
TIME-TRIGGERED CONTROLLER AREA NETWORK DESIGN FOR FORMULA SAE

RACECARS AND TECHNIQUE FOR MEASURING CPU USAGE ON SYSTEMS WITH

NESTED AND NON-NESTED INTERRUPTS

by

RANDY KYLE LONG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2016

ii

Copyright © by Randy Long 2016

All Rights Reserved

iii

Acknowledgements

First and foremost my thanks goes to Dr. Taylor Johnson and his seemingly

infinite patience with a student who changed his thesis topic every 15 minutes.

Also, my thanks goes to Dr. Woods, Michael Hibbard, David Campbell, Audrey

Porter, Matthew Martin, and all other contributors to the UTA FSAE E-16 project. My

thesis topic was chosen specifically to support that vehicle during the design defense

event at the upcoming Formula Student Germany competition. Without their efforts, I

would have had to write about something else much less interesting.

And lest we forget: The material presented in this thesis is based upon work

supported by the National Science Foundation (NSF) under grant numbers CNS 1464311

and CCF 1527398, the Air Force Research Laboratory (AFRL) through contract number

FA8750-15-1-0105, and the Air Force Office of Scientific Research (AFOSR) under

contract numbers FA9550-15-1-0258 and FA9550-16-1-0246. The U.S. government is

authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions

or recommendations expressed in this publication are those of the authors and do not

necessarily reflect the views of AFRL, AFOSR, or NSF.

July 29, 2016

iv

Abstract

TIME-TRIGGERED CONTROLLER AREA NETWORK DESIGN METHODOLOGY

AND TECHNIQUE FOR MEASURING CPU USAGE ON SYSTEMS WITH

NESTED AND NON-NESTED INTERRUPTS

RANDY K LONG, MS

The University of Texas at Arlington, 2016

Supervising Professor: Taylor Johnson

This document presents a design method and example for a time-triggered CAN

(TTCAN) system which reduces latency, variability in transmission frequency, and

increases data throughput relative to the traditional free-for-all CAN (FFACAN)

transmission system.

In addition to performance considerations for a TTCAN transmission scheme,

this document also presents a simple method for measuring CPU usage on embedded

systems that use either nested or non-nested interrupts. Systems that use non-nested

interrupts may have their performance measured with a single GPIO pin; systems that

use nested interrupts require one pin per interrupt service routine.

v

Table of Contents

Acknowledgements.. iii

Abstract .. iv

Chapter 1 Project Overview .. 1

Chapter 2 CAN Bus Basics ... 4

Multi-Master Hardware Arbitration ... 4

Anatomy of a CAN Frame.. 6

The Arbitration Field ... 6

The Control Field ... 6

The Data Field ... 7

The CRC Field .. 7

Filters & Masks .. 8

Stuff Bits .. 10

CAN Bus Performance Considerations .. 11

Chapter 3 Time-Triggered CAN Network Traffic Management .. 14

TTCAN Design Considerations ... 15

TTCAN Design Method .. 17

Designing for Multi-Cycle Transmission .. 21

TTCAN System Design Example .. 23

Designing for Multi-Cycle Transmission (2x) ... 28

Designing for Multi-Cycle Transmission (5x) ... 31

Designing for Multi-Cycle Transmission (8x) ... 32

Designing for Multi-Cycle Transmission (9x) ... 34

Summary of Results .. 36

Chapter 4 Comparison of TTCAN to FFACAN .. 37

Baseline Values ... 39

Comparing the 2x Transmission Multiplier ... 41

Comparing the 5x Transmission Multiplier ... 42

vi

Comparing the 8x Transmission Multiplier ... 43

Comparing the 9x Transmission Multiplier ... 44

Summary of Results .. 45

Chapter 5 CPU Usage Calculation ... 46

Non-Nested vs Nested Hardware Interrupts .. 47

CPU Usage Calculation – Method 1 .. 49

CPU Usage Calculation – Method 2 .. 51

CPU Usage Measurement Implementation Methodology ... 54

Method 1, for Non-Nested Interrupts .. 54

Method 2, for Non-Nested Interrupts .. 54

Method 1, for Nested Interrupts .. 55

Method 2, for Nested Interrupts .. 55

CPU Usage Measurement Implementation Example ... 56

Parameters and Expected Results .. 56

Method 1, for Non-Nested Interrupts .. 57

Method 2, for Non-Nested Interrupts .. 59

Method 1, for Nested Interrupts .. 63

Chapter 6 Conclusions .. 67

vii

List of Illustrations

Figure 1-1 F14 driving with an active-aerodynamic system ... 3

Figure 2-1 CAN bus differential voltage signaling ... 4

Figure 2-2 A filtered messaged is received ... 9

Figure 2-3 A filtered message is rejected .. 9

Figure 2-4 Generalized form of NRZ bus resynchronization ... 10

Figure 2-5 CAN bus time quanta parameters ... 12

Figure 3-1 Desynchronization due to differences in the clock rates 16

Figure 3-2 An edge counter in action .. 18

Figure 3-3 Determining minimum Δtmsg ... 21

Figure 3-4 Determining maximum Δtmsg ... 21

Figure 3-5 Determining minimum Δtmsg (2x transmission) ... 28

Figure 3-6 Determining maximum Δtmsg (2x transmission) .. 28

Figure 3-7 Determining minimum Δtmsg (5x transmission) ... 31

Figure 3-8 Determining maximum Δtmsg (5x transmission) .. 31

Figure 3-9 Determining minimum Δtmsg (8x transmission) ... 32

Figure 3-10 Determining maximum Δtmsg (8x transmission) .. 32

Figure 3-11 Determining minimum Δtmsg (9x transmission) ... 34

Figure 3-12 Determining maximum Δtmsg (9x transmission) .. 34

Figure 4-1 Bus configuration for the baseline test ... 39

Figure 4-2 Bus configuration for the 1x transmission multiplier test 40

Figure 4-3 Bus configuration for the 2x transmission multiplier test 41

Figure 4-4 Bus configuration for the 5x transmission multiplier test 42

Figure 4-5 Bus configuration for the 8x transmission multiplier test 43

Figure 4-6 Bus configuration for the 9x transmission multiplier test 44

Figure 5-1 Interrupt vectors for a TI TM4C1294NCPDT microcontroller [3] 48

Figure 5-2 Non-nested interrupt instrumentation output ... 49

Figure 5-3 Nested interrupt instrumentation output ... 51

Figure 5-4 Nested interrupt instrumentation output with highlights 53

Figure 5-5 Oscilloscope Graphical Output .. 57

Figure 5-6 Output from Timer 2 ISR (1.0 ms per division) .. 59

Figure 5-7 Output from Timer 3 ISR (1.0 ms per division) .. 60

Figure 5-8 Output from Timer 4 ISR (1.0 ms per division) .. 60

Figure 5-9 Output from Timer 5 ISR (100 μs per division) .. 61

Figure 5-10 Output from main loop (100 μs per division) .. 61

Figure 5-11 Oscilloscope Graphical Output (Incorrect) .. 63

viii

Figure 5-12 Oscilloscope Graphical Output (Correct) ... 65

Figure 5-13 Raw vs Masked Signal for Timer 2 ... 65

ix

List of Tables

Table 3-1 Oscillator Speed Differences ... 24

Table 3-2 Parameters for a 5x Transmission Multiplier Scheme 31

Table 3-3 Parameters for a 8x Transmission Multiplier Scheme 33

Table 3-4 Parameters for an 9x Transmission Multiplier Scheme 35

Table 3-5 Min/Max/Avg Frame Transmission Rates for all Transmission Multipliers 36

Table 3-6 Min/Max/Avg Data Transmission Rates for all Transmission Multipliers 36

Table 4-1 Node Descriptions for FFACAN Bus... 38

Table 4-2 TTCAN Transmission & Data Rates ... 38

Table 4-3 Requested vs Actual Transmission Rates, Baseline .. 39

Table 4-4 1x Transmission Multiplier Test Results.. 40

Table 4-5 Transmission Multiplier Test Results .. 41

Table 4-6 5x Transmission Multiplier Test Results.. 42

Table 4-7 8x Transmission Multiplier Test Results.. 43

Table 4-8 9x Transmission Multiplier Test Results.. 44

Table 4-9 Summary of Requested vs Actual Transmission Rates 45

Table 5-1 Timer Interrupt Configuration .. 56

Table 5-2 Oscilloscope Measurement Output (Multi-Pin, Non-Nested) 58

Table 5-3 Oscilloscope Measurement Output (Single-Pin, Non-Nested) 62

Table 5-4 Oscilloscope Measurement Output (Incorrect, Nested) 64

Table 5-5 Oscilloscope Measurement Output (Correct, Nested) 66

1

Chapter 1

Project Overview

A time-triggered (TT) transmission scheme has two primary beneficial characteristics

which can be applied to any packet-based, multi-master telecommunication technology:

 Determinism - since transmission events follow a defined schedule, variability in

latency is greatly reduced in comparison to a free-for-all transmission scheme.

Determinism is an important characteristic of safety critical control systems –

modern automobiles contain dozens of safety systems (anti-lock brakes, traction

control, supplemental restraint systems). [4]

 Increased throughput - since the media access control hardware does not need

to spend time in channel access arbitration, transmission events can take place

more often.

