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ABSTRACT

INTUITIVE HUMAN ROBOT INTERFACES FOR UPPER LIMB

PROSTHETICS

OGUZ YETKIN, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Dan O. Popa

Modern robotic prosthetic devices for upper limb amputees promise to alleviate

an important disability, but are underutilized due to the inability to properly control

them. Specifically, the devices afford more degrees of freedom (DOFs) than are con-

trollable by easily decoded biological signals. These devices, such as the DEKA arm,

can have as many as 18 DOFs, although six is a more typical number (control of each

finger plus thumb rotation). Unfortunately, the use of these devices remains limited

by the ability of users to simultaneously control more than one degree of freedom at

a time with commercially deployed technology.

Control of robotic prosthetic devices is typically achieved through electromyo-

gram (EMG) signals read from the residual limb. While several groups have reported

being able to use multiple EMG sensors to classify the user intent from residual mus-

cle activity, such systems have not proven robust enough to translate to clinical use

and are not intuitive.
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In the first part of this research, the prosthetic control problem is re-framed as a

Human Robot Interface problem, developing and clinically evaluating several robotic

interface methods which can eliminate or complement the use of EMG signals while

allowing the user to quickly achieve more grasping patterns, thus allowing the use of

all the DOFs available in the prosthetic device. Three healthy limb based methods

have been developed and evaluated, including: 1) the use of the healthy hand to tele-

operate the proshtetic device via a Mirroring Glove, 2) the use of the healthy hand

to issue pre-programmed commands to the prosthetic device via a Gesture Glove and

3) the use of the healthy hand with extremely light fingernail worn devices to issue

commands to the prosthetic device.

In the second part of this research, a field-deployable and easy way of training

a multiple input based EMG classifier is presented and extended to using Force Myo-

graphy (FMG) data fused with EMG data.

Overall, a number of different experiments were conducted with a total of 20

human subjects, including 2 amputees, and the following conclusions were reached:

1) Healthy limb based prosthetic device control can match the performance speed of

EMG based control with very little training 2) Gesture based control of the healthy

limb is faster than mirrored teleoperation except in the case of tasks which are mir-

rored by their nature 3) Bilateral hand movements combined with kinematic tracking

of the healthy limb can be utilized to train a Force Myography (FMG) based classifier

as well as an EMG based classifier, and that the combination of the two modalities

hold promise to make a readily deployable multi-DOF EMG/FMG classifier system

a reality.
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CHAPTER 1

INTRODUCTION

Every year, approximately 25,000 new upper limb amputations occur in the US

alone [1]. While prosthetic devices have been in use for centuries, it is only in the last

few decades that robotic prosthetic devices have become available. In this work we

define robotic prosthetics to mean those devices that are either powered, motorized,

which are also sensorized and include advancements in battery and microcontroller

technologies. Examples of these new prosthetic devices, such as the DEKA arm, can

have as many as 18 degrees of freedom (DOFs) [2], approaching the 22 DOFs afforded

by the human arm. These devices are typically controlled by Electromyography but

are limited to the control of a single DOF at a time.

In a related area, there has been extensive research in Brain Computer Interfaces

(BCIs) for use in prosthetics [3], including the reading and decoding of signals directly

from the surface of the brain via electrocorticography (ECoG) to control the arm [4]

[5] and the fingers [6]. Furthermore, research in the area of Peripheral Neural Interface

(PNI) devices has attempted to interface prosthetic devices directly to the peripheral

nerves controlling the muscles of the arm [7]. These systems vary in their degree of

invasiveness, and hold great promise for the future. They are out of the scope of the

present work, which will focus solely on non-invasive robotic prosthetic interfaces.
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1.1 Problem Statement

EMG based prosthetic control has some serious limitations. Users typically

reposition their powered prosthetic device by controlling a single degree of freedom

(such as joint, finger, or wrist rotator) at a time. In an EMG based hierarchical menu

system, a user decides which degree of freedom to control, indicates preference by

issuing an EMG based command (such as co-contracting two muscles or contracting

a muscle for at longer time than normal), controls that degree of freedom with an

EMG command (by contracting one of the muscles being read by the system), and

repeats the process to switch to the next degree of freedom in a similar manner until

the task is completed. A similar scheme is used to select which grasp pattern (such

as a lateral grasp, pinch grasp, etc) to control via EMG. Cycling through different

degrees of freedom or grasp patterns in this manner is both time consuming and

difficult to learn for the user. Some manufacturers [8] provide a smartphone app

connected wirelessly to the device in order to aid in this grasp selection process.

The ideal system would, of course, be one in which each degree of freedom can

be controlled in a natural way. Simultaneous control of multiple Degrees of Freedom

(DOFs) using EMG signals is an active area of research which, to our knowledge

at the time of this writing, has not yielded clinically deployable systems. Although

several groups [9] [10] [11] have reported progress in the use of multiple EMG sen-

sors to classify the user intent from residual muscle activity, such systems have not

proven robust enough to translate to clinical use and are not intuitive. The field of

robotic prosthetics is, therefore, confronted with an interesting problem: The num-

ber of DOFs available on a robotic prosthetic device has far surpassed the ability to

simultaneously control them with readily available biological signals.
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1.2 Research Aims

This research explores two separate approaches to solving the multi-DOF pros-

thetic control problem and allowing the user to exploit all the available DOFs in a

robotic prosthetic arm in order to regain the functionality that a natural hand would

normally provide.

In the first part of this research (Aim 1), the prosthetic control problem is re-

framed as a Human Robot Interface problem. Three novel robotic interface methods

(with prototype devices) are presented and tested: A device which can directly control

the prosthetic hand via mirroring the movements of the intact hand (the Mirroring

Glove), a lightweight glove which allows the user to issue discrete commands to the

system (the Gesture Glove), and an extremely lightweight device free of haptic en-

cumbrances (the Fingernail Device). These methods and devices can either eliminate

or complement the use of EMG signals while allowing the user to quickly achieve

more grasping patterns, thus using all the DOFs available in the prosthetic device.

In the second part of this research (Aim 2), one of the devices created for

Aim 1 (the Mirroring Glove) is used as an input method to train an intent classifier

system. In addition to EMG, this system utilizes pressure sensitive robotic skin

for Force Myography (FMG). This classifier training system works by allowing the

user to perform bilateral mirrored movements with the intact hand (while it is being

tracked by the Mirroring Glove or a similar device) and the amputated limb. EMG

and FMG information from the amputated limb is also tracked and used to train the

classifier system. The purpose of this system is to render training/calibration of such

EMG/FMG classifier easy enough to be performed by the user each time the device

is worn. Such systems generally perform well in the lab and perform poorly once
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the user moves the arm out of an ideal resting position. Training and deployment

considerations for this system will be addressed.

Once fully developed and clinically deployed, the methods of Aim 1 and Aim 2

should prove to be complementary.

Part of our work in this research focuses on the classification of surface EMG

(sEMG) and Force Myography (FMG) signals, so that they can be used to control

robotic prosthetic devices. It is possible to obtain more accurate EMG signals via

slightly more invasive methods such as needle electrodes [12] or implanted wireless

EMG electrodes [13, 14, 15, 16]. While the use of these devices are out of the scope of

the present work, the same methods proposed here can easily be extended to needle

electrode based EMG or implanted EMG devices.

1.3 Human Robot Interface Considerations

Prosthetic device control is a Human Robot Interface (HRI) problem which falls

into the general category of User Interface (UI) and User Experience (UX) problems.

Such interfaces have been widely studied in the context of Virtual Reality (VR) and

in the context of the Human Computer Interface (HCI) systems (such as keyboards,

mice, menus, and touch screen based interfaces) which have become part of daily life.

1.3.1 Goals of UI Design

The main goals of UI design are to communicate human intent to a computer

or mechanical system as quickly and efficiently as possible with a minimal amount of

error. Schneiderman [17] proposes the following measurable goals for UI design:

1. Time to learn
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2. Speed of performance

3. Rate of errors

4. Retention over time

5. Subjective satisfaction

(list reproduced from [17], p15).

These goals may involve tradeoffs. For example, some systems designed for

experts in a field may tolerate a high time to learn as an acceptable trade-off for

increased speed of performance (the UNIX vi editor [18] is a famous example of a

system designed with the goal of performance speed instead of minimizing the time

to learn. The editor allows user to move around the screen using the ”h,j,k, and l”

keys and has a separate mode to edit text or navigate on the screen which is not

intuitive to any novice user. Expert users, however, are able to perform very fast file

manipulations with this editor). On the other hand, a system controlling a nuclear

power reactor, missile launcher, or medical equipment needs to focus on reduction or

elimination of errors, for which performance or training time can be sacrificed.

A related concept in the UI design field is that of ”friction” [19] which is any

impediment the user experiences in the flow of work. While a ”low friction” system

is generally desired (in which the user can accomplish a desired event without in-

terrupting the flow of work), some have argued that friction can at times be helpful

in the form of ”microboundaries” [20] (an example of this would be a confirmation

dialog or a menu in a UI which is intentionally difficult to get to because it can cause

harmful operation, such as an option to erase all data on a system).
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A major design consideration of the systems designed for Aim 1 was that the

devices would be very quick to learn, have high performance speed, be low in error,

and that they would be subjectively satisfying to the user.

1.4 Experimentation During Research

During the course of this research, I have undertaken considerable prototyp-

ing of prosthetic interfaces, and experimentation with human subjects to assess their

performance. A total number of 20 subjects were recruited under the approved In-

stitutional Review Board (IRB) protocol number 2012-0728.5, including 2 amputees

who visited our lab. They tested various aspects of the following prototype interfaces:

1. Three versions of the healthy limb adapter, which is a device created for this

work allowing non-amputees to wear an operate a robotic prosthetic device over

their existing arm. Each version has been a refinement on the former version,

making the device more ergonomic and lighter. The latest version features a

hand-hold and a custom OrthoFlex soft silicone shell as well as a fastening

system.

2. Three versions of the Mirroring Glove, which is a device allowing the teleop-

eration of the robotic prosthetic hand by mirroring the motions of the intact

hand. The latest version has more refined user-adjustable velcro-based holders

and does not require any amplification to read each flexion sensor.

3. The Gesture Glove, which is a lightweight device allowing the user to command

the robotic prosthetic hand by making simple hand gestures. The device was

created using an Arduino microcontroller, a fingerless weightlifting glove, and

embroidered sensor pads along with a custom signal processing program to

recognize gestures running on the microcontroller device.
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4. The Fingernail Device, which is an extremely lightweight device allowing the

user to command the robotic prosthetic hand by making simple finger gestures.

This device uses LED based emitters mounted on the fingernails and a thumb-

nail mounted sensor to detect touch events.

During the course of research, we experimented with these prototypes by col-

lecting user data and refining our hardware and software as follows:

1. Interfacing the gesture input system to the robotic hand by the creation of

a Controller Area Network (CAN) based controller architecture running on a

Raspberry Pi embedded computer to translate Mirrored Glove, Gesture Glove,

or Fingernail Device commands from the Arduino based microcontroller board

to the TouchBionics robo-limb prosthetic device.

2. Extensive experimentation on the hardware and software of the Fingernail De-

vice, including:

(a) Testing of various LED/photodiode/phototransistor combinations

(b) Identification of of an appropriate 16 bit Analog to Digital (ADC) con-

troller board

(c) Testing and identification of several light amplification circuits

(d) Creation and testing of a device based on LED timing

(e) Creation and testing of a device based on a ”light interrogator” algorithm

(f) Prototyping of a device based on running an FFT on the received light

signal

(g) Filing of a provisional patent on the fingernail device.

3. Timed testing of the iPhone based interface, Mirrored Glove, and Gesture Glove

on the Box and Blocks test.
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4. Timed testing of using two healthy hands, a single healthy hand, an unpowered

prosthetic hand, and powered prosthetic hand with Mirrored Glove and Gesture

Glove on the following activities of daily living:

(a) Folding a small towel

(b) Folding a large towel

(c) Folding a large blanket

(d) Carrying a laundry basket.

5. Timed testing of using two healthy hands, a single healthy hand, and powered

prosthetic hand with Mirrored Glove and Gesture Glove on various activities

of daily living (ADLs) including carrying a tray of bottles, opening a jar and

putting objects in it, and folding towels and blankets of various sizes.

6. Validation of Mirroring Glove and Gesture Glove data against timing data ac-

quired from an amputee volunteer performing tasks with her own EMG based

device

7. Qualitative validation of proposed interfaces with two amputees, who were in-

structed in how to use the Gesture Glove, Mirroring Glove, and Fingernail

Device.

1.5 EMG and FMG classification experiments

During the course of the research for Aim 2, many pieces of new hardware and

software have been created in order to simultaneously acquire pressure sensor, EMG

sensor and hand tracking data as well as ”ground truth” data recorded from the LED

array based prompter. This has included:

1. Creation of an LED array based prompter device and scheme in which the

user is prompted automatically to perform certain movements and in which the
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prompts are logged as ”ground truth” for use in visual comparisons and the

training of various neural network classification algorithms.

2. Creation of a custom single channel EMG circuit and preliminary experiments

with ”multi-channel-placement” in which the single channel sensors are moved

around and the data acquired with repeated motions.

3. Creation of custom multi-channel EMG data acquisition board for use with an

Arduino Mega device in order to create a portable system.

4. Creation of software to synchronize data being acquired from The Mirroring

Glove, Force Sensors, and EMG sensors

5. Creation of MATLAB based program utilizing neural networks to simplify ac-

quired Mirroring Glove based data for use as an input in further Neural Network

training to classify EMG and FMG data.

6. Creation of a 16 channel Force Myography (FMG) sensor array.

7. Creation of a plastic-molded forearm adapter in order to facilitate acquisition

of FMG sensor data.

8. Acquisition of FMG data with glove data from healthy volunteers.

9. Acquisition of EMG data, glove data, and prompter data from an amputee

subject.

10. Acquisition of EMG data, glove data, and prompter data from healthy subjects.

1.6 Publications

The research conducted has resulted in several publications, one of which is still

under review at the time of writing:
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1.6.1 Journal Articles and Patents

1. Yetkin, O., Sanford, J., Mirza, F., Karulkar, R., Das, S. K., & Popa, D. O.

(2015). Control of a Powered Prosthetic Hand Via a Tracked Glove. Journal of

Medical Devices, 9(2), 020920.

2. Yetkin, Oguz et al. ”A Novel Prosthetic Interface based on Hand and Gesture

Tracking.” Prosthetics & Orthotics International. (Under Review).

3. Yetkin, Oguz et al. (Provisional Patent). ”System and Methods for Controlling

Devices” US 62/323,592.

1.6.2 Conference Papers

1. Yetkin, O., Wallace, K., Sanford, J. D., & Popa, D. O. (2015, June). Control

of a powered prosthetic device via a pinch gesture interface. In SPIE Sensing

Technology+ Applications (pp. 94940I-94940I). International Society for Optics

and Photonics.

2. Yetkin, O., Ahluwalia, S., Silva, D., Kasi-Okonye, I., Volker, R., Baptist, J. R.,

& Popa, D. O. (2016, May). An extremely lightweight fingernail worn prosthetic

interface device. In SPIE Commercial+ Scientific Sensing and Imaging (pp.

98590J-98590J). International Society for Optics and Photonics.

3. Sanford, J., Yetkin, O., Cremer, S., & Popa, D. O. (2015, July). A novel EMG-

free prosthetic interface system using intra-socket force measurement and pinch

gestures. In Proceedings of the 8th ACM International Conference on PErvasive

Technologies Related to Assistive Environments (p. 72). ACM.

1.7 Posters and Presentations

Several oral and poster presentations have also been given on the research and

related topics, which are listed below:
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1. ”Blink/EEG Based Control of Multi DOF Robotic Actuator”. Poster. BMES

2014, San Antonio, TX.

2. ”Control of a Powered Prosthetic Device via a Pinch Gesture Interface” IEEE

Medical Devices Symposium, Dallas TX.

3. Control of a powered prosthetic device via a pinch gesture interface. In SPIE

Sensing Technology+ Applications. Baltimore, MD 2015.

4. ”Control of a Powered Prosthetic Hand Via a Tracked Glove”, UMN Design of

Medical Devices Conference, St. Paul, MN April 2015.

5. ”A novel EMG-free prosthetic interface system using intra-socket force measure-

ment and pinch gestures”. International Conference on PErvasive Technologies

Related to Assistive Environments. Corfu, Greece July 2015.

6. Novel Human Robot Interface Methodologies for Prosthetic Device Control.

ACES Symposium, University of Texas at Arlington. Spring 2016.

7. An extremely lightweight fingernail worn prosthetic interface device. In SPIE

Sensing Technology+ Applications. Baltimore, MD 2016.

1.8 Research Contributions

The research contributions of this thesis associated with my two aims are as

follows:

1.8.1 Aim 1

1. Invented, prototyped, and verified a novel system for fingernail based pinch

gesture tracking.

2. Proposed, prototyped, and validated the use of hand tracking (via a Mirroring

Glove) for prosthetic device control.
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3. Proposed, prototyped, and validated the use of pinch gestures for prosthetic

device control.

4. Created a new type of fingerless glove for pinch gesture tracking (Gesture Glove)

5. Established a subclass of tasks for which powered prosthetic devices are useful

6. Gathered timing data on different types of fingernail based gestures. Deter-

mined that some of the fastest gestures are based on using the non-dominant

hand.

1.8.2 Aim 2

The goal of Aim 2 is to create and prototype a field-deployable system which

fuses data from both EMG and FMG sensors, and in which the classifier can be

trained in the field by the user by utilizing one of the hand-tracking systems dis-

cussed earlier by performing the same bi-lateral motion.

This work synthesizes several of the concepts discussed above: The final envi-

sioned system is a dense array of EMG and FMG sensors which are used to train

an Artificial Neural Network (ANN) based classifier in a manner which can be easily

deployed to a clinical setting.

The research contribution of Aim 2 is the validation of using FMG data (both

by itself and fused with EMG) for bilateral movement based neural network classifier

training. To the best of the author’s knowledge, bilateral training on FMG data or

fused FMG and EMG data has not been performed or validated.

The final envisioned system encompasses both the healthy limb based modali-

ties discussed earlier and an EMG/FMG training system in which the healthy limb
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based control devices can be used to turn various features of the prosthetic control

system on and off.

1.9 Thesis Organization

Chapter 1 (this chapter) introduces the aims and contributions of the research

work. Chapter 2 introduces the area of prosthetic device control, presents a brief

survey of the state of the art in the topic, and the various fields this thesis draws

on: hand and gesture tracking, light transmission through tissue, electromyography

(EMG), EMG classification algorithms, and force myography (FMG). Chapter 3 dis-

cusses the design of human experiments performed to validate healthy limb based

control, including the use of a Mirroring Glove to teleoperate the robotic prosthetic

limb with the intact hand, and the use of a discrete gesture input device to command

the robotic prosthetic limb with pre-programmed movements. Chapter 4 delves into

technical detail about the design, construction, and validation of the novel finger-

nail based tracking system (Fingernail Device) presented in this thesis. Chapter 5

presents the systems constructed and experiments performed for Aim 2: EMG and

FMG based signal classification using tracked kinematic hand data as neural network

training input. Chapter 6 concludes this thesis and outlines a future vision of how

the components of the thesis can and should be brought together for a new type of

prosthetic control system utilizing both EMG, FMG, and healthy limb tracking in

order to allow the prosthetic device user the greatest amount of functionality that

the current state of technology will allow.
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CHAPTER 2

BACKGROUND ON PROSTHETIC CONTROL

The primary goal of upper limb prosthetic devices is to restore functionality

and independence to the user. A secondary goal is to provide a device which resem-

bles the missing limb for cosmetic purposes [21]. The ideal prosthetic device would

look, act, and feel like the actual missing limb. This deep-seated desire in the field

is famously illustrated in the popular movie franchise Star Wars [22] in which one

of the characters (Luke Skywalker) obtains a replacement hand after an amputation

incident and continues his daily activities without giving the artificial limb a second

thought after a minimal amount of calibration. This fictional system appears to have

inspired many actual systems while perhaps setting an unrealistic public expectation

of what is currently possible in the state of the art at the time of this writing. For

example, Dean Kamen’s DEKA [23] Arm System (Fig. 2.1) is referred to in many

popular media outlets as ”The Luke Arm” [24].
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Figure 2.1 The DEKA Arm. Image from [25].

Unrealistic public expectations notwithstanding, great advances have been made

in both robotic prosthetics and prosthetic control in the last several decades. This

section discusses the history of prosthetic devices, summarizes the state of the art

in prosthetic device control, and presents an overview of several more specific fields

and technologies on which the systems described in the thesis are based. Specifically:

Healthy Limb Based Control and Challenges Presented; Hand Tracking Technologies;

Gesture Based Device Control; Light Transmission and Detection Through Tissue;

Electromyography (EMG); Force Myography (FMG); Artificial Neural Network Based

Classification and EMG Classification Based Control of Prosthetic Devices.
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2.1 Historical Perspective on Prosthetic Device Control

While some form of prosthetic device has been around for centuries, the pros-

thetic grabber entered into popular use around the civil war. The most popular

device, to this day, remains the cable based prosthetic grabber (patented by William

Selpho in 1857 [26]) which allows the user, with the help of a system of shoulder

mounted cables, to open a spring loaded grabber, grab an object, and carry or ma-

nipulate it. This device is popular due to the fact that it is low cost, lightweight,

relatively easy to operate, and does not have the issue of running out of batteries.

An example of this type of system is illustrated in Fig. 2.2 (reproduced from [27]).

Figure 2.2 Body powered prosthetic device. Image from [27].

In addition to the passive grabber, some amputees choose to wear single-purpose

interchangeable implements on their prosthetic socket (such as gardening tools, rock

climbing tools, etc.) since they would have normally been holding this tool in their

hand to start with. These are generally known as adaptive prosthetics and are avail-

able for various sporting [28] [29], gardening [30], or other purposes.
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Figure 2.3 Adaptive Prosthetics. Left and Top: Custom prosthetics for recreational
activities. Images from [29]. Bottom Right: Prosthetic attachment for gardening.
Image from [30].

