
Support and Rank Varieties
of Totally Acyclic Complexes

by

NATHAN THOMAS STEELE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2016



Copyright © by Nathan Thomas Steele 2016

All Rights Reserved



Acknowledgments

I would like to thank my advisor, Dr. David Jorgensen, for his help and en-

couragement in preparing this dissertation and the algebra seminar group at UTA for

the many conversations that helped point me in the right direction. I also thank my

friends and family, without whom I could never have completed my studies.

July 15, 2016

iii



Abstract

Support and Rank Varieties
of Totally Acyclic Complexes

Nathan Thomas Steele, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: David Jorgensen

Support and rank varieties of modules over a group algebra of an elementary

abelian 𝑝-group have been well studied. In particular, Avrunin and Scott showed that

in this setting, the rank and support varieties are equivalent. Avramov and Buch-

weitz proved an analogous result for pairs of modules over arbitrary commutative

local complete intersection rings. In this dissertation we study support and rank va-

rieties in the triangulated category of totally acyclic chain complexes over a complete

intersection ring and show that these varieties are also equivalent. We also show that

any homogeneous affine variety is realizable as the support of some pair of totally

acyclic complexes.
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Introduction

The main goal of this dissertation is to explore a theory of support and rank

varieties in the triangulated category of totally acyclic complexes, Ktac(𝑅), over a

complete intersection ring, 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐). We are interested in this category for

two main reasons. First, Ktac(𝑅) is a natural setting for the study of cohomology

operators using Eisenbud’s construction [15]. Many of the proofs involving support

varieties in this category boil down to explicit computations involving the Eisenbud

operators. In particular, we focus heavily on the mapping cones of these operators.

Secondly, Buchweitz [12] showed that for any Gorenstein ring 𝑅, Ktac(𝑅) is equiva-

lent to several other triangulated categories. These include the singularity category

and the stable category of maximal Cohen-Macaulay modules. Furthermore, if 𝑅 is

a hypersurface ring, then Ktac(𝑅) is equivalent to the category of matrix factoriza-

tions. These categories have known applications in homological mirror symmetry and

Landau-Ginzberg models.

In [19], Dan Quillen first introduced the idea of identifying algebraic varieties

to cohomology rings of certain group algebras. Jon Carlson [13] then defined support

and rank varieties for modules over group algebras of elementary abelian 𝑝-groups.

Carlson was able to show that the rank variety was contained in the support variety

and conjectured that these varieties are equal. Shortly thereafter, Avrunin and Scott

[6, 1.1] were able to prove this conjecture. Avramov and Buchweitz [2, 2.5] later

proved a similar result for pairs of modules over a complete intersection ring and

they referred to both sets as the support variety. Benson, Iyengar, and Krause [7]

then gave a generic construction for support varieties in triangulated categories using
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local cohomology and they applied this construction to the homotopy category of

complexes of injective modules. More recently, Petter Bergh [8] showed that any

homogeneous affine variety is realizable as the support of some pair of modules over

a complete intersection ring. Avramov and Iyengar [4] showed this result also holds

in the derived category.

In chapter one, we give background information about Ktac(𝑅). We state the

definitions of a triangulated category and subcategory and discuss the triangulated

structure of the homotopy category of chain complexes, K(𝑅). We then show that

the category of totally acyclic complexes is a triangulated subcategory of K(𝑅).
In chapter two, we present an explicit and tractable construction of cohomology

operators and of support and rank varieties in Ktac(𝑅). We take advantage of the

triangulated structure of this category in chapter three to give what we feel are elegant

and natural proofs of the classic properties of these varieties. In particular, we describe

an iterated lifted mapping cone and use it to show that the rank and support varieties

of a pair of totally acyclic complexes are equal, translating the Avrunin-Scott theorem

to Ktac(𝑅).
Lastly, we discuss the realizability of support varieties in Ktac(𝑅) in chapter

four. Starting with a complete resolution of the residue field 𝕜, we construct a se-

quence of mapping cones of cohomology operators to create a totally acyclic complex

whose support is a desired affine cone. We also discuss the existence of nilpotent

cohomology operators and compute a few simple examples of support varieties.
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Chapter 1

Preliminaries

In this chapter we provide the basic definitions of triangulated categories and

chain complexes. We also discus exactness and tensor products of chain complexes.

We then describe the homotopy category of chain complexes, K(𝑅) as well as the

subcategory of totally acyclic complexes, Ktac(𝑅).

1.1 Triangulated Categories

Verdier [21] originally provided the definitions and basic results for triangu-

lated categories in his thesis. A triangulated category is a category along with an

endofunctor Σ (often referred to as the shift or translation functor) and a class of

diagrams called distinguished triangles. These triangles serve a similar role to that of

short exact sequences in abelian categories. Triangulated categories serve as a natural

setting for the study of cohomology.

Definition 1.1.1. (Rotman [20, 5.5]) A category 𝒞 is called additive if

• Hom(𝐴, 𝐵) is an abelian group for every 𝐴, 𝐵 ∈ 𝒞,

• given morphisms

𝑋 𝑎 // 𝐴 𝑓
𝑔 // 𝐵 𝑏 // 𝑌 ,

where 𝑋, 𝑌 ∈ 𝒞, then

𝑏(𝑓 + 𝑔) = 𝑏𝑓 + 𝑏𝑔 and (𝑓 + 𝑔)𝑎 = 𝑓𝑎 + 𝑔𝑎,

• 𝒞 has a zero object,

• 𝒞 has finite products and finite coproducts.
1



An additive category is furthermore called abelian if

• every morphism has a kernel and a cokernel,

• every monomorphism is a kernel and every epimorphism is a cokernel.

Definition 1.1.2. (Neeman [18, 1.1.1]) Let 𝒞 be an additive category, Σ ∶ 𝒞 → 𝒞 be

an invertible functor, and 𝑋, 𝑌 , 𝑍 be objects in 𝒞. A candidate triangle in 𝒞 with

respect to Σ is a diagram of the form

𝑋 𝑢 // 𝑌 𝑣 // 𝑍 𝑤 // Σ𝑋

such that 𝑣 ∘ 𝑢, 𝑤 ∘ 𝑣, and Σ𝑢 ∘ 𝑤 are all the zero morphism.

Definition 1.1.3. (Neeman [18, 1.1.2, 1.4.6]) Let 𝒯 be an additive category with an

invertible endofunctor Σ and a class of candidate triangles called distinguished tri-

angles. We call 𝒯 a triangulated category if the distinguished triangles satisfy the

following axioms:

• TR0 Any candidate triangle which is isomorphic to a distinguished triangle is

distinguished. The candidate triangle

𝑋 1 // 𝑋 // 0 // Σ𝑋

is distinguished.

• TR1 For any morphism 𝑢 ∶ 𝑋 → 𝑌 in 𝒯, there exists a distinguished triangle

of the form

𝑋 𝑢 // 𝑌 // 𝑍 // Σ𝑋 .

• TR2 The candidate triangle

𝑋 𝑢 // 𝑌 𝑣 // 𝑍 𝑤 // Σ𝑋

is distinguished if and only if

𝑌 −𝑣 // 𝑍 −𝑤 // Σ𝑋 −Σ𝑢 // Σ𝑌
2



is distinguished.

• TR3 For any commutative diagram

𝑋 𝑢 //

𝑓
��

𝑌 𝑣 //

𝑔
��

𝑍 𝑤 // Σ𝑋

𝑋′ 𝑢′
// 𝑌 ′ 𝑣′

// 𝑍′ 𝑤′
// Σ𝑋′

where the rows are distinguished triangles, there exists a morphism ℎ ∶ 𝑍 → 𝑍′

such that the diagram

𝑋 𝑢 //

𝑓
��

𝑌 𝑣 //

𝑔
��

𝑍 𝑤 //

ℎ
��

Σ𝑋
Σ𝑓
��

𝑋′ 𝑢′
// 𝑌 ′ 𝑣′

// 𝑍′ 𝑤′
// Σ𝑋′

is commutative.

• TR4 Let 𝑢 ∶ 𝑋 → 𝑌 and 𝑣 ∶ 𝑌 → 𝑌 ′ be composable morphisms in 𝒯. If the

candidate triangles

𝑋 𝑢 // 𝑌 // 𝑍 // Σ𝑋

𝑋 𝑣𝑢 // 𝑌 ′ // 𝑍′ // Σ𝑋

𝑌 𝑣 // 𝑌 ′ // 𝑌 ″ // Σ𝑌
are distinguished, then we have a commutative diagram

𝑋 𝑢 //

1
��

𝑌 //

𝑣
��

𝑍 //

��

Σ𝑋

��
𝑋 𝑣𝑢 //

��

𝑌 ′ //

��

𝑍′ //

��

Σ𝑋

��
0 //

��

𝑌 ″ 1 //

��

𝑌 ″ //

��

0

��
Σ𝑋 Σ𝑢 // Σ𝑌 // Σ𝑍 // Σ2𝑋

where every column and every row is a distinguished triangle.
3



The fourth axiom is known as the octahedral axiom as the diagram can be represented

as an octahedron where all of the faces commute.

Definition 1.1.4. Let 𝒯 be a triangulated category. A full additive subcategory 𝒮 in

𝒯 is called a triangulated subcategory if every object isomorphic to an object in 𝒮 is

in 𝒮, Σ𝒮 = 𝒮, and if for any distinguished triangle

𝑋 // 𝑌 // 𝑍 // Σ𝑋

such that the objects 𝑋 and 𝑌 are in 𝒮, the object 𝒵 is also in 𝒮.

A classic result of homological algebra states that any short exact sequence of

complexes yields long exact sequences in homology [22, 1.3.1]. The following result

translates this to the setting of triangulated categories.

Proposition 1.1.5. (Neeman [18, 1.1.10, 1.1.11]) Let 𝒯 be a triangulated category and

𝑋 // 𝑌 // 𝑍 // Σ𝑋

be a distinguished triangle in 𝒯. Then applying the functors Hom(𝑈, _) and Hom(_, 𝑈)
to the above triangle yield long exact sequences

⋯ // Hom(𝑈, 𝑋) // Hom(𝑈, 𝑌 ) // Hom(𝑈, 𝑍) // Hom(𝑈, Σ𝑋) // ⋯

and

⋯ Hom(𝑋, 𝑈)oo Hom(𝑌 , 𝑈)oo Hom(𝑍, 𝑈)oo Hom(Σ𝑋, 𝑈)oo ⋯oo

respectively.

The following proposition describes a family of triangulated categories formed

from semi-simple abelian categories, i.e. abelian categories in which every short exact

sequence splits. A simple example is the category of vector spaces over a field 𝕜. We

provide a sketch of Fritz’s proof for illustrative purposes.
4



Proposition 1.1.6. (Fritz [16, 8.1]) Let 𝒜 be an abelian category such that for any short

exact sequence of objects

0 // 𝑋 // 𝑌 // 𝑍 // 0

in 𝒜, we have 𝑌 ≅ 𝑋 ⊕ 𝑍, i.e. all short exact sequences in 𝒜 split. Also let Σ be

the identity endofunctor Σ𝑋 = 𝑋 for any 𝑋 ∈ 𝒜. For any candidate triangle

𝑋 𝑢 // 𝑌 𝑣 // 𝑍 𝑤 // 𝑋 ,

call the triangle distinguished if the sequence is exact at 𝑋, 𝑌 , 𝑍 where exactness at

𝑋 means Ker(𝑢) = Coker(𝑤). Then 𝒜 is a triangulated category.

Proof. • TR0 Any sequence isomorphic to an exact sequence is itself exact. Fur-

thermore, the sequence

𝑋 Id𝑋 // 𝑋 // 0 // 𝑋

is exact since Id𝑋 is an isomorphism.

• TR1 Let 𝑢 ∶ 𝑋 → 𝑌 be a morphism in 𝒜, 𝜋𝑢 be the natural projection onto

Coker(𝑢), and 𝜄𝑢 be the natural inclusion from Ker(𝑢). Then the sequence

𝑋 𝑢 // 𝑌
( 0𝜋𝑢

)
// Ker(𝑢) ⊕ Coker(𝑢) ( 0 𝜄𝑢 ) // 𝑋

is exact.

• TR2 Shifts of distinguished triangles are clearly distinguished since the shift

functor is the identity.

• TR3 The diagram

𝑋 𝑢 //

𝑓
��

𝑌
𝑔
��

( 0𝜋𝑢
)

// Ker(𝑢) ⊕ Coker(𝑢) ( 0 𝜄𝑢 ) //

( 𝑓 0
0 𝑔 )

��

𝑋
𝑓
��

𝑋′ 𝑢 // 𝑌 ′
( 0𝜋𝑢′ )

// Ker(𝑢′) ⊕ Coker(𝑢′) ( 0 𝜄𝑢′ ) // 𝑋′

commutes.
5



• TR4 Let 𝑢 ∶ 𝑋 → 𝑌 and 𝑣 ∶ 𝑌 → 𝑍 be morphisms in 𝒜. Consider the

canonical morphisms from the universal properties of kernel and cokernel

Ker(𝑢) 𝑗1 // Ker(𝑣𝑢) 𝑗2 // Ker(𝑣)

Coker(𝑢) 𝑞1 // Coker(𝑣𝑢) 𝑞2 // Coker(𝑣)

and let 𝑘 = ⎛⎜⎜
⎝

𝑗1 0
0 𝑞1

⎞⎟⎟
⎠

and 𝑘′ = ⎛⎜⎜
⎝

𝑗2 0
0 𝑞2

⎞⎟⎟
⎠

. Then the diagram

𝑋 𝑢 //

1
��

𝑌
( 0𝜋𝑢

)
//

𝑣
��

Ker(𝑢) ⊕ Coker(𝑢) ( 0 𝜄𝑣 ) //

𝑘
��

𝑋

��
𝑋 𝑣𝑢 //

��

𝑍
( 0𝜋𝑣𝑢 )

//

( 0𝜋𝑣
)

��

Ker(𝑣𝑢) ⊕ Coker(𝑣𝑢) ( 0 𝜄𝑣𝑢 ) //

𝑘′
��

𝑋

��
0 //

��

Ker(𝑣) ⊕ Coker(𝑣) 1 //

( 0 𝜄𝑣 )
��

Ker(𝑣) ⊕ Coker(𝑣) //

( 0 0
𝜋𝑢𝜄𝑣 0 )

��

0

��
𝑋 𝑢 // 𝑌

( 0𝜋𝑢
)

// Ker(𝑢) ⊕ Coker(𝑢) ( 0 𝜄𝑣 ) // 𝑋

commutes and every row and column is a distinguished triangle.

1.2 Chain Complexes

Definition 1.2.1. An 𝑅-Chain Complex 𝐶 is a sequence

𝐶 ∶ ⋯ 𝑑𝐶
𝑛+2 // 𝐶𝑛+1

𝑑𝐶
𝑛+1 // 𝐶𝑛

𝑑𝐶
𝑛 // 𝐶𝑛−1

𝑑𝐶
𝑛−1 // ⋯

of 𝑅-modules 𝐶𝑛 and 𝑅-module homomorphisms 𝑑𝐶
𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 such that 𝑑𝐶

𝑛 ∘
𝑑𝐶

𝑛+1 = 0 for all 𝑛. If 𝐶, 𝐷 are 𝑅-complexes and 𝜓𝑛 ∶ 𝐶𝑛 → 𝐷𝑛 is a family of 𝑅-

module homomorphisms such that 𝜓𝑛 ∘ 𝑑𝐷
𝑛 = 𝑑𝐶

𝑛 ∘ 𝜓𝑛−1, then we call 𝜓 a morphism

of chain complexes.

6



The condition 𝑑𝐶
𝑛 ∘ 𝑑𝐶

𝑛+1 = 0 is equivalent to Im 𝑑𝐶
𝑛+1 ⊆ ker 𝑑𝐶

𝑛 . Therefore we

can consider the quotient module 𝐻𝑛(𝐶) = ker 𝑑𝐶
𝑛 / Im 𝑑𝐶

𝑛+1 which we refer to as the

𝑛th Homology of 𝐶. We call 𝐶 exact (or acylic) if Im 𝑑𝐶
𝑛+1 = ker 𝑑𝐶

𝑛 for all 𝑛, i.e.

𝐻𝑛(𝐶) = 0 for all 𝑛. The complex 𝐶 is called totally acyclic if each 𝐶𝑛 is a finitely

generated free 𝑅-module, 𝐶 is exact, and Hom𝑅(𝐶, 𝑅) is exact, i.e.

H(𝐶) = 0 = H(Hom𝑅(𝐶, 𝑅)).

Definition 1.2.2. A bi-complex 𝐶 is a family {𝐶𝑖,𝑗} of 𝑅-modules together with maps

𝑑ℎ
𝑝,𝑞 ∶ 𝐶𝑝,𝑞 → 𝐶𝑝−1,𝑞 and 𝑑𝑣

𝑝,𝑞 ∶ 𝐶𝑝,𝑞 → 𝐶𝑝,𝑞−1

such that 𝑑ℎ ∘ 𝑑ℎ = 𝑑𝑣 ∘ 𝑑𝑣 = 𝑑𝑣𝑑ℎ + 𝑑ℎ𝑑𝑣 = 0. We can view the bi-complex 𝐶 via

the diagram

⋯

��

⋯

��

⋯

��
⋯ 𝐶𝑝−1,𝑞+1oo

𝑑𝑣

��

𝐶𝑝,𝑞+1
𝑑ℎ

oo

𝑑𝑣

��

𝐶𝑝+1,𝑞+1
𝑑ℎ

oo

𝑑𝑣

��

⋯oo

⋯ 𝐶𝑝−1,𝑞oo

𝑑𝑣

��

𝐶𝑝,𝑞
𝑑ℎ

oo

𝑑𝑣

��

𝐶𝑝+1,𝑞
𝑑ℎ

oo

𝑑𝑣

��

⋯oo

⋯ 𝐶𝑝−1,𝑞−1oo

��

𝐶𝑝,𝑞−1
𝑑ℎ

oo

��

𝐶𝑝+1,𝑞−1
𝑑ℎ

oo

��

⋯oo

⋯ ⋯ ⋯
where each square anti-commutes. Notice that each row and each column is a chain

complex.
7



Definition 1.2.3. Let 𝐶 be a bi-complex of 𝑅-modules. The total complex of 𝐶,

Tot⊕(𝐶), is the complex given by

Tot⊕(𝐶)𝑛 = ⨁
𝑝+𝑞=𝑛

𝐶𝑝,𝑞 and 𝑑Tot⊕(𝐶)
𝑛 = ∑

𝑝+𝑞=𝑛
𝑑ℎ

𝑝,𝑞 + 𝑑𝑣
𝑝,𝑞.

The relation 𝑑𝑣𝑑ℎ + 𝑑ℎ𝑑𝑣 = 0 ensures that 𝑑Tot⊕(𝐶) ∘ 𝑑Tot⊕(𝐶) = 0.

Theorem 1.2.4. Acyclic Assembly Lemma (Weibel [22, 2.7.3]) Let 𝐶 be a bi-

complex of 𝑅-modules. Then Tot⊕(𝐶) is an acyclic chain complex assuming either

of the following hold:

• 𝐶 is an upper half-plane complex with exact rows

• 𝐶 is a right half-plane complex with exact columns

Definition 1.2.5. Let 𝐶 and 𝐷 be chain complexes of right and left 𝑅-modules re-

spectively. Consider the bi-complex 𝐶 ⊗𝑅 𝐷 = {𝐶𝑝 ⊗𝑅 𝐷𝑞} with differentials given

by 𝑑ℎ
𝑝,𝑞 = Δ𝐶

𝑝,𝑞 = 𝑑𝐶
𝑝 ⊗𝑅 𝐷𝑞 and 𝑑𝑣

𝑝,𝑞 = Δ𝐷
𝑝,𝑞 = (−1)𝑝−𝑞𝐶𝑝 ⊗ 𝑑𝐷

𝑞 . We call 𝐶 ⊗𝑅 𝐷 the

tensor product bi-complex of 𝐶 and 𝐷. Notice that the sign convention ensures that

Δ𝐶Δ𝐷 + Δ𝐷Δ𝐶 = 0.