A TT transmission schedule is made up of transmission windows, periods of time

during which one or more bus members may attempt to transmit. Channel members may

only transmit during their designated transmission windows - members with their own

dedicated transmission window are therefore guaranteed exclusive access to the channel

during that time. Collections of windows are called cycles, and are usually accompanied

by a schedule resynchronization event. All transmission takes place according to this

schedule; transmission rates can be easily predicted as long as all channel members

follow this schedule. Also, since a given channel member can transmit without

interference from another channel member, the effective information throughput is

increased, since the transmitters do not waste time arbitrating for control of the channel.

This document presents an analysis and design example of a time-triggered (TT)

transmission scheme over a Controller Area Network (CAN) bus. Chapter 2 contains a

2

summary of major CAN bus features along with considerations that must be made when

designing a TTCAN system including the number of stuff bits per frame and bus timing

parameters.

This document also presents a method for measuring performance of interrupt-

driven embedded applications. Devices with large amounts of computerized processing

capability and random-access memory (RAM) (such as PCs, modern phones, video

game systems, etc.) are capable of running their own central processing unit (CPU)

usage profiling applications with minimal effect on system performance. This is

compared this to applications that run on microcontrollers with MB of flash memory and

only a few KB of RAM. Live system profiling software may effect performance in a way

that prevents the application from running normally. In-circuit programming and profiling

hardware is available from most microcontroller manufacturers, but this equipment can

be expensive and cumbersome for an inexperienced developer.

Embedded CPU usage can be measured with a simple and minimally intrusive

technique in which each hardware interrupt is associated with one general purpose input

or output (GPIO) pin. The state of the pin reflects that state of the interrupt – if the

interrupt is active, the pin state is “high” (logical 1), if the interrupt is inactive, the pin state

is “low” (logical 0).

Systems with nested interrupts can be profiled using the same technique as long

as one GPIO pin is available for each nesting interrupt. The instrumentation can be

extended to include tasks as well (if an operating system is present and running).

Performance is measured with an external device such as an oscilloscope, saving the

embedded processor the trouble of calculating and transmitting its own CPU usage

numbers.

3

Both of these topics – TTCAN and CPU usage calculation measurements – were

applied to the 2013, 2014, 2015, and 2016 design year version of UTA Formula SAE’s

active-aero control systems (see Figure 1-1).

Figure 1-1 F14 driving with an active-aerodynamic system

4

Chapter 2

CAN Bus Basics

Controller Area Network (CAN) bus technology was developed in response to

increasing demand for a low-cost, simple, and robust network communication protocol for

use with automotive applications. The physical layer of a CAN bus requires two

conductors, two termination resistors, and one differential transceiver per bus member

(bus members are also called nodes). Data frames are transmitted with unique identifier

codes (UIDs), a data payload, and cyclic-redundancy check to ensure that data is not

corrupted during transmission. Bits transmitted over a bus are sent via differential

voltage signaling, which provides some resilience to electrical noise. [1]

Multi-Master Hardware Arbitration

Any node attached to a CAN bus can attempt to transmit at any time. CAN

technology supports a form of non-destructive hardware arbitration to manage collisions

and ensure that all nodes will eventually have a chance to transmit (assuming the bus is

not overloaded with traffic). [1]

Figure 2-1 CAN bus differential voltage signaling

5

Figure 2-1 shows the generalized form of a CAN bus signal. Information is

transmitted on a CAN bus in the form of differential voltage signals – instead of

interpreting a signal by comparing it to some common reference, two signals are

compared to each other. This ensures that information is received even if some noise

causes severe corruption of the signal. [1]

The CAN standard distinguishes between 0s and 1s with the terms dominant

and recessive, respectively. When no bits are being transmitted on the bus the

termination resistors force the voltage on both conductors to an equal level. This is a

recessive bus state, which represents a digital logic 1. When a node has control of the

bus and is transmitting, the node’s CAN transceiver is forcing the two conductors to

different voltage levels. This is a dominant state, which represent a digital logic 0. [2]

Arbitration happens on a per-bit basis. A CAN bus transmitter silently listens to

the bus state during transmission to ensure that the bus state is set correctly. If two

nodes attempt to transmit at the same time, the node with the most dominant message

will win arbitration and continue to transmit; the node that lost arbitration will wait a

random amount of time before attempting to transmit again. Since a digital logic 0

represents a dominant bus state, CAN frames can be assigned some intrinsic priority

through their unique identifier (UID) field – UID 0 has the highest priority. [2]

6

Anatomy of a CAN Frame

CAN frames are made up of four main parts:

 The arbitration (UID) field

 The control field

 The data field

 The cyclic-redundancy check (CRC) field

Each frame is also succeeded by at least 3 interframe spacing bits. [2]

The Arbitration Field

The arbitration field contains the CAN frame’s UID and some control bits. The

UID can be filtered and / or ignored by a CAN bus receiver hardware so that the

microcontroller or microprocessor attached to the CAN receiver does not waste time

processing a CAN frame that has no relevance to the receiver’s tasks. The design

example in Chapter 3 assumes that all CAN filters are disabled and thus have no effect

on bus performance. However a short explanation of how CAN filters and masks work is

given in a later section within this chapter.

Frames have two possible lengths: standard and extended. Standard frames

have UIDs that are 11 bits in length (2047 possible unique values) while extended frames

have UIDs that are 29 bits in length (536,870,912 possible unique values). Buses that

follow the CAN2.0A specification use standard frames only and treat extended frames as

bus errors. CAN2.0B buses support both standard and extended frames. [2]

The Control Field

CAN frames contain several control bits that identify the purpose and type of the

frame. Standard and extended frames are distinguished by the value of the extended

7

identifier (IDE) bit, which is cleared for standard frames and set for extended frames.

The CAN bus specification also supports Remote Transmission Requests, or RTR

frames. This functionality allows a transmitter to trigger transmission of a message at a

remote node for the purposes of polling or network flow control. RTR frames are rarely

used in practice and thus are not included in the scope of this document. Extended

frames have a Substitute Remote Request bit (SRR) that fills in the bit that would

normally be used to trigger a standard RTR frame. [2]

The Data Field

CAN frames carry a 0 to 8 byte payload in their data field. [2] Officially, CAN2.0A

and CAN 2.0B frames can only carry up to 8 bytes; however a clever application designer

may notice that a standard frame (with 11 bits in the ID field) or an extended frame (with

29 bits in the ID field) allows for a few extra bytes to be stuffed into the frame’s UID field.

This technique is referenced as “byte stealing” throughout this document. Specifically,

standard frames can accommodate an additional byte, leaving 3 bits left over for frame

identification. Extended frames can accommodate an additional 3 bytes, leaving 5 bits

left over for frame identification.

The CRC Field

To ensure that a CAN frame arrived at a receiver exactly as it was sent, each

frame includes a 15 bit CRC before the end-of-frame field. Modern CAN receivers have

hardware support for the CRC generation and check the CRC of each received message

without any intervention from a microcontroller or microprocessor. If the CRC in the

frame does not match the one that was calculated by the receiver, the frame is discarded

without being copied to a receive buffer. [2]

8

Filters & Masks

Masks and filters work together to form simple “deny” or “allow” functionality for

CAN bus receivers. This is particularly useful for nodes with low processing power or for

nodes that cannot afford to spend time processing interrupts associated with CAN

reception on a bus with a lot of traffic. Filters can be applied to both standard and

extended frames. The number of bits in a filter is equal to the number of bits in the

incoming frames’ UID. [2]

Upon reception of a frame the receiver first compares the frame’s type to all

configured filters. Extended frames are not compared to standard filters, or vice versa. If

a filter with a matching length is found, the CAN receiver will first mask the bits in the filter

before comparing the filter against the incoming frame.

Masks, like filters, contain the same number of bits as the incoming frame’s UID.

Masks allow an application designer to selectively enable and disable groups of bits

within the filter so that only messages that lie within a certain UID range are received.

Filters must be paired with masks; how this is done depends on the implementation of the

CAN hardware. [2]

A filter can be disabled entirely by clearing all bits in the mask associated with

that filter. The TTCAN design example in Chapter 3 quantifies CAN bus performance

from the perspective of the bus, thus considerations for filter and masks are not included

in the TTCAN design example.

9

Figure 2-2 A filtered messaged is received

Figure 2-3 A filtered message is rejected

10

Stuff Bits

Information transmitted on a CAN bus is represented by a non-return to zero

(NRZ) differential voltage signal. CAN receivers are responsible for maintaining a

synchronized bus clock. Since there is no dedicated clock signal, the bus clock must be

based on the rising edges of dominant bits. If a long string of recessive or dominant bits

are received, a receiver’s clock may drift out of time to the point where it becomes

desynchronized with the bus. This problem is solved with stuff bits, special clock

synchronization bits that are automatically inserted into CAN frames by the CAN media

access control hardware during transmission. [2]

Figure 2-4 Generalized form of NRZ bus resynchronization

On a CAN bus, stuff bits are inserted following 5 recessive or 5 dominant bits.

