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ABSTRACT

Reproductive Numbers for Periodic Epidemic Systems

Christopher David Mitchell, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Christopher Kribs

When using mathematics to study epidemics, often times the goal is to deter-

mine when an infection can invade and persist within a population. This can be

done in a variety of ways but the most common is to use threshold quantities called

reproductive numbers. For models with only one infection, the basic reproductive

number (BRN) is used to determine the stability of the disease-free equilibrium. For

many years this was done solely for autonomous systems; however, many diseases

exhibit seasonal behavior. If this seasonality is incorporated into models, it gives

nonautonomous systems, which while more accurate in their description, are much

more difficult to analyze.

The first chapter lays out methods to find the basic reproductive number for

seasonal epidemic models. In the literature, two principal methods have been pro-

posed to derive BRNs for periodic models. The first, using time-averages, does not

always result in the correct threshold behavior. The more general one is also more

complicated, and no detailed explanations of the necessary computations have yet

been laid out. This chapter lays out such an explicit procedure and then identifies

conditions (and some important classes of models) under which the two methods
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agree. This allows the use of the more limited method, which is much simpler, when

appropriate, and illustrates in detail the simplest possible case where they disagree.

There are many cases within epidemiology where infections will compete to

persist within a population. In studying these types of models, one of the goals is

to determine when certain infections can invade a population and persist when other

infections are already resident within the population. To study this, invasion repro-

ductive numbers (IRN) are used, which can help determine the stability of certain

endemic equilibria. Methods for both autonomous and nonautonomous systems are

given for finding the IRNs, as well as examples which illustrate the often complex

computations required.

These methods are used for a single-host model of Chagas disease to determine

if seasonality can explain why competitive exclusion does not seem to hold in certain

sylvatic cycles of the disease. In this model there are two strains of the parasite, and

studies show cross-immunity between strains. The single-host autonomous model

predicts competitive exclusion, but there has been observed co-persistence in some

host populations, in particular woodrats. To account for this, seasonality is added

to the original model in the transmission parameters. For a set of biologically re-

alistic parameters, seasonality even in just a single parameter is sufficient to make

co-persistence possible.
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CHAPTER 1

INTRODUCTION

1.1 Mathematical Epidemiology

Transmissible diseases are commonplace in today’s world. Influenza, malaria,

and cholera are just a few of the outbreaks that populate the news stories of the

day. Infections are transmitted in many different ways: airborne (influenza, small-

pox), vector-borne (malaria, rocky mountain fever), and food-borne (E-coli) to name

a few. Diseases transmitted by viruses such as influenza and chicken pox do not allow

for reinfection, as they give some immunity, while diseases transmitted from bacteria

generally do not. Many human diseases are transmitted not by humans but from

vectors, such as mosquitoes. Modeling can provide insight into the underlying dy-

namics of an infection as it spreads through populations. Mathematical modeling has

become an important tool for analyzing and studying diseases. Many early results

in mathematical epidemiology are due to public health officials. Daniel Bernouilli, a

famous mathematician, was trained as a physician. He published a defense of inoc-

ulation against smallpox in 1760. Modern epidemiology developed from the work of

such people as noted above, Sir Ronald Ross, W.O. Kermack and A.G. McKendrick,

and W.H. Hamer who were mostly physicians [21].

One of the first major contributors to the area of mathematical epidemiol-

ogy was Sir Ronald Ross, who earned the Nobel Prize in medicine for his work on

malaria. A British medical doctor, Ross created a relatively simple model for the

transmission of malaria. He was the first to discover the transmission cycle of malaria

in mosquitoes, specifically the parasite which causes malaria is transmitted from a
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mosquito to a human while the mosquito is taking a blood meal. He was able to show

that to stop the transmission, one need only reduce the mosquito population by a

certain amount. This threshold proved extremely important. Certainly his work on

malaria alone would have earned him recognition, but Ross was also helpful in es-

tablishing the foundations for the study of disease dynamics [46]. He understood the

need for new theory to study these disease transmission cycles using mathematical

models.

Another example of mathematical epidemiologists is the work of Kermack and

McKendrick, two coworkers studying how infectious diseases spread through popula-

tions. They were trying to understand diseases like plague and cholera, and seeing why

certain epidemics would rise and fall. They devised several models of various types

in the early 1900s. They were some of the first to establish theory for what is known

as Susceptible-Infected-Recovered or Removed, or SIR models. These models split

the population into compartments based on their infectiousness, where each compart-

ment represents either a susceptible, infected, or recovered/removed class and simple

assumptions are made about the transfer between them. These allowed a simple way

to track groups of individuals in the context of disease outbreaks. Their analysis led

to the notion of a threshold quantity which determines a pathogen’s ability to spread,

whether it will persist or go extinct.

1.2 Reproduction Numbers

For epidemic models a principal goal is to understand how the disease can

be eradicated. One of the main ideas in mathematical epidemiology is that almost

all models have this threshold behavior that Ross and Kermack and McKendrick

discussed. This threshold is used to estimate whether an infection can invade and

persist in a population [28]. Lotka was actually the first mathematician to denote this
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threshold as R0 [27]. It was not until 1952 that a general epidemiological definition

came about from George MacDonald [27]. In his paper he stated that the basic

reproductive rate is defined as the number of infections distributed in a community

as the direct result of the presence in it of a single primary non-immune case [40].

Another definition came by Klaus Dietz in 1975 [17] similar to this one but it was

Diekmann et al. in 1990 that [16] later gave a basic biological definition for this

threshold that is widely used today. The basic reproductive number was defined as the

expected number of secondary cases produced by a typical infected individual during

its entire period of infectiousness in a completely susceptible population [16]. This

threshold has been called different names: the basic reproductive ratio [16], the basic

reproductive rate [5], and the basic reproductive number [50]. This paper recognizes

there is no difference between the values and thus from here on it will use the term

basic reproductive number, or BRN, and denote it R0. Mathematically the BRN gives

a threshold value that is used to determine stability of a disease-free equilibrium. It

was proven that if R0 < 1 the disease-free equilibrium is locally asymptotically stable,

but unstable if R0 > 1. It should be noted that R0 is a dimensionless quantity and

not a rate.

Initially there was disagreement over the calculation of the BRN. The question

was how R0 is characterized mathematically in heterogeneous populations [27]. There

was a need for some canonical R0 created by the complex transmission cycles of the

models being created. Take for example vector-borne diseases which have different

types of transmission paths between hosts and vectors, so the number of infections

should be averaged somehow: one must look at new infections in regard to a genera-

tion basis [26]. Diekmann et al. and later van den Driessche and Watmough resolved

this matter by developing next-generation methods [50, 16]. Diekmann et al. mathe-

matically defined it as the dominant eigenvalue of a positive linear operator while van
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den Driessche and Watmough [50] detailed a method for a general compartmental

disease transmission model, extending on the work of Diekmann et al., for heteroge-

neous populations using ordinary differential equations. They derived an expression

for the next generation matrix, where the (i, k) entry is the expected number of new

infections in a compartment i produced by the infected individual originally intro-

duced into compartment k. This matrix is used to get an expression for R0, stating

that R0 is the spectral radius of the next generation matrix. This definition from

Diekmann et al. of R0 is used in a variety of models to evaluate the conditions in

which the disease can invade a population. The next-generation methods provide the

needed average overall compartments.

Besides having this threshold behavior, R0 provides other useful tools. There

is a concept called herd immunity, in which certain sections of the population who

are not immune to an infection are protected by a large percentage of the population

that becomes immune, say through vaccinations. In this respect not everyone needs

to get the vaccination, but the question becomes how many people must in order to

eradicate an infection? The basic reproductive number can be used to find out. In

fact, in simple models one need only vaccinate 1− 1
R0

of the population in order for

the infection to die out [28]. This gives a useful tool to health officials to determine

how much of a vaccine to make each year for something like influenza. For vector-

borne diseases, a classical result for R0 is that to eradicate the disease, the vector

population must be divided by R2
0 [9]. So the basic reproductive number can provide

more than just stability results, it can help health officials determine the best course

of action for disease eradication.

There are other reproductive numbers that are helpful in modeling. While the

basic reproductive number can quantify the transmissibility of a disease, the effective

reproductive number, R(t), is a time-dependent quantity that accounts for the popu-
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lation’s reduced susceptibility [13]. This is used when a population is assumed to be

completely susceptible to an infection. It is the average number of secondary infec-

tions in a population made up of susceptible and non-susceptible individuals. Another

reproductive number is the effective reproductive number, or RE. This value gives

the average number of secondary infections caused by a single infective, at a given

susceptible fraction [13]. The replacement number, R, is defined to be the average

number of secondary infections produced by a typical infective during the entire pe-

riod of infectiousness [30]. It should be noted that after the infection has invaded a

population and not everyone is susceptible then R is always less than R0.

Another reproductive number that is useful in studying situations involving

multiple interacting infections is the invasion reproductive number, (IRN), often de-

noted R̃i where i is the invading infection. Multiple cocirculating pathogens, whether

different infections or different strains of the same infection, can result in co-infections,

or in some cases competing infections. The IRN of one of the pathogens with respect

to another or the others is defined as the average number of secondary infections

caused by introducing one person infected with that pathogen into an environment

where one or a combination of the other pathogen(s) is already at an endemic state

[55]. It measures the ability of a pathogen to invade while the other pathogen is

already at equilibrium. Most models that calculate these values only do so for two

infections, but it is possible to consider multiple infections, though the models will be

very complex. IRNs are associated with the same kind of threshold behavior as BRNs:

if a pathogen’s IRN is greater than 1 then the pathogen can invade even though the

other pathogen has established itself at some endemic level within the population.

The methods for finding invasion reproductive numbers are similar to those for basic

reproductive numbers, only the system is assumed to be at an endemic equilibrium

for one of the infections.

5



1.3 Seasonality

Mathematical models must be simple enough to analyze but complex enough

to be biologically relevant. This is a difficult balance to maintain, as a completely

biologically accurate model would most likely be so difficult to analyze that nothing

could be gained from it. For ordinary differential equations one of the assumptions

most people make is that all parameters of the system are constant. These systems

are called autonomous systems. There is much theory for autonomous systems as

they are simpler to analyze. The problem with these assumptions is the models

are not as biologically accurate and so one can only obtain so much information

from the results. To study the effects of seasonality on disease extinction one could

consider parameters that vary with time. Such systems are called non-autonomous

systems. These systems are able to capture more biological information but are

much more difficult to analyze. One of the biggest differences for epidemic models

between autonomous and non-autonomous is the calculation of the basic reproductive

numbers. The methods, including the next-generation methods mentioned before, for

autonomous systems do not necessarily transfer over for non-autonomous systems.

Many diseases exhibit seasonality [4]. For vector-borne diseases: malaria has

a peak season during warm and rainy seasons, dengue hemorrhagic fever has peak

rates during hot-dry and rain seasons, and West Nile Virus has human cases peak in

summer and early fall in temperate regions [31, 52, 11]. Cholera and rotavirus have

peaks during certain seasons throughout the year [43, 14]. Respiratory pathogens like

measles and influenza also increase in their outbreaks during certain seasons of the

year [20, 19]. Some models that have diseases with seasonality will only look at one

season at a time in order to simplify the model, effectively losing that seasonality

factor. Yet since seasonality plays such an important part in the transmission of

these diseases it should somehow be incorporated into the models to see if it plays
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a factor in the epidemics. This can be done in a variety of ways. Many modelling

approaches use forced oscillators to show a wide range of dynamics. The simplest

way to study seasonality in models is by making the transmission parameter periodic

in time [18, 6]. Other parameters can also be made periodic, such as birth or death

rates for those species that have mating seasons. This is not to say that seasonal

forcing will work in all cases and indeed using seasonal forcing in models makes them

much more complex and difficult to analyze.

Since R0 depends on the transmission coefficient and most models incorporate

seasonality by considering a time varying transmission, R0 can be greatly affected

by seasonality [4]. One idea to study how seasonality affects R0 is to consider the

long-time average of R0 [54]. This however does not work in every model as there

are cases where a time-averaged R0 will predict the disease to die out yet simulations

show it will persist [39]. So other methods have been necessary.

1.4 Outline

The rest of this work is laid out as follows. Chapter 2 will lay out the methods

for calculating the basic reproductive number for autonomous and non-autonomous

systems, specifically periodic systems. The techniques for both systems follow a

similar pattern. There are two different quantities for periodic systems: RT which

is found using the time-average method and RLO the linear operator method. These

will be compared to determine when they agree in their expression for the BRN and

how the model behaves when they do not. Sufficient conditions will then be identified

for these two quantities to agree.

Chapter 3 will extend the linear operator method to calculate invasion reproduc-

tive numbers for periodic systems. The idea is to lay out a specific pattern to follow

for a general periodic epidemic model with multiple interacting infections. Theorems
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will be shown that the IRN does indeed hold the threshold behavior as before for

autonomous systems.

Chapter 4 applies the methods of reproductive numbers to a single-host model

of Chagas disease where two cocirculating strains of the parasite are competing for the

same host resource. The context comes from the case of Trypanosoma cruzi strains

circulating in the southeast United States, strain I and IV , where it has been ob-

served that both strains persist at endemic levels within woodrats and so competitive

exclusion does not seem to hold in this case. The idea is to see if seasonality can

account for the observed copersistence of the strains. Basic reproductive numbers

and invasion reproductive numbers will be calculated for both strains to determine

conditions for the stability of equilibria.
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CHAPTER 2

Methods for deriving the basic reproductive number for periodic epidemic systems

2.1 Introduction

As stated before, one of the main goals when studying epidemic models is to

understand how the disease can be eradicated. This gives rise to a natural threshold

as to whether an infection can invade and persist within a population. The basic re-

productive number was defined as the expected number of secondary cases produced

by a typical infected individual during its entire period of infectiousness in a com-

pletely susceptible population [16]. Mathematically the BRN gives a threshold value

that is used to determine stability of a disease-free equilibrium. It was proven that

if R0 < 1 the disease-free equilibrium is locally asymptotically stable, but unstable if

R0 > 1. It should be noted that R0 is a dimensionless quantity and not a rate.

This chapter is devoted to understanding how the BRN can be calculated for

both autonomous and nonautonomous epidemic models. First, the focus will be on

autonomous systems as those methods have been well flushed out and so just a recap

for how next-generation methods are used to find the BRN for these systems. Then

periodic systems will be introduced. There are two different methods to find the BRN

and both will be presented. Then examples will be shown to understand when the

methods agree in their expression for the BRN and when they are different. It will be

shown that using linear operators gives the correct threshold behavior, but a theorem

will be presented that shows when these two methods agree.
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2.2 Methods for Calculating the Basic Reproductive Number

2.2.1 Autonomous Systems

In order to understand how the basic reproductive number (BRN) is calculated

for non-autonomous systems, one must first understand the theory for autonomous

systems. Consider the setting in [50] where a heterogeneous population, distinguish-

able by age, behavior, spatial position, and/or stage of disease, is grouped into n

homogeneous compartments. Let x = (x1, . . . , xn)t, with each xi ≥ 0, be the number

of individuals in each compartment. Sort the compartments so that the first m com-

partments represent infected individuals. Define Xs to be the set of all disease free

states, that is xi = 0, for i = 1, ...,m. It is important to distinguish new infections

from all other changes in population. Let Fi(x) be the rate of new infections in

compartment i, V +
i (x) be the rate of transfer into compartment i by all other means,

and V −i (x) be the rate of transfer out of compartment i. Each function is assumed

to be twice differentiable. The disease transmission model then becomes:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ...n (2.1)

where Vi = V −i − V +
i . In addition, these functions must satisfy assumptions (A1)-

(A5) below. These assumptions assure the model is well posed and makes biological

sense.

• (A1) If x ≥ 0, then Fi,V
+
i ,V

−
i ≥ 0 for i = 1, ...n

• (A2) If xi = 0 then V −i = 0. If x ∈ Xs, then V −i = 0 for i = 1, ...m

• (A3) Fi = 0 if i > m

• (A4) If x ∈ Xs then Fi = 0 and V +
i = 0 for i = 1, ...m

• (A5) If Fi is set to zero, then all eigenvalues of Df(x0) have negative real parts,

for x0 ∈ Xs
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The last assumption states that there is a locally asymptotically stable disease-free

equilibrium x0, not necessarily unique, in the disease-free subspace Xs. The matrix

Df(x0) can thus be partitioned as new matrices and can be defined out of this. Define

F and V and below:

F =

[
∂Fi

∂xj
(x0)

]
V =

[
∂Vi
∂xj

(x0)

]
1 ≤ i, j ≤ m.

From Diekmann et al., the basic reproductive number is the expected number of sec-

ondary cases produced, in a completely susceptible population, by a typical infective

individual [16]. To calculate R0, consider the matrix FV −1. The (i, k) entry of the

product FV −1 is the expected number of new infections in compartment i produced

by the infected individual originally introduced into compartment k. Following [16]

this is called the next generation matrix for the model and:

R0 = ρ(FV −1) (2.2)

where ρ(A) denotes the spectral radius of a matrix A. The spectral radius ρ is the

largest eigenvalue of the matrix. As shown in Diekmann et al. [16], R0 can be used

to study the stability of the disease-free equilibrium of the full system.