We can now take the total complex Tot⊕(𝐶 ⊗𝑅 𝐷), called the (total) tensor

product chain complex of 𝐶 and 𝐷. This complex has differentials given by

𝑑Tot⊕(𝐶⊗𝑅𝐷)
𝑛 = ∑

𝑝+𝑞=𝑛
Δ𝐶

𝑝,𝑞 + Δ𝐷
𝑝,𝑞.

In chapter 4, we will take advantage of the tensor product chain complex to

create interesting examples of exact complexes. Thus we need to know under what

circumstances Tot⊕(𝐶 ⊗𝑅 𝐷) is exact.

Definition 1.2.6. A functor 𝐹 from the category of right 𝑅-modules to itself is called

right exact if for any exact sequence of 𝑅-modules,

𝑋 → 𝑌 → 𝑍 → 0

8



the sequence

𝐹(𝑋) → 𝐹(𝑌 ) → 𝐹(𝑍) → 0

is also exact. The functor 𝐹 is called left exact if for the exact sequence

0 → 𝑋 → 𝑌 → 𝑍

the sequence

0 → 𝐹(𝑋) → 𝐹(𝑌 ) → 𝐹(𝑍)

is also exact. We call 𝐹 exact if it is both left exact and right exact.

Proposition 1.2.7. (Rotman [20, 2.78]) For any right 𝑅-module 𝐴, the functor 𝐴⊗𝑅 _

is right exact.

For a generic right 𝑅-module 𝐴, the functor 𝐴 ⊗𝑅 _ need not be left exact. If

𝐴 ⊗𝑅 _ is left exact (and hence exact), then we refer to 𝐴 as flat.

Proposition 1.2.8. (Rotman [20, 3.46]) If a right 𝑅-module 𝑃 is projective, then 𝑃 is

flat.

Notice that if we let 𝐶 be an exact complex and let 𝐷 be a complex of flat

modules that is bounded below, i.e. 𝐷𝑖 = 0 for all 𝑖 ≪ 0, then the acyclic assembly

lemma implies that Tot⊕(𝐶 ⊗𝑅 𝐷) is an exact complex.

1.3 The Triangulated Category Ktac(𝑅)

Homotopy Equivalence

Let 𝑅 be an associative ring, 𝐶 and 𝐷 be chain complexes of 𝑅-modules, and

𝜓, 𝜓′ ∶ 𝐶 → 𝐷 be chain maps. We say 𝜓 is homotopic to 𝜓′ if there exist maps
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𝜆𝑛 ∶ 𝐶𝑛 → 𝐷𝑛+1 such that 𝜓𝑛 − 𝜓′
𝑛 = 𝑑𝐷

𝑛+1𝜆𝑛 + 𝜆𝑛−1𝑑𝐶
𝑛 and we write 𝜓 ∼ 𝜓′. We

refer to the 𝜆𝑛’s as homotopy maps.

𝐶 ∶ ⋯ 𝑑𝐶
𝑛+2 // 𝐶𝑛+1

𝑑𝐶
𝑛+1 //

𝜓𝑛+1 𝜓′
𝑛+1

��

𝐶𝑛
𝑑𝐶

𝑛 //

𝜓𝑛 𝜓′
𝑛

��

𝜆𝑛

}}

𝐶𝑛−1
𝑑𝐶

𝑛−1 //

𝜓𝑛−1 𝜓′
𝑛−1

��

𝜆𝑛−1

}}

⋯

𝐷 ∶ ⋯ 𝑑𝐷
𝑛+2 // 𝐷𝑛+1

𝑑𝐷
𝑛+1 // 𝐷𝑛

𝑑𝐷
𝑛 // 𝐷𝑛−1

𝑑𝐷
𝑛−1 // ⋯

If there exist maps 𝜓 ∶ 𝐶 → 𝐷 and 𝜁 ∶ 𝐷 → 𝐶 such that 𝜓 ∘ 𝜁 ∼ Id𝐷 and 𝜁 ∘ 𝜓 ∼ Id𝐶,

then we say 𝐶 and 𝐷 are homotopically equivalent and we write 𝐶 ≃ 𝐷. We denote

by Hom𝑅(𝐶, 𝐷) the set of homotopy equivalence classes of degree zero chain maps

from 𝐶 to 𝐷.

The term homotopy map is inherited from algebraic topology. Notice that

homotopy equivalence is a much weaker notion of equivalence than isomorphism. We

are particularly interested in a category of homotopy equivalence classes since the

construction of Eisenbud operators described in chapter 3 is only well defined up to

homotopy.

Resolutions

Let 𝑀 be an 𝑅-module. An exact 𝑅-complex 𝑃 of the form

𝑃 ∶ ⋯ // 𝑃2 // 𝑃1 // 𝑃0 // 𝑀 // 0

where each 𝑃𝑖 is a projective 𝑅-module is called a projective resolution of 𝑀 . A

Complete Resolution of 𝑀 is any totally acyclic chain complex 𝐶 such that the

truncated complex

𝐶>𝑖 ∶ ⋯ // 𝐶𝑖+2 // 𝐶𝑖+1 // 0
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is homotopically equivalent to

𝑃>𝑖 ∶ ⋯ // 𝑃𝑖+2 // 𝑃𝑖+1 // 0

for some 𝑖.
Lemma 1.3.1. Comparison Theorem (Rotman [20, 6.16]) Let 𝑀, 𝑁 be 𝑅-modules

and 𝑓 ∶ 𝑀 → 𝑁 be a homomorphism. Consider the diagram

⋯ // 𝑃2 //

̂𝑓2
��

𝑃1 //

̂𝑓1
��

𝑃0 //

̂𝑓0
��

𝑀 //

𝑓
��

0

⋯ // 𝑃 ′
2 // 𝑃 ′

1 // 𝑃 ′
0 // 𝑁 // 0

where the rows are complexes. If each 𝑃𝑛 in the top row is projective, and if the

bottom row is exact, then there exists a chain map ̂𝑓 ∶ 𝑃 → 𝑃 ′ making the diagram

commute. Moreover, any two such chain maps are homotopic.

If we let 𝑃 ′ be a projective resolution of a module 𝑁 and let ̄𝜌0 ∶ 𝑀 → 𝑁 and

̄𝜇0 ∶ 𝑁 → 𝑀 be homomorphisms, then the comparison theorem implies that there

exist chain maps 𝜌 ∶ 𝑃 → 𝑃 ′ and 𝜇 ∶ 𝑃 ′ → 𝑃 . Furthermore, any chain map from

𝑃 to 𝑃 ′ lifting ̄𝜌0 is homotopic to 𝜌 and any chain map from 𝑃 ′ to 𝑃 lifting ̄𝜇0 is

homotopic to 𝜇.

Proposition 1.3.2. (Avramov-Martsinkovsky [5, 5.3]) Complete resolutions are unique

up to homotopy equivalence.

The following is an alternate proof to that given by Avramov and Martsinkovsky.

Proof. If 𝐶, 𝐶′ are complete resolutions of 𝑀, 𝑁 respectively, then 𝐶>𝑖 ≃ 𝑃>𝑖 and

𝐶′
>𝑘 ≃ 𝑃 ′

>𝑘 for some 𝑖, 𝑘. Thus there exist maps ℎ>𝑖 ∶ 𝐶>𝑖 → 𝑃>𝑖, ℎ′
>𝑘 ∶ 𝐶′

>𝑘 → 𝑃 ′
>𝑘,

𝑗>𝑖 ∶ 𝑃>𝑖 → 𝐶>𝑖, and 𝑗′
>𝑘 ∶ 𝑃 ′

>𝑘 → 𝐶′
>𝑘 such that ℎ>𝑖 ∘ 𝑗>𝑖 ∼ Id𝑃>𝑖

, 𝑗>𝑖 ∘ ℎ>𝑖 ∼ Id𝐶>𝑖
,

ℎ′
>𝑘 ∘ 𝑗′

>𝑘 ∼ Id𝑃 ′
>𝑘

, and 𝑗′
>𝑘 ∘ ℎ′

>𝑘 ∼ Id𝐶′
>𝑘

.

We can set 𝑙 = max(𝑖, 𝑘) so that 𝐶>𝑙 ≃ 𝑃>𝑙 and 𝐶′
>𝑙 ≃ 𝑃 ′

>𝑙. Hence for any

homomorphisms ̄𝜌0 ∶ 𝑀 → 𝑁 and ̄𝜇0 ∶ 𝑁 → 𝑀 with 𝜌 ∶ 𝑃 → 𝑃 ′ and 𝜇 ∶ 𝑃 ′ → 𝑃
11



as above, there exist chain maps 𝛾>𝑙 ∶ 𝐶>𝑙 → 𝐶′
>𝑙 and 𝛿>𝑙 ∶ 𝐶′

>𝑙 → 𝐶>𝑙 where

𝛾𝑛 = 𝑗′
𝑛 ∘𝜌𝑛 ∘ℎ𝑛 and 𝛿𝑛 = 𝑗𝑛 ∘𝜇𝑛 ∘ℎ′

𝑛 for 𝑛 ≥ 𝑙. Now consider the following sequence.

⋯ → Hom(𝐶𝑙, 𝐶′
𝑙 ) → Hom(𝐶𝑙+1, 𝐶′

𝑙 ) → Hom(𝐶𝑙+2, 𝐶′
𝑙 ) → ⋯

This sequence is exact since 𝐶 is totally acyclic. Now consider the following diagram.

⋯ 𝑑𝐶
𝑙+3 // 𝐶𝑙+2

𝑑𝐶
𝑙+2 //

𝛾𝑙+2
��

𝐶𝑙+1
𝑑𝐶

𝑙 //

𝛾𝑙+1
��

𝐶𝑙
𝑑𝐶

𝑙 //

𝛾𝑙
��

⋯

⋯ 𝑑𝐶′
𝑙+3 // 𝐶′

𝑙+2
𝑑𝐶′

𝑙+2 // 𝐶′
𝑙+1

𝑑𝐶′
𝑙+1 // 𝐶′

𝑙
𝑑𝐶′

𝑙 // ⋯

We would like to show that 𝛾𝑛 exists for 𝑛 ≤ 𝑙 such that the diagram commutes. We

know that the diagram commutes for 𝐶>𝑙, thus

𝑑𝐶′
𝑙+1 ∘ 𝛾𝑙+1 ∘ 𝑑𝐶

𝑙+2 = 𝑑𝐶′
𝑙+1 ∘ 𝑑𝐶′

𝑙+2 ∘ 𝛾𝑙+2 = 0

Therefore we have

𝑑𝐶′
𝑙+1 ∘ 𝛾𝑙+1 ∈ ker(Hom(𝑑𝐶

𝑙+2, 𝐶′
𝑙 )) = Im(Hom(𝑑𝐶

𝑙+1, 𝐶′
𝑙 )).

Then there exists 𝛾𝑙 ∈ Hom(𝐶𝑙, 𝐶′
𝑙 ) such that 𝑑𝐶′

𝑙+1 ∘ 𝛾𝑙+1 = 𝛾𝑙 ∘ 𝑑𝐶
𝑙+1. We can now

apply induction to construct 𝛾𝑛 ∶ 𝐶𝑛 → 𝐶′
𝑛 for 𝑛 ≤ 𝑙 such that 𝑑𝐶′

𝑛+1 ∘𝛾𝑛+1 = 𝛾𝑛 ∘𝑑𝐶
𝑛+1

and similarly for 𝛿𝑛 ∶ 𝐶′
𝑛 → 𝐶𝑛.

Thus we now have chain maps 𝛾 ∶ 𝐶 → 𝐶′ and 𝛿 ∶ 𝐶′ → 𝐶. If 𝑀 = 𝑁 and

𝜌0 = 𝜇0 = Id𝑀 , then 𝜌 ∘ 𝜇 ∼ Id𝑝′ and 𝜇 ∘ 𝜌 ∼ Id𝑃 . Therefore 𝛾 ∘ 𝛿 ∼ Id𝐶 and

𝛿 ∘ 𝛾 ∼ Id𝐶′ , hence 𝐶 ≃ 𝐶′.

The Homotopy Category

Consider the category of homotopy equivalence classes of chain complexes,

K(𝑅), with distinguished triangles of the form

𝐶 𝑡 // 𝐷 // Cone(𝑡) // Σ𝐶
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where 𝑡 is a zero degree chain map from 𝐶 to 𝐷. The shift functor Σ simply moves

every module in the complex to the left, i.e (Σ𝑖𝐶)𝑛 = 𝐶𝑛−𝑖. For simplicity we will

write Σ𝐶 = Σ1𝐶. The differentials of the shifted complex are defined as 𝑑Σ𝑖𝐶
𝑛 =

(−1)𝑖(𝜎𝑖
𝐶)𝑛−𝑖−1𝑑𝐶

𝑛−𝑖(𝜎𝑖
𝐶)−1

𝑛 where 𝜎𝑖
𝐶 ∶ 𝐶 → Σ𝑖𝐶 is the natural isomorphism. Notice

that 𝜎−𝑖
Σ𝑖𝐶 = (𝜎𝑖

𝐶)−1.

Remark 1.3.3. We include the 𝜎 maps for completeness sake. However, the reader

may wish to ignore these maps as well as the shift indices on the differentials on a

first reading in order to more easily understand the main thrust of the arguments.

The Mapping Cone of t is the chain complex Cone(𝑡) = Σ𝐶⊕𝐷 with differentials

given by

𝑑Cone(𝑡)
𝑛 = ⎛⎜⎜

⎝

𝑑Σ𝐶
𝑛 0

𝑡𝑛−1(𝜎1
𝐶)−1

𝑛−1 𝑑𝐷
𝑛

⎞⎟⎟
⎠

.

Proposition 1.3.4. (Weibel [22, 10.2.4]) K(𝑅) is a triangulated category.

We will now restrict our view to the subcategory of totally acyclic complexes,

Ktac(𝑅).
Proposition 1.3.5. Ktac(𝑅) is a triangulated subcategory of K(𝑅).

Proof. The shift of any totally acyclic complex is clearly totally acyclic. Thus it

only remains to show that for any totally acyclic complexes 𝐶, 𝐷 and any chain map

𝑡 ∶ 𝐶 → 𝐷, Cone(𝑡) is totally acyclic.

Let (𝑥 𝑦) ∈ ker 𝑑Cone(𝑡)
𝑛 . Then 𝑑Σ𝐶

𝑛 (𝑥) = 0 and 𝑡𝑛−1(𝜎1
𝐶)−1

𝑛−1(𝑥) + 𝑑𝐷
𝑛 (𝑦) = 0.

Then 𝑥 ∈ Ker 𝑑Σ𝐶
𝑛 = Im 𝑑Σ𝐶

𝑛+1. So there exists 𝑧 ∈ (Σ𝐶)𝑛+1 such that 𝑑Σ𝐶
𝑛+1(𝑧) = 𝑥.

Since 𝑡 is a chain map, we know that −𝑡𝑛(𝜎1
𝐶)−1𝑑Σ𝐶

𝑛+1 − 𝑑𝐷
𝑛 𝑡𝑛(𝜎1

𝐶)−1 = 0. Thus

0 = −𝑡𝑛(𝜎1
𝐶)−1𝑑Σ𝐶

𝑛+1(𝑧)−𝑑𝐷
𝑛 𝑡𝑛(𝜎1

𝐶)−1(𝑧) = −𝑡𝑛(𝜎1
𝐶)−1(𝑥)−𝑑𝐷

𝑛 𝑡𝑛(𝜎1
𝐶)−1(𝑧) = 𝑑𝐷

𝑛 (𝑦)−
𝑑𝐷

𝑛 𝑡𝑛(𝜎1
𝐶)−1(𝑧). Hence 𝑦 − 𝑡𝑛(𝜎1

𝐶)−1(𝑧) ∈ ker 𝑑𝐷
𝑛 = Im 𝑑𝐷

𝑛+1. So there exists 𝑤 ∈
𝐷𝑛+1 such that 𝑑𝐷

𝑛+1(𝑤) = 𝑦 − 𝑡𝑛(𝜎1
𝐶)−1(𝑧). Therefore 𝑑Cone(𝑡)

𝑛+1 (𝑧 𝑤) = (𝑥 𝑦) and so

(𝑥 𝑦) ∈ Im 𝑑Cone(𝑡)𝑛+1 . Thus Cone(𝑡) is exact.
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We can similarly show that Hom(Cone(𝑡), 𝑅) is exact by using the facts that

Hom(𝐶, 𝑅) and Hom(𝐷, 𝑅) are exact.
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Chapter 2

Support and Rank Varieties in Ktac(𝑅)

In this chapter we will define the support variety and rank variety for a pair

of totally acyclic chain complexes. We will first describe the ring of cohomology

operators, 𝑅[𝜒1, … , 𝜒𝑐], defined by a pair of complexes 𝐶, 𝐷 ∈ Ktac(𝑅). To do this

we use Eisenbud’s [15] construction of degree 2 chain maps to create an 𝑅[𝜒1, … , 𝜒𝑐]
action on the graded module ⨁

𝑖∈ℤ
Hom𝑅(𝐶, 𝐷). We also show that the action of these

operators is well defined.

The support variety is defined as the zero set of the annihilator of this ring of

cohomology operators. The rank variety is defined as the set of points ̄𝑎 ∈ 𝑘𝑐 such

that Hom𝑄𝑎
vanishes in high degree where 𝑄𝑎 is a hypersurface ring. However since

𝐶, 𝐷 are in general not 𝑄𝑎-complexes, we will also need to take advantage of a pair

of triangulated functors to move between Ktac(𝑅) and Ktac(𝑄𝑎).

2.1 Eisenbud and Cohomology Operators in Ktac(𝑅)

From this point forward we will let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) where (𝑄, 𝑚, 𝕜) is a local

ring and 𝑓 = 𝑓1, … , 𝑓𝑐 is a regular sequence in 𝑚2. We will also assume that the

residue field 𝕜 is algebraically closed. For pairs of modules over a complete intersection

ring, there are multiple equivalent methods of constructing cohomology operators. To

construct similar operators in Ktac(𝑅), we will use Eisenbud’s [15] method of lifting

chain complex differentials to create degree 2 chain maps.
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Eisenbud’s Construction

Given an 𝑅-complex 𝐶, we define 𝐶 to be a sequence of 𝑄-free module homo-

morphisms such that

𝐶 ⊗𝑄 𝑅 ≃ 𝐶

and we call 𝐶 a lift of 𝐶. Note that 𝐶 is not necessarily a chain complex. In particular,

̃𝑑𝐶
𝑛−1 ∘ ̃𝑑𝐶

𝑛 =
𝑐

∑
𝑘=1

𝑓𝑘 ̃𝑡𝑘,𝑛

where ̃𝑡𝑘,𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−2. We will write ̃𝑡𝑘 for the family of maps { ̃𝑡𝑘,𝑛}𝑛∈ℤ.

Proposition 2.1.1. (Eisenbud [15, 1.1]) The map 𝑡𝑘 = 𝜎2
𝐶( ̃𝑡𝑘 ⊗𝑄 𝑅) ∶ 𝐶 → Σ2𝐶 is a

morphism.