Stuff bits can be inserted at any time to ensure accurate clocking of the bus, except

within the interframe space. CAN transmitters automatically insert stuff bits and CAN

receivers automatically remove stuff bits. If more than 5 of the same type of bit are

received in succession, CAN receivers will forcibly generate a bus error, interrupting

transmission and forcing the transmitter to try again. [2]

11

Stuff bits require special consideration for CAN buses with tight timing

requirements. Standard frames have a nominal maximum length of 108 bits, but this

length can be as much as 130 bits if the pattern of bits within the frame causes a

transmitter to generate the maximum number of stuff bits. Extended frames have a

nominal maximum length of 128 bits, but with stuff bits, this length can be as high as 154

bits.

CAN Bus Performance Considerations

For periodic CAN frames performance can be parameterized by measuring the

throughput, latency, and standard deviation of the frequency of transmission. One-shot

frame transmission performance can be measured by examining the latency between

transmission and reception.

CAN bus performance is dependent upon:

 Length of the physical bus

 Time quanta per bit

 Bus baud rate

 Contents of the frames (which may generate stuff bits)

When designing a new CAN bus, a system designer should first consider the length

of the physical bus. Signal propagation through the CAN bus is dependent upon the

speed of information in the conductor medium (usually near c = 3.0 x 10
8
 m/s). The

designer must also have some idea of the tolerances between different CAN node clock

sources (and thus baud rate generators). Both of these bus parameters affect the value

of the bus bit timing parameters.

12

Figure 2-5 CAN bus time quanta parameters

Each bit on a CAN bus is made up of smaller components called time quanta. The

CAN bus specification allows for anywhere from 9 to 25 time quanta per bit. Time quanta

are associated with two general design rules: [1]

 Compensate for bus length by increasing the size of the propagation segment.

Longer buses require more propagation time.

 Compensate for differences in local clock speeds by adjusting the sizes of the

phase segments to place the sample point. A larger difference in clock rate

requires larger phase segments.

The sample point is the position within each bit at which a CAN receiver will sample

the bus to determine its state.

Once the bit timing parameters are determined, the bus baud rate can be set. The

baud rate is also dependent on the physical length of the bus and the tolerances between

different CAN node clock sources. A detailed explanation of how these parameters and

characteristics interact is outside the scope of this document; however some sample

calculations are presented in the TTCAN system design example in a later section.

Performance associated with individual CAN frames is dependent upon:

 The frame’s intrinsic priority

13

 The size of the frame

 The periodicity of the frame

 Stuff bits within the frame

In general, frames with 0 data bytes, low periodicity, and high priority (low UID value)

tend to be successfully received much more often than frames with a relatively large

amount of data, high periodicity, or low priority (high UID value). [2]

14

Chapter 3

Time-Triggered CAN Network Traffic Management

A system designer must also decide whether to use any traffic management

scheme on their CAN bus. According to the CAN2.0B specification the maximum

allowable CAN bus speed is 1Mbit/sec. [2] Assuming the smallest possible frame size

(44 bits + 3 interframe space bits), the highest achievable rate of transmission for a

1Mbit/sec bus is 21276.6 frames per second, disregarding stuff bits that may increase the

size of each frame. On a bus with many nodes that transmit in a free-for-all (FFA)

manner, the effective message rate may be much lower due to collisions.

Time-triggered CAN (TTCAN) is a form of time-based network traffic

management in which each CAN transmitter is given a predetermined amount of time for

transmission on the bus. This system guarantees that every transmitter will eventually be

allowed to transmit, and that any active transmitter will not be interrupted by another

transmitter. Each node keeps track of time with its own local transmission timer, and

uses this timer to determine when to wait for an open transmission window or when to

transmit.

TTCAN buses require at least one bus synchronization node. This node

periodically sends a “sync” message which forces all other transmitters on the bus to

resynchronize their local transmission clocks. Due to differences in clock source speeds,

these local transmission clocks will eventually drift out of sync to a point where

transmitters begin interrupting each other, generating bus collisions.

Designing a TTCAN system requires a system designer to understand basic

CAN bus principles and also to investigate the timing tolerances and capabilities of their

own CAN bus based system.

15

TTCAN Design Considerations

A system designer must first determine the maximum expected width of a CAN

frame that will be used in their TTCAN system. For systems that use many differently

formatted CAN frames, this is done easily by assuming the maximum theoretical width of

a CAN frame (130 bits for standard frames, 154 bits for extended frames).

The maximum width of a CAN frame is then used to calculate the message

transmission time, which is dependent upon baud rate. This is equal to the width of the

message transmission window and forms the basis of the TTCAN schedule, which all

nodes on the CAN bus must follow in order to transmit without interruption.

The message transmission window must be widened to compensate for

differences in local clock sources. See the figure below for a graphical explanation. The

amount of widening depends on the number of transmissions that take place between

synchronization frames.

Finally, each transmission cycle must be padded to account for the node with the

slowest transmission timer. This ensures that the slowest node has time to finish

transmission before the synchronization message is transmitted again.

16

Figure 3-1 Desynchronization due to differences in the clock rates

Figure 3-1 shows the effects of desynchronization on three nodes. The master

node (Node A) is responsible for synchronizing the transmission schedule, so its clock is

used as a reference. Node B has a timer clock source that runs 6.25% faster than that

of Node A, so its transmission windows start slightly early compared to Node A. Node C

has a timer clock source that runs 6.25% slower than that of Node A, so its transmission

windows start slightly later compared to Node A. As the transmission cycle progresses,

the transmission windows become more and more desynchronized. Eventually

transmission by one node is interrupted by that of another node and hardware arbitration

must take over to ensure that transmission succeeds. In this case, transmission does not

stop, but the efficiency gained by using a TTCAN transmission scheme is nullified.

17

TTCAN Design Method

1. Choose Lbit, the maximum expected length of a CAN frame on the bus (in bits). This

is dependent on whether the bus will use standard or extended frames. If the bus

uses standard and extended frames together, use the maximum extended frame

length. The absolute theoretical maximum possible frame lengths (accounting for the

maximum possible number of stuff bits) for the two different frames types are given

below.

Standard IDs: 𝐿𝑏𝑖𝑡 = 130 𝑏𝑖𝑡𝑠

Extended IDs: 𝐿𝑏𝑖𝑡 = 154 𝑏𝑖𝑡𝑠

2. Choose TQ, the number of time quanta per bit. This number can be found by adding

the length of the bit propagation segment, phase 1 segment, phase 2 segment, and

sync segment.

3. Choose Fbaud, the bus baud rate in bits per second.

4. Calculate the bus rate in terms of time quanta per second (FTQ) using Fbaud and TQ.

𝐹𝑇𝑄 = 𝐹𝑏𝑎𝑢𝑑 ∙ 𝑇𝑄

5. Calculate the bus rate in terms of frames per second (Fframe). The additional 3 bits in

the denominator represent the 3 interfame space bits that must be transmitted on the

bus before the next frame can begin.

𝐹𝑓𝑟𝑎𝑚𝑒 =
𝐹𝑇𝑄

𝑇𝑄 ∙ (𝐿𝑏𝑖𝑡 + 3)

6. Calculate the number of seconds per frame (tframe).

𝑡𝑓𝑟𝑎𝑚𝑒 = 𝐹𝑓𝑟𝑎𝑚𝑒
−1

18

7. Measure the oscillator speed difference between the bus master node and all bus

slave nodes. If more than one master is being used, this process must be repeated

for each master node. Oscillator speed may be directly measured with an edge

counter attached to the clock source. Use this information to find Δfmax and Δfmin, the

maximum and minimum ratio between some slave node oscillator and the bus master

oscillator.

Figure 3-2 An edge counter in action

8. Calculate the frame overlap time, tol.

𝑡𝑜𝑙 = (∆𝑓𝑚𝑎𝑥 − ∆𝑓𝑚𝑖𝑛) ∙ 𝑡𝑓𝑟𝑎𝑚𝑒

19

9. Choose the number of transmission windows per cycle, Nwindows.

10. Calculate the total cycle padding time, tpad.

𝑡𝑝𝑎𝑑 = 𝑡𝑜𝑙 ∙ 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠

11. Calculate the length of each transmission window, twindow.

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑡𝑓𝑟𝑎𝑚𝑒 + 𝑡𝑝𝑎𝑑

12. Calculate the length of each transmission cycle, tcycle.

𝑡𝑐𝑦𝑐𝑙𝑒 = 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 ∙ 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠

13. Calculate the bus master resynchronization time, tresync.

𝑡𝑟𝑒𝑠𝑦𝑛𝑐 = 𝑡𝑐𝑦𝑐𝑙𝑒 (
1

1 + ∆𝑓𝑚𝑖𝑛

− 1)

14. Calculate the maximum deterministic frame transmission rate Fcycle, which assumes

transmission takes place once per cycle.

𝐹𝑐𝑦𝑐𝑙𝑒 = (𝑁 ∙ 𝑡𝑓𝑟𝑎𝑚𝑒 + 𝑡𝑟𝑒𝑠𝑦𝑛𝑐)
−1

15. Calculate the data throughput rate for each message, Bthroughput, in bytes / sec. This

value is dependent on the number of bytes that are transmitted per frame, Nbytes.

With byte stealing Nbytes can be any value between 0 and 9 bytes for standard length

ID frames, or any value between 0 and 11 bytes for extended length ID frames..