2.2.2 Floquet Theory

Before moving onto the methods for nonautonomous systems some background

is needed for these types of dynamical systems. Consider the system:

ẋ = A(t)x, x ∈ Rn (2.3)

where t → A(t) is a T-periodic continuous matrix-valued function. A fundamental

matrix of a system of n homogeneous ordinary differential equations is a matrix-

valued function, Ψ(t), whose columns are linearly independent solutions of the system.

Floquet’s theorem gives a canonical form for fundamental matrix solutions [10].
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Theorem (Floquet’s Theorem). If Ψ(t) is a fundamental matrix solution of the T-

periodic system 2.3, then, for all t ∈ R,

Ψ(t+ T ) = Ψ(t)Ψ−1(0)Ψ(T ). (2.4)

In addition, there is a matrix B (which may be complex) such that

eTB = Ψ−1(0)Ψ(T ) (2.5)

and a T-periodic matrix function t→ P (t) (which may be complex valued) such that

Ψ(t) = P (t)etB for all t ∈ R. Also, there is a real matrix R and a real 2T-periodic

matrix function t→ Q(t) such that Ψ(t) = Q(t)etR for all t ∈ R.

This theorem gives a representation called a Floquet normal form for the fun-

damental matrix Ψ(t). For a ω-periodic system define a monodromy matrix, Φ(t),

to be the inverse of the fundamental matrix evaluated at the period ω. A matrix

is a principal fundamental matrix if it is a fundamental matrix and there exists a

t0 such that Ψ−1(t0) = I. So if the solution to the ω-periodic system is a principal

fundamental matrix, then the monodromy matrix is just Φ(t) = Ψ(ω).

The problem becomes how these matrices are calculated. Most systems cannot

be solved analytically, so numerical work must be done. The fundamental matrix is

computed in terms of Taylor series, using the original matrix A(t) to various powers.

This can be done since the solution is of the form eTB = Ψ−1(0)Ψ(T ), by using the

matrix exponential definition:

etA =
∞∑
0

tk

k!
Ak = I + tA+

t2

2!
A2 +

t3

3!
A3 + · · · . (2.6)
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2.2.3 Non-autonomous Systems

2.2.3.1 Time-Averaged Method

For non-autonomous systems the methods are more challenging. There are sev-

eral methods used to calculate the BRN for non-autonomous systems. Some authors

calculated it by replacing any time-varying parameters with their long time averages

[39, 23, 53, 24, 34, 22]. To explain this method, some notation is needed. Denote the

long-term average of a function as 〈·〉, that is:

〈·〉 = lim
t→∞

1

t

∫ t

0

· dτ (2.7)

Using this method, one replaces the time-varying parameters with their long-term

averages. The system then reduces to an autonomous system and the method laid

out by van den Driessche and Watmough can be used. The autonomous system’s

BRN RT is still calculated as the spectral radius of the matrix FV −1. Many authors

used this method to find RT [39, 23, 53, 24, 34, 22]. Ma and Ma in their 2006 paper

[39] gave many different models using this method. For most of the models they

presented, the reproductive number found using this method was proved to have the

same threshold behavior as expected for autonomous systems. However, this does

not always work. The last model presented by Ma and Ma showed a case where RT

was above 1, but when the model was simulated using those parameters, the disease

died out. So the time average approach seems to miss some behavior.

2.2.3.2 Linear Operator Method

It appears that there are cases where RT will give conditions for the disease to

persist, yet the system actually does eradicate the disease. Bacaër and Guernaoui [9]

published a paper proposing a method to calculate the basic reproductive number for

a model of cutaneous leishmaniasis using an approach which extends the linear oper-
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ator method first defined by Diekmann et al. on autonomous systems, by adapting

the next-generation operator method of van den Driessche and Watmough to periodic

systems. They proved this reproductive number held the same threshold behavior for

the model, but did not lay out an explicit formula for calculating it. Wang and Zhao

[51] presented a theory of the basic reproductive number for a large class of periodic

compartmental models that parallels Bacaër’s method by extending the work of van

den Driessche and Watmough. The method is laid out as follows.

Consider a setting similar to [50] where a heterogeneous population is grouped

into n homogeneous compartments. In this model, certain parameters will be assumed

to be ω-periodic, thus giving a non-autonomous system. Sort the compartments so

that the first m represent infected classes. Consider again the set Xs to be all disease-

free states, where now values in Xs can be disease-free periodic solutions and not just

equilibria. Let Fi(t, x) be the input rate of newly infected individuals in the ith

compartment, V +
i (t, x) be the input rate of individuals by other means and V −i (t, x)

be the rate of transfer out of compartment i. The model is then given by:

dxi
dt

= Fi(t, x)− Vi(t, x) = fi(t, x), i = 1, ..., n (2.8)

where Vi = V −i − V +
i . Similar to autonomous models, the following assumptions

must be made. They again show the model is well posed and makes biological sense.

• (A1) For each 1 ≤ i ≤ n, the functions Fi(t, x),V +
i (t, x), and V −i (t, x) are

nonnegative and continuous on R × Rn
+ and continuously differentiable with

respect to x.

• (A2) There is a real number ω > 0 such that for each 1 ≤ i ≤ n, the functions

Fi(t, x),V +
i (t, x), and V −i (t, x) are ω-periodic in t. (This is new for periodic

models.)
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• (A3) If xi = 0 then V −i = 0. If x ∈ Xs, then V −i = 0 for i = 1, ...m.

• (A4) Fi = 0 if i > m.

• (A5) If x ∈ Xs then Fi = 0 and V +
i = 0 for i = 1, ...m.

In addition to these assumptions, two more must be verified, however, the next one

(A6) is just the same as (A5) from the autonomous case. Assume the model has a

disease-free periodic solution x0(t). It must be verified that x0(t) is linearly asymp-

totically stable in the disease-free subspace, Xs. Define an (n−m)× (n−m) matrix

M(t) :=

(
∂fi(t, x0(t))

∂xj

)
m+1≤i,j≤n

. (2.9)

Let ΦM(t) be the monodromy matrix of the linear ω-periodic system dz
dt

= M(t)z.

To verify the next assumption, one needs to show that the spectral radius of the

monodromy matrix is less than one, or (A6) ρ(ΦM(ω)) < 1.

For the next assumption, (A7), following the notation from [50], define two

m×m matrices by

F (t) =

[
∂Fi(t, x0(t))

∂xj

]
1≤i,j≤m

, V (t) =

[
∂Vi(t, x0(t))

∂xj
(x0)

]
1≤i,j≤m

.

Let Y (t, s), t ≥ s be the evolution operator of the linear ω-periodic system dy
dt

=

−V (t)y. That is, for each s ∈ R the m×m matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I (2.10)

where I is the m×m identity matrix. The monodromy matrix Φ−V (t) of the system

then equals Y (t, 0), t ≥ 0. The last assumption that must be verified is that the

internal evolution of individuals in the infectious compartments is dissipative, and

exponentially decays in many cases. So assume that (A7) ρ(Φ−V (ω)) < 1. These

assumptions are similar to van den Driessche and Watmough but with two new ad-

ditions: (A2) which spcifies a ω-periodic environment (due to seasonality) and (A7)

the infection will eventually die out if no new infections arise.
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The theory for nonlinear autonomous systems has been well established for

studying stability of equilibria. In 1960, the Hartman-Grobman theorem was proved

showing that the local behavior of the system around a hyperbolic equilibrium point

can be studied using the linearized system around the same point [7]. In 1975 this

theorem was extended by Kenneth Palmer to non-autonomous systems [42]. This

allows the use of the linearized system in (A6) to be used to study the stability of the

disease-free solution.

Based on the assumptions (A1)-(A7), the basic reproductive number for the

epidemic model can be calculated. Always assume the population is near the disease-

free periodic state x0(t). By standard theory of linear periodic systems, [32], there

exists a K > 0 and α > 0 such that

‖Y (t, s)‖ ≤ Ke−α(t−s), ∀t ≥ s, s ∈ R. (2.11)

It then follows that

‖Y (t, t− a)F (t− a)‖ ≤ K‖F (t− a)‖e−αa,∀t ∈ R, a ∈ [0,∞). (2.12)

With the model being periodic, suppose that φ(s), which is ω-periodic in s, is

the initial distribution of infectious individuals. Then F (s)φ(s) is the distribution

of those infected who were introduced at time s. Given t ≥ s, then Y (t, s)F (s)φ(s)

gives the distribution of those infected individuals who were newly infected at time s

and remain infected at time t. Then

ψ(t) :=

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da (2.13)

is the distribution of accumulative new infections at time t produced by all those

infected individuals introduced at previous time to t.
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Let Cω be the ordered Banach space of all ω-periodic functions from R to Rm,

with the max norm and the positive cone C+
ω := {φ ∈ Cω : φ(t) ≥ 0,∀t ∈ R}. Now

define a new linear operator L : Cω → Cω by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da,∀t ∈ R, φ ∈ Cω. (2.14)

Call L the next infection operator, following the motivation of van den Driessche and

Watmough, and then the spectral radius of L is given by:

RLO := ρ(L) (2.15)

for the periodic epidemic model.

Following the approach from [9], one can obtain another linear operator on Cω,

using the same notation as Wang and Zhao in their paper:

(L̄φ)(t) =

∫ ∞
0

F (t)Y (t, t−a)φ(t−a)da = F (t)

∫ ∞
0

Y (t, t−a)φ(t−a)da,∀t ∈ R, φ ∈ Cω.

(2.16)

The spectral radius of L̄, ρ(L̄), was defined in [9] as the basic reproductive number.

Wang and Zhao showed that the basic reproductive number for L and the basic

reproductive number for L̄ coincide, but that the kernels have different biological

interpretations.

As before with autonomous systems, the question becomes does the basic re-

productive number have the same threshold behavior of disease invasion, where if

R0 < 1 then the disease-free periodic solution is stable, while it is unstable when

R0 > 1. Wang and Zhao proved that indeed this is the case, but in order to charac-

terize and calculate R0 for periodic systems they needed to take a different approach

to actually calculate the BRN. The reason for this is that linear operators are difficult

to work with, so they decided to approach it using Floquet theory instead.
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Consider the linear ω-periodic equation

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R (2.17)

with parameter λ ∈ (0,∞). Let W (t, s, λ), t ≥ s, s ∈ R be the evolution operator of

the system (4.9) on Rm. Wang and Zhao showed that the linear operator W (t, s, λ)

is positive in Rm for each t ≥ s, s ∈ R. The Perron-Frobenius theorem implies that

ρ(W (ω, 0, λ)) is an eigenvalue of W (ω, 0, λ) with a nonnegative eigenvector. This

gives the following theorems from [51]:

Theorem (2.1). i. If ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an

eigenvalue of L, and hence R0 > 0.

ii. If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, 0, λ)) = 1.

iii. R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 ∀λ > 0.

Theorem (2.2). i. R0 = 1 if and only if ρ(ΦF−V (ω)) = 1

ii. R0 > 1 if and only if ρ(ΦF−V (ω)) > 1

iii. R0 < 1 if and only if ρ(ΦF−V (ω)) < 1

Thus the disease-free solution, x0(t), is asymptotically stable if R0 < 1 and

unstable if R0 > 1.

These results show that to find the basic reproductive number, one needs to find

the monodromy matrix, ΦF−V (t) of the system, (4.9) and evaluate it at the period,

ω. Then find the spectral radius of ΦF−V (ω) and solve the equation ρ(ΦF−V (ω)) = 1

for λ. This λ is the basic reproductive number R0. The threshold behavior for the

disease-free solution can then be studied. In many cases, it is not possible to find the

monodromy matrix analytically. In these cases numerical work will have to be done

to find the BRN, as will be outlined in the final section of the chapter.
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2.3 Examples

In order to see how these methods are used, consider the following sequence of

simple models. The goal is to understand how the time-average method relates to

the linear operator method. Beginning with the simplest epidemic model examples

with one infected class, periodic models are developed that build in complexity to

determine when the expressions for RT and RLO are the same. For each set of models,

one parameter is varied with time in the first case and then the model is generalized

to consider all parameters to be time-varying.

2.3.1 Single Infected Class: Seasonal Infection

Consider a model with one infected class and one susceptible class where the

susceptible population gets infected at a rate β(t). They die of natural mortality µ

and the infection is cleared at a rate of γ. This system is shown below:

dI

dt
= β(t)

SI

N
− (µ+ γ)I

dS

dt
= µN + γI − β(t)

SI

N
− µS

(2.18)

where β(t) ≥ 0 ∀t, and ∃tβ ∈ (0, ω) : β(tβ) > 0 and assumed to be piecewise

continuous and ω-periodic. One can calculate F and V as:

F (t) =

 β(t)SI
N

0

 ,V (t) = V − − V + =

 (µ+ γ)I

β(t)SI
N

+ µS − (µN + γI)

 .
Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, N0), where N0 is the initial

condition of the population. For the linear operator method, (A6) must be verified.

To do this, one must find M(t):

M(t) := −µ. (2.19)
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Solving the system dz
dt

= M(t)z in this case yields the principal fundamental solution,

Ψ(t) = e−µt, since Ψ−1(0) = I where I is the identity matrix. The monodromy matrix

evaluated at the period ω is then ΦM(ω) = e−µωand clearly (A6) is true.

Now one needs to define F (t) and V (t). These are both evaluated at the disease-

free equilibrium:

F (t) = β(t)

V (t) = µ+ γ.

(2.20)

Now (A7) must be verified, which requires looking at the system below:

dy

dt
= −(µ+ γ)y. (2.21)

Again this system gives the principal fundamental matrix and so one need only con-

sider the monodromy matrix evaluated at the period. This is Φ−V (ω) = e−(µ+γ)ω,

and clearly (A7) holds.

Now to calculate the basic reproductive number, consider the time-average

method first. To use this replace the time-varying function in F and V with the

long-time average; in this case the only function is 〈β(t)〉. Since this is a periodic

function, the long time average becomes 〈β〉 = 1
ω

∫ ω
0
β(t)dt. Now calculate FV −1

which is:

FV −1 =
1
ω

∫ ω
0
β(t)dt

µ+ γ
=
〈β〉
µ+ γ

. (2.22)

The spectral radius of this is just the expression itself and so:

RT =
〈β〉
µ+ γ

. (2.23)

To characterize R0 using the linear operator method, consider the following

ω-periodic equation:

dw

dt
=

[
−(µ+ γ) +

β(t)

λ

]
w, t ∈ R (2.24)
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which has fundamental solution:

w(t) = exp

(
1

λ

∫ t

0

β(s)ds− (µ+ γ)t

)
. (2.25)

Then the monodromy matrix is defined as before, and the goal is to find λ0 such that

ρ(ΦF−V (ω)) = 1, which happens exactly when the exponent in w(t) equals 0. This

yields:

RLO = λ0 =
1
ω

∫ ω
0
β(t)dt

µ+ γ
=
〈β〉
µ+ γ

. (2.26)

So in this case the two methods produce the same result, and RT = RLO = R0.

2.3.2 Single Infected Class: General Case

Consider the system as before except now all parameters are considered to be

time-varying:
dI

dt
= β(t)

SI

N
− (µ(t) + γ(t))I

dS

dt
= µ(t)N + γ(t)I − β(t)

SI

N
− µ(t)S

(2.27)

where β(t) ≥ 0 ∀t, and ∃tβ ∈ (0, ω) : β(tβ) > 0, µ(t) ≥ 0 ∀t, and ∃tµ ∈ (0, ω) :

µ(tµ) > 0, and γ(t) ≥ 0 ∀t, and ∃tγ ∈ (0, ω) : γ(tγ) > 0 and all are assumed to be

piecewise continuous and periodic. One can calculate F and V as:

F (t) =

 β(t)SI
N

0

 ,V (t) = V − − V + =

 (µ(t) + γ(t))I

β(t)SI
N

+ µ(t)S − (µ(t)N + γ(t)I)

 .
Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, N0), where N0 is the initial

condition of the population. For the linear operator method, (A6) must be verified.

To do this, one must find M(t):

M(t) := −µ(t). (2.28)
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Solving the system dz
dt

= M(t)z in this case yields the principal fundamental matrix,

Ψ(t), since Ψ−1(0) = I where I is the identity matrix. The monodromy matrix

evaluated at the period is then ΦM(ω) = exp
(
−
∫ ω
0
µ(t)dt

)
and clearly (A6) is true.

Define F (t) and V (t), both of which are evaluated at the disease-free equilib-

rium:

F (t) = β(t)

V (t) = µ(t) + γ(t).

(2.29)

Now (A7) must be verified, which requires looking at the system below:

dy

dt
= −(µ(t) + γ(t))y. (2.30)

Again this system gives the principal fundamental matrix and so one need only con-

sider the monodromy matrix evaluated at the period. This is Φ−V (ω) = exp
(
−
∫ ω
0

(µ(t) + γ(t))
)
,

and clearly (A7) holds.