Unfortunately, both the passive grabbers and the single purpose prosthetics

present challenges. The passive grabber does require the user to perform some un-

natural body movements, which can be awkward. Single purpose prosthetics also

require time to put on and interchange. Human civilization and the tools which it

has developed for millennia presuppose the use of the hand. Many users also pre-

fer a hand-shaped prosthetic for cosmetic purposes. Fortunately, size reductions and

improvements in EMG, microcontroller, and battery technologies have made Robotic

Prosthetic Devices possible in the last three decades.
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2.2 State of the Art in Prosthetic Device Control

Currently available robotic prosthetic systems typically rely on one or two Elec-

tromyography sensors and allow the user to open or close the robotic hand by issuing

one of two commands. Some examples of the currently available hands can be seen in

Fig. 2.4. Each of these devices feature the ability to move the fingers independently

and have tried to improve on the use of EMG technology alone. The bebionic hand

[31] features 14 built-in grip positions and pressure sensors in order detect slipping

objects and grab them tighter. Otto Bock’s Michelangelo prosthetic hand [32] fea-

tures individually controllable fingers as well as finger abduction/adduction in order

to help the user hold small objects such as credit cards between the fingers. The Bion-

ics iLimb Quantum [33] device features controllable fingers, an opposable thumb, as

well as various control methods such as an iPhone app [8], actuation via ”proximity

control grip chips” (small devices which can be affixed to objects which, in turn,

cause the hand to automatically assume a pre-set grip pattern), and even control via

accelerometer based gestures [34], as seen in Fig. 2.5, as well as EMG based control.
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Figure 2.4 Several State of the Art prosthetic hands. Top Left: bebionic hand, image
from [31]. Top Right: Otto Bock Michelangelo Hand, image from [32]. Bottom Left:
Vincent Hand, image from [35]. Bottom Right: TouchBionics iLimb Quantum, image
from [33].
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Figure 2.5 Touch Bionics i-mo interface for associating grip patterns with accelerom-
eter based gestures. Image from [34].

It is possible to extend EMG commands issued to modern robotic prosthetic

systems by either going through a hierarchical control scheme (e.g., co-contract mus-

cles, move down a ”menu” to select a different mode), use a manufacturer provided

tablet or smart phone application with the intact hand, or use time based input (e.g.,

contract muscle for longer than two seconds to switch to a different operation mode).

Unfortunately, none of these systems are as seamless in operation as most users would

like. On the other hand, multiple input EMG classifier systems discussed in section

2.5.2 have the promise of allowing the user to command multiple degrees of freedom
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at the same time.

A promising surgical approach called Targeted Muscle Reinnervation (TMR)

[36] [37] [38] (Fig. 2.6) involves surgically connecting the residual nerves from the

amputated arm to chest muscles and using an EMG classifier system to enable the

control of multiple degrees of freedom in the prosthetic arm. In this scheme, the

subject wishing to command a non-existent muscle in the amputated limb instead

activates a muscle in the targeted area (in this case, the chest). This method utilizes

the body’s on muscles as amplifiers for the nerve signal, and has been used to control

multiple degree of freedom devices. It is, however, invasive. In addition, not many

surgeons are currently qualified to perform the required procedure.

Figure 2.6 EMG Classification from Targeted Muscle Reinnervation (TMR). Image
from [39].
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Direct peripheral neural interfaces in which the electronic systems are inter-

faced to residual nerves via neural electrodes, as well as electrocorticography based

Brain Computer Interface systems also hold promise for the future, but are currently

not deployed due to their invasive nature and instability. A survey of such neural

interfaces for commanding prosthetic devices can be found in [40] as well as in [3] [4]

[5] [6] and [7]. Such systems will not be considered further in this work.

2.3 Healthy Limb Based Control

This section discusses enabling technologies for the healthy limb based control

systems created, as well as the challenges presented in healthy limb based device con-

trol.

Double amputations are rare, therefore the majority of upper limb amputees

are unilateral (i.e., they have only lost one arm) [41]. For amputees who are unable

to generate proper EMG signals, the healthy limb based control paradigm presented

here will allow the existing hand to command the prosthetic device worn on the resid-

ual limb. The most obvious objection raised to this scheme is that the healthy limb

would be occupied commanding an inferior robotic device instead of performing the

task. This objection is countered in two ways: 1) A subset of tasks require both

hands to be performing mirrored versions of the same action, such as when grabbing

a laundry basket, table, or other large object [42] and 2) A majority of the tasks

performed by the amputee involve holding an object in the prosthetic hand while

performing dexterous manipulations with the intact hand (such as when opening a

jar, a padlock, etc.).
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2.3.1 Existing Systems

2.3.1.1 Smart Phone Based Prosthetic Control

Several companies, such as TouchBionics [8], provide a smart phone app to

control the prosthetic device. This app is intended to familiarize amputees with the

capabilities of their device while they learn how to generate proper EMG signals to

drive the device, as well as posing the device in pre-specified poses and changing the

modes of operations of the device.

2.3.1.2 Rotatable Wrists

In addition, many prosthetic devices have a rotatable wrist, allowing amputees

to use their intact hand to rotate the wrist in order to position the robotic hand in the

right position to perform their task (such as a 90 degree rotation in order to properly

grab a coffee cup). Automated wrist rotators do exist, but require the availability

of an extra degree of freedom in the input, or for the user to go through a set of

hierarchical values to go into a ”wrist control” mode.

2.4 Enabling Technologies for Healthy Limb Based Control

The systems presented in this work are meant to use the healthy limb to easily

command the prosthetic device in several modes: by mirroring the intact hand, by

putting the device in several pre-specified grasps (such as pinch grasp, lateral grasp,

etc.), and to put the device in different modes of operation without having to interact

with an on-screen menu system. This section discusses technologies on which the

newly developed healthy limb based control systems are based.
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2.4.1 State of the Art in Hand and Gesture Tracking Technology

2.4.1.1 Cyberglove and similar kinematic tracking systems

Since the advent of Virtual Reality technology in the 1990s, there have been

multi-joint kinematic hand tracking systems such as the CyberGloveTM . This device,

originally developed as ”The Talking Glove” by Kramer et al. [43] as a communica-

tion device for the deaf, can have anywhere from 18 to 22 bend sensors embedded

inside it to track various joints [44]. This system is frequently combined with the

CyberGrasp [45] haptic feedback system (see Fig. 2.7) for closed loop teleoperation

of robotic devices.
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Figure 2.7 CyberGlove hand tracking system with CyberGrasp exoskeleton. Image
reproduced from [45].

2.4.1.2 Pinch Glove Based Systems

Another system originally designed for the virtual reality market is the pinch

glove system [46] in which the user inputs discrete events into the computer by using

the fingers to touch various parts of the glove. The current systems on the market

are typically created using conductive fabric and require that the user wear a glove

covering the entire hand.
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2.4.1.3 Computer Vision Based Systems

In recent years, computer vision based systems such as the Leap Motion System

and the Microsoft Kinect One system [47] (which is based on a Time of Flight camera

to determine depth) have been used for gesture recognition [48]. While computer

vision based systems have the advantage of not requiring the user to wear anything,

both the Leap Motion system and the Kinect system require that the users be present

in a pre-determined environment and are not designed as wearable gesture tracking

devices. On the other hand, Kim et al. [49] (Fig. 2.8) describe a wrist-worn camera

based system which can track and interpret gestures to control various devices such

as MP3 players. Among the others mentioned so far, the system is unique in that it

promises to enable wearable interaction.
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Figure 2.8 Wrist mounted camera system for gesture tracking from Kim et al. [49].
Image reproduced from [49].

The wrist worn camera system is also prone to occlusions if the hand is oriented

in a way which is not in view of the camera.

In recent years, the emphasis has shifted to wearable systems which are meant

for portable device control. Two notable examples are the MyoTM armband and the

gest system.

2.4.1.4 Myo Armband

The Myo armband [50] [51] 2.9 is a commercial EMG and accelerometer based

device intended to be a substitute for mouse and touch screen based interfaces. The

Myo is an interesting system in that it utilizes a combination of accelerometer and

EMG technology for gesture tracking outside the context of prosthetic control. This
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device has been used to control games, PowerPoint presentations, as well as mobile

devices such as cell phones and portable music players. In order to utilize the system

properly, the user has to learn the gestures which are understood by the system. One

example is controlling the volume of a music player by clenching the fist and rotating

the arm clockwise, as if turning a volume dial.

Figure 2.9 The Myo armband is a gesture input device utilizing eight EMG sensors
as well as accelerometers.

Recent work [52] has investigated the use of the Myo armband to control a

prosthetic device using gestures which are custom made for the Myo.
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2.4.1.5 The gest System

The gest glove [53] relies on small tethered rings which are worn on each finger

as seen in Fig. 2.10. Each ring is instrumented with accelerometers. This allows the

system, along with some machine learning algorithms, to recognize gestures.

Figure 2.10 The gest glove.

This system has the advantage of leaving the fingers free of haptic encumbrance,

but still requires each tracker to be tethered to the main device.
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2.4.2 Gesture Recognition Systems Developed

For this work, three custom gesture recognition systems have been developed,

which will be detailed in Chapter 3 and Chapter 4. The Mirroring Glove is a kine-

matic tracking system relying on piezoresistive flexion sensors to track up to 6 degrees

of freedom. While more can be achieved, this system is sufficient to drive the 6 degree

of freedom commercial prosthetic device used in this work.

The Gesture Glove is a unique system similar in principle to the Pinch Glove

[46] but leaves the fingers free. It accomplishes this by taking advantage of conductive

pads embroidered in the palm of the hand, very small amount of current being carried

by the skin through the bare fingers, and signal processing.

The Fingernail Device is a novel fingernail worn gesture input system created in

the course of performing this work. This system is unique in that it can be made into

a low cost, completely untethered system which can be worn as fake fingernails on

each finger, with a slightly larger device worn on the thumbnail in order to recognize

gestures free of haptic encumbrance. This is somewhat similar to the system proposed

by Mascaro et al. [54] which relies on the color change on the fingernail bed, but has

the advantage of supporting an easily untetherable implementation and not requiring

any contact force between two fingers touching each other. This system relies on the

fact that light can be transmitted from one fingernail with an LED pointed to it to

the thumbnail only when contact is achieved between the two digits.

2.4.2.1 Light Transmission Through Tissue and the Near-Infrared window

The Fingernail Device, described in Chapter 4, relies on the transmission and

detection of light through human tissue. Even though most biological tissue appears
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to be opaque in everyday life, certain wavelengths of light are transmitted through

tissue (as can be observed if a bright flashlight is held up against one side of the

hand). This range of red and infra-red frequencies is known as the ”near infrared

window” in biological tissue. Light between the wavelengths of 670 nm and 910 nm,

and above the wavelength of 1050 nm [55] is transmitted through tissue as illustrated

in 2.11.

Figure 2.11 Light Transmission through the hand. Reproduced from [55].

The transmission and scattering of light through biological tissue is a very

complex matter whose mathematical treatment is out of the scope of this work. A
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good treatment of the subject can be found in [56]. Further analysis of the way a

light pulse interacts with tissue can also be found in [57].

The attenuation of light in a homogeneous medium is exponential in nature and

can be approximated through the Beer-Lambert law [58], reproduced in Equation 2.1

below. Even though living tissue is not homogeneous and the actual attenuation

and scattering behavior is slightly different, Equation 2.1 illustrates the fundamental

problem of exponential light loss encountered in the design and construction of the

Fingernail Device.

I = Ioe
−µx (2.1)

In Equation 2.1, Io represents the incident light on the system, µ represents the

extinction coefficient, and x the distance light travels through the system. Cheong et

al. [59] give a comprehensive review of various extinction coefficients of human tissue.

For the design of the Fingernail Device system, the LED wavelength, intensity, and

detector amplification have to be chosen so that light traveling through a finger and

a thumb is still detectable through the thumbnail. The Fingernail Device is discussed

in Chapter 4.

2.5 Electromyography

2.5.1 Electromyography Signal Acquisition and Processing

Electromyography (EMG) is the recording of electrical action potentials from

muscles [60]. Typically, surface EMG (sEMG) signals are obtained and amplified

from electrodes placed on the skin over the muscles. It is also possible to obtain more

refined signals by using needle electrodes which are inserted inside the muscle. While

EMG has many diagnostic uses in medicine, it has also found an essential niche in
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prosthetic device control. Most commercially available devices are controlled via two

EMG electrodes placed on the residual muscles of the user, through which the user

is trained to issue commands.

2.5.2 EMG Based Classification Algorithms

Commercial prosthetic devices available at the time of writing typically exploit

only a subset of the available information for robotic prosthetic device control, allow-

ing the users to issue at most two commands, which can be used to drive menus of

options through hierarchical control [61] which is both difficult to learn and time con-

suming to execute. A major area of research, therefore, has been the use of multiple

sEMG sensors on the residual limb in order to enable multi-DOF control.

The data from multiple sEMG sensors are typically used along with machine

learning systems which can classify the input into discrete actions (such as pronating

or supinating the hand, or moving an individual digit). These classification systems

generally can’t be explicitly programmed, but are able to decide what types of data

belong together (unsupervised learning systems), or are trained on existing data sets

in which the ”ground truth” is known (supervised learning systems). This work

focuses on supervised learning systems in which the ground truth is obtained from

tracking the intact hand during training while the subject performs mirrored bilateral

movements. Once a classifier is properly trained, it can map muscle movements to

actions performed by the prosthetic limb in real time.

Surveys of machine learning systems for sEMG classification can be found in

Karlik et al. [62]. Several implementations include those by Soares et al. [63] and

Nair et al., [64]. A well known system has been implemented by Engelhart and Hud-
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gins [65] which extracts four degrees of freedom from multiple EMG sensors. Others

algorithms include those referenced in [66] [67] [68] [69] [70].

2.5.3 The Need for a Better Classifier Training Scheme

Despite the promise of sEMG classification, the systems have not yet been

widely deployed. Part of this stems from the fact that most classification experi-

ments have been run in the lab, with the patient’s residual limb resting on a table.

Unfortunately, the systems trained under such ideal conditions do not perform well

in daily use. Scheme et al. [71] report on the effect of arm position when training

data are being acquired, and Hargrove et al. [72] report on the degradation of signal

due to non-ideal electrode placement.

Before sEMG classification systems can be moved out of the lab and into clinical

use in any meaningful way, a classifier training method needs to exist which can be

re-trained by the user as needed, without the need for a laboratory environment. The

ability to train the system under various arm poses is also important as established

by [71]. On a related note, any deployed system will ultimately need to take arm

pose and position into account both during training and use.

2.5.4 Existing Systems of Relevance

2.5.5 Use of Bilateral Movements for Training

Several groups (e.g., Nielsen et al. [73], Jiang et al. [74], Mucelli et al. [75])

have demonstrated using mirrored, bi-lateral movements to associate forces and move-

ments measured in the sound limb with EMG signals in the amputated limb.
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2.5.6 Optimal Electrode Placement

Existing work by Maier et al. [76] describes optimal sensor placement for fin-

ger movement classification, which has been reproduced in Fig. 2.12. As illustrated,

1) Flexor pollicis longus (thumb flexion) 2) Flexor digitorum superficialis (index fin-

ger flexion) 3) Flexor carpi ulnaris (pinkie flexion) 4 to 7) Flexor carpi radialis and

palmaris longus (middle and ring finger flexion) 8) Extensor pollicis longus (thumb

extension) 9) Extensor indicis (thumb extension) 10) Extensor carpi ulnaris (middle,

ring, pinkie extension).

Figure 2.12 Sensor Placement from Maier et al. [76]
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2.5.7 Dimensionality Reduction

Optimal electrode placement, while possible in the lab, presents a unique chal-

lenge to an amputee who must put on and wear a prosthetic arm on the amputated

limb using a single hand. Furthermore, it is established that deviation from optimal

electrode placement will degrade the performance of a classifier system [72]. An alter-

nate approach to accurate electrode placement is to use a multitude of electrodes and

then only utilize the ones which provide relevant data. Two approaches are possible

to accomplish this: 1) Reduce the dimensionality of the data via the use of a Support

Vector Machine or a similar technology 2) Use an Artificial Neural Network on the

entire dataset and allow the network training algorithm to reduce the significance of

the unused inputs.

Several groups have thus made use of multiple electrode arrays. For example

Sueaseenak et al. [9] have used a 16 electrode array to classify 4 different movements

(their array setup is reproduced in Fig. 2.13).
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Figure 2.13 Multiple EMG sensor array from Sueaseenak et al. [9].

2.6 Force Myography

An alternative to EMG based control is Force Myography (FMG) [77, 78, 79]

(alternatively referred to as Residual Kinetic Imaging) in which the volume changes

in muscles and tendons in the forearm or the residual limb are recorded and correlated

with desired movements.

Force myography is simpler in some ways than EMG, since the data do not

need to be filtered as much and the signal is not affected by factors such as skin

conductivity. There is also the advantage that FMG may be able to access tendon

movements which do not necessarily have a readily accessible EMG counterpart.
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In this work, EMG and FMG are used synergistically in order to improve clas-

sification accuracy.
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CHAPTER 3

HEALTHY LIMB AND GLOVE BASED INTERFACES

3.1 Introduction

Commercially available robotic prosthetic limbs with multiple degrees of free-

dom (DOFs) closely resemble the human hand [80] [36]. Most interfaces rely on EMG

pattern recognition or hierarchical control [61] allowing only single actions at a time.

Control difficulties [81] and the inability to generate the required EMG signals [40]

lead to a 20% incidence of device abandonment [82]. Some manufacturers supply a

smart phone app for intact hand based control while users acclimate to EMG [8]. We

present a control methodology for unilateral amputees who cannot use EMG signals

or who desire to exploit a higher number of DOFs.

3.1.1 System Architecture

Two control systems using wearable electronics on the intact hand were created

and tested. Data from both control systems are read by an ArduinoUnoTM micro-

controller board and relayed to a RaspberryP iTM mounted on the prosthetic device

as illustrated in Fig. 3.1.

The system relies on a modular architecture in which a standard set of com-

mands are issued using the RS232 protocol transmitted by a USB cable to the em-

bedded computer, which then relays the commands to the prosthetic device via the

CANBus protocol. The Arduino microcontroller on the glove interprets the input

and creates UNIX shell commands which are then communicated to the embedded

39



computer (Raspberry Pi) via USB. These messages are in turn executed, causing the

command to be sent to the prosthetic device over the CAN interface.

Figure 3.1 System Architecture. A: Glove Based Control Architecture. Either glove
is worn on the sound hand. B: Left: The Gesture Glove and two gestures, mapped to
two different poses. B: Right: The Mirroring Glove and two gestures being mirrored
on the prosthetic limb.

3.1.2 Healthy Limb Adapter

In testing on healthy volunteers, the prosthetic device (robo-limb, Touch Bion-

ics; Livingston, United Kingdom) was mounted on a custom-made healthy limb
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adapter (Fig. 3.2).

In order to allow non-impaired volunteers to wear and test this system, a healthy

limb adapter was created incorporating an Otto Bock Quick Connect (Otto Bock, Ger-

many) ring attached via six standard nuts and bolts to a custom 3D printed bracket

attached to a plastic shell. The shell was formed out of heat moldable thermoplastic

(Worbla, USA) with a heat gun by using a plaster of Paris replica of the subjects arm

as a template. Power and data wires were routed to the outside of the healthy limb

adapter through a drilled hole. Circuit boards necessary to terminate the controller

area network (CAN) cable and provide power, batteries, and a Kvaser Leaf (Kvaser,

USA) USB to CAN adapter were affixed to an armband using Velcro. A Raspberry

Pi embedded computer was also mounted to interpret the signals from the Arduino

Microcontroller and generate the CAN messages driving the prosthetic device. A 2

meter long USB cable connects the tracking glove to the Raspberry Pi device on the

healthy limb adapter.
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Figure 3.2 Healthy Limb Adapter.
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Figure 3.3 Updated version of the healthy limb adapter featuring a handhold and a
softer OrthoFlex shell.

3.2 Mirroring Glove

The Mirroring Glove is a 6 Degree of Freedom (DOF) kinematic hand tracking

device used to teleoperate the Touch Bionics RoboLimb device inspired from earlier

”dataglove” systems [83] which have been used for decades to interact with virtual

environments. The main impetus behind the Mirroring Glove concept is the fact that

the best input device for a hand-shaped device is the hand itself, and that certain

activities of daily living involve ”mirrored” movements of both hands. These activ-
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ities include, but are not limited to carrying laundry baskets and picking up large

awkward objects as seen in Fig. 3.4.

Figure 3.4 Some typical Mirroring Glove uses.

3.2.1 Mirroring Glove Construction

The Mirroring Glove itself is comprised of flexion sensors, an amplifier board to

read the sensors, and a glove onto which these sensors are sewn or otherwise attached.

An early example of the device can be seen in Fig. 3.5. The Arduino microcontroller

on the glove reads the flexion signals. The lock button allows the user to pose the

prosthetic in a desired position and lock it in place, making non-mirrored tasks also

possible with the system.
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Figure 3.5 Mirroring Glove with lock button.

We have built a tracking glove using six SparkFun 2.2 flexion sensors (SparkFun

Inc.), a glove, an Arduino [84] Uno microcontroller, and Velcro to hold the Arduino

device on the glove. The flexion sensors were attached to the glove through the use

of custom-sewn sleeves which reduce the stress on the sensor attachment point by

allowing the sensor to slide during movement. The flexion sensors were soldered to

flexible multi-strand wires, and the contact areas were thermoplastic encased. The

endss of the sensors were also molded into sewable buttons by a process involving

laser-cut acrylic molds described in Fig. 3.6.
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Figure 3.6 Steps involved in making a sewable sensor holder.

As illustrated in Fig. 3.6 A-D: Three layer acrylic mold created with CNC laser

cutter used to mold a button with InstaMorphTM . E: Molded button sewn onto

glove. F: Flexion sensor lined up with finger. G,H: Hot air gun used to immobilize

sensor after contacts have been soldered.