Now let 𝐷 be another chain complex with

̃𝑑𝐷
𝑛−1 ∘ ̃𝑑𝐷

𝑛 =
𝑐

∑
𝑘=1

𝑓𝑘 ̃𝑠𝑘,𝑛 and 𝑠𝑘 = 𝜎2
𝐷( ̃𝑠𝑘 ⊗𝑄 𝑅).

Proposition 2.1.2. (Eisenbud [15, 1.3]) If 𝜓 ∶ 𝐶 → 𝐷 is a chain map, then

𝜓 ∘ (𝜎2
𝐶)−1 ∘ 𝑡𝑘 ∼ (𝜎2

𝐷)−1 ∘ 𝑠𝑘 ∘ 𝜓.

We will now give a reorganized and more detailed version of Eisenbud’s original

proof.

Proof. Since 𝜓 is an 𝑅-complex chain map, lifting it to 𝑄 yields

𝜓 ̃𝑑𝐶 − ̃𝑑𝐷𝜓 =
𝑐

∑
𝑗=1

𝑓𝑗 ̃𝜏𝑗.

We can also lift the maps 𝑡𝑘 and 𝑠𝑘 to 𝑄 and use the facts that ( ̃𝑑𝐶)2 =
𝑐

∑
𝑗=1

𝑓𝑗 ̃𝑡𝑗 and

( ̃𝑑𝐷)2 =
𝑐

∑
𝑗=1

𝑓𝑗 ̃𝑠𝑗 to get

𝑓𝑘(𝜓 ̃𝑡𝑘 − ̃𝑠𝑘𝜓) = 𝜓 ⎛⎜
⎝

( ̃𝑑𝐶)2 − ∑
𝑗≠𝑘

𝑓𝑗 ̃𝑡𝑗⎞⎟
⎠

− ⎛⎜
⎝

( ̃𝑑𝐷)2 − ∑
𝑗≠𝑘

𝑓𝑗 ̃𝑠𝑗⎞⎟
⎠

𝜓.
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We will now commute the 𝜓 with one copy each of ̃𝑑𝐶 and ̃𝑑𝐷 and subtract like terms

to get

𝑓𝑘(𝜓 ̃𝑡𝑘 − ̃𝑠𝑘𝜓) = ∑
𝑗≠𝑘

𝑓𝑗𝜓( ̃𝑠𝑗 − ̃𝑡𝑗) +
𝑐

∑
𝑗=1

𝑓𝑗( ̃𝑑𝐷 ̃𝜏𝑗 + ̃𝜏𝑗 ̃𝑑𝐶).

Taking 𝑓𝑘( ̃𝑑𝐷 ̃𝜏𝑘 + ̃𝜏𝑘 ̃𝑑𝐶) to the left yields

𝑓𝑘 (𝜓𝑡𝑘 − 𝑠𝑘𝜓 − ( ̃𝑑𝐷 ̃𝜏𝑘 + ̃𝜏𝑘 ̃𝑑𝐶)) =

∑
𝑗≠𝑘

𝑓𝑗𝜓( ̃𝑠𝑗 − ̃𝑡𝑗) + ∑
𝑗≠𝑘

𝑓𝑗( ̃𝑑𝐷 ̃𝜏𝑗 + ̃𝜏𝑗 ̃𝑑𝐶).

Thus we see that

Im (𝜓 ̃𝑡𝑘 − ̃𝑠𝑘𝜓 − ( ̃𝑑𝐷 ̃𝜏𝑘 + ̃𝜏𝑘 ̃𝑑𝐶)) ⊆ (𝑓1, … , 𝑓𝑐)Σ𝑖𝐷

and so tensoring down to 𝑅 we have

𝜓(𝜎2
𝐶)−1𝑡𝑘 − (𝜎2

𝐷)−1𝑠𝑘𝜓 = 𝑑𝐷𝜏𝑘 + 𝜏𝑘𝑑𝐶.

We can consider the map 𝜏𝑘 as a homotopy map so that 𝜓(𝜎2
𝐶)−1𝑡𝑘 − (𝜎2

𝐷)−1𝑠𝑘𝜓 ∼ 0
as desired.

The next two corollaries show that the 𝑡𝑘’s are well defined in Ktac(𝑅).
Corollary 2.1.3. (Eisenbud [15, 1.4, 1.5]) The 𝑡𝑘’s are uniquely determined up to

homotopy and 𝑡𝑘𝑡𝑗 ∼ 𝑡𝑗𝑡𝑘.

Corollary 2.1.4. If 𝐶 and 𝐷 are homotopically equivalent with 𝜓 ∶ 𝐶 → 𝐷 and

𝜁 ∶ 𝐷 → 𝐶 such that 𝜓𝜁 ∼ Id𝐷 and 𝜁𝜓 ∼ Id𝐶, then 𝑡𝑘 ∼ 𝜁𝑠𝑘𝜓 and 𝑠𝑘 ∼ 𝜓𝑡𝑘𝜁.

Proof. By Proposition 2.1.2, 𝜓𝑡𝑘 ∼ 𝑠𝑘𝜓 and thus 𝑡𝑘 ∼ 𝜁𝜓𝑡𝑘 ∼ 𝜁𝑠𝑘𝜓. Similarly

𝑠𝑘 ∼ 𝜓𝑡𝑘𝜁.

We will now consider the maps Hom𝑅(𝑡𝑘, 𝐷), which we will call Eisenbud op-

erators. The Eisenbud operators define an action on the set ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷) via
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composition. We can also define operators Hom𝑅(𝐶, 𝑠𝑘). We would like to show that

the action of Hom𝑅(𝑡𝑘, 𝐷) agrees with the action of Hom𝑅(𝐶, 𝑠𝑘).
Corollary 2.1.5. Consider the graded 𝑅-module maps

𝑤𝑘 ∶ ⨁
𝑖∈ℤ

Hom𝑅(Σ−𝑖𝐶, 𝐷) → ⨁
𝑖∈ℤ

Hom𝑅(Σ−𝑖𝐶, 𝐷),

𝑣𝑘 ∶ ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷) → ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷),

and

𝜙 ∶ ⨁
𝑖∈ℤ

Hom𝑅(Σ−𝑖𝐶, 𝐷) → ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷)

defined by

(𝑤𝑘)𝑗 = Hom𝑅((𝜎−𝑗+2
𝐶 )−1, 𝐷) ∘ Hom𝑅(𝑡𝑘, 𝐷) ∘ Hom𝑅(𝜎−𝑗−2

Σ2𝐶 , 𝐷),

(𝑣𝑘)𝑗 = Hom𝑅(𝐶, 𝜎𝑗−2
Σ2𝐷) ∘ Hom𝑅(𝐶, 𝑠𝑘) ∘ Hom𝑅(𝐶, (𝜎𝑗

𝐷)−1),

and

𝜙𝑗(𝛼) = 𝜎𝑗
𝐷 ∘ 𝛼 ∘ 𝜎−𝑗

𝐶 for any 𝛼 ∈ Hom𝑅(Σ−𝑗𝐶, 𝐷).

The following diagram commutes up to homotopy.

⨁
𝑖∈ℤ

Hom𝑅(Σ−𝑖𝐶, 𝐷)
𝑤

uukkkk
kkkk

kkkk
kk 𝜙

))RRR
RRRR

RRRR
RRR

⨁
𝑖∈ℤ

Hom𝑅(Σ−𝑖𝐶, 𝐷)
𝜙

))SSS
SSSS

SSSS
SSS

⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷)
𝑣

uullll
llll

llll
ll

⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷)

Proof. Let 𝛼 ∈ Hom𝑅(Σ−𝑗𝐶, 𝐷). Proposition 2.1.2 implies that

𝜎𝑗−2
Σ2𝐷 ∘ 𝑠𝑘 ∘ (𝜎𝑗

𝐷)−1 ∘ 𝜙(𝛼) ∼ 𝜙(𝛼) ∘ 𝜎−𝑗−2
Σ2𝐶 ∘ 𝑡𝑘 ∘ (𝜎−𝑗+2

𝐶 )−1.
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The Ring of Cohomology Operators

Now consider the diagram

𝑅[𝜒1, … , 𝜒𝑐]
𝜂

uukkkk
kkkk

kkkk
kkkk

k
𝜈

))SSS
SSSS

SSSS
SSSS

SS

⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐶)

++

⨁
𝑖∈ℤ

Hom𝑅(𝐷, Σ𝑖𝐷)

ss⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷)

where 𝜂(𝜒𝑘) = 𝑡𝑘 and 𝜈(𝜒𝑘) = 𝑠𝑘. We can regard ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷) as a left

⨁
𝑖∈ℤ

Hom𝑅(𝐷, Σ𝑖𝐷) right ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐶) graded bimodule with the actions defined

by composition. Then ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷) is an 𝑅[𝜒1, … , 𝜒𝑐]-module with the action

𝜒𝑘 ⋅ 𝛼 = 𝑤(𝛼) for any 𝛼 ∈ ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷). The grading is given by |𝜒𝑘| = 2 for

all 𝑘 and |𝑟| = 0 for all 𝑟 ∈ 𝑅. We refer to the 𝜒𝑘’s as cohomology operators and

𝑅[𝜒1, … , 𝜒𝑐] as the ring of cohomology operators.

Corollary 2.1.5 implies that

𝜒𝑘 ⋅ 𝛼 = 𝑤𝑘(𝛼) ∼ 𝜙 ∘ 𝑣𝑘 ∘ 𝜙−1(𝛼)

and so the action of 𝑅[𝜒1, … , 𝜒𝑐] on ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷) is independent of the choice

of using 𝐶 or 𝐷 for the cohomology operators. We would furthermore like this

construction to be independent of the choice of basis of (𝑓1, … , 𝑓𝑐).
Proposition 2.1.6. (Eisenbud [15, 1.7]) Let 𝑄, 𝑄′ be local rings and let 𝑓1, … , 𝑓𝑐 and

𝑓 ′
1, … , 𝑓 ′

𝑐′ be regular sequences in 𝑄, 𝑄′ respectively. Consider the complete intersec-

tion rings 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) and 𝑅′ = 𝑄′/(𝑓 ′
1, … , 𝑓 ′

𝑐′). Let 𝛼 ∶ 𝑄 → 𝑄′ be a ring

homomorphism such that 𝛼((𝑓1, … , 𝑓𝑐)) ⊆ (𝑓 ′
1, … , 𝑓 ′

𝑐′) with

𝛼(𝑓𝑖) =
𝑐′

∑
𝑗=1

𝑎𝑖𝑗𝑓 ′
𝑗 for some elements 𝑎𝑖𝑗 ∈ 𝑄′.
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Also let 𝐶 ∈ Ktac(𝑅) with the family of maps 𝑡𝑘 ∶ 𝐶 → Σ2𝐶 as defined above.

Consider the 𝑅′-complex 𝑅′ ⊗𝑅 𝐶 with the family of maps 𝑡′
𝑗. Then 𝑡′

𝑗 is homotopic

to
𝑐

∑
𝑘=1

𝑎𝑘𝑗(𝑅′ ⊗𝑅 𝑡𝑘).
If we let 𝑄 = 𝑄′ and let 𝑓1, … , 𝑓𝑐 and 𝑓 ′

1, … , 𝑓 ′
𝑐 be two 𝑄-regular sequences

that generate the same ideal and we let 𝛼 be the identity map on 𝑅, then the above

proposition implies that
𝑐

∑
𝑘=1

𝑎𝑘𝑗𝑡𝑘 ∼ 𝑡′
𝑗 for some 𝑎𝑘𝑗 ∈ 𝑄. Thus we have 𝜒′

𝑗 ⋅ 𝛼 =

𝑤𝑗(𝛼) =
𝑐

∑
𝑘=1

𝑎𝑘𝑗𝑤′
𝑘(𝛼) =

𝑐
∑
𝑘=1

𝑎𝑘𝑗𝜒𝑘 ⋅ 𝛼 for any chain map 𝛼 ∈ ⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷), i.e.

each 𝜒′
𝑗 is a linear combination of the 𝜒𝑘’s.

2.2 Definitions of Support and Rank Varieties

We will now translate the definitions of support and rank varieties of modules

to the category of totally acyclic complexes.

Support Varieties

Avramov and Buchweitz [2, 2.1] define the support variety 𝑉 (𝑄, 𝑓, 𝑀, 𝑁) of a

pair of 𝑅-modules 𝑀, 𝑁 to be the zero set of the annihilator of the 𝕜[𝜒1, … , 𝜒𝑐]-
module 𝐸 = ⨁

𝑖≥0
Ext𝑖

𝑅(𝑀, 𝑁) ⊗𝑅 𝕜, i.e.

𝑉 (𝑄, 𝑓, 𝑀, 𝑁) = {(𝑏1, … , 𝑏𝑐) ∈ 𝕜𝑐|𝜙(𝑏1, … , 𝑏𝑛) = 0

for all 𝜙 ∈ Ann 𝐸} ∪ {0}.

We will now give a similar definition for pairs of totally acyclic complexes by replacing

⨁
𝑖≥0

Ext𝑖
𝑅(𝑀, 𝑁) with the 𝑅[𝜒1, … , 𝜒𝑐]-module ⨁

𝑖≥0
Hom𝑅(𝐶, Σ𝑖𝐷), a submodule of

⨁
𝑖∈ℤ

Hom𝑅(𝐶, Σ𝑖𝐷) that we discussed in the previous section.

Definition 2.2.1. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) where 𝑄 is a regular local ring with residue

field 𝕜 and 𝑓1, … , 𝑓𝑐 is a regular sequence. Also let 𝑆 = 𝑅[𝜒1, … , 𝜒𝑐] be the ring of

cohomology operators defined by 𝑓1, … , 𝑓𝑐. Then the support variety 𝑉 (𝑄, 𝑓, 𝐶, 𝐷)
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of a pair of complexes 𝐶, 𝐷 ∈ Ktac(𝑅) is the zero set of the annihilator of the 𝑆 ⊗𝑅 𝕜-

module 𝐸 = ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷) ⊗𝑅 𝕜. That is,

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = {(𝑏1, … , 𝑏𝑐) ∈ 𝕜𝑐|𝜙(𝑏1, … , 𝑏𝑛) = 0

for all 𝜙 ∈ Ann 𝐸} ∪ {0}.

This definition is especially useful for computing examples by simply decom-

posing the differentials of 𝐶 to find the cohomology operators.

Rank Varieties

Carlson [13, 4.1] defined the rank variety 𝑊(𝑀) of a module 𝑀 over a group

algebra 𝕜𝐺 ≅ 𝕜[[𝑥1, … , 𝑥𝑐]]/(𝑥𝑝
1, … , 𝑥𝑝

𝑐) of an elementary abelian 𝑝-group 𝐺, where

𝑝 = 𝑐ℎ𝑎𝑟(𝕜), to be the set

𝑊(𝑀) = { ̄𝑎 ∈ 𝕜𝑐|𝑀 ↓𝕜[𝑙𝑎] is not free} ∪ {0}

where ̄𝑎 is the image of 𝑎 = (𝑎1, … , 𝑎𝑐) with 𝑎𝑖 ∈ 𝕜𝐺 and 𝑙𝑎 = 𝑎1𝑥1 +⋯+𝑎𝑐𝑥𝑐 ∈ 𝕜𝐺.

By a theorem of Avramov [1, 7.5], the projective dimension of a module 𝑀 over the

ring 𝑄𝑎 = 𝕜[[𝑥1, … , 𝑥𝑐]]/(𝑙𝑝𝑎) is finite if and only if 𝑀 is free over 𝕜[𝑙𝑎]. Thus

𝑊(𝑀) = { ̄𝑎 ∈ 𝕜𝑐| Ext𝑖
𝑄𝑎

(𝑀, 𝕜) ≠ 0 for infinitely many i} ∪ {0}.

Avramov and Buchweitz [2, 2.5] generalized this for a pair of modules 𝑀, 𝑁 over a

complete intersection ring 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) by setting

𝑊(𝑄, 𝑓, 𝑀, 𝑁) = { ̄𝑎 ∈ 𝕜𝑐| Ext𝑖
𝑄𝑎

(𝑀, 𝑁) ≠ 0 for infinitely many i} ∪ {0}

where 𝑎 = (𝑎1, … , 𝑎𝑐) ∈ 𝑄𝑐 denotes some lifting of ̄𝑎 = ( ̄𝑎1, … , ̄𝑎𝑐) ∈ 𝕜𝑐 and 𝑄𝑎 =
𝑄/𝑓𝑎𝑄 with 𝑓𝑎 = 𝑎1𝑓1 + ⋯ + 𝑎𝑐𝑓𝑐 ∈ 𝑄.

Remark 2.2.2. Avramov and Buchweitz referred to 𝑊(𝑄, 𝑓, 𝑀, 𝑁) as the support

variety after proving it is equivalent to 𝑉 (𝑄, 𝑓, 𝑀, 𝑁).
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We would like to give a similar definition for the rank variety of a pair of totally

acyclic complexes 𝐶, 𝐷 in terms of the vanishing of Hom𝑄𝑎
where 𝑄𝑎 is a complete

intersection ring intermediate to 𝑄 and 𝑅. However, totally acyclic 𝑅-complexes 𝐶, 𝐷
are not totally acyclic 𝑄𝑎-complexes. The following pair of adjoint triangle functors

by Bergh, Jorgensen, and Moore will allow us to go back and forth between Ktac(𝑅)
and Ktac(𝑄𝑎).
Definition 2.2.3. (Bergh-Jorgensen-Moore [10, 2.1]) Let 𝑅 = 𝑄/𝐼 where 𝑄 is a Goren-

stein ring and 𝐼 is an ideal with proj dim𝑄 𝑅 < ∞, and let 𝐶 ∈ Ktac(𝑅). Then

define 𝑇 ∶ Ktac(𝑅) → Ktac(𝑄) by letting 𝑇 𝐶 ∈ Ktac(𝑄) be a complete resolu-

tion of Im 𝑑𝐶
𝑜 over Q. Given a chain map 𝛼 ∶ 𝐶 → 𝐶′ in Ktac(𝑅), we have the

map 𝑢 ∶ Im(𝑑𝐶
𝑜 ) → Im(𝑑𝐶′

𝑜 ) induced by the map 𝛼. Then 𝑇 𝛼 ∶ 𝑇 𝐶 → 𝑇 𝐶′ is

the homotopy equivalence class of the comparison map �̃� ∶ 𝑇 𝐶 → 𝑇 𝐶′. Define

𝑆 ∶ Ktac(𝑄) → Ktac(𝑅) by 𝑆𝐷 = 𝐷 ⊗𝑄 𝑅 and 𝑆𝛼 = 𝛼 ⊗𝑄 𝑅.

Remark 2.2.4. Notice that 𝑇 is well defined because complete resolutions are unique

up to homotopy equivalence (Proposition 1.3.2).

Theorem 2.2.5. (Bergh-Jorgensen-Moore [10, 3.1]) The triangle functors 𝑆 and 𝑇 form

an adjoint pair, that is, they satisfy the following property: for all 𝐶 ∈ Ktac(𝑅) and

𝐷 ∈ Ktac(𝑄) there exists a bijection

Hom𝑄(𝐷, 𝑇 𝐶) → Hom𝑅(𝑆𝐷, 𝐶)

which is natural in each variable.