𝐵𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐹𝑐𝑦𝑐𝑙𝑒 ∙ 𝑁𝑏𝑦𝑡𝑒𝑠

If Fcycle is equal to or higher than the minimum required sample rate, and

Bthroughput is equal to or higher than the minimum required throughput rate, the design

20

process is complete. The application designer may now create the TTCAN schedule

such that each unique message is transmitted once per cycle at most.

If a higher sample rate or data throughput rate is required, proceed to the extra

steps in the next section.

21

Designing for Multi-Cycle Transmission

Frames that are transmitted more than once per cycle must have their

transmission windows distributed such that their effective periodicity has minimum

variability. The figures below show how a message may be distributed within one

transmission cycle to minimize variability and also to increase transmission rate by some

integer factor Nmessage. This integer factor is also called the transmission multiplier.

These figures also show the minimum and maximum time between message

transmission is affected by the amount of resynchronization time (represented in blue) at

the end of a cycle.

Figure 3-3 Determining minimum Δtmsg

Figure 3-4 Determining maximum Δtmsg

Frequency of transmission and data throughput can be calculated using the

procedure outlined below.

22

1. Calculate Fmin, Fmax, and Favg, which are the average, minimum, and maximum

message transmission rate, respectively. Δtmsg represents the amount of time

between message windows that transmit the same message.

𝐹𝑚𝑖𝑛 = 𝑚𝑎𝑥(∆𝑡𝑚𝑠𝑔)
−1

𝐹𝑚𝑎𝑥 = 𝑚𝑖𝑛(∆𝑡𝑚𝑠𝑔)
−1

𝐹𝑎𝑣𝑔 =
𝐹𝑚𝑎𝑥 + 𝐹𝑚𝑖𝑛

2

2. Calculate Bmin, Bmax, and Bavg, which are the average, minimum, and maximum

effective data transmission rates in bytes / sec, respectively. These values are

dependent on the number of bytes that are transmitted per frame, Nbytes. If using

standard IDs, Nbytes can be any value between 0 and 9 bytes. If using extended IDs

with byte stealing, Nbytes can be any value between 0 and 11 bytes.

𝐵𝑚𝑖𝑛 = 𝑁𝑏𝑦𝑡𝑒𝑠 ∙ 𝐹𝑚𝑖𝑛

𝐵𝑚𝑎𝑥 = 𝑁𝑏𝑦𝑡𝑒𝑠 ∙ 𝐹𝑚𝑎𝑥

𝐵𝑎𝑣𝑔 = 𝑁𝑏𝑦𝑡𝑒𝑠 ∙ 𝐹𝑎𝑣𝑔

If a higher sample rate or data throughput rate is required, increase Nmessage. If

Nmessage cannot be increased, repeat the design process with a higher bus speed.

23

TTCAN System Design Example

This section contains a design example for a 500 kbps CAN2.0A bus. The resulting

deterministic performance data is compared to the performance of a FFACAN bus

running at the same speed in a later chapter.

1. Since all frames use standard length IDs, the maximum frame size (accounting for bit

stuffing) is Lbit = 130 bits.

2. The bus is populated with nodes that use the dsPIC33EP256GP502 microcontroller

(MCU). This MCU has a phase-locked-loop (PLL) clock source that is configured to

run at 40 Mhz. To ensure that the bit sample point is nearest to the 87.5% position

(as recommended by J1939 and CANopen) the number of time quanta per bit is set

to 20 (TQ = 20). (Synchronization TQ = 1, propagation TQ = 8, phase 1 TQ = 8,

phase 2 TQ = 3.)

3. The bus baud rate is 500,000 bits per second.

4. Calculate the bus rate in terms of time quanta per second:

𝐹𝑇𝑄 = 𝐹𝑏𝑎𝑢𝑑 ∙ 𝑇𝑄

𝐹𝑇𝑄 = (500000)(20)

𝐹𝑇𝑄 = 1𝑥107 𝑇𝑄/𝑠

5. Calculate the bus rate in terms of frames per second.

𝐹𝑓𝑟𝑎𝑚𝑒 =
𝐹𝑇𝑄

𝑇𝑄 ∙ (𝐿𝑏𝑖𝑡 + 3)

24

𝐹𝑓𝑟𝑎𝑚𝑒 =
1𝑥107 𝑇𝑄/𝑆

(20
𝑇𝑄
𝑏𝑖𝑡

) (130
𝑏𝑖𝑡𝑠

𝑓𝑟𝑎𝑚𝑒
+ 3

𝑏𝑖𝑡𝑠
𝑓𝑟𝑎𝑚𝑒

)

𝐹𝑓𝑟𝑎𝑚𝑒 = 3759.4 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠

6. Calculate the number of seconds per frame.

𝑡𝑓𝑟𝑎𝑚𝑒 = 𝐹𝑓𝑟𝑎𝑚𝑒
−1

𝑡𝑓𝑟𝑎𝑚𝑒 = (3759.4 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠)−1

𝑡𝑓𝑟𝑎𝑚𝑒 = 2.66 𝑥 10−4 𝑠/𝑓𝑟𝑎𝑚𝑒

7. Measure the oscillator speed difference between the bus master node and all bus

slave nodes. Results for this design example are shown in Table 3-1.

Table 3-1 Oscillator Speed Differences

Node Name Frequency (Hz) Ratio to Master Diff from Master

GP0 (Master) 39979887 1.0000000 0.0000000

GP1 39959000 0.9994776 -0.0005224

GP2 40030806 1.0012736 +0.0012736

GP3 39975919 0.9999008 -0.0000992

GP4 39992614 1.0003183 +0.0003183

GP5 39972316 0.9998106 -0.0001894

GP6 40024292 1.0011107 +0.0011107

MC0 40018974 1.0009777 +0.0009777

MC1 39982050 1.0000541 +0.0000541

MC2 39960057 0.9995040 -0.0004960

The values of Δfmax (0.0012736) and Δfmin (-0.0005224) are highlighted in the table.

25

8. Calculate the overlap time, tol.

𝑡𝑜𝑙 = (∆𝑓𝑚𝑎𝑥 − ∆𝑓𝑚𝑖𝑛) ∙ 𝑡𝑓𝑟𝑎𝑚𝑒

𝑡𝑜𝑙 = (0.0012736 − (−0.0005224))(2.66 𝑥 10−4
𝑠

𝑓𝑟𝑎𝑚𝑒
)

𝑡𝑜𝑙 = 477.736𝑥10−9 𝑠

9. For this TTCAN design example, the number of windows (Nwindows) is 10.

10. Calculate the total cycle padding time, tpad.

𝑡𝑝𝑎𝑑 = 𝑡𝑜𝑙 ∙ 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑡𝑝𝑎𝑑 = (477.736 𝑥 10−9 𝑠) ∙ 10

𝑡𝑝𝑎𝑑 = (4.77736 𝑥 10−6 𝑠)

26

11. Calculate the length of each transmission window, twindow.

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑡𝑓𝑟𝑎𝑚𝑒 + 𝑡𝑝𝑎𝑑

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = (2.66 𝑥 10−4 𝑠) + (4.77736 𝑥 10−6𝑠)

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 270.777 𝑥 10−6 𝑠

12. Calculate the length of each transmission cycle, tcycle.

𝑡𝑐𝑦𝑐𝑙𝑒 = 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 ∙ 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑡𝑐𝑦𝑐𝑙𝑒 = (270.777 𝑥 10−6 𝑠)(10)

𝑡𝑐𝑦𝑐𝑙𝑒 = 2.70777 𝑥 10−3𝑠

13. Calculate the bus master resynchronization time, tresync.

𝑡𝑟𝑒𝑠𝑦𝑛𝑐 = 𝑡𝑐𝑦𝑐𝑙𝑒 (
1

1 + ∆𝑓𝑚𝑖𝑛

− 1)

𝑡𝑟𝑒𝑠𝑦𝑛𝑐 = (2.70777 𝑥 10−3 𝑠) (
1

1 + (−0.0005224)
− 1)

𝑡𝑟𝑒𝑠𝑦𝑛𝑐 = 1.41528 𝑥 10−6𝑠

27

14. Calculate the deterministic maximum frame transmission rate, Fcycle.

𝐹𝑐𝑦𝑐𝑙𝑒 = (𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ∙ 𝑡𝑓𝑟𝑎𝑚𝑒 + 𝑡𝑟𝑒𝑠𝑦𝑛𝑐)
−1

𝐹𝑐𝑦𝑐𝑙𝑒 = [(10)(2.66 𝑥 10−4 𝑠) + (1.41528 𝑥 10−6 𝑠)]−1

𝐹𝑐𝑦𝑐𝑙𝑒 = 375.74 𝐻𝑧

15. Calculate the data throughput rate, Bthroughput. This example design assumes that

each frame transmits 8 bytes, so Nbytes = 8.

𝐵𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐹𝑐𝑦𝑐𝑙𝑒 ∙ 𝑁𝑏𝑦𝑡𝑒𝑠

𝐵𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (375.74 𝐻𝑧)(8 𝑏𝑦𝑡𝑒𝑠)

𝐵𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 3005.92 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑

At this point, two design characteristics are known: the maximum sample rate for

one message is 375.74 Hz, and the maximum possible throughput for one message is

3005.92 bytes per second.

28

Designing for Multi-Cycle Transmission (2x)

The figure below shows how frames that are transmitted twice per cycle may be

arranged to minimize the variability in transmission and data rate.