3.2.2 Mirroring Glove Software

The software configuration of the system relies on three components: 1) The

Arduino microcontroller, 2) the standard UNIX BASH shell, and 3) code running on

the Raspberry Pi device (handControl) which can open and close individual digits

via the command line. The system operates as follows: first, code running on the
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microcontroller board reads the flexion values for each digit and maps them to a value

between 0 (open) and 100 (completely closed). Next, the microcontroller software

composes the necessary UNIX command to set the position of each digit and sends

it over the USB cable to the Raspberry Pi. After that, the Raspberry Pi pipes the

command received from the serial port to the BASH command interpreter, invoking

the handControl software with the necessary arguments. Finally, the handControl

software issues the command to stop any movement that might be happening on

the prosthetic device, followed by the command to instruct each digit to assume the

desired position.

3.2.3 Mirroring Glove Testing

Testing the Mirroring Glove included characterization of the sensors in order to

make sure that they can drive the device in a reproducible manner. Fig. 3.7 shows

the output of flexion sensors on repeated hand openings and closings.

3.3 Gesture Glove

The Gesture Glove developed for this system is an alternative as well as a

complement to healthy limb based prosthetic device control using the Mirroring Glove.

Instead of commanding the prosthetic device via teleoperation, the Gesture Glove

allows the mapping of certain common grap patterns to gestures performed on the

healthy hand by utilizing the Gesture Glove (as seen in Fig. 3.8). Note that the

gesture performed by touching the finger to the palm of the hand does not necessarily

correspond with the action performed by the prosthetic hand.
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Figure 3.7 Raw data from flexion sensors on one finger on repeated opening and
closing of the hand.

3.3.1 Gesture Glove Construction

A conductive thread and glove based system (The Gesture Glove) was also

constructed and investigated. This system leaves the fingers free for the performance

of non system-related tasks (Fig. 3.8). The Gesture Glove system was developed to

be less cumbersome and is suitable for being worn for extended periods of time. The

Gesture Glove was constructed from a fingerless weightlifting glove by embroidering

conductive thread touch pads in the palm and connecting them to snap connectors

sewn on the dorsal side of the hand. The conductive thread lines going from the

embroidered pads to the snap connectors were insulated with fabric affixed to the

inside of the glove. Another contact pad was embroidered on the inside of the glove

so that it made contact with the skin and was connected to the +5V terminal of

the Arduino microcontroller board via another snap connector. The user touches one

of the conductive pads with a finger and completes the circuit causing a signal to
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Figure 3.8 Gesture Glove with some possible actions.

be acquired by the A/D converter. The purpose of the system is to identify touch

gestures from each fingertip while not registering any accidental gestures from objects

that the user might be manipulating. The skin contact with the +5V terminal was

further enhanced by connecting the terminal to a gel electrode meant for use with a

Transcutaneous Electrical Neural Stimulator (TENS) system (Infiniti ELT 5050T).

The TENS electrode is not strictly necessary, but significantly improves the signal

to noise ratio, essentially eliminating misclassified gestures. The output from the

conductive pads was sampled with the built in 10 bit A/D converter of the Atmega

328 Microcontroller on the Arduino board.
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3.3.2 Gesture Glove Operation

In this setup, the hand is treated as a 1 to 2 M resistor, and touching the con-

ductive pad with the bare fingertip completes the circuit, causing the A/D converter

to see an increase in voltage. This is depicted in Fig. 3.8.

The data from the conductive touch pad was very noisy, so a touch classifica-

tion algorithm was developed in order to classify touch events. For this, an algorithm

using moving average and moving standard deviation was developed. The moving

standard deviation is a method that is useful in various applications where the signal

is noisy or the baseline is not stable. Its use and properties have been discussed for

various biomedical applications [85, 86, 87]. In this study, an Arduino based statistics

library [88] was utilized for part of the code. The touch classification algorithm uses

a running average filter and a running standard deviation filter (window size n=50),

which is applied to the raw data in real time using only past values. The output value

at step i, Oi, is determined to be 100 if a touch event is detected and 0 otherwise.

The touch classification algorithm is defined in Equation 3.1 through Equation 3.5

below:

Let the output of the A/D converter be the vector X of size N

X = {Xi}Ni=1 (3.1)

Let xi,n be the moving average at sample i with window n

xi,n =
1

n

i∑
j=i−n

xj (3.2)

Let Stdi,n be the moving standard deviation at sample i with window n
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Stdi,n =

√√√√ 1

n

i∑
j=i−n

(xi − xi,n)2 (3.3)

Let Ai be the activation statistic representing the distance of the current value

from the moving average in standard deviations

Ai =
(xi − xi,n)

stdi,n
(3.4)

Let Oi be the output from the touch classification algorithm and Tstd be the

threshold for standard deviation (experimentally determined or adjusted with a po-

tentiometer)

Oi =


100 Ai ≥ Tstd

0 Ai < Tstd

(3.5)
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After the data were acquired from several trial runs, an activation statistic

threshold value, Tstd, of 2.5 standard deviations was experimentally determined to

be appropriate for distinguishing between a touch event for a given conductive pad

and random noise. In this system, the condition of Oi = 100 in Equation 3.5 holds

true for only a few samples after a touch event. After the event, the moving standard

deviation changes and causes the value of Oi to be below Tstd again. This has the

advantage of eliminating the need to de-bounce the touch event. While it would be

possible to classify release events as well as touch events using this method, only touch

events are used in the Gesture Glove system. This algorithm has the advantage of

being robust against changes in the absolute magnitude of noise and the values read

from the contact pads, which change based on factors such as ambient moisture or

changes in skin conductivity. The application of the algorithm on a representative

dataset (in which four consecutive touches from index, middle, ring, and little fingers

were acquired) is illustrated in Fig. 3.9, Fig. 3.10, Fig. 3.11, and Fig. 3.12.

Figure 3.9 Raw data from conductive thread pads. The time series shows consecutive
touch events for the index, middle, ring, and little fingers.
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Figure 3.10 Values from A/D converter filtered with a moving average filter with a
window size of n = 50, showing four consecutive touch events (index, middle, ring,
and little finger).

The Gesture Glove has the advantage of leaving the fingers free and allowing

the user to touch items with the palm of the gesture glove without accidentally acti-

vating the system. It is, however, affected by sweat and by touching metal objects,

which may necessitate more sophisticated signal processing approaches than simply

detecting a touch event. The effects of sweat can be mitigated by wearing another

lightweight and non-conductive fingerless glove underneath the Gesture Glove.
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Figure 3.11 The touch events from above displayed as standard deviations from the
running average at each point. Note that each touch value goes above 2.5 SD from
mean in this case.
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Figure 3.12 Touch events, O, identified after the application of threshold Tstd. The
system outputs a value of Oi = 100 (arbitrarily chosen) if the Activation Statistic,
Ai, is greater than the standard deviation threshold Tstd. (Note: this figure was
obtained from a different run of the experiment than the previous figures).
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3.4 Experiments Performed

Four manipulation tasks simulating activities of daily living were utilized: Mod-

ified Box and Blocks Test, Blanket Folding Test, Bottle Carrying Test, and Jar Test.

Timing data was recorded from three runs of each experiment. Bottle Carrying Test

documentation also included rate of failure.

3.5 General Experimental Protocols

The study was approved by the University of Texas at Arlington Institutional

Review Board and informed consent was obtained from each volunteer. One unilateral

amputee performed the Jar, Blanket Folding, and Box and Blocks tests. A group of

healthy volunteers (numbers specified in each experiment) performed the Jar, Blanket

Folding, Box and Blocks, and Bottle Retrieval tests. In each case, the Box and Blocks

test was performed using the healthy hand (in all cases, including the amputee),

employing all the control modes (healthy volunteers), and using a commercial EMG

based Touch Bionics robo-limb prosthetic (in the case of the amputee).

3.5.1 Experiment 1: Towel Folding Test

In the towel folding test, the subjects (all non-amputee volunteers) were asked

to fold a medium sized (90 cm by 60 cm) towel under three different conditions: 1)

with both healthy hands, 2) with a single, non-dominant hand, 3) with the Gesture

Glove based system. The performance was timed for 3 subjects (all right handed, 2

males, 1 female, ages 25-39) performing 3 tries each.

3.5.2 Experiment 2: Box and Blocks Test

The standard Box and Blocks was modified [89] to use a single large styrofoam

block (5cm x 5cm x 5cm), instead of many small blocks. The volunteers moved from
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one side of a 53.7cm x 25.4cm area to another over a 16cm high divider as frequently

as possible in 60 seconds. The test was performed by two groups of volunteers on

two different dates, as well as by the amputee volunteer. The healthy volunteers

performed the test with the dominant hand (right hand), and then with healthy limb

adapter (on dominant hand) controlled using the Gesture Glove, the Mirroring Glove,

and the iPhoneTM app provided by the manufacturer of the prosthetic limb.

3.5.3 Experiment 3: Blanket Folding Test

Volunteers were timed while folding a large blanket (243cm x 243cm) on a bed.

The volunteers were instructed to fold the blanket in three, and repeated the task three

times. The test was performed with both healthy hands (bimanual), singlehanded,

and with the healthy limb adapter controlled by the Gesture Glove and the Mirroring

Glove. In addition, one amputee volunteer completed the same task three times using

her EMG controlled device.

3.5.4 Experiment 4: Bottle Carrying Test

In the bottle carrying test, three healthy volunteers were instructed to carry

six empty soda bottles from a kitchen counter to another table in the room, using a

tray. Completion time and number of failures (drop of any bottle) were tabulated.

The experiment was re-started on failure and repeated as many times as necessary to

reach success. Completion times only represent successful runs of the experiment.

The tasks in experiments 2-4 were performed with two hands (bimanual), one

dominant hand (single), and with the healthy limb adapter controlled by the Gesture

Glove and the Mirror Glove.
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3.5.5 Experiment 5: Jar Test

Five closed jars, with a plastic block in front of each, were placed in front of

the volunteers who were timed while they opened the jar, placed the block inside,

and closed each jar. The tasks in experiments 2-4 were performed with two hands

(bimanual), one dominant hand (single), and with the healthy limb adapter controlled

by the Gesture Glove and the Mirror Glove.

3.6 Experimental Results

3.6.1 Towel and Blanket Folding Tests

Three subjects performed folding tasks (towel folding and blanket folding) three

times. In both cases, bimanual performance of the task with two healthy hands was

the fastest (9.5 s and 27 s respectively, averaged for 3 subjects and 3 trials), followed

by the use of the Gesture Glove based system (20 s and 49.69 s) and then by the

single non-dominant hand (23 s and 98.9 s). The use of the prosthetic device ap-

pears to confer the largest advantage over using a single hand when the object to be

manipulated is large (in this case, the blanket). Towel Folding and Blanket Folding

tasks are summarized in Fig. 3.13 and Fig. 3.14, respectively. In the towel folding

task, three subjects were instructed to fold a towel with two hands, the healthy non-

dominant hand, and the conductive pinch glove based system. When folding a small

towel, the system does not appear to confer a great advantage over using a single hand.

3.6.2 Gesture Glove vs. EMG in Blanket Folding Test

In the blanket folding test (Fig. 3.14), the Gesture Glove performed significantly

faster than the commercial EMG driven prosthetic (49.69± 21.65s vs. 76.38± 17.4,

(p = 0.042) as determined by a Mann Whitney Rank Sum test).
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Figure 3.13 Results of the towel folding task.
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Figure 3.14 Result of the blanket folding task, where the advantage of using the
Gesture Glove based prosthetic system can be seen. The subjects were asked to fold
a large (243cm x 243cm) blanket. Using the Gesture Glove system is significantly
faster than using a single hand (p < 0.05).

3.6.3 Box and Blocks Test

The results of the first instance of the Box and Blocks test are summarized in

Fig. 3.15.
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Figure 3.15 Box and Blocks Test, instance 1 (comparison with iPhone).

Manipulation with the Gesture Glove (2.44 0.35 seconds/block) was signifi-

cantly faster than manipulation with the iPhone app (3.60 ± 0.13s) (p¡0.001) but

slower than the healthy hand (1.16± 0.14s). The Mirrored Glove (3.45± 0.65s) was

not significantly faster or slower than the iPhone app.

The experiments below whose results are depicted in Fig. 3.16 were performed

on a different group of volunteers, including one volunteer using an EMG based

prosthetic system.
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Figure 3.16 Box and Blocks Test, instance 2 (comparison with EMG).

Manipulation with the healthy hand took an average of 1.006 ± 0.19 seconds,

the Gesture Glove took an average of 2.47 ± 0.33 seconds, Mirrored Glove took an

average of 4.12 ± 0.45 seconds. The average time for the amputee using an EMG

device was 1.60 ± 0.21 seconds. The same amputee volunteer was able to complete

each block manipulation task in 0.99± 0.05 seconds with her healthy hand.
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3.6.4 Bottle Carrying Test

For the Bottle Carrying Test in Fig. 3.17, both the amount of time taken on a

successful completion and the number of failures (dropped bottles) occurring before a

completed test were quantified. Healthy volunteers completed the test in 27.3± 6.63

seconds, with 0.22 failures on average with two hands, and in 43.11 ± 9.89 seconds

with (0.83 average failures) with one hand. The Gesture Glove controlled task took

59.33± 7.31s (1.33 average failures). Use of the Mirroring Glove reduced the time to

42 ± 3.34s (0.67 average failures). Mirroring Glove was significantly faster (p¡0.001)

than gesture based control, and had a significantly lower number of failures (p¡0.001)

than the single-handed performance of the test.

Figure 3.17 Bottle Carrying Test. Left: Time taken for successful attempts. Right:
Average number of failures before the achievement of a successful attempt for each
control scheme.

3.7 Discussion

Two novel healthy hand-based prosthetic control paradigms for a unilateral

amputee were tested on volunteers: the Mirroring Glove and the Gesture Glove. The
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preliminary results indicate that our prototype systems can be faster than EMG based

control in some instances (blanket folding with gesture based control).

The Mirroring Glove and the Gesture Glove are novel intact-hand based pros-

thetic control interfaces offering advantages in terms of deployability, usability, and

task completion durations. Inexperienced volunteers required around 20 to 30 min-

utes of training. We believe clinical devices can be based on these paradigms.

The fabric folding tests represent a subset of tasks in which it is useful to have

two hands and to be able to execute a grasping motion (as opposed to bimanual

tasks in which simply having one residual limb with no grasping ability might suffice,

such as holding a jar in place while opening it). Having a powered prosthetic device

appears to be helpful in fabric folding only when the piece of fabric being folded is

large (such as a large blanket).

The Mirroring Glove achieved simultaneous control of 5 DOFs and allows the

user to perform tasks which are naturally mirrored (such as carrying large objects,

pulling a table, etc.) or use the intact hand to pose the prosthetic device before

locking it in place [42]. Volunteers report that the Mirroring Glove was generally

easier to use for these tasks, with the exception of blanket folding, where the Gesture

Glove was superior. We hypothesize this is due to the preliminary nature of the hard-

ware and limitations of the prosthetic device which prevent mirroring all human hand

DOFs. Performance of the current device will be improved with a more sophisticated

and accurate gesture recognition algorithm and the addition of thumb opposition as

a DOF.
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The Gesture Glove leaves the fingers free and allows the user to quickly pose

the prosthetic device in pre-determined configurations using pinch gestures [90]. The

main advantage is that four gestures are accessible in the time it takes to tap a finger

to the palm (approximately 200 ms [91]). Additional poses can be mapped to gesture

chords using multiple fingers or timing based input methods such as double-pinch or

long pinch. This device consistently outperformed the other control modalities except

during the Bottle Retrieval Test. Limitations include skin conductivity changes such

as sweating and the touching of metal objects with both fingers and palm, which will

be addressed with improved signal processing.

3.7.1 Developed Systems in the Context of UI Design

The first device developed for this work, the Gesture Glove, is essentially a zero

friction system (in the sense of ”friction” as used in UI design literature such as in

[20]) in that the movements of the intact hand are mirrored directly. In this context,

an additional point of intentional ”friction” needs to added in order to allow the user

to lock the hand in place both in order to hold an object and also in order to avoid

unwanted movement in the robotic device. Conceptually, this is the most intuitive

device to use, since every movement of the intact hand is mirrored in the prosthetic

hand.

The Gesture Glove and the Fingernail Device (discussed in Chapter 4) are also

low friction devices, but they require intentional actuation by the user. It is possible,

however, to perform a gesture without intending to. In order to prevent this, a

somewhat uncommon gesture such as ”double tap” needs to be in place to place the

system into and out of gesture recognition mode.
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Interestingly enough, the Gesture Glove and Fingernail Device were easier to

use by the volunteers, as the speed of the robotic device made it somewhat difficult

to position all the digits properly.

3.8 Conclusion

Unlike EMG-based control, our prototype interfaces can be quickly learned by

amputees and may be particularly suitable for unilateral transradial amputees who

lack enough residual muscles to control an EMG-based prosthetic. Another possible

use is complementing EMG-based control, such as putting the device in various op-

eration modes. Future work includes making the devices faster, more accurate, less

cumbersome, and validating their performance with more users, including amputees.

3.9 Future Work

Both the Mirroring Glove and the Gesture Glove hold potential to augment

or replace EMG based control, but certain improvements need to be made to these

devices before they are ready to be used in a clinical setting. The first such improve-

ment is the addition of wireless capability, which is in progress.

If the Mirroring Glove is to be used with a prosthetic device which only has

commands to ”close” and ”open” each digit (as is the case with the Touch Bionics

robo-limb device used in this work), the glove firmware needs to be updated to wait

until the user has indicated the desired hand pose before the command to move the

digits is issued – otherwise, the robotic hand is prone to jamming due to the inability

of the motors to keep up with the speed of natural finger movement (each digit on the

robotic hand takes approximately 1.4 seconds to open or close, which is much slower
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than what the human hand is capable of).

Another improvement which is in progress is the addition of accelerometer based

lock switches, in order to prevent accidental movement of the robotic limb. Currently,

only the Mirroring Glove has an external switch for locking, which is actuated by

touching it to a part of the user’s body (such as the chin). The ideal embodiment

of this may be an accelerometer based switch which the user activates by shaking

the hand on which the glove is worn. The exact embodiment of the switch can be

determined by the patient’s orthotist depending on the patient’s disability and needs.

An important concern expressed by unilateral amputees is that they do not wish

to encumber their healthy limb with any more hardware than is absolutely necessary.

In light of this, any healthy limb based control device needs to be as lightweight and

unobtrusive as possible. This concern lead to the development of the Fingernail De-

vice, which is a lower encumbrance device worn on the fingernails. The device has

similar functionality to the Gesture Glove. The advantage of this device is that it can

be deployed in a wireless form which is also devoid of any haptic encumbrance at the

finger pads. The Fingernail Device and its construction, testing, and operation are

covered in the next chapter.

Work is also under way to repeat the Activities of Daily Living tests for the

Fingernail Device.
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CHAPTER 4

DEVELOPMENT AND TESTING OF A LIGHTWEIGHT FINGERNAIL WORN

SENSOR

4.1 Motivation

The previous sections have explored the concept of using a Mirroring Glove and

a Gesture Glove to quickly pose a prosthetic device using the intact hand. This mode

of control allows robotic prosthetic devices to be used by patients who are unable to

generate proper EMG signals, and provides an alternative or a complement to EMG

based control for those who can.

In order to be deployable and usable by patients in the performance of Activi-

ties of Daily Living (ADLs), a healthy limb based system needs to be free of haptic

encumbrances and leave the fingers (and especially the fingertips) of the healthy hand

free.

Several attempts have been made to develop and deploy wearable devices with

low encumbrance. We present a device based on light transmittance through two

fingers forming a pinch gesture from an LED emitter placed on each fingernail to a

detector on the thumbnail. This device exploits the phenomenon of increased light

transmittance which occurs when the two fingers make contact, temporarily forming

a light guide. Our system has the advantage of requiring a very small amount of elec-

tronics on each fingernail mounted device, making the entire system easy to construct
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and deploy.

Pinch gestures are intuitive gestures which can be performed by touching the

fingers of the hand to other fingers or the palm of the hand [46]. Pinch gesture tracking

gloves are commercially available but require the use of a glove on the healthy hand,

which ultimately limits manipulation ability with that hand. These systems typically

use conductive fabric and the completion of a circuit by touching various parts of

the glove together. Other gesture tracking systems require the use of a camera or

other 3D tracking system. Kim et al. [92] have proposed a gesture tracker using

a wrist worn camera which obviates the need for a glove, but introduces occlusion

errors. Nonetheless, they have demonstrated the ability to control various devices by

performing both simple and complex gestures with the hand. Other types of gesture

systems such as the Myo [52] and the GEST [93] system (https://gest.co) rely on EMG

bracelets or accelerometers linked to a lightweight bracelet/glove system. The Myo

is an EMG based bracelet which also uses accelerometers to allow the performance

of various gestures defined by the manufacturer to allow for the control of various

types of applications such as mp3 players, slide presentation software (PowerPoint),

or computer games. The Myo device has also been used to control a prosthetic device

[52]. The GEST [93] system consists of a bracelet which is connected to accelerometer-

containing rings worn on each finger in order to recognize various gestures. Mascaro

et al. [94] have created a fingernail mounted system which works by using miniature

LEDs and photodiodes in order to detect color changes in the fingernails in response

to pressure applied to the fingertips.

The basis of our device is a compact nail worn light transmitter-receiver pair

that can detect contact events. We describe our initial prototype consisting of finger-

nail sensors interfaced to a microcontroller, demonstrating that the proposed method-
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ology can ultimately lead to an extremely low cost and completely untethered device.

Even though the proof of concept prototype presented is tethered to a microcon-

troller, the system we propose does not have any inherent need to be tethered and

the transmitters on the fingernails can be built to be untethered without requiring

any communication with the rest of the system except the light they emit/detect.