Definition 2.2.6. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) and let 𝐶, 𝐷 ∈ Ktac(𝑅). Then the Rank

Variety 𝑊(𝑄, 𝑓, 𝐶, 𝐷) of a pair of complexes 𝐶, 𝐷 ∈ Ktac(𝑅) is given by

𝑊(𝑄, 𝑓, 𝐶, 𝐷) = { ̄𝑎 ∈ 𝕜𝑐| Hom𝑄𝑎
(𝑇 𝐶, Σ𝑖𝑇 𝐷)) ≠ 0

for infinitely many 𝑖 > 0} ∪ {0}
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where 𝑎 = (𝑎1, … , 𝑎𝑐) ∈ 𝑄𝑐 denotes some lifting of ̄𝑎 = ( ̄𝑎1, … , ̄𝑎𝑐) ∈ 𝕜𝑐 and 𝑄𝑎 =
𝑄/𝑓𝑎𝑄 with 𝑓𝑎 = 𝑎1𝑓1 + ⋯ + 𝑎𝑐𝑓𝑐 ∈ 𝑄.

While it is clear that 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) is an algebraic variety, it is not at all obvious

from the definition that 𝑊(𝑄, 𝑓, 𝐶, 𝐷) is a closed set. Furthermore, some of the

properties discussed in section 3.3 are proved using the rank variety definition while

others are proved using the support variety definition. When we discuss realizability

of support in chapter 4, we mainly focus on the cohomology operators in the support

variety definition. However, we also need to know the support variety of a complete

resolution of the residue field. This is very easily computed using the rank variety

and a result of Eisenbud [15, 2]. We will now spend the next chapter building the

tools necessary to show that 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) is the same as 𝑊(𝑄, 𝑓, 𝐶, 𝐷).
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Chapter 3

Equivalence of Support and Rank Varieties

Our main goal in this chapter is to show that the support and rank varieties of a

pair of totally acyclic complexes are equivalent; translating the Avrunin-Scott theorem

to Ktac(𝑅). We use the pair of adjoint triangle functors 𝑇 ∶ Ktac(𝑅) → Ktac(𝑄) and

𝑆 ∶ Ktac(𝑄) → Ktac(𝑅) [10, 2.1] to identify morphisms in Ktac(𝑅) with morphisms in

Ktac(𝑄). We then use this identification of morphisms along with an iterated lifted

mapping cone to prove a key finite generation result relating Hom𝑄 to Hom𝑅 for a

pair of totally acyclic complexes. Finally, we take advantage of this finite generation

result in a slightly modified version of the proof by Avramov and Buchweitz [2, 2.5]

to prove the equivalence of varieties.

3.1 Finite Generation

The proof of the equivalence of support varieties of modules over a complete

intersection ring requires a theorem that states for any pair of 𝑅-modules 𝑀, 𝑁 ,

the graded 𝑅-module Ext∗
𝑄(𝑀, 𝑁) is finitely generated if and only if the graded

𝑅[𝜒1, … , 𝜒𝑐]-module Ext∗
𝑅(𝑀, 𝑁) is finitely generated, where 𝑅[𝜒1, … , 𝜒𝑐] is the ring

of cohomology operators. The ‘if’ direction of this theorem was proved by Avramov,

Gasharov, and Peeva [3, 4.2] and the ‘only if’ direction was proved by Gulliksen [17,

3.1] cf. [1, 2.1].

Our main goal in this section is to translate the Gulliksen and Avramov-

Gasharov-Peeva finiteness theorem for Ext to the setting of totally acyclic chain

complexes using the triangulated structure of Ktac(𝑅). The following generalization
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of a result by Avramov [1, 2.3] gives a nice condition for showing the finiteness of a

graded 𝐴[𝑥]-module given the finiteness of a graded 𝐴-module.

Lemma 3.1.1. Let 𝐴 be a non-negatively graded noetherian ring and let 𝐹 be a graded

𝐴-module and 𝐸 be a graded 𝐴[𝑥]-module. Regarding 𝐹 as a graded 𝐴[𝑥]-module by

the map 𝑠 ∶ 𝐴[𝑥] → 𝐴 where 𝑠(𝑥) = 0, graded in total degree |𝑎𝑥𝑛| = |𝑎| + 𝑛|𝑥| for

any homogeneous element 𝑎 ∈ 𝐴. Let there exist graded 𝐴[𝑥]-module homomorphisms

𝜓 ∶ 𝐸 → 𝐹 and 𝜙 ∶ 𝐹 → 𝐸 and an exact sequence of the form

𝜓 // 𝐹 𝑖 𝜙 // 𝐸𝑖+|𝜙| 𝑥 // 𝐸𝑖+|𝜙|+|𝑥| 𝜓 // 𝐹 𝑖+|𝜙|+|𝑥|+|𝜓| 𝜙 // .

Then 𝐹 is a finitely generated graded 𝐴-module if and only if 𝐸 is a finitely generated

graded 𝐴[𝑥]-module.

Proof. First assume 𝐹 is finitely generated as an 𝐴-module. Since 𝐹 is noetherian,

Im(𝜓) is finitely generated. Let 𝜓(𝑒1), … , 𝜓(𝑒𝑚) be its generators. Now consider

𝐺 = 𝐴𝑒1 + ⋯ + 𝐴𝑒𝑚 as an 𝐴[𝑥]-graded submodule of 𝐸. Now let 𝑒 ∈ 𝐸. Then

𝜓(𝑒) = 𝑎1𝜓(𝑒1) + ⋯ + 𝑎𝑚𝜓(𝑒𝑚). Thus 𝑒 − (𝑎1𝑒1 + ⋯ + 𝑎𝑛𝑒𝑛) ∈ Ker(𝜓), so 𝐸 ⊆
𝐺 + Ker(𝜓). The opposite containment is obvious, thus 𝐸 = 𝐺 + Ker(𝜓). But

Ker(𝜓) = Im(𝑥) = 𝑥𝐸. Thus 𝐸 = 𝐺 + 𝑥𝐸. Iterating yields

𝐸 =
𝑛

∑
𝑖=0

𝑥𝑖𝐺 + 𝑥𝑛+1𝐸.

For any homogeneous element 𝑒 ∈ 𝐸 and for 𝑛 ≫ 0, 𝑒 ∉ 𝑥𝑛+1𝐸 so we get 𝐸 =
(𝐴[𝑥]𝐺). Thus 𝐸 is a finitely generated 𝐴[𝑥]-module.

Now conversely assume that 𝐸 is a finitely generated 𝐴[𝑥]-module. Consider

the short exact sequence of graded 𝐴[𝑥]-modules,

0 → 𝐸/ Ker(𝜓) → 𝐹 → Im(𝜙) → 0.

Since 𝐸 is noetherian, both 𝐸/ Ker(𝜓) and Im(𝜙) are finitely generated, so 𝐹 is

finitely generated as an 𝐴[𝑥] module. So for any 𝑓 ∈ 𝐹 , 𝑓 = 𝑝1𝑓1 + ⋯ + 𝑝𝑛𝑓𝑛 where
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𝑝𝑖 ∈ 𝐴[𝑥]. But 𝑥 ∈ Ann(𝐹), so 𝑝𝑖𝑓𝑖 = 𝑎𝑖𝑓𝑖 where 𝑎𝑖 ∈ 𝐴 is the constant term of 𝑝𝑖.

Thus 𝐹 is finitely generated as an 𝐴 module.

Remark 3.1.2. Since 𝐴 is assumed to be non-negatively graded and |𝑥| > 0, 𝐹 𝑖, 𝐸𝑖 = 0
for 𝑖 < 0.

We now need to construct such a long exact sequence of Hom modules. To

prove Gulliken’s original theorem, Avramov [1, 2.1] uses a complicated homotopy

construction by Shamash and Eisenbud. However, we can instead use the triangulated

structure of Ktac(𝑅) to create the long exact sequence. First, we will need a few tools

for handling the triangulated structure.

The Lifted Mapping Cone

Given a chain complex 𝐶 over the ring 𝑅 = 𝑄/(𝑓1, ..., 𝑓𝑐), we cannot expect

that a lifting of 𝐶 to 𝑄 will itself be a complex. However, we can find liftings of

mapping cones of the 𝑡′
𝑖𝑠 that are complexes.

Lemma 3.1.3. Let 𝑄 be a local ring, 𝑅 = 𝑄/(𝑓) where 𝑓 is a nonzerodivisor. Also let

𝐶 ∈ Ktac(𝑅) with ̃𝑑𝐶
𝑛−1 ∘ ̃𝑑𝐶

𝑛 = ̃𝑡𝑛𝑓 so that 𝑡 = 𝜎2
𝐶( ̃𝑡 ⊗𝑄 𝑅) is a chain map from 𝐶 to

Σ2𝐶. Then there exists a lifting, ̃Cone(𝑡), to 𝑄 of Cone(𝑡) such that the lifting is a

complex. Furthermore this complex is exact.

Remark 3.1.4. For simplicity of notation we will refer to ̃𝐶𝑜𝑛𝑒(𝑡) as 𝐶♯.

Proof. Consider the mapping cone differential:

𝑑Cone(𝑡)
𝑛 = ⎛⎜⎜

⎝

𝑑Σ𝐶
𝑛 0

𝑡𝑛−1(𝜎1
𝐶)−1

𝑛−1 𝑑Σ2𝐶
𝑛

⎞⎟⎟
⎠

.
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Then lift the mapping cone to 𝑄 with the differential:

𝑑𝐶♯
𝑛 = ⎛⎜⎜

⎝

̃𝑑Σ𝐶
𝑛 −𝑓(�̃�1

𝐶)𝑛−2(�̃�2
𝐶)−1

𝑛−2

(�̃�2
𝐶)𝑛−3 ̃𝑡𝑛−1(�̃�1

𝐶)−1
𝑛−1 ̃𝑑Σ2𝐶

𝑛

⎞⎟⎟
⎠

where �̃� ⊗𝑄 𝑅 = 𝜎. To see that this lifting is a 𝑄-complex, we need to check

that the composition of two consecutive differentials is zero.

𝑑𝐶♯
𝑛−1 ∘ 𝑑𝐶♯

𝑛 = ⎛⎜⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟⎟
⎠

where

𝑎 = ̃𝑑Σ𝐶
𝑛−1 ̃𝑑Σ𝐶

𝑛 − 𝑓(�̃�1
𝐶)𝑛−3 ̃𝑡𝑛−1(�̃�1

𝐶)−1
𝑛−1

𝑏 = − ̃𝑑Σ𝐶
𝑛−1(�̃�1

𝐶)𝑛−1(�̃�2
𝐶)−1

𝑛−1𝑓 − 𝑓(�̃�1
𝐶)𝑛−3(�̃�2

𝐶)−1
𝑛−3 ̃𝑑Σ2𝐶

𝑛

𝑐 = (�̃�2
𝐶)𝑛−4 ̃𝑡𝑛−2(�̃�1

𝐶)−1
𝑛−2 ̃𝑑Σ𝐶

𝑛 + ̃𝑑Σ2𝐶
𝑛−2 (�̃�2

𝐶)𝑛−3 ̃𝑡𝑛−1(�̃�1
𝐶)−1

𝑛−1

𝑑 = −𝑓(�̃�2
𝐶)𝑛−4 ̃𝑡𝑛−2(�̃�2

𝐶)−1
𝑛−2 + ̃𝑑Σ2𝐶

𝑛−1 ̃𝑑Σ2𝐶
𝑛 .

We also know that

̃𝑑Σ𝐶
𝑛−1 ∘ ̃𝑑Σ𝐶

𝑛 = 𝑓(�̃�1
𝐶)𝑛−3 ̃𝑡𝑛−1(�̃�1

𝐶)−1
𝑛−1 and ̃𝑑Σ2𝐶

𝑛−1 ∘ ̃𝑑Σ2𝐶
𝑛 = 𝑓(�̃�2

𝐶)𝑛−4 ̃𝑡𝑛−2(�̃�2
𝐶)−1

𝑛−2,

therefore 𝑎 and 𝑑 are zero. Furthermore, since ̃𝑑Σ𝐶
𝑛−1 = −(�̃�1

𝐶)𝑛−3 ̃𝑑𝐶
𝑛−2(�̃�1

𝐶)−1
𝑛−1 and

̃𝑑Σ2𝐶
𝑛 = (�̃�2

𝐶)𝑛−3 ̃𝑑𝐶
𝑛−2(�̃�2

𝐶)−1
𝑛 , we have

𝑏 = − ̃𝑑Σ𝐶
𝑛−1(�̃�1

𝐶)𝑛−1(�̃�2
𝐶)−1

𝑛−1𝑓 − 𝑓(�̃�1
𝐶)𝑛−3(�̃�2

𝐶)−1
𝑛−3 ̃𝑑Σ2𝐶

𝑛

= −(�̃�1
𝐶)𝑛−3 ̃𝑑𝐶

𝑛−2(�̃�2
𝐶)−1

𝑛 + (�̃�1
𝐶)𝑛−3 ̃𝑑𝐶

𝑛−2(�̃�2
𝐶)−1

𝑛 = 0
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If we multiply 𝑐 by 𝑓 we get,

𝑓𝑐 = 𝑓 ((�̃�2
𝐶)𝑛−4 ̃𝑡𝑛−2(�̃�1

𝐶)−1
𝑛−2 ̃𝑑Σ𝐶

𝑛 + ̃𝑑Σ2𝐶
𝑛−1 (�̃�2

𝐶)𝑛−3 ̃𝑡𝑛−1(�̃�1
𝐶)−1

𝑛−1) =

−(�̃�2
𝐶)𝑛−4 ̃𝑑𝐶

𝑛−2 ̃𝑑𝐶
𝑛−1 ̃𝑑𝐶

𝑛 (�̃�1
𝐶)−1

𝑛−1 + (�̃�2
𝐶)𝑛−4 ̃𝑑𝐶

𝑛−2 ̃𝑑𝐶
𝑛−1 ̃𝑑𝐶

𝑛 (�̃�1
𝐶)−1

𝑛−1 = 0.

But 𝑓 is a non-zerodivisor, thus 𝑐 is also zero. Thus 𝑑𝐶♯
𝑛−1 ∘ 𝑑𝐶♯

𝑛 = 0 and hence the

lifting of the cone is a complex.

Now to see that the complex is exact, let ̃𝑥 ∈ Ker 𝑑𝐶♯
𝑛 . Then 𝑥 = ̃𝑥+𝑓 Cone(𝑡) ∈

Ker 𝑑Cone(𝑡)
𝑛 . We know that Cone(𝑡) is exact, thus there exists 𝑦 ∈ Cone(𝑡)𝑛+1 such

that 𝑑Cone(𝑡)
𝑛 (𝑦) = 𝑥. Choose ̃𝑦 ∈ 𝐶♯

𝑛+1 such that 𝑦 = ̃𝑦 + 𝑓 Cone(𝑡)𝑛+1. Therefore

𝑑𝐶♯
𝑛+1( ̃𝑦) − ̃𝑥 ∈ 𝑓𝐶♯

𝑛. So there exists ̃𝑧 ∈ 𝐶♯
𝑛 such that 𝑑𝐶♯

𝑛+1( ̃𝑦) − ̃𝑥 = 𝑓 ̃𝑧. Applying

𝑑𝐶♯
𝑛 to both sides we get

𝑓𝑑𝐶♯
𝑛 ( ̃𝑧) = 𝑑𝐶♯

𝑛 (𝑓 ̃𝑧) = 𝑑𝐶♯
𝑛 (𝑑𝐶♯

𝑛+1( ̃𝑦) − ̃𝑥) = 0.

Since 𝑓 is a non-zerodivizor, we can conclude that 𝑑𝐶♯
𝑛 ( ̃𝑧) = 0, so ̃𝑧 ∈ Ker 𝑑𝐶♯

𝑛 . This

implies that

Ker 𝑑𝐶1
𝑛 ⊆ Im 𝑑𝐶♯

𝑛+1 + 𝑓 Ker 𝑑𝐶♯
𝑛 .

We already know that Im 𝑑𝐶♯
𝑛+1 ⊆ Ker 𝑑𝐶♯

𝑛 , thus by Nakayama’s lemma, Ker 𝑑𝐶♯
𝑛 =

Im 𝑑𝐶♯
𝑛+1.

The above lemma gives a lifting when 𝑅 = 𝑄/(𝑓). However, we would like to

be able to deal with the case where 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐). We can apply an induction

argument to get a complex over 𝑄 in this case. In particular, we can take 𝑅𝑘 =
𝑄/(𝑓𝑘, … , 𝑓𝑐) so that 𝑅𝑘 = 𝑅𝑘−1/(𝑓𝑘) and so 𝑅 = 𝑅1 = 𝑅2/(𝑓1). Now let 𝐶 ∈
Ktac(𝑅) and lift 𝐶 to 𝑅2 with ( ̃𝑑𝐶)2 = �̃�1𝑓1. We know that the complex Cone(𝑢1) ∈
Ktac(𝑅) lifts to a complex 𝐶♯ ∈ Ktac(𝑅2). Now we can lift this complex to get

( ̃𝑑𝐶♯)2 = �̃�2𝑓2 where 𝑢2 = 𝜎2
𝐶♯(𝑢2 ⊗𝑄 𝑅) and 𝑢2 ∶ 𝐶♯ → Σ2𝐶♯.
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But now we can consider Cone(𝑢2) ∈ Ktac(𝑅2) and lift it to 𝐶♯2 ∈ Ktac(𝑅3). We can

continue this process until we reach 𝐶♯𝑐 ∈ Ktac(𝑄) with maps given by

𝑑𝐶♯𝑐
𝑛 = ⎛⎜

⎝

̃𝑑Σ𝐶♯𝑐−1
𝑛 −𝑓𝑐(�̃�1

𝐶♯𝑐−1)𝑛−2(�̃�2
𝐶♯𝑐−1)−1

𝑛−2

(�̃�2
𝐶♯𝑐−1)𝑛−3(�̃�𝑐)𝑛(�̃�1

𝐶♯𝑐−1)−1
𝑛−1 ̃𝑑Σ2𝐶♯𝑐−1

𝑛

⎞⎟
⎠

.

The notation for this iterated lifted cone is somewhat unwieldy. The next lemma will

allow us to replace the iterated cone by 𝑇 𝐶.

Lemma 3.1.5. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) and let 𝐶 ∈ Ktac(𝑅). Also let 𝐶♯𝑐 be defined as

above. Then 𝐶♯𝑐 ≃ 𝑇 𝐶.

Proof. First consider the case where 𝑅 = 𝑄/(𝑓1) and consider the following 𝑄-

complex

⋯ 𝑑𝐶♯
2 // 𝐶♯

1
( ̃𝑑𝐶

1 (�̃�1
𝐶)−1

1 𝑓(�̃�2
𝐶)−1

0 )
// 𝐶0

𝑑𝐶
0 ∘𝜋

// Im 𝑑𝐶
0 // 0.

Where 𝑑𝐶♯
𝑛 is as defined above and 𝜋 is the natural surjection onto 𝐶0. This complex

agrees with 𝐶♯ to the left. The complex is clearly exact to the left of 𝐶♯
1. To show it

is exact at 𝐶♯
1, let (𝑥1, 𝑥2) ∈ Ker( ̃𝑑𝐶

1 (�̃�1
𝐶)−1

1 𝑓(�̃�2
𝐶)−1

0 ). Then

̃𝑑𝐶
1 (�̃�1

𝐶)−1
1 (𝑥1) + 𝑓(�̃�2

𝐶)−1
0 (𝑥2) = 0

which implies 𝑑𝐶
1 (𝜎1

𝐶)−1
1 (𝑥1) = 0. But 𝐶 is exact so (𝜎1

𝐶)−1
1 (𝑥1) ∈ Im 𝑑𝐶

2 and so there

exists 𝑦1 ∈ (Σ𝐶)2 such that

𝑑𝐶
2 (𝜎1

𝐶)−1
1 (𝑦1) − (𝜎1

𝐶)−1
1 (𝑥1) = 0.

