepest-descent direction. And in the Gauss-Newton method, the 
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sum of the squared errors is reduced by assuming the least squares function is locally quadratic, 

and finding the minimum of the quadratic. The Levenberg-Marquardt method acts more like a 

gradient-descent method when the parameters are far from their optimal value, and acts more like 

the Gauss-Newton method when the parameters are close to their optimal value. The LM 

algorithm is a sub-optimal method which updates all weights as 

 𝐰 ←  𝐰 + [𝐇 + λ ∙ 𝑑𝑖𝑎𝑔(𝐇). 𝐈]−𝟏 ∙ 𝒈 (2.34) 

where 𝜆 is a controlling factor which tunes LM either towards the first order or the second order 

methods, and 𝐈 is the identity matrix. For training the network using LM we take the following 

steps [24]: 

I. Present all patterns to the network and compute the mean square error (MSE). 

II. Compute the Hessian and gradient matrices for all the weights.  

III. Calculate the updated weights using equation (2.34). 

IV. Re-compute the MSE by using the updated weights, if the new error is smaller 

than that computed in step (I) then reduce 𝜆 and go back to step (I); if the error 

is not reduced then increase 𝜆. 

V. The algorithm converges when the norm of the gradient is less than some pre-

determined value, so the MSE has been reduced to a fixed error. 

3) Affine invariance in MLP training  

In training the MLP, using an objective function E and initial weights vector w 

 𝐰 = 𝐀 ∙ 𝐰′ (2.35) 

and the vector of weight changes 𝒆 

 𝒆 = 𝐀 ∙ 𝒆′ (2.36) 
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where A is a constant and nonsingular matrix, then the MLP training algorithm has affine 

invariance for the initial weights vector if E satisfies 

 E(𝐰 + 𝒆) = E(𝐀 ∙ (𝐰′ + 𝒆′)) (2.37) 

An affine invariance algorithm will yield the same sequence of iteration for a countless 

infinite number of different initial weight vectors. Therefore, using an affine invariant training is 

the first step towards making MLP training insensitive to initial weights. Unfortunately, most 

training algorithm, including BP, CG, and LM, lack affine invariance [25]. 

D. Basic MLP properties 

1) Minimum mean square error estimator 

One of the properties of neural network is that it is a minimum mean square error 

estimator. To understand this from the statistical point of view, suppose 𝒙 ∈ ℝ𝑛 and 𝒕 ∈ ℝ𝑚 are 

random vectors, we seek to estimate 𝒕 given 𝒙; thus, we seek a function φ: ℝ𝑚 → ℝ𝑛, such that 

𝒚 =  𝜑 ( 𝒙 ) is near 𝒕. One common measure of nearness is the mean-square error and minimum 

mean-square estimator (MMSE) minimizes the MSE. As MSE is defined in our notations 

 MSE =
1

N𝑣

∑(𝒕𝑝 − 𝒚𝑝)
2

N𝑣

𝑝=1

 (2.38) 

then the MMSE is the conditional expectation of 𝒙 given 𝒕 as 

 𝒚𝑚𝑚𝑠𝑒 = 𝜑𝑚𝑚𝑠𝑒(𝒙) = argmin
𝒚

MSE 
(2.39) 

In the MLP, since the training minimizes MSE with respect to the weights vector 𝐰, the 

MLP is effectively a minimum mean squared error approximation to the Bayes optimal 

discriminant function [26]. 

2) Universal approximation 

Theorem: “Let 𝑓 be a non-constant, bounded and monotonically increasing function. Let 

𝒙 be the input with dimensionality of 1 × N. If each of the input vectors are drawn from a specific 
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distribution and 휀 > 0, there exist a number, M, and real valued constants 𝑥(N +  1), 𝐖𝑜ℎ, and 

𝐖 such that an output 𝒚 with dimensionality of 1 × M can be defined as an approximate 

realization of the desired output 𝒕” [27], [28] 

 |𝑦(𝑖) −  𝑡(𝑖)| < 휀, 𝑓𝑜𝑟 0 < 𝑖 ≤ M (2.40) 

Universal approximation theorem states that single hidden layer feed-forward networks 

can approximate any measurable function arbitrarily well regardless of the activation function, the 

dimension of the input space, and the input space environment [29]. The universal approximation 

theorem is directly applicable to multilayer perceptrons. 

The universal approximation theorem is important from a theoretical viewpoint because it 

provides the necessary mathematical tool for the viability of feed-forward networks with a single 

hidden layer as a class of approximate solutions. Without such a theorem, we could conceivably 

be searching for a solution that cannot exist. However, the theorem is not constructive; since it 

does not actually specify how to determine a multilayer perceptron with the stated approximation 

properties. The universal approximation theorem assumes that the continuous function to be 

approximated is given and that a hidden layer of unlimited size is available for the approximation. 

Both of these assumptions are violated in most practical applications of multilayer perceptrons 

[20]. 

3) Bayes discriminant 

A Bayes discriminant which minimizes the probability of error, P𝑒, can be expressed in 

any of the following three forms 

 𝑓(𝑥|𝑖)P(𝑖) (2.41) 

 g(𝑓(𝑥|𝑖)P(𝑖)) (2.42) 
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 P𝑏(𝑖|𝑥) (2.43) 

where g(∙) is either an increasing or decreasing function. 

Theorem states that: “When MLP classifiers are trained to minimize the mean-squared 

error, the MSE approaches a constant value plus the expected squared error between the 

classifier output and Bayes discriminant, as the number of training patterns approaches infinity.” 

The Bayes posterior probability for an input vector 𝒙 for the 𝑝𝑡ℎ training pattern, 

belonging to a class 𝑖 within the output discriminant vector 𝑑1 is given by 

 𝑑1 (𝑖)  =  P𝑏(𝑖|𝑥𝑝) 
(2.44) 

4) Memorization 

Memorization or over-fitting is one of the problems that mostly occurs during training a 

neural network due to having too many numbers of free parameters comparing to the number of 

data samples. In this case, the network memorizes the training samples rather than learning them 

so that it cannot generalize to the new and unseen samples. The number of patterns a neural 

network can memorize is called the information capacity. It is very important to find the upper 

bound on memorization in order to design an optimal neural network. 

For a MLP, the known parameters are the number of inputs, the number of training 

patterns, and the number of outputs. Therefore, the only parameters which can be manipulated are 

the number of hidden units and the number of training iterations. The upper bound for the 

MLP, 𝐶MLP, also called the storage capacity of the MLP is found as 

 𝐶MLP ≤
N𝑤

M
 (2.45) 

where N𝑤 is the total number of weights in the network as in 

 N𝑤 = (N + 1)Nℎ + NℎM + (N + 1)M (2.46) 
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In order to prevent memorization and increase generalization, the number of patterns of a 

dataset should satisfy the condition 

 N𝑣 ≥
N𝑤

M
 (2.47) 

or in another word, it has to be greater than the 𝐶MLP. From equation (2.47) and (2.46), the number 

of hidden units that should be chosen for a given MLP can be found as 

 Nℎ ≤
M(N𝑣 − N − 1)

N + 1 + M
 (2.48) 

This upper bound is independent of the activation function used and is valid for most of 

the feed forward neural networks, irrespective of the connectivity of the network [30]. 
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Chapter 3  

THE MLP ADVANCE TRAINING 

In this chapter, we discuss a few advance MLP training algorithms. 

A. OWO-MOLF 

This is a two-step algorithm in which for every hidden unit an optimal learning factor 𝑧𝑘 

(learning factor for the 𝑘𝑡ℎ hidden unit) is calculated using the multiple optimal learning factor 

method (MOLF) [14], [31]. Generally, finding a vector of optimal learning factors 𝒛 which has 

one element for each hidden unit increases the speed of learning and overall convergence. In this 

method the first and second partial derivative of the error function with respect to 𝑧𝑘is computed 

and the error function is minimized accordingly 

 𝑤(𝑘, 𝑛) ← 𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ g(𝑘, 𝑛). (3.1) 

The error function to be minimized is given by equation (2.10), and the predicted output 

𝑦𝑝(𝑚) is given by 

 𝑦𝑝(𝑚) = ∑ 𝑤𝑜𝑖(𝑚, 𝑛)𝑥𝑝(𝑛)

N+1

𝑛=1

+ ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑓 (∑(𝑤(𝑘, 𝑖) + 𝑧𝑘 ∙ g(𝑘, 𝑛))𝑥𝑝(𝑖)

N+1

𝑖=1

)

N𝑣

𝑘=1

 (3.2) 

taking the first partial derivative of E with respect to 𝑧𝑘, we have 

 
g𝑚𝑙𝑜𝑓(𝑗) =

−𝜕E

𝜕𝑧𝑗

=
2

𝑁𝑣

∑ ∑ [𝑡�̅�(𝑚) − ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑂𝑝(𝑧𝑘)

Nh

𝑘=1

]

M

𝑚=1

N𝑣

𝑝=1

∙ 𝑤𝑜ℎ(𝑚, 𝑗)𝑂𝑝
′(𝑗)∆𝑛𝑝(𝑗) 

