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ABSTRACT 

A NOVEL STRESS ANALYSIS METHOD FOR LAMINATED COMPOSITE STIFFENER 

WITH ASYMMETRIC Z-SECTION UNDER MECHANICAL AND THERMAL LOADING 

CONDITIONS. 

 

 

Sidhant Singh, M.S. 

The University of Texas at Arlington, 2016 

Supervising Professor:  Dr. Wen S Chan 

           Composites structures are being used as load carrying members in latest aircrafts and 

performance automobiles, the design validation for such structures can be a time consuming and 

expensive process, if done by testing. Validation of a structure by analysis saves time and money for 

a design process and validation by analysis can be done by comparing the analytical solution with the 

finite element analysis of the structure, which requires availability of analytical expressions for every 

cross-sectional arrangement of the structural members.  

 

This research focuses on stress analysis of laminated composite stiffener with asymmetric Z-

sections, where closed form analytical expressions are developed to determine the sectional 

properties of composite Z stiffener. The equations for sectional properties such as centroid, 

equivalent axial stiffness and equivalent bending stiffness are validated by comparing the analytical 

and finite element analysis results. The effects of different temperature gradients on different 

sections of the composite Z stiffener are also studied and equations are developed and validated for 

temperature induced moments in the stiffener. The sectional properties were used to calculate 

stresses in layer of sub-laminates and are compared with the stresses obtained from finite element 

analysis of the beam under same conditions. A finite element model is developed on academic 

version of software ANSYS 16.0 and ANSYS 17.0 classic. The stress and strain results obtained by 

analytical method shows excellent agreement with the results obtained from finite element analysis. 
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Chapter 1  

INTRODUCTION 

 

1.1 Composite Materials Overview 

 

1.1.1 Definition 
 

A structural composite is a material system consisting of two or more phases on a 

macroscopic scale, whose mechanical performance and properties are designed to be superior 

to those of the constituent materials acting independently. One phase is stiffer and stronger, 

used as the reinforcement, whereas the less stiff phase is used as the matrix. 

 

1.1.2 Advantages and Disadvantages 
 

The main advantages of composite materials are: low density, high specific stiffness 

(modulus to density ratio), and high specific strength (strength to density ratio). The higher 

specific stiffness and strength are the main reason of selecting composites for aircraft structures. 

However, there are many other advantages that have been driven into consideration of using 

composites materials in structural applications: corrosion resistance, long fatigue life, wear 

resistance, favorable life cycle cost, low thermal expansion, thermal insulation and conductivity, 

acoustic insulation, and design flexibility. 

              Some disadvantages of laminated composites are: relative low toughness, low impact 

resistance, intolerant to out-of-the-plane loads, sensitive to temperature and moisture 

conditions, requirement of sophisticated nondestructive techniques for detection and 

monitoring of damage growth, multiple failure modes, and more complex analysis to study them. 

Composite material has been widely used these days. Besides using in the aerospace 

industry about more than 40 years ago, composites are now being used in almost every industry. 
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Composites find applications in performance motorbikes, bicycles, cars, robotic structures, wind 

mills, solar panels, aircrafts, spacecraft structures, railcars, rail engines, fishing rods and even 

used in fabrication of lightweight mobile phone covers.  

Composite beams are fabricated as an assembly of flat layers; every layer can have 

different directional arrangement of the fibers. This enables the designers to alter the physical 

properties of the beams by varying the layer stacking sequence and fiber orientation angles 

during designing and fabrication phase, which cannot be achieved by using metals.  In composite 

structural applications, thin-walled composite beam has been used as direct load carrying 

members and as stiffeners in panel construction. Beams are structural members that carry 

bending loads and have one dimension (length) larger than the other two dimensions (width and 

height). The beam requires one dimensional property. However, composites are inherent of two 

dimensional properties in the fiber and transverse to fiber directions. This property of composite 

beams also makes it difficult to obtain the analytical solution for designing phase, because unlike 

metal beams composite beams exhibit different physical properties in every direction and they 

also vary with layer arrangement as explained previously. 