Now lifting to 𝑄 there exists 𝑦2 ∈ (Σ2𝐶)2 such that

̃𝑑𝐶
2 (�̃�1

𝐶)−1
1 (𝑦1) − (�̃�1

𝐶)−1
1 (𝑥1) = 𝑓(�̃�2

𝐶)−1
0 (𝑦2).

Rearranging this and applying (�̃�2
𝐶)2 ̃𝑑𝐶

1 to both sides we get

𝑓(�̃�2
𝐶)2 ̃𝑡1(�̃�1

𝐶)−1
2 (𝑦1) + 𝑓(�̃�2

𝐶)2 ̃𝑑𝐶
1 (�̃�1

𝐶)−1
1 (𝑦2) = (�̃�2

𝐶)2 ̃𝑑𝐶
1 (�̃�1

𝐶)−1
1 (𝑥1).

29



But we know that ̃𝑑𝐶
1 (�̃�1

𝐶)−1
1 (𝑥1) = −𝑓(�̃�2

𝐶)−1
0 (𝑥2) so we have

(�̃�2
𝐶)0 ̃𝑡1(�̃�1

𝐶)−1
1 (𝑦1) + 𝑑𝐶

1 (�̃�1
𝐶)−1

1 (𝑦2) = 𝑥2.

Therefore (𝑥1, 𝑥2) ∈ Im 𝑑𝐶♯
2 .

To see that the complex is exact at 𝐶0, let ̃𝑥 ∈ Ker 𝑑𝐶
0 ∘ 𝜋. Then for 𝜋( ̃𝑥) =

̃𝑥 + 𝑓𝐶0, 𝑥 ∈ Ker 𝑑𝐶
0 . Since 𝐶 is an exact complex, there exists 𝑦 ∈ 𝐶1 such that

𝑑𝐶
1 (𝑦) = 𝑥. Now choose ̃𝑦 ∈ 𝐶1 such that 𝑦 = ̃𝑦 + 𝑓𝐶1. Then ̃𝑑𝐶

1 ( ̃𝑦) − ̃𝑥 ∈ 𝑓𝐶1. So

there exists 𝑎 ∈ 𝐶1 such that ̃𝑑𝐶
1 ( ̃𝑦) − ̃𝑥 = 𝑎𝑓 . Therefore

̃𝑑𝐶
1 (�̃�1

𝐶)−1
1 ((�̃�1

𝐶)1( ̃𝑦)) − 𝑓(�̃�2
𝐶)−1

0 ((�̃�2
𝐶)0(𝑎)) = ̃𝑥

which shows that ̃𝑥 ∈ Im ( ̃𝑑𝐶
1 (�̃�1

𝐶)−1
1 𝑓(�̃�2

𝐶)−1
0 ). Thus the complex is exact and hence

is a complete resolution of Im 𝑑𝐶
0 . So by definition, 𝐶♯ ≃ 𝑇 𝐶.

Notice if we let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) and consider the functors

𝑇𝑖 ∶ Ktac(𝑄/(𝑓𝑖, … , 𝑓𝑐)) → Ktac(𝑄/(𝑓𝑖+1, … , 𝑓𝑐))

then 𝑇 = 𝑇1 ∘ … ∘ 𝑇𝑐 since Im 𝑑𝐶
0 ≅ Im 𝑑𝑇𝑖𝐶

0 . Thus in general, 𝐶♯𝑐 ≃ 𝑇 𝐶.

The Long Exact Sequence

We now have the tools to prove the main result of this section.

Theorem 3.1.6. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) where 𝑄 is a local noetherian ring, 𝑓1, … , 𝑓𝑐 is

a 𝑄-regular sequence, and let 𝐶, 𝐷 ∈ Ktac(𝑅). Then ⨁
𝑖≥0

Hom𝑄(𝑇 𝐶, Σ𝑖𝑇 𝐷) is finitely

generated as an 𝑅-module if and only if ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷) is finitely generated as an

𝑅[𝜒1, ..., 𝜒𝑐]-module.

Proof. First consider the case where 𝑅 = 𝑄/(𝑓1) where 𝑓1 is a single nonzerodivisor.

Consider the exact triangle

𝐶 → Σ2𝐶 → Cone(𝑡1) → Σ𝐶.
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Since Ktac(𝑅) is a triangulated category, we can apply the contravariant Hom functor

to the exact triangle to get the long exact sequence

… → Hom𝑅(Σ𝑖𝐶, 𝐷) → Hom𝑅(Σ𝑖−1 Cone(𝑡1), 𝐷) →

Hom𝑅(Σ𝑖+1𝐶, 𝐷) → Hom𝑅(Σ𝑖−1𝐶, 𝐷) → …

for any 𝐷 ∈ Ktac(𝑅). By Lemma 3.1.3

Σ𝑖 Cone(𝑡1) ≅ 𝑆Σ𝑖𝐶♯ ∈ Ktac(𝑅).

Also, by Theorem 2.2.5

Hom𝑅(Σ𝑖𝑆𝐶♯, 𝐷) ≅ Hom𝑄(Σ𝑖𝐶♯, 𝑇 𝐷).

So we now have the long exact sequence

… → Hom𝑅(Σ𝑖𝐶, 𝐷) → Hom𝑄(Σ𝑖−1𝐶♯, 𝑇 𝐷) →

Hom𝑅(Σ𝑖+1𝐶, 𝐷) → Hom𝑅(Σ𝑖−1𝐶, 𝐷) → … .

So lastly we can apply Lemma 3.1.1 and find that ⨁
𝑖≥0

Hom𝑄(Σ−𝑖𝐶♯, 𝑇 𝐷) is finitely

generated as an 𝑅-module if and only if ⨁
𝑖≥0

Hom𝑅(Σ−𝑖𝐶, 𝐷) is finitely generated as

an 𝑅[𝜒]-module.

Now let the statement hold for 𝑅′ = 𝑄′/(𝑓1, … , 𝑓𝑘−1). Let 𝑅′ = 𝑄 and 𝑅 =
𝑄/(𝑓𝑘). We can now apply the same argument as above to the exact triangle

𝐶♯𝑘−1 → Σ2𝐶♯𝑘−1 → Cone(𝑢𝑘) → Σ𝐶♯𝑘−1

where 𝑢𝑘 is the Eisenbud operator of 𝐶♯𝑘−1 for 𝑘 > 1 and 𝑢1 = 𝑡1. This yields

that ⨁
𝑖≥0

Hom𝑄′(Σ−𝑖𝐶♯𝑘, 𝑇 𝐷) is finitely generated as an 𝑅-module if and only if

⨁
𝑖≥0

Hom𝑅(Σ−𝑖𝐶, 𝐷) is finitely generated as an 𝑅[𝜒1, … , 𝜒𝑘]-module. This is equiva-

lent to the statement ⨁
𝑖≥0

Hom𝑄′(𝐶♯𝑘, Σ𝑖𝑇 𝐷) is finitely generated as an 𝑅-module if

and only if ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷) is finitely generated as an 𝑅[𝜒1, … , 𝜒𝑘]-module. We

can now use Lemma 3.1.5 to replace 𝐶♯𝑘 by 𝑇 𝐶 and so the theorem holds.
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3.2 Avrunin-Scott for Ktac(𝑅)

We are now ready to show that the support variety and rank variety of a pair

of totally acyclic complexes are the same, translating the Avrunin-Scott theorem [6,

1.1] to the setting of Ktac(𝑅). The proof follows the same logic that Avramov and

Buchweitz [2, 2.5] use to prove a similar equivalence for the support variety of a pair

of modules over a complete intersection ring.

Theorem 3.2.1. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) where (𝑄, 𝑚, 𝕜) is a regular local ring and

𝑓1, … , 𝑓𝑐 is a regular sequence. Then 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = 𝑊(𝑄, 𝑓, 𝐶, 𝐷).

Proof. Since 0 ∈ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷), we can assume that 𝑎𝑖 ≠ 0 for some 𝑖. Since 𝑓
is a regular sequence, there exists a regular sequence 𝑓 ′ = 𝑓 ′

1, … , 𝑓 ′
𝑐 such that 𝑓

and 𝑓 ′ generate the same ideal and (𝑎1, … , 𝑎𝑛) = (0, … , 0, 1). This means that

𝑓𝑎 = 𝑓 ′
𝑐, so we only have to show that 𝕜(0, … , 0, 1) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) if and only if

Hom𝑄𝑎
(𝑇 𝐶, Σ𝑖𝑇 𝐷) ≠ 0 for infinitely many 𝑖. We will actually prove the contra-

positive of the statement. That is, Hom𝑄𝑎
(𝑇 𝐶, Σ𝑖𝑇 𝐷) = 0 for 𝑖 ≫ 0 if and only if

𝕜(0, … , 0, 1) ⊈ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷).
Let 𝑄′ = 𝑄/(𝑓 ′

𝑐) and recall the notation from definition 2.2.1, 𝑆 = 𝑅[𝜒1, … , 𝜒𝑐]
and 𝐸 = ⨁

𝑖≥0
Hom𝑅(𝐶, Σ𝑖𝐷)⊗𝑅𝕜. The sequence 𝑓 ′

1, … , 𝑓 ′
𝑐−1 is regular on 𝑄′ so we can

consider the cohomology ring of 𝑆′ = 𝑅[𝜒′
1, … , 𝜒′

𝑐−1] of 𝑄′ defined by this sequence.

By Proposition 2.1.6, the action of 𝜒′
𝑘 on 𝐸 agrees with the action of 𝜒𝑘 and thus by

mapping 𝜒′
𝑘 to 𝜒𝑘 we can consider 𝑆′ to be a sub ring of 𝑆.

By Theorem 3.1.6, we know that Hom𝑄′(𝑇 𝐶, Σ𝑖𝑇 𝐷) = 0 for 𝑖 ≫ 0 if and

only if the 𝑆′-module ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷) is finitely generated. But by Nakayama’s

Lemma, this happens if and only if 𝐸 is finitely generated over 𝑆′ ⊗𝑅 𝕜. This is

equivalent to 𝐸′ = 𝐸/𝐸(𝜒′
1, … , 𝜒′

𝑐−1) ≅ 𝐸/𝐸(𝜒1, … , 𝜒𝑐−1) being finitely generated

over (𝑆′ ⊗𝑅 𝕜)/(𝜒′
1, … , 𝜒′

𝑐−1) ≅ 𝕜.
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Now let ℛ = 𝑆 ⊗𝑅 𝕜 and ℛ′ = ℛ/(𝜒1, … , 𝜒𝑐−1). Then rank𝕜 𝐸′ is finite if and

only if Suppℛ(𝐸′) = {(𝜒1, … , 𝜒𝑐)}. Also since E is finitely generated over ℛ and

𝐸′ = 𝐸 ⊗𝑅 ℛ, we have

Suppℛ(𝐸′) = Suppℛ(𝐸 ⊗𝑅 ℛ′) = Suppℛ(𝐸) ⋂ Suppℛ(ℛ′).

This is true if and only if

√
Ann 𝐸 ⋂

√
Ann ℛ′ = (𝜒1, … , 𝜒𝑐).

Since 𝑍(Annℛ 𝐸) = 𝑉 (𝑄, 𝑓, 𝐶, 𝐷), 𝑍(Annℛ ℛ′) = 𝕜(0, … , 0, 1), and 𝑍(Annℛ(𝐸′)) =
0, the Nullstellensatz implies the previous line is true if and only if

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ⋂ 𝕜(0, … , 0, 1) = {0} ∈ 𝕜𝑐.

So looking at the above list of if and only if statements, we now have

Hom𝑄′(𝑇 𝐶, Σ𝑖𝑇 𝐷) = 0 for 𝑖 ≫ 0 if and only if 𝕜(0, … , 0, 1) ⊈ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷).

3.3 Properties of Support/Rank Varieties

We will now prove a few basic results about support/rank varieties in Ktac(𝑅).
The same properties hold for support varieties of modules over a complete intersection

ring and the proofs are similar [2, 5.6] cf. [9, 2.2].

The first theorem provides a nice analogue to Dade’s Lemma [14] for Ktac(𝑅).
Theorem 3.3.1. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) where (𝑄, 𝑚, 𝕜) is a regular local ring and

𝑓1, … , 𝑓𝑐 is a 𝑄-regular sequence. Also let 𝐶, 𝐷 ∈ Ktac(𝑅). Then Hom𝑅(𝐶, Σ𝑖𝐷) = 0
for 𝑖 ≫ 0 if and only if 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = {0}

Proof. Consider the long exact sequence of Hom from the proof of Theorem 3.1.6. If

Hom𝑅(𝐶, Σ𝑛𝐷) = 0 for 𝑛 ≫ 0 then Hom𝑄𝑎
(𝑇 𝐶, Σ𝑛𝑇 𝐷) must also vanish for large

𝑛. Thus for any ̄𝑎 ∈ 𝕜𝑐 such that ̄𝑎 ≠ 0, ̄𝑎 ∉ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷).
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Now conversely assume 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = {0} and let 𝐸 = ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷)⊗𝑅

𝕜. Then
√

Ann 𝐸 = 𝑚 and so 𝑚𝑟 ⊆ Ann 𝐸 for some 𝑟 > 0. Therefore 𝑚𝑟𝐸 = 0 and

so for 𝑛 ≫ 0 we get 𝐸𝑛 ⊆ 𝑚𝑟𝐸≤𝑛−𝑟 = 0. Hence for 𝑛 ≫ 0, 𝐸𝑛 = Hom𝑅(𝐶, Σ𝑛𝐷) =
0.

Theorem 3.3.2. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) where (𝑄, 𝑚, 𝕜) is a regular local ring and

𝑓1, … , 𝑓𝑐 is a 𝑄-regular sequence. Also let 𝐶, 𝐷 ∈ Ktac(𝑅). Then the following hold.

1. If 𝐷 is a complete resolution of the residue field 𝕜, then

𝑉 (𝑄, 𝑓, 𝐷, 𝐷) = 𝕜𝑐.

2. 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷)
3. If 𝐷 is a complete resolution of the field 𝕜, then

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = 𝑉 (𝑄, 𝑓, 𝐶, 𝐶).

4. If 𝐶 =
𝑟

⨁
𝑝=1

𝐶𝑝 and 𝐷 =
𝑠

⨁
𝑞=1

𝐷𝑞, then 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = ∪𝑝,𝑞𝑉 (𝑄, 𝑓, 𝐶𝑝, 𝐷𝑞).
5. If 𝐶 → 𝐶′ → Cone(𝛼) → Σ𝐶 and 𝐷 → 𝐷′ → Cone(𝛽) → Σ𝐷 are exact

triangles in Ktac(𝑅), then we have the following inclusions.

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶′, 𝐷) ∪ 𝑉 (𝑄, 𝑓, Cone(𝛼), 𝐷)

𝑉 (𝑄, 𝑓, 𝐶′, 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ∪ 𝑉 (𝑄, 𝑓, Cone(𝛼), 𝐷)

𝑉 (𝑄, 𝑓, Cone(𝛼), 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ∪ 𝑉 (𝑄, 𝑓, 𝐶′, 𝐷)

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷′) ∪ 𝑉 (𝑄, 𝑓, 𝐶, Cone(𝛽))

𝑉 (𝑄, 𝑓, 𝐶, 𝐷′) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ∪ 𝑉 (𝑄, 𝑓, 𝐶, Cone(𝛽))

𝑉 (𝑄, 𝑓, 𝐶, Cone(𝛽)) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ∪ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷′)

Proof.
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1. By [15, 2], proj dim𝑄𝑎
𝕜 = ∞ thus Hom𝑄𝑎

(𝑇 𝐶, Σ𝑛𝑇 𝐶) ≠ 0 for infinitely many

𝑛. Thus 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝕜𝑐.
2. First let ̄𝑎 ∈ 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷) but ̄𝑎 ∉ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷). Then by

Theorem 3.2.1, we have Hom𝑄𝑎
(𝑇 𝐶, Σ𝑛𝑇 𝐶) ≠ 0 and Hom𝑄𝑎

(𝑇 𝐷, Σ𝑛𝑇 𝐷) ≠ 0
for infinitely many 𝑛 while Hom𝑄𝑎

(𝑇 𝐶, Σ𝑛𝑇 𝐷) = 0 for 𝑛 ≫ 0. Thus 𝑇 𝐶 ≃
0 ≃ 𝑇 𝐷 but Hom𝑄𝑎

(𝑇 𝐶, Σ𝑛𝑇 𝐷) = 0 for 𝑛 ≫ 0, a contradiction. Therefore

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷).

Now let 𝑝(𝜒) ∈ Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶). Then we have 𝑝(Hom𝑅(𝑡, 𝐷))(𝛼) ∼ 0
for all 𝛼 ∈ ⨁

𝑖≥0
Hom𝑅(𝐶, Σ𝑖𝐶). Hence 𝑝(𝑡) ∼ 0, and thus 𝑝(Hom𝑅(𝑡, 𝐷))(𝛽) ∼ 0

for all 𝛽 ∈ ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷). Therefore 𝑝(𝜒) ∈ Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷). Sim-

ilarly if 𝑝(𝜒) ∈ Ann ⨁
𝑖≥0

Hom𝑅(𝐷, Σ𝑖𝐷) then 𝑝(𝜒) ∈ Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷).
Thus

Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶) ⋂ Ann ⨁
𝑖≥0

Hom𝑅(𝐷, Σ𝑖𝐷)

⊆ Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷)

which implies that

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷).

3.

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷) =

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝕜𝑐 = 𝑉 (𝑄, 𝑓, 𝐶, 𝐶)

4. If 𝐶 =
𝑟

⨁
𝑝=1

𝐶𝑝 and 𝐷 =
𝑠

⨁
𝑞=1

𝐷𝑞, then we have an isomorphism of graded

𝑅[𝜒1, … , 𝜒𝑐] modules

⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐷) ≅ ⨁
𝑝,𝑞

⨁
𝑖≥0

Hom𝑅(𝐶𝑝, Σ𝑖𝐷𝑞)

and thus 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = ∪𝑝,𝑞𝑉 (𝑄, 𝑓, 𝐶𝑝, 𝐷𝑞).
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5. Applying Hom𝑄𝑎
( , 𝐷) to the exact triangle

𝑇 𝐶 → 𝑇 𝐶′ → 𝑇 Cone(𝛼) → Σ𝑇 𝐶

we get the following long exact sequence.

⋯ → Hom𝑄𝑎
(Σ𝑇 𝐶, 𝑇 𝐷) → Hom𝑄𝑎

(𝑇 Cone(𝛼), 𝑇 𝐷)

→ Hom𝑄𝑎
(𝑇 𝐶′, 𝑇 𝐷) → Hom𝑄𝑎

(𝑇 𝐶, 𝑇 𝐷) → ⋯

If ̄𝑎 ∈ 𝕜 is not in 𝑉 (𝑄, 𝑓, 𝐶′, 𝐷) ∪ 𝑉 (𝑄, 𝑓, Cone(𝛼), 𝐷), then by Theorem

3.2.1,we have both Hom𝑄𝑎
(𝑇 𝐶′, Σ𝑛𝑇 𝐷) = 0 and Hom𝑄𝑎

(𝑇 Cone(𝛼), Σ𝑛𝑇 𝐷) =
0 for 𝑛 ≫ 0. Thus by the long exact sequence, Hom𝑄𝑎

(𝑇 𝐶, Σ𝑛𝑇 𝐷) = 0 for

𝑛 ≫ 0 and so ̄𝑎 ∉ 𝑉 (𝑄, 𝑓, 𝐶, 𝐷). Hence we have

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) ⊆ 𝑉 (𝑄, 𝑓, 𝐶′, 𝐷) ∪ 𝑉 (𝑄, 𝑓, Cone(𝛼), 𝐷).