4.2 Physical Design of Current System

Fingernail mounted sensor holders for an LED and a photodiode were mod-

eled in SolidWorks and 3D printed using a filament extruder based 3D printer. A

high powered (280 mW) far red (730 nm) LED (GF CSHPM1.24-3S4S-1, OSRAM

Opto Semiconductors) and an infrared phototransistor (BPY 62-4, OSRAM Opto

Semiconductors) were fit into the sensor holder with moldable plastic (InstaMorph,

www.instamorph.com). Both the LED and the sensor on each sensor holder were

soldered to thin wires. The wires were connected via DuPont connectors to a wrist

worn Arduino board. The microcontroller board was constructed out of a Velcro

wristband, an Arduino Genuino microcontroller board, and a custom Arduino shield

with circuitry to drive the LEDs and read the input from the photodiodes as depicted

in Fig. 4.2. The prototype system created using one thumb sensor and two fingernail

sensors is depicted in Fig. 4.5.

The described basic system is driven by the circuit illustrated in Fig. 4.1. The

phototransistor illustrated in the circuit is mounted on the thumb and the LEDs are

mounted on the fingernail based emitters.

70



Figure 4.1 Basic circuit for proof of concept implementation of Fingernail Device.

While the device functions as desired using the 280 mW LED, it is desirable to

reduce the power being used for various reasons including increased battery life (for

an untethered emitter) and safety.

It is possible to improve the performance of the system and detect light going

through two fingers by using the circuit in Fig. 4.3. The transistor in this circuit

allows more current to be driven through the LED. If the circuit in Fig. 4.3 is

used with an Arduino device, the Arduino should be externally powered in order to
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avoid noise from drawing too much current through the USB port of the computer.

Another alternative circuit for amplifying the light transmitted through tissue is the

transimpedance amplifier circuit given in Fig. 4.4. This circuit also utilizes an I2C

based 16 bit analog to digital converter board with programmable gain (ADS1115,

Adafruit Industries, USA).

Figure 4.2 Left: Sensor holder design and implementation Right: Photodiode based
detector circuit.
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Figure 4.3 Bipolar Junction Transistor and OpAmp based circuit to amplify light
through two fingers. One flashing LED is shown on the right. Circuit diagram from
Mr. Brandon Young.
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Figure 4.4 Transimpedance amplifier used with a 16 Bit Analog to Digital converter
device which as its own programmable gain. Circuit diagram from Mr. Simranjit
Ahluwalia.
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Figure 4.5 Proof of Concept system with a wrist-worn microcontroller (top) and three
pinch gestures (bottom).

Certain wavelengths of light travel through tissue [95]. The phenomenon is fur-

ther exploited by the use of enhanced light transmission when the two fingers touch,

thus allowing light directed at a fingernail to be detected at a sensor aimed at the

thumbnail. This phenomenon is illustrated in Fig. 4.6 and Fig. 4.7.
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Figure 4.6 Light transmission through connected fingers when one finger is illumi-
nated.
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Figure 4.7 Light detected on a fingernail after traversing through two fingers in phys-
ical contact (top), and light detected on the same fingernail after traversing through
two fingers with a small air gap between them.

4.3 Detection Methods

With the system as designed, several detection methods are possible in order

to detect a contact event. These include Time Based Detection, Light Interrogator

Based Detection, and Fast Fourier Transform (FFT) Based Detection. Time Based

Detection is the simplest method and flashes LEDs mounted on different fingernails

at different times. It does, however, require that all the LEDs be tethered to the mi-

crocontroller. Light Interrogator Based Detection allows the LEDs on the fingernails
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to be untethered and in low power mode until they receive an ”interrogation pulse”

from an LED mounted on the thumbnail. This event will only happen during the

performance of a gesture, and thus has the advantage of preserving the batteries on

the fingernail based emitters. FFT based detection also allows the fingernail based

emitters to be untethered. In this method, the LEDs on each fingernail are flashed

at different frequencies and an FFT based detection algorithm is used to distinguish

between the fingers. FFT Based Detection has the advantage of being able to reject

noise and allows the emitter power to be limited. In future implementations, the Light

Interrogator Based Detection scheme should be combined with FFT based detection

in order to reject noise and preserve battery life on the fingernail mounted emitters.

4.3.1 Time Based Detection

In this detection scheme, the system described in Fig. 4.2 and Fig. 4.5 is used

to detect touch events.

For this detection method, each detection cycle is broken into detection win-

dows of length window duration e.g., 200ms. Each finger is assigned a characteristic

response time r1,r2,r3,r4. These times are chosen to be smaller than window duration

(e.g., 25ms, 40ms, 57ms, 75ms, etc.) but larger than pulse duration (e.g., 5ms).

During each detection window, the LEDs are flashed in succession. Simultane-

ously, the microcontroller reads the light intensity on the photodiode and looks for

peak intensities corresponding to the response times (r1, r2, etc.). Detection of such

a peak is counted as a touch event. While there is always a chance of a spurious

activation of the sensor, reducing the pulse duration helps prevent this, since the
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system detects the time of the brightest signal within window duration—a smaller

pulse duration/window duration ratio is therefore preferred. In order to make the

system even more robust against noise, a detection window (e.g., 3) variable is de-

fined, which will require a number of successive detection events to occur before the

system will report a completed gesture. Although light intensity decays exponentially

with distance according to Beer-Lambert law [58], enhancement of light transmission

by the two fingers coming into contact provided a reliable touch signal in 4.7.

4.3.2 Light Interrogator Based Detection

The system depicted in Fig. 4.2 and Fig. 4.5 was modified slightly to allow the

sensors on each finger to be controlled by their own untethered microcontroller. The

light interrogator is similar in operation to the time based detection system except

that an interrogation pulse is sent from the thumb to the sensors mounted on each

fingernail. If the sensor on the fingernail detects a light peak, it responds after a char-

acteristic response time (r1 for index finger, r2 for middle finger, r3 for ring finger, r4

for little finger. Nominal values of 25, 40, 57, and 75 ms can be chosen). The sensor

on the thumb detects the response and registers a touch event if one or more peaks

are detected within response times corresponding to a finger. The light interrogator

system has the added advantage of being more robust against noise than the time

based detection system described above, since it is very unlikely that a spurious light

peak from the environment will coincide with an interrogation pulse. The operation

of this system is depicted graphically in Fig. 4.8. The light interrogator system is

depicted in Fig. 4.8. This system has the advantage of allowing fingernail based

sensors to be completely untethered and manufactured very cheaply, as all they need

to do is to respond to a light pulse. This furthermore increases battery life, since
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the fingernail mounted sensors only have to respond to a pulse if the fingers are in

contact. To date, a prototype Light Interrogator Based Detection built using the de-

tection scheme described here has been demonstrated to work with a windowduration

as short as 50 ms, which should be fast enough to enable additional gestures such as

”double-tap” or ”triple-tap,” similar to a double-click on a computer mouse.

Figure 4.8 Light Interrogator Based Detection.

4.3.3 FFT Based Detection

The time domain based systems above are prone to noise and make the as-

sumption that the signal from the LED will be the brightest light pulse detected by

the photodiode during the detection window. This makes it difficult to detect light

traveling from a fingernail to the thumbnail without using a very bright LED. An

alternative approach using the Fast Fourier Transform (FFT) involves placing LEDs

flashing in different frequencies on each fingernail, and detecting the light traveling
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through both fingers as it exits through the thumbnail when the pinch gesture is

performed. This is a common use of the FFT and has been used in various contexts

including [96]. This greatly simplifies the design of the fingernail mounted devices,

as no microcontroller is needed on the four fingernails. The FFT based approach

has the advantage of being more robust against noise and requiring lower power and

smaller LEDs, since the system no longer needs to detect an absolute brightness

peak. MATLAB code (frequency detector) was written to take input of a vector of

time domain data sampled from the photodiode, and return a vector containing (time,

frequency) pairs where the frequency represents maximum frequency within a short

window of time. This was accomplished through a sliding window approach, where

the window length was 20 samples. The frequency detector code also eliminates all

frequencies outside the desired frequency range. Output from simulated runs of the

frequency detector code is presented in Fig. 4.9

Figure 4.9 FFT based detection simulation with and without noise. Left: output of
frequency detector() for simulated data, no noise. F1= 40 Hz and F2= 20 Hz. Right:
output of frequency detector() for simulated data, + noise 60 Hz + random noise.
F1= 40 Hz and F2= 20Hz.
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In order to test the frequency detector code and pick the most optimal frequency

pairs which can be detected by the Arduino microcontroller board, simulations were

run on different frequency pairs ranging from 10 to 400 Hz (the maximum throughput

of the Arduino microcontroller board streaming data over a serial connection to a

PC was found to be 800 samples/sec at 115,200 kbaud). In order to enhance the

accuracy of our frequency prediction, both random and 60 Hz noise were added. The

most optimal frequencies were chosen based on RMS distance calculations between

normalized ground truth and result vectors Fig. 4.10.
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Figure 4.10 Ground Truth compared with Detected Result.

4.4 Experiments Performed

The experiments described in this section were performed by three volunteers:

One healthy 23 year old right handed male volunteer, one healthy 41 year old right

handed male volunteer, and one 32 year old left handed female amputee with a missing

right hand. The amputee volunteer performed the Box and Blocks, Jar, and Blanket

Folding tests with her own EMG-controlled device. The healthy volunteers performed
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all experiments with the Fingernail Device as well as the Mirroring Glove and the

Gesture Glove described in the previous chapter, in order to compare the devices

under the same experimental conditions.

4.4.1 Box and Blocks Test

The volunteers wore the Fingernail Device on the non-dominant hand and the

prosthetic device on the dominant hand using the Healthy Limb Adapter described

in earlier sections. The device was programmed to map three different gestures on

the left hand (index finger to thumbpad, middle finger to thumbpad, ring finger to

thumbpad) to three grasp patterns on the prosthetic device (index finger to thumb

pinch, lateral grasp, and open all fingers). The setup with the prosthetic device and

the fingernail device can be seen in Fig. 4.11.

One 32 year old female amputee volunteer using her own EMG controlled pros-

thetic device also performed the same experiment three times.

Figure 4.11 Two separate gestures performed by the Fingernail Device resulting in
two different prosthetic device configurations.

84



A modified Box and Blocks test [89] was performed in which the volunteers

moved a 5cm x 5cm x 5cm Styrofoam block from one side of a 53.7cm x 25.4cm

area to another over a 16cm high divider as frequently as possible in 60 seconds. The

number of movements per the time period was tabulated and converted to seconds per

block. The healthy volunteers also repeated the experiment with their non-dominant

hands.

4.4.2 Jar Test

The volunteers wearing the device shown in Fig. 4.11 were instructed to open 5

jars, place an object inside them, and close the jars. The total time taken to perform

this experiment over three runs of the experiment was recorded.

One 32 year old female amputee volunteer using her own EMG controlled pros-

thetic device also performed the same experiment three times.

The healthy volunteers also repeated the experiment using two hands without

a device, as well as with the Gesture Glove and the Mirroring Glove described in the

previous chapters.

4.4.3 Blanket Folding Test

The volunteers wearing the device shown in Fig. 4.11 were instructed to fold a

randomly placed large 243 cm x 243 cm blanket four times. The total time taken to

perform this experiment over three runs of the experiment was recorded.

The healthy volunteers also repeated the experiment using two hands without

a device, as well as with the Gesture Glove and the Mirroring Glove described in

previous chapters.
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4.4.4 Tray Carrying Test

The volunteers wearing the device shown in Fig. 4.11 were instructed to place

five filled 355 mL beverage cans on a tray and carry them a distance of 5 meters to

a different table. The time taken to perform this experiment over three runs of the

experiment was recorded.

The volunteers also repeated the experiment using two hands without a device,

as well as with the Gesture Glove and the Mirroring Glove described in the previous

chapters.

4.4.5 Tissue Characterization Experiment

In order to pick optimal design parameters for the system, light attenuation

using existing hardware was characterized in human tissue using one volunteer. The

wavelength of the LED being used in the system (30-01SURC, Everlight Americas

Inc., Carrollton, TX) was measured by a USB4000 spectrometer (Ocean Optics,

Dunedin, FL). The LED intensity was measured by a PM100D optical power and

energy meter (THORLAB, Newton, NJ). Two additional measurements were taken

with one and two fingers (with one stacked on top of the other) in the optical path of

the energy meter. Furthermore, the distance from the index fingernail to the finger

pad, and the total distance from the index fingernail to the thumb fingernail while

performing a pinch gesture was measured with digital calipers.

The LEDs wavelength was found to be 639 nanometers (this agrees with the

specification by the manufacturer) and the power was measured to be 1248.3 mi-

crowatts. Since the sensor size and LED distance remained the same throughout the

experiment, the measured power is assumed to be proportional to the LED intensity.

The intensity of light was measured after passing through one and two fingers. The
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distance of both one and two finger was measured in cm. The depth of the index finger

was measured to be 1.182 cm, and the total path traveled by light passing through

both the index finger and the thumb was measured to be 2.003 cm. Two separate

values of the attenuation coefficient µ were calculated according to the Beer-Lambert

law (Equation 2.1) and averaged.

As a result of the tissue characterization experiment, the 639 nm LED was

replaced with an LED with a higher wavelength (730 nm) for the final implementation

of the system.

4.4.6 Gesture Performance Experiment

In order to characterize the performance of our system, one healthy volunteer

with no dexterity problems wore the system on his non-dominant hand as depicted

in Fig. 4.13. In addition to the circuitry required for the fingernail sensors, two

LEDs (yellow and blue) were mounted on the wrist of the subject. These LEDs were

flashed in succession to indicate one of three possible actions in Fig. 4.12 in 1.2 second

intervals.

Figure 4.12 Gesture Prompt Protocol. Action 0 (no LED): No gesture. Action 1
(Yellow LED): Touch pad of index finger to thumbnail. Action 2 (Blue LED): Touch
pad of a middle finger to thumbnail. A total of 10 touch events were recorded along
with the time data and a value indicating which gesture was being prompted.

87



Figure 4.13 Performance Experiment Setup.

4.4.7 Single Digit Response Time Experiment

In order to ascertain the ideal response time of our pinch gesture system, a

gesture timing experiment was performed using a small momentary pushbutton worn

on either the thumbpad or the thumbnail. The purpose of this experiment is to de-

termine which gestures are the fastest for subjects to perform, and to create ideal

times with which to compare the current system.

Two male and two female right handed volunteers ages 22-47 with no manual

dexterity problems were recruited and signed informed consent forms approved by

the Institutional Review Board at the University of Texas at Arlington. Each subject

was able to perform all 16 possible gestures (4 thumbnail gestures on the left hand,

4 thumbpad gestures on the left hand, 4 thumbnail gestures on the right hand, 4

thumbpad gestures on the right hand).
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A small momentary pushbutton sewn onto a small band of V elcroTM was affixed

to the subject’s thumb, covering either the thumbpad (for thumb pad gestures) or

the thumbnail (for Thumbnail Gestures). The subject was asked to observe an LED

and press the button with a specified digit when the LED turned on. The LED

timing was randomly varied between 0.5 to 2.0 seconds. For each digit, the subject

repeated the experiment 10 times in a row before moving on to the next digit. In

total, each subject performed three thumbnail gesture experiment sets and three

thumbpad gesture experiment sets on each hand. The time taken by the subject for

each prompted gesture was recorded.

4.4.8 FFT Based Detection through Two Fingers

The setup depicted in Fig. 4.13 was utilized with the prompting LEDs. The

index finger LED was flashed at 41 Hz and the middle finger LED was flashed at 75

Hz with pulse duration of 10 ms. The current supplied to the LED during the pulse

was 20 mA. These LEDs flashed in succession to indicate one of the three possible

actions in Fig. 4.12 in 1.2 second intervals. The FFT MATLAB Code in Appendix

C.3 was utilized to process the data.

4.5 Experimental Results

In this section, the experimental results obtained from the two healthy volun-

teers using the Fingernail Device are compared with the results from the amputee

volunteer using her own EMG-controlled prosthetic device as well as the healthy vol-

unteers using the Mirroring Glove and the Gesture Glove discussed in the previous

sections under the same experimental conditions. The results are summarized in

Table 4.1.
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Table 4.1 Fingernail Device performance Compared with Other Devices. The experi-
ment was performed on two healthy volunteers and one amputee. All values are given
in seconds ± standard deviation.

L Hand Biman-
ual

Mirror Gesture Finger-
nail

EMG

Box &
Blocks

0.93±
0.06

4.0± 0.90 4.0± 0.35 2.96±
0.51

1.6± 0.21

Jar 22.17±
6.21

94.17±
25.44

59.00±
19.13

1.72±
0.86

10.66±
5.33

Blanket 80±
10.94

28.83±
2.99

91.50±
17.81

77.0±
24.03

76.17±
21.88

76.47±
14.41

Tray 8.17±
2.48

26.83±
5.71

16.50±
2.51

25.67±
5.24

4.5.1 Box and Blocks Experiment Results

The volunteers were able to perform the Box and Blocks test in an average of

2.96± 0.51 seconds per block. This can be compared to 1.60± 0.21 seconds per block

which was measured from an amputee using her own device to perform the same test.

This result is also depicted in Fig. 4.14.
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Figure 4.14 Box and Blocks Experiment Results for Fingernail Device, EMG, and the
other devices discussed earlier.

4.5.2 Jar Test Results

The volunteers were able to perform the Jar Test in an average of 80.83± 1.72

seconds per five jars. The amputee volunteer using an EMG controlled device took

an average of 83.88 ± 10.66 seconds to perform the same task, as depicted in Fig.

4.15.
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Figure 4.15 Jar Test Results for Fingernail Device, EMG, and the other devices
discussed earlier.

4.5.3 Blanket Folding Test Results

The volunteers were able to perform the Blanket Folding Test in an average of

76.17± 21.88 seconds. The amputee volunteer using an EMG controlled device took

an average of 76.47 ± 17.41 seconds to perform the same task, as depicted in Fig.

4.16.
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Figure 4.16 Blanket Folding Experiment results for Fingernail Device, EMG, and the
other devices discussed earlier.

4.5.4 Tray Carrying Test Results

The volunteers were able to perform the Tray Carrying Test in an average of

25.67± 5.24 seconds. The amputee volunteer was not able to perform this test. The

comparison of the Tray Carrying Test results with the Fingernail Device, healthy

hand, and other devices is depicted in Fig. 4.17.
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Figure 4.17 Tray Carrying Experiment results for Fingernail Device, healthy hand,
and the other devices discussed earlier.

4.5.5 Tissue Characterization Results

The Beer-Lambert law (Equation 2.1) was used to approximate the attenuation

of light in tissue. As discussed earlier, human tissue is not a homogeneous medium

and the actual scattering and attenuation behavior can’t be fully captured by this

equation [56] [57]. Nonetheless, this equation provides a good idea of the design

limitation imposed by how much light can be detected through two fingers.

Tissue Characterization resulted in slightly different values of the attenuation

coefficient µ for one finger and for the system formed by the index finger and the

thumb. While the system relies on the relatively easier passage of light from one

finger to the other during the performance of the pinch gesture, some loss of light at
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the finger-finger boundary was expected. The nature of the attenuation coefficient

leads to an important design consideration for the system. There is 27 times less light

available at the thumbnail if the light has passed through both fingers as opposed to

only one. It is, therefore, easier to implement a thumbnail gesture in which the user

wears the fingernail mounted LEDs and performs gestures by touching the pads of

any one of the four fingers to the thumbnail (Fig. 4.18, bottom left).

The attenuation coefficient µ was calculated for both the index finger and the

thumb. The parameter µ1 represents the attenuation coefficient through the index

finger, µ2 the attenuation coefficient of the index finger-thumb system, and µaverage

the average of both. The parameters were found to be 3.27, 3.46, and 3.37 cm−1

respectively. The optical extinction coefficients of various human tissues are well

characterized [59] and are not expected to vary for a given type of tissue. Light going

from one finger to another may, however, undergo additional losses not necessarily

described by the Beer-Lambert law. Factors which influence the performance of the

system are the skin color and the thickness of the finger. Skin conditions such as sweat

are not expected to affect the performance of the system, as they do not appreciably

change optical properties of the underlying tissue. For the design of this system, the

important factor is that the light be detectable at the thumbnail when injected from

the top of another fingernail when the two fingers are in contact, as illustrated in Fig.

4.7.
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Figure 4.18 Tissue Characterization Experiment Results.

4.5.6 Gesture Performance Experiment

The data from the gesture performance experiment were analyzed by a MAT-

LAB script extract response delay (Appendix C.2) in order to characterize the time

between the visual prompt and response detected by the system. The system com-

pares the idealized responses from the system based on the prompt given to the user

(0, 1, or 2, corresponding to no gesture, gesture 1, or gesture 2), and the response

detected by the system (0, 1, or 2). The details of this process are illustrated in Fig.

4.19, where the ground truth data was recorded along with the detection data during

the course of the performance experiment. A state of 0 indicates that the user was

instructed to perform no gesture. A state of 1 indicates that the LED prompting for

gesture 1 was on. A state of 2 indicates that the LED prompting for gesture 2 was

on. The graph in the upper right hand corner overlays both the prompted and the
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detected gesture signal on the same graph for the entire experiment. A MATLAB

script called extract response delay was created to automatically detect events on the

rising edge of either signal, while ignoring brief transient detection errors.

Figure 4.19 Performance Experiment Details. The red trace indicates the prompt
given by the LED prompter illustrated above. The blue trace indicates the gesture
as detected by the gesture detection system.

The MATLAB script extract response delay identified touch events based on

the rising edge of the detected gesture signal, while ignoring transient misclassifi-

cations such as the one identified as Detection Noise in the figure. The program

calculated the time difference between the touch prompt and the detection of the

touch event to be 0.681 ± 0.15 seconds (mean delay). This is a combination of the
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gesture performance delay inherent in human perception and the gesture detection

delay. A total 8 events performed by the volunteer in response to a visual prompt

were correctly identified (Fig. 4.20). While the start of each event was identified

correctly, some noise can be seen in the last three events.

Figure 4.20 Gesture Performance Experiment Results.

4.5.7 FFT Based Detection Through Two Fingers

All 10 gestures performed by the subject were correctly identified by the FFT

based method, as can be seen in Fig. 4.21.
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Figure 4.21 FFT Experiment Results.