Figure 3-5 Determining minimum Δtmsg (2x transmission)

Figure 3-6 Determining maximum Δtmsg (2x transmission)

1. Calculate Favg, Fmin, and Fmax for this transmission multiplier.

Δtmsg is found by measuring the amount of time between two message windows that

transmit the same message. For a 2x transmission multiplier, the messages should be

uniformly distributed such that they are 4 messages apart to minimize variability (see

figure above). The total time elapsed between the first message and the second

message in this figure is:

∆𝑡𝑚𝑠𝑔 = (𝑁𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 1) ∙ 𝑡𝑤𝑖𝑛𝑑𝑜𝑤

29

∆𝑡𝑚𝑠𝑔 = (4 + 1)(270.777 𝑥 10−6 𝑠)

∆𝑡𝑚𝑠𝑔 = 1.35389 𝑥 10−3 𝑠

First, find Fmin (accounting for resync time):

𝐹𝑚𝑖𝑛 = 𝑚𝑎𝑥(∆𝑡𝑚𝑠𝑔)
−1

𝐹𝑚𝑖𝑛 = ((𝑁𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 1) ∙ 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 + 𝑡𝑟𝑒𝑠𝑦𝑛𝑐)
−1

𝐹𝑚𝑖𝑛 = (1.35389 𝑥 10−3𝑠 + 1.41528 𝑥 10−6𝑠)−1

𝐹𝑚𝑖𝑛 = 737.841 𝐻𝑧

Then find Fmax:

𝐹𝑚𝑎𝑥 = 𝑚𝑖𝑛(∆𝑡𝑚𝑠𝑔)
−1

𝐹𝑚𝑎𝑥 = ((𝑁𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 1) ∙ 𝑡𝑤𝑖𝑛𝑑𝑜𝑤)
−1

𝐹𝑚𝑎𝑥 = (1.35389 𝑥 10−3𝑠)−1

𝐹𝑚𝑎𝑥 = 738.612 𝐻𝑧

Then find Favg:

𝐹𝑎𝑣𝑔 =
𝐹𝑚𝑎𝑥 + 𝐹𝑚𝑖𝑛

2

𝐹𝑎𝑣𝑔 =
738.612 𝐻𝑧 + 737.841 𝐻𝑧

2

𝐹𝑎𝑣𝑔 = 738.227 𝐻𝑧

30

2. Calculate Bmin, Bmax, and Bavg, which are the average, minimum, and maximum

effective data transmission rates in bytes / sec, respectively. Recall from above that

Nbytes = 8.

First, calculate Bmin:

𝐵𝑚𝑖𝑛 = 𝑁𝑏𝑦𝑡𝑒𝑠 ∙ 𝐹𝑚𝑖𝑛

𝐵𝑚𝑖𝑛 = (8 𝑏𝑦𝑡𝑒𝑠)(737.841 𝐻𝑧)

𝐵𝑚𝑖𝑛 = 5902.73 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐

Then find Bmax:

𝐵𝑚𝑎𝑥 = 𝑁𝑏𝑦𝑡𝑒𝑠 ∙ 𝐹𝑚𝑎𝑥

𝐵𝑚𝑎𝑥 = (8 𝑏𝑦𝑡𝑒𝑠)(738.612 𝐻𝑧)

𝐵𝑚𝑎𝑥 = 5908.90 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐

Then find Bavg:

𝐵𝑎𝑣𝑔 = 𝑁𝑏𝑦𝑡𝑒𝑠 ∙ 𝐹𝑎𝑣𝑔

𝐵𝑎𝑣𝑔 = (8 𝑏𝑦𝑡𝑒𝑠)(738.227 𝐻𝑧)

𝐵𝑎𝑣𝑔 = 5905.82 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐

The application designer may now decide if these message and data

transmission rates are acceptable.

31

Designing for Multi-Cycle Transmission (5x)

Parameters for a 5x transmission multiplier scheme are summarized in Table 3-2

below.

Figure 3-7 Determining minimum Δtmsg (5x transmission)

Figure 3-8 Determining maximum Δtmsg (5x transmission)

Table 3-2 Parameters for a 5x Transmission Multiplier Scheme

Parameter Unit Value

min(Δtmsg) s 541.554 x 10
-6

max(Δtmsg) s 542.969 x 10
-6

Fmin Hz 1841.73

Fmax Hz 1846.54

Favg Hz 1844.14

Bmin bytes /sec 14733.8

Bmax bytes /sec 14772.3

Bavg bytes /sec 14753.1

32

Designing for Multi-Cycle Transmission (8x)

Parameters for a 8x transmission multiplier scheme are summarized in Table 3-3

below. Since Nwindows is not a least common multiple of the transmission multiplier, the

transmission and data rate variability is greatly increased relative to transmission

multipliers that divide evenly into Nwindows.

Figure 3-9 Determining minimum Δtmsg (8x transmission)

Figure 3-10 Determining maximum Δtmsg (8x transmission)

33

Table 3-3 Parameters for a 8x Transmission Multiplier Scheme

Parameter Unit Value

min(Δtmsg) s 270.777 x 10
-6

max(Δtmsg) s 542.969 x 10
-6

Fmin Hz 1841.72

Fmax Hz 3693.08

Favg Hz 2767.40

Bmin bytes /sec 14733.76

Bmax bytes /sec 29544.64

Bavg bytes /sec 22139.20

34

Designing for Multi-Cycle Transmission (9x)

Since Nwindows = 10, the maximum number of times a message may be

transmitted per cycle is 9, accounting for the window taken up by the synchronization

message.

Parameters for a 9x transmission multiplier scheme are summarized in Table 3-4

below. Note the high variability between the minimum and maximum transmission and

data rates.

Figure 3-11 Determining minimum Δtmsg (9x transmission)

Figure 3-12 Determining maximum Δtmsg (9x transmission)

35

Table 3-4 Parameters for an 9x Transmission Multiplier Scheme

Parameter Unit Value

min(Δtmsg) s 270.777 x 10
-6

max(Δtmsg) s 542.969 x 10
-6

Fmin Hz 1841.72

Fmax Hz 3693.08

Favg Hz 2767.40

Bmin bytes/sec 14733.76

Bmax bytes /sec 29544.60

Bavg bytes /sec 22139.20

36

Summary of Results

Frame and data transmission rates for all transmission multipliers in the design example

are given below in Tables 3-5 and 3-6.

Table 3-5 Min/Max/Avg Frame Transmission Rates for all Transmission Multipliers

Transmission
Multiplier

Minimum F
(Hz)

Maximum F
(Hz)

Average F
(Hz)

Variability
(Hz)

1 375.74 375.74 375.74 0

2 737.84 738.61 738.23 0.77

5 1841.73 1846.54 1844.14 4.81

8 1841.72 3693.08 2767.40 1851.36

9 1841.72 3693.08 2767.40 1851.36

Table 3-6 Min/Max/Avg Data Transmission Rates for all Transmission Multipliers

Transmission
Multipler

Minimum F
(bytes/sec)

Maximum F
(bytes/sec)

Average F
(bytes/sec)

Variability
(bytes/sec)

1 3005.92 3005.92 3005.92 0

2 5902.72 5908.88 5905.84 6.16

5 14733.84 14772.32 14753.12 38.48

8 14733.76 29544.64 22139.2 14810.88

9 14733.76 29544.64 22139.2 14810.88

37

Chapter 4

Comparison of TTCAN to FFACAN

This section contains a comparison between a TTCAN design and an FFACAN

design with similar bus characteristics. Both buses run at 500 kbits / sec and use 20 TQ

per bit. (Sync TQ = 1, Propagation TQ = 8, Phase 1 TQ = 8, Phase 2 TQ = 3.) Every frame

on the bus uses a standard length ID field and contains 8 data bytes. Transmission for

each unique frame was attempted at their nominal TTCAN rates.

The data for this comparison was gathered from a CAN bus with 11 separate

nodes with designations GP0 through GP6 and MC0 through MC3. Node GP0 was

configured to transmit a frame with identifier 0x50F with some periodicity. Node GP1 was

configured to receive frames transmitted from GP0. Upon successful reception, node

GP1 momentarily set one of its GPIO pins to a digital logic “high” level so that an

oscilloscope could measure the actual message periodicity and standard deviation of the

actual periodicity. Actual transmission periodicity is dependent upon the traffic conditions

on the bus. To ensure that hardware arbitration did not artificially skew the results, GP0

transmitted a message with a lower priority (higher value in the ID field) than any other

node on the bus.

The TTCAN design example in Chapter 3 uses one window for the

synchronization message out of 10 total windows (Nwindows = 10). The synchronization

message does not transmit any application specific data and thus contributes to

transmission overhead, which decreases the effective transmission and data rates. By

comparison, a FFACAN bus does not require any such non-application specific

synchronization, allowing more time on the bus for other nodes to transmit. To represent

38

this difference the FFACAN bus shown below uses 9 transmitters (as opposed to 10 for a

TTCAN bus).

Table 4-1 summarizes the role of each node on this bus. GP1 is a dedicated

receiver node and does not transmit any messages. This is done so that node GP1 does

not spend any time attempting to transmit messages which could potentially affect

interrupt service latency.