The other inclusions can be proved similarly.

3.4 Rank Varieties of Higher Dimensions

In [10], Bergh and Jorgensen generalize the definition of the rank variety for a

pair of 𝑅-modules over an intermediate complete intersection of codimension 𝑑. In

this section we will restate their results in Ktac(𝑅).
Let 𝐼 = (𝑓1, … , 𝑓𝑐) and let 𝑊 be a subspace of the vector space 𝑉 = 𝐼/𝑚𝐼 .

Consider the intermediate complete intersection 𝑄/𝐽 where the ideal 𝐽 ⊆ 𝐼 is gen-

erated by a regular sequence obtained by taking preimages of a basis of 𝑊 [11]. The

𝑘-vector space 𝐽/𝑚𝐽 is isomorphic to 𝑊 by the map 𝜙𝐽 ∶ 𝐽/𝑚𝐽 → 𝑊 defined by

𝑓 +𝑚𝐽 → 𝑓 +𝑚𝐼 [10]. Given two complete intersections 𝑅′ = 𝑄/𝐽 ′ and 𝑅″ = 𝑄/𝐽″,

we call 𝑅′ and 𝑅″ equivalent if 𝜙𝑗(𝐽/𝑚𝐽) = 𝜙𝐽′(𝐽 ′/𝑚𝐽 ′).
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Theorem 3.4.1. Let 𝑊 be a subspace of 𝑉 and consider the complete intersection

𝑅′ = 𝑄/𝐽 where 𝐽 is defined as above. Then for all 𝐶, 𝐷 ∈ 𝐾𝑡𝑎𝑐(𝑅),

𝜙𝐽(𝑊𝑅′(𝑄, 𝑓𝑇 𝐶, 𝑇 𝐷)) = 𝑉 ∗
𝑅(𝑄, 𝑓, 𝐶, 𝐷) ∩ 𝑊

Theorem 3.4.2. Let 𝑅′ = 𝑄/𝐽 ′ and 𝑅″ = 𝑄/𝐽″ be two equivalent intermediate

complete intersections. Then for all 𝐶, 𝐷 ∈ Ktac(𝑅) we get

𝜙𝐽(𝑉 ∗
𝑅′(𝑄, 𝑓, 𝑇 𝐶, 𝑇 𝐷)) = 𝜙𝐽′(𝑉 ∗

𝑅″(𝑄, 𝑓, 𝑇 𝐶, 𝑇 𝐷))

Definition 3.4.3. Let 𝐶, 𝐷 ∈ Ktac(𝑅) and let 𝑊 and 𝐽 be defined as above. Then we

define the rank variety of dimension 𝑑 to be

𝑊𝑑(𝑄, 𝑓, 𝐶, 𝐷) = {𝑝𝑤 ∈ 𝐺𝑑(𝑉 )| Hom𝑄/𝐽(Σ𝑛𝑇 𝐶, 𝑇 𝐷)) ≠ 0

for infinitely many 𝑛 > 0} ∪ {0}

where 𝐺𝑑(𝑉 ) is the Grassman variety of 𝑑-dimensional subspaces of 𝑉 .

Note that if we consider 𝑉 ∗ to be a projective variety then 𝑊(𝑄, 𝑓, 𝐶, 𝐷) =
𝑊1(𝑄, 𝑓, 𝐶, 𝐷).
Theorem 3.4.4. Let 𝑄/𝐽 and 𝑄/𝐽 ′ be equivalent intermediate complete intersections.

Then for all 𝐶, 𝐷 ∈ Ktac(𝑅) we have Hom𝑄/𝐽(𝑇 𝐶, 𝑇 𝐷) = 0 for all 𝑖 ≫ 0 if and

only if Hom𝑄/𝐽′(𝑇 𝐶, 𝑇 𝐷) = 0 for all 𝑖 ≫ 0.

Theorem 3.4.5. For all complexes 𝐶, 𝐷 ∈ Ktac(𝑅) we have that 𝑊𝑑(𝑄, 𝑓, 𝐶, 𝐷) is a

closed set in 𝐺𝑑(𝑉 ).
The proofs of these results are identical to those that Jorgensen and Bergh give

for rank varieties of pairs of modules.
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3.5 Examples

We will now compute some simple examples of support varieties in Ktac(𝑅).
In the first example we let the field be the complex numbers and choose a simple

periodic complex 𝐶. The resulting support variety 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) is a line in ℂ2.

Example 3.5.1. Let 𝑅 = ℂ[[𝑥, 𝑦]]/(𝑥2, 𝑦2) and 𝐶 be the complex

𝐶 ∶ ⋯ 𝑑𝐶
𝑛+1 // 𝑅2 𝑑𝐶

𝑛 // 𝑅2 𝑑𝐶
𝑛−1 // 𝑅2 𝑑𝐶

𝑛−2 // ⋯

where 𝑑𝐶
𝑛 = ⎛⎜⎜

⎝

𝑥 𝑦
√

2
𝑦
√

2 −𝑥
⎞⎟⎟
⎠

for all 𝑛.

Then

̃𝑑2 = ⎛⎜⎜
⎝

𝑥2 + 2𝑦2 0
0 𝑥2 + 2𝑦2

⎞⎟⎟
⎠

= 𝑥2𝑡1 + 𝑦2𝑡2,

and so we have

𝑡1 = ⎛⎜⎜
⎝

1 0
0 1

⎞⎟⎟
⎠

and 𝑡2 = ⎛⎜⎜
⎝

2 0
0 2

⎞⎟⎟
⎠

.

Thus

Ann(Hom𝑅(𝐶, Σ𝑖𝐶) ⊗𝑅 ℂ) = (𝜒1 − 2𝜒2)

and therefore

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝜒1 − 2𝜒2) = {(𝑎, 2𝑎)|𝑎 ∈ ℂ}.

The next example illustrates property 2 from Theorem 3.3.2, i.e. that

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷).

Example 3.5.2. Let 𝑅 = 𝕜[[𝑥, 𝑦, 𝑧]]/(𝑥2, 𝑦2, 𝑧2) and let 𝐶 be the complex

𝐶 ∶ ⋯ 𝑑𝐶
𝑛+1 // 𝑅2 𝑑𝐶

𝑛 // 𝑅2 𝑑𝐶
𝑛−1 // 𝑅2 𝑑𝐶

𝑛−2 // ⋯

38



where 𝑑𝐶
𝑛 = ⎛⎜⎜

⎝

𝑥 0
0 𝑦

⎞⎟⎟
⎠

for all 𝑛.

Then

( ̃𝑑𝐶)2 = ⎛⎜⎜
⎝

𝑥2 0
0 𝑦2

⎞⎟⎟
⎠

= 𝑥2𝑡1 + 𝑦2𝑡2 + 𝑧2𝑡3,

and so we have

𝑡1 = ⎛⎜⎜
⎝

1 0
0 0

⎞⎟⎟
⎠

, 𝑡2 = ⎛⎜⎜
⎝

0 0
0 1

⎞⎟⎟
⎠

, and 𝑡3 = ⎛⎜⎜
⎝

0 0
0 0

⎞⎟⎟
⎠

.

Therefore

Ann(⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶) ⊗𝑅 𝕜) = (𝜒1𝜒2, 𝜒3),

thus the support variety of 𝐶 is

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝜒1𝜒2, 𝜒3)

i.e. the union of the 𝑥 and 𝑦 axes.

Remark 3.5.3. Notice that 𝐶 = 𝐶1 ⨁ 𝐶2 where

𝐶1 ∶ ⋯ 𝑥 // 𝑅 𝑥 // 𝑅 𝑥 // ⋯

and

𝐶2 ∶ ⋯ 𝑦 // 𝑅 𝑦 // 𝑅 𝑦 // ⋯

and so by property 4 of Theorem 3.3.2, we could simply compute the support varieties

of 𝐶1 and 𝐶2 separately and take their union. The support variety of 𝐶1 is the 𝑥 axis

and the support variety of 𝐶2 is the 𝑦 axis.

Now let 𝐷 be the complex

𝐷 ∶ ⋯ 𝑑𝐷
𝑛+1 // 𝑅2 𝑑𝐷

𝑛 // 𝑅2 𝑑𝐷
𝑛−1 // 𝑅2 𝑑𝐷

𝑛−2 // ⋯
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where 𝑑𝐷
𝑛 = ⎛⎜⎜

⎝

𝑥 0
0 𝑧

⎞⎟⎟
⎠

for all 𝑛.

Then

( ̃𝑑𝐷)2 = ⎛⎜⎜
⎝

𝑥2 0
0 𝑧2

⎞⎟⎟
⎠

= 𝑥2𝑠1 + 𝑦2𝑠2 + 𝑧2𝑠3,

and so

𝑠1 = ⎛⎜⎜
⎝

1 0
0 0

⎞⎟⎟
⎠

, 𝑠2 = ⎛⎜⎜
⎝

0 0
0 0

⎞⎟⎟
⎠

, and 𝑠3 = ⎛⎜⎜
⎝

0 0
0 1

⎞⎟⎟
⎠

.

Therefore the support variety of 𝐷 is

𝑉 (𝑄, 𝑓, 𝐷, 𝐷) = 𝑍(𝜒1𝜒3, 𝜒2)

i.e. the union of the 𝑥 and 𝑧 axes.

When computing 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) we can use the maps 𝑡𝑘 and Hom𝑅(𝑡𝑘, 𝐶) in-

terchangeably. Similarly we can use 𝑠𝑘 and Hom𝑅(𝑠𝑘, 𝐷) interchangeably to com-

pute 𝑉 (𝑄, 𝑓, 𝐷, 𝐷). However, to compute 𝑉 (𝑄, 𝑓, 𝐶, 𝐷) we need to determine either

Hom𝑅(𝑡𝑘, 𝐷) or Hom𝑅(𝐶, 𝑠𝑘) for all 1 ≤ 𝑘 ≤ 𝑐. For any map ℎ ∈ Hom𝑅(𝐶, Σ𝑖𝐷),

ℎ ∘ ⎛⎜⎜
⎝

𝑥 0
0 𝑦

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑥 0
0 𝑧

⎞⎟⎟
⎠

∘ ℎ.

This implies that ℎ is of the form ℎ𝑛 = ⎛⎜⎜
⎝

𝑎𝑛 0
0 0

⎞⎟⎟
⎠

. By definition, Hom𝑅(𝑡𝑘, 𝐶)(ℎ) =

ℎ ∘ 𝑡𝑘 so now have Hom𝑅(𝑡1, 𝐷) = ⎛⎜⎜
⎝

1 0
0 0

⎞⎟⎟
⎠

and Hom𝑅(𝑡2, 𝐷) = Hom𝑅(𝑡3, 𝐷) =

⎛⎜⎜
⎝

0 0
0 0

⎞⎟⎟
⎠

. Therefore

Ann(Hom𝑅(𝐶, Σ𝑖𝐷) ⊗𝑅 𝕜) = (𝜒2, 𝜒3)
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so we get that

𝑉 (𝑄, 𝑓, 𝐶, 𝐷) = 𝑍(𝜒2, 𝜒3) = 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑉 (𝑄, 𝑓, 𝐷, 𝐷)

i.e. the support variety of 𝐶 and 𝐷 is the 𝑥 axis.
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Chapter 4

Realizability

Our goal in this chapter is to prove that any homogeneous affine variety is

realizable as the support of some complex in the category of totally acyclic chain

complexes, Ktac(𝑅), over a complete intersection ring, 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐). Petter

Bergh [8] showed that it is possible to construct a module over a complete intersection

ring with any desired support variety. Avramov and Iyengar [4] proved a similar

realizability result in the derived category.

By a theorem of Buchweitz [12], the triangulated category Ktac(𝑅) over any

Gorenstein ring is equivalent to the singularity category, i.e. the derived category

modulo the perfect complexes. The support variety of any perfect complex is {0}
[7, 11.6]. Thus support varieties are well defined in the singularity category and so

we could define the support variety of a pair of objects in Ktac(𝑅) via the Buchweitz

equivalence. We could then use the same argument Avramov and Iyengar use to prove

realizability in Ktac(𝑅). However, we would prefer a more direct proof of realizability

in this setting.

Starting with a complete resolution of the residue field, we construct a sequence

of totally acyclic complexes. Each complex is a mapping cone of a polynomial of the

Eisenbud operators from the previous complex. The support variety of the final

mapping cone is the zero set of this sequence of polynomials. Thus we can explicitly

create a totally acyclic complex with a desired support.

During the proof of realizability of support, we encounter an interesting ques-

tion. Consider a complex 𝐶 with Eisenbud operators 𝑡𝑘 and let 𝑝 be a polynomial
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such that 𝑝(𝑡𝑘) ∼ 0. Now consider the mapping cone Cone(𝑝) and its Eisenbud oper-

ators 𝑠𝑘. In order to show that the mapping cone has the desired support, we would

like to show that 𝑝(𝑠𝑘) ∼ 0. However, we are only able to show that 𝑝2(𝑠𝑘) ∼ 0. This

is sufficient since the algebraic variety of an ideal is equal to the variety of the radical

of that ideal. However, we are also interested in investigating the scheme structure

of the support.

Interestingly for all of the simple examples of mapping cones we have computed,

if 𝑝(𝑡𝑘) ∼ 0, then 𝑝(𝑠𝑘) ∼ 0. We present a method for constructing totally acyclic

complexes with nilpotent Eisenbud operators by tensoring a known totally acyclic

complex with a perfect complex. However, we do not know of an example of such a

complex which is also a mapping cone of a polynomial of Eisenbud operators.

4.1 Constructing a Sequence of Mapping Cones

The main goal of this section is to prove that for any cone 𝒱 in 𝕜𝑐, there ex-

ists some complex 𝐶 ∈ Ktac(𝑅) such that 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝒱. Any variety 𝒱 ∈ 𝕜𝐶

is the zero set 𝑍(𝑝1, … , 𝑝𝑚) for some list of polynomials 𝑝1, … , 𝑝𝑚. Thus our goal

is to construct a complex 𝐶 with cohomology operators {𝑡𝑗|1 ≤ 𝑗 ≤ 𝑐} such that

𝑝𝑘(𝑡) ∼ 0 for all 1 ≤ 𝑘 ≤ 𝑚 and so that for any polynomial 𝑞 ∉ (𝑝1, … , 𝑝𝑚), 𝑞 ≁ 0.

Starting with a complete resolution of the residue field 𝕜, we will construct 𝐶 induc-

tively by taking a sequence of mapping cones of the 𝑝′
𝑘𝑠. In particular, we will show

that if 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝑝1, … , 𝑝𝑚), then 𝑉 (𝑄, 𝑓, Cone(𝑝𝑚+1), Cone(𝑝𝑚+1)) =
𝑍(𝑝1, … , 𝑝𝑚, 𝑝𝑚+1). To prove this, we need to show three facts:

1. For any 𝑝 ∈ 𝑅[𝜒1, … , 𝜒𝑐], 𝑝 ∈ Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)).
2. For any 𝑝, 𝑞 ∈ 𝑅[𝜒1, … , 𝜒𝑐], if 𝑞 ∈ Ann ⨁

𝑖≥0
Hom𝑅(𝐶, Σ𝑖𝐶)

then 𝑞2 ∈ Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)).
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3. For any 𝑝(𝜒) ∈ 𝑅[𝜒1, … , 𝜒𝑐],

√Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) ⊆ √Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶).

These three properties can be roughly summarized as (1) the new polynomial is zero,

(2) the old polynomials are still zero, and (3) no extra polynomials are zero.

Property 1: The New Polynomial

To prove (1), we will let 𝑝 be any polynomial of cohomology operators of a

complex 𝐶. We will then show that the same polynomial applied to the cohomology

operators of Cone(𝑃) will always be homotopic to zero.

Lemma 4.1.1. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) be a complete intersection ring and let 𝐶 ∈
Ktac(𝑅). If 𝑝 is any homogeneous polynomial of cohomology operators, then 𝑝 ∈
Ann ⨁

𝑖≥0
Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝))

Proof. Lift the complex 𝐶 to 𝑄 so that ̃𝑑2 =
𝑐

∑
𝑗=1

𝑓𝑗 ̃𝑡𝑗. Let 𝑝(𝑡) = ∑
𝛼

𝑞𝛼𝑡𝛼 where

𝑞𝛼 ∈ 𝑅 and 𝑡𝛼 = 𝑡𝛼1
1 ⋯ 𝑡𝛼𝑐𝑐 is a monomial in the 𝑡′

𝑗𝑠. Now consider the complex

Cone(𝑝) with differentials

𝑑𝐶𝑜𝑛𝑒(𝑡) = ⎛⎜⎜⎜
⎝

𝑑Σ𝐶 0
∑
𝛼

𝑞𝛼𝑡𝛼(𝜎1
𝐶)−1 𝑑Σ2𝑟𝐶

⎞⎟⎟⎟
⎠

where 𝑟 = deg 𝑝. We can now lift the differential to get

̃𝑑𝐶𝑜𝑛𝑒(𝑡) = ⎛⎜⎜⎜
⎝

̃𝑑Σ𝐶 0
∑
𝛼

𝑞𝛼�̃�𝛼
𝐶𝑤𝛼(�̃�1

𝐶)−1 ̃𝑑Σ2𝑟𝐶
⎞⎟⎟⎟
⎠

For simplicity of notation, we will let 𝑤𝛼 be the appropriate composition of ̃𝑡’s and

𝜎’s such that 𝑤𝛼 ⊗𝑄 𝑅 = 𝑡𝛼, i.e.

𝑤𝛼 = �̃�2
Σ2𝛼−2 ̃𝑡1�̃�2

Σ2𝛼−4 ̃𝑡1 ⋯ �̃�2
𝐶 ̃𝑡𝑐.
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Squaring the differential of the cone yields

( ̃𝑑𝐶𝑜𝑛𝑒(𝑡))2 = ⎛⎜⎜⎜
⎝

( ̃𝑑Σ2𝐶)2 0
∑
𝛼

𝑞𝛼𝐴𝛼 ( ̃𝑑Σ2𝑑)2
⎞⎟⎟⎟
⎠

=
𝑐

∑
𝑗=1

𝑓𝑗𝑠𝑗

where

(4.1.1.1) 𝐴𝛼 = ̃𝑑Σ2𝑟𝐶𝑤𝛼(�̃�1
𝐶)−1 + 𝑤𝛼(�̃�1

𝐶)−1 ̃𝑑Σ𝐶.

Remark 4.1.2. Recalling the sign convention from 𝑑Σ𝑖𝐶 = (−1)𝑖(𝜎𝑖
𝐶)𝑑𝐶(𝜎𝑖

𝐶)−1, one

can see that 𝐴𝛼 measures the non-commutativity of ̃𝑑 and 𝑤𝛼

We can write the ̃𝑠𝑗’s as

𝑠𝑗 = ⎛⎜⎜⎜
⎝

�̃�2
𝐶𝑡𝑗 0

∑
𝛼

𝑞𝛼𝑎𝑗,𝛼 �̃�2
𝐶𝑡𝑗

⎞⎟⎟⎟
⎠

(�̃�1
𝐶)−1.

where the 𝑎𝑗,𝛼’s are determined by decomposing the 𝐴𝛼’s, i.e.