(3.3) 

where 

 𝑡�̅�(𝑚) = t𝑝(𝑚) − ∑ 𝑤𝑜ℎ(𝑚, 𝑛)𝑥𝑝(𝑛)

N+1

𝑚=1

 (3.4) 

 ∆𝑛𝑝(𝑗) = ∑ 𝑥𝑝(𝑛) ∙

N+1

𝑚=1

g(𝑗, 𝑛) (3.5) 
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 𝑂𝑝(𝑧𝑘) =  𝑓 (∑(𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ g(𝑘, 𝑛))𝑥𝑝(𝑛)

N+1

𝑛=1

) (3.6) 

using Gauss-Newton updates, the second partial derivative elements of the Hessian 𝐇𝑚𝑜𝑙𝑓  are 

derived as 

 ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) =
𝜕2E

𝜕𝑧𝑙𝜕𝑧𝑗

=
2

N𝑣

∑ ∑
𝜕𝑦𝑝(𝑚)

𝜕𝑧𝑙

M

𝑚=1

N𝑣

𝑝=1

𝜕𝑦𝑝(𝑚)

𝜕𝑧𝑗

 (3.7) 

which is 

 

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) ≈
2

N𝑣

∑ 𝑤𝑜ℎ(𝑚, 𝑗)𝑤𝑜ℎ(𝑚, 𝑙) ∑ ∆𝑛𝑝(𝑗)∆𝑛𝑝(𝑙)𝑂′
𝑝(𝑗)𝑂′

𝑝(𝑘)

N𝑣

𝑝=1

M

𝑚=1

= ∑ ∑ [
2

𝑁𝑣

𝑢(𝑙, 𝑗) ∑ 𝑥𝑝(𝑖)𝑥𝑝(𝑛)𝑂′
𝑝(𝑗)𝑂′

𝑝(𝑙)

N𝑣

𝑝=1

] g(𝑙, 𝑖)g(𝑗, 𝑛)

N+1

𝑛=1

N+1

𝑖=1

 

(3.8) 

 𝑢(𝑗, 𝑘) = ∑ 𝑤𝑜ℎ(𝑚, 𝑗)𝑤𝑜ℎ(𝑚, 𝑘)

M

𝑚=1

 (3.9) 

Given the negative gradient vector 𝐠𝑚𝑜𝑙𝑓 = [−
𝜕E

𝜕𝑧1
, −

𝜕E

𝜕𝑧2
, ⋯ , −

𝜕E

𝜕𝑧Nℎ

]T and the Hessian 

𝐇𝑚𝑜𝑙𝑓 , the error functionE is minimized with respect to the vector z using Newton’s method. The 

training algorithm steps for every epoch are: 

I. Find the negative Jacobean matrix G and solve 𝐆ℎ𝑤𝑜 = 𝐆 ∙ 𝐑𝑖
−1 for 𝐆𝒉𝒘𝒐. 

II. Solve 𝐇𝑚𝑜𝑙𝑓 ∙ 𝒛 = 𝐠molf for 𝒛 and update the input weights as in equation (3.1) 

III. Perform OWO for output weights. 

B. Standard OLS pruning 

The purpose of pruning the hidden units is to eliminate less useful hidden units that have 

no relevant information for estimating the outputs or are linearly dependent on inputs or on other 

hidden units. It is a method to avoid over-fitting and memorization, and to gain better 

generalization. 
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In [21], orthogonal least squares (OLS) [8] or Schmidt procedure has been used for 

pruning the neural network’s hidden units. OLS is equivalent to QR decomposition [8]. In [21], 

using the Schmidt procedure, the orthonormal basis functions are found and the inputs and the 

hidden units are optimally ordered. In order to find the orthonormal basis function, 𝑿′, an 𝐀 matrix 

that converts the network’s basis function to 𝑿′ has to be found. Elements of 𝐀 matrix is computed 

by given the ordered function, 𝑜(𝑚), for 𝑚 =  1, 𝑎11 =  
1

‖𝑥𝑜(1)‖
=  

1

𝑟(𝑜(1),𝑜(1))1/2  in which 𝑟(𝑖 , 𝑗) 

is the 𝑖𝑡ℎand 𝑗𝑡ℎ element of auto-correlation matrix R, and then for 1 ≤ 𝑚 ≤ N𝑢 calculate 

 𝑐𝑖 =  ∑ 𝑎𝑚𝑘 ∙ 𝑟(𝑜(𝑚), 𝑜(𝑘))

𝑚

𝑘=1

 for 1 ≤ 𝑖 ≤ 𝑚 − 1 (3.10) 

set 𝑏𝑚 = 1 and get  

 𝑏𝑘 =  − ∑ 𝑐𝑖 ∙ 𝑎𝑖𝑘

𝑚−1

𝑖=𝑘

      for 1 ≤ 𝑘 ≤ 𝑚 − 1 (3.11) 

get coefficients 𝑎𝑚𝑘 as 

 𝑎𝑚𝑘 =  
𝑏𝑘

[𝑟(𝑜(𝑚), 𝑜(𝑚)) − ∑ 𝑐𝑖
2𝑚−1

𝑖=1 ]
1/2

        for 1 ≤ 𝑘 ≤ m 
(3.12) 

after finding all the coefficients of 𝐀, the orthonormal basis functions are found as 

 𝑿′ = 𝐀 ∙ 𝑿 (3.13) 

The output weight matrix is in the normal system found by mapping back the 

orthonormal weights, 𝐖′, as 

 𝐖𝑜 = 𝐖′ ∙ 𝐀 (3.14) 

where  

 𝐖′ = 𝐂T ∙ 𝐀T (3.15) 

in which 𝐂 is the cross-correlation matrix in equation (2.18).  
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C. One-pass validation 

One-pass validation refers to the fact that in each epoch, the algorithm requires a pass 

through the validation data for once. In [21] in order to stop the network’s training, the author 

combined the optimally ordered neural network with the early stopping method. So, the validation 

error vs. the ordered basis functions is obtained for this purpose. Given the matrix 𝐀 and the MLP 

network with the ordered basis functions, the validation error versus hidden units curve E𝑣(Nℎ) 

from the validation data is generated. In order to get the validation error for all network size in a 

single pass through the data, first the linear network output is obtained and the corresponding error 

is calculated, then for 1 ≤  𝑚 ≤  Nℎ the following two steps are performed for 1 ≤  𝑝 ≤  N𝑣 

where 𝑤′ is the orthonormal output weights obtained from previous section 

 𝑦𝑝(𝑖, 𝑚) = 𝑦𝑝(𝑖, 𝑚 − 1) + 𝑤′(𝑖, 𝑚 + 1 + N). 𝑋𝑣
′ (𝑚 + 1 + N) 

(3.16) 

 E𝑣(𝑚) ← E𝑣(𝑚) + ∑[𝑡𝑝(𝑖) − 𝑦𝑝(𝑖, 𝑚)]
2

M

𝑖=1

 (3.17) 

then these error values are  normalized as 

 E𝑣 ←
E𝑣

N𝑣

 (3.18) 

D. MOLF-Adapt 

MOLF-Adapt algorithm is a batch training algorithm for the MLP that optimizes 

validation error with respect to two parameters. At the end of each training epoch, the method 

temporarily prunes the network and calculates the validation error versus hidden units curve in one 

pass through the validation data. Since pruning is done at end of each epoch and the best networks 

are saved, the validation error is optimized over the number of hidden units and the number of 

epochs simultaneously. In this algorithm OWO-MOLF is used for training and updating the 

network weights and OLS is used both for finding the unknowns and pruning the hidden units 

permanently during training as well. At the end of each OWO-MOLF epoch, the OLS is utilized to 
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optimally order basis functions and then one pass validation is performed to get the validation 

error vs. the hidden units curve. For each network size, if the validation error for that network size 

is lower than that from the previous epoch, the network weights are saved. The training algorithm 

steps for every epoch are: 

I. Find the negative Jacobean matrix G and solve 𝐆ℎ𝑤𝑜 = 𝐆 ∙ 𝐑𝑖
−1 for 𝐆𝒉𝒘𝒐. 

II. Solve 𝐇𝑚𝑜𝑙𝑓 ∙ 𝒛 = 𝐠molf for 𝒛 and update the input weights as in equation 3.1). 

III. Perform OWO for output weights using OLS. 

IV. Perform one-pass validation and find the optimum network size. 

V. Prune the network if better network is generated through step IV. 

  



4-23 

Chapter 4  

SPARSITY 

Sparsity in artificial neural networks mostly refers to the sparse structure of the network; 

it can either relate to the sparse connectivity or sparse activity. It can involve pruning the 

network’s weights or pruning the network’s hidden units. Sparse connectivity removes the useless 

connections of the network while maintaining the networks performance [32]. Sparseness can be 

used as another way of avoiding overtraining and it is considered as a powerful regularizer. In 

general, over-fitting is thought to happen when the network has more degrees of freedom (the 

number of weights) than the number of the training samples-when there are not enough examples 

to constrain the network [33], and it results to have a poor generalization. Therefore, applying 

sparseness to the network’s connections can decrease the number of free parameters in the 

network so that it can overcome over-fitting in applications that are prone to memorization. Sparse 

networks are mostly of smaller size in comparison to their fully connected ones and are more 

likely to give higher accuracy than non-sparse networks.  