This makes design validation of a composite part an expensive and time consuming 

process, because the part has to be verified by testing and not by analysis. Testing of every new 

part raises the time and money involved in the process exponentially, and to avoid this, design 

and analysis software which use finite element methods are used in the industry as they can 

analyze complex structures with high accuracy.  However, the accuracy of the finite element 

based solution depends on factors like mesh quality and applied boundary conditions, where an 

incorrect model will result in meaningless solution. Furthermore, using finite element method 

for structural analysis is not an efficient method for optimal design process and is also a time 

consuming process because of structural configuration dependence.  
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1.2 Literature Review 
 

           In engineering analysis, composite beams are often analyzed using smeared property 

approach for computing their sectional properties. The smeared approach does not consider the 

effect of un-symmetrical structure in determining the sectional properties. Composite Z-beam is 

similar to a composite I-beam from analysis point of view, and as there is a lot of research work 

done on the composite I-beam, research articles related to the I-beam were considered during 

this research. Craddock and Yen [1] obtained equivalent bending stiffness for symmetric I- beam 

by using smear property. Lee [2] combined the classical lamination theory with the Vlasov and 

Gjelsivk theory of thin walled elastic beam to obtain the closed form solution for center of gravity 

and shear-center of thin walled open sections. The method is applicable to mono symmetric 

cross-section as well as any arbitrary layup. 

Parambil et al.[3] and Sanghavi and Chan [4] developed the closed form solution for 

finding the ply stresses in the composite I beam under axial, bending and torsion loads applied 

at the centroid/shear center of the beam. They also determine the equivalent axial and bending 

stiffness and the centroid location for the composite I beam and validated all the results using 

the finite element analysis.  

Gupta and Rao [5] studied the instability of laminated composite open section beams and 

also covered a composite Z-beam problem in their study. Chandra and Chopra [6] developed an 

analytical solution based on Vlasov’s theory to study the static structural response of composite 

I-Beam with elastic couplings subjected to bending and torsional load by neglecting the shear 

deformation. Barbero et al. [7] in an attempt to predict a design optimization approach for 

different shapes presented derivation on Mechanics of thin-walled Laminated Beams (MLB) for 

open and closed sections. They presented the example of laminated I-beam and developed the 

deflection equation for cantilevered beam by using the laminate smear property. The tip 

deflection equation incorporated the effects of shear deformation by including a shear correction 

factor term in the equation. However, the bending stiffness term was direct reciprocal of 

compliance matrix. Therefore, the bending stiffness only represented the smeared material 

property of the laminate. Jung and Lee [8] presented a study on the static response and 
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performed a closed form analysis of thin walled composite I-beams. The analysis included the 

non-classical effects such as elastic coupling, shell wall thickness, transverse shear deformation, 

torsion warping, and constrained warping. The closed form solution was derived for both 

symmetric and asymmetric layup configurations for a cantilever beam subjected to unit bending 

or torque load at the tip of the beam. In addition, 2D finite element model was developed to 

validate the results obtained from the closed form solution. They concluded that transverse shear 

deformation influences the structural behavior of composite beams in terms of slenderness ratio 

and layup. 

Chan and Chou [9] developed a closed form for axial and bending stiffness that included 

the coupling effect due to both laminate and structural configurations. Later, Chan and his 

students focused on thin-walled beams for various cross sections. In one of the study, Chan and 

Dermirhan [10] developed a closed form solution for calculating the bending stiffness of 

composite tubular beam including fiber variation due the circumference of tube. Their study 

indicated that the significant difference in evaluating bending stiffness by using the material 

property of laminate smear method, plate and shell approaches. Later, Rojas and Chan [11] in a 

study integrated an analysis of laminates including calculation of structural section properties, 

failure prediction, and analysis of composite laminated beams. Syed and Chan [12] obtained a 

closed expression for computing centroid location, axial and, bending stiffness as well as shear 

center of hat-section composite beam. Most recently, Rios [13] presented a unified analysis of 

stiffener reinforced composite beams. The study presented a general analytical method to study 

the structural response of composite laminated beams. 
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1.3 Aim of the Research 
 

The objective of this research is to develop an analytical method to conduct stress analysis 

of a composite Z-beam with uneven flanges and with an arbitrary layup under mechanical and 

thermal loads. The research covers closed form expressions of sectional properties such as 

centroid, axial and bending stiffness of the Z-beam as well as ply stresses.  Finite element analysis 

is also conducted to validate the developed analytical expressions. 