𝐴𝛼 =
𝑐

∑
𝑗=1

𝑓𝑗𝑎𝑗,𝛼

To show that 𝑝 ∈ Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)), we need to show that 𝑝(𝑠) =
𝑝( ̃𝑠) ⊗𝑄 𝑅 is homotopic to zero. In general, 𝑝( ̃𝑠) is of the form

𝑝( ̃𝑠) = ∑
𝛼

̃𝑠𝛼 = ∑
𝛼

⎛⎜⎜
⎝

𝑤𝛼 0
𝑏𝛼 𝑤𝛼

⎞⎟⎟
⎠

(�̃�1
𝐶)−1

where 𝑏𝛼 can be written in terms of the 𝑎𝑗,𝛼’s. In particular,

(4.1.2.1) 𝑏𝛼 = ∑
𝛽+𝛾=𝛼−1

𝑤𝛽𝑞𝛼𝑎𝑗,𝛼𝑤𝛾

where

𝑤𝛽 = �̃�2
Σ2𝛼−2 ̃𝑡1�̃�2

Σ2𝛼−4 ̃𝑡1 ⋯ ̃𝑡𝑗−1 and 𝑤𝛾 = �̃�2
Σ2𝛾−2 ̃𝑡𝑗+1 ⋯ �̃�2

𝐶 ̃𝑡𝑐.
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We need to show that 𝑏𝛼 is homotopic to zero for any 𝛼. Thus we need to

understand the 𝑎𝑗,𝛼’s by decomposing 𝐴𝛼. We can rewrite 𝐴𝛼 from equation 4.1.1.1

by adding zero repeatedly to see that

(4.1.2.2) 𝐴𝛼 = ̃𝑑Σ2𝑟𝐶𝑤𝛼(�̃�1
𝐶)−1 + 𝑤𝛼(�̃�1

𝐶)−1 ̃𝑑Σ𝐶

= ∑
𝑗,𝑒

𝑤𝛽 ̃𝑡𝑒
𝑗 (�̃�2𝑟

𝐶 )−1 ( ̃𝑑Σ2𝑟𝐶 �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 ̃𝑑Σ𝐶) �̃�𝛾+𝛼𝑗−𝑘
𝐶 ̃𝑡𝛼𝑗−𝑒

𝑗 𝑤𝛾.

This allows us to focus on the term

( ̃𝑑Σ2𝑟𝐶 �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 ̃𝑑Σ𝐶)

which is in terms of only ̃𝑡𝑗 to the first power rather than 𝑤𝛼 which is a product of

𝑡𝑗’s to various powers. Since

( ̃𝑑Σ2𝑟𝐶)3 �̃�2𝑟
𝐶 (�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 (�̃�1

𝐶)−1 ( ̃𝑑Σ𝐶)3 = 0,

we get that

̃𝑑Σ2𝑟𝐶 (
𝑐

∑
𝑗=1

𝑓𝑗�̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1) + (
𝑐

∑
𝑗=1

𝑓𝑗�̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1) ̃𝑑Σ𝐶 = 0.

We can rewrite this as

(4.1.2.3) 𝑓𝑘( ̃𝑑Σ2𝑟𝐶 �̃�2𝑟
𝐶 ̃𝑡𝑘 (�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 ̃𝑡𝑘 (�̃�1

𝐶)−1 ̃𝑑Σ𝐶) =
𝑐

∑
𝑗≠𝑘

𝑓𝑗( ̃𝑑Σ2𝑟𝐶 �̃�2𝑟
𝐶 ̃𝑡𝑗(�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 ̃𝑑Σ𝐶)

for any 1 ≤ 𝑘 ≤ 𝑐. Hence

̃𝑑Σ2𝑟𝐶 �̃�2𝑟
𝐶 ̃𝑡𝑘 (�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 ̃𝑡𝑘 (�̃�1

𝐶)−1 ̃𝑑Σ𝐶 ∈ (𝑓1, … , ̂𝑓𝑘, … , 𝑓𝑐) Hom(𝐶, Σ𝑖𝐶)

for each 𝑘. Thus we can write it as

(4.1.2.4) ̃𝑑Σ2𝑟𝐶 �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 + �̃�2𝑟
𝐶 ̃𝑡𝑗 (�̃�1

𝐶)−1 ̃𝑑Σ𝐶 = ∑
𝑗≠𝑘

𝑓𝑗 ̃𝜏𝑗𝑘
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We can now substitute the ̃𝜏 ’s from 4.1.2.4 into 4.1.2.3 to get
𝑐

∑
𝑘=1

𝑓𝑘 ∑
𝑗≠𝑘

𝑓𝑗 ̃𝜏𝑗𝑘
= 0

which can be rearranged into
𝑐

∑
𝑗≠𝑘

𝑓𝑗𝑓𝑘( ̃𝜏𝑗𝑘
+ ̃𝜏𝑗𝑘

) = 0

But this means that ( ̃𝜏𝑗𝑘
+ ̃𝜏𝑘𝑗

) ∈ (𝑓1, … , 𝑓𝑐) Hom𝑅(𝐶, Σ𝑖𝐶). Hence ( ̃𝜏𝑗𝑘
+ ̃𝜏𝑘𝑗

) ⊗𝑄

𝑅 ∼ 0.

Now let us return to considering 𝑎𝑗,𝛼, the bottom left corner of 𝑠𝑗. Substituting

in the definition of the ̃𝜏𝑘’s from 4.1.2.4 into equation 4.1.2.2 we get

(4.1.2.5)
𝑐

∑
𝑗=1

𝑓𝑗𝑎𝑗,𝛼 = 𝐴𝛼 = ̃𝑑Σ2𝑟𝐶𝑤𝛼(�̃�1
𝐶)−1 + 𝑤𝛼(�̃�1

𝐶)−1 ̃𝑑Σ𝐶 =

∑
𝑗,𝑒

𝑤𝛽 ̃𝑡𝑒
𝑗 (�̃�2𝑟

𝐶 )−1 ⎛⎜
⎝

∑
𝑘≠𝑗

𝑓𝑘 ̃𝜏𝑘𝑗
⎞⎟
⎠

�̃�𝛾+𝛼𝑗−𝑘
𝐶 ̃𝑡𝛼𝑗−𝑒

𝑗 𝑤𝛾

Thus we can see that

(4.1.2.6) 𝑎𝑗,𝛼 = ∑
𝑒

∑
𝑘≠𝑗

𝑤𝛼 ̃𝑡𝑒
𝑗 (�̃�2𝑟

𝐶 )−1 ( ̃𝜏𝑘𝑗
) �̃�𝛾+𝛼𝑗−𝑘

𝐶 ̃𝑡𝑛−𝑒
𝑗 𝑤𝛽

Substituting 𝑎𝑗,𝛼 from 4.1.2.6 into equation 4.1.2.1 and rearranging the terms we see

that

(4.1.2.7) 𝑏𝛼 = ∑
𝑗,𝑘

𝑤2𝛽 ̃𝑡𝑛𝑗
𝑗 𝑞𝛼 ( ̃𝜏𝑗𝑘

+ ̃𝜏𝑘𝑗
) ̃𝑡𝑛𝑗

𝑗 𝑤2𝛾

Recall from above that ( ̃𝜏𝑗𝑘
+ ̃𝜏𝑘𝑗

) ⊗𝑄 𝑅 ∼ 0 and thus 𝑏𝛼 is homotopic to zero when

tensored down to 𝑅. So now 𝑝(𝑠) = 𝑝( ̃𝑠) ⊗𝑄 𝑅 = ∑
𝛼

⎛⎜⎜
⎝

𝑡𝛼 0
0 𝑡𝛼

⎞⎟⎟
⎠

. Taking the

homotopy map 𝜆 = ⎛⎜⎜
⎝

0 1
0 0

⎞⎟⎟
⎠

we get

𝜆 ∘ 𝑑Cone(𝑝) + 𝑑Cone(𝑝) ∘ 𝜆 = 𝑝(𝑠).

Thus 𝑝(𝑠) ∼ 0.
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Property 2: The Old Polynomials

We would now like to show that if a polynomial 𝑞 of cohomology operators

is in Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶), then 𝑞 ∈ Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) for any

polynomial 𝑝 of Eisenbud operators. Unfortunately we can only expect that 𝑞2 will

be in Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)). However this will be sufficient for our

purposes since by Hilbert’s Nullstellensatz, the variety of an ideal 𝐼 is equal to the

variety of
√

𝐼 .

Lemma 4.1.3. Let 𝑝, 𝑞 ∈ 𝑅[𝜒1, … , 𝜒𝑐]. If 𝑞 ∈ Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶) then 𝑞2 ∈
Ann ⨁

𝑖≥0
Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)).

Proof. Let 𝑞(𝜒) ∈ Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶). Then 𝑞(𝑡) ∼ 0, i.e. there exist homotopy

maps 𝜆 such that 𝑞(𝑡) = 𝜆 ∘ 𝑑Σ𝐶 + 𝑑Σdeg 𝑝𝐶 ∘ 𝜆. Applying the polynomial 𝑞 to the

Eisenbud operators of the cone we see that 𝑞(𝑠) is of the form 𝑞(𝑠) = ⎛⎜⎜
⎝

𝑞(𝑡) 0
𝑏 𝑞(𝑡)

⎞⎟⎟
⎠

.

However,

⎛⎜⎜
⎝

𝑞(𝑡) 0
𝑏 𝑞(𝑡)

⎞⎟⎟
⎠

− ⎛⎜⎜
⎝

0 0
𝑏 0)

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑞(𝑡) 0
0 𝑞(𝑡)

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑑Σ𝐶 0
𝑝(𝑡) 𝑑Σdeg 𝑝𝐶

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝜆 0
0 0

⎞⎟⎟
⎠

+ ⎛⎜⎜
⎝

𝑑Σ𝐶 0
𝑝(𝑡) 𝑑Σdeg 𝑝𝐶

⎞⎟⎟
⎠

⎛⎜⎜
⎝

0 0
0 𝜆

⎞⎟⎟
⎠

.

Hence 𝑞(𝑠) ∼ ⎛⎜⎜
⎝

0 0
𝑏 0

⎞⎟⎟
⎠

and ⎛⎜⎜
⎝

0 0
𝑏 0

⎞⎟⎟
⎠

2

= ⎛⎜⎜
⎝

0 0
0 0

⎞⎟⎟
⎠

. Thus 𝑞(𝑠)2 ∼ 0 and therefore

𝑞(𝜒)2 ∈ Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)).

Property 3: No Extra Polynomials

Next we will show (3), that for any polynomial 𝑝 of Eisenbud operators,

√Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) ⊆ √Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶).

48



This shows that the support variety of the mapping cone will have no unwanted

defining polynomials.

Lemma 4.1.4. Let (𝐴, 𝕞, 𝕜) be a local ring and

⋯ // 𝑋𝑖 // 𝑌𝑖
𝑝 // 𝑌𝑖−1 // 𝑋𝑖−1 // ⋯

be an exact sequence of 𝐴-modules where 𝑝 ∈ 𝕞, 𝑋 = ⨁
𝑖

𝑋𝑖,and 𝑌 = ⨁
𝑖

𝑌𝑖. Then
√

Ann 𝑋 ⊆ √(Ann 𝑌 , 𝑝).

Proof. Let 𝐼 be a prime ideal containing 𝑝 but not containing
√

Ann 𝑋. Localizing

at 𝐼 gives us 𝑋𝐼 = 0 and therefore we have the exact sequence

0 // 𝑌𝐼𝑖

𝑝 // 𝑌𝐼𝑖−1
// 0 .

Therefore 𝑌𝐼 = 𝑝𝑌𝐼 . Since 𝑝 is an element of the maximal ideal of 𝐴, Nakayama’s

lemma implies that 𝑌𝐼 = 0 and hence 𝐼 does not contain
√

Ann 𝑌 . Hence
√

Ann 𝑋 ⊆
√(Ann 𝑌 , 𝑝).

Lemma 4.1.5. Let 𝐶 ∈ Ktac(𝑅) and let 𝑝(𝜒) ∈ 𝑅[𝜒1, … , 𝜒𝑐] be a polynomial of

cohomology operators. Then

√Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) ⊆ √Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶).

Proof. Consider the exact triangle

𝐶 𝑝(𝑡) // Σdeg 𝑝 // Cone(𝑝) // Σ𝐶

Applying Hom(_, Cone(𝑝)) to the above triangle we get the long exact sequence

⋯ → Hom𝑅(Σ𝑖 Cone(𝑝), Cone(𝑝)) → Hom𝑅(Σ𝑖+deg 𝑝𝐶, Cone(𝑝)) →

Hom𝑅(Σ𝑖𝐶, Cone(𝑝)) → Hom𝑅(Σ𝑖−1 Cone(𝑝), Cone(𝑝)) → ⋯ .
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Now recall that ⨁
𝑖≤0

Hom𝑅(Σ−𝑖𝐶, 𝐶) = ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶) and so we can apply

Lemma 4.1.4 to see that

√Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) ⊆ √Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖 Cone(𝑝)).

Now applying Hom(𝐶, _) to the exact triangle we get the long exact sequence

⋯ → Hom𝑅(Cone(𝑝), Σ𝑖−1𝐶) → Hom𝑅(𝐶, Σ𝑖𝐶) →

Hom𝑅(𝐶, Σ𝑖+deg 𝑝𝐶) → Hom𝑅(𝐶, Σ𝑖 Cone(𝑝)) → ⋯ .

Once again applying Lemma 4.1.4, we get that

√Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), 𝐶) ⊆ √Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶).

Therefore we now have

√Ann ⨁
𝑖≥0

Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) ⊆ √Ann ⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶).

Realizing an Affine Variety

Putting the previous lemmas together, we get the following result.

Theorem 4.1.6. Let 𝑅 = 𝑄/(𝑓1, … , 𝑓𝑐) be a complete intersection ring and let 𝐶 ∈
Ktac(𝑅) with 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝑝1, … , 𝑝𝑚). Then for any homogeneous polynomial

𝑝𝑚+1 of cohomology operators,

𝑉 (𝑄, 𝑓, Cone(𝑝𝑚+1), Cone(𝑝𝑚+1)) = 𝑍(𝑝1, … , 𝑝𝑚, 𝑝𝑚+1)

Proof. By Lemma 4.1.1, 𝑝𝑚+1 ∈ Ann ⨁
𝑖≥0

Hom(Cone(𝑝𝑚+1), Σ𝑖 Cone(𝑝𝑚+1)). By

Lemma 4.1.3, 𝑝2
𝑘 ∈ Ann ⨁

𝑖≥0
Hom(Cone(𝑝𝑚+1), Σ𝑖 Cone(𝑝𝑚+1)) for all 1 ≤ 𝑘 ≤ 𝑚.

Also by Lemma 4.1.5, if 𝑞𝑟 ∈ Ann ⨁
𝑖≥0

Hom(Cone(𝑝𝑚+1), Σ𝑖 Cone(𝑝𝑚+1)) then 𝑞 ∈
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√(𝑝1, … , 𝑝𝑚, 𝑝𝑚+1). Thus we have Ann ⨁
𝑖≥0

Hom(Cone(𝑝𝑚+1), Σ𝑖 Cone(𝑝𝑚+1)) ⊆
√(𝑝1, … , 𝑝𝑚, 𝑝𝑚+1). Therefore

𝑉 (𝑄, 𝑓, Cone(𝑝𝑚+1), Cone(𝑝𝑚+1)) = 𝑍(√(𝑝1, … , 𝑝𝑚, 𝑝𝑚+1)) = 𝑍(𝑝1, … , 𝑝𝑚, 𝑝𝑚+1).

We now have the tools needed to prove our main result.

Theorem 4.1.7. For any cone 𝒱 ∈ 𝕜𝑐, there exists a complex 𝐶 ∈ Ktac(𝑅) such that

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝒱.

Proof. Let 𝒱𝑚 = 𝑍(𝑝1, … , 𝑝𝑚) be a cone in 𝕜𝑐. We will now construct 𝐶 inductively.

First consider 𝒱0 = 𝑍(0) = 𝕜𝑐. If 𝐷 is a complete resolution of the field 𝕜, then

by Theorem 3.3.2 𝑉 (𝑄, 𝑓, 𝐷, 𝐷) = 𝒱. Now assume that there exists 𝐹 ∈ Ktac(𝑅)
such that 𝑉 (𝑄, 𝑓, 𝐹 , 𝐹) = 𝑍(𝑝1, … , 𝑝𝑚−1). Let 𝐶 = Cone(𝑝𝑚+1). Then by Theorem

4.1.6,

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝑝1, … , 𝑝𝑚).

4.2 Nilpotent Eisenbud Operators

In the previous section, we took advantage of the nullstellensatz to prove that

cones in 𝕜𝑐 are realizable as the support of a totally acyclic complex. In particular, if

a non-zero polynomial 𝑝 of Eisenbud operators is nilpotent, then 𝑝 is a defining poly-

nomial of the support variety. Thus nilpotent Eisenbud operators contribute nothing

to the support variety of a complex. However, we are interested in understanding

how the support variety of a totally acyclic complex differs from its scheme structure.

51



In this section we will provide a method for creating totally acyclic complexes with

nilpotent Eisenbud operators.

Consider a totally acyclic complex 𝐶 and a perfect complex 𝑃 , i.e. 𝑃 is a

bounded complex of finitely generated projective modules,

0 // 𝑃𝑚
𝑑𝑃

𝑚 // 𝑃𝑚−1
𝑑𝑃

𝑚−1 // ⋯ 𝑑𝑃
1 // 𝑃0 // 0

such that ( ̃𝑑𝐶)2 = ∑𝑐
𝑘=1 𝑓𝑘 ̃𝑡𝑘 and ( ̃𝑑𝑃 )2 = ∑𝑐

𝑘=1 𝑓𝑐 ̃𝑟𝑘. Let Δ𝐶
𝑛,𝑗 = 𝑑𝐶

𝑛−𝑗 ⊗ 𝑃𝑗 and

Δ𝑃
𝑛,𝑗 = (−1)𝑛−𝑗𝐶𝑛−𝑗 ⊗ 𝑑𝑃

𝑗 . Since 𝐶 is totally acyclic and the 𝑃𝑖’s are free and

therefore flat, the bi-complex 𝐶 ⊗𝑅 𝑃 has exact rows. Therefore the acyclic assembly

lemma [22, 2.7.3] implies the total complex Tot⊕(𝐶 ⊗𝑅 𝑃) is totally acyclic. It has

differentials of the form

𝑑𝐶⊗𝑅𝑃
𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Δ𝐶
𝑛,𝑚 Δ𝑃

𝑛,𝑚 0 ⋯ 0
0 Δ𝐶

𝑛,𝑚−1 Δ𝑃
𝑛,𝑚−1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0 Δ𝐶

𝑛,1 Δ𝑃
𝑛,1

0 ⋯ 0 0 Δ𝐶
𝑛,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Lifting this matrix to 𝑄 and squaring it yields

( ̃𝑑𝐶⊗𝑅𝑃 )2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(Δ̃𝐶)2 0 (Δ̃𝑃 )2 0 ⋯ 0
0 (Δ̃𝐶)2 0 (Δ̃𝑃 )2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 (Δ̃𝐶)2 0 (Δ̃𝑃 )2

0 ⋯ 0 0 (Δ̃𝐶)2 0
0 ⋯ 0 0 0 (Δ̃𝐶)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
𝑐

∑
𝑘=1

𝑓𝑘 ̃𝑠𝑘.
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Notice that (Δ̃𝐶)2 = ∑𝑐
𝑘=1 𝑓𝑘 ̃𝑡𝑘 ⊗𝑃 and (Δ̃𝑃 )2 = ∑𝑐

𝑘=1 𝑓𝑘𝐶 ⊗ ̃𝑟𝑘. We can now

see that

𝑠𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑡𝑘 ⊗ 𝑃 0 𝐶 ⊗ 𝑟𝑘 0 ⋯ 0
0 𝑡𝑘 ⊗ 𝑃 0 𝐶 ⊗ 𝑟𝑘 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑡𝑘 ⊗ 𝑃 0 𝐶 ⊗ 𝑟𝑘

0 ⋯ 0 0 𝑡𝑘 ⊗ 𝑃 0
0 ⋯ 0 0 0 𝑡𝑘 ⊗ 𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and thus the complex 𝑃 provides the nilpotent part of 𝑠𝑘.