There exist models that incorporate sparse information processing with respect to sparse 

activity or sparse connectivity [11]. Sparse coding denotes the idea that signals can be 

approximated by superposition of very few elements of a large dictionary. The field of sparse 

coding has received a lot of attention since the evolving work of [11]. Optimal brain damage 

(OBD) method is also devoted to sparse connectivity of a network and it is not based on sparse 

coding. OBD uses a measure of ‘saliency’ in the objective function and determines the impact of 

each connection on the training error. Smaller saliency increases the possibility that removing the 

corresponding connection will have less impact on the overall training error [34]. Optimal brain 

surgeon (OBS) is an extension to OBD but it is not practical for large networks due to huge 

computation of the entire Hessian matrix [35]. Non-negative matrix factorization (NMF) is 

another technique that tries to find a suitable linear representation of non-negative data [36] [37]. 
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One of the most useful properties of NMF is that it usually produces a sparse representation of 

data [9]. Yet, NMF has no control over the sparseness degree of the data representation. In non-

negative matrix factorization with sparseness constraints (NMFSC), the author proposed a method 

in which extends the NMF idea and gives the option to control the degree of sparseness explicitly 

through introducing a measure of sparseness. In [9], SP(𝒙) or the sparsity measurement is given 

for a 𝑑-dimensional vector 𝒙 as 

 SP(𝒙) =
√𝑑 − ‖𝒙‖1 ‖𝒙‖2⁄

√𝑑 − 1
 (4.1) 

In [38] the theory of sparse multi-layer perceptron (SMLP) is discussed in which the 

outputs of one of the hidden layers are forced to be sparse by adding a sparse regularization term 

to the cross-entropy cost function where this term  is a trade-off between the sparsity and the 

cross-entropy cost function.  

In [11], a proposed method for SMLP has been proposed that implements sparse 

connectivity paradigm for a two layer MLP structure. In this method, the weight matrix of the 

hidden layer is restricted to be sparsely populated by only using the sparse connectivity 

constraints. 

In this study, sparse connectivity for a two layer MLP has been achieved by using OLS 

algorithm and a sparsely populated output weight matrix is generated with a reasonable 

measurement of sparseness as in equation (4.1). 

A. Prevention of over-training through regularization  

Regularization is a penalized-based method which adds an extra term to the objective 

function in terms of the network weights to prevent memorization or over-training. There are two 

most commonly used regularization types, L1 and L2 regularization. In the L2 regularization, the 

complexity penalty term is defined as the squared norm of all the free parameters or weights. This 

approach operates by forcing some of the network’s weights to take a close-to-zero value, while 
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permitting other weights to retain their relatively large values [20]. The L2 regularization is also 

commonly referred as weight-decay procedure. The L1 regularization, on the other hand, employs 

the absolute values of all the free parameters as the complexity penalty term in the objective 

function. The L1 regularization concentration is mostly on a very small set of highly important 

connections, while making the rest of the weights zero. It is worth mention that while using the 

L1regularization in training, the weight vectors in the network tend to become sparse. 

In [39], the L1 regularization penalty on the linear output weights is used to build a sparse 

MLP with one hidden layer. Also, the author uses fast iterative shrinkage thresholding algorithm 

(FISTA) proximal optimization algorithms for finding output weights, and the hidden units are 

computed by unconstrained minimization.  

As a conclusion, sparseness can implicitly be a solution to avoid memorization since it 

reduces the number of free parameters in a network and resulting in a better generalization.  

B. Inducing sparsity 

The concept of sparsity [10] is heavily used in many distinct areas such as antennas and 

propagation [40], face recognition [41], image processing [42], and medical imaging [43]. Also, 

sparsity has been utilized in advancement of many machine learning algorithms and techniques 

such as matrix factorization [44], compressed sensing [45], signal representation [46], support 

vector machines [47], sampling theory [48], and many more. 

1) Feature selections on inputs: Feature selection refers to the process of selecting a subset of 

features that can retain most of the intrinsic information content of the original data [49]. Feature 

selections can help in reducing the possibility of overtraining [50]as well as computational time, 

improving prediction performance, and a better understanding of the data in machine learning or 

pattern recognition applications [51].  

Feature selection technique should not be mistaken with dimension reduction techniques. 

The former mostly concentrates on selection of the information-rich features whereas the latter 
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concentrates on creation of a new combination of features by using a kind of transformation. The 

most commonly used dimension reduction methods are principle component analysis (PCA), and 

singular value decomposition (SVD). PCA is a standard technique that is widely used for linear 

dimensionality reduction in statistical pattern recognition and signal processing [20]. 

A popular way to minimize the information content in a feature vector or presentation is 

to make its components sparse. In sparse methods, the feature vector is forced to contain very few 

non-zero values while the rest of the values are zeros [52]. NMF, Olshausenand Field’s sparse 

coding method, or the energy-based models are all sparse-overcomplete representations methods 

whose features are sparse in high-dimension [53]. Recently, several works have advocated the use 

of sparse overcomplete representations for images, in which the dimension of the feature vector is 

larger than the dimension of the input, but only a small number of components are non-zero for 

any one image [54]. In [52], an unsupervised method to produce sparse overcomplete 

representations based on the encoder-decoder paradigm namely sparse encoding symmetric 

machine is proposed.  

2) Transformation: As discussed earlier, many feature selection methods have been using different 

transformation techniques to reduce the dimensionality of input vectors such as PCA, SVM, and 

NMF. Recently, efforts have been made to use neural networks for feature generation and 

selection, auto-associative networks, where during training the desired outputs are set as the 

inputs. In this method, the transformation from inputs to features is derived using a neural network 

that is optimized to minimize the reconstruction error. This technique has been used in creating 

sparse features in many algorithms. In [38], sparse features are derived at the internal hidden-layer 

outputs of a MLP-structured network which is trained to classify multiple classes by introducing a 

sparse regularization term to the cost function.   

3) Independent component analysis: ICA is a higher-order de-correlation method that seeks to find 

a linear transformation of a non-Gaussian data in which its components are statistically as 
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independent as possible [55]. ICA maximizes the independency via minimizing the mutual 

information, MMI, or maximizing the non-Gaussianity. In [56], ICA has been used in an infomax 

network and it is shown that the resulting ICA filters have more sparsely distributed outputs on 

natural images. They show that these filters are similar to those of Olshausen and Field [13]. 

4) Pruning: In order to choose the appropriate network size, there are two kinds of algorithms 

which are often used: the growing algorithm and the pruning algorithm. The growing algorithms 

start from a small-sized network and gradually increase the number of network’s units and layers 

until they meet the learning requirements, such as cascade correlation algorithm [33]. On the other 

side, the pruning algorithms involves three distinct processes to achieve the suitable network’s 

size: at first, a very large network with many redundant connections and units is trained, in the 

second stage the redundant units and connections are removed based on some network’s 

requirements and conditions, and in the last stage the network resumes training and updates the 

remaining weights. These steps will continue until the network’s performance satisfies some 

principle conditions. There are various ways to implement pruning but mostly it can be put into 

two main categories: one is the sensitivity method which measures the sensitivity of the objective 

function in respect to elimination of an element of network. The other method is based on 

penalization which adds a new term to the objective function and rewards the network for finding 

an efficient solution [33].  

As mentioned before, the most popular sensitivity based algorithms are optimal brain 

damage (OBD) [34] and optimal brain surgeon (OBS) [35]. The sensitivity based methods attempt 

to find the contribution of each weight or hidden unit in the network and then prunes the weights 

or hidden units that have the least effect on the objective function. Many other pruning algorithms 

have been proposed based on the theory of OBD and OBS later.  

Another technique, Iterative Pruning (IP) algorithm [57], solves a system of linear 

equations using an efficient conjugate gradient algorithm namely conjugate gradient precondition 
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normal equation (CGPCNE) in its least squares. Improved iterative pruning (IIP) [58] algorithm 

which adopts dividing-block strategy uses generalized inverse matrix (GIM) algorithm instead of 

the CGPCNE in IP for solving the set of equations. [33] and [32] detail out a complete survey on 

pruning algorithms. 

5) L1 regularization: As described in previous paragraphs, regularization is a mathematical 

solution for preventing memorization or ill-posed problems by adding up a new term to the 

objective function. In general, regularization is formulated as 

 E(𝒘) + 𝜆 ∙  R(𝒘) (4.2) 

where E is mostly least square cost function, 𝜆 is the regularization parameter, R(𝒘) is the 

complexity penalty, and 𝒘 is the weight vector. In L1 regularization, R(𝒘) is formulated as 

 R(𝒘) = ‖𝒘‖1 = ∑ |𝑤𝑖|
𝑖

 
(4.3) 

where ‖𝒘‖1 is the 𝑙1 − 𝑛𝑜𝑟𝑚 of vector 𝒘 or sum of the absolute value of coefficients of vector 𝒘. 