Consider again the time-average method first. Now replace β(t), µ(t), and γ(t)

with their long-time averages and calculate FV −1 which is:

FV −1 =
1
ω

∫ ω
0
β(t)dt

1
ω

∫ ω
0

(µ(t) + γ(t))dt
=

〈β〉
〈µ+ γ〉

. (2.31)

The spectral radius of this is just the expression itself and so:

RT =
〈β〉
〈µ+ γ〉

. (2.32)

To characterize R0 using the linear operator method, consider the following

ω-periodic equation:

dw

dt
=

[
−(µ(t) + γ(t)) +

β(t)

λ

]
w, t ∈ R (2.33)

which has fundamental solution:

w(t) = exp

(
1

λ

∫ t

0

β(s)ds−
∫ t

0

(µ(s) + γ(s))ds

)
. (2.34)

22



Then the monodromy matrix is defined as before, and the goal is to find λ0 such that

ρ(ΦF−V (ω)) = 1, which happens exactly when the exponent in w(t) equals 0. This

yields:

RLO = λ0 =
1
ω

∫ ω
0
β(t)dt

1
ω

∫ ω
0

(µ(t) + γ(t))dt
=

〈β〉
〈µ+ γ〉

(2.35)

So in this case the two methods produce the same result again: RT = RLO = R0.

2.3.3 Two Infected Classes

Now consider the case with two infected classes, similar to a two strain virus

that has the same host. The susceptible class gets infected with the first infection

by β1(t) and with the second infection by β2(t) and there are assumed to be no

coinfections. The infection is cleared at rates γ1 and γ2. Consider the system:

dI1
dt

= β1(t)
SI1
N
− (µ+ γ1)I1

dI2
dt

= β2(t)
SI2
N
− (µ+ γ2)I2

dS

dt
= µN + γ1I1 + γ2I2 −

(
β1(t)

SI1
N

+ β2(t)
SI2
N

)
− µS

(2.36)

where the same assumptions hold as before for β1(t), and β2(t). Then F and V are:

F (t) =


β1(t)

SI1
N

β2(t)
SI2
N

0

 ,V (t) = V −−V + =


(µ+ γ1)I1

(µ+ γ2)I2

β1(t)
SI1
N

+ β2(t)
SI2
N

+ µS − (µN + γ1I1 + γ2I2)

 .
Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, 0, N0), with N0 being the

initial population size. For the linear operator method, (A6) must be verified with:

M(t) := −µ. (2.37)

Solving the system dz
dt

= M(t)z in this case yields the principal fundamental matrix.

The monodromy matrix evaluated at the period ω is then ΦM(ω) = e−µωand clearly

(A6) is true.
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Define F (t) and V (t):

F (t) =

 β1(t) 0

0 β2(t)

 , V (t) =

 µ+ γ1 0

0 µ+ γ2

 .
Now (A7) must be verified, which requires looking at the system below:

dy

dt
=

 −(µ+ γ1) 0

0 −(µ+ γ2)

 y
Solving gives the fundamental matrix:

Ψ−V (t) =

 e−(µ+γ1)t 0

0 e−(µ+γ2)t

 .
Clearly Ψ−1−V (0) = I, and so the monodromy matrix is the principal fundamental

matrix evaluated at the period ω. Then the spectral radius of the monodromy matrix

is

ρ(Φ−V (ω)) = max
j

(exp (−(µ+ γj)ω)) < 1, j = 1, 2. (2.38)

So (A7) is satisfied.

Using the time-average method calculate FV −1 which is:

FV −1 =

 〈β1〉
µ+γ1

0

0 〈β2〉
µ+γ2

 .
The spectral radius of this is then:

RT = ρ(FV −1) = max
i

{
〈βi〉
µ+ γi

, i = 1, 2

}
. (2.39)

For the linear operator method, consider the following ω-periodic system:

dw1

dt
=

[
−(µ+ γ1) +

β1(t)

λ

]
w1

dw2

dt
=

[
−(µ+ γ2) +

β2(t)

λ

]
w2

(2.40)
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which has fundamental matrix:

ΨF−V (t) =

 exp
(

1
λ

∫ t
0
β1(s)ds− (µ+ γ1)t

)
0

0 exp
(

1
λ

∫ t
0
β2(s)ds− (µ+ γ2)t

)
 .

The monodromy matrix is as defined before, so solve for λ0 such that ρ(ΦF−V (ω)) = 1,

which happens exactly when the exponent equals 0. This yields:

RLO = λ0 = max
i

{
〈βi〉
µ+ γi

, i = 1, 2

}
(2.41)

and again RT = RLO = R0.

2.3.4 Two Infected Classes: General Case

Now for the generalized form of the previous system. Consider the system:

dI1
dt

= β1(t)
SI1
N
− (µ(t) + γ1(t))I1

dI2
dt

= β2(t)
SI2
N
− (µ(t) + γ2(t))I2

dS

dt
= µ(t)N + γ1(t)I1 + γ2(t)I2 −

(
β1(t)

SI1
N

+ β2(t)
SI2
N

)
− µ(t)S

(2.42)

where the same assumptions hold as before for β1(t), β2(t), µ(t), γ1(t) and γ2(t). Then

F and V are:

F (t) =


β1(t)

SI1
N

β2(t)
SI2
N

0

 ,
.

V (t) = V − − V + =


(µ(t) + γ1(t))I1

(µ(t) + γ2(t))I2

β1(t)
SI1
N

+ β2(t)
SI2
N

+ µ(t)S − (µ(t)N + γ1(t)I1 + γ2(t)I2)


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Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, 0, N0), with N0 being the

initial population size. For the linear operator method, (A6) must be verified with:

M(t) := −µ(t). (2.43)

Solving the system dz
dt

= M(t)z in this case yields the principal fundamental matrix.

The monodromy matrix evaluated at the period ω is then ΦM(ω) = exp
(
−
∫ ω
0
µ(t)dt

)
and clearly (A6) is satisfied.

Define F (t) and V (t) as follows:

F (t) =

 β1(t) 0

0 β2(t)

 , V (t) =

 µ(t) + γ1(t) 0

0 µ(t) + γ2(t)

 .
Now (A7) must be verified, which requires looking at the system below:

dy

dt
=

 −(µ(t) + γ1(t)) 0

0 −(µ(t) + γ2(t))

 y
Solving gives the fundamental matrix:

Ψ−V (t) =

 exp
(
−
∫ t
0
(µ(s) + γ1(s))ds

)
0

0 exp
(
−
∫ t
0
(µ(s) + γ2(s))ds

)
 .

Clearly Ψ−1−V (0) = I, and so the monodromy matrix is the principal fundamental

matrix evaluated at the period ω. Then the spectral radius of the monodromy matrix

is

ρ(Φ−V (ω)) = max
j

(
exp

(
−
∫ ω

0

(µ(t) + γj(t))dt

))
< 1, j = 1, 2 (2.44)

So (A7) is satisfied.

Using the time-average method calculate FV −1 which is:

FV −1 =

 〈β1〉
〈µ+γ1〉 0

0 〈β2〉
〈µ+γ2〉

 .
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The spectral radius of this is then:

RT = ρ(FV −1) = max
i

{
〈βi〉
〈µ+ γi〉

, i = 1, 2

}
(2.45)

For the linear operator method, consider the following ω-periodic system:

dw1

dt
=

[
−(µ(t) + γ1(t)) +

β1(t)

λ

]
w1

dw2

dt
=

[
−(µ(t) + γ2(t) +

β2(t)

λ

]
w2

(2.46)

which has fundamental matrix:

ΨF−V (t) =

 e(
1
λ

∫ t
0 (β1(s)ds−

∫ t
0 (µ(s)+γ1(s))ds) 0

0 e(
1
λ

∫ t
0 (β2(s)ds−

∫ t
0 (µ(s)+γ2(s))ds)

 .
The monodromy matrix is as defined before, so solve for λ0 such that ρ(ΦF−V (ω)) = 1,

which happens exactly when the exponent equals 0. This yields:

RLO = λ0 = max
i

{
〈βi〉
〈µ+ γi〉

, i = 1, 2

}
(2.47)

and again RT = RLO = R0.

2.3.5 Modified Vector-Host Model: Version 1

Consider a modified vector-host model in which vectors get infected by other

vectors at a rate βv(t) and hosts get infected by vectors at a rate βh(t). Vectors die

at a rate µv(t) and hosts die at a rate of µh(t). The infection is cleared by hosts at a

rate γ(t). The system then becomes:

dIv
dt

= βv(t)
SvIv
Nv

− µv(t)Iv

dIh
dt

= βh(t)
ShIv
Nh

− (µh(t) + γ(t))Ih

dSv
dt

= µv(t)Nv − βv(t)
SvIv
Nv

− µv(t)Sv

dSh
dt

= µh(t)Nh + γ(t)Ih − βh(t)
ShIv
Nh

− µh(t)Sh

(2.48)
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where the same assumptions hold as before for βv(t), βh(t), µv(t), µh(t) and γ(t). Then

F and V are:

F (t) =



βv(t)
SvIv
Nv

βh(t)
ShIv
Nh

0

0


,

V (t) = V − − V + =



µv(t)Iv

(µh(t) + γ(t))Ih

βv(t)
SvIv
Nv

+ µv(t)Sv − µv(t)Nv

βh(t)
ShIv
Nh

+ µh(t)Sh − µh(t)Nh − γv(t)Ih


.

Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, 0, Nv, Nh), where Nv and

Nh are the initial conditions. For the linear operator method, (A6) must be verified

with:

M(t) =

 −µv(t) 0

0 −µh(t)

 .
Solving the system dz

dt
= M(t)z in this case yields the principal fundamental matrix:

ΨM(t) =

 exp
(
−
∫ t
0
µv(s)ds

)
0

0 exp
(
−
∫ t
0
µh(s)ds

)
 .

Clearly Ψ−1M (0) = I and thus the monodromy matrix is the principal fundamental

matrix evaluated at the period:

ΦM(ω) =

 exp
(
−
∫ ω
0
µv(t)dt

)
0

0 exp
(
−
∫ ω
0
µh(t)dt

)


and clearly (A6) is satisfied.
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Define F (t) and V (t) as follows:

F (t) =

 βv(t) 0

βh(t) 0

 , V (t) =

 µv(t) 0

0 µh(t) + γ(t)

 .
Now (A7) must be verified:

dy

dt
=

 −µv(t) 0

0 −(µh(t) + γ(t))

 y.
Solving gives the fundamental matrix:

Ψ−V (t) =

 exp
(
−
∫ t
0
µv(s)ds

)
0

0 exp
(
−
∫ t
0
(µh(s) + γ(s))ds

)
 .

Clearly Ψ−1−V (0) = I, and so the monodromy matrix is as defined above. Then the

spectral radius of the monodromy matrix is

ρ(Φ−V (ω)) = max

(
exp

(
−
∫ ω

0

µv(t)dt

)
, exp

(
−
∫ ω

0

(µh(t) + γj(t))dt

))
< 1.

(2.49)

So (A7) is satisfied.

Using the time-average method calculate FV −1 which is:

FV −1 =

 〈βv〉
〈µv〉 0

0 0

 .
The spectral radius of this is then:

RT = ρ(FV −1) =
〈βv〉
〈µv〉

. (2.50)

For the linear operator method, consider the following ω-periodic system:

dw

dt
=

 βv(t)
λ
− µv(t) 0

βh(t)
λ

−(µh(t) + γ(t))

w
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which has fundamental matrix:

ΨF−V (t) =

 exp
(

1
λ

∫ t
0
(βv(s)ds−

∫ t
0
µv(s)ds

)
0

f(t) exp
(
−
∫ t
0
(µh(s) + γ(s))ds

)


where:

f(t) = exp
(
−
∫ t
0 (µh(s) + γ(s))ds

)(
1
λ

∫ t
0 βh(s)exp

(
1
λ

∫ t
0 βv(τ)dτ +

∫ t
0 (µh(τ) + γ(τ)− µv(τ))dτ

)
ds
)

It can be shown that ΨF−V (0) = I so the monodromy matrix is the fundamental ma-

trix evaluated at the period, ω. Solve for λ0 such that ρ(ΦF−V (ω)) = 1, which happens

exactly when the exponent for the first entry, the only diagonal entry that includes a

λ, equals 0. This yields:

RLO = λ0 =
〈βv〉
〈µv〉

(2.51)

and so they agree in their expression and RT = RLO = R0.

2.3.6 Modified Vector-Host Model: Version 2

Consider the system as before with the added infection of hosts by other hosts

at a rate βh(t) and hosts get infected by vectors at a rate βvh(t). The system is below:

dIv
dt

= βv(t)
SvIv
Nv

− µv(t)Iv

dIh
dt

= βvh(t)
ShIv
Nh

+ βh(t)
ShIh
Nh

− (µh(t) + γ(t))Ih

dSv
dt

= µv(t)Nv − βv(t)
SvIv
Nv

− µv(t)Sv

dSh
dt

= µh(t)Nh + γ(t)Ih − βvh(t)
ShIv
Nh

− βh(t)
ShIh
Nh

− µh(t)Sh

(2.52)
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where the same assumptions hold as before for βv(t), βvh(t), βh(t), µv(t), µh(t) and

γ(t). Then F and V are:

F (t) =



βv(t)
SvIv
Nv

βvh(t)
ShIv
Nh

+ βh(t)
ShIv
Nh

0

0


,

V (t) = V − − V + =



µv(t)Iv

(µh(t) + γ(t))Ih

βv(t)
SvIv
Nv

+ µv(t)Sv − µv(t)Nv

βvh(t)
ShIv
Nh

+ βh(t)
ShIv
Nh

+ µh(t)Sh − µh(t)Nh − γv(t)Ih


.

Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, 0, Nv, Nh), where Nv and

Nh are the initial conditions. For the linear operator method, (A6) must be verified

with:

M(t) =

 −µv(t) 0

0 −µh(t)

 .
Solving the system dz

dt
= M(t)z in this case yields the principal fundamental matrix:

ΨM(t) =

 exp
(
−
∫ t
0
µv(s)ds

)
0

0 exp
(
−
∫ t
0
µh(s)ds

)
 .

Clearly Ψ−1M (0) = I and thus the monodromy matrix is the principal fundamental

matrix evaluated at the period:

ΦM(ω) =

 exp
(
−
∫ ω
0
µv(t)dt

)
0

0 exp
(
−
∫ ω
0
µh(t)dt

)


and clearly (A6) is satisfied.
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Define F (t) and V (t) as follows:

F (t) =

 βv(t) 0

βvh(t) βh(t)

 , V (t) =

 µv(t) 0

0 µh(t) + γ(t)

 .
Now (A7) must be verified:

dy

dt
=

 −µv(t) 0

0 −(µh(t) + γ(t))

 y
Solving gives the fundamental matrix:

Ψ−V (t) =

 exp
(
−
∫ t
0
µv(s)ds

)
0

0 exp
(
−
∫ t
0
(µh(s) + γ(s))ds

)
 .

Clearly Ψ−1−V (0) = I, and so the monodromy matrix is as defined above. Then the

spectral radius of the monodromy matrix is

ρ(Φ−V (ω)) = max

(
exp

(
−
∫ ω

0

µv(t)dt

)
, exp

(
−
∫ ω

0

(µh(t) + γj(t))dt

))
< 1.

(2.53)

So (A7) is satisfied.

Using the time-average method calculate FV −1 which is:

FV −1 =

 〈βv〉
〈µv〉 0

0 〈βh〉
〈µh+γ〉

 .
The spectral radius of this is then:

RT = ρ(FV −1) = max

{
〈βv〉
〈µv〉

,
〈βh〉
〈µh + γ〉

}
. (2.54)

For the linear operator method, consider the following ω-periodic system:

dw

dt
=

 βv(t)
λ
− µv(t) 0

βvh(t)
λ

βh(t)
λ
− (µh(t) + γ(t))

w
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which has fundamental matrix:

ΨF−V (t) =

 exp
(

1
λ

∫ t
0
(βv(s)ds−

∫ t
0
µv(s)ds

)
0

f(t) exp
(

1
λ

∫ t
0
βvh(s)ds−

∫ t
0
(µh(s) + γ(s))ds

)


where:

f(t) = exp
(

1
λ

∫ t
0
βh(s)ds−

∫ t
0
(µh(s) + γ(s))ds

)
×(

1
λ

∫ t
0
βvh(s)exp

(
1
λ

∫ t
0
(βv(τ)− βh(τ)dτ +

∫ t
0
(µh(τ) + γ(τ)− µv(τ))dτ

)
ds
)

It can be shown that ΨF−V (0) = I so the monodromy matrix is the fundamental

matrix evaluated at the period, ω. Solve for λ0 such that ρ(ΦF−V (ω)) = 1, which

happens exactly when the exponent for diagonal entries equals 0. This yields:

RLO = λ0 = max

{
〈βv〉
〈µv〉

,
〈βh〉
〈µh + γ〉

}
(2.55)

and so they agree in their expression and RT = RLO = R0.

2.3.7 Vector-Host Model

Consider the system:

dIv
dt

= βv(t)
SvIh
Nv

− µvIv

dIh
dt

= βh(t)
ShIv
Nh

− (µh + γ)Ih

dSv
dt

= µvNv − βv(t)
SvIh
Nv

− µvSv

dSh
dt

= µhNh + γIh − βh(t)
ShIv
Nh

− µhSh

(2.56)

where the same assumptions hold as before for βv(t), and βh(t). Then F and V are:

F (t) =



βv(t)
SvIv
Nv

βh(t)
ShIv
Nh

0

0


,V (t) = V − − V + =



µvIv

(µh + γ)Ih

βv(t)
SvIh
Nv

+ µvSv − µvNv

βh(t)
ShIv
Nh

+ µhSh − µhNh − γIh


.
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Verification of (A1)-(A5) for both methods is simple from observation of the vectors

F and V . The model has a disease-free equilibrium, (0, 0, Nv, Nh), where Nv and Nh

are the initial population sizes. For the linear operator method, (A6) must be verified

with:

M(t) =

 −µv 0

0 −µh

 .
Solving the system dz

dt
= M(t)z in this case yields the principal fundamental matrix

which gives the monodromy as this matrix evaluated at the period:

ΦM(t) =

 e−µvt 0

0 e−µht


and clearly (A6) is satisfied.