4.6 Discussion

4.6.1 Gesture Performance Experiment

The gesture performance experiment indicates that the response detection time

was around 0.6 seconds. While this is outside the accepted range of human stimu-

lus to visual stimuli (typically around 0.25s), several factors must be kept in mind:

first, the device and the detection algorithms are still in their preliminary stages and

streaming data to a PC from the device induces a significant amount of delay to the

microcontroller. Second, this experiment was performed on the non-dominant hand,

using a ”thumbnail gesture” in which the user touches the top of the thumbnail with

one of the finger pads. This is a somewhat unnatural pose and may not facilitate the

fastest device performance.
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4.6.2 FFT Based Detection through Two Fingers

The FFT based detection method was the only method which could reliably

identify and distinguish between signals from LEDs mounted on different fingernails

through light transmitted through both fingers, with the hardware used. It also

lends itself to a very low cost implementation of the system in which the fingernail

mounted devices only contain simply circuitry and a battery to flash at a characteristic

frequency, with all of the system logic residing in a thumbnail mounted device.

To select the optimal frequency pair a frequency pair search was conducted

which yielded many similarly optimal results (140, 100), (60,40), etc. The frequency

pair chosen for the actual experiment was (41,75). The LED on one finger was flashed

at 41 Hz while the LED on the other finger flashed at 75 Hz. The light coming through

both fingers was detected by the photodiode facing the thumb. This was due to the

fact that flashing the LEDs at high rates on the Arduino microcontroller board tended

to introduce errors.

4.6.3 Results of Single Digit Response Time

The results of the single digit response time experiment are presented in Table

4.2.

Table 4.2 Average Single Digit Response Times in Seconds. The experiment was
performed on two male and two female right handed volunteers ages 22-47 with no
manual dexterity problems.

index middle ring pinkie
L Thumbpad 0.32 0.38 0.45 0.52
R Thumbpad 0.36 0.39 0.48 0.48
L Thumbnail 0.39 0.37 0.38 0.44
R Thumbnail 0.44 0.42 0.40 0.44
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Even though the subjects were all right-handed, the fastest response times ap-

pear to be on the left hand. Fig. 4.22 summarizes the results grouped by finger.

In Fig. 4.23, the aggregate response times sorted from fastest to slowest can be

compared. While individuals vary in which gesture they perform the fastest for the

more difficult gestures (such as touching either the thumbpad or the thumbnail with

the pinkie or the ring fingers), each volunteer consistently performed left thumb pad

to index finger gesture the fastest, followed by ”right thumb pad to index”, ”left

thumbnail to middle,” and ”left thumb pad to middle.” In fact, thumbpad to index

gesture was significantly faster on the left hand (0.316 ± 0.121s) than on the right

hand (0.361± 0.13s) (p < 0.005).

Gestures being faster on the left hand is surprising given that all the volunteers

were right-hand dominant. One confounding factor may be that every volunteer was

also trained in touch typing using an English QWERTY style keyboard, in which

the left hand keys are used more frequently. Even though it is unlikely to affect the

final design of the Fingernail Device, this test should be repeated with left-handed

subjects and non-typists.
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Figure 4.22 Single digit response time.
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Figure 4.23 Single digit response time, sorted from fastest to slowest. Each bar
represents 120 trials.

In clinical practice, it may be useful to perform a timing test similar to this

one on the potential prosthetic user, and map the most frequently used prosthetic

device functions to the gestures which can be performed fastest by that individual. It

should also be kept in mind that this experiment used only healthy volunteers with

no history of arthritis other disorders. Two volunteers (not part of the results) were

rejected due to their inability to comfortably perform all possible gestures.

4.7 Conclusion and Future Work

Even without any further improvement, we believe the device to be sufficiently

advanced for our intended purpose, which is the control of prosthetic devices. Four

gestures can very easily be mapped onto four prosthetic device configurations such
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as ”open” and three grasp positions such as lateral grasp or pinch grasp. Many more

gestures are easily available including, but not limited to, chord gestures in which

multiple fingers can touch the thumb, gestures in which touching the pad of the

thumb has a different meaning than touching the thumbnail. In fact, using a variant

of the system discussed here in which LEDs and photodiodes are present on both

the fingernail facing side and the outside facing side of the device, readily available

gestures go up to 12 from four (e.g., finger pad touches thumb pad, finger pad touches

thumb nail, thumb pad touches finger nail).

Time based gestures (such as hold, long hold, etc.) are very common in EMG

based prosthetic control and can be adapted to our system. In addition, concepts

can be borrowed from PC interfacing such as double-click and triple-click. Using

double tap and triple tap would also increase the value of the system by making more

gestures readily available.

4.7.1 Future Work

4.7.1.1 Multiple Digit Response Time Experiment

The purpose of this experiment will be to determine the response speed of the

average subject on one of four randomly prompted gestures, and it will be performed

using the Fingernail Device itself in order to characterize the response time with the

device. This test is similar to the Single Digit Response Time Experiment described

above but involves a choice on the part of the user. A well-known equation now

known as Hick’s Law [97] states that reaction time increases in proportion to the

base 2 logarithm of the number of choices available.
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The subjects will view an array of 4 LEDs, randomly prompting the subject

to perform one of 4 thumb pad or thumbnail gestures depending on the experiment.

The prompt time will be randomly varied between 0.5 to 2.0 seconds. Each subject

will perform 10 gestures in each of 4 configurations (left hand thumb pad, left hand

thumbnail, right hand thumb pad, right hand thumbnail) before moving on to the

next configuration. Each subject will repeat the entire set of experiments three times.

In order to determine gesture performance and accuracy, the following parameters will

be recorded: prompted gesture, performed gesture, reaction time.

4.7.1.2 Untethering and New Hardware Implementation

Future work includes implementing the FFT based system in hardware, un-

tethering the fingernail mounted LED emitters from the Fingernail Device, adding

wireless capability to the thumb based receiver, using lower powered LEDs in the

infrared range in order to not distract the user, and amplifying the signal from the

photodiode in order to reduce LED size and power (a proof-of-concept device using

an Arduino XBee shield to transmit detected events has been demonstrated). Any

future system will also have to include the ability to turn the system on and off – a

gesture such as double-tap or triple-tap may be appropriate for such a use, as it is

unlikely to be accidentally triggered. The final embodiment of the device and finger

attachment method will also have to be decided upon.

It is also possible to implement a system that is similar in concept to the one

discussed here by using methods other than light detection. Such systems might in-

clude placing RFID stickers with different identifiers on the fingernails and embedding

an RFID reader on the thumbnail, or creating passively powered inductor-capacitor
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based circuits embedded in fake fingernails whose presence near the thumb can be

detected by specialized circuitry (similar to metal detectors).

We believe our system can increase the quality of life of amputees by providing

a ubiquitous and always on interface to their prosthetic devices while staying out

of their way when not needed. The same reasons may also make this device useful

outside the amputee community.
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CHAPTER 5

USING BILATERAL MOVEMENTS TO TRAIN EMG AND FMG CLASSIFIERS

5.1 Problem Statement

The major goal of prosthetic device control interfaces is to provide the user

with intuitive control, in which the user simply uses the prosthetic device as it were a

natural appendage. In transradial amputees (amputees who have a limb missing be-

low the elbow), there are usually remaining muscle groups which move in accordance

with the signals from the brain, even though the hand and digits may not be present.

Existence of these residual muscles provides a readily available source of information

on user intent, and presents the possibility of enabling multiple degree of freedom

(DOF) prosthetic device control. Earlier chapters in this work have explored systems

which can be used when these signals are not usable.

This chapter discusses the development of a field-deployable system for natural

robotic prosthetic device control which combines readily available electromyography

(EMG) and force myography (FMG) signals from the residual limb of the amputee.

In this system, training of the classifier can be performed as needed by the amputee

utilizing a tracked glove on the intact hand and an EMG/FMG sensor array on the

residual limb. The system will prompt the user to perform bilateral mirrored hand

movements, and use the kinematic information from the intact hand and the muscle

electrical activity (EMG) and surface muscle movements (FMG) from the residual

limb to adjust the classification system.
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5.2 Experiments Performed

5.2.1 Data Acquisition

A custom EMG sensor was designed and built using an AD623 instrument am-

plifier and three NTE948 operational amplifiers depicted in Fig. 5.1. The output

of the EMG circuit was sampled with an Arduino UNO Microcontroller board and

streamed to a laptop computer at a speed of 115,200 bits per second. Eight of the

EMG circuits were created on an Arduino Mega shield for use with the Arduino Mega

Microcontroller Board.

Figure 5.1 Custom EMG Circuit Used to Acquire the Data. The first stage on the
left is the instrument amplifier (AD623). The amplifier was designed and built by
Mr. Chad Bonner and Mr. William Kitchen. Diagram used with permission.

Experiment 1

At the time of this experiment, only a single EMG unit had been built and

validated. In order to simulate the data from multiple sensors, the subject was asked

to perform the same task multiple times while the electrodes were placed in multiple
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parts of the arm. This experiment demonstrates the validity of this task by acquiring

data at separate times from the back of the arm and forearm. The correspondence

between different time points was established by precisely timing the prompts given

to the user.

Electrodes were placed on both the anterior and posterior sides of the forearm.

For each run of the experiment, the subject was prompted by a blinking LED to flex

and extend the forearm. The prompt (1 for flex, 0 for extend) was logged along with

the EMG data. The data for this experiment are shown in Fig. 5.2.

Figure 5.2 Data acquired from sensors on the anterior and posterior of the forearm
during the same movement.

In Fig. 5.2, the red squares correspond to the prompt given to the subject to

flex the forearm (this signal has been scaled to 80% of the maximum value of the
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EMG signal for visibility).

The data from Fig. 5.2 were used with the MATLAB neural network training

functionality to train a neural network (a ”patternnet”) with two inputs, 10 hidden

layers, and one output. Of the three datasets acquired, two of them (Dataset 2 and

Dataset 3, shown on the figure) were utilized. One of the datasets (Dataset 3) was

used for training, while another (Dataset 2) was used for validation. The prompt

given to the user to flex or extend the forearm was used as the training output. The

output of this experiment is depicted in Fig. 5.3. The vertical axis in the bottom of

Fig. 5.3 represents the predicted action: 1 for flex, 0 for extend.
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Figure 5.3 Training set for flexion and extension and predicted output using both the
training set (left bottom) and the validation set (right bottom).

Experiment 2

This experiment is an attempt at data collection for distinguishing between

index finger and pinkie flexion. The correct locations for index finger flexion (flexor

digitorum superficialis) and pinkie flexion (flexor carpi ulnaris) were identified on the

subject from and verified by palpating the locations while the subject performed the

index and pinkie flexion tasks. The experimental setup is depicted in Fig. 5.4.
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Figure 5.4 Experimental setup to acquire data to distinguish between pinkie and
index finger flexion.

The experiment was run in multiple iterations by changing the electrode place-

ment and asking the subject to perform the same task. The LED seen on the bread-

board prompts the user to flex either the index finger or the pinkie, and the action

prompted by the LED (in this case, index finger or pinkie flexion) is used as ground

truth for neural network classification.
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Figure 5.5 Preliminary data from the two finger discrimination experiment.

In Fig. 5.5, the top graph shows the EMG readout from the flexor digitorum

superficialis muscle (used for index finger flexion) and the bottom graph shows the

EMG readout from the flexor carpi ulnaris muscle (used for pinkie flexion). The

shorter red lines indicate the prompt for index finger flexion, and the taller red lines

indicate the prompt for pinkie flexion. The subject was instructed to rest when there

was no prompt.

The data from Fig. 5.5 were used to train a neural network with two inputs,

10 hidden layers, and one output. The prompt given to the user to flex the index

finger or the pinkie was used as ground truth for training input. The output of this

experiment is depicted in Fig. 5.6.
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Figure 5.6 Output of neural network for discrimination between index and pinkie
fingers.

The vertical axis in the bottom of Fig. 5.6 represents the predicted action: 3 for

pinkie, 2 for index, 1 for no action. As can be seen in the bottom right of the image,

the system was able to predict middle finger, index finger, and pinkie movemens, albeit

with some noise. Performance in future experiments can be improved by having a

larger number of electrodes.

5.2.2 Multichannel EMG recordings on Healthy Subjects

A multichannel version of the EMG sensor depicted in 5.1 was created on a

custom ”shield” for the Arduino Mega microcontroller board as depicted in Fig. 5.7.
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Figure 5.7 Custom EMG Shield for Arduino Mega Microcontroller Board.

The board was affixed to the subject’s wrist by means of affixing a square of

Velcro underneath it and having the subject wear a bracelet made from Velcro as

depicted in Fig. 5.8. Finger flexion data were acquired from a custom built data

glove with piezoresistive flexion sensors affixed to each finger. The LED prompter

instructs the subject to flex or open a specific finger. The prompter values are logged

as ground truth along with the timing information, flexion of each finger, and the

EMG data.
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Figure 5.8 Recording setup for healthy subject.

In order to be useful to the classification algorithm, the glove data need to be

normalized and processed to represent the flexion of a single finger. While it may be

useful for future incarnations of the system to predict the degree of flexion of each

finger, the current system assumes that the user intends to either close or open a

single digit.

The neural network based training scheme to be used in this system is comprised

of two parts: The Glove Preprocessor Neural Network (GPNN) and the User Intent

Predicting Neural Network (UIPNN). The GPNN)= transforms the glove data into

discretized signals representing user finger flexion. These signals are used as ground
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truth while training the UIPNN. The function of the UIPNN is to turn EMG and

FMG data acquired from the subject into robotic prosthetic device movements in real

time. The training scheme is illustrated in Fig. 5.9.

Figure 5.9 Overall Neural Network training scheme.

The execution of the system, once trained, is depicted in Fig. 5.10.
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Figure 5.10 Operation of the Neural Network once trained.

The GPNN (implemented using MATLAB’s built in patternnet) with 30 hidden

neurons, 5 inputs, and 6 outputs was trained on the LED prompter data as ground

truth. This network takes the flexion of each finger and outputs one of 6 classes: No

Action; Thumb Flexion; Index Finger Flexion; Middle Finger Flexion; Ring Finger

Flexion and Pinkie Flexion.

The trained GPNN was able to classify this dataset successfully, as seen in 5.11.

The GPNN was trained using the LED Prompter data as ground truth and the glove

flexion data as input. The purpose of this neural network is to act as a preprocessor to

the acquired glove data in order to feed it into the training algorithm for the UIPNN.

Once trained, the GPNN was able to correctly predict the movement of each digit

from the data representing the flexion of the piezoresistive sensors on each digit of

the glove.
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Figure 5.11 The Glove Preprocessor Neural Network (GPNN) trained on LED
prompter data.

The ground truth data from the prompter LEDs (Fig. 5.12) were used to train

a neural network on the acquired EMG data in order to predict digit movement as

seen in Fig. 5.13. This device typically instructs the user to flex one or more fingers,

or relax the hand (when no LEDs are on). The program running on the microcon-

troller records the action of these LEDs as ground truth to be used for neural network

training.
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Figure 5.12 LED Prompter Device.
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Figure 5.13 Preliminary digit position prediction from EMG data.

Fist Clenching Experiment

The healthy volunteer was instructed to clench and relax his fist as prompted

by a single LED. The dataset captured from the experiment is depicted in Fig. 5.14.
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Figure 5.14 EMG Data from Fist Clenching Experiment.

The purpose of this experiment was to validate the hardware. As can be seen in

Fig. 5.14, three of the four electrodes respond to the fist being clenched as expected

(red lines indicate prompt to clench fist).

5.2.3 EMG Recording on Amputee

Data from a 26 year old male with type 5 symbrachydactyly on his left hand

was recorded using a Delsys Bagnolli 16 system with 8 EMG electrodes using the

prompter and the glove depicted in Fig. 5.4. The data output from the Arduino

122



device driving the prompter LEDs (Fig. 5.12) was synchronized with the data ac-

quisition system (DAQ) on the Bagnolli 16 system by wiring the output of the first

prompt LED to one of the inputs of the DAQ. The shared pulse was used to align

the two datasets.

Figure 5.15 EMG Setup on amputee. Left: affected hand with type 5 symbrachy-
dactyly. Middle: Setup with Bagnolli 16 System and Prompter LEDs Right: Setup
with Arduino, Tracking Glove, and Prompting LEDs.

The same volunteer was also instructed to perform bilateral movements while

wearing the glove and the Arduino based system. The setup is depicted in Fig. 5.15.

The ground truth, glove, and EMG data acquired from the amputee with the

Arduino based system is depicted in Fig. 5.16. In this experiment, the action recorded

from the LED prompter array (top, Fig. 5.16) is assumed to the be ground truth.

The prompted actions are: 0: no action (no LEDs on), 1: flex thumb, 2: flex index

finger, 3: flex middle finger, 4: flex ring finger, 5: flex little finger.
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Figure 5.16 Data from amputee. Top: Ground truth based on LED prompts. Middle:
Glove Data. Bottom: EMG channels.

As can be seen from the bottom of Fig. 5.16, all the EMG channels appear to

respond the same way to all the stimuli, making individual finger flexion identification

difficult, if not impossible with the current experimental setup. This may be due to
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the fact that the individual who volunteered for the experiment has a congenital

hand defect and is possibly unable to control individual muscle groups linked to

various fingers. Future work on this particular type of congenital condition can include

recording from smaller areas on the knuckles and using tactile feedback to train the

subject to generate finger-specific signals.

5.2.4 Force Myography Recording

A 16 channel force myography setup was created from four ADS1115 16 bit

analog to digital converters connected to an Arduino Uno device via the I2C proto-

col. Eight FlexiForceTM sensors were connected to the device.

One 41 year old right handed male subject was recruited and signed an informed

consent form. A mold of the subject’s left forearm was created using InstaMorph ther-

moplastic after heating it in boiling water, flattening it into a thin sheet, and letting

it cool to a point where it is comfortable to touch with the bare hand (around 40

degrees Celsius).

Eight locations on the subject’s forearm were identified via palpation while the

subject was asked to move each digit. The locations chosen were those in which the

greatest amount of movement could be felt and corresponded roughly to Fig. 2.12.

These locations were marked with a pen and once all locations were identified, the

force sensors were affixed with a temporary adhesive (BluTack, Bostik Australia Pty

Ltd, Victoria, Australia).

After placing each sensor, the plastic cover was placed on the subject’s fore-

arm and the subject was instructed to perform finger movements while the ground
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truth from the LED Prompter and the force sensor values were recorded. The setup

described here can be seen in Fig. 5.17.

Figure 5.17 Force Myography Setup.

5.2.5 FMG Results

The data capture from 8 channels of FMG can be seen in Fig. 5.18. The chan-

nels represent the raw Analog to Digital Converter output, representing the pressure

on the sensors. Dotted line represents the ground truth, which is the number of the
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digit the subject was instructed to flex: 1 representing the thumb, 2 the index finger,

etc. with 0 representing no digit flexion.

Figure 5.18 Eight channels of FMG.

It may be more instructive to examine one of the channels in which the FMG

sensor placement was correct, as seen in Fig 5.19. It can be clearly seen from the

figure that moving the index finger causes a decrease in the signal of the chosen force

sensor.
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Figure 5.19 A single isolated channel of FMG.

5.3 Classification Results from FMG

5.3.1 FMG Data Import and Preprocessing

The subject was instructed follow an LED prompter to flex or relax each digit on

the hand while both glove and EMG data was being acquired. The subject repeated

the sequence of flashing LEDs (which were turned on for each digit at 3 second

intervals) for at least 3 cycles. The experiment was repeated five times. Two datasets

were picked for training and validation. The first dataset can be seen in Fig. 5.20.
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Figure 5.20 Imported Data from FMG and Glove Experiment.

After import, all data vectors (five channels of glove data, one channel of LED

prompter data, and eight channels of force sensor data) were run through a moving

average filter with a window size of 10.

At each step of the classification experiment, the vector representing the ground

truth data and the vector obtained as user intent were compared using a root mean

squared (RMS) calculation.

5.3.2 Obtaining User Intent from Glove Data

In this experiment, the data logged from the LED prompter system is assumed

to be the ground truth. The first task involved training a neural network to classify
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the glove data using the ground truth. The ground truth data are logged as numbers

from 1 to 5, with the following meanings:

1. Perform no action

2. Flex thumb

3. Flex index finger

4. Flex middle finger

5. Flex ring finger

6. Flex ring finger

The neural network trained in this step was used in the subsequent steps to

provide user intent data to the FMG classifier.

Figure 5.21 Classification of glove data by GPNN for creating ground truth for sub-
sequent steps.

130



Fig. 5.21 shows the glove data used for training (upper left), as well as the

glove data used for validation from a different run of the experiment (upper right). In

the middle left is displayed the ground truth as logged by the LED prompter system.

The glove data were classified using one of the built-in classification algorithms for

MATLAB’s Neural Network Toolbox (patternnet) with a hidden layer size of 30 and

an output size of 6 (Fig. 5.22). In the bottom left is the output of the classifier

validated with the glove data used for training. The figure in the right middle shows

the ground truth logged by the LED prompter for the second run of the experiment.

In the bottom right is the validation output which is the output of the network when

classifying a different glove dataset (top right). The system was able to perform this

classification with very few errors (RMS distance between the ground truth (middle

left) and the output predicted from the training set (bottom left) was 23.82 and the

RMS distance between the ground truth of the second dataset (middle right) and the

output of the classifier (bottom right) was 25.22).

Figure 5.22 Visual representation of the neural network which uses glove data (GPNN)
in order to create ground truth for subsequent steps of the classification experiment.
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Fig. 5.23 displays preliminary data demonstrating the ability of the system to

predict user intent from FMG data alone when trained on the ground truth from the

LED prompter system.

Figure 5.23 FMG based finger movement prediction by UIPNN (trained using ground
truth).

On the top left of Fig. 5.23 is the FMG input dataset obtained from eight

FlexiForce (TekScan Inc., USA) sensors. The vertical axis displays the output from

the analog to digital converter (ADC) normalized to be between 0 and 1. The mid-

dle left displays the ground truth used to train the FMG Neural Network classifier.