L1 regularization is known as LASSO which was originally introduced in [59] for the 

least squares regression models. It was shown that minimizing the cost function with 𝑙1 − 𝑛𝑜𝑟𝑚 

penalty encourages spasity, the coefficients of vector 𝒘 will have many zero values. L1 

regularization is widely used in creating sparse feature in machine learning and also effectively 

recovering sparse signals in signal processing. 

C. Need for further work 

Current family of algorithms has mostly used L1 regularization in order to infuse 

sparseness into the network’s connectivity. Nonetheless, that makes it hard to program and 

therefore difficult to make intrinsic changes in the code as per required. Moreover, the hyper-

parameters such as network’s hidden units and learning factors are heuristic and generally require 

cross validation to determine a good value. Here in this work, we propose a new approach for 

pruning the output layer connectivity which benefits from having a closed form expression for 
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optimal learning factors, being completely free from any hand tuned parameters, having an 

optimized number of hidden units via using pruning, being an easily programmable algorithm for 

not utilizing the L1 regularization well as employing the powerful OLS which makes the current 

investigation totally gradient free. The proposed algorithm has lower time complexity for small 

and mid-sized datasets but it is computationally efficient for any various kinds of datasets. In this 

work, no other packages have been used which makes it an absolute genuine study.  
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Chapter 5  

PRUNING-BASED SPARSENESS 

In this chapter, the review of the OLS-based pruning is discussed. In section A.3 on page 

5-34, a new pruning method is proposed which is the goal of this thesis.  

A. Review of OLS-based pruning 

The goal of this method is to find an order function which leads to the minimum training 

error and minimum number of basis functions for training the network. The order function defines 

the structure of the basis functions in the network and the number of basis functions defines the 

minimum value necessary to build up the neural network. This method has the following two steps 

in achieving these goals. 

First, use sequential forward selection to order basis functions so that each additional 

basis function causes the largest possible decrease on the training error. Second, pick the number 

of basis functions where the monotonically non-increasing validation error (E𝑣) versus basis 

functions gets its minimum value or in mathematical term N𝑢
′ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚
E𝑣(𝑚) where N𝑢

′ is the 

new number of basis functions which is less than the original value of the number of basis 

functions denoted as N𝑢. 

To simplify the algorithms we take three different cases for expanding the algorithm step 

by step and explain each one in details. 

1) Pruning basis functions for single output case 

Considering the case when only one output is available, the output weights will be a row 

vector and the output 𝑦  will be a scalar 

 𝑦 = 𝒘𝑜 ∙ 𝑿 (5.1) 

where 𝒘𝑜 ∈ ℝ N𝑢 is a row vector and 𝑿 ∈ ℝN𝑢  is the basis functions vector. 

The training error which has to be minimized is defined as 
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 E =
1

N𝑣

∑(𝑡 − 𝑦)2

N𝑣

𝑝=1

 (5.2) 

the output 𝑦 can be computed in the orthonormal system as 

 𝑦 = 𝒘𝑜
′ ∙ 𝑿𝑜

′ (5.3) 

where 𝒘𝑜
′ is the output weight vector in the orthonormal system 

 𝒘𝑜
′ =  𝒄T ∙  𝐀T (5.4) 

and 𝑿𝑜
′ is the ordered orthonormal basis functions which is defined as 

 𝑿𝑜
′ = 𝐀 ∙ 𝑿𝑜 (5.5) 

𝒄 ∈ ℝN𝑢  is the ordered cross-correlation vector, 𝐀 ∈ ℝN𝑢×N𝑢 is the orthonormal transfer matrix 

defined in the orthonormal system, and 𝑿𝑜 is the ordered normal basis functions which for the 𝑛𝑡ℎ 

basis function is found as 

 𝑋𝑜(𝑛) = 𝑋(𝑜(𝑛)) (5.6) 

in which 𝑜(𝑛) ∈ ℝ N𝑢 is the order function that has to be found. 

The normal output weight vector can be found by mapping back 𝒘𝑜
′ to the normal 

system using the 𝐀 matrix as 

 𝒘𝑜 = 𝒘𝑜
′ ∙ 𝐀 (5.7) 

Denoting the training error for the 𝑚𝑡ℎ basis function as E𝑚, the goal is to find the order 

function so that we would have 

 E𝑚(𝑜(𝑚)) ≡ 𝑚𝑖𝑛 
𝒘𝑜

EX[(𝑡 − 𝑦𝑚)2 | 𝑜(1), 𝑜(2), ⋯ 𝑜(𝑚 − 1)] 
(5.8) 

where  
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𝑦𝑚 =  ∑ 𝑤𝑜(𝑜(𝑛))𝑋(𝑜(𝑛))

𝑚

𝑛=1

= ∑ (∑ 𝑤𝑜
′(𝑛)𝑎(𝑛, 𝑘)

𝑚

𝑘=1

) 𝑋(𝑜(𝑛)) = ∑ 𝑤𝑜
′(𝑛)

𝑚

𝑛=1

𝑚

𝑛=1

𝑋𝑜
′(𝑛) 

(5.9) 

and EX is the expected value notation. Elements of 𝐀 are found by computing the equations below 

 𝑐𝑙 =  ∑ 𝑎(𝑚, 𝑘) ∙ 𝑟(𝑜(𝑚), 𝑜(𝑘))

𝑚

𝑘=1

    for 1 ≤ 𝑙 ≤ 𝑚 − 1 (5.10) 

 𝑏𝑘 = {

1 for 𝑘 = 𝑚

− ∑ 𝑐𝑙 ∙ 𝑎(𝑙, 𝑘)

𝑚−1

𝑙=𝑘

for 1 ≤ 𝑘 ≤ 𝑚 − 1
 (5.11) 

 
𝑎(𝑚, 𝑘) =  

𝑏𝑘

√𝑟(𝑜(𝑚), 𝑜(𝑚)) − ∑ 𝑐𝑙
2𝑚−1

𝑙=1

        for 1 ≤ 𝑘 ≤ 𝑚 
(5.12) 

The first basis function 𝑋𝑜(1) = 𝑋(𝑜(1)) is chosen in such a way that it satisfies the 

equation below 

 𝑜(1) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘 ∈𝑆𝑢

E1(𝑘) 
(5.13) 

where 𝑆𝑢 is the set of unchosen basis functions. Updating 𝑆𝑢 = {1, 2, ⋯ , 𝑁𝑢} − 𝑜(1), we can find 

the rest of the basis functions with the same procedure. For the 𝑛𝑡ℎ basis function we would have 

 𝑜(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘 ∈ 𝑆𝑢

E𝑛(𝑘) 
(5.14) 

where 𝑆𝑢 = {1, 2, ⋯ , 𝑁𝑢} − {𝑜(1), 𝑜(2), ⋯ , 𝑜(𝑛 − 1)}. 

After finding the order function using all the basis functions, we want to find the number 

of basis functions which can lead to a decrease in the validation error. In order to achieve this goal, 

we need to generate the validation error versus basis functions in order of their importance. In 

other words, we should first find E𝑣(𝑜(𝑛)) for 1 ≤ 𝑛 ≤ 𝑁𝑢 by calculating 𝑦𝑚 for the validation 

data and then calculate the corresponding validation error. Rewriting equation (5.9) for the 

validation data for the 𝑚𝑡ℎ basis function, the validation error can be obtained by 
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 𝑦𝑚 = 𝑦𝑚−1 + 𝑤𝑜
′(𝑚) ∙ 𝑋𝑜−𝑣

′(𝑚) (5.15) 

 E𝑣(𝑚) ← E𝑣(𝑚) + (𝑡 − 𝑦𝑚)2 (5.16) 

After calculating the validation error for all the values of 𝑚 ∈ 𝑜(𝑛) for 1 ≤ 𝑛 ≤ 𝑁𝑢, we 

are able to pick the new number of useful basis functions by finding  

 N𝑢
′ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚
E𝑣(𝑚) 

(5.17) 

 where N𝑢
′ ≤ N𝑢 and N𝑢

′ ∈ ℝ. 

2) Pruning basis functions for multi-output case 

When there is more than one output present in the dataset, each of the outputs will have 

an output weight vector and we would have an M-dimensional output vector where the number of 

outputs is M. Therefore, we would have 𝐖𝑜
′ and 𝐖𝑜 ∈ ℝM × N𝑢 as the orthonormal and normal 

output weight matrices, and the output vector as 𝒚 ∈ ℝM. The equations (5.8) and (5.9) are 

modified as 

 E𝑚(𝑜(𝑚)) ≡ 𝑚𝑖𝑛 
𝐖𝑜

EX[(𝒕 − 𝒚𝑚)2 | 𝑜(1), 𝑜(2), ⋯ 𝑜(𝑚 − 1)] 
(5.18) 

and 

 

𝒚𝑚 =  ∑ (∑ 𝑤𝑜(𝑖, 𝑜(𝑛))𝑋(𝑜(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)𝑎(𝑛, 𝑘)

𝑚

𝑘=1

) 𝑋(𝑜(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)

𝑚

𝑛=1

𝑋𝑜
′(𝑛))

M

𝑖=1

 

(5.19) 

the elements of 𝐀 matrix are found by computing the equations (5.10), (5.11), and (5.12). As in 

part previous section, the first basis function 𝑜(1) can be found using equation (5.13) and 

𝑜(𝑛) for 2 ≤ 𝑛 ≤ N𝑢 can be found using equation (5.14). 