Define F (t) and V (t) as follows:

F (t) =

 0 βv(t)

βh(t) 0

 , V (t) =

 µv 0

0 µh + γ

 .
Now (A7) must be verified:

dy

dt
=

 −µv 0

0 −(µh + γ)

 y.
Solving gives the principal fundamental matrix and so the monodromy matrix is:

Φ−V (ω) =

 e−µvω 0

0 e−(µh+γ)ω


and again (A7) is satisfied.

Using the time-average method calculate FV −1 which is:

FV −1 =

 0 〈βv〉
〈µv〉

〈βh〉
〈µh+γ〉

0

 .
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The spectral radius of this is then:

ρ(FV −1) =

√
〈βv〉〈βh〉
µv(µh + γ)

(2.57)

For the linear operator method, consider the following ω-periodic system:

dw

dt
=

 −µv βv(t)
λ

βh(t)
λ
−(µh + γ)

w

Now this system is difficult to solve, so consider the case where βv(t), βh(t) are square-

wave functions:

βv(t) =

 av : 0 < t < τ

bv : τ < t < ω
(2.58)

βh(t) =

 ah : 0 < t < τ

bh : τ < t < ω
(2.59)

So when 0 < t < τ the system becomes:

dw

dt
=

 −µv av
λ

ah
λ
−(µh + γ)

w

which has eigenvalues:

r1,2 = −1

2

{
(µh + γ + µv)±

√
(µh + γ − µv)2 +

4avah
λ2

}
. (2.60)

All quantities in the radical are > 0 so the radicand > 0,∀λ ∈ R. In this case the

fundamental matrix is:

Ψa(t) =

 av
λ
er1t (µh + γ + r2)e

r2t

(µv + r1)e
r1t ah

λ
er2t

 .
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Doing the same thing for the interval τ < t < ω gives:

Ψb(t) =

 bv
λ
eq1(t−τ) (µh + γ + q2)e

q2(t−τ)

(µv + q1)e
q1(t−τ) bh

λ
eq2(t−τ)


where

q1,2 = −1

2

{
(µh + γ + µv)±

√
(µh + γ − µv)2 +

4bvbh
λ2

}
. (2.61)

For the entire interval of interest, 0 < t < ω, the solution becomes:

Ψ(t) =

 Ψa(t)Ψ
−1
a (0) : 0 < t ≤ τ

Ψb(t)Ψ
−1
b (τ)Ψa(τ)Ψ−1a (0) : τ < t ≤ ω

(2.62)

The monodromy matrix is then:

ΦF−V (ω) = Ψ(ω) (2.63)

Getting an explicit solution is challenging as it requires finding each piece in the so-

lution for the entire interval then multiplying those matrices together for the final

solution. It can be done, and once it is, the real difficulty comes when trying to find

the spectral radius of the monodromy matrix, ΦF−V (ω). The eigenvalues for this

matrix are difficult expressions so finding the largest eigenvalue, the spectral radius,

becomes even more challenging. It can also be done but when trying to solve the

spectral radius for a λ0 such that ρ(ΦF−V (ω)) = 1, the result is a transcendental

equation and so work from here must be done numerically. For the set of parame-

ters in Table 4.1, the equation ρ(ΦF−V (ω)) = 1 is solved numerically in Mathematica

and graphed as a function of τ where 0 < τ < ω. This gives a graph for RLO. For

comparison, RT is also graphed as a function of τ . The results are shown in Figure 2.1:
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Table 2.1. Parameter values for (2.56)

Parameter Value

ah 0.7875
bh 1.7325
av 2.3625
bv 0.7875
µh 1
µv 1
γ 1

Figure 2.1. Graphs of (2.56) that shows RT (black) and RLO (gray) for varying values
of τ . The dashed and dotdashed lines represent the basic reproductive numbers of
the autonomous systems where βj = aj (τ = ω) and βj = bj (τ = 0).

The graph clearly shows that the time average method produces a reproductive

number that goes above 1 while the linear operator method always stays below 1. So

clearly they are predicting different disease behaviors for a certain range of τ values.

To see how the system behaves for the given set of parameters, simulations are run
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in Matlab to see the end time result. Figure 2.2 below shows this:

Figure 2.2. Simulation of (2.56) for the set of parameters in which RLO < 1 < RT ,
shows the disease-free equilibrium to be stable.

So the disease actually dies out over time given the parameters used to get

Figure 2.1. It would seem that the time average method actually overestimates the

disease transmission risk in this case. So why then did the other models agree in their

expression, yet this simple model does not? This would seem to suggest that RT is

not the correct R0 for the system but that RLO is.

2.4 Theorem

So when do the expressions for RT and RLO = R0 agree? In their paper [51],

Wang and Zhao proved that for models where the F (t) and V (t) matrices are constant

or diagonal, the two methods would produce the same expression for R0. However,

this result can extend further. In looking at the examples, one can notice that with
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all the models that agree for the methods, the matrices F (t) and V (t) are either

diagonal or triangular. This leads to the following theorem.

Theorem 1. Consider an n-dimensional ω-periodic system with m infected classes.

If the m×m matrices F (t) and V (t) are triangular of the same form, that is they are

both upper or lower triangular, then the time-average method for calculating R0 gives

the same expression as the linear operator method.

To prove this a theorem is needed from [48].

Theorem (2.5). If A(t) is a periodic lower triangular matrix function



a11(t) 0 · · · 0

a21(t) a22(t) · · · 0

· · · · · · · · · · · ·

an1(t) an2(t) · · · amm(t)


then the characteristic multipliers of the system Ẋ = A(t)X are given by

exp
(∫ ω

0
a11(t)dt

)
, exp

(∫ ω
0
a22(t)dt

)
, · · · , exp

(∫ ω
0
amm(t)dt

)
, and a set of Floquet ex-

ponents are given by

1

ω

∫ ω

0

a11(t)dt,
1

ω

∫ ω

0

a22(t)dt, · · · ,
1

ω

∫ ω

0

amm(t)dt. (2.64)

The result holds for upper triangular matrices as well. Now to the proof of

Theorem 1.

Proof. Suppose without loss of generality that they are lower triangular matrices,

that is:

F (t) =



a11(t) 0 · · · 0

a21(t) a22(t) · · · 0

...
...

. . .
...

an1(t) an2(t) · · · amm(t)


39



V (t) =



b11(t) 0 · · · 0

b21(t) b22(t) · · · 0

...
...

. . .
...

bn1(t) bn2(t) · · · bmm(t)


For the time average method replace each of the functions in the matrix with their

long time-average and calculate the matrix FV −1:

FV −1 =



〈a11〉
〈b11〉 0 · · · 0

∗ 〈a22〉
〈b22〉 · · · 0

...
...

. . .
...

∗ ∗ · · · 〈amm〉
〈bmm〉


Since the eigenvalues sit on the diagonal, the factors ∗ below the diagonal will not

matter in the calculation of the spectral radius. The spectral radius is then:

RT = max

{
〈a11〉
〈b11〉

,
〈a22〉
〈b22〉

, · · · , 〈amm〉
〈bmm〉

}
(2.65)

For the linear operator method consider the system:

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R (2.66)

The matrix for this system is lower triangular and so using Theorem 2.5 from [48]

the eigenvalues are the exponents of the integrals of the entries on the diagonals. The

diagonal entries are:

1

λ

∫ ω

0

(aii(t)− bii(t)) dt, 1 ≤ i ≤ m. (2.67)

When this equation is solved for the spectral radius it gives the max of all the ex-

pressions. Then this is solved for λ0 equal to 1. Doing so gives an expression for

R0:

RLO = max

{
〈a11〉
〈b11〉

,
〈a22〉
〈b22〉

, · · · , 〈amm〉
〈bmm〉

}
(2.68)
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and so the two methods agree in their expression for R0

Notice this condition is a sufficient one. There may be cases where they agree

in their expression but the matrices are not triangular. The time-average method is

much easier to implement in these systems as finding FV −1 is easier than having to

solve the system (4.9). However, since RLO is the correct expression for R0 to use the

time-average method, the system must be in the form of these special matrices. This

does give a nice way to find R0 for these periodic systems.

The case of one infected class is a special case since the solution for (4.9) would

be a scalar. This is a special case of the theorem since scalar systems are trivially

diagonal or triangular. This says that no matter how complicated the compartmen-

talization of the model, if the infected class is homogeneous the long-term average

determines persistence. So it allows the use of the time-average method instead of

the linear operator method and the expression for the basic reproductive number will

always be the same.

It should be noted that it is not always the case that the time-average RT

will overestimate the disease transmission risk. Wang and Zhao in [51] found an

example where the time-averaged system underestimates the disease transmission

risk. Many more examples were given in [8] of the time average system overestimating

or underestimating the disease transmission risk.

Now that there is a precise way to calculate the basic reproductive number

for periodic systems, the next step is to extend this method to invasion reproductive

numbers. For autonomous systems, the methods were similar to methods to calculate

the BRN, so it would seem trying to extend the linear operator method, now that it

is shown to be the correct method, is the best course of action. First, a guideline for
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calculating numerically the BRN when an explicit form of the fundamental matrix

cannot be found is presented.

2.5 Numerical Methods

The previous examples highlighted ways in which the different methods could

be applied and when they agreed and disagreed in their representation of the BRN.

All the example were either triangular and thus the time-average method could be

used, or in the case of the last example, an explicit matrix was found for the funda-

mental solution matrix of the system. However, in most cases, this cannot be done.

The systems that (4.9) produces typically cannot be solved by hand and so numerical

methods must be used to try and find the BRN. In fact even in the last example,

since the fundamental matrix had λ in it, in order to find the BRN a transcendental

equation must be solved. This had to be done numerically and so an explicit expres-

sion for the BRN could not be found. In general, an explicit expression for any BRN

using the linear operator method cannot be found, and so numerical work must be

done.

Generally when solving a system of ordinary differential equations, all that is

wanted is a single solution to understand what the system does for a given set of

parameters. For the linear operator method for finding a BRN this is not enough.

One must find a fundamental matrix, which means that for an n-dimensional system,

one must find n linear independent solutions. Each solution can be found in multiple

ways, but first one must determine that each solution is indeed linearly independent

from the others. For this one needs only to ensure that each initial condition is

linearly independent from the others. The easiest way to do this is to use a standard

basis, where each initial condition is just a unit vector of the appropriate size. This

guarantees, at least algebraically, that the solutions will be linearly independent.
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As stated before, the solutions can be found in multiple ways. For a given value

of λ, the solutions are found using some numerical method. This could be something

as simple as Runge-Kutta methods or even Euler’s method. These of course only

produce approximations of the solution, and thus can at least give an approximation

of the fundamental matrix as well. Once the solutions have been found, the next

step is to build the fundamental matrix, Ψ(t), with each column being a solution.

The fundamental matrix depends on λ and so to find it, λ is fixed. This matrix is

then evaluated at the period and to use the linear operator method the maximum

eigenvalue is found, ρ(Ψ(ω)). The BRN is then the root λ of ρ(Ψ(ω)) − 1. To find

this value of λ use some root finding method, the easiest being the bisection method.

Though this does not explicitly give a formula for finding the BRN numerically

using the linear operator method, it does give some guidelines for how it can be done.

One must choose the numerical techniques they deem best for finding the fundamental

matrix.

43



CHAPTER 3

Invasion reproductive numbers for periodic epidemic models

The basic reproductive numbers from the last chapter are useful tools in study-

ing epidemics. They give conditions on when a disease-free equilibrium is stable or

unstable. Unfortunately many infections persist endemically in affected populations.

When they do it is important to understand when, if ever, other infections can in-

vade this system. These invasions could have multiple effects on the population.

One possibility when coinfection is not possible is competitive exclusion since these

pathogens are competing for the same resource, susceptible individuals, it could be

that one pathogen holds an advantage and will thus win the competition over the

other pathogen. However, there is also the case both pathogens could co-persist at

endemic levels within the population.

In order to study these scenarios, invasion reproductive numbers (IRNs), often

denoted R̃i where i is the invading infection, are used. Using this notation the set

of resident infections is made implicit. The IRN of one pathogen with respect to

another or the others is defined as the average number of secondary infections caused

by introducing one person infected with that pathogen into an environment where

the given combination of other pathogen(s) is already at an endemic state [55]. These

are often used in studies where competitive exclusion exists [55, 44] and they measure

the ability of a pathogen to invade while other pathogens are already at equilibrium.

However, one can define a different IRN, R̃0, where each invading strain is joined

into one category and not distinguished from each other. Then R̃0 is the expected

number of secondary cases one infected individual with some infection not resident
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in the population produces in a population where all (and only) infections assumed

to be resident are present. It measures the ability of pathogens to invade while

other pathogens are already at equilibrium without distinguishing which pathogen is

actually able to invade.

Most models that calculate these values only do so for two infections [55, 44, 15],

that is for a system with k infections where k = 2 the resident infection is implicit.

It is possible, however, to consider multiple infections, though the models will be

very complex. When k > 2, the resident infections must be made explicit. IRNs

are associated with the same kind of threshold behavior as BRNs: if a pathogen’s

IRN is greater than 1 then the pathogen can invade even though the other pathogen

has established itself at some endemic level within the population. The methods

for finding invasion reproductive numbers are similar to those for basic reproductive

numbers, only the system is assumed to be at an endemic equilibrium for at least one

of the infections.

In those cases where the number of infections in the populations is greater

than 2, one will not be able to distinguish between which infection or infections are

indeed successfully invading when R̃0 > 1, where R̃0 is calculated with each possible

invading infection joined together. Individual IRNs would need to be calculated in

these scenarios to see if the results can be related to each other. In the examples that

follow, only one resident infection and one invading infection are considered.

As stated before, most studies that use IRNs only calculate them for two infec-

tions, and even then only do so for their own particular models. It is because of this

that there has been no explicit formula or guide to follow when calculating invasion

reproductive numbers. In the case of autonomous models, many follow the methods

of van den Driessche and Watmough [50] by extending their methods for the basic

reproductive number to models involving more than one infection. This will be done
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in the following section. For nonautonomous cases it becomes a little more difficult,

as it was in calculating BRNs for these models. One can extend similar results by

using the time-average method and replace each periodic parameter in the system

with its long-time average. This reduces to an autonomous model and the methods

described below can be used. This was done in [41] for an non-autonomous multi-

strain SIS epidemic model. As in the case for BRNs, however, this will not always

give the true threshold value. First what will be done is to show the extension of the

methods for calculating BRNs for autonomous models to calculating IRNs for those

same models. Then the next section will extend the methods originated by Bacäer

and elaborated by Wang and Zhao [51] for BRNs to IRNs to obtain the same results

for nonautonomous systems.

3.1 Autonomous systems

3.1.1 AR̃0

Consider a similar setup to van den Driessche and Watmough [50]. Let x =

(x1, ..., xn)t, with each xi ≥ 0, be the number of individuals in each compartment.

Assume that there are k different infections, either multiple strains of the same infec-

tion or competing infections of different types, and let A ⊆ {1, ..., k} be a subset of

these infections where each infection in A is resident within the population. By using

this approach, an exploitation can be made in the fact that the first step in next

generation operator methods is epidemiological. This allows the reclassification of

resident infections to be considered non-infected. Now one can calculate the invasion

reproductive number of all the infections not in A with respect to all the infections in

A, that is, the IRN of Ac where Ac denotes the complement of A in {1, . . . , k}. This

invasion reproductive number will be denoted as AR̃0. In order to do so, a reclassifi-
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cation is done as to what constitutes an infection. The IRN is calculated for the set

of infections j ∈ Ac and so only those classes with such infection, including single and

co-infected classes, are considered to be infected. The invasion reproductive number

is the expected number of secondary cases one infected individual with some infection

j ∈ Ac produces in a population where all (and only) infections in A are resident.

The compartments are then arranged so that the first m compartments corre-

spond to infected individuals with infections from Ac. Define EAc to be the set of all

Ac-infection free states, that is,

EAc = {x ≥ 0|xi = 0, i = 1, ...,m} . (3.1)

Let Fi(x) be the rate of new infections in compartment i, V +
i (x) be the rate of

transfer into compartment i by all other means, and V −i (x) be the rate of transfer

out of compartment i. Assume that each function is continuously differentiable at

least twice in each variable. Now the model becomes:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ..., n, (3.2)

where Vi = V −i − V +
i . In addition, these functions need to satisfy the following

assumptions:

• (A1) If x ≥ 0, then Fi,V
+
i ,V

−
i ≥ 0 for i = 1, ...n

• (A2) If xi = 0 then V −i = 0. If x ∈ EAc , then V −i = 0 for i = 1, ...m

• (A3) Fi = 0 if i > m

• (A4) If x ∈ EAc then Fi = 0 and V +
i = 0 for i = 1, ...m

• (A5) If Fi is set to zero, then all eigenvalues of Df(x0) have negative real parts,

for some A-endemic equilibrium, x0 ∈ EAc

For (A3), no new invading infections can happen in those classes that are considered

non-infected classes. (A4) states that if the system is at a state free of infections in
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Ac, then it will stay that way. The last assumption, (A5), states that there exists

a stable endemic equilibrium of the system in the absence of any new infections. In

order for this to be true, one must assume that the basic reproductive number for that

particular infection is greater than 1. This guarantees that the endemic equilibrium

exists. This allows the matrix Df(x0) to be partitioned using the following lemma.