 

1.4 Outline of Thesis  
 

Chapter 2 briefly reviews stress/strain relationship in lamina and laminate and Classical 

Lamination Theory (CLT) which depicts the constitutive equations of laminated plates. Extension 

of laminated plate theory to laminated beam is included accompanying to the introduction of the 

concept of narrow and wide beams. 

Chapter 3 explains the geometry of the composite Z-beam with unsymmetrical Z cross 

section and covers the derivations of the analytical equations developed to calculate the 

sectional properties of a composite beam with Z cross-section.  

Chapter 4 describes the development of finite element model including meshing, 

boundary condition, and applied loads.  

Chapter 5 includes the validation of analytical methods by comparing with FEM results. 

The result of sectional properties such as centroid, shear center, axial and bending stiffness is 

presented in this chapter.   

Chapter 6 concludes of the research and explains the future work of the research.  
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Chapter 2  

REVIEW OF CONSTITUTIVE EQUATIONS OF COMPOSITE LAMINATED PLATE AND 

BEAM 
 

The chapter reviews the stress/strain relationship of lamina and laminates under 

mechanical and thermal loads.  The Classical Laminated Plate Theory (CLPT) is briefly introduced. 

Extension of this theory to analyze laminated beam is also illustrated. In this process, the 

structural characteristic of wide beam versus narrow beam is presented.  This chapter presented 

all of the fundamental equations used for the analysis of composite Z-Beam. These fundamental 

equations were taken from Ref. [14]. 

2.1 Laminate Co-ordinate System 
 

A laminate is made up of perfectly bonded layers of lamina with different fiber orientation 

and is usually loaded in one plane. Two co-ordinate systems as shown in Figure 2.1 are used to 

describe the properties of the lamina. 

 1-2-3 co-ordinates refer to the lamina’s local co-ordinate system, where 1 is the fiber 

direction, 2 is the transverse direction and 3 is perpendicular to the ply plane. 

 x-y-z co-ordinate system are the global co-ordinate system and are selected at the mid-

plane of laminates. 

 

Figure 2.1 Local and Global co-ordinate system in lamina 
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2.2 Lamina Constitutive Equation 
 

2.2.1 Stress-Strain Relation for 00 Lamina  
 

Since composite lamina is thin, a state of plane stress is assumed for the analysis purpose. 

 

 σ3 = τ13 = τ23 = 0 (2.1) 

Therefore, orthotropic stress strain relation can be written in matrix form for a composite lamina. 

The strain-stress relation is given below. 

 [𝜀]1−2 =  [𝑆]1−2[𝜎]1−2 (2.2) 

 

 [

𝜀1

𝜀2

𝛾12

] =  [
𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [

𝜎1

𝜎2

𝜏12

] (2.3) 

 

And the stress-strain relationship is  

 [

𝜎1

𝜎2

𝜏12

] =  [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1

𝜀2

𝛾12

] (2.4) 

 

Where, 

𝜀1𝑎𝑛𝑑 𝜀2 are strains in the 1 and 2 directions, respectively 

 𝛾12 is shear strain in 1-2 plane  

[𝑆]1−2 is compliance matrix of the order 3 x 3 in 1-2 co-ordinate system 

[𝑄]1−2 is stiffness matrix of the order 3 x 3 in 1-2 co-ordinate system 

 