After finding the order function using all the basis functions, we want to find the number 

of useful basis functions using the validation error. We generate the validation error versus basis 
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functions in order of their importance. First we find E𝑣(𝑜(𝑛)) for 1 ≤ 𝑛 ≤ N𝑢 by calculating 𝒚𝑚 

in equation (5.19) for the validation data, and then we calculate the validation error using (5.21). 

Rewriting equation (5.19) for the validation data for the 𝑚𝑡ℎ basis function, the validation error 

can be obtained for the 𝑚𝑡ℎ basis function  

 𝒚𝑚 = 𝒚𝑚−1 + ∑ 𝑤𝑜
′(𝑖, 𝑚)𝑋𝑜−𝑣

′(𝑚)

M

𝑖=1

 (5.20) 

 E𝑣(𝑚) ← E𝑣(𝑚) + (𝒕 − 𝒚𝑚)2 (5.21) 

where 𝑚 ∈ 𝑜(𝑛) for 1 ≤ 𝑛 ≤ N𝑢. Calculating the validation error, we are able to pick the new 

number of useful basis functions by finding  

 N𝑢
′ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚
E𝑣(𝑚) 

(5.22) 

where N𝑢
′ ≤ N𝑢 and  N𝑢

′ ∈ ℝ. 

3) Pruning basis functions individually for multi-output case 

In this section, a new pruning method is proposed that is the combination of the two 

previous pruning methods. In section A.2 and  A.1 of this chapter, the order functions were row 

vectors. In section A.2, only one order function was used for pruning the basis functions in the 

multi-output case. In this section, we also prune the basis functions for a multi-output case but by 

introducing an individual order function for each output. 

The output vector 𝒚 in this method is computed in the orthonormal system using equation 

(5.23), where for each output an individual set of ordered orthonormal basis functions has to be 

found 

 𝒚 = ∑ 𝐖𝑜
′(𝑖) ∙ 𝑿𝑖,𝑜

′

M

𝑖=1

 (5.23) 

where 𝐖𝑜
′(𝑖) is  the 𝑖𝑡ℎ row of 𝐖𝑜

′ ∈ ℝM ×N𝑢  and 𝑿𝑖,𝑜
′ is the ordered othornormal basis functions 

for the 𝑖𝑡ℎ output. The orthonormal output weight matrix is calculated from 
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 𝐖𝑜
′ =  ∑ 𝒄𝑖

𝑇 ∙  𝐀𝑖
𝑇

M

𝑖=1

 (5.24) 

where 𝒄𝑖 is the 𝑖𝑡ℎ column of the ordered cross-correlation matrix 𝐂 ∈ ℝN𝑢× M, and 𝐀𝑖  is the 

orthonormal transfer matrix for the 𝑖𝑡ℎ output. The ordered orthonormal basis functions for the 𝑖𝑡ℎ 

output are calculated as 

 𝑿𝑖,𝑜
′ = 𝐀𝑖 ∙ 𝑿𝑜 

(5.25) 

in which 𝑿𝑜 is the ordered normal basis functions which for the 𝑛𝑡ℎ basis function and the 𝑖𝑡ℎ 

output is found as 

 𝑋𝑜(𝑛) = 𝑋(𝑜𝑖(𝑛)) (5.26) 

where 𝑜𝑖(𝑛) ∈ ℝN𝑢 is the 𝑖𝑡ℎ row of the order function, 𝐨 = [𝑜1 , 𝑜2, ⋯ , 𝑜M]T. The order function 

is 𝐨 ∈ ℝM ×N𝑢.The normal output weight matrix can be found by mapping back 𝐖𝑜
′ to the normal 

system using the 𝐀𝑖  matrices as 

 𝐖𝑜 = ∑ 𝐖𝑜
′(𝑖) ∙ 𝐀𝑖

M

𝑖=1

 (5.27) 

Denoting the training error for the 𝑚𝑡ℎ basis function as E𝑚, the goal is to find the order 

function so that we would have 

 E𝑚(𝐨(𝑚)) ≡ 𝑚𝑖𝑛 
𝐖𝑜

EX[(𝒕 − 𝒚𝑚)2 | 𝐨(1), 𝐨(2), ⋯ 𝐨(𝑚 − 1)] 
(5.28) 

where  

 

𝒚𝑚 =  ∑ (∑ 𝑤𝑜(𝑖, 𝑜𝑖(𝑛))𝑋(𝑜𝑖(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)𝑎𝑖(𝑛, 𝑘)

𝑚

𝑘=1

) 𝑋(𝑜𝑖(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)

𝑚

𝑛=1

𝑋𝑖,𝑜
′(𝑛))

M

𝑖=1

 

(5.29) 
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in which 𝑎𝑖s are elements of 𝐀i matrix for the 𝑖𝑡ℎ output that are found by computing the 

following equations 

 𝑐𝑙 =  ∑ 𝑎𝑖(𝑚, 𝑘) ∙ 𝑟(𝑜𝑖(𝑚), 𝑜𝑖(𝑘))

𝑚

𝑘=1

    for 1 ≤ 𝑙 ≤ 𝑚 − 1 (5.30) 

 𝑏𝑘 = {

1 for 𝑘 = 𝑚

− ∑ 𝑐𝑙 ∙ 𝑎𝑖(𝑙, 𝑘)

𝑚−1

𝑙=𝑘

for 1 ≤ 𝑘 ≤ 𝑚 − 1
 (5.31) 

 
𝑎𝑖(𝑚, 𝑘) =  

𝑏𝑘

√𝑟(𝑜𝑖(𝑚), 𝑜𝑖(𝑚)) − ∑ 𝑐𝑙
2𝑚−1

𝑙=1

        for 1 ≤ 𝑘 ≤ 𝑚 
(5.32) 

The first basis function 𝑋𝑜(1) = 𝑋(𝐨(1)) for all the outputs is chosen in such a way that  

 𝐨(1) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒌 ∈𝑺𝑢

E1(𝒌) 
(5.33) 

where  

 𝑺𝑢 = {𝑆𝑢1, 𝑆𝑢2, ⋯ , 𝑆𝑢𝑀} = {𝑆𝑢𝑖} for 1 ≤ 𝑖 ≤ M (5.34) 

contains the sets of unchosen basis functions for all the outputs. Updating the unchosen set as 

𝑺𝑢 = {1, 2, ⋯ , 𝑁𝑢} − 𝐨(1), we can find the rest of the basis functions with the same procedure. 

For the 𝑛𝑡ℎ basis function we would have 

 𝐨(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒌 ∈𝑺𝑢

E𝑛(𝒌) 
(5.35) 

where 𝑺𝑢 = {1, 2, ⋯ , 𝑁𝑢} − {𝐨(1), 𝐨(2), ⋯ , 𝐨(𝑛 − 1)}. 

After finding the order of basis functions individually for each output based on their 

importance, we need to find the number of useful basis functions using the validation error. In 

order to generate E𝑣(𝐨(𝑛)) for 1 ≤ 𝑛 ≤ N𝑢, first we need to calculate 𝒚𝑚 where 𝑚 ∈ 𝐨(𝑛) for 

1 ≤ 𝑛 ≤ N𝑢 for the validation data and then calculate the corresponding validation error as in 

equation (5.37). Rewriting equation (5.29) for the 𝑚𝑡ℎ basis function using the validation data, the 

validation error can be obtained from 
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 𝒚𝑚 = 𝒚𝑚−1 + ∑ 𝑤𝑜
′(𝑖, 𝑚)𝑋𝑖,𝑜−𝑣

′(𝑚)

M

𝑖=1

 (5.36) 

 E𝑣(𝑚) ← E𝑣(𝑚) + (𝒕 − 𝒚𝑚)2 (5.37) 

Calculating the validation error for each output individually, we are able to pick the new 

number of useful basis functions by finding 

 Nu
′(𝑖) = argmin

𝑚𝑖

E𝑣(𝑖, 𝑚𝑖)        for  1 ≤ 𝑖 ≤ M and  𝑚𝑖 ∈  𝑜𝑖  
(5.38) 

where Nu
′(𝑖) ≤ Nu and Nu

′ ∈ ℝM . 

B. Experimental results 

The proposed method has been verified using several datasets. The performance of the 

proposed pruning method is compared to the old pruning method, MOLF-Adapt, explained in A.2 

which is published in [21].  

The new pruning method is tested on 4 datasets, 2 regression data files and 2 

classification data files. During training a median filter has been used to smooth the validation 

curve, and the training and testing of the network have been conducted by averaging over 10-fold 

datasets created from the original data files. The first two datasets are regression models and the 

next two datasets are classification models. The last experiment has been conducted on a 

combination of two different datasets to see the performance of the algorithm in disjoining the 

different data files. 

For each dataset, the training MSE of each output for the proposed pruning method is 

compared to [21] and a plot of their performance is depicted. In the end, a table of the average 

testing and training MSE for all the data files and a table of sparsity measurements is provided in 

section C. 