Table 4-1 Node Descriptions for FFACAN Bus

Node Name Description Transmit ID Receive ID

GP0 Transmitter 0x50F -

GP1 Receiver - 0x50F

GP2 Traffic Generator 0x502 -

GP3 Traffic Generator 0x503 -

GP4 Traffic Generator 0x504 -

GP5 Traffic Generator 0x505 -

GP6 Traffic Generator 0x506 -

MC0 Traffic Generator 0x507 -

MC1 Traffic Generator 0x508 -

MC2 Traffic Generator 0x509 -

FFACAN transmission periodicity values are based on the values found in the

TTCAN design example that can be found in Chapter 3. For convenience, they are

summarized here:

Table 4-2 TTCAN Transmission & Data Rates

Transmission Multiplier Transmission Rate (Hz) Data Rate (bytes / sec)

1 375.740 3005.92

2 738.227 5905.82

5 1844.14 14753.12

8 2767.40 22139.20

9 2767.40 22139.20

39

Baseline Values

Before running any tests, nodes GP0 and GP1 were isolated on an empty bus.

Figure 4-1 shows the bus configuration for this test. The transmitter is highlighted in

green, the receiver is highlighted in orange, and the deactivated nodes are highlighted in

grey.

Figure 4-1 Bus configuration for the baseline test

Messages were transmitted from GP0 at various rates. Instrumentation was

attached to GP1 to measure the rate at which the messages were received. The results

(summarized in Table 4-3) show that neither microcontroller CPU was overloaded by this

task, even at the highest transmission rate.

The actual transmission rates are slightly higher than the requested transmission

rates due to differences in the measured and actual oscillator speeds on the master

node.

Table 4-3 Requested vs Actual Transmission Rates, Baseline

Transmission

Multiplier

Requested

Transmission Rate

(Hz)

Actual Reception

Rate (Hz)

Standard

Deviation

(Hz)

1 375.740 375.6 2.682

2 738.227 727.1 26.53

5 1844.14 1674.0 145.3

8 2767.40 2644.0 22.89

40

Comparing the 1x Transmission Multiplier

This test simulates one transmission event per TTCAN cycle per node

(375.740Hz on a FFACAN bus).

Figure 4-2 Bus configuration for the 1x transmission multiplier test

Table 4-4 1x Transmission Multiplier Test Results

Transmission Multiplier 1

Requested Transmission Rate (Hz) 375.740

Expected Data Rate (bytes / sec) 3005.92

Actual Reception Rate (Hz) 375.6

Actual Data Rate (bytes / sec) 3008.066

Transmission Standard Deviation (Hz) 2.682

41

Comparing the 2x Transmission Multiplier

This test simulates one transmission event per TTCAN cycle per node (375.740

Hz on a FFACAN bus) for all nodes except node GP0, which transmits twice per TTCAN

cycle (738.227 Hz on a FFACAN bus).

Figure 4-3 Bus configuration for the 2x transmission multiplier test

Table 4-5 Transmission Multiplier Test Results

Transmission Multiplier 2

Requested Transmission Rate (Hz) 738.227

Expected Data Rate (bytes / sec) 5905.82

Actual Reception Rate (Hz) 727.1

Actual Data Rate (bytes / sec) 5394.824

Transmission Standard Deviation (Hz) 26.53

42

Comparing the 5x Transmission Multiplier

This test simulates one transmission event per TTCAN cycle per node (375.740

Hz on a FFACAN bus) for all nodes except node GP0, which transmits 5 times per

TTCAN cycle (1844.14 Hz on a FFACAN bus).

Figure 4-4 Bus configuration for the 5x transmission multiplier test

Table 4-6 5x Transmission Multiplier Test Results

Transmission Multiplier 5

Requested Transmission Rate (Hz) 1844.14

Expected Data Rate (bytes / sec) 14753.12

Actual Reception Rate (Hz) 1674.0

Actual Data Rate (bytes / sec) 13455.032

Transmission Standard Deviation (Hz) 145.3

43

Comparing the 8x Transmission Multiplier

This test simulates one transmission event per TTCAN cycle per node (375.740

Hz on a FFACAN bus) for all nodes except node GP0, which transmits 8 times per

TTCAN cycle (2767.40 Hz on a FFACAN bus).

Figure 4-5 Bus configuration for the 8x transmission multiplier test

Table 4-7 8x Transmission Multiplier Test Results

Transmission Multiplier 8

Requested Transmission Rate (Hz) 2767.40

Expected Data Rate (bytes / sec) 22139.20

Actual Reception Rate (Hz) 2644.0

Actual Data Rate (bytes / sec) 21173.361

Transmission Standard Deviation (Hz) 22.89

44

Comparing the 9x Transmission Multiplier

The test simulates nine transmission events per TTCAN cycle (2830.54Hz on a

FFACAN bus) for node GP0. All other transmitters are disabled.

Figure 4-6 Bus configuration for the 9x transmission multiplier test

Table 4-8 9x Transmission Multiplier Test Results

Transmission Multiplier 9

Requested Transmission Rate (Hz) 2767.40

Expected Data Rate (bytes / sec) 22139.20

Actual Reception Rate (Hz) 2770.0

Actual Data Rate (bytes / sec) 22157.369

Transmission Standard Deviation (Hz) 0.1326

45

Summary of Results

Table 4-9 Summary of Requested vs Actual Transmission Rates

Transmission
Multiplier

Requested
Transmission Rate

(Hz)

Actual
Transmission Rate

(Hz)

Standard Deviation
(Hz)

1 374.74 374.60 2.682

2 738.23 727.10 26.53

5 1844.14 1674.0 145.3

8 2767.40 2644.0 22.89

9 2767.40 2770.0 0.1326

46

Chapter 5

CPU Usage Calculation

Microcontrollers and microprocessors spend all of their running time executing

something, be it an interrupt service routine, an operating system task, or a simple main()

loop with no context switching. However constantly executing some block of code does

not mean a system is doing something useful. Systems may spend their time doing

nothing (sometimes referred to as spinning or idling) while waiting for an interrupt to

occur or for an OS task to wake up. Some systems take advantage of this time by

disabling portions of their hardware to save power until the device or module is needed

again.

Generally, systems that spend little or none of their time idling are overloaded. A

system designer may find themselves alarmed to see that some or none of their tasks or

interrupts are executing at the expected speed and then come to the same realization.

The question then becomes “What is my system doing that is causing the overload?”

followed by “How do I figure that out?”

CPU usage calculations are not completely accurate since they are typically

done by the same system that is running the software being analyzed. (CPU usage

calculations use CPU time, thus skewing the results.) This document presents two

methods through which CPU usage may be determined with minimal interference to

normal system execution.

The implementation and accuracy of CPU usage calculations depend on the system

architecture. This document presents CPU measurement techniques for four possible

architectures:

 Nested interrupts disabled, no operating system

47

 Nested interrupts enabled, no operating system

 Nested interrupts disabled, with an operating system

 Nested interrupts enabled, with an operating system

The analysis for each of these architectures does not make any special consideration

for the operating system outside of assuming that the scheduler and context switching

routines are given the highest interrupt priority. Thus, architecture classification may be

reduced to:

 Systems without nested interrupts

 Systems with nested interrupts

Non-Nested vs Nested Hardware Interrupts

Many modern microcontrollers include some form of an interrupt controller for

managing hardware interrupts. Interrupts are serviced by interrupt service routines

(ISRs), special functions that are invoked by the CPU after an interrupt is asserted. The

interrupt controller must also decide which interrupt to service when two or more

interrupts are asserted. This is usually determined by examining an interrupt’s priority,

which is often user-configurable; if two interrupts have the same user-configured priority,

they are executed in the order of their intrinsic priority, which is distinct from an

interrupt’s normal execution priority. How the intrinsic priority affects order of execution is

dependent on the microcontroller’s hardware architecture. For example, the Texas

Instruments TM4C1294NCPDT microcontroller (see figure 5-1) uses the interrupt vector

number as the intrinsic priority. Higher vector numbers are executed last. [3]

48

Figure 5-1 Interrupt vectors for a TI TM4C1294NCPDT microcontroller [3]

Some microcontroller architectures have support for interrupt nesting, an

execution scheme in which interrupts with lower priority may be interrupted by interrupts

with a higher priority. This requires special consideration for application designers,

especially when adding instrumentation for determining the amount of time the CPU

spends servicing an interrupt.

Figures showing the flow of execution for systems with and without nested

interrupt and shown in the sections below.

49

CPU Usage Calculation – Method 1

The first method assumes that the number of interrupts is equal to or less than

the number of available GPIO pins, plus one pin for a main loop (no operating system) or

idle task (with an operating system). This method is most accurate since it accounts for

the near-exact amount of time that an interrupt may spend executing, but also for time

used by aperiodic interrupts.

Figure 5-2 Non-nested interrupt instrumentation output

Figure 5-2 shows an example of some output from a microcontroller that has had

instrumentation applied to its interrupt service routines. The sections highlighted in green

(lighter) represent CPU time spent running the main loop, and the sections highlighted in

red (darker) represent CPU time spent processing an interrupt service routine. The flow

of this output is described below.

50

1. Initially, the microcontroller is running the main loop. No interrupts are active.

2. An interrupt is asserted and the CPU begins processing the interrupt service

routine.