Bottom left displays the prediction of the neural network classifier trained on the

ground truth when processing the training input. On the right top is the validation

data from a different FMG experiment run on the same subject (with roughly the

same sensor placement). The middle right displays the ground truth from the second

experiment, and the bottom right displays the output of the neural network classifier
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when run on the second dataset. When run on the new (validation) data, the system

was able to predict some (but not all) of the finger movements. This can be improved

with a longer training time and better sensor placement. The RMS error between

the ground truth and the output of the network from the training set was 28.35 vs.

the RMS error between the ground truth and the output of the network from the

validation data which was 59.64.

Figure 5.24 FMG based finger movement prediction by UIPNN (trained using glove
data processed by GPNN).

Fig. 5.24 shows the end result of the experiment. It is very similar to Fig.

5.23 except that the data used as the training set (left middle and right middle)

was obtained from classifying the glove input data by the network discussed in Fig.

5.21 (the GPNN). Although the prediction from the validation set was not highly

accurate, its accuracy and shape mirrors that of the prediction of the neural network

133



trained on actual ground truth (Fig. 5.23). The RMS error between the ground truth

and the Finger movement predicted from the training data (left bottom, Fig. 5.24)

was 36.68, and the RMS error between the ground truth of the validation data and

the predicted output was 58.83 (these values are very similar to the values obtained

from the UIPNN trained on actual ground truth data, which were 28.35 and 59.64

respectively).

5.4 Discussion

The preliminary data presented demonstrate that input from a kinematic track-

ing glove can be turned into ground truth which can subsequently be used to train

a neural network classifier on FMG data. The muscle data and glove tracking data

in the experiments listed in this section were obtained from the same arm. For an

amputee, the system would be modified slightly in order to obtain tracking data from

the intact arm and muscle data from the residual limb. This has been demonstrated

in the context of EMG previously by Sebelius et al. [98]. We have demonstrated that

the concept can be extended to FMG data.

It can be seen from the data above that classification can be achieved by train-

ing a neural network classification system with bilateral movements performed by a

healthy person or the amputee. While it may be possible to get FMG data to give

classification information by itself, this modality is probably best used as a comple-

ment to EMG. FMG has the advantage of not being affected by skin conductivity or

sweat. FMG also has the advantage of being able to detect movement due to tendons

where the EMG signal may not be very strong. It is, however, highly susceptible to

mechanical noise.
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A robust, field deployable EMG classification and training system should in-

clude the following elements:

1. A dense array of EMG and FMG sensors.

2. A kinematic tracking system which is easy for the amputee to put on. This

may be a lightweight glove, a computer vision based system if the training is to

be done in a specified location, or an advanced version of the fingernail worn

sensors discussed earlier with the ability to localize themselves with respect to

each other.

3. A clear process for calibration. In the case of the system discussed, this would

involve making the same gestures on the tracked intact hand and the residual

amputated limb which is instrumented with EMG and FMG sensors.

4. A way to track the arm position. While not the focus of this chapter, it is

important for a training algorithm to have awareness of which position the arm

is in. This will allow the user to utilize the designed system in different arm

positions and have better performance.

5. An embedded computer on which to run the calculations. One option may be

to have a wi-fi or 4G data equipped device which can offload the calculation

to a more powerful server. Neural network training much more CPU intensive

than neural network execution.

5.5 Future Work

5.5.1 EMG/FMG based Classifier Training

Even though the training of an FMG classifier using bilateral mirrored move-

ments for input has been demonstrated, work is under way to compare the perfor-
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mance of a classifier based on FMG alone, EMG alone and a combination of FMG

and EMG. Work is also under way to increase the number of FMG sensors by using an

FMG sensor array, thus obviating the need for careful sensor placement. The current

hypothesis is that the combination of FMG and EMG will yield better classification

performance.

5.5.2 Kinematic Tracking based on Fingernail Device

The fingernail based gesture tracking modality discussed can be extended with

some effort to be a kinematic tracker by embedding additional light sensors and ac-

celerometers into the fingernail based sensors. This may necessitate communication

between the fingernail sensors with a non-light-based modality (such as BlueTooth) in

which relative intensities of light seen by each fingernail based device are compared to

derive a kinematic model of the hand. This, in turn, would allow the fingernail based

trackers to be used as a kinematic input device (similar to the previously discussed

Mirroring Glove) without the user having to put on an additional device. Combining

all the modalities discussed in this work should render the system more usable in its

entirety to the end user.
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CHAPTER 6

CONCLUSION

In Aim 1, an alternative method of prosthetic device control was presented

which may enable patients who are currently unable to utilize robotic prosthetic de-

vices to finally be able to use them, using intact hand based controls. Construction

details of the Mirroring Glove, Gesture Glove, and the lightweight Fingernail Device

were also presented in Aim 1.

In Aim 2, an implementation of using bilateral movements and hand-tracking

to train an EMG classifier was presented and extended the concept to FMG and

combined EMG/FMG data.

6.1 Discussion

For Aim 1, the preliminary results indicate that intact hand based control can

be as fast as, and in some cases faster than, EMG based control. For Aim 2, the

feasibility of using a portable gesture tracking system to train EMG and FMG classi-

fication systems has been demonstrated, suggesting that a hybrid system using both

EMG and FMG data may be even more useful.

Each system presented in this work has been tested on its own in order to refine

the system and demonstrate its standalone usefulness. It appears from the preliminary

data that while device control based on mirroring movements on the prosthetic device

is useful for certain tasks, the scheme of using discrete input gestures, as in the case
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of the Gesture Glove and the Fingernail Device, is quicker to learn and less error

prone. This limitation stems in part from the fact that the state of the art prosthetic

device used in the experiments (Touch Bionics robo-limb) was never designed for

teleoperation. The only commands supported by the device are ”open” and ”close”

and each command takes around 1.4 seconds to complete. Furthermore, the device is

an open-loop control system without the ability to encode finger flexion. The open

loop nature of the device, along with the time lag between the issuance of a command

via the Mirroring Glove and the completion of the grasp pattern seems to frustrate

some users. This can be improved in the future by designing prosthetic devices which

afford closed loop control.

6.2 Future Work

Feasibility of a classifier training system based on intact hand tracking for FMG

has been demonstrated. Work remains on refining this system, including the fusion of

EMG/FMG data and validation with amputees performing activities of daily living

with the resulting system.

For the Fingernail Device, work remains on miniaturization and refinement,

including the incorporation of wireless capability. An easy refinement to this system

would be the addition of double-tap, triple-tap, and long-tap gestures, which would

greatly increase the types of commands that can be mapped to the device.

Another exciting possibility for the Fingernail Device is the use of this device

for 5 or 6 DOF kinematic hand tracking in addition to discrete gesture input. This

may be possible with the incorporation of additional LED emitters and light sensors

on each fingernail, in which the entirety of the light intensity dataset would be used

for inferring the current hand pose. Such a device may potentially be useful for non-
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prosthetic uses, including the control of teleoperated robots and the decoding of sign

language.

The work presented in this thesis in Aim 1 (healthy limb based control) and

Aim 2 (EMG/FMG classifier training based on kinematic tracking of the intact hand)

is meant to be complementary and synergistic.

6.2.1 Envisioned System

The final system which realizes the work presented is a fully wearable Hu-

man Robot Interface for both commanding the prosthetic device and training the

EMG/FMG classifier. In an ideal scenario, the user would use the fingernail mounted

devices to switch EMG recognition modes, switch between EMG and intact hand

based control, activate the training mode, train the system, and put the system back

into normal use mode.

In order to realize its full potential, the envisioned system needs to be prototyped and

refined in collaboration with amputees who are given an active role in the development

process.
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APPENDIX A

SOURCE CODE FOR EMBEDDED UNIX SERVER AND MIRRORING GLOVE
SYSTEM
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This appendix presents the source code for the Mirroring Glove System

A.1 Arduino Code

1 //Oguz Yetkin
2 //oyetkin@gmail.com
3 //Control of a TouchBionics robo-limb prosthetic device with a ...

Multi FIngered Glove.
4 //Requires handcontrol2 running on the Linux computer driving the ...

prosthetic device via a USB to CAN adapter (we used KVaser ...
Leaf 2)

5

6 #include <Servo.h>
7

8 //calibration values
9 //0 for normal operation

10 //1 for raw values
11 //2 for processed values
12 //3 for processed value dump
13

14 const int calibration = 0;
15 boolean autocalibration = false;
16

17 boolean isPaused = false;
18 boolean thumbdebug = true;
19

20 const int PAUSE LED = 10;
21 const int CALIB LED = 11;
22 const int CALIB LED 2 = 9;
23 const int OUTPUT LED = 3;
24 const int THUMB CLOSE LED = 6;
25

26 void togglePause(){
27

28 if(isPaused == true){
29 isPaused = false;
30 digitalWrite(PAUSE LED, LOW);
31 Serial.println("#UNPAUSED");
32 }else if(isPaused == false){
33 isPaused = true;
34 digitalWrite(PAUSE LED,HIGH);
35 Serial.println("#PAUSED");
36 }
37 }
38

39

40 float mapfloat(long x, long in min, long in max, long out min, ...
long out max)

41 {
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42 return (float)(x - in min) * (out max - out min) / ...
(float)(in max - in min) + out min;

43 }
44

45

46 const int CALIB BUTTON PIN = 7;
47 const int PAUSE BUTTON PIN = 2;
48

49

50 int nreads = 7; //number of analogRead's per channel to average
51

52 //const int printdelay = 1500;
53 const int printdelay = 10;
54

55 //for compare()
56 //how much a value has to change before the change is taken seriously
57 float DELTA =4;
58

59

60 const int nPins = 5;
61

62 boolean doPrint = false;
63

64

65 Servo myservos[nPins]; // create servo object to control a servo
66 // a maximum of eight servo objects can be created
67

68 const int analogInPins[] = {A0,A1,A2,A3,A4};
69 const int LEDPins[] = {11, 9, 6, 5, 3,10};
70

71

72 //7/1/2016 Oguz Glove v3
73

74 int sensorMaxs[] = {409,153,252,255,398}; //min finger flexion, ...
determined experimentally

75 int sensorMins[] = {309,85,157,149,219}; //sensor values at max ...
finger flexion, det

76

77 //determine whether to open or close the digit
78 int oldDigitValues[] = {0,0,0,0,0};
79 int newDigitValues[] = {0,0,0,0,0};
80

81 //OY 01/29/2015
82 int low threshold[] = {40,20,40,40,40};
83 int high threshold[] = {60,40,60,60,60};
84

85

86 //These are the decimal CANBus Mailbox IDs for the TouchBionics ...
robo-limb prosthetic hand

87 //the handControl2 program uses the syntax:
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88 // ./handcontrol2 DIGIT ID PERCENT CLOSED DIGIT ID PERCENT CLOSED ...
... for each digit

89 //262 thumb rotator (not used right now -- set to closed as of ...
1/28/2015 for DMD paper manipulation task)

90

91 //257 thumb
92 //258 index
93 //259 mid
94 //260 ring
95 //261 little
96

97 //CO OY 1/28/2015 mapping thumb instead of thumb rotator to 0th ...
encoder

98 //const int digitIds[] = {262,258,259,260,261};
99

100 const int digitIds[] = {257, 258, 259, 260, 261};
101

102 //uncomment two following lines to read actual values
103 //const int sensorMins[] = {0,0,0}; //min finger flexion, ...

determined experimentally
104 //const int sensorMaxs[] = {1023,1023,1023}; //sensor values at ...

max finger flexion, determined experimentally
105

106

107 const int servoPins[] = {9,10,11,6,5};
108 const int analogOutPin = 9; // Analog output pin that the LED is ...

attached to
109

110 int sensorValues[] = {0,0,0,0,0}; // value read from the pot
111 int outputValues[] = {0,0,0,0,0}; // value output to the ...

PWM (analog out)
112 int oldOutputValues[] = {0,0,0,0,0};
113

114 void setup() {
115 // initialize serial communications at 9600 bps:
116 Serial.begin(9600);
117 //Serial.begin(115200);
118

119 //commenting out servo code OY 3/29/2015
120 /*
121 for(int i=0;i< nPins ;i++){
122 myservos[i].attach(servoPins[i]);
123 }
124 */
125 pinMode(CALIB BUTTON PIN,INPUT);
126 pinMode(PAUSE BUTTON PIN,INPUT);
127

128

129 for(int i=0;i<nPins+1;i++){
130 pinMode(LEDPins[i], OUTPUT);
131 //analogWrite(LEDPins[i],0);
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132 digitalWrite(LEDPins[i],LOW);
133 delay(30);
134 }
135 //analogReference(INTERNAL);
136 }
137

138 boolean compare(float val1, float val2, float ∆){
139 if(abs(val1-val2)>∆){
140 return true;
141 }else{
142 return false;
143 }
144 }
145

146 void loop() {
147 // read the analog in value:
148 //Serial.println("");
149

150 //OY 8/27/2014
151

152 int calibpin = digitalRead(CALIB BUTTON PIN); //calibpin is ...
pulled up, so 0 means autocalibration should be true

153 int pausepin = digitalRead(PAUSE BUTTON PIN);
154 if(calibpin == 1){
155 autocalibration = true; // to be reset after calibration
156 }
157 if(pausepin == 1){
158 togglePause();
159 }
160

161 if(autocalibration){
162 Serial.println("reading maxs");
163 digitalWrite(CALIB LED, HIGH);
164 for(int i=0;i<nPins;i++){
165 //take an average -- perhaps this should be a moving average
166 sensorValues[i] = 0;
167 for(int j=0;j<nreads*4;j++){
168 sensorValues[i] += analogRead(analogInPins[i]);
169 sensorMins[i] = -1;
170 delay(10);
171 }
172 sensorValues[i] /= nreads*4;
173 }
174

175 for(int i=0;i<nPins;i++){
176 sensorMaxs[i] = sensorValues[i];
177 Serial.print(sensorMaxs[i]);
178 Serial.print(",");
179 }
180 digitalWrite(CALIB LED, LOW);
181 delay(30);
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182 digitalWrite(CALIB LED 2, HIGH);
183 Serial.println("get ready to do sensor mins in 2 sec");
184 delay(2000);
185 Serial.println("flex each digit to its max");
186

187 for(int i=0;i<nPins;i++){
188 //take an average -- perhaps this should be a moving average
189 sensorValues[i] = 0;
190 for(int j=0;j<nreads*4;j++){
191 sensorValues[i] += analogRead(analogInPins[i]);
192 delay(10);
193 }
194 sensorValues[i] /= nreads*4;
195 }
196

197 for(int i=0;i<nPins;i++){
198 sensorMins[i] = sensorValues[i];
199 Serial.print(sensorMins[i]);
200 Serial.print(",");
201 }
202 Serial.println("autocalibration done");
203 digitalWrite(CALIB LED 2, LOW);
204 autocalibration = false;
205 }//end autocalibration
206

207

208 for(int i=0;i<nPins;i++){
209 //take an average -- perhaps this should be a moving average
210 sensorValues[i] = 0;
211 for(int j=0;j<nreads;j++){
212 sensorValues[i] += analogRead(analogInPins[i]);
213 delay(10);
214 }
215 sensorValues[i] /= nreads;
216

217 if(0 == calibration){
218 outputValues[i] = ...

constrain(mapfloat(sensorValues[i],sensorMins[i],sensorMaxs[i],0,100),0,100);
219

220 if(compare(oldOutputValues[i],outputValues[i],DELTA)){
221 if((outputValues[i] < low threshold[i])){
222 //newDigitValues[i] = 0;
223 newDigitValues[i] = 100;
224 }
225 if(outputValues[i] > high threshold[i]){
226 //newDigitValues[i] = 100;
227 newDigitValues[i] = 0;
228 }
229 }
230 oldOutputValues[i] = outputValues[i];
231 //output
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232

233

234 if(oldDigitValues[i] != newDigitValues[i]){
235 doPrint = true;
236 oldDigitValues[i] = newDigitValues[i];
237 }
238 }// end output block
239 if(1 == calibration){
240 //calib
241 outputValues[i] = sensorValues[i];
242 Serial.print(" outputValues[");
243 Serial.print(i);
244 Serial.print("]");
245 Serial.print("=");
246 Serial.print(outputValues[i]);
247 if(i == nPins - 1){
248 int calibpin = digitalRead(CALIB BUTTON PIN);
249 Serial.print("c: ");
250 Serial.print(calibpin);
251 Serial.println();
252 Serial.print("pin13: ");
253 Serial.println(digitalRead(13));
254 Serial.print(" pin8: ");
255 Serial.println(digitalRead(8));
256 Serial.print(" pin12: ");
257 Serial.println(digitalRead(12));
258 Serial.print(" pin2: ");
259 Serial.println(digitalRead(2));
260 Serial.print(" pin7: ");
261 Serial.println(digitalRead(7));
262 }
263 }
264 if(2 == calibration){
265 //calib
266 outputValues[i] = ...

constrain(mapfloat(sensorValues[i],sensorMins[i],sensorMaxs[i],0,100),0,100);
267 Serial.print(" outputValues[");
268 Serial.print(i);
269 Serial.print("]");
270 Serial.print("=");
271 Serial.print(outputValues[i]);
272 }
273

274

275 if(3 == calibration){
276 outputValues[i] = ...

constrain(mapfloat(sensorValues[i],sensorMins[i],sensorMaxs[i],0,100),0,100);
277

278 //regular print of 5 values
279

280 Serial.print(100 - outputValues[i]);
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281 if(i != nPins - 1){ //don't print the last comma
282 Serial.print(",");
283 }
284

285 }
286

287

288 myservos[i].write(outputValues[i]);
289

290 }//end for
291

292

293

294

295 //print block for handcontrol2
296 if(doPrint && ! isPaused){
297 digitalWrite(OUTPUT LED, HIGH);
298 Serial.print("./handcontrol2 ");
299 for(int i=0;i<nPins;i++){
300 Serial.print(digitIds[i]);
301 Serial.print(" ");
302 Serial.print(newDigitValues[i]);
303 Serial.print(" ");
304

305 if(thumbdebug){
306 if(i == 0 && newDigitValues[i] == 100){
307 digitalWrite(THUMB CLOSE LED,HIGH);
308 delay(200);
309 digitalWrite(THUMB CLOSE LED,LOW);
310 }
311 }
312 }
313 //CO OY 1/28/2015 for now, manually put in thumb closure
314 //Serial.print(" 257 0 ");
315 //OY 1/28/2015 setting thumb rotator to closed and mapping ...

thumb encoder to thumb closure instead
316 Serial.print(" 262 100 ");
317 doPrint = false;
318 Serial.println();
319 delay(printdelay);
320 digitalWrite(OUTPUT LED, LOW);
321 }
322

323

324

325 if(calibration > 0){
326 Serial.println();
327 }
328 delay(2);
329

330 }
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A.2 Source Code for CANBus driver Utility handcontrol2

This code uses the Linux Drivers for KVaser Leaf USB to CAN adapter device.

1 /*
2 ** Copyright 2012 by Kvaser AB, Mlndal, Sweden
3 ** http://www.kvaser.com
4 **
5 ** This software is dual licensed under the following two licenses:
6 ** BSD-new and GPLv2. You may use either one. See the included
7 ** COPYING file for details.
8 **
9 ** License: BSD-new

10 ** ...
===============================================================================

11 ** Redistribution and use in source and binary forms, with or without
12 ** modification, are permitted provided that the following ...

conditions are met:
13 ** * Redistributions of source code must retain the above ...

copyright
14 ** notice, this list of conditions and the following ...

disclaimer.
15 ** * Redistributions in binary form must reproduce the above ...

copyright
16 ** notice, this list of conditions and the following ...

disclaimer in the
17 ** documentation and/or other materials provided with the ...

distribution.
18 ** * Neither the name of the <organization> nor the
19 ** names of its contributors may be used to endorse or ...

promote products
20 ** derived from this software without specific prior ...

written permission.
21 **
22 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND ...

CONTRIBUTORS "AS IS" AND
23 ** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ...

TO, THE IMPLIED
24 ** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ...

PURPOSE ARE
25 ** DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
26 ** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ...

CONSEQUENTIAL DAMAGES
27 ** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ...

GOODS OR SERVICES;
28 ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ...

HOWEVER CAUSED AND
29 ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ...

LIABILITY, OR TORT
30 ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF ...

THE USE OF THIS
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31 ** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 **
33 **
34 ** License: GPLv2
35 ** ...

===============================================================================
36 ** This program is free software; you can redistribute it and/or
37 ** modify it under the terms of the GNU General Public License
38 ** as published by the Free Software Foundation; either version 2
39 ** of the License, or (at your option) any later version.
40 **
41 ** This program is distributed in the hope that it will be useful,
42 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
43 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
44 ** GNU General Public License for more details.
45 **
46 ** You should have received a copy of the GNU General Public License
47 ** along with this program; if not, write to the Free Software
48 ** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ...

02110-1301, USA.
49 **
50 ** ...

---------------------------------------------------------------------------
51 **/
52

53 /*
54 * Kvaser Linux Canlib
55 * Send a CAN message
56 */
57

58 #include <canlib.h>
59 #include <stdio.h>
60 #include <signal.h>
61 #include <errno.h>
62 #include <unistd.h>
63

64 unsigned char msg[4] = {0};
65 int digits[6] = {262,258,259,260,261,257};
66

67 void check (char* id, canStatus stat)
68 {
69 char buf[50];
70

71 buf[0] = '\0';
72 canGetErrorText(stat, buf, sizeof(buf));
73 if (stat != canOK) {
74 printf("%s: failed, stat=%d (%s)\n", id, (int)stat, buf);
75 } else {
76 //printf("%s: OK\n", id);
77 }
78 }
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79 /* OY 8/28/2014 adding stopAll to be issued before anything else */
80

81 void stopAll(canHandle h){
82 int i = 0;
83 msg[0] = 0;
84 msg[2] = 1; /* msg[2] and msg[3] = {1,41} specify max PWM for ...