4.3 Examples

First we give an example that demonstrates Theorem 3.5, i.e. that if 𝑝(𝑡) is a

polynomial of Eisenbud operators of a totally acyclic complex 𝐶, then the support

variety of Cone(𝑝(𝑡)) is 𝑉 (𝑄, 𝑓, 𝐶, 𝐶) ∩ 𝑍(𝑝(𝑡)).
Example 4.3.1. Let 𝑅 = ℂ[[𝑥, 𝑦, 𝑧]]/(𝑥2, 𝑦2, 𝑧2) and let 𝐶 be the complex

𝐶 ∶ ⋯ 𝑑𝐶
𝑛+1 // 𝑅3 𝑑𝐶

𝑛 // 𝑅3 𝑑𝐶
𝑛−1 // 𝑅3 𝑑𝐶

𝑛−2 // ⋯

where 𝑑𝐶
𝑛 =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥 0 0
0 𝑦 0
0 0 𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

for all 𝑛.

Then

( ̃𝑑𝐶)2 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥2 0 0
0 𝑦2 0
0 0 𝑧2

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝑥2𝑡1 + 𝑦2𝑡2 + 𝑧2𝑡3,
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and so we have

𝑡1 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑡2 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝑡3 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Therefore

Ann(⨁
𝑖≥0

Hom𝑅(𝐶, Σ𝑖𝐶) ⊗𝑅 𝕜) = (𝜒1𝜒2, 𝜒2𝜒3, 𝜒1𝜒3),

thus the support variety of 𝐶 is

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝜒1𝜒2𝜒3)

i.e. the union of the 𝑥, 𝑦, and 𝑧 axes.

Remark 4.3.2. Notice that 𝐶 = 𝐷 ⊕ 𝐸 ⊕ 𝐹 where

𝐷 ∶ ⋯ 𝑥 // 𝑅 𝑥 // 𝑅 𝑥 // 𝑅 𝑥 // ⋯

𝐸 ∶ ⋯ 𝑦 // 𝑅 𝑦 // 𝑅 𝑦 // 𝑅 𝑦 // ⋯

𝐹 ∶ ⋯ 𝑧 // 𝑅 𝑧 // 𝑅 𝑧 // 𝑅 𝑧 // ⋯

and so the support varieties of 𝐷,𝐸, and 𝐹 are easily computed to be

𝑉 (𝑄, 𝑓, 𝐷, 𝐷) = 𝑍(𝜒2, 𝜒3),

𝑉 (𝑄, 𝑓, 𝐸, 𝐸) = 𝑍(𝜒1, 𝜒3),

𝑉 (𝑄, 𝑓, 𝐹 , 𝐹) = 𝑍(𝜒1, 𝜒2),

i.e. the 𝑥, 𝑦, and 𝑧 axes respectively. Thus we have

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑉 (𝑄, 𝑓, 𝐷, 𝐷) ⋃ 𝑉 (𝑄, 𝑓, 𝐸, 𝐸) ⋃ 𝑉 (𝑄, 𝑓, 𝐹 , 𝐹).
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Now consider the complex Cone(𝑝) where 𝑝 = 𝑡1 − 𝑡2 − 2𝑡3. This complex has

differentials given by

𝑑Cone(𝑡1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥 0 0 0 0 0
0 𝑦 0 0 0 0
0 0 𝑧 0 0 0
1 0 0 −𝑥 0 0
0 −1 0 0 −𝑦 0
0 0 −2 0 0 −𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Squaring this we have

(𝑑Cone(𝑝))2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥2 0 0 0 0 0
0 𝑦2 0 0 0 0
0 0 𝑧2 0 0 0
0 0 0 𝑥2 0 0
0 0 0 0 𝑦2 0
0 0 0 0 0 𝑧2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Therefore the Eisenbud operators of the cone are given by matrices of the form

𝑠𝑛 = ⎛⎜⎜
⎝

𝑡𝑛 0
0 𝑡𝑛

⎞⎟⎟
⎠

. Thus with the homotopy maps 𝜆 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, we have

𝜆 ∘ 𝑑Cone(𝑝) − 𝑑Cone(𝑝) ∘ 𝜆 = 𝑠1 − 𝑠2 − 2𝑠3. Therefore the support variety of Cone(𝑝) is
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𝑉 (𝑄, 𝑓, Cone(𝑝), Cone(𝑝) = 𝑍(Ann ⨁
𝑖≥0

Hom(Cone(𝑝), Σ𝑖 Cone(𝑝)))

= 𝑍(𝜒1𝜒2𝜒3, 𝜒1 − 𝜒2 − 2𝜒3) = {0}.

We now give an example of a complex where one of the nonzero Eisenbud

operators squares to zero.

Example 4.3.3. Let 𝑅 = 𝕜[[𝑥1, … , 𝑥5]]/(𝑥1𝑥2, 𝑥3𝑥4) where 𝕜 is an algebraically closed

field. Consider the complex 𝐶 ∈ Ktac(𝑅) given by

𝐶 ∶ ⋯ 𝑑𝐶
𝑛+1 // 𝑅8 𝑑𝐶

𝑛 // 𝑅8 𝑑𝐶
𝑛−1 // 𝑅8 𝑑𝐶

𝑛−2 // ⋯

where the differentials are given by

𝑑𝐶
𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑥1 0 0 −𝑥5 0 0 0 𝑥4

−𝑥2 0 −𝑥5 0 0 0 𝑥4 0
0 0 𝑥1 −𝑥2 0 𝑥4 0 0
0 0 0 𝑥2 𝑥4 0 0 0
0 −𝑥1 0 𝑥3 0 0 0 0
0 −𝑥2 𝑥3 0 0 0 0 0
0 𝑥4 0 0 0 0 0 0
𝑥3 𝑥5 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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if 𝑛 is even and

𝑑𝐶
𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 −𝑥5 𝑥4

0 0 0 0 0 0 𝑥3 0
0 0 0 0 0 𝑥4 𝑥2 0
0 0 0 0 𝑥4 0 𝑥1 0
0 0 0 𝑥3 −𝑥2 0 0 0
0 0 𝑥3 0 𝑥2 −𝑥1 0 0
0 𝑥3 0 0 0 𝑥5 0 𝑥2

𝑥3 0 0 0 𝑥5 0 0 𝑥1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

if 𝑛 is odd.

Then

𝑡1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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in even degrees and

𝑡1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

in odd degrees. Furthermore we see that 𝑡2 = 1𝑅8 . Therefore the support variety of

𝐶 is given by

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(Ann ⨁
𝑖≥0

Hom(𝐶, Σ𝑖𝐶)) = 𝑍(𝑡2
1) = 𝑍(𝑡1).

The next example illustrates the process discussed in the previous section to

create nilpotent Eisenbud operators.

Example 4.3.4. Let 𝑅 = 𝑘[[𝑥, 𝑦]]/(𝑥2, 𝑦2) and consider the totally acyclic 𝑅-complex

𝐶 ∶ ⋯ 𝑥 // 𝑅 𝑥 // 𝑅 𝑥 // 𝑅 𝑥 // ⋯

and the perfect complex

𝑃 ∶ 0 // 𝑅 𝑦 // 𝑅 𝑦 // 𝑅 𝑦 // 𝑅 // 0 .

Then we have the totally acyclic complex

𝐶 ⊗𝑅 𝑃 ∶ ⋯ 𝑑𝐶⊗𝑅𝑃
𝑛 // 𝑅4 𝑑𝐶⊗𝑅𝑃

𝑛 // 𝑅4 𝑑𝐶⊗𝑅𝑃
𝑛 // 𝑅4 𝑑𝐶⊗𝑅𝑃

𝑛 // ⋯
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with differentials

𝑑𝐶⊗𝑅𝑃
𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥 (−1)𝑛+1𝑦 0 0
0 𝑥 (−1)𝑛𝑦 0
0 0 𝑥 (−1)𝑛+1𝑦
0 0 0 𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Lifting the differential to 𝑄 and squaring it yields

(𝑑𝐶⊗𝑅𝑃 )2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥2 0 𝑦2 0
0 𝑥2 0 𝑦2

0 0 𝑥2 0
0 0 0 𝑥2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ∑
𝑘=1

𝑓𝑘𝑠𝑘.

and so the Eisenbud operators are 𝑠1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and 𝑠2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Notice that 𝑠𝑟
1 ≠ 0 for any 𝑟 ∈ ℕ while 𝑠3

1 = 0 and 𝑠2
1 ≠ 0 . Thus the support variety

is 𝑉 (𝑄, 𝑓, 𝐶 ⊗𝑅 𝑃 , 𝐶 ⊗𝑅 𝑃) = 𝑍(𝜒2).
While we have examples of totally acyclic complexes with nilpotent Eisenbud

operators, none of these complexes are themselves mapping cones of Eisenbud opera-

tors. In order to create a mapping cone Cone(𝑝(𝑡)) with nilpotent Eisenbud operators,

we need the bottom left corner of the lifted and squared differential to be nonzero.

This will only occur if the polynomial 𝑝(𝑡) has entries in the maximal ideal. Thus we

would like to find an example of a totally acyclic complex with an Eisenbud operator

with elements contained in the maximal ideal. The following example looks promising

at first, but the Eisenbud operator in question turns out to be homotopic to zero.
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Example 4.3.5. Let 𝑅 = 𝕜[[𝑥, 𝑦]]/(𝑥𝑎 − 𝑦𝑏, 𝑥𝑦) and let 𝐶 be the period-two complex

𝐶 ∶ ⋯ 𝑑𝐶
𝑛 // 𝑅 𝑑𝐶

𝑛−1 // 𝑅 𝑑𝐶
𝑛−2 // ⋯

where 𝑑𝐶
𝑛 = 𝑥 + 𝑦 if 𝑛 is even and 𝑑𝐶

𝑛 = 𝑥𝑎−1 − 𝑦𝑏−1 if 𝑛 is odd. Then

( ̃𝑑𝐶)2 = 𝑥𝑎 − 𝑦𝑏 + 𝑦𝑥𝑎−1 − 𝑥𝑦𝑏−1 = (𝑥𝑎 − 𝑦𝑏)(1) + (𝑥𝑦)(𝑥𝑎−2 − 𝑦𝑏−2).

Thus 𝑡1 = 1 and 𝑡2 = 𝑥𝑎−2 − 𝑦𝑏−2.

Now consider homotopy maps 𝜆𝑛 = 0 if 𝑛 is even and 𝜆𝑛 = 𝑥𝑎−3 − 𝑦𝑏−3 if 𝑛 is

odd. Since 𝑥𝑦 = 0, we have

𝑡2 = 𝑥𝑎−2 − 𝑦𝑏−2 = (𝑥𝑎−3 − 𝑦𝑏−3)(𝑥 + 𝑦) = 𝑑Σ2𝐶
𝑛+1 𝜆𝑛 + 𝜆𝑛−1𝑑𝐶

𝑛 .

Therefore 𝑡2 is homotopic to zero and hence we can now see that the support variety

of 𝐶 is given by

𝑉 (𝑄, 𝑓, 𝐶, 𝐶) = 𝑍(𝜒2)

.
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Conclusions and Future Work

We chose to study support and rank varieties in Ktac(𝑅) in order use the tri-

angulated structure of this category to give elegant proofs of a few classic results. In

particular, we spent most of our time studying the differentials of mapping cones of

Eisenbud operators. Understanding these cones allowed us to give very direct proofs

about the finiteness of modules of cohomology operators. This finite generation result

allowed us to show that the Avrunin-Scott theorem holds in Ktac(𝑅). We were also

able to study the Eisenbud operators of the cone itself to create a sequence of totally

acyclic complexes with the final complex having a desired support variety.

Our next goal is to use the explicit descriptions of mapping cones in this cat-

egory to study the scheme structure of support varieties. Our proof of the real-

izability of support varieties requires Hilbert’s Nullstellensatz. Thus we only have

a description of Ann Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) up to radical. We know that if

𝑞 ∈ Ann Hom𝑅(𝐶, Σ𝑖𝐶), then 𝑞2 ∈ Ann Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)). We would like

to know if this can be strengthened so that 𝑞 ∈ Ann Hom𝑅(Cone(𝑝), Σ𝑖 Cone(𝑝)) or

if instead we can find an example of a mapping cone with a nipotent polynomial of

Eisenbud operators.

In order to find a mapping cone with a nilpotent polynomial of Eisenbud op-

erators, the bottom left corner of the lifted and squared differential cannot be zero.

We already know that for a polynomial 𝑝(𝑡) of Eisenbud operators, the mapping cone

Cone(𝑝(𝑡)) has Eisenbud operators 𝑠𝑖 such that 𝑝(𝑠) ∼ 0. This is precisely due to

the fact that the bottom left corner of 𝑝(𝑠) is always zero. However, we do not know

if this is the case for a generic polynomial 𝑞(𝑠) of Eisenbud operators of Cone(𝑝(𝑡)).
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The bottom left corner of the lifted squared differential is roughly of the form

̃𝑑𝐶 ̃𝑝(𝑡) − ̃𝑝(𝑡) ̃𝑑𝐶. This term is zero when tensored down to 𝑅 and thus is equal to a

linear combination of the 𝑓𝑖’s which are in the maximal ideal. Thus if ̃𝑑𝐶 ̃𝑝(𝑡)− ̃𝑝(𝑡) ̃𝑑𝐶

is not zero, 𝑝(𝑡) must have entries in the maximal ideal. Therefore the only hope of

finding a mapping cone with a nilpotent polynomial of Eisenbud operators is to first

find a totally acyclic complex with an Eisenbud operator that has entries in the

maximal ideal. So far the only example we have of such an Eisenbud operator turned

out to be homotopic to zero. Therefore we would like to pose the following question:

does there exist a totally acyclic complex with an Eisenbud operator 𝑡𝑖 such that for

any 𝑠𝑖 that is homotopic to 𝑡𝑖, 𝑠𝑖 has entries in the maximal ideal?

The category of totally acyclic chain complexes is important to study because of

its connection to several other triangulated categories. In [12], Buchweitz showed that

for any Gorenstein ring 𝑅, Ktac(𝑅) is equivalent to the stable category of maximal

Cohen-Macaulay modules over 𝑅, the singularity category, i.e. the derived category

modulo perfect complexes. The derived category of coherent sheaves plays an impor-

tant role in homological mirror symmetry and thus has applications in string theory.

Furthermore, the category of matrix factorizations is also equivalent to Ktac(𝑅) if 𝑅
is a hypersurface and it has known applications in Landau-Ginzberg models. We hope

to use our theory of support and rank varieties in Ktac(𝑅) to provide new insights in

these areas.

62



References

[1] L.L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96

(1989), no. 1, 71–101.

[2] L.L Avramov and R.O. Buchweitz, Support varieties and cohomology over com-

plete intersections, Invent. Math. 142 (2000), no. 2, 285–318.

[3] L.L. Avramov, V. Gasarov, and I. Peeva, Complete intersection dimension, Publ.

Math. I.H.E.S, 86 (1997), 67–114.

[4] L.L. Avramov and S. Iyengar, Constructing modules with prescribed cohomological

support, Illinois. J. Math. 51, 2007, Special Issue dedicated to Phillip Griffith,

to appear.

[5] L.L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of

modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002),

no. 2, 393–440.

[6] G.S. Avrunin and L.L. Scott, Quillen stratification for modules, Invent. Math.,

66 (1982) 211–286.

[7] D. Benson, S. Iyengar, and H. Krause, Local Cohomology and Support for Tri-

angulated Categories, Ann. Sci. Ecole Norm. Sup, 41 (2008) 575–621.

[8] P. Bergh, On support varieties for modules over complete intersections, Proc.

Amer. Math. Soc. 135, no. 12, 2007, pg.3795-3803.

[9] P. Bergh and D. Jorgensen, Support Varieties Over Complete Intersections Made

Easy, arXiv:1509.07828 [math.AC] (2015).

[10] P. Bergh, D. Jorgensen, and F. Moore, Totally acyclic approximations,

arXiv:1606.07976 [math.ac] (2016).

63



[11] W. Bruns and J. Herzog, Cohen-Macaulay rings: Revised Edition, Cambridge

University Press, New York NY, 1998.

[12] R.O. Buchweitz, Maximal Cohen-Macaulay Modules and Tate-Cohomology Over

Gorenstein Rings, University of Hanover, (1986).

[13] J.F. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85

(1983), no. 1, 104–143.

[14] E.C. Dade, Endo-permutation modules over 𝑝-groups. II. Ann. of Math. (2) 108

(1978), no. 2, 317–346.

[15] D. Eisenbud, Homological algebra on a complete intersection, with an application

to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64.

[16] T. Fritz, Notes on Triangulated Categories, arXiv:1407.3765 [math.KT] (2014).

[17] T.H. Gulliksen, A change of ring theorem with applications to Poincaré series

and intersection multiplicity, Math. Scand. 34 (1974), 167–183.

[18] A. Neeman, Triangulated Categories, Annals of Mathematics Studies: Princeton

University Press, Princeton NJ, (2001).

[19] D. Quillen, The Spectrum of an equivariant cohomology ring: I,II, Ann. of Math.

(2) 94 (1971), 549–602.

[20] J.J. Rotman, An Introduction to Homological Algebra: Second Edition, Springer

Science+Business Media, LLC., New York NY, (2009).

[21] J.L. Verdier Des cat´egories d´eriv´ees des cat´egories ab´eliennes, later pub-

lished as Ast´erisque, SMF 239 (1996).

[22] C.A. Weibel An Introduction to homological algebra, Cambridge University Press,

Cambridge UK, (1997).

64



Biographical Statement

Nathan Steele was born on March 29th, 1989 in Bethesda Maryland to Ricky

and Diana Steele and is the second of two sons. He graduated from Luther High

School in Luther Oklahoma in 2007. He then attended the University of Central

Oklahoma in Edmond Oklahoma and graduated with a Bachelor of Science degree

in mathematics in May of 2011. After completion of his Bachelor’s degree, Nathan

moved to Arlington Texas and began doctoral studies at the University of Texas at

Arlington. In August 2016, he completed his dissertation in mathematics under the

direction of Dr. David Jorgensen.

Nathan’s research interests include commutative algebra, homological algebra,

and algebraic geometry. He also maintains a strong interest in the pedagogy and

philosophy of mathematics.

65


	Acknowledgments
	Abstract
	Introduction
	Preliminaries
	Triangulated Categories
	Chain Complexes
	The Triangulated Category Ktac(R)

	Support and Rank Varieties in Ktac(R)
	Eisenbud and Cohomology Operators in Ktac(R)
	Definitions of Support and Rank Varieties

	Equivalence of Support and Rank Varieties
	Finite Generation
	Avrunin-Scott for Ktac(R)
	Properties of Support/Rank Varieties
	Rank Varieties of Higher Dimensions
	Examples

	Realizability
	Constructing a Sequence of Mapping Cones
	Nilpotent Eisenbud Operators
	Examples

	Conclusions and Future Work
	References
	Biographical Statement