3. The interrupt service routine completes execution. The CPU resumes

processing the main loop.

4. Another interrupt is asserted. While the associated interrupt service routine is

executing, two more interrupts are asserted. Since nested interrupt handling is

disabled, they must wait until the CPU core becomes available. They are then

processed in order according to their priority. In the meantime the main loop

stalls; the application designer must decide if a stall of this length is acceptable.

5. The last interrupt service routine finishes execution. The CPU resumes

processing the main loop.

6. Two more interrupts are asserted. As before, the CPU executes their interrupt

service routines in order according to their priorities.

7. The last interrupt service routine finishes execution. The CPU resumes

processing the main loop.

By analyzing the duty cycle of the waveforms generated by each pin, a system

designer can reliably determine the amount of CPU time spent executing an interrupt

service routine or the main loop and then decide whether the system is processing its

workload quickly enough.

51

CPU Usage Calculation – Method 2

For systems that do not support or do not use nested interrupts, the second

method can be implemented with one GPIO pin, but requires that a system designer

interpret the results after the fact and is also less accurate as it only measures the

average time spent by each interrupt, not accounting for aperiodicity. The second

method cannot be reliably implemented on systems that used nested interrupts.

Figure 5-3 Nested interrupt instrumentation output

Figure 5-3 shows an example of some output from a microcontroller that has had

instrumentation applied to its interrupt service routines, but with nesting enabled (as

opposed to figure 5-2 in the previous section). These waveforms require interpretation to

determine the actual amount of time the CPU uses to execute each interrupt service

routine. The flow of this output is described below.

52

1. Initially, the microcontroller is running the main loop. No interrupts are active.

2. An interrupt is asserted and the CPU begins processing the interrupt service

routine (ISR).

3. The ISR completes execution. The CPU resumes processing the main loop.

4. Another interrupt is asserted. In happenstance, the interrupt finishes processing

just as another interrupt is asserted. At this point, the CPU only has one active

interrupt.

5. Another higher priority interrupt is asserted, and the CPU suspends the lower

priority interrupt. At this point the CPU has two active interrupts.

6. An even higher priority interrupt interrupts the second interrupt, forcing the CPU

to nest even further. At this point the CPU has three active interrupts. Each

nested ISR is processed in a last-in, first-out manner. Note how the width of the

pulses associated with each interrupt could be misinterpreted as the total time

that the CPU spent processing an ISR.

7. The lowest priority interrupt finishes execution. The CPU resumes processing

the main loop.

8. An interrupt is asserted and the CPU begins processing the associated ISR.

9. A higher priority interrupt is asserted and nests inside the first. Again, the ISRs

are processed in a last-in, first-out manner.

10. The CPU finishes executing all ISRs and resumes processing the main loop.

On a system with nested interrupts supported and enabled, the width of a pulse

associated with each ISR may be misinterpreted as the total time that particular ISR

spent executing. Figure 5-4 shows how to properly calculate the amount of time each

ISR spends executing.

53

Figure 5-4 Nested interrupt instrumentation output with highlights

Figure 5-4 is a copy of Figure 5-3 shown above, but with actual CPU time

highlighted within each pulse. It is easy to see how the highest priority interrupt has the

shortest pulse width within a group of nested interrupts (see the interrupts between points

4 and 7).

54

CPU Usage Measurement Implementation Methodology

Method 1, for Non-Nested Interrupts

This method assumes that there are at least n + 1 GPIO pins available for a system with

n interrupts.

1. At the entry point of each interrupt service routine, add a routine that toggles the

interrupt’s corresponding GPIO pin to a digital logic “high” (1). At the exit point,

toggle the pin back to a digital logical “low” (0).

2. Add a routine that toggles a GPIO pin after an iteration of the main loop.

3. Monitor the state of each pin with an external device (such as an oscilloscope).

Use snapshots of this data to determine the CPU usage of each interrupt and the

speed of execution of the main loop.

Method 2, for Non-Nested Interrupts

This method assumes that there is only one GPIO pin available.

1. Instrument the first interrupt service routine as described in method 1 above.

2. Monitor the state of this pin with an external device over a period of time

sufficient to determine the interrupt’s average execution time.

3. Repeat steps 1 and 2 for all remaining interrupt service routines.

4. Instrument the main loop as described in method 1 above.

5. Monitor the state of this main loop pin and determine the speed of execution.

The system is overloaded if the main loop fails to execute at a sufficient speed, or if the

main loop never executes due to blocking by interrupts that must constantly be serviced.

55

Method 1, for Nested Interrupts

This method assumes that there are at least n + 1 GPIO pins available for a system

with n interrupts.

1. At the entry point of each interrupt service routine, add a routine that toggles the

interrupt’s corresponding GPIO pin to a digital logic “high” (1). At the exit point,

toggle the pin back to a digital logical “low” (0).

2. Add a routine that toggles a GPIO pin after an iteration of the main loop.

3. Monitor the state of each pin with an external device (such as an oscilloscope).

The state of the pins must be considered when calculating CPU usage:

 The length of isolated pulses (indicating non-nested interrupt execution) may be

used as-is for CPU usage calculations.

 Nested interrupts manifest as pulses that begin after another pulses has begun,

and end before another pulse ends. In this case, the execution time of each

interrupt is determined by subtracting the shortest execution time from the next

shortest execution time.

Method 2, for Nested Interrupts

This method cannot be implemented on systems that use nested interrupts, as

there is no way to differentiate between which interrupt toggled the instrumentation pin

high or low. Systems with nested interrupts must either temporarily disable interrupt

nesting, or use multiple GPIO pins.

56

CPU Usage Measurement Implementation Example

This section contains an example of each of the methods explained in the

previous section. An example system was created using a dsPIC33EP256GP502

microcontroller with a 40 MHz system clock. Pin states were monitored with a multi-

channel digital oscilloscope. Hardware timers were used to generate periodic interrupts.

The main loop ran at a rate of 200 kHz.

Parameters and Expected Results

Four separate hardware timers were used to periodically generate interrupts. The rate of

each timer is listed in the table below. Numbers in the “delay” column represent the

amount of time that the ISR is active, in microseconds. Timers were also assigned a

fixed interrupt service priority. The rates and delays for each timer interrupt are based on

prime numbers to ensure that the interrupts would eventually overlap and conflict with

each other, forcing the interrupt controller to execute the ISRs in order of priority.

Expected CPU time was calculated by dividing the “delay” by “period”. This table

suggests that the total CPU time spent servicing interrupts should be about 40.345%.

Table 5-1 Timer Interrupt Configuration

Timer Period
(μS)

Rate

(Hz)

Delay

(μS)

Priority CPU Time
(%)

2 2017 496.032 199 2 9.866

3 1013 987.167 101 3 9.970

4 233 4291.85 23 4 9.871

5 47 21276.6 5 5 10.638

57

Method 1, for Non-Nested Interrupts

Since the example system has four interrupts and a main loop, this method

requires 5 free GPIO pins on the microcontroller. With instrumentation in place, the

oscilloscope produced the waveform shown in Figure 5-5. The main loop toggle and

timer signals are shown in order from top to bottom (main loop at the top, timer 2 second

from top, and so on).

Figure 5-5 Oscilloscope Graphical Output

The oscilloscope’s built-in measurement functions were used to find the duty

cycle of each interrupt and the frequency of the main loop. These results are

summarized in Table 5-2. Note that the measured values are within 0.5% of the

expected values from Table 5-1, with the exception of main loop execution frequency.

58

Table 5-2 Oscilloscope Measurement Output (Multi-Pin, Non-Nested)

Name Measurement Value Std Deviation ΔExpected

Main Frequency 53.22 kHz 1.597 kHz -146.78 kHz

Timer 2 Duty Cycle 9.934% 0.111% 0.068%

Timer 3 Duty Cycle 10.01% 0.187% 0.04%

Timer 4 Duty Cycle 10.16% 0.124% 0.289%

Timer 5 Duty Cycle 10.32% 0.252% -0.318%

59

Method 2, for Non-Nested Interrupts

Method 2 requires only one GPIO pin, but also requires that the software

instrumentation be configured at least once per interrupt. The oscilloscope produced the

output shown in the figure 5-6 through 5-9. Note that the effects of the non-nested

interrupt configuration can be seen in Figures 5-8 and 5-9, where there is some

discontinuation in the periodicity of the signals since a higher priority ISR is executing.

Figure 5-6 Output from Timer 2 ISR (1.0 ms per division)

60

Figure 5-7 Output from Timer 3 ISR (1.0 ms per division)

Figure 5-8 Output from Timer 4 ISR (1.0 ms per division)

61

Figure 5-9 Output from Timer 5 ISR (100 μs per division)

Figure 5-10 Output from main loop (100 μs per division)

62

As with the example for Method 1 (non-nested interrupts), the oscilloscope’s

built-in measurement functions were used to find the duty cycle of each interrupt and the

frequency of the main loop. These results are summarized in Table 5-3. Note that the

measured values are within 0.5% of the expected values from Table 5-3.