Lemma 1. Assume R0 > 1. If x0 ∈ EAc is an equilibrium free of infections in Ac

of (3.2) and fi(x) satisfies (A1)-(A5), then the derivatives DF (x0) and DV (x0) are

partitioned as

DF (x0) =

 F 0

0 0

 , DV (x0) =

 V 0

J3 J4


where F and V are the m×m matrices defined by

F =

[
∂Fi

∂xj
(x0)

]
V =

[
∂Vi
∂xj

(x0)

]
1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues of J4

have positive real part.

Proof is similar to [50]. The difference here in the Lemma is that it requires

R0 > 1 in the hypothesis. This is important to distinguish between a disease-free

equilibrium and an Ac-free equilibrium. By requiring that R0 > 1 then the disease-

free equilibrium can never be stable.

Now the invasion reproductive number can be calculated. The goal here is to

see if the extension of the method for the BRN will give the same threshold behavior

for the IRN for some Ac-infection free equilibrium. That is, if R0 > 1 and AR̃0 < 1,

then the Ac-infection free equilibrium, x0, is stable, but if AR̃0 > 1 then it is unstable.

Recall that the invasion reproductive number is the expected number of secondary

cases one infected individual with some infection j ∈ Ac produces in a population
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where all (and only) infections in A are resident. This definition can be interpreted

by looking at the entries of FV −1. Thus we can mathematically define AR̃0 as:

AR̃0 = ρ(FV −1) (3.3)

where ρ(A) is the spectral radius of the matrix A. This leads to the following theorem.

Lemma 2. Consider the disease transmission model given by (3.2) with f(x) satisfy-

ing conditions (A1)-(A5). Assume R0 > 1. If x0 is an Ac-infection free equilibrium of

the model, then x0 is locally asymptotically stable if AR̃0 < 1, but unstable if AR̃0 > 1,

where AR̃0 is defined before.

Proof is done in a similar way to [50], the differences being epidemiologically as

described above where only those infections from Ac are considered infected.

The only issue with this method is that it loses the ability to distinguish among

each infection invading. All the theorem states is that if some infection from Ac

invades then the Ac-infection free equilibrium is unstable. However, each individual

infection j ∈ Ac has an invasion reproductive number. In fact, one can define this

IRN, AR̃j, as the number of secondary infections which one infected individual with

infection j produces in a population where all (and only) infections in A are present.

To use this definition to study stability, one would need to calculate the individual

IRN for each infection j ∈ Ac. The theorem for this procedure would be similar

to the theorem above except the equilibrium would be stable if maxj(AR̃j) < 1 and

unstable if max(AR̃j) > 1. This is difficult to prove in that it involves comparison of

eigenvalues of matrices and submatrices. In order to find out which infection does

invade in the case where AR̃0 > 1, what will be calculated is the individual infection

IRN AR̃j by making assumptions about other infections other than j that are not

resident within the population.
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3.1.2 Calculating infection j invasion reproductive numbers, AR̃j

The limitation of the overall invasion reproductive number is that it does not

distinguish which pathogen(s) can invade successfully if indeed AR̃0 > 1. To address

this consider only one infection, i.e. j ∈ Ac, invading at a time. The question in

deriving AR̃j then becomes what to do with those infections which are not resident

but are also not invading. There are two ways to address this. The first is to consider

them to be non-infected classes. This creates a set up similar to before. In fact, the

method as described above is the same except that the matrices F and V would only

be smaller since it is assumed that only one infection can invade. Since the other

classes are now considered to be not infected, they are moved to the bottom of the

model similar to the infections assumed to be resident. The procedure is followed as

outlined above and this will give some expression for the IRN of infection j.

The other way to define a single-infection invasion reproductive number is to

consider all the infections not resident nor invading as not part of the system. This re-

duces the original system by setting aside those equations and considering the smaller

system with only the invading infection and the resident infections. The classes for

co-infection involving those infections are also not considered. This means that the

system is of smaller dimension; thus the equilibrium stability is in a smaller subspace

than the original system. The method is done in the same way as before and stabil-

ity results hold for AR̃j < 1 and unstable for AR̃j > 1, but for the smaller subspace

equilibrium. The question is, does this relate to the original space EAc? The main

thing that can be said is that if AR̃j > 1 then the instability of the Ac-infection free

equilibrium in the smaller system will indeed relate back to the original system. If it

is unstable in the smaller subspace then it is unstable in the larger space. This would

mean that indeed infection j can invade and is at least one of the invading strains
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if there are others. However, if AR̃j < 1 then yes the smaller subspace system has a

stable equilibrium but in the context of the original system not much can be said.

This does show that infection j cannot invade and so if AR̃0 > 1 then one or more of

the other infections are invading and not infection j.

If one only cares about the stability of a given endemic equilibrium then AR̃0

is sufficient for that, but if one wishes to determine specifically which infection(s)

can invade, then AR̃j can be derived for every single possible invading strain to find

out which one is causing the instability of the A-endemic equilibrium of the original

system. What was done here was to describe two ways to calculate AR̃j, by considering

those infections not resident and not invading as part of the system or not. However,

which method is best for calculating AR̃j is still open to discussion. It appears both

methods give the same result and so it may be that each system must be studied on

a case by case basis to determine which method will be better served for finding some

expression for AR̃j. This will require more work to be done in the future.

3.1.3 Example

Consider the following model in which 2 infections spread through a popula-

tion. Susceptibles become infected when coming into contact with an individual with

infection one or two at a rate β1, β2 respectively. These infections are cleared at a

rate of γ1, γ2 respectively as well. There is a mortality rate for all classes of µ. In this

example it is also assumed that coinfection can occur. In this case, an infected indi-

vidual with infection 1 can come in contact with an someone infected with infection

2 and will move into the coinfection class. k1 and k2 are multipliers that represent
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the influence of a primary infection on the rate of (or susceptibility to) coinfection.

This leads to the following system:

dI1
dt

= β1S

(
I1
N

+
I12
N

)
− k1β2I1

(
I2
N

+
I12
N

)
− (µ+ γ1)I1 + γ2I12

dI2
dt

= β2S

(
I2
N

+
I12
N

)
− k2β1I2

(
I1
N

+
I12
N

)
− (µ+ γ2)I2 + γ1I12

dI12
dt

= k1β2I1

(
I2
N

+
I12
N

)
+ k2β1I2

(
I1
N

+
I12
N

)
− (µ+ γ1 + γ2)I12

dS

dt
= µN + γ1I1 + γ2I2 − (β1S

(
I1
N

+
I12
N

)
+ β2S

(
I2
N

+
I12
N

)
)− µS

(3.4)

Assume that infection 2 is resident within the population. Then the equations are

reordered so that only those classes considered to be infected are at the beginning.

In this example that would be classes I1 and I12. The system when this is done will

be:

dI1
dt

= β1S

(
I1
N

+
I12
N

)
− k1β2I1

(
I2
N

+
I12
N

)
− (µ+ γ1)I1 + γ2I12

dI12
dt

= k1β2I1

(
I2
N

+
I12
N

)
+ k2β1I2

(
I1
N

+
I12
N

)
− (µ+ γ1 + γ2)I12

dI2
dt

= β2S

(
I2
N

+
I12
N

)
− k2β1I2

(
I1
N

+
I12
N

)
− (µ+ γ2)I2 + γ1I12

dS

dt
= µN + γ1I1 + γ2I2 − (β1S

(
I1
N

+
I12
N

)
+ β2S

(
I2
N

+
I12
N

)
)− µS

(3.5)

Then F and V are:

F =



β1S
(
I1
N

+ I12
N

)
k2β1I2

(
I1
N

+ I12
N

)
0

0


,

V = V − − V + =



k1β2I1
(
I2
N

+ I12
N

)
+ (µ+ γ1)I1 − γ2I12

(µ+ γ1 + γ2)I12 − k1β2I1
(
I2
N

+ I12
N

)
k2β1

I1I2
N

+ (µ+ γ2)I2 − β2S
(
I2
N

+ I12
N

)
− γ1I12

β1S
(
I1
N

+ I12
N

)
+ β2S

(
I2
N

+ I12
N

)
+ µS − µN − γ1I1 − γ2I2


.
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Verification of (A1)-(A5) is simple from observation of the matrices. Since it is as-

sumed that infection 2 is resident within the population, there exists an endemic

equilibrium, (0, 0, I∗2 , S
∗), when R2 > 1. The system is assumed to be at this equilib-

rium.

Define F (t) and V (t) as follows:

F =

 β1
S∗

N
β1

S∗

N

k2β1
I∗2
N

k2β1
I∗2
N

 , V =

 k1β2
I∗2
N

+ µ+ γ1 −γ2

−k1β2 I
∗
2

N
µ+ γ1 + γ2

 .
The eigenvalues of the matrix FV −1 are:{

0,
β1(N + I∗2 (k2 − 1))

(µ+ γ1)N

}
(3.6)

and AR̃0 = ρ(FV −1).

In this example, AR̃0 is really just 2R̃1 or R̃1, since infection 2 is the only resident

infection. It should be noted that 1R̃2 can be calculated in an analogous way by

assuming that infection 1 is resident. The only differences in the final value will be

that 1 and 2 will be switched in each subscript. R̃1 ends up being a weighted average

among the susceptibles and the already infected.

3.2 Nonautonomous Systems

3.2.1 AR̃0

For nonautonomous systems, the same methods described for the basic repro-

ductive number will be extended to invasion reproductive numbers. The first method

would be to try a time-average method. The system could be changed to an au-

tonomous system by simply using the long-time averages for the parameters that are

varying with time [41]. By doing this, each periodic parameter is now just some con-

stant, and this reduces the nonautonomous system to an autonomous system. The

method described for autonomous systems above can now be used and an expression
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for the IRN can be found as ρ(FV −1). Unfortunately, as in the BRN case, this will

not always yield the correct value for the IRN since it may overestimate or underesti-

mate the capability of the invading infections. The rest of this chapter will focus on

extending the linear operator method to calculate IRNs for nonautonomous systems.

As in the basic reproductive number methods described before, it will be shown that

this linear operator method will indeed produce the correct expression for the inva-

sion reproductive number. So from here on, AR̃T will represent the time-average IRN

whereas AR̃0 will represent the linear operator IRN.

Consider a setup similar to [51] where a heterogeneous population is grouped

into n homogeneous compartments. There are parameters of the system that are

assumed to be ω-periodic and so this is a non-autonomous system. Assume that there

are k different infections and let A ⊆ {1, ..., k} be a subset of these infections where

each infection in A is again assumed to be resident within the population. This again

allows for the use of the exploitation in the fact that the first step in linear operator

methods is epidemiological as was done in the autonomous case. Since the first steps

here are epidemiological, one can reclassify the resident infections as non-infected.

Now one can calculate the invasion reproductive number of all infections not in A,

that is ∀j ∈ Ac where Ac is considered to be A complement. The IRN is calculated

for infections in Ac and so only those classes with these infections, including single

and co-infected classes, are considered to be infected.

The compartments are then arranged so that the first m compartments corre-

spond to infected individuals with infections from Ac. Consider again the set EAc

to be all Ac-free states, where now values in EAc can be periodic solutions and not

just equilibria. Let Fi(t, x) be the input rate of newly infected individuals in the ith
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compartment, V +
i (t, x) be the input rate of individuals by other means and V −i (t, x)

be the rate of transfer out of compartment i. The model is then given by:

dxi
dt

= Fi(t, x)− Vi(t, x) = fi(t, x), i = 1, ..., n (3.7)

where Vi = V −i − V +
i . Similar to autonomous models, the following assumptions

must be made. They again show the model is well posed and makes biological sense.

Assumptions (A1), (A3), (A4), and (A5) correspond to assumptions (A1)-(A4) of the

autonomous case. The only new one here is (A2) which states that there are periodic

coefficients in the system.

• (A1) For each 1 ≤ i ≤ n, the functions Fi(t, x),V +
i (t, x), and V −i (t, x) are

nonnegative and continuous on R × Rn
+ and continuously differentiable with

respect to x.

• (A2) There is a real number ω > 0 such that for each 1 ≤ i ≤ n, the functions

Fi(t, x),V +
i (t, x), and V −i (t, x) are ω-periodic in t.

• (A3) If xi = 0 then V −i (t, x) = 0. If x ∈ EAc , then V −i (t, x) = 0 for i = 1, ...m.

• (A4) Fi(t, x) = 0 if i > m.

• (A5) If x ∈ EAc then Fi(t, x) = 0 and V +
i (t, x) = 0 for i = 1, ...m.

In addition to these assumptions, two more must be verified. These are separated

because the systems that need to be solved for them are nonautonomous and thus

require new conditions based on monodromy matrices. The first assumption, (A6), is

similar to (A5) in the autonomous case. Assume the model has an Ac-infection free

periodic solution x0(t). Define an (n−m)× (n−m) matrix

M(t) :=

(
∂fi(t, x0(t))

∂xj

)
m+1≤i,j≤n

. (3.8)

Let ΦM(t) be the monodromy matrix of the linear ω-periodic system dz
dt

= M(t)z. It

must be verified that x0(t) is linearly asymptotically stable in the Ac-infection free
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subspace, EAc . To do this one need to show that the spectral radius of the monodromy

matrix is less than one, or (A6) ρ(ΦM(ω)) < 1.

Following the notation from [50], define two m×m matrices by

F (t) =

[
∂Fi(t, x0(t))

∂xj

]
1≤i,j≤m

, V (t) =

[
∂Vi(t, x0(t))

∂xj
(x0)

]
1≤i,j≤m

.

Let Y (t, s), t ≥ s be the evolution operator of the linear ω-periodic system dy
dt

=

−V (t)y. That is for each s ∈ R the m×m matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I (3.9)

where I is the m×m identity matrix. The monodromy matrix Φ−V (t) of the system

then equals Y (t, 0), t ≥ 0. The last assumption that must be verified is that the

internal evolution of individuals in the infectious compartments is dissipative, and

exponentially decays in many cases. So assume that (A7) ρ(Φ−V (ω)) < 1.

The theory for nonlinear autonomous systems has been well established for

studying stability of equilibria. In 1960, the Hartman-Grobman thereom was proved

showing that the local behavior of the system around a hyperbolic equilibrium point

can be studied using the linearized system around the same point [7]. In 1975 this

theorem was extended by Kenneth Palmer to non-autonomous systems [42]. This

allows the use of the linearized system in (A6) to be used to study the stability of the

j-infection free solution.

Based on the assumptions (A1)-(A7), the invasion reproductive numbers for

the epidemic model can be analyzed. Always assume the population is near the Ac-

infection free periodic state x0(t). By standard theory of linear periodic systems, [32],

there exists a K > 0 and α > 0 such that

‖Y (t, s)‖ ≤ Ke−α(t−s), ∀t ≥ s, s ∈ R. (3.10)
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It then follows that

‖Y (t, t− a)F (t− a)‖ ≤ K‖F (t− a)‖e−αa,∀t ∈ R, a ∈ [0,∞). (3.11)

With the model being periodic, suppose that φ(s), which is ω-periodic in s, is

the initial distribution of infectious individuals. Then F (s)φ(s) is the distribution

of those infected who were introduced at time s. Given t ≥ s, then Y (t, s)F (s)φ(s)

gives the distribution of those infected individuals who were newly infected at time s

and remain infected at time t. Then

ψ(t) :=

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da (3.12)

is the distribution of accumulative new infections at time t produced by all those

infected individuals introduced at previous time to t. Recall that infectious here

means infectious only with respect to infection j.

Let Cω be the ordered Banach space of all ω-periodic functions from R to Rm,

with the max norm and the positive cone C+
ω := {φ ∈ Cω : φ(t) ≥ 0,∀t ∈ R}. Now

define a new linear operator L : Cω → Cω by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da,∀t ∈ R, φ ∈ Cω. (3.13)

Call L the next infection operator, following the motivation of van den Driessche and

Watmough, and then the spectral radius of L is given by:

AR̃j := ρ(L) (3.14)

for the periodic epidemic model.

As before with autonomous systems, the question becomes does the invasion

reproductive number hold the same threshold behavior for stability of the Ac-infection

free equilibrium? First a simplification needs to be done. Using the linear operator

can prove difficult, so generally one can use an equivalent system to find the IRN.
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Consider the linear ω-periodic equation

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R (3.15)

with parameter λ ∈ (0,∞). Let W (t, s, λ), t ≥ s, s ∈ R be the evolution operator of

the system (3.15) on Rm. Wang and Zhao showed that the linear operator W (t, s, λ)

is positive in Rm for each t ≥ s, s ∈ R. The Perron-Frobenius theorem implies that

ρ(W (ω, 0, λ)) is an eigenvalue of W (ω, 0, λ) with a nonnegative eigenvector. This

gives the following theorems from [51]:

Theorem (2.1). i. If ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an

eigenvalue of L, and hence AR̃0 > 0.

ii. If AR̃0 > 0, then λ =A R̃0 is the unique solution of ρ(W (ω, 0, λ)) = 1.

iii. AR̃0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 ∀λ > 0.