The proposed pruning method that introduces sparsity to the structure of MLP is denoted 

as Sparse MLP in the graphs.  
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1) Twod dataset 

Twod dataset has highly correlated inputs. It is consisted of 7 inputs and 8 outputs. We 

trained a neural network using the proposed algorithm with initial hidden units as 300. In 

Figure 5-1 thru Figure 5-4, the average training mean square error (MSE) versus basis functions is 

plotted for the proposed method and MOLF-Adapt. 

 
Figure 5-1: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for output # 1 
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(a) 

 
(b) 

Figure 5-2: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for (a) output 

# 2 (b) output # 3 
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 (a)  

 
(b) 

Figure 5-3: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for (a) output 

# 4 (b) output # 5 
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(a) 

 

(b) 

Figure 5-4: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for (a) output 

# 6 (b) output # 7 
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In these figures, the blue curves are the training MSE from [21] and the red curves are 

derived from the proposed algorithm. As it can be seen the red curves either have fewer values or 

approximately the same values as the blue curves. Therefore, the proposed algorithm trains a 

better network. Also, the number of ordered hidden units picked for the network is the same for all 

the outputs in the old algorithms whereas there are different values for each output in the new 

algorithm. 

2) Oh7 dataset 

In oh7 dataset, not only the input values but also one of the output values is highly 

correlated with the input values unlike twod dataset. We used the proposed algorithms for training 

a neural network with initial hidden unit as 300. In Figure 5-5 thru Figure 5-6, the average training 

mean square error (MSE) versus basis functions is plotted for the proposed method and the 

method in MOL-Adapt. 

 
Figure 5-5: Comparison of training MSE between the proposed method and MOLF-Adapt using oh7 dataset for output # 1 
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(a) 

 
(b) 

Figure 5-6: Comparison of training MSE between the proposed method and MOLF-Adapt using oh7 dataset for (a) output 

# 2 (b) output # 3 
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As mentioned, this data file is highly nonlinear. Therefore, the second output is mostly 

dominating the network’s training. It is noticeable in the figures above, the two algorithms’ 

performance is almost similar for the second output. Yet, the other two outputs’ performance is 

highly improved using the proposed algorithm. 

3) Gongtrn dataset 

This dataset is a classification problem. Sparse network training for classification 

problems is different from training sparse network for regression problems. The difference arises 

from the fact that the error calculation is based on probability of error that is the number of 

misclassification to the correct classification. Therefore, although the training error increases or 

decreases, it does not necessarily mean the probability of error is decreasing. In the below figures, 

training MSEs for each class is depicted for the proposed method (Sparse MLP) and MOLF-

Adapt. 

For this experiment, we trained a neural network using the proposed algorithms with 

initial hidden unit as 300. In Figure 5-7 thru Figure 5-11, the average training MSE versus basis 

functions is drawn for the proposed method and MOLF-Adapt. 
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(a) 

 

(b) 

Figure 5-7: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a) 

class # 1 (b) class # 2 
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(a) 

 

(b) 

Figure 5-8: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a) 

class # 3 (b) class # 4 
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(a) 

 

(b) 

Figure 5-9: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a) 

class # 5 (b) class # 6 
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(a) 

 

(b) 

Figure 5-10: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a) 

class # 7 (b) class # 8 
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(a) 

 

(b) 

Figure 5-11: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a) 

class # 9 (b) class # 10 
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In the above figures, it can be seen that the red curves outperforms the blue curves, 

therefore, the new algorithm is giving a better trained network. The number of hidden units that is 

used for training the network using the proposed method is much less than MOLF-Adapt. The old 

algorithm fails to show a good performance compared to the proposed algorithm. 

4) MNIST dataset 

In this section, the comparison of the training MSE between the proposed method and 

MOLF-Adapt using the MNIST dataset is provided. The MNIST dataset is a classification 

problem consisting of 10 classes with 784 inputs. It is the collection of 60000 handwritten digits 

training patterns and 10000 testing patterns. In this experiment the initial number of hidden units 

are set to 800. In Figure 5-12 thru Figure 5-17, the average training mean square error (MSE) 

versus basis functions is depicted for the proposed method and MOLF-Adapt. 

 

Figure 5-12: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for class 

# 1 
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(a) 

 

(b) 

Figure 5-13: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a) 

class # 2 (b) class # 3 
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(a) 

 

(b) 

Figure 5-14: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a) 

class # 4 (b) class # 5 
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(a) 

 

(b) 

Figure 5-15: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a) 

class # 6 (b) class # 7 
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 (a)  

 

(b) 

Figure 5-16: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a) 

class # 8 (b) class # 9 
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Figure 5-17: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for class 

# 10 

The above figures demonstrate that the proposed algorithm has less training mean square 

errors. Additionally, during training more number of hidden units are pruned in the Sparse MLP 

since the continuous red curve end is near 700 but the dotted blue curve end is near 1500.   
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C. Combined dataset   

One of the intriguing results of the proposed algorithm is obtained from a dataset that is 

the combination of two disjoint datasets. By combining two distinct datasets that are statistically 

independent and creating a combined dataset, we trained an MLP with one hidden layer using the 

proposed method. This algorithm is capable of sparsing the network so that there will be no 

connectivity between the inputs and outputs of the two disjoint datasets. As we will show later, the 

proposed algorithm uses a different set of hidden units for training the overall network for each of 

the two datasets with very few shared hidden units. Since the proposed method introduces 

sparseness into the structure of the MLP or the connectivity of the network, this algorithm is able 

to distinguish the statistical relations between inputs and outputs of different datasets and it is 

capable of separating the network into different disconnected networks. 

For the experiment, twod and oh7 datasets are combined together. A One-hidden layer 

MLP is trained using the proposed method and MOLF-Adapt. The results obtained from this 

comparison are very promising. Using sparse connectivity in the MLP structure, the network is 

capable of distinguishing between the two disjoint datasets and there will be no connectivity from 

the inputs of the first dataset to the outputs of the second dataset and vice versa. 

We trained the proposed algorithms with initial hidden unit as 500. In Figure 5-18 thru 

Figure 5-22, the average training mean square error (MSE) versus basis functions is depicted for 

the proposed method (Sparse MLP) and MOLF-Adapt. 
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(a) 

 

(b) 

Figure 5-18: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a) 

class # 1 (b) class # 2 
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(a) 

 

(b) 

Figure 5-19: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a) 

class # 3 (b) class # 4 
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(a) 

 

(b) 

Figure 5-20: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a) 

class # 5 (b) class # 6 
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(a) 

 

(b) 

Figure 5-21: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a) 

class # 7 (b) class # 8 
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(a) 

 

(b) 

Figure 5-22: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a) 

class # 9 (b) class # 10 
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As it is can be seen in the above figures, the continuous red curves in all of the graphs are 

outperforming the dotted blue curves and the proposed algorithm has resulted in a better trained 

network. A plot of the output weight matrix can show the connectivity of the outputs and inputs of 

the combined dataset more clearly. The sparsity plot of the output matrix is depicted below for 

both algorithms.  

 

(a) 

 

(b) 

Figure 5-23: Sparsity plot of the output weight matrix (Wo) of the combined dataset for the bypass weights using the (a) 

Sparse MLP (b) MOLF-Adapt 

oh7 inputs  

oh7 outputs  

twod inputs  

twod inputs  

twod outputs  

oh7 inputs  

oh7 outputs  

twod outputs  
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In the above figure, the red squares represent a non-zero element in the output weight 

matrix. Each row of the output weight matrix corresponds to one of the outputs in the network. As 

shown in Figure 5-23 (a) and (b), rows 1 to 3 correspond to the outputs of oh7 dataset and rows 4 

to 10 correspond to the outputs of twod dataset. In Figure 5-23 (a), all the bypass weights 

connecting the inputs of the second dataset to the outputs of the first dataset are zero, but in 

Figure 5-23 (b) all the inputs of the second dataset are connected to the outputs of the fist dataset. 

The old algorithm is not capable of differentiating between the two datasets; therefore, all the 

bypass weights are considered useful in training of the network. For more clarity, these two 

regions are marked as 1 and 2. Region 1 corresponds to the bypass weights connecting the outputs 

of the first dataset (which is oh7) to the inputs of the second dataset (which is twod). Similarly, the 

region in which the outputs of twod dataset are connected to the inputs of oh7 dataset is marked as 

2. It is noticeable that in Figure 5-23 (a) both of these regions are all zero, whereas in Figure 5-23 

(b) both of these regions are non-zero. 

By calculating the energy of each hidden unit, we are able to define how these hidden 

units are contributing in training of each dataset. As a result, 202 hidden units out of 243 remained 

hidden units, recalling that the initial number of hidden units was 500, are not shared between the 

two datasets. The total number of shared hidden units is 31. If we look at the energy of these 

shared hidden units for each of these datasets, we can see that most of these hidden units are 

actually contributing mostly to one of these datasets. Therefore, we can say although there are 

very few shared hidden units between the two disjoint datasets, they only contribute to one of 

these datasets. The table of the energy of the shared hidden units for each dataset is given in 

Table 5-1 on page 5-64. 
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This leads us to conclude that using the sparsity can strongly improve the training 

performance and it is capable of distinguishing between the disjoint datasets, whereas other 

algorithms fail to associate the same property. 