Table 5-3 Oscilloscope Measurement Output (Single-Pin, Non-Nested)

Name Measurement Value Std Deviation ΔExpected

Main Frequency 55.69 kHz 4.449 kHz -144.31 kHz

Timer 2 Duty Cycle 9.927% 0.043% -0.061%

Timer 3 Duty Cycle 10.06% 0.068% 0.09%

Timer 4 Duty Cycle 10.17% 0.050% 0.299%

Timer 5 Duty Cycle 10.21% 1.007% -0.428%

63

Method 1, for Nested Interrupts

For this example the timer configurations were left unchanged, but the option for

interrupt nesting was enabled in the microcontroller’s interrupt controller. Recall that this

configuration requires interpretation of the oscilloscope’s output before calculating the

actual CPU usage percentages. Figure 5-11 shows how the output may appear

reasonable but is misleading. The main loop toggle and timer signals are shown in order

from top to bottom (main loop at the top, timer 2 second from top, and so on).

Figure 5-11 Oscilloscope Graphical Output (Incorrect)

Main loop stalls are easy to pick out by looking for the wide pulses in the

waveform that normally toggles at a high frequency. The width of the pulses generated

by timer 2’s ISR is increased since the ISRs for timers 3, 4, and 5 nest for servicing.

Table 5-4 contains the measurements taken by the oscilloscope.

64

Table 5-4 Oscilloscope Measurement Output (Incorrect, Nested)

Name Measurement Value Std Deviation ΔExpected

Main Frequency 51.08 kHz 1.834 kHz -146.78 kHz

Timer 2 Duty Cycle 15.28 3.157% 5.414

Timer 3 Duty Cycle 13.08 0.473% 3.110

Timer 4 Duty Cycle 11.53 0.160% 1.659

Timer 5 Duty Cycle 11.83 0.000% 1.192

Though these measurements are incorrect, the effect of enabling nested

interrupts can be seen by examining the standard deviation of the duty cycle for timer 5’s

ISR. Since this interrupt has the highest priority, a standard deviation of zero is expected

– timer 5’s interrupt cannot be interrupted by anything else running on the CPU core.

The waveforms in Figure 5-11 could be used to find the correct CPU usage

values by manually using the oscilloscope’s built-in pulse measuring functions, but this

process would be tedious and error-prone, especially for systems with many interrupt

signals. An oscilloscope with some basic math function capabilities can be configured to

automatically mask the pulses with each other so that the generated waveform shows the

correct amount of CPU usage. An example is shown in Figure 5-12. The main loop and

timer signals are shown in the same order as the previous figures.

The missing portions of the pulses in Figure 5-12 represent the time that the CPU

spent servicing some other interrupt. Figure 5-13 shows a comparison between the raw

signal created by the timer 2 interrupt, and the masked signal generated by the

oscilloscope’s math functions. The masked signal is shown at the top of Figure 5-13

(green). The raw signal is shown second from the top (red). It is easy to see how the

other timer ISR signals can be subtracted from the raw signal generated by timer 2 to

create the masked signal.

65

Figure 5-12 Oscilloscope Graphical Output (Correct)

Figure 5-13 Raw vs Masked Signal for Timer 2

66

Mask creation was implemented using math functions that were included with the

oscilloscope’s software. Assuming that each signal is represented by some variable, Dn,

where n is equal to the index of the signal, the equation for generating the masked signal

for timer 2 is:

𝐷𝑚𝑎𝑠𝑘𝑒𝑑 = (𝐷2 − 𝐷3 − 𝐷4 − 𝐷1) + 𝑎𝑏𝑠(𝐷2 − 𝐷3 − 𝐷4 − 𝐷1)

When D2 is low (logical level 0), subtracting the other signals result in a waveform

with a negative amplitude, which confuses the oscilloscope software and produces a

bogus value for the duty cycle. Adding the absolute value of the waveform to the original

ensures that the negative portions of the waveform are cancelled.

A general form of the equation is:

𝐷𝑚𝑎𝑠𝑘𝑒𝑑 = (𝐷𝑆𝑈𝐼 − 𝐷1 − 𝐷2 − ⋯ − 𝐷𝑛) + 𝑎𝑏𝑠(𝐷𝑆𝑈𝐼 − 𝐷1 − 𝐷2 − ⋯ − 𝐷𝑛)

DSUI represents the waveform of the signal under investigation.

Table 5-5 contains the measurements made by the oscilloscope on the masked

signals shown in Figure 5-13.

Table 5-5 Oscilloscope Measurement Output (Correct, Nested)

Name Measurement Value Std Deviation ΔExpected

Main Frequency 52.03 kHz 697 Hz -146.78 kHz

Timer 2 Duty Cycle 12.25% 0.817% 2.384

Timer 3 Duty Cycle 10.18% 2.045% 0.210

Timer 4 Duty Cycle 8.091% 0.354% -1.780

Timer 5 Duty Cycle 8.623% 0.165% -2.015

67

Chapter 6

Conclusions

Telecommunication technologies are limited by two primary design

characteristics: channel bandwidth and channel latency. Channel throughput is directly

and positively correlated to channel bandwidth. Assuming that a given CAN bus carries

standard length frames that contain the maximum number of stuff bits (Lbit = 130), and

runs at 100% utilization at maximum baud rate, the highest possible achievable

throughput is 58.74 KB/sec. If greater throughput is needed then the CAN bus could be

replaced with (for example) an Ethernet bus which allows for a transmission rate of

anywhere from 10 Mbps to 10 Gbps, or some other technology that is capable of higher

throughput. New hardware designs may be able to accommodate this change assuming

cost is not prohibitive and enough time for implementation is available, however in the

case of an existing hardware design such modifications may not be possible. Any

solutions must be implemented in software.

In addition to time-division multiple access (TDMA), total throughput of a

channel can be increased further with some form of compression assuming the

communication protocol has low overheard and a large data payload with low entropy.

If any of these characteristics are not true (high overheard, small data payload, and/or

data payload with high entropy) the compression ratio may not be sufficient to meet

throughput requirements. Software-based compression also requires more CPU time,

which may not be available on an existing design.

68

This document presents a design method and example of TDMA applied to a

CAN bus wherein time-division is accomplished through time-based triggered

transmission, hence the term time-triggered CAN (TTCAN). Chapter 4 contains a

comparison between the theoretical performance of a TTCAN bus and an existing CAN

bus that uses free-for-all transmission (FFACAN). The increase in effective throughput is

marginal – with a 5x transmission multiplier, the throughput on the TTCAN bus

increased by only 10.1% compared to the FFACAN bus. However the variability in frame

transmission rate on the FFACAN bus varied widely from 1844.14 Hz to 1674.0 Hz (Table

4-9) whereas the variability in frame transmission rate on the TTCAN bus varied

minimally from 1841.7 Hz to 1846.5 Hz. Whether these differences in transmission

rates are acceptable is up to the system’s designer.

This document also presents a simple method for measuring CPU usage of a

microcontroller that uses both nested and non-nested interrupts. Though the applied

method may seem trivial (monitor pin states with an oscilloscope), measurements

become complicated for systems on which there few general purpose input and output

(GPIO) pins are available, or for systems that use nested interrupts. The Boolean

masking equation shown in Chapter 5 may be used with oscilloscope software that

supports math channels. On systems that use nested interrupts these masking

equations eliminate the need for interpreting pin state data after the fact; in other

words, these masking equations allow for real-time CPU usage measurement on

systems that use nested interrupts.

69

References

[1] Texas Instruments, “Controller Area Network Physical Layer Requirements,”

SLLA270 datasheet, Steve Corrigan, Jan 2008.

[2] Microchip Corporation, “Stand-Alone CAN Controller with SPI Interface,”

MCP2515 datasheet, Aug 2012 (Rev . G)

[3] Texas Instruments, “Tiva
TM

 TM4C1294NCPDT Microcontroller”, SPMS433B

datasheet, Jun 2014

[4] Taylor T. Johnson et al, “A Survey of Electrical and Electronic (E/E) Notifications

for Motor Vehicles,” Dept. of Electrical and Computer Engineering, Univ. of Texas

at Arlington, TX, USA.

70

Biographical Information

Randy Long first graduated in 2007 with a B.S. in Civil & Environmental

Engineering. After several years of designing sanitary sewer pipelines by day and

building robotic RC cars by night, he entered UTA's Electrical Engineering program in

August of 2012 and joined UTA's Formula SAE team shortly thereafter.

Since then, Randy served as the lead embedded software developer for UTA's

Formula SAE from December of 2012 to August of 2016. In April of 2013 he began

development of UTA's first active-aerodynamic control system (AACS), which earned

special recognition at the 2013 Formula SAE Lincoln competition and won the Cummins

Applied Technology Award at the 2015 Formula SAE Michigan competition. UTA's AACS

has been iterated several times since then for the 2014, 2015, and 2016 Formula SAE

competitions in Lincoln, NE and Brooklyn, MI. The most recent version of the system

uses separate controller boards for each wing along with a central controller, all of which

run FreeRTOS and communicate using a custom CAN high-level protocol that was also

developed by Randy.

The AACS was developed alongside the UTA FSAE E-16 electric racecar

project. Randy contributed to this project by writing software for the electric powertrain

control system, battery management systems, charge management system, the driver

input body controller, and the driver information display. These efforts were rewarded in

2015 when he was given the opportunity to work as an intern in the gateway firmware

group at Tesla Motors in Palo Alto, CA from June to December of the same year.

As for what comes next: “I’m going back to Cali. Uh, probably.”