Theorem (2.2). i. AR̃0 = 1 if and only if ρ(ΦF−V (ω)) = 1

ii. AR̃0 > 1 if and only if ρ(ΦF−V (ω)) > 1

iii. AR̃0 < 1 if and only if ρ(ΦF−V (ω)) < 1

Thus the Ac-free solution, x0(t), is asymptotically stable if AR̃0 < 1 and unstable

if AR̃0 > 1.

Proofs of these theorems are similar to [51]. These results show that to find the

invasion reproductive number, one needs to find the monodromy matrix, ΦF−V (t) of

the system (3.15) and evaluate it at the period, ω. Then find the spectral radius of

ΦF−V (ω) and solve the equation ρ(ΦF−V (ω)) = 1 for λ. This λ is the overall invasion

reproductive number AR̃0. The threshold behavior for the Ac-free solution can then be

studied. In many cases, it is not possible to analytically find the monodromy matrix.

In these cases numerical work, described in section 3.2.4, will have to be done to find

the IRN.
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One other issue is the method of using the time-average rather than this linear

operator method. As in the case of the nonautonomous basic reproductive number,

there are cases where both methods would agree in their expression for AR̃0. In fact

the theorem can be extended here for the IRN.

Theorem 2. Consider an n-dimensional ω-periodic system with m infected classes.

If the m × m matrices F (t) and V (t) are triangular of the same form, that is they

are both upper or lower triangular, then the time-average method for calculating the

invasion reproductive number gives the same expression as the linear operator method.

That is AR̃T=AR̃0.

The case of one invading infection is a special case. One needs to be careful

when trying to apply the theorem in this case. Notice that this theorem says that

the matrices F (t) and V (t) must be triangular of the same form. If there is only one

infected class when dealing with the single invading infection, then the matrices are

trivially triangular and so the methods will agree. This would occur if there were no

coinfection classes. If however, there are coinfection classes then the matrices F (t)

and V (t) will be m ×m matrices and thus must be triangular of the same form to

be able to use each method to achieve the same expression for AR̃0. An example will

be given later to show that indeed not every model will allow for both methods to

produce the same result, just as in the BRN case.

3.2.2 Calculating infection j IRNs for nonautonomous models, AR̃j

As in the autonomous case, the limitation of the overall invasion reproductive

number is that it does not distinguish which pathogen(s) can invade successfully if

indeed AR̃0 > 1. To address this consider only one infection, i.e. j ∈ Ac, invading at

a time. The question in deriving AR̃j then becomes what to do with those infections

which are not resident but are also not invading. There are two ways to address this.
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The first is to consider them to be non-infected classes. This creates a set up similar

to before. In fact, the method as described above is the same except that the matrices

F (t) and V (t) would only be smaller since it is assumed that only one infection can

invade. Since the other classes are now considered to be not infected, they are moved

to the bottom of the model similar to the infections assumed to be resident. The

procedure is followed as outlined above and this will give some expression for the

IRN of infection j.

The other way to define a single-infection invasion reproductive number is to

consider all the infections not resident nor invading as not part of the system. This re-

duces the original system by setting aside those equations and considering the smaller

system with only the invading infection and the resident infections. The classes for

co-infection involving those infections are also not considered. This means that the

system is of smaller dimension; thus the equilibrium stability is in a smaller subspace

than the original system. The method is done in the same way as before and stabil-

ity results hold for AR̃j < 1 and unstable for AR̃j > 1, but for the smaller subspace

equilibrium. The question is, does this relate to the original space EAc? The main

thing that can be said is that if AR̃j > 1 then the instability of the Ac-infection free

equilibrium in the smaller system will indeed relate back to the original system. If it

is unstable in the smaller subspace then it is unstable in the larger space. This would

mean that indeed infection j can invade and is at least one of the invading strains

if there are others. However, if AR̃j < 1 then yes the smaller subspace system has a

stable equilibrium but in the context of the original system not much can be said.

This does show that infection j cannot invade and so if AR̃0 > 1 then one or more of

the other infections are invading and not infection j.

This again gives other ways to determine which infection(s) specifically can

invade, in the case when AR̃0 > 1. As before, both methods appear to give the same

60



result when discussing instability of the A-endemic equilibrium. This will require

further work which will be done in a later study.

3.2.3 Example

Consider the following model where two infections are spread through a pop-

ulation. In this model susceptibles become infected with infection 1 or 2 by coming

in contact with infected individuals from those population at a rate of β1(t), β2(t)

respectively. The infections are cleared at a rate γ1, γ2. Again it is assumed that

infection 2 is resident in the population. Cross-immunity is assumed between the

infections. This leads to the following system:

dI1
dt

= β1(t)
SI1
N
− (µ+ γ1)I1

dI2
dt

= β2(t)
SI2
N
− (µ+ γ2)I2

dS

dt
= µN + γ1I1 + γ2I2 − (β1(t)

SI1
N

+ β2(t)
SI2
N

)− µS

(3.16)

Then F and V are:

F (t) =


β1(t)

SI1
N

0

0

 ,

V (t) = V − − V + =


(µ+ γ1)I1

(µ+ γ2)I2 − β2(t)SI2N
β1(t)

SI1
N

+ β2(t)
SI2
N

+ µS − µN − γ1I1 − γ2I2

 .
Verification of (A1)-(A5) is simple from observation of the matrices. There exists an

endemic periodic solution (0, 0, I∗2 (t), S∗(t)) when R2 > 1, that is the basic reproduc-

tive number with respect to infection 2.
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For the verification of (A6), consider the system where infection 1 is not present:

dI2
dt

= β2(t)
SI2
N
− (µ+ γ2)I2

dS

dt
= µN + γ2I2 − β2(t)

SI2
N
− µS

(3.17)

This has been studied before in [41, 29, 56]. In fact, [41] shows that if R2 > 1 then

the periodic endemic solution is stable. Define the following vectors F (t) and V (t) as

follows:

F (t) = β1(t)

V (t) = µ+ γ1.

(3.18)

For verification of (A7) consider the system:

dy

dt
= −(µ+ γ1)y. (3.19)

This system gives the principal fundamental matrix and so one need only consider the

monodromy matrix evaluated at the period. This is Φ−V (ω) = e−(µ+γ)ω, and clearly

(A7) holds.

As defined above there are two methods to calculate the IRN. First consider

the system given by the time average of the infection rates which in this case is

〈β1(t)〉. Since the system is now autonomous, one can use the method described for

autonomous systems above and need only calculate FV −1 which is:

FV −1 =
1
ω

∫ ω
0
β(t)dt

µ+ γ1
=
〈β〉

µ+ γ1
. (3.20)

The spectral radius of this is just the equation itself and so:

R̃1T =
〈β1〉
µ+ γ1

. (3.21)

To characterize 2R̃1 using the linear operator method, consider the following

ω-periodic equation:

dw

dt
=

[
−(µ+ γ1) +

β1(t)

λ

]
w, t ∈ R (3.22)
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which has fundamental solution:

w(t) = exp

(
1

λ

∫ t

0

β1(s)ds− (µ+ γ1)t

)
. (3.23)

Then the monodromy matrix is defined as before, and the goal is to find λ0 such that

ρ(ΦF−V (ω)) = 1, which happens exactly when the exponent in w(t) equals 0. This

yields:

2R̃1 = λ0 =
1
ω

∫ ω
0
β1(t)dt

µ+ γ1
=
〈β〉

µ+ γ1
. (3.24)

So in this case the time averaged IRN, R̃T has the same expression as the linear

operator IRN, R̃0. In reference to Theorem 2, the matrices F (t) and V (t) are trivially

triangular since they consist of a single element. Thus the methods should agree in

their expression. It should be stated again that this will not always be the case.

3.2.4 Numerical Analysis

The previous example gave a nice introduction into how this method works and

can be applied. However, in the literature most periodic dynamical systems cannot be

solved outright. Therefore very few have been able to come up with an explicit formula

for AR̃0. This is the same issue that arises in the calculation of the basic reproductive

number for non-autonomous systems. For these systems, numerical analysis must be

done.

There are very few procedures in the literature to actually numerically calculate

these IRNs. Some systems might be able to be solved up to some point before

numerical work has to be implemented. As in the calculations of the BRNs of the

last chapter, an example was given where the fundamental matrix Ψ(t) was found,

but solving for the monodromy matrix’s eigenvalues proves rather challenging. Most

times a transcendental equation must be solved and this just cannot be done by hand

typically. An example will be worked in this section which illustrates this method.

63



In the literature, many focus attention on their particular model, solving for AR̃0

numerically, then using this information for sensitivity analysis with respect to some

parameter in the system. Only one paper [47] gives some sort of outline for calculating

this. In their paper, Safi et al. list steps for computing the basic reproductive number

for non-autonomous systems, but the procedure can be applied for IRNs as well since

the methods produce similar systems to solve.

First (A6) and (A7) must be verified. To do this one needs to solve the sys-

tems (3.8) and (3.9). The difficult part becomes that these systems come from a

linearization about the endemic equilibrium, which could be periodic. In order to use

the numerical methods to find the fundamental matrix, this periodic solution must

be numerically approximated. For a given set of parameters, the system is run by

using initial conditions where only the resident infections are present, e.g. setting all

invading infection initial conditions to 0. Once the periodic solution is approximated

it can be used to find the fundamental matrix as described before.

For the system (3.15), more work must be done. First let W (t, λ) be the stan-

dard fundamental matrix. For a given set of parameters, since the IRN is being

calculated and not the BRN, this system is linearized about the endemic equilib-

rium. Again this solution must be approximated in some way to program it into

the calculations. Once that is done, a value of λ must be given. This is an initial

guess. Using this value of λ, the matrix W (ω, λ) is numerically computed using some

standard integrator to generate the necessary linearly independent solutions to (3.15)

using standard basis vectors as respective initial condition vectors. Then the spectral

radius ρ(W (ω, λ)) is calculated. Last use a root finding method to find the zero of

f(λ) = ρ(W (ω, λ)) − 1 for a given value of λ. Adjust this value of λ in a particular

way until the root is found.
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3.2.4.1 Numerical Example

Consider the example given in calculating the IRN for autonomous systems

in which 2 infections spread through a population. In order to make this a non-

autonomous system, let the infection rates β1(t), β2(t) be periodic functions. These

infections are cleared at rates γ1, γ2 respectively. Mortality rate of µ for all classes.

It is also assumed that coinfection can occur. k1 and k2 represent multipliers of the

influence of a primary infection on the coinfection. The system is then:

dI1
dt

= β1(t)S

(
I1
N

+
I12
N

)
− k1β2(t)I1

(
I2
N

+
I12
N

)
− (µ+ γ1)I1 + γ2I12

dI2
dt

= β2(t)S

(
I2
N

+
I12
N

)
− k2β1(t)I2

(
I1
N

+
I12
N

)
− (µ+ γ2)I2 + γ1I12

dI12
dt

= k1β2(t)I1

(
I2
N

+
I12
N

)
+ k2β1(t)I2

(
I1
N

+
I12
N

)
− (µ+ γ1 + γ2)I12

dS

dt
= µN + γ1I1 + γ2I2 − β1(t)S

(
I1
N
− I12
N

)
+ β2(t)S

(
I2
N

+
I12
N

)
− µS

(3.25)

Assume that infection 2 is resident within the population. Then the equations are

reordered so that only those classes considered to be infected are at the beginning.

In this example that would be classes I1 and I12. The system when this is done will

be:

dI1
dt

= β1(t)S

(
I1
N

+
I12
N

)
− k1β2(t)I1

(
I2
N

+
I12
N

)
− (µ+ γ1)I1 + γ2I12

dI12
dt

= k1β2(t)I1

(
I2
N

+
I12
N

)
+ k2β1(t)I2

(
I1
N

+
I12
N

)
− (µ+ γ1 + γ2)I12

dI2
dt

= β2(t)S

(
I2
N

+
I12
N

)
− k2β1(t)I2

(
I1
N

+
I12
N

)
− (µ+ γ2)I2 + γ1I12

dS

dt
= µN + γ1I1 + γ2I2 − (β1(t)S

(
I1
N

+
I12
N

)
+ β2(t)S

(
I2
N

+
I12
N

)
)− µS

(3.26)
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Then F and V are:

F =



β1(t)S
(
I1
N

+ I12
N

)
k2β1(t)I2

(
I1
N

+ I12
N

)
0

0


,

V = V −−V + =



k1β2(t)I1
(
I2
N

+ I12
N

)
+ (µ+ γ1)I1 − γ2I12

(µ+ γ1 + γ2)I12 − k1β2(t)I1
(
I2
N

+ I12
N

)
k2β1(t)

I1I2
N

+ (µ+ γ2)I2 − β2(t)S
(
I2
N

+ I12
N

)
− γ1I12

β1(t)S
(
I1
N

+ I12
N

)
+ β2(t)S

(
I2
N

+ I12
N

)
+ µS − µN − γ1I1 − γ2I2


.

Verification of (A1)-(A5) is simple from observation of the matrices. Since it is as-

sumed that infection 2 is resident within the population, there exists an endemic

periodic solution, (0, 0, I∗2 (t), S∗(t)), when R2 > 1. This was shown to be true in

[41] and thus (A6) is verified. The system is assumed to be at this periodic solution.

Define the 2× 2 matrices F (t) and V (t) as follows:

F =

 β1(t)
S∗(t)
N

β1(t)
S∗(t)
N

k2β1(t)
I∗2 (t)

N
k2β1(t)

I∗2 (t)

N

 , V =

 k1β2(t)
I∗2 (t)

N
+ µ+ γ1 −γ2

−k1β2(t) I
∗
2 (t)

N
µ+ γ1 + γ2

 .
(A7) must be verified for each value of τ since changing τ changes the periodic so-

lution. If τ = 0 or τ = ω then the system is autonomous and the verification is

done. However, if τ ∈ (0, ω) then the periodic endemic solution must be found for

each value of τ . For the purposes here, (A7) will be verified for a particular value of

τ = 0.5. In this case the system:

dy

dt
= −V (t)y (3.27)

must be solved. For the parameters given in Table 3.2, the fundamental matrix is

numerically approximated using linearly independent initial conditions so that the
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final matrix has linearly independent solutions. Once this is done, the maximum

eigenvalue of Φ−V (ω) can be found. Doing this gives ρ(Φ−V (ω)) = 0.288 which is less

than 1 and (A7) is verified.

To characterize 2R̃1, consider the following system:

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R. (3.28)

Unfortunately this system is difficult to solve. In order to simplify things define the

square-wave β functions as follows:

β1(t) =

 a1 : 0 < t < τ

b1 : τ < t < ω
(3.29)

β2(t) =

 a2 : 0 < t < τ

b2 : τ < t < ω
(3.30)

This produces a system where the fundamental matrix can be found for each interval

since each system will then be autonomous. However, finding 2R̃1 must be done

numerically. It should be noted that this can be done for 1R̃2 and the procedure is

analogous, with only the subscripts changed in each case.

First a special case of the model. If k1 = k2 = 1, then the model can be reduced

in some sense. An interesting thing happens in this case in that even though the F (t)

and V (t) matrices are not triangular, both the time-average method and the linear

operator method end up producing the same result. To see how, one must make a

simplification in the model. If the two infected classes and what are considered the

two susceptible classes are added together, then the model will be the following:

d(I1 + I12)

dt
=
β1(t)

N
(I2 + S)(I1 + I12)− (µ+ γ1)(I1 + I12)

d(I2 + S)

dt
= µN + γ1(I1 + I12)−

β1(t)

N
(I2 + S)(I1 + I12)− µ(I2 + S)

(3.31)
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This produces a trivially triangular system that represents the original system and so

the theorem from before can be applied so that the methods agree in their expression

for the IRN. This is just the same as in the autonomous example with the time-average

for the periodic solution and the transmission functions defined above.

The methods described in the previous chapter can be used here but there is an

issue. Before, the calculations were for the basic reproductive number which is evalu-

ated at the disease-free solution. Here the endemic solution is used. Unfortunately it

cannot be found by hand. What must be done is to run the system out for initial con-

ditions where the resident infection does not exist, i.e. I1 = 0 and I12 = 0. Then one

must find a way to approximate the solution after the system stabilizes so that it can

be used when calculating the IRN. In the case of the example above with square-wave

infection rates, the endemic periodic solution ends up being approximately piecewise

linear. For a fixed value of τ , the system is run to determine what the periodic solu-

tion is. This is then programmed into Mathematica to determine the different values

of the IRNs. For each value of τ a new periodic solution must be found and pro-

grammed into Mathematica to find the value of the IRN. Since this must be done for

every value of τ , the curve it produces will not necessarily be smooth. Evenly spaced

values of τ were used so that the graph could be pieced together. The time-average

IRN can be used to determine if the same behavior is established. The results are

shown in Figure 3.1. The same can be done for R̃2. The results are shown in Figure

3.2. The parameter values used to determine the graphs are in Table 3.1.
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Figure 3.1. Graphs of system (3.25) with (3.28,3.29) that show R̃1T (dashed) and
R̃1LO (solid) for varying values of τ .