Table 5-1: Comparison of the shared hidden units energy in combined dataset 

hidden unit 

no. 
oh7 dataset 

twod 

dataset 

1 0.003866 5.11e-08 

2 0.003967 0.061937 

3 3.94e-05 1.00e-06 

40 1.462167 1.03e-05 

42 0.034846 0.294724 

73 0.049879 0.528596 

85 0.003859 6.26e-08 

93 0.145483 0.021955 

99 0.000263 0.365217 

103 0.002186 0.000109 

108 107.8546 4.10e-07 

109 41.76173 3.05e-06 

116 0.006711 5.17e-06 

123 138.1199 1.20e-06 

143 0.031116 0.114367 

149 13.42527 7.69e-07 

157 41.0134 1.11e-06 

163 0.002669 7.32e-07 

166 8.919162 6.26e-05 

182 0.013759 3.97e-05 

188 8.339156 0.000947 

197 0.000647 2.18e-05 

204 223.8798 9.78e-06 

210 0.005815 1.26e-06 

213 2.45e-05 1.684683 

216 7.62e-05 3.91e-07 

229 0.011089 4.76e-07 

230 0.006214 2.07e-08 

240 0.001341 0.161292 

 

In the above table, the first column is the hidden unit number in the network and this 

hidden unit is shared between twod and oh7 dataset, the second column is the energy of the shared 

hidden unit corresponding to oh7 dataset, and the third column is the energy of the shared hidden 
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unit corresponding to twod dataset. The bigger the energy value of a particular hidden unit for a 

dataset is, the more that hidden unit is contributing to that dataset. The bigger energies in each row 

are highlighted in this table for the ease of comparison. As it is noticeable in the table, there is a 

huge difference between the energy levels of the shared hidden units contributing to twod dataset 

and oh7 dataset. As a result, we can conclude that each of the shared hidden units are actually 

active in contributing to only one of these two datasets, and its contribution to the other dataset 

can be ignored. 
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D. Table of experimental results 

In this section, the table of training MSE and testing MSE are provided. All the mean 

square errors are obtained using 10-fold training and testing, and averaged over all the 10 folds. 

The sparsity measurements are calculated for each of the datasets. The proposed algorithm is 

compared to the old algorithm (MOLF-Adapt) published in [21] and Andrew Ng sparse coding 

algorithm published in [50]. For the purpose of equal comparison, the number of epochs picked 

for the Ng’s algorithm equals to the number of epochs where the best performance of the proposed 

algorithm is obtained. Additionally, different values for the parameters of Ng’s algorithm are used 

to confirm that the proposed algorithm performs better in all the cases. The Ng’s algorithm has the 

disadvantage of manually tuning up the parameters. And, it is highly sensitive to the initialization 

of these parameters.  

In these tables, SR is the row sparsity measurement computed using equation (4.1) 

in Chapter 4. The Ratio field equals to the ratio of the number of zero elements in the W𝑜 to the 

total number of elements in the output weight matrix. The bigger these values are, the more the 

output weight matrix and the MLP structure are sparse. The best testing performances are 

highlighted. In Table 5-7 thru Table 5-11, the Nℎ value is the average number of hidden units for 

used for training each output in the network. In the proposed algorithm, each output is connected 

to a different set and number of hidden units. The accuracy calculated for the classification 

problem is the probability of correct classes. 
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Table 5-2: Comparison of training and testing MSE for twod dataset 

Initial Nℎ  100 200 300 400 

Method MSE Train Test Train Test Train Test Train Test 

MOLF-Adapt 0.1202 0.1594 0.1120 0.1574 0.1117 0.1526 0.0820 0.1395 

Sparse MLP with 

median filter 
0.1166 0.1543 0.1016 0.1530 0.0975 0.1550 0.0918 0.1409 

Sparse MLP without 

median filter 
0.1197 0.1607 0.1050 0.1554 0.0952 0.1494 0.0936 0.1809 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 0.2277 0.2614 0.2377 0.2714 0.2088 0.2352 0.2010 0.2206 

α=0.3, β=3, γ=3e-3 0.2306 0.2606 0.2328 0.2601 0.2454 0.2720 0.2562 0.2817 

α=0.5, β=3, γ=3e-3 0.2893 0.3128 0.3001 0.3252 0.3104 0.3334 0.3171 0.3382 

α=0.5, β=3, γ=3e-2 0.2832 0.3080 0.3076 0.3298 0.3162 0.3373 0.3184 0.3404 
  

Table 5-3: Comparison of training and testing MSE for oh7 dataset 

Initial Nℎ  100 200 300 400 

Method MSE Train Test Train Test Train Test Train Test 

MOLF-Adapt 1.2442 1.5613 1.2636 1.5494 1.2252 1.5478 1.2768 1.5643 

Sparse MLP with 

median filter 
1.2317 1.5649 1.2831 1.5607 1.2567 1.5419 1.2650 1.5468 

Sparse MLP without 

median filter 
1.2261 1.5711 1.2870 1.5467 1.2476 1.5487 1.2587 1.5453 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 2.5774 2.7143 2.2495 2.4579 2.0294 2.2498 1.9831 2.1915 

α=0.3, β=3, γ=3e-3 2.0415 2.1478 1.8018 1.9513 1.7241 1.8876 1.7007 1.8689 

α=0.5, β=3, γ=3e-3 2.4501 2.5649 2.1656 2.3545 2.2209 2.4721 2.1591 2.4304 

α=0.5, β=3, γ=3e-2 2.5608 2.7840 2.5819 2.8067 2.6038 2.8287 2.6526 2.8721 
 

Table 5-4: Comparison of training and testing MSE for gongtrn dataset 

Initial Nℎ  100 200 300 400 

Method Accuracy Train Test Train Test Train Test Train Test 

MOLF-Adapt 95.6500 93.3000 97.1722 92.9500 97.1806 92.4500 96.8917 92.6167 

Sparse MLP with 

median filter 
94.5250 92.9167 95.4500 93.4000 96.5500 93.1167 96.0861 93.1333 

Sparse MLP without 

median filter 
94.4083 92.7833 95.7333 93.2500 96.0778 93.2333 96.4750 93.2500 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 88.3000 86.0533 89.3067 86.8000 89.1333 86.8533 89.0667 86.9267 

α=0.3, β=3, γ=3e-3 91.4467 88.7867 92.6733 90.4533 93.1533 90.6933 93.2067 91.0200 

α=0.5, β=3, γ=3e-3 91.7600 89.7800 92.7133 90.5267 92.8867 91.0133 92.5000 90.3667 

α=0.5, β=3, γ=3e-2 89.8133 87.4533 90.3133 88.1400 90.7133 88.6067 89.8467 87.6400 
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Table 5-5: Comparison of training and testing MSE for MNIST dataset 

Initial Nℎ  700 800 900 1000 

Method Accuracy Train Test Train Test Train Test Train Test 

MOLF-Adapt 98.8 94.83 98.6041 95.02 99.01 95.66 99.3 95.64 

Sparse MLP with 

median filter 
99.5 95.70 98.8312 95.72 99.8 95.77 98.8 96.01 

Sparse MLP without 

median filter 
99.4 95.75 99.2166 95.67 99.4 95.76 99.02 96.10 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 92.4565 92.7506 93.8880 93.9796 92.8095 92.9925 93.3586 93.6004 

α=0.3, β=3, γ=3e-3 93.0971 93.0906 92.5218 92.6787 91.7309 92.2081 91.8943 92.2342 

α=0.5, β=3, γ=3e-3 92.2473 92.4042 91.1426 91.4825 92.5872 92.6460 91.9531 91.8943 

α=0.5, β=3, γ=3e-2 87.8284 88.4167 89.7176 90.0967 87.9396 88.4102 90.5085 90.4758 
 

Table 5-6: Comparison of training and testing MSE for combined dataset 

Initial Nℎ  300 400 500 600 

Method MSE Train Test Train Test Train Test Train Test 

MOLF-Adapt 1.7073 2.4413 1.7226 2.5361 1.8022 2.4521 1.6550 2.3627 

Sparse MLP with 

median filter 
1.7145 2.4755 1.7609 2.4313 1.7130 2.4615 1.7505 2.4625 

Sparse MLP without 

median filter 
1.7161 2.4800 1.7249 2.4092 1.7203 2.4460 1.7483 2.4401 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 2.2332 3.1410 1.9522 3.1917 1.8487 3.1543 1.8417 3.0572 

α=0.3, β=3, γ=3e-3 2.0274 3.0690 1.8351 3.0312 1.7480 3.0823 1.6775 2.9765 

α=0.5, β=3, γ=3e-3 2.3651 3.2949 2.2202 3.4578 2.1102 3.2250 2.1217 3.3572 

α=0.5, β=3, γ=3e-2 2.4176 3.2336 2.4345 3.1999 2.4432 3.2106 2.5483 3.2676 
 

Table 5-7: Comparison of the sparsity measurements for twod dataset 

Initial Nℎ  100 200 300 400 

Method Sparsity SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  

MOLF-Adapt 0.4637 0.355 55 0.4133 0.544 82 0.4583 0.7090 78 0.4511 0.7490 91 

Sparse MLP with 

median filter 
0.6659 0.5602 40 0.7132 0.647 62 0.7668 0.7489 70 0.8031 0.8285 64 