𝑆11 = 
1

𝐸1
;   𝑆22 = 

1

𝐸2
;  𝑆12 = −

𝜐12

𝐸1
= −

𝜐21

𝐸2
;  𝑆66 = 

1

𝐺12
 

𝑄11 = 
𝐸1

1 − 𝜐12𝜐21
;    𝑄22 = 

𝐸2

1 − 𝜐12𝜐21
 

𝑄12 = 
𝜐21𝐸1

1 − 𝜐12𝜐21
= 

𝜐12𝐸2

1 − 𝜐12𝜐21
 ;  𝑄66 = 𝐺12 

(2.5) 

 

where 𝐸1, 𝐸2, 𝜐12, 𝑎𝑛𝑑 𝐺12 are four independent material constants. 

 



8 
 

2.2.2 Stress-Strain Relation for θ0 Lamina 
 

The laminate global(x-y) co-ordinate system is not coincident with the laminas local (1-2) 

co-ordinate system. A relation between the stress and strain components in local (1-2) system 

and global(x-y) system is given in this section. 

The compliance matrices for x-y co-ordinate system and 1-2 co-ordinate system are related as: 

 [S̅]
𝑥−𝑦

=  [𝑇𝜀(−𝜃)][𝑆]1−2[𝑇𝜎(𝜃)] = [𝑇𝜎(𝜃)]𝑇[𝑆]1−2[𝑇𝜎(𝜃)] (2.6) 

 

The stiffness matrices for x-y co-ordinate system and 1-2 co-ordinate system are related as: 

 [Q̅]
𝑥−𝑦

= [𝑇𝜎(−𝜃)][𝑄]1−2[𝑇𝜀(𝜃)] = [𝑇𝜀(𝜃)]𝑇[𝑆]1−2[𝑇𝜀(𝜃)] (2.7) 

Where, 

[S̅]
𝑥−𝑦

 is compliance matrix for x-y co-ordinate system  

[Q̅]
𝑥−𝑦

 is reduced stiffness matrix for x-y co-ordinate system  

The matrices [𝑇𝜀(𝜃)] and [𝑇𝜎(𝜃)] are the transformation matrices for strain and stress, 

respectively and are given as. 

 [𝑇𝜀(𝜃)]  =  [
𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2

] (2.8) 

 

 [𝑇𝜎(𝜃)]  =  [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] (2.9) 

 

where   𝑚 =  𝑐𝑜𝑠𝜃;  𝑛 =  𝑠𝑖𝑛𝜃 ,and θ is fiber orientation with respect to the x-axis 

Hence, the stress-strain relationship for angled ply with θ degree fiber orientation in x-y 

coordinate system is, 



9 
 

 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] =  [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] (2.10) 

 

Or 

 [𝜎]𝑥−𝑦 =  [Q̅]
𝑥−𝑦

[𝜀]𝑥−𝑦 (2.11) 

   

2.3 Laminate Constitutive Equation: Classical Laminated Plate Theory (CLPT): 
 

Classical lamination theory is commonly used to analyze the behavior of laminated 

composite to evaluate stresses and strains in individual plies in the laminate. The theory 

explained in this section also incorporates the effects of temperature.  

Following are the assumptions for the classical lamination theory: 

1. Each Layer of the laminate is quasi-homogeneous and orthotropic. 

2. The laminate is thin with its lateral dimensions much larger than its thickness and is 

loaded in its plane only, i.e., the laminate and its layer (except for their edges) are in a 

state of plane stress. 

3. All displacements are small compared with the thickness of the laminate. 

4. Displacements are continuous throughout the laminate. 

5. In-plane displacements vary linearly through the thickness of the laminate, i.e., u and v 

displacements in the x and y directions are linear functions of z. 

6. Transverse shear strain 𝛾𝑥𝑧 and 𝛾𝑦𝑧 are negligible. This assumption and the preceding one 

imply that straight lines normal to the middle surface remain straight and normal to that 

surface after deformation. 