Figure 3.2. Graphs of system (3.25) with (3.28,3.29) that show R̃2T (dashed) and
R̃2LO (solid) for varying values of τ .

In Figure 3.1, the graph only extends to τ = 0.65 because R2 = 1 at this value.

For τ > 0.65, R2 < 1, violating (A5), and hence R̃1 is undefined. Pathogen 1’s

ability to invade when τ > 0.65 is held constant at R1 independent of τ , since there

is no pathogen 2 endemic equilibrium to invade in those cases, only the DFE. The

reverse holds in Figure 3.2, where (by the symmetry in the parameter values used) for

τ < 0.35, R1 < 1, so R̃2 is undefined, and pathogen 2’s ability to invade is measured
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instead by R2, since the only equilibrium it can invade is the DFE. Since k1 = k2 = 2

in these examples, the primary infections facilitate secondary ones and the pathogens

can invade more easily, as in the case when R2 = 1 suddenly and R̃1 > 1 there. Thus

pathogen 1 can invade more easily when R2 > 1 than when R2 < 1. In fact, in this

example, the time-average method and the linear operator method for calculating

BRNs produces the same expression and so the BRNs are indeed equal to 1 at those

endpoints.

Picking a value of τ where each IRN is greater than one should give co-existence.

In Figure 3.3 one can clearly see this is the case for τ = 0.5. If the parameters were

changed to show only one pathogen’s IRN to be greater than 1 then the simulation

would then show that the corresponding infection is able to invade and persist within

the population.

Figure 3.3. Simulation of system (3.25) with (3.28,3.29) for a set of parameters in
which R̃1, R̃2 > 1.
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Parameter Value Units

a1 2 1/time
b1 1 1/time
a2 1 1/time
b2 2 1/time
µ 1 1/time
γ1 .35 1/time
γ2 .35 1/time
k1 2
k2 2
ω 1 time

Table 3.1. Parameter values
for (3.25), Figures 3.1, 3.2,
and 3.3

Parameter Value Units

a1 1.5 1/time
b1 .5 1/time
a2 .5 1/time
b2 1.5 1/time
µ 1 1/time
γ1 .35 1/time
γ2 .35 1/time
k1 2
k2 2
ω 1 time

Table 3.2. Parameter values
for (3.25) and Figure 3.4

Having shown values for certain parameters, what will be done now is to fix

the parameters to get a graph that will show regions of parameter space where each

infection will win and when there can be co-existence. To do this a new parameter

must be included into the system in order to separate the mean amplitude (long-term

average) from the periodic variability. Fixing a1 and a2 in the range of (0, ω
τ
), define

now the following for bi:

bi =
ω − aiτ
ω − τ

, i = 1, 2. (3.32)

Now attach to the original transmission rates a new parameter, β̃j, j = 1, 2. Then

the transmission rates become:

βj(t) = β̃j

 aj : 0 < t < τ

bj : τ < t < ω
(3.33)

These β̃j parameters, which now give the mean values for the βj(t), will be used as

proxies for the BRNs to generate a graph illustrating the different infection outcomes

in terms of the BRNs.
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To produce the graphs, one must seek β̃1, β̃2 that make their corresponding

IRN equal to 1. Take for example R̃1. For all β̃2 that make R2 > 1, find the periodic

solution E2(β̃2) = {(S(t), I2(t)), 0 ≤ t < ω}. Use this to find the value of β̃1 for which

R̃1(β̃1, β̃2, E2(β̃2)) = 1. When the β̃1 and β̃2 have been found, graph (R1(β̃1), R2(β̃2))

using a list plot command and connect. The other example is analogous with only

subscripts changing. In the resulting graph, shown in Figure 3.4, the time-average

curves were included for comparison (note the BRNs are identical in this model for the

time-average and linear operator methods). The parameter values used to generate

the graph are given in Table 3.2.

Figure 3.4. Graph showing 4 regions representing different behaviors of the system.
E0 is disease-free, E1 is only infection 1 prevalent, E2 is only when infection 2 is
prevalent, and E3 is coinfection. The dashed line is the linear operator method and
the solid line is the time-average method.
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As seen in Figure 3.4, the time-average will always overestimate the coinfection

risk. So it appears, periodicity makes coinfection less likely. The linear operator

method is still the correct method and must be used to estimate the infection risk for

the model. If β̃1 = 1.07 and β̃2 = 1.85, the time-average predicts co-existence with

IRN values of R̃1T = 1.00681 and R̃2T = 1.01177, and the linear operator method

has values of R̃1LO = 0.861499 and R̃2LO = 1.40866. The BRNs at these values are

R1 = 0.792593 and R2 = 1.37037. If the system is run for those parameters, infection

2 will persist while infection 1 dies out.

3.3 Conclusion

The methods for calculating basic reproductive numbers in both autonomous

and nonautonomous epidemic models have been extended in a natural way to calculate

invasion reproductive numbers. These IRNs give a way to determine stability of

endemic equilibrium by determining whether certain competing infections can invade

populations when there are already infections resident there.

For autonomous systems, the work of van den Driessche and Watmough was

used by exploiting the fact that the first steps for the method are epidemiological and

not mathematical. In the same way the methods of Wang and Zhao and Bacäer were

extended for non-autonomous systems. In these systems generally one cannot get

an explicit formula for the IRN and so one must approximate the IRNs numerically.

Examples were shown throughout to give an idea of how the methods are used and

techniques to help evaluate them in the case numerical work is done.

Now that these methods for calculating different reproductive numbers, both

basic and invasion, have been discussed, the question becomes in what way are these

helpful in certain models. These reproductive numbers might be used in models with

seasonality where competing infections occur. One such disease is Chagas disease
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where competing strains of the parasite occur in different host patterns and compet-

itive exclusion does not hold in certain cases. The next chapter will explore this type

of model to see if seasonality can account for this co-persistence.
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CHAPTER 4

Seasonality in a two-strain model for sylvatic T. cruzi transmission

4.1 Introduction

There are many diseases which exhibit seasonal behavior [4]. Vector-borne

diseases like malaria and dengue hemorrhagic fever have peak rates during warm,

dry rainy season. Influenza seems to be a common topic each year as vaccines are

given during peak seasons for the transmission of the virus [31, 52, 11]. Typically

when modeling seasonal diseases, only peak transmission season is considered, so

as to simplify the model. In order to incorporate seasonality, forced oscillators are

generally used to show a wide range of dynamics. Early models used seasonality in the

transmission dynamics, by varying the transmission with time [18, 6]. While many

parameters can be made periodic within the model to account for different biological

factors, including these things within models makes them difficult to analyze.

This study focuses on how seasonality affects a model with multiple strains of a

parasite. In [3], Alfaro-Murillo et al. were studying an SIR model for influenza that

incorporates seasonality in the transmission rate. They considered multiple strains

of the infection. Using cosine waves in their transmission they suggested the seasonal

variation might be responsible for observed patterns in influenza including higher

frequency of disease recurrence in tropical regions than in the temperate regions.

Kamo and Sasaki in [33] created a multi-strain SIR model with seasonal trans-

mission dynamics. They determined that the behavior of the multi-strain epidemio-

logical dynamics critically depends on the coefficients of cross-immunity defined for
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each pair of sub-types. They state that seasonality is clearly important in echovirus

epidemics.

Ahna et al. [2] developed a two-strain model for bacterial species. They ac-

count for seasonality within the birth rate and death rate. The strains were clus-

tered into three genetically close groups. They determined that if two strains are

genetically similar, they are also epidemiologically similar in that they induce some

cross-immunity in the hosts, but if they are genetically less similar, then they induce

less cross-immunity in the hosts.

Aguiara et al. in [1] studied a two-strain model of Dengue fever using seasonality

in the transmission parameters. They integrated the use of numerical bifurcation

analysis and time series analysis techniques for the study of the long-term dynamics

of the non-autonomous system. They state that seasonal forcing is essential in order

to be able to reproduce signals of a yearly cycle in dengue incidence.

This study will focus on a two-strain model of Chagas disease. Trypanosoma

cruzi is a protozoan parasite responsible for millions of infections of Chagas disease in

Latin America. There have been a few cases reported in humans in the United States,

but it is the sylvatic cycles that maintain the parasite, with vectors moving towards

more populated areas in search of new food sources [36]. This chapter will focus on

the sylvatic transmission of the disease between hosts and vectors. It will focus on

hosts such as raccoons and woodrats. The two vectors associated with these hosts in

the southern United States are T. sanguisuga and T. gerstaeckeri. Both vectors are

associated with raccoons while only T. gerstaeckeri is associated with woodrats.

There are two different strains of T. cruzi commonly found in the U.S. Strains

of T. cruzi have been classified as being one of six types, I-VI. In the U.S., only two

types have been known to persist, types I and IV. Both of the hosts that are discussed
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in the chapter, raccoons and woodrats, have been known to be associated with strains

I and IV of the parasite.

Infection with a strain of T. cruzi has been shown to give hosts cross-immunity

against infection from other strains. This naturally gives rise to a competition between

strains for access to hosts and vectors. The single host-model of Kribs-Zaleta and

Mubayi [36] predicts competitive exclusion, but there are reports that both strains

are endemic within woodrats [12]. It appears that to a lesser extent, both strains

have been observed in raccoons as well [45]. One of the possible explanations for two

different strains being prevalent in the populations could have to do with different

hosts living in close proximity to each other. In [35], Kribs and Mitchell developed

multihost models which showed that spillover from other cycles such as opossums

can account for trace prevalence of an otherwise losing strain, such as that seen in

raccoons, but not at the roughly equal levels observed in some south Texas woodrat

populations.

For this study, the model from [36] will be extended to incorporate seasonality.

Seasonality can be incorporated into many of the model’s parameters. The simplest

approach is to just use seasonality in the transmission terms, specifically the vector

transmission rate. Strain IV appears to be better adapted to vertical transmission

[25], and may even be better at oral transmission, while strain I appears to be better

at stercorarian transmission. This leads to a theory that strains adapted to different

means of transmission may be better suited for different peak seasons depending on

when hosts are numerous or scarce [49]. So if strain IV is better adapted at vertical

transmission, it might do better in the spring, during a breeding season for hosts

while strain I might fare better in winter when hosts are less likely to forage or move

dens. Then techniques from the previous chapters will be used to find the basic and
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the invasion reproductive numbers to determine whether seasonality may explain the

observed co-persistence.

4.2 Seasonal Transmission Model

Kribs and Mubayi [36] created a single-host model to describe competition

between T. cruzi I and IV (denoted strains 1 and 2 in the model). First, a summary

of the model will be given and then the extensions to include the seasonal dynamics.

There are three modes of infections to hosts: vertical transmission, stercorarian,

and predation. These could all be affected by seasonality. With vertical transmission,

only female hosts are considered where it is assumed a proportion pj(j = 1, 2) of hosts

infected with strain j give birth to infected young. Vectors obtain blood meals from

infected hosts, and the rate at which that vector gets is infected is cvj, while the rate

that an infected vector infects a host is chj for strain type j = 1, 2. For predation, a

portion of hosts ρj that consume an infected vector become infected with strain j.

For their model, Kribs and Mubayi used contact-based rates with piecewise

linear (Holling type I) saturation [37, 38]. In the model Q is defined as the vector-

host population density ratio, Q = Nv/Nh. The contact rates are defined as follows:

chj(Q) = βhj min(
Q

Qv

, 1)

cvj(Q) = βvj min(
1/Q

1/Qv

, 1) = βvj min(
Qv

Q
, 1)

Eh(Q) = H min(
Q

Qv

, 1)

(4.1)

with maximum values βhj, βvj(j = 1, 2) and H respectively.

All of these infection rates could be affected by seasonality. Stercorarian infec-

tion rates could be affected if the vectors suspend development due to unfavorable

conditions. This would mean they feed less, thus transmitting the disease less. During

mating season for hosts, the vertical transmission rates could be higher. Also during
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Table 4.1. Variables and notation for sylvatic T. cruzi transmission model

Variable Meaning Units

Sh(t) Density of uninfected hosts hosts/area
Ih1(t) Density of hosts infected with T. cruzi I hosts/area
Ih2(t) Density of hosts infected with T. cruzi IV hosts/area
Sv(t) Density of uninfected vectors vectors/area
Iv1(t) Density of vectors infected with T. cruzi I vectors/area
Iv2(t) Density of vectors infected with T. cruzi IV vectors/area
Q Vector-host population ratio (Nv/Nh) vectors/host

chj(Q,Qv) Strain j stercorarian infection rate 1/time
cvj(Q,Qv) Strain j vector infection rate 1/time
Eh(Q,Qh) Per-host Predation rate vectors/host/time

periods of higher activity for hosts, or when other food is less plentiful, they could

feed on insects more, thus increasing the predation rate.

The total host density is Nv = Sv + Iv1 + Iv2, and the same for total vector

density, Nv. The total vector birth rate, bv, is

bv(N) = rvN(1−N/Kv), (4.2)

and same for host birth rate, bh. h here represents either woodrats (W) or raccoons

(R) and v is T. sanguisuga (S) or T. gerstaeckeri (G). The previous model gives rise

to the following equations:
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Table 4.2. Parameter definitions for woodrat/T. gerstaeckeri cycles, with values taken
from [36].

Parm. Definition Units Value

rh Growth rate for hosts per year 1.8
rv Growth rate for vectors per year 100
µh Natural mortality rate of hosts per year 1
µv Natural mortality rate of vectors per year .562
N∗h (Equilibrium) host population density hosts/acre 9.3
Kh Carrying capacity for hosts hosts/acre 21
N∗v (Equilibrium) vector population density vectors/acre 128
Kv Carrying capacity for vectors vectors/acre 129
Qh Threshold vector-host density ratio for predation vectors/host 10
Qv Threshold vector-host density ratio for bloodmeals vectors/host 100
βh1 Strain 1 stercorarian infection rate per year 10.125
βh2 Strain 2 stercorarian infection rate per year 5.805
βv Vector infection rate per year 1.59
p1 Strain 1 vertical transmission proportion dimensionless 0.05
p2 Strain 2 vertical transmission proportion dimensionless 0.1
H (Maximum) per-host predation rate vec/host/year 1
ρ Estimated proportion of hosts infected after hosts/vector 0.177

consuming a vector infected with strain 1

S ′h(t) =

(
1− p1Ih1(t) + p2Ih2(t)

Nh

)
bhNh(t)− [ch1(Q(t)) + ρ1Eh(Q(t))]Sh(t)

Iv1(t)

Nv(t)

− [ch2(Q(t)) + ρ2Eh(Q(t))]Sh(t)
Iv2(t)

Nv(t)
− µhSh(t)

I ′h1(t) = p1
Ih1(t)

Nh

bh(Nh) + [ch1(Q(t)) + ρ1Eh(Q(t))]Sh(t)
Iv1(t)

Nv(t)
− µhIh1(t)

I ′h2(t) = p2
Ih2(t)

Nh

bh(Nh) + [ch2(Q(t)) + ρ2Eh(Q(t))]Sh(t)
Iv2(t)

Nv(t)
− µhIh2(t)

S ′v(t) = bv(Nv(t))− cv1(Q(t))Sv(t)
Ih1(t)

Nh

− cv2(Q(t))Sv(t)
Ih2(t)

Nh

− µvSv(t)

− Eh(Q(t))Nh
Sv(t)

Nv(t)

I ′v1(t) = cv1(Q(t))Sv(t)
Ih1(t)

Nh

− µvIv1(t)− Eh(Q(t))Nh
Iv1(t)

Nv(t)

I ′v2(t) = cv2(Q(t))Sv(t)
Ih2(t)

Nh

− µvIv2(t)− Eh(Q(t))Nh
Iv2(t)

Nv(t)

(4.3)

The autonomous model of [36] exhibits competitive exclusion, as it was shown

that at most one strain’s IRN can exceed 1 (R̃i > 1⇒ R̃j < 1). To investigate whether
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periodicity in general can explain (exhibit) co-persistence in this model, periodicity

will be introduced into just a single parameter, for the vector transmission rates cvj.