Sparse MLP without 

median filter 
0.6816 0.5872 39 0.7162 0.673 61 0.7654 0.7377 74 0.8073 0.8247 65 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 0.2871 ˗ 100 0.2599 ˗ 200 0.2574 ˗ 300 0.2522 ˗ 400 

α=0.3, β=3, γ=3e-3 0.2404 ˗ 100 0.2576 ˗ 200 0.2741 ˗ 300 0.2774 ˗ 400 

α=0.5, β=3, γ=3e-3 0.3163 ˗ 100 0.3383 ˗ 200 0.3301 ˗ 300 0.3442 ˗ 400 

α=0.5, β=3, γ=3e-2 0.3118 ˗ 100 0.3396 ˗ 200 0.3286 ˗ 300 0.2655 ˗ 400 
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Table 5-8: Comparison of the sparsity measurements for oh7 dataset 

Initial Nℎ  100 200 300 400 

Method Sparsity SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  

MOLF-Adapt 0.5547 0.1120 68 0.5480 0.3960 100 0.5511 0.4177 154 0.5476 0.4838 186 

Sparse MLP with 

median filter 
0.6306 0.2740 93 0.6333 0.3603 177 0.6366 0.3474 265 0.6086 0.3175 370 

Sparse MLP without 

median filter 
0.6281 0.2786 92 0.6280 0.3533 177 0.6277 0.3394 257 0.6003 0.3173 372 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 0.3059 ˗ 100 0.2698 ˗ 200 0.2399 ˗ 300 0.2219 ˗ 400 

α=0.3, β=3, γ=3e-3 0.2827 ˗ 100 0.2442 ˗ 200 0.2358 ˗ 300 0.2324 ˗ 400 

α=0.5, β=3, γ=3e-3 0.2483 ˗ 100 0.2443 ˗ 200 0.2439 ˗ 300 0.2265 ˗ 400 

α=0.5, β=3, γ=3e-2 0.2381 ˗ 100 0.2561 ˗ 200 0.2626 ˗ 300 0.2708 ˗ 400 
 

Table 5-9: Comparison of the sparsity measurements for gongtrn dataset 

Initial Nℎ  100 200 300 400 

Method Sparsity SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  

MOLF-Adapt 0.4040 0.4010 43 0.3427 0.3965 104 0.3440 0.4867 137 0.3354 0.5415 167 

Sparse MLP with 

median filter 
0.6312 0.6650 28 0.6069 0.6682 57 0.6291 0.7174 79 0.6412 0.7225 83 

Sparse MLP without 

median filter 
0.6537 0.6889 28 0.5787 0.6336 64 0.6239 0.7019 80 0.6573 0.7513 86 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 0.2708 ˗ 100 0.2242 ˗ 200 0.2092 ˗ 300 0.2072 ˗ 400 

α=0.3, β=3, γ=3e-3 0.2101 ˗ 100 0.2003 ˗ 200 0.1980 ˗ 300 0.1955 ˗ 400 

α=0.5, β=3, γ=3e-3 0.2168 ˗ 100 0.2051 ˗ 200 0.1905 ˗ 300 0.1903 ˗ 400 

α=0.5, β=3, γ=3e-2 0.2160 ˗ 100 0.1950 ˗ 200 0.1903 ˗ 300 0.1899 ˗ 400 
 

Table 5-10: Comparison of the sparsity measurements for MNIST dataset 

Initial Nℎ  700 800 900 1000 

Method Sparsity SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  

MOLF-Adapt 0.9172 02408 601 0.4831 0.0425 774 0.4754 0.2082 784 0.9418 0.1037 996 

Sparse MLP with 

median filter 
0.7094 0.5025 326 0.7141 0.4876 453 0.7674 0.5828 398 0.7037 0.5010 678 

Sparse MLP without 

median filter 
0.7341 0.5851 369 0.7181 0.5748 371 0.7729 0.5680 407 0.7251 0.5104 496 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 0.1564 ˗ 700 0.1543 ˗ 800 0.1537 ˗ 900 0.1539 ˗ 1000 

α=0.3, β=3, γ=3e-3 0.1543 ˗ 700 0.1545 ˗ 800 0.1527 ˗ 900 0.1536 ˗ 1000 

α=0.5, β=3, γ=3e-3 0.1577 ˗ 700 0.1581 ˗ 800 0.1581 ˗ 900 0.1587 ˗ 1000 

α=0.5, β=3, γ=3e-2 0.1655 ˗ 700 0.1650 ˗ 800 0.1656 ˗ 900 0.1653 ˗ 1000 
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Table 5-11: Comparison of the sparsity measurements for combined dataset 

Initial Nℎ  300 400 500 600 

Method Sparsity SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  SR Ratio Nℎ  

MOLF-Adapt 0.5366 0.6940 63 0.5425 0.7918 55 0.5849 0.8578 43 0.5566 0.8593 56 

Sparse MLP with 

median filter 
0.8038 0.8156 46 0.7066 0.5758 66 0.7948 0.7620 62 0.7198 0.6005 73 

Sparse MLP without 

median filter 
0.7338 0.6539 54 0.7533 0.6868 55 0.7275 0.5969 68 0.7610 0.6907 70 

Ng Algorithm  

α=0.1, β=3, γ=3e-3 0.2799 ˗ 300 0.2524 ˗ 400 0.2395 ˗ 500 0.2249 ˗ 600 

α=0.3, β=3, γ=3e-3 0.2534 ˗ 300 0.2326 ˗ 400 0.2261 ˗ 500 0.2209 ˗ 600 

α=0.5, β=3, γ=3e-3 0.2467 ˗ 300 0.2281 ˗ 400 0.2203 ˗ 500 0.2190 ˗ 600 

α=0.5, β=3, γ=3e-2 0.2380 ˗ 300 0.2262 ˗ 400 0.2357 ˗ 500 0.2403 ˗ 600 
 

The values of the above tables prove that the proposed algorithm in most of the cases has 

a better performance when using the testing dataset. The Ng’s algorithm does not prune the hidden 

unit, therefore the ratio field is not calculated. Another important observation from the tables is 

that the proposed algorithm uses less number of hidden units in average comparing to the other 

two algorithms. 
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Chapter 6  

CONCLUSION AND FUTURE WORK 

In the present work, we have designed a sparse neural network that is capable of 

generating sparse models with low storage capacity. We introduce a new pruning method that 

prunes the hidden weights and hidden units simultaneously. 

Experimental results in our investigation conclude that the sparse neural network 

performs better than the conventional MLP even if the number of weight connections is less in a 

sparse neural network. We also conclude that the proposed sparse neural network is able to 

differentiate between datasets that have completely different statistical properties, thereby making 

separate networks for each of the given datasets. The ability of the sparse neural network to 

differentiate different datasets is strikingly different from the conventional MLP.  

On the other side, the training time to design the space neural network is high since the 

number of hidden units is more than a conventional MLP. 
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Appendix A 

DESCRIPTION OF DATASETS USED 

FOR TRAINING AND 

TESTING 
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Twod dataset - Inversion of surface scattering parameters 

This training file is used in the task of inverting the surface scattering parameters from an 

inhomogeneous layer above a homogeneous half space, where both interfaces are randomly rough. The 

parameters to be inverted are the effective permittivity of the surface, the normalized rms height, the 

normalized surface correlation length, the optical depth, and single scattering albedo of an 

inhomogeneous irregular layer above a homogeneous half space from back scattering measurements. 

The training data file contains 1768 patterns, 8 inputs, and 7 outputs. The inputs consist of eight 

theoretical values of back scattering coefficient parameters at V and H polarization and four incident 

angles. The outputs were the corresponding values of permittivity, upper surface height, lower surface 

height, normalized upper surface correlation length, normalized lower surface correlation length, optical 

depth and single scattering albedo which had a joint uniform PDF. [60] 

 

Oh7 dataset - Radar Scattering from Bare Soil Surfaces 

This data set is given in [61]. The training set contains VV and HH polarization at L 30, 40 deg, 

C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding unknowns rms surface 

height, surface correlation length, and volumetric soil moisture content in  g / cubic cm. The file has 20 

inputs, 3 outputs and 10,453 training patterns. 

 

Gongtrn dataset – Handwritten images 

The raw data consists of images from hand printed numerals collected from 3000 people by the 

Internal Revenue Service. We randomly chose 300 characters from each class to generate 3000 character 

training data. Images are 32 by 24 binary matrices. An image scaling algorithm is used to remove size 

variation in characters. The feature set contains 16 elements. The 10 classes correspond to 10 Arabic 

numerals. [62] 
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MNIST dataset – Handwritten digits 

The MNIST ("Modified National Institute of Standards and Technology") database of 

handwritten digits, has a training set of 60000 examples, and a test set of 10000 examples. It is a subset of 

a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size 

image. This dataset is a classic within the Machine learning community and has been extensively studied. 

It has 784 inputs and 10 classes. [63] 
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