RoboLimb */
85 msg[3] = 41;
86 for(i=0;i<6;i++){
87 msg[1] = 0;
88 check("canWrite", canWrite(h, digits[i], msg, 4, 0));
89 }
90 }
91

92 /*
93 * Send messages until ctrl-c is pressed
94 */
95

96 int main (int argc, char *argv[])
97 {
98 canHandle h;
99 int channel;

100 int bitrate = BAUD 1M;
101

102 errno = 0;
103 if (argc != 13 | | (channel = 0, errno) != 0) {
104 printf("usage %s address byte\n", argv[0]);
105 exit(1);
106 } else {
107 printf("Sending a message on channel %d\n", channel);
108 }
109

110

111 /* Allow signals to interrupt syscalls(e.g in canReadBlock) */
112 siginterrupt(SIGINT, 1);
113

114 /* Open channel, set parameters and go on bus */
115

116 //h = canOpenChannel(channel, canOPEN EXCLUSIVE | ...
canOPEN REQUIRE EXTENDED);

117 h = canOpenChannel(channel, canOPEN EXCLUSIVE);
118 if (h < 0) {
119 printf("canOpenChannel %d failed\n", channel);
120 return -1;
121 }
122

123 canBusOff(h);
124 check("canSetBusParams", canSetBusParams(h, bitrate, 4, 3, 1, ...

1, 0));
125 // Work-around for Leaf bug
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126 check("canSetBusOutputControl", canSetBusOutputControl(h, ...
canDRIVER NORMAL));

127 check("canBusOn", canBusOn(h));
128 //Sumit Modified to run Robolimb
129 //08/27/2014
130 msg[0] = 0;
131 msg[2] = 1;
132 msg[3] = 41;
133

134 /* OY 8/28/2014 stop all digits first */
135 stopAll(h);
136

137 if (atoi(argv[2]) == 0)
138 msg[1] = 2;
139 if (atoi(argv[2]) == 100)
140 msg[1] = 1;
141

142 check("canWrite", canWrite(h, atoi(argv[1]), msg, 4, 0));
143

144 if (atoi(argv[4]) == 0)
145 msg[1] = 2;
146 if (atoi(argv[4]) == 100)
147 msg[1] = 1;
148

149 check("canWrite", canWrite(h, atoi(argv[3]), msg, 4, 0));
150

151 if (atoi(argv[6]) == 0)
152 msg[1] = 2;
153 if (atoi(argv[6]) == 100)
154 msg[1] = 1;
155

156 check("canWrite", canWrite(h, atoi(argv[5]), msg, 4, 0));
157

158 if (atoi(argv[8]) == 0)
159 msg[1] = 2;
160 if (atoi(argv[8]) == 100)
161 msg[1] = 1;
162

163 check("canWrite", canWrite(h, atoi(argv[7]), msg, 4, 0));
164

165 if (atoi(argv[10]) == 0)
166 msg[1] = 2;
167 if (atoi(argv[10]) == 100)
168 msg[1] = 1;
169

170 check("canWrite", canWrite(h, atoi(argv[9]), msg, 4, 0));
171

172 if (atoi(argv[12]) == 0)
173 msg[1] = 2;
174 if (atoi(argv[12]) == 100)
175 msg[1] = 1;
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176

177 check("canWrite", canWrite(h, atoi(argv[11]), msg, 4, 0));
178

179

180 check("canWriteSync", canWriteSync(h, 1000));
181

182

183 //check("canBusOff", canBusOff(h));
184 check("canClose", canClose(h));
185

186 return 0;
187 }
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SOURCE CODE FOR GESTURE GLOVE SYSTEM
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This appendix presents the source code for the Gesture Glove System. The
UNIX and CANBus side of the code are the same for all three systems.

B.1 Arduino Code

The code listed below uses the Arduino Statistics library written by Scott
Daniels https://github.com/provideyourown/statistics

1 /*
2

3 GloveControlConductievPinch.ino
4 Oguz Yetkin 2/17/2015 oyetkin@gmail.com
5 Code for SPIE STA 2015 conference in Baltimore, reads conductive ...

thread gesture device
6 via analog inputs, decides on a gesture
7

8 Based on AnalogReadSerial example, which is in the public domain.
9

10 */
11

12

13 #include <Servo.h>
14

15 //calibration values
16 //0 for normal operation
17 //1 for raw values
18 //2 for processed values
19 //3 pinch glove mode -- direct thresholding
20

21 const int pinch glove threshold = 15;
22

23 const int calibration = 1;
24 //const int printdelay = 1500;
25 const int printdelay = 150;
26

27 //for compare()
28 //how much a value has to change before the change is taken seriously
29 float DELTA =8;
30 int nreads = 8;
31

32 float analogNread(int AI, int n){
33

34 float val = 0;
35 for(int i=0;i<nreads;i++){
36 val += analogRead(AI);
37 delay(20);
38 }
39 val/=nreads;
40 return val;

154



41 }
42

43 const int nPins = 5;
44

45 boolean doPrint = false;
46

47

48 Servo myservos[nPins]; // create servo object to control a servo
49 // a maximum of eight servo objects can ...

be created
50

51

52 // These constants won't change. They're used to give names
53 // to the pins used:
54 const int analogInPins[] = {A0,A1,A2,A3,A5}; // Analog input pin ...

that the potentiometer is attached to
55

56 const int sensorMaxs[] = {20,20,20, 20 ,20}; //min finger ...
flexion, determined experimentally

57 const int sensorMins[] = {0,0,0,0,0}; //sensor values at max ...
finger flexion, determined experimentally

58

59

60 //determine whether to open or close the digit
61 int oldDigitValues[] = {0,0,0,0,0};
62 int newDigitValues[] = {0,0,0,0,0};
63 //const int low threshold = 40;
64 //const int high threshold = 70;
65

66 int low threshold[] = {40,40,40,40,40};
67 int high threshold[] = {70,70,70,70,70};
68

69 //const int digitIds[] = {101,102,103};
70 //OY Decimal values for direct serial control
71 //const int digitIds[] = {257,258,259,};
72

73 //257 thumb
74 const int digitIds[] = {262,258,259,260,261};
75

76 const int servoPins[] = {9,10,11,6,5};
77

78

79 const int analogOutPin = 9; // Analog output pin that the LED is ...
attached to

80

81 int sensorValues[] = {0,0,0,0,0}; // value read from the pot
82 int outputValues[] = {0,0,0,0,0}; // value output to the ...

PWM (analog out)
83 int oldOutputValues[] = {0,0,0,0,0};
84

85 void setup() {
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86 // initialize serial communications at 9600 bps:
87 Serial.begin(9600);
88 for(int i=0;i< nPins ;i++){
89 myservos[i].attach(servoPins[i]);
90 }
91 }
92

93 boolean compare(float val1, float val2, float ∆){
94 if(abs(val1-val2)>∆){
95 return true;
96 }else{
97 return false;
98 }
99 }

100

101 void loop() {
102

103 for(int i=0;i<nPins;i++){
104 sensorValues[i] = analogNread(analogInPins[i],nreads);
105 //thumb
106

107 if(0 == calibration){
108 outputValues[i] = ...

constrain(map(sensorValues[i],sensorMins[i],sensorMaxs[i],0,100),0,100);
109 if(compare(oldOutputValues[i],outputValues[i],DELTA)){
110 if((outputValues[i] < low threshold[i])){
111 //newDigitValues[i] = 0;
112 newDigitValues[i] = 100;
113 }
114 if(outputValues[i] > high threshold[i]){
115 //newDigitValues[i] = 100;
116 newDigitValues[i] = 0;
117 }
118 }
119 oldOutputValues[i] = outputValues[i];
120 //output
121

122

123 if(oldDigitValues[i] != newDigitValues[i]){
124 //if(compare(oldDigitValues[i],newDigitValues[i],25)){
125 doPrint = true;
126

127 oldDigitValues[i] = newDigitValues[i];
128 }
129

130 }// end output block
131 if(1 == calibration){
132 //calib
133 outputValues[i] = sensorValues[i];
134 Serial.print(" outputValues[");
135 Serial.print(i);
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136 Serial.print("]");
137 Serial.print("=");
138 Serial.print(outputValues[i]);
139 }
140 if(2 == calibration){
141 //calib
142 outputValues[i] = ...

constrain(map(sensorValues[i],sensorMins[i],sensorMaxs[i],0,100),0,100);
143 Serial.print(" outputValues[");
144 Serial.print(i);
145 Serial.print("]");
146 Serial.print("=");
147 Serial.print(outputValues[i]);
148 }
149

150

151 if(3 == calibration){
152 //outputValues[i] = ...

constrain(map(sensorValues[i],sensorMins[i],sensorMaxs[i],0,100),0,100);
153 outputValues[i] = sensorValues[i]; //use raw sensor values
154 //LEFTOFF need oldOutputValues OY 8/27/2014
155 if(compare(oldOutputValues[i],outputValues[i],DELTA)){
156 if((outputValues[i] < pinch glove threshold)){
157 //newDigitValues[i] = 0;
158 newDigitValues[i] = 100;
159 }
160 if(outputValues[i] ≥ pinch glove threshold){
161 //newDigitValues[i] = 100;
162 newDigitValues[i] = 0;
163 }
164 }
165 oldOutputValues[i] = outputValues[i];
166 //output
167

168

169 if(oldDigitValues[i] != newDigitValues[i]){
170 //if(compare(oldDigitValues[i],newDigitValues[i],25)){
171 doPrint = true;
172 oldDigitValues[i] = newDigitValues[i];
173 }
174

175 }// end output block pinch glove
176 myservos[i].write(outputValues[i]);
177

178 }//end for
179

180

181 //print block for handcontrol2
182 if(doPrint){
183 Serial.print("./handcontrol2 ");
184 for(int i=0;i<nPins;i++){

157



185 Serial.print(digitIds[i]);
186 Serial.print(" ");
187 Serial.print(newDigitValues[i]);
188 Serial.print(" ");
189 }
190 //for now, manually put in thumb closure
191 Serial.print(" 257 0 ");
192 doPrint = false;
193 Serial.println();
194 delay(printdelay);
195 }
196

197 if(calibration > 0){
198 Serial.println();
199 }
200 delay(2);
201

202 }
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SOURCE CODE FOR FINGERNAIL SENSOR SYSTEM
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In this appendix, we present the source code for the Fingernail Mounted System.
The UNIX and CANBus side of the code are the same for all three systems.

C.1 Multifrequency Multiple Flasher for Testing

1 #include <Adafruit ADS1015.h>
2

3 #include <Wire.h>
4

5 Adafruit ADS1115 ads; /* Use this for the 16-bit version */
6 const int ledPin = 12; // the number of the LED pin
7

8 // Variables will change :
9 int ledState = LOW; // ledState used to set the LED

10 int test;
11

12 // Generally, you should use "unsigned long" for variables that ...
hold time

13 // The value will quickly become too large for an int to store
14 unsigned long previousMillis = 0; // will store last time ...

LED was updated
15 int pulse duration=100;
16 // constants won't change
17 const long interval = 1000+pulse duration;// interval at which to ...

blink (milliseconds)
18

19 void setup() {
20 // set the digital pin as output:
21 pinMode(ledPin, OUTPUT);
22 Serial.begin(115200);
23 // ads.setGain(GAIN TWOTHIRDS); // 2/3x gain +/- 6.144V 1 bit ...

= 3mV 0.1875mV (default)
24 // ads.setGain(GAIN ONE); // 1x gain +/- 4.096V 1 bit ...

= 2mV 0.125mV
25 //ads.setGain(GAIN TWO); // 2x gain +/- 2.048V 1 bit ...

= 1mV 0.0625mV
26 // ads.setGain(GAIN FOUR); // 4x gain +/- 1.024V 1 bit ...

= 0.5mV 0.03125mV
27 //ads.setGain(GAIN EIGHT); // 8x gain +/- 0.512V 1 bit ...

= 0.25mV 0.015625mV
28 ads.setGain(GAIN SIXTEEN); // 16x gain +/- 0.256V 1 bit = ...

0.125mV 0.0078125mV
29 ads.begin();
30 }
31

32 void loop() {
33 int16 t adc0;
34 adc0 = ads.readADC SingleEnded(0);
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35 unsigned long currentMillis = millis();
36

37 if (currentMillis - previousMillis ≥ interval) {
38 // save the last time you blinked the LED
39 previousMillis = currentMillis;}
40

41 // if the LED is off turn it on and vice-versa:
42 if((currentMillis-previousMillis≥0)&&(currentMillis-previousMillis≤pulse duration))
43 {ledState = HIGH;
44 test=1;
45 }
46 else ...

if((currentMillis-previousMillis>pulse duration)&&(currentMillis-previousMillis≤interval))
47 {ledState = LOW;
48 test=0;
49 }
50 digitalWrite(ledPin, ledState);
51

52

53 // set the LED with the ledState of the variable:
54

55

56 //int sensorValue = analogRead(A3);
57 // print out the value you read:
58 //Serial.print(sensorValue);
59 //Serial.print(",");
60 //Serial.println(test);
61 Serial.print(micros());
62 Serial.print(",");
63 Serial.print(adc0);
64 Serial.print(",");
65 Serial.println(test);
66 //Serial.println(currentMillis-previousMillis);
67

68 }

C.2 MATLAB Code Extract Response Delay

1 function [ response delays ] = extract response delay( t, prompt, ...
resp )

2 %extract response delay returns vector of response delays
3 % Given a time vector, a vector prompt representing prompts , and
4 % a vector resp representing responses, returns time delays
5 %Oguz Yetkin 3/17/2016 for SPIE Paper fingernail sensor testing
6

7 search window = 1000000; %1 second
8 response delays=[];
9 prompt times = [];
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10 response times = [];
11 prompt found = 0;
12 for i=2:1:length(t)
13

14 if (prompt(i) > 0) && (prompt(i-1) == 0)
15 prompt found = 1;
16 prompt times = [prompt times t(i)];
17 end
18 if prompt found && (prompt(i-1) >0) && (prompt(i) == 0)
19 prompt found = 0;
20 prompt time = t(i);
21 end
22 if prompt found
23 if resp(i) > 0
24 if not (prompt(i) == resp(i))
25 disp('ERROR: incorrect response encountered')
26 else
27 resp delay = t(i) - prompt times(end);
28 response delays = [response delays resp delay];
29 response times = [response times t(i)];
30 prompt found = 0;
31 end
32 end
33 end
34 end
35 %debug, show result visually
36

37 fig=figure;
38 hax=axes;
39

40 plot(t,prompt,'red'); ylim([0 2.4]);xlabel 'time (s)'
41 hold on
42 plot(t,resp,'blue');
43

44

45 x=t;
46 hold on
47 %plot(x,sin(x))
48 for i=1:length(prompt times)
49 SP=prompt times(i); %your point goes here
50 line([SP SP],get(hax,'YLim'),'Color',[1 0 0])
51 end
52 for i=1:length(response times)
53 SP=response times(i); %your point goes here
54 line([SP SP],get(hax,'YLim'),'Color',[0 0 1])
55 end
56

57

58

59 end
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C.3 FFT MATLAB Code

C.3.1 myfft.m

1 function [ frequencies, amplitudes ] = myfft( ...
signal,Fs,window begin,window end )

2 %myfft Custom FFT Function by Oguz Yetkin
3 % This function takes a signal, sampling rate, and as well as ...

window begin and window end which
4 % allow the user to exclude some frequencies from the output
5

6

7 T = 1/Fs; % Sample time
8 L = length(signal); % Length of signal
9 t = (0:L-1)*T; % Time vector

10 t= t(1:length(t));
11 x = signal;
12

13 y=x;
14

15 NFFT = 2ˆnextpow2(L); % Next power of 2 from length of y
16 Y = fft(y(window begin:window end),NFFT)/L;
17

18 %Create the properly sized vectors for the frequencies and ...
amplitudes Oguz OY 2/19/2016

19 frequencies = Fs/2*linspace(0,1,NFFT/2+1);
20 amplitudes = 2*abs(Y(1:NFFT/2+1)); %Single-Sided Amplitude ...

Spectrum of
21

22 end

C.3.2 FFT Based Fingernail Detector.m

1 clear all;
2 close all;
3

4 %determined by the dataset
5 %for skipbegin and skipend
6 lowest freq of interest = 15;
7 highest freq of interest = 75;
8

9 %numdata=csvread('fingernail 31 31 short.csv');
10

11 %this works 3/18/2016
12 %numdata=csvread('fingernail 20 90.csv');
13

14 %works but with aliasing
15 numdata=csvread('fingernail 41 75 twofinger prompt.csv');
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16

17 %numdata=csvread('fingernail 20 90 twofinger.csv');
18

19 t=numdata(:,1);%load column 1 to matlab
20 amp=numdata(:,2);%load column 2 to matlab
21 ground truth=numdata(:,3);
22 %Fs=785;
23 Fs=800;
24 %Fs=1800;
25 L = length(amp);
26 P=amp;
27 %finish code import
28

29

30 resultvector = [];
31 resultvector amp = [];
32 subplot(5,1,1);
33 plot(t,P);
34 title 'original time series'
35 subplot(5,1,2);
36 [freq,ampl] = myfft(amp,Fs,1,length(amp));
37

38

39 lowest freq of interest idx = ...
floor((lowest freq of interest/(0.5*Fs))*length(freq));

40 highest freq of interest idx = ...
floor((highest freq of interest/(0.5*Fs))*length(freq));

41

42

43 winwidth = 200;
44 winstep=20;
45

46 %these values work for 13 Hz 2/26/2016
47 %?begin = 100;
48 %skipend = length(ampl)-3000;
49

50

51 %values to encompass [13,80] Hz, determined
52 %experimentally from plot of (freq,ampl) and the index of freq
53 %this displays the correct ranges (13 and 53 Hz) but is not clear
54 %skipbegin = 170;
55 %skipend = 5000;
56

57 skipbegin = lowest freq of interest idx;
58 skipend = highest freq of interest idx;
59

60 %threshold determined from teh maximum and minimum amplitudes in ...
FFT'd window

61 filtered signal threshold = 0.065;
62

63 plot(freq, ampl);
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64 title 'fft, full time series'
65 for i=1:winstep:length(P)-winwidth
66 winbegin = i;
67 winend = i+winwidth;
68 [freq, ampl] = myfft(P, Fs,winbegin,winend);
69 %find the index of the maximum amplitude, then find the
70 %maximum frequency which corresponds to it;
71

72 %OY 02/24/2016 the ampl vector returned seems to have a spurious
73 %spike in index 1, also at the end which was causing the ...

entire function
74 %to not work.
75 %Introduced skipbegin and skipend OY 02/26/2016
76 maximum frequency = freq(find (ampl == ...

max(ampl(skipbegin:skipend))));
77 maximum amplitude = ampl(find (ampl == ...

max(ampl(skipbegin:skipend))));
78 %determining filtered signal threshold during the loop did ...

not work,
79 %this needs to be determined once the intensity of the signal of
80 %interest (after FFT) is known when touching and not touching
81 %
82 %filtered signal threshold = 0.5*(maximum amplitude - ...

ampl(find (ampl == max(ampl(skipbegin:skipend)))));
83 %disp('filtered signal threshold: ');
84 %disp(filtered signal threshold);
85 if maximum amplitude > filtered signal threshold;
86 resultvector = [resultvector maximum frequency];
87 else
88 resultvector = [resultvector 0];
89 end
90 resultvector amp = [resultvector amp maximum amplitude];
91 %plot(freq, ampl)
92 %title('Single-Sided Amplitude Spectrum of y(t)')
93 %xlabel('Frequency (Hz)')
94 %ylabel('|Y(f)|')
95 %pause(0.1);
96 end
97 subplot(5,1,3);
98 plot(resultvector);
99 title('maximum freq vs samples');

100 subplot(5,1,4);
101 plot(ground truth,'red');
102 title('ground truth')
103 subplot(5,1,5);
104 plot(resultvector amp);
105 title('amplitudes at maximum freq')
106 b=ones(30644,1);
107

108 figure(2)
109 subplot(3,1,1)

165



110 yy = smooth(amp)
111 plot(yy)
112 subplot(3,1,2)
113 yy2 = smooth(ampl)
114 plot(yy2)
115 subplot(3,1,3)
116 yy3 = smooth(resultvector)
117 plot(yy3)
118

119 %figure for publication
120

121

122 figure;
123 t sec = t/1000000;
124 subplot(3,1,1);
125 plot(t sec,P);
126 set(gca,'FontSize',10)
127 xlabel 'time (s)'
128 set(gca,'FontSize',12)
129 ylabel 'amplitude'
130 set(gca,'FontSize',14)
131 title 'original time series'
132 subplot(3,1,2);
133 t resultvector = ...

linspace(min(t sec),max(t sec),length(resultvector));
134 plot(t resultvector,resultvector);
135 set(gca,'FontSize',10)
136 xlabel 'time (s)'
137 set(gca,'FontSize',12)
138 ylabel 'max freq'
139 set(gca,'FontSize',14)
140 title('maximum freq vs samples');
141 subplot(3,1,3)
142 %set(gca,'FontSize',18)
143 plot(t sec,ground truth,'red');
144 set(gca,'FontSize',10)
145 xlabel 'time (s)'
146 set(gca,'FontSize',12)
147 ylabel 'max freq'
148 set(gca,'FontSize',14)
149 title('ground truth')
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In this appendix, we present the source code for the EMG and FMG classifica-
tion systems created.