7. Strain-displacement and stress-strain relations are linear. 

8. Normal distances from the middle surface remain constant, i.e., the transverse normal 

strain 𝜀𝑧 is negligible. 
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2.3.1 Displacement Field of Laminate 
 

The reference plane of laminated plate is located at the mid-plane of the plate as shown 

in the above figure. The mid plane displacements are assumed to be 

 𝑢0 = 𝑢0(𝑥, 𝑦); 𝑣0 = 𝑣0(𝑥, 𝑦); 𝑤0 = 𝑤0(𝑥, 𝑦) (2.12) 

 

The displacements at any point shown in Figure 2.2 are given as 

 𝑢(𝑥, 𝑦, 𝑧) =  𝑢0 − 𝑧
𝜕𝑤0

𝜕𝑥
 ; 𝑣(𝑥, 𝑦, 𝑧) =  𝑣0 − 𝑧

𝜕𝑤0

𝜕𝑦
 (2.13) 

Where z is the co-ordinate variable of a general point of the cross section. For small 

displacements, the classical strain-displacement relations of elasticity yields,  

 

Figure 2.2 Composite laminate before and after deformation 
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𝜀𝑥 = 
𝜕𝑢

𝜕𝑥
=  

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
    

𝜀𝑦 = 
𝜕𝑣

𝜕𝑦
=  

𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
    

𝛾𝑥𝑦 = 
𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑥
=  

𝜕𝑢0

𝜕𝑦
+ 

𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
    

(2.14) 

The strain components on the reference plane are expressed as: 

 𝜀𝑥
0 = 

𝜕𝑢0

𝜕𝑥
 ; 𝜀𝑦

0 = 
𝜕𝑣0

𝜕𝑦
; 𝛾𝑥𝑦

0 = 
𝜕𝑢0

𝜕𝑦
+ 

𝜕𝑣0

𝜕𝑥
 (2.15) 

 

The curvatures of the laminate are given as: 

 к𝑥 = −
𝜕2𝑤

𝜕𝑥2
 ;  к𝑦 = −

𝜕2𝑤

𝜕𝑦2
  ;  к𝑥𝑦 = −2

𝜕2𝑤

𝜕𝑥𝜕𝑦
  (2.16) 

2.3.2 Lamina Stress/Strain Relationship in Laminate Coordinates 

The strains in the kth layer can be related to mid-plane strains and curvatures as shown 

below:  

 

[𝜀𝑥−𝑦]
𝐾

= [𝜀⁰] + 𝑧𝑘[𝐾] 

[

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

]

𝑘

= [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧𝑘 [

к𝑥

к𝑦

к𝑥𝑦

] 
(2.17) 

The stresses of the kth layer in the laminate can be written as: 

 [𝜎𝑥−𝑦]
𝑘𝑡ℎ =  [Q̅

𝑥−𝑦
]
𝑘𝑡ℎ

[𝜀𝑥−𝑦]
𝑘𝑡ℎ  (2.18) 

Which can also be written as, 

 [𝜎𝑥−𝑦]
𝑘𝑡ℎ =  [Q̅

𝑥−𝑦
]
𝑘𝑡ℎ

([𝜀0
𝑥−𝑦] + 𝑧𝑘𝑡ℎ[к𝑥−𝑦]) (2.19) 
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2.3.3 Force and Moment Resultants of Laminate 
 

The following figures will be used to explain the equations in this section. 

 

 

Figure 2.3 In-plane forces acting on the reference plane (left), the moment and transverse shear 
forces (right) 

 

Figure 2.4 Multidirectional laminate with notation of individual plies 
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The sum of forces and moments in each layer shown in Figs. 2.4 and 2.5 is given as: 

 [

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] =  ∑ ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

𝑑𝑧 

ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

(
𝑙𝑏

𝑖𝑛
) (2.20) 

 

 [

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] =  ∑ ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

𝑧𝑑𝑧 

ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

(
𝑙𝑏. 𝑖𝑛

𝑖𝑛
) (2.21) 

Where, 

z = the co-ordinate variable of a point on laminate cross section 

t = layer thickness  

𝑁𝑥 ,  𝑁𝑦  = normal forces per unit length  

 𝑁𝑥𝑦 = shear forces per unit length  

𝑀𝑥 ,  𝑀𝑦 = bending moments per unit length  

 𝑀𝑥𝑦 = twisting moments per unit length 

 

 

 

 

 

 

 



14 
 

2.3.4 Constitutive Equation of Laminate 
 

Substituting Eq. 2.19 into Eq. 2-20 and 2-21, we obtain Eq. 2-22. 