Without any time variation in the demographic parameters, the demographics

go to a unique globally asymptotically stable equilibrium (with N∗h , N
∗
v ), and the

model simplifies, as in [36]. To simplify the model, introduce the following notation:

β̃hj = chj(Q
∗) + ρjEh(Q

∗), (j = 1, 2)

β̃vj = cvj(Q
∗), (j = 1, 2)

µ̃v = µv + Eh(Q
∗)/Q∗

Q∗ = N∗v /N
∗
h

(4.4)

To include the periodicity, redefine the vector transmission rates as follows:

β̃vj(t) = cvj(Q
∗)

 aj : 0 < t < τ

bj(a) : τ < t < ω
(4.5)

for (j = 1, 2). Define bj(a) =
ω−ajτ
ω−τ where ω is the period which for this model is 1

year and τ is the length of the first season. This framework makes the time-average

value the same regardless of aj ∈ [0, 1].
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4.3 Basic reproductive numbers

Rearrange the system so that only infected classes are at the beginning. This

produces the system below:

I ′h1(t) = p1
Ih1(t)

N∗h
bh(N

∗
h) + β̃h1Sh(t)

Iv1(t)

N∗v
− µhIh1(t)

I ′h2(t) = p2
Ih2(t)

N∗h
bh(N

∗
h) + β̃h2Sh(t)

Iv2(t)

N∗v
− µhIh2(t)

I ′v1(t) = β̃v1(t)Sv(t)
Ih1(t)

N∗h
− µ̃vIv1(t)

I ′v2(t) = β̃v2(t)Sv(t)
Ih2(t)

N∗h
− µ̃vIv2(t)

S ′h(t) =

(
1− p1Ih1(t) + p2Ih2(t)

N∗h

)
bhN

∗
h − β̃h1Sh(t)

Iv1(t)

N∗v

− β̃h2Sh(t)
Iv2(t)

N∗v
− µhSh(t)

S ′v(t) = bv(N
∗
v )− β̃v1(t)Sv(t)

Ih1(t)

N∗h
− β̃v2(t)Sv(t)

Ih2(t)

N∗h
− µ̃vSv(t)

(4.6)

For the basic reproduction numbers, define the matrices F (t) and V (t) as follows:

F (t) =



β̃h1Sh(t)
Iv1
N∗
v

+ p1µhIh1(t)

β̃h2Sh(t)
Iv2
N∗
v

+ p2µhIh2(t)

β̃v1(t)Sv(t)
Ih1
N∗
h

β̃v2(t)Sv(t)
Ih2
N∗
h

0

0


,
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V (t) = V − − V + =

µhIh1(t)

µhIh2(t)

µ̃vIv1(t)

µ̃vIv2(t)

β̃h1Sh(t)
Iv1(t)
N∗
v

+ β̃h2Sh(t)
Iv2(t)
N∗
v

+ µhSh(t)−
(

1− p1Ih1(t)+p2Ih2(t)
N∗
h

)
bhN

∗
h

β̃v1(t)Sv(t)
Ih1(t)
N∗
h

+ β̃v2(t)Sv(t)
Ih2(t)
N∗
h

+ µ̃vSv(t)− bv(N∗v )


.

Verification of (A1)-(A5) is simple from observation of the matrices. For (A6), con-

sider the matrix given by:

M(t) =

 −µh 0

0 −µ̃v

 .
Solving the autonomous system dz

dt
= Mz in this case yields the principal fundamental

matrix and since it is diagonal, ρ(ΨM) < 1 and (A6) is satisfied.

Define F (t) and V (t) as follows:

F (t) =



p1µh 0 β̃h1 0

0 p2µh 0 β̃h2

β̃v1(t) 0 0 0

0 β̃v2(t) 0 0


, V (t) =



µh 0 0 0

0 µh 0 0

0 0 µ̃v 0

0 0 0 µ̃v


.

To verify (A7), the system dy
dt

= −V (t)y must be solved. This is an autonomous

system and produces a diagonal fundamental matrix, and it is clear that (A7) is

satisfied.

The BRNs must be found numerically by solving system:

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R (4.7)
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to get a fundamental matrix Ψ(t, λ). This matrix is then used to solve for λ such

that ρ(Ψ(ω, λ)) = 1. This is done using the methods described in previous chapters.

Explicit forms for the autonomous case are given in [36].

4.4 Invasion reproductive numbers

For the strain 1 invasion reproductive number, assume that strain 2 is resident

within the population. Rearrange the order of the equations so that only those

infected classes with strain 1 are at the top.

I ′h1(t) = p1
Ih1(t)

N∗h
bh(N

∗
h) + β̃h1Sh(t)

Iv1(t)

N∗v
− µhIh1(t)

I ′v1(t) = β̃v1(t)Sv(t)
Ih1(t)

N∗h
− µ̃vIv1(t)

I ′h2(t) = p2
Ih2(t)

N∗h
bh(N

∗
h) + β̃h2Sh(t)

Iv2(t)

N∗v
− µhIh2(t)

I ′v2(t) = β̃v2(t)Sv(t)
Ih2(t)

N∗h
− µ̃vIv2(t)

S ′h(t) =

(
1− p1Ih1(t) + p2Ih2(t)

Nh

)
bhN

∗
h − β̃h1Sh(t)

Iv1(t)

N∗v

− β̃h2Sh(t)
Iv2(t)

N∗v
− µhSh(t)

S ′v(t) = bv(N
∗
v )− β̃v1(t)Sv(t)

Ih1(t)

N∗h
− β̃v2(t)Sv(t)

Ih2(t)

N∗h
− µ̃vSv(t)

(4.8)

Define the matrices F (t) and V (t) as follows:

F (t) =



β̃h1Sh(t)
Iv1
N∗
v

+ p1µhIh1(t)

β̃v1(t)Sv(t)
Ih1(t)
N∗
h

0

0

0

0


,
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V (t) = V − − V + =

µhIh1(t)

µ̃vIv1(t)

µhIh2(t)− p2 Ih2(t)N∗
h
bh(N

∗
h)− β̃h2Sh(t) Iv2(t)N∗

v

µ̃vIv2(t)− β̃v2(t)Sv(t) Ih2N∗
h

β̃h1Sh(t)
Iv1(t)
N∗
v

+ β̃h2Sh(t)
Iv2(t)
N∗
v

+ µhSh(t)−
(

1− p1Ih1(t)+p2Ih2(t)
N∗
h

)
bhN

∗
h

β̃v1(t)Sv(t)
Ih1(t)
N∗
h

+ β̃v2(t)Sv(t)
Ih2(t)
N∗
h

+ µ̃vSv(t)− bv(N∗v )


.

Verification of (A1)-(A5) is simple from observation of the matrices. To verify the

other assumptions, define the periodic endemic solution, (0, 0, I∗h2(t), I
∗
v2(t), S

∗
h(t), S

∗
v(t)).

Verification of (A6) is difficult. The matrix M(t) is defined as follows:

M(t) =



p2bh
N∗
h
− µh β̃h2

S∗
h(t)

N∗
v

β̃h2
I∗v2(t)

N∗
v

0

β̃v2(t)
S∗
v (t)
N∗
h

−µ̃v 0 0

−p2bh
N∗
h

−β̃h2
S∗
h(t)

N∗
v
−β̃h2 I

∗
v2(t)

N∗
v
− µh 0

−β̃v2(t)S
∗
v (t)
N∗
h

0 0 −β̃v2(t)
I∗h2(t)

N∗
h
− µ̃v


To verify (A6), the system dz

dt
= Mz must be solved, but it must be done for every

value of τ since changing τ changes the periodic solution. If τ = 0 or τ = ω then the

system is autonomous and the verification is done. However, if τ ∈ (0, ω) then the

periodic endemic solution must be found for each value of τ . For the purposes here,

(A6) will be verified for a particular value of τ = 0.5. For the parameters given in

Table 4.2, the fundamental matrix is numerically approximated using linearly inde-

pendent initial conditions so that the final matrix has linearly independent solutions.

Once this is done, the maximum eigenvalue of Φ−V (ω) can be found. Doing this gives

ρ(ΦM(ω)) = 0.0452 which is less than 1 and (A6) is verified. Define F (t) and V (t) as

follows:

F (t) =

 p1µh β̃h1
S∗
h(t)

N∗
v

β̃v1(t)
S∗
v (t)
N∗
h

0

 , V (t) =

 µh 0

0 µ̃v

 .
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To verify (A7) notice that V (t) is diagonal and thus (A7) is done. The IRNs must be

found numerically by solving system:

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R (4.9)

to get a fundamental matrix Ψ(t, λ). Then the monodromy matrix is found and then

used to solve for λ such that ρ(Φ(ω, λ)) = 1.

4.5 Results

The goal of this chapter is to determine if co-persistence is possible when vector

transmission rates are periodic. Using the simple square wave of (4.5), the boundaries

of R̃j = 1 are graphed as functions of Rj using the mean transmission values β̃vj as

proxies for Rj as described in the previous chapter. Using the set of parameters given

in Tables 4.1 and 4.2, and the periodic vector transmission rates of a1 = 1.96, a2 = 0.04

with ω = 1, τ = 0.5, the first step in finding R̃j is to find the periodic strain-i-endemic

(i 6= j) solution as this is needed for the matrices F (t) and V (t) in order to solve

the system (4.9). This is done by solving the system in Matlab for initial conditions

where only the resident infection exists. Once this is numerically calculated, (4.9) is

solved using Mathematica to find the fundamental matrix for a given value of λ. This

is done using linearly independent initial conditions to ensure that the matrix consists

of linearly independent solutions and that it is a principal fundamental matrix. Then

the IRN is the value of lambda for which ρ(Φ(ω, λ)) = 1 The results are shown in

Figure 4.1.

86



Figure 4.1. Left graph showing 4 regions representing different behaviors of the system
in terms of the BRN/IRN threshold curves (Rj = 1, R̃j = 1, j = 1, 2) for mild and
extreme periodic variation in the vector transmission rates, β̃vj(t). E0 is disease-free,
E1 is only strain 1 prevalent, E2 is only strain 2 prevalent, and E3 is co-persistence.
The dashed line is for a1 = b2 = 1.2 and a2 = b1 = 0.8 and the solid line is for
a1 = b2 = 1.96 and a2 = b1 = 0.04. The right figure is for the autonomous system,
where R̃1 and R̃2 coincide and thus co-persistence is not possible.

The autonomous single host model of [36] predicted competitive exclusion. The

graph above shows that if the scaling factors a and b(a) approach 1, the graph closes

up, and thus will be the same as in the autonomous case. Running the system for

the same parameters with the values closer to 0 and 2 as in the graph above gives the

result in Figures 4.2 and 4.3.
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Figure 4.2. Simulation of system (4.3) for the host classes showing co-persistence
between strains.

Figure 4.3. Simulation of system (4.3) for the vector classes showing co-persistence
between strains.
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4.6 Discussion

As seen in Figure 4.1, seasonality in the vector infection rate is sufficient to

explain co-persistence of the two strains of the parasite. There could be other pa-

rameters in which seasonality could open up co-persistence. The values used for the

simulations all fall within the ranges given in [36] except for the vector transmission

rates. It does appear that for any values on opposite sides of 1 for the vector trans-

mission seasonal scaling parameters, there are values of the other model parameters

(in particular the BRNs) for which co-persistence will happen, though more work will

need to be done in the future to determine what particular values will give the desired

result.

This appears to suggest that it is possible for one strain to do better than

the other at certain times of the year, and vice versa, in the south Texas woodrat

populations where co-persistence has been observed. As stated before, strain 2 has

been shown to be better adapted to vertical transmission, and thus could have an

advantage in the spring when hosts produce [25]. As observed by Kribs and Mubayi

[36], strain 1 is more adapted to stercorarian infection, and can win competition in

woodrats under the right conditions.

It would appear from the model that in places with strong seasonal variations

in climate (temperature, precipitation, etc.), there is a much larger parameter space

than in places where those seasonal variations are milder, in which co-persistence

is possible. These wide seasonal variations create scenarios where a pathogen can

establish enough of a dominance during its peak season to survive long enough to

not be driven out by another pathogen capable of surviving under different seasonal

conditions. As those seasonal variations get weaker, the pathogen may not be able

to thrive long enough to prevent any invading pathogens from driving it out. This

suggests a potential link between seasonal variability and genetic diversity within
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pathogens. A pathogen’s ability to survive (via diversity) could be higher in regions

with large seasonal climate changes where that pathogen has a strong adaptation

towards those seasonal variations.

In this model, it appears that co-persistence is only possible under periodicity.

In the last chapter, an example was given that showed co-persistence is less likely

under periodicity. The difference between the models is that the infection modeled

in the last chapter allowed for (and even fostered) coinfection while the strains of

the Chagas model exhibit cross-immunity. Coinfection could allow for the strain not

adapted for those seasons where the resident strains thrive to persist long enough

that the resident strain is not able to survive outside its peak season. So the invading

infection is able to establish itself enough during the resident infection’s peak season

to eventually drive the resident infection out. Further work is needed to study the

relationship between coinfection and seasonality’s effect on co-persistence and whether

this holds in more broad terms.

Further work needs to be done to determine those parameters in the Chagas

model in which seasonality matters. Host and vector demographics vary seasonally,

which can be included in the model with host/vector birth and death rates, and thus

there would be no demographic equilibrium, but rather an asymptotically periodic

demographic state. Here the model only considered seasonality in the vector trans-

mission rate. The minimal seasonality allows co-persistence while varying multiple

parameters could actually lead to competitive exclusion. This model does provide a

new explanation for the observed co-persistence of the strains in the wild.
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CHAPTER 5

Conclusion

The purpose of this dissertation was to discuss and apply ways to calculate re-

productive numbers for nonautonomous epidemic systems. For the basic reproductive

number, the method crafted by Bacaër[9] and extended by Wang and Zhao [51] was

shown. The time-average method was also given, as it seems like a natural way to

calculate BRNs for these systems. It is also significantly simpler (you can actually

write down the expressions, whereas with the linear operator method one can never

do so). However, as shown by Ma and Ma it does not always give the correct thresh-

old behavior [39]. Many examples were given showing times when the time-average

method and the linear operator method agree in their expression for the BRN. Wang

and Zhao showed that if the F (t) and V (t) matrices are constant or diagonal, then

the methods agree in their expression. This dissertation proved in a theorem that the

agreement can be extended to triangular matrices. One special case shown was when

there is only a single infected class. In this case, the two methods always agree as the

system will be trivially triangular. Numerical results were shown for when the meth-

ods disagree. For instance, it was shown that the time-average method sometimes

underestimates and sometimes overestimates outbreak risk. In those cases, simula-

tions and graphs verified that the linear operator method gives the correct threshold

behavior. A pseudocode was given to find the BRN in the case where it must be done

numerically.

When discussing models with multiple infections, the invasion reproductive

number is another useful tool to determine stability of an endemic periodic solution.
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First the method was laid out for autonomous systems, extending van den Driessche

and Watmough’s method [50] to show that the same threshold behavior can be used

for a periodic solution. The method was extended by exploiting the fact that the

first step in next generation operator methods is epidemiological. This allowed for

reclassification as to what was considered an infected class. Here, two different IRNs

were shown, the first being the overall non-resident infections’ ability to invade. The

second IRN measured instead each individual infection’s ability to invade in the case

when the overall IRN is greater than 1. The next step was to extend this method

for nonautonomous systems. Using the same methods as in the case for BRNs, the

linear operator method was extended and shown to hold the same threshold behav-

ior. An example was given that showed when the time-average method and the linear

operator agreed in their expression, giving rise to an extension of the theorem from

the previous chapter. This showed if the matrices F (t) and V (t) are triangular of

the same form the methods would agree. A numerical example was given in which,

for this particular case, seasonality led to a decreased chance of co-persistence. The

same principle from the first chapter applies here in that the two methods agree in

the case of a single invading infected class.

The last chapter was an application of the methods to a model of Chagas dis-

ease. The single-host model of Kribs and Mubayi [36] was used to include seasonality

in the transmission parameters. The goal was to see if seasonality could explain why

competitive exclusion does not hold in certain sylvatic cycles. For a set of biologi-

cally realistic parameters it does appear that seasonality can explain why the different

strains are observed to be at endemic levels, especially within woodrat populations.

Each strain’s adaptation to a particular transmission pathway could give it an advan-

tage during certain seasons of the year, allowing it to persist even during seasons in

which it cannot infect at the same peak values. This also leads to pathogen diversity
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as a function of the magnitude of seasonal variations. It appears that a wider seasonal

variation can foster more scenarios of co-persistence whereas if the seasonal variation

is narrow, co-persistence becomes less likely.

One issue with the linear operator method, though it does give the correct

threshold behavior, is that it relies heavily on numerical work. Each periodic solution

must be numerically found in order to compute the IRNs for those models with

competing infections. The fundamental matrices must also be numerically computed.

This can lead to tedious and time-consuming work as for each set of parameters, each

of these things must be calculated and programmed to use. There is also the issue of

verifying (A6) and (A7) for each model, which when they rely on the periodic solution,

must be done each time a parameter is changed. This creates issues when wanting to

do sensitivity analysis or understand the behavior of the reproductive numbers.

For the linear operator method, there is more work to be done for the IRNs. In

the case where the overall IRN, AR̃0 > 1, it does not tell which infection(s) are in fact

invading, only that something is persisting enough to cause unstability. More work

needs to be done for the individual IRNs, AR̃j, in order to verify whether they show

that if the endemic solution is unstable in the smaller subspace, this gives instability

in the larger space. This requires a comparison of eigenvalues for submatrices that

falls outside of the mathematical work of this dissertation. There is also the issue of

determining whether all the individual IRNs being less than 1 implies that the overall

IRN is less than 1. There could be scenarios where it might not, as in coinfection

between resident and invading strains.

Further work needs to be done on the Chagas model to determine which source(s)

of seasonality are the most significant in the population where co-persistence was ob-

served. Another area for future research is the connection between coinfection and

seasonality’s impact on co-persistence. In the coinfection model, it appeared that sea-
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sonality decreases the possibility of co-persistence in contrast to the T. cruzi model

presented here. Further work needs to be done to study questions over whether

vector vs. indirect transmission plays a role in the connection between coinfection

and seasonality’s impact on co-persistence. This leads to studies on the strength

of coinfection dynamics and the strength of seasonal variation. Though periodicity

complicates epidemiological models, it appears to create more biologically relevant

dynamics. These can lead to impactful studies to determine the best way to prevent

disease outbreaks.
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