D.1 Arduino Code to Acquire LED Prompter, Glove, and FMG Data

1 #include <Wire.h>
2 #include <Adafruit ADS1015.h>
3

4 Adafruit ADS1115 ads0(0x48); // ADR-> GND
5 Adafruit ADS1115 ads1(0x49); // ADR -> VDD
6 Adafruit ADS1115 ads2(0x4A); // ADR -> SDA
7 Adafruit ADS1115 ads3(0x4B); // ADR -> SCL
8 //Adafruit ADS1015 ads; /* Use thi for the 12-bit version */
9

10 //Oguz Yetkin OY 7/2/2016.
11 int master = 1;
12 int valueread = 0;
13 int waittime = 2; //time to pause between reads in ms, for sync
14 int triggervalue = 0;
15 int oldtriggervalue = 0;
16

17 int suppress extra info = 0;
18

19 long curr micros = 0;
20 long old micros = 0;
21

22

23 int flexNow = 0; //0 relax, 1 idx 2 mid 3 ring 4 pinkie 5 thumb
24 int flexNowIndex = 0;
25 const int nFlex = 10;
26 int flexSequence[nFlex] = {0, 1, 0, 2, 0, 3, 0, 4, 0, 5};
27 int flexLEDs[6] = {0, 13, 12, 11, 10, 9}; // idx, mid, ring, ...

pinkie, thumb
28 //OY 2/16/2016
29 int sensorValues[6] = {0, 0, 0, 0, 0, 0};
30 int pulse pin = 5;
31 //long interval = 3000000;
32 long interval = 3000000;
33

34

35

36 void setup(void)
37 {
38 flexNowIndex = 0;
39 pinMode(13, OUTPUT); //flash 13 while reading value for debug
40 pinMode(12, OUTPUT); //flash 13 while reading value for debug
41 pinMode(11, OUTPUT); //flash 13 while reading value for debug
42 pinMode(10, OUTPUT); //flash 13 while reading value for debug
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43 pinMode(9, OUTPUT); //flash 13 while reading value for debug
44

45 digitalWrite(13, LOW);
46 digitalWrite(12, LOW);
47 digitalWrite(11, LOW);
48 digitalWrite(10, LOW);
49 digitalWrite(9, LOW);
50

51 pinMode(7, OUTPUT);
52 pinMode(8, INPUT PULLUP);
53 if (0 == master) {
54 digitalWrite(13, LOW);
55 }
56 digitalWrite(7, HIGH);
57

58 Serial.begin(115200);
59 //Serial.println("Hello!");
60

61 //Serial.println("Getting single-ended readings from AIN0..3");
62 //Serial.println("ADC Range: +/- 6.144V (1 bit = 3mV/ADS1015, ...

0.1875mV/ADS1115)");
63

64 // The ADC input range (or gain) can be changed via the following
65 // functions, but be careful never to exceed VDD +0.3V max, or to
66 // exceed the upper and lower limits if you adjust the input range!
67 // Setting these values incorrectly may destroy your ADC!
68 // ...

...
ADS1015 ADS1115

69 // ...
...

------- -------
70 // ads0.setGain(GAIN TWOTHIRDS); // 2/3x gain +/- 6.144V 1 ...

bit = 3mV 0.1875mV (default)
71 // ads0.setGain(GAIN ONE); // 1x gain +/- 4.096V 1 ...

bit = 2mV 0.125mV
72

73 /*
74 ads0.setGain(GAIN TWO); // 2x gain +/- 2.048V 1 bit ...

= 1mV 0.0625mV
75 ads1.setGain(GAIN TWO); // 2x gain +/- 2.048V 1 bit ...

= 1mV 0.0625mV
76 ads2.setGain(GAIN TWO); // 2x gain +/- 2.048V 1 bit ...

= 1mV 0.0625mV
77 ads3.setGain(GAIN TWO); // 2x gain +/- 2.048V 1 bit ...

= 1mV 0.0625mV
78 */
79 ads0.setGain(GAIN FOUR); // 16x gain +/- 0.256V 1 bit ...

= 0.125mV 0.0078125mV
80 ads1.setGain(GAIN FOUR); // 16x gain +/- 0.256V 1 bit ...

= 0.125mV 0.0078125mV
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81 //GAIN ONE for glove
82 ads2.setGain(GAIN ONE); // 16x gain +/- 0.256V 1 bit = ...

0.125mV 0.0078125mV
83 ads3.setGain(GAIN ONE); // 16x gain +/- 0.256V 1 bit = ...

0.125mV 0.0078125mV
84

85 // ads0.setGain(GAIN FOUR); // 4x gain +/- 1.024V 1 ...
bit = 0.5mV 0.03125mV

86 // ads0.setGain(GAIN EIGHT); // 8x gain +/- 0.512V 1 ...
bit = 0.25mV 0.015625mV

87 // ads0.setGain(GAIN SIXTEEN); // 16x gain +/- 0.256V 1 ...
bit = 0.125mV 0.0078125mV

88

89 ads0.begin();
90 }
91

92 void read and print values() {
93 int16 t adc[16];
94 // Read the ADC and put it to a variable name
95 // clean up for efficiency
96 byte sensor = 0;
97 //for(byte loop = 0; loop < 4; loop++){
98 for (byte x = 0; x < 4; x++) {
99 adc[sensor] = ads0.readADC SingleEnded(x);

100 sensor++;
101 }
102 for (byte x = 0; x < 4; x++) {
103 adc[sensor] = ads1.readADC SingleEnded(x);
104 sensor++;
105 }
106 for (byte x = 0; x < 4; x++) {
107 adc[sensor] = ads2.readADC SingleEnded(x);
108 sensor++;
109 }
110 for (byte x = 0; x < 4; x++) {
111 adc[sensor] = ads3.readADC SingleEnded(x);
112 sensor++;
113 }
114 if (0 == suppress extra info) {
115 Serial.print(curr micros);
116 Serial.print(",");
117 Serial.print(flexNow);
118 Serial.print(",");
119 }
120 for (byte x = 0; x < 16; x++) {
121 Serial.print(adc[x]);
122 Serial.print(",");
123 }
124 Serial.println(" ");
125 }
126
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127

128 void loop(void)
129 {
130 curr micros = micros();
131 long time elapsed = curr micros - old micros;
132 if (time elapsed > interval) {
133 old micros = curr micros;
134 flexNowIndex++;
135 flexNowIndex %= nFlex; // go to the next state
136 flexNow = flexSequence[flexNowIndex];
137

138 //OY 11/17/2015 hard-coding values for now
139 if (flexNow == 0) {
140 digitalWrite(13, LOW);
141 digitalWrite(12, LOW);
142 digitalWrite(11, LOW);
143 digitalWrite(10, LOW);
144 digitalWrite(9, LOW);
145 digitalWrite(pulse pin, HIGH);
146 //analogWrite(pulse pin, 0);
147 } else {
148 digitalWrite(13, LOW);
149 digitalWrite(12, LOW);
150 digitalWrite(11, LOW);
151 digitalWrite(10, LOW);
152 digitalWrite(9, LOW);
153 digitalWrite(flexLEDs[flexNow], HIGH);
154 digitalWrite(pulse pin, LOW);
155 //analogWrite(pulse pin, 128);
156 }
157 }//end prompting code
158 if (1 == master) {
159 digitalWrite(7, LOW); //low on receiving Arduino will ...

trigger read
160 //digitalWrite(13, HIGH); //debug
161 delay(waittime);
162 read and print values();
163 valueread = 1;
164 digitalWrite(7, HIGH); //high suppresses output on second ...

arduino
165 } else {
166 oldtriggervalue = triggervalue;
167 triggervalue = !digitalRead(8);
168 //Serial.println(triggervalue);
169 //trigger read only on rising edge
170 if (0 == valueread && 1 == triggervalue && 0 == ...

oldtriggervalue) {
171 //if(0 == valueread && 1 == triggervalue);
172 digitalWrite(13, HIGH); //debug
173 delay(waittime);
174 read and print values();

171



175 valueread = 1;
176 digitalWrite(13, LOW);
177 }
178 if ((1 == oldtriggervalue) && (0 == triggervalue)) {
179 //reset valueread, prime for next read
180 valueread = 0;
181 }
182 }//end else
183 }

D.2 MATLAB Code for Classification and Training

D.2.1 run FMG.m

This is the main code for FMG classification and training discussed in Chapter
5. It depends on the following codes, also listed in this appendix: normalize.m,
importPromptGLoveFMG.m, plotPromptGLoveFMG.m.

1 %run FMG.m
2 % Oguz Yetkin 7/4/2016
3 %This script written for the experiments on 7/4/2016 but can be ...

used for
4 %similar data
5 %
6 %import, plot, and train on FMG experiment
7 % %Plots produced: 1) Ground truth1, Ground truth predicted from ...

Glove,
8 % Ground truth 2, Ground truth predicted from another run of the ...

glove
9 % 3) Finger movements predicted from FMG using ...

Ground Truth
10 % as training data
11 % 4) Finger movements predicted from FMG using ...

Glove as
12 % Training Data
13 %
14 %Experiment setup: LED prompter, Glove, and FMG data acquired
15 %
16 %column 1: Time in ms
17 %Column 2: LED prompter data. 0 = no action, 1 index finger .. 5 ...

thumb
18 %(will be translated to 1 = no action, 2 = index inger .. 6 = ...

thumb in
19 %order to be more MATLAB friendly for the ind2vec function
20 %Column 3-10: FMG data from FlexiForce pressure sensors
21 %Column 11-15: Glove data (high means open, low means flexed, ...

max=2ˆ15
22

23 filename1='data2A.csv'; %filename1 for training

172



24 filename2='data2B.csv'; %filename2 for verification
25

26

27 %filename1='data2.csv'; %filename1 for training
28 %filename2='data3.csv'; %filename2 for verification
29

30

31 %ground truth1 is ground truth data from prompter
32 %ngData1 is normalized glove data
33 %neData1 is FMG (Force Myography) data from pressure sensors on ...

the arm
34 [gTime1, ground truth1, ngData1, neData1] = ...

importPromptGloveFMG(filename1);
35 [gTime2, ground truth2, ngData2, neData2] = ...

importPromptGloveFMG(filename2);
36 figure;
37 plotPromptGloveFMG(gTime1, ground truth1, ngData1, neData1);
38

39 %turn ground truth data into a training set matrix in which every row
40 %represents a class. Class 1 = no action, Class 2 = thumb ...

flexion .. Class 6 =
41 %little finger flexion
42 training set1 = full(ind2vec(ground truth1'));
43 gloveNet1 = patternnet(30);
44 gloveNet1.trainParam.showWindow = false;
45 gloveNet1.trainParam.showCommandLine = true;
46 gloveNet1.trainParam.min grad = 1e-9; %default 1e-6
47 gloveNet1.trainParam.max fail = 20; %default 5
48

49 gloveNet1 = train(gloveNet1, ngData1', training set1);
50 %run the neural network on the original dataset
51 ground truth from glove1 = vec2ind(gloveNet1(ngData1'));
52 %run the neural network on a different dataset (cross-validation)
53 ground truth from glove2 = vec2ind(gloveNet1(ngData2'));
54 figure;
55 subplot(3,2,1);
56 plot(gTime1, ngData1);
57 ylabel 'normalized ADC'
58 title 'Glove Data for Training'
59 subplot(3,2,3);
60 plot(gTime1, ground truth1);
61 title 'Ground Truth for Training'
62 ylabel 'Prompted Action'
63 subplot(3,2,5);
64 plot(gTime1, ground truth from glove1);
65 title 'Ground Truth Predicted from Training Data'
66 ylabel 'Predicted Action'
67 xlabel 'time (seconds)'
68 %right side of graph
69 subplot(3,2,2);
70 plot(gTime2, ngData2);
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71 ylabel 'normalized ADC'
72 title 'Glove Data for Validation'
73 subplot(3,2,4);
74 plot(gTime2, ground truth2);
75 title 'Ground Truth for Validation'
76 ylabel 'Prompted Action'
77 subplot(3,2,6);
78 plot(gTime2, ground truth from glove2);
79 title 'Ground Truth Predicted from Validation Data'
80 ylabel 'Predicted Action'
81 xlabel 'time (seconds)'
82

83 disp('RMS error between ground truth and predicted ground truth ...
from training set for Glove');

84 disp(sqrt(sum((ground truth1-ground truth from glove1').ˆ2)));
85 disp('RMS error between ground truth and predicted ground truth ...

from validation set for Glove');
86 disp(sqrt(sum((ground truth2-ground truth from glove2').ˆ2)));
87

88 %Now predict finger movements from FMG data using prompter as ...
ground truth

89

90 %turn ground truth data into a training set matrix in which every row
91 %represents a class. Class 1 = no action, Class 2 = thumb ...

flexion .. Class 6 =
92 %little finger flexion
93 training set1 = full(ind2vec(ground truth1'));
94 FMGNet1 prompter = patternnet(30);
95 FMGNet1 prompter.trainParam.showWindow = false;
96 FMGNet1 prompter.trainParam.showCommandLine = true;
97 FMGNet1 prompter.trainParam.epochs = 1000; %default 1000
98 FMGNet1 prompter.trainParam.max fail = 100; %default 5
99

100 FMGNet1 prompter = train(FMGNet1 prompter, neData1', training set1);
101 %run the neural network on the original dataset
102 result from FMG1 = vec2ind(FMGNet1 prompter(neData1'));
103 %run the neural network on a different dataset (cross-validation)
104 result from FMG2 = vec2ind(FMGNet1 prompter(neData2'));
105

106 figure;
107 subplot(3,2,1);
108 plot(gTime1, neData1);
109 ylabel 'normalized ADC'
110 title 'FMG Data for Training'
111 subplot(3,2,3);
112 plot(gTime1, ground truth1);
113 title 'Ground Truth for Training'
114 ylabel 'Prompted Action'
115 subplot(3,2,5);
116 plot(gTime1, result from FMG1);
117 title 'Finger Movement Predicted from Training Data'
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118 ylabel 'Predicted Action'
119 xlabel 'time (seconds)'
120 %right side of graph
121 subplot(3,2,2);
122 plot(gTime2, neData2);
123 ylabel 'normalized ADC'
124 title 'FMG Data for Validation'
125 subplot(3,2,4);
126 plot(gTime2, ground truth from glove2);
127 title 'Ground Truth for Validation'
128 ylabel 'Prompted Action'
129 subplot(3,2,6);
130 plot(gTime2, result from FMG2);
131 title 'Finger Movement Predicted from Validation Data'
132 ylabel 'Predicted Action'
133 xlabel 'time (seconds)'
134

135 disp('RMS error between ground truth and predicted Finger ...
Movement from training set');

136 disp(sqrt(sum((ground truth1-result from FMG1').ˆ2)));
137 disp('RMS error between ground truth and predicted Finger ...

Movement from validation set');
138 disp(sqrt(sum((ground truth2-result from FMG2').ˆ2)));
139

140 % GLOVE AS GROUND TRUTH
141

142 %Now predict finger movements from FMG data using glove as ground ...
truth

143

144 %turn ground truth data into a training set matrix in which every row
145 %represents a class. Class 1 = no action, Class 2 = thumb ...

flexion .. Class 6 =
146 %little finger flexion
147 %training set1 = full(ind2vec(ground truth1'));
148 FMGNet1 glove = patternnet(30);
149 FMGNet1 glove.trainParam.showWindow = false;
150 FMGNet1 glove.trainParam.showCommandLine = true;
151 FMGNet1 glove.trainParam.epochs = 1000; %default 1000
152 FMGNet1 glove.trainParam.max fail = 100; %default 5
153

154 FMGNet1 glove = train(FMGNet1 glove, neData1', ...
ind2vec(ground truth from glove1));

155 %run the neural network on the original dataset
156 result from FMG1 glove = vec2ind(FMGNet1 glove(neData1'));
157 %run the neural network on a different dataset (cross-validation)
158 result from FMG2 glove = vec2ind(FMGNet1 glove(neData2'));
159

160 figure;
161 subplot(3,2,1);
162 plot(gTime1, neData1);
163 ylabel 'normalized ADC'
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164 title 'FMG Data for Training'
165 subplot(3,2,3);
166 plot(gTime1, ground truth from glove1);
167 title 'Ground Truth obtained from Glove for Training'
168 ylabel 'Prompted Action'
169 subplot(3,2,5);
170 plot(gTime1, result from FMG1 glove);
171 title 'Finger Movement Predicted from Training Data using Glove'
172 ylabel 'Predicted Action'
173 xlabel 'time (seconds)'
174 %right side of graph
175 subplot(3,2,2);
176 plot(gTime2, neData2);
177 ylabel 'normalized ADC'
178 title 'FMG Data for Validation'
179 subplot(3,2,4);
180 plot(gTime2, ground truth from glove2);
181 title 'Ground Truth for Validation'
182 ylabel 'Prompted Action'
183 subplot(3,2,6);
184 plot(gTime2, result from FMG2 glove);
185 title 'Finger Movement Predicted from Validation Data using Glove'
186 ylabel 'Predicted Action'
187 xlabel 'time (seconds)'
188

189 disp('RMS error between ground truth and predicted Finger ...
Movement from training set');

190 disp(sqrt(sum((ground truth1-result from FMG1 glove').ˆ2)));
191 disp('RMS error between ground truth and predicted Finger ...

Movement from validation set');
192 disp(sqrt(sum((ground truth2-result from FMG2 glove').ˆ2)));
193

194

195 disp('************** FMG Glove Experiment Summary ***************');
196 disp('filename1 (training):');
197 disp(filename1);
198 disp('filename2 (validation):');
199 disp(filename2);
200

201 disp('RMS error between ground truth and predicted ground truth ...
from training set for Glove');

202 disp(sqrt(sum((ground truth1-ground truth from glove1').ˆ2)));
203 disp('RMS error between ground truth and predicted ground truth ...

from validation set for Glove');
204 disp(sqrt(sum((ground truth2-ground truth from glove2').ˆ2)));
205

206

207

208

209 disp('RMS error between ground truth and predicted Finger ...
Movement from training set');
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210 disp(sqrt(sum((ground truth1-result from FMG1').ˆ2)));
211 disp('RMS error between ground truth and predicted Finger ...

Movement from validation set');
212 disp(sqrt(sum((ground truth2-result from FMG2').ˆ2)));
213

214

215 disp('RMS error between ground truth and predicted Finger ...
Movement from training set');

216 disp(sqrt(sum((ground truth1-result from FMG1 glove').ˆ2)));
217 disp('RMS error between ground truth and predicted Finger ...

Movement from validation set');
218 disp(sqrt(sum((ground truth2-result from FMG2 glove').ˆ2)));

D.2.2 normalize.m

This is a utility function.

1 function [ nvector ] = normalize( vector )
2 %Oguz Yetkin OY 7/4/2016 normalize each column to be a maximum of 1
3

4 nvector = vector - repmat(min(vector), [length(vector) 1]);
5 nvector = nvector ./ repmat(max(nvector), [length(nvector) 1]);
6

7

8 end

D.2.3 importPromptGloveFMG.m

This code imports FMG, glove, and LED prompter data.

1 function [gTime, gPrompt,ngData, neData] = ...
importPromptGloveFMG(filename)

2 %importPromptGloveFMG
3 %Oguz Yetkin 7/4/2016
4 %
5 %input: filename
6 %outputs: gTime = time in seconds
7 % gPrompt: Ground Truth from LED prompter in MATLAB ...

friendly format
8 % For use in classifier training
9 % %Class 1= no action

10 %Class 2 = thumb
11 %Class 3 = index
12 %Class 4 = middle
13 %Class 5 = ring
14 %Class 6 = little
15 % ngData: normalized glove Data
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16 % neData: normalized EMG/FMG data
17

18

19 skipbegin = 20; %empirically determined values to skip
20 skipend = 0;
21 conv window = 10;
22

23 dataStruct=importdata(filename);
24 %data=dataStruct.data;
25 data=dataStruct;
26 %headers=dataStruct.colheaders;
27 gTime = data(skipbegin:(length(data)-skipend),1);
28 gTime = gTime/1000000.0; %turn time into seconds
29 eTime = gTime; %they are the same as on 7/3/2016 since Glove and
30 %FMG data were acquired from the same device
31 gPrompt = data(skipbegin:(length(data)-skipend),2);
32 gPrompt = gPrompt + 1; %MATLAB does not like 0 values. gPrompt ...

represents
33 %prompts given to the user.
34 %Class 1= no action
35 %Class 2 = thumb
36 %Class 3 = index
37 %Class 4 = middle
38 %Class 5 = ring
39 %Class 6 = little
40

41 gData = data(skipbegin:end,(11:15));
42 %complement the gData with 32768 to make sure unflexed means low, ...

flexed
43 %means high
44 gData = 32768 - gData;
45 eData = data(skipbegin:end,(3:10)); %FMG data
46

47 %filter the data
48 s = size(gData);
49 ncols= s(2);
50 for i=1:ncols
51 gData(:,i) = conv(gData(:,i), ones(1,conv window),'same');
52 end
53 s = size(eData);
54 ncols= s(2);
55 for i=1:ncols
56 eData(:,i) = conv(eData(:,i), ones(1,conv window),'same');
57 end
58

59

60 gData = gData(1:(length(gData)-skipend),:);
61 eData = eData(1:(length(eData)-skipend),:);
62

63 ngData = normalize(gData);
64 neData =normalize(eData)
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65 % subplot(3,1,1);
66 % plot(gTime,ngData);
67 % ylim([0 1.1])
68 % title('Glove Data')
69 % ylabel('Normalized ADC');
70 % subplot(3,1,2);
71 %
72 % plot(gTime,gPrompt);
73 % title('Glove Prompt')
74 % ylabel 'Prompted Action';
75 % ylim([0.8 6.4])
76 % subplot(3,1,3);
77 % plot(gTime,neData);
78 % ylim([0 1.1])
79 % ylabel('Normalized ADC');
80 % xlabel 'time (seconds)'
81 % title('FMG Data');

D.2.4 plotPromptGloveFMG.m

This code was used to generate the FMG plots in Chapter 5.

1 function plotPromptGloveFMG(gTime, gPrompt, ngData, neData)
2 %plotPromptGloveFMG
3 %Oguz Yetkin 7/4/2016
4 %
5 %input: filename
6 %outputs: gTime = time in seconds
7 % gPrompt: Ground Truth from LED prompter in MATLAB ...

friendly format
8 % For use in classifier training
9 % %Class 1= no action

10 %Class 2 = thumb
11 %Class 3 = index
12 %Class 4 = middle
13 %Class 5 = ring
14 %Class 6 = little
15 % ngData: normalized glove Data
16 % neData: normalized EMG/FMG data
17

18

19

20 subplot(3,1,1);
21 plot(gTime,ngData);
22 ylim([0 1.1])
23 title('Glove Data')
24 ylabel('Normalized ADC');
25 subplot(3,1,2);
26
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27 plot(gTime,gPrompt);
28 title('Glove Prompt')
29 ylabel 'Prompted Action';
30 ylim([0.8 6.4])
31 subplot(3,1,3);
32 plot(gTime,neData);
33 ylim([0 1.1])
34 ylabel('Normalized ADC');
35 xlabel 'time (seconds)'
36 title('FMG Data');
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