 

 
[
𝑁
𝑀

] =  [
𝐴 𝐵
𝐵 𝐷

] [𝜀
0

𝑘
] (2.22) 

 

[
 
 
 
 
 
 
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

=  

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66]
 
 
 
 
 

 

[
 
 
 
 
 
 
𝜀𝑥

0

𝜀𝑦
0

𝛾𝑥𝑦
0

к𝑥

к𝑦

к𝑥𝑦]
 
 
 
 
 
 

 (2.23) 

 

 

[𝐴] =  ∑ [Q̅
𝑥−𝑦

]
𝑘𝑡ℎ

(

𝑛

𝑘=1

ℎ𝑘 − ℎ𝑘−1) 

[𝐵] =  
1

2
∑ [Q̅

𝑥−𝑦
]
𝑘𝑡ℎ

(

𝑛

𝑘=1

ℎ𝑘
2 − ℎ𝑘−1

2 ) 

[𝐷] =  
1

3
∑ [Q̅

𝑥−𝑦
]
𝑘𝑡ℎ

(

𝑛

𝑘=1

ℎ𝑘
3 − ℎ𝑘−1

3 ) 

 

(2.24) 

Inverting Eq. 2.22, we have 

 

 

 
[𝜀

0

𝑘
] =  [

𝑎 𝑏
𝑏𝑇 𝑑

] [
𝑁
𝑀

] (2.25) 

Where,  

 [
𝑎 𝑏
𝑏𝑇 𝑑

] =  [
𝐴 𝐵
𝐵 𝐷

]
−1

 (2.26) 

It should be noted that b matrix may or may not be symmetric. 
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  [A] matrix is called in-plane extensional stiffness matrix because it directly relates in-

plane strains (𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0 ) to in-plane forces per unit width (𝑁𝑥, 𝑁𝑦 , 𝑁𝑥𝑦) . A11 and A22 are 

called the axial extension stiffness, A12 is the stiffness due to Poisson’s ratio effect, A16 and A26 

are the stiffness due to shear coupling, and A66 is the shear stiffness. 

             [B] matrix is known as extensional-bending coupling stiffness matrix. This matrix relates 

in-plane strains to bending moments and curvatures to in-plane forces. This coupling effect does 

not exist for isotropic materials. Thus, if Bij≠0, in-plane forces produce flexural and twisting 

deformation in addition to in-plane deformation; moments as well produce extensional and 

shear deformation of the middle surface in addition to flexural and twisting deformation. B11 and 

B22 are the coupling stiffness due to direct curvature, B12 is the coupling stiffness due to Poisson’s 

ratio effect, B16 and B26 are the extension-twisting coupling stiffness or shear bending coupling 

stiffness, and B66 is the shear-twisting coupling stiffness. 

             [D] matrix is the bending stiffness matrix because it relates curvatures (к𝑥 , к𝑦 , к𝑥𝑦) to 

bending moments per unit width (𝑀𝑥, 𝑀𝑦 ,𝑀𝑥𝑦)  . D11 and D22 are the bending stiffness, D12 is 

the bending stiffness due to Poisson’s ratio effect, D16 and D26 are the bending-twisting coupling, 

and D66 is the torsional stiffness. 
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2.4 Thermal Loads  
 

The behavior of composite changes under different environmental conditions such as 

different temperature and moisture contents. The change of the structural behavior due to these 

effects depends on coefficient of thermal expansion (CTE) and coefficient of moisture expansion 

(CHE). It has been observed that the characteristics of the change of structural response due to 

temperature is similar to the change due to the moisture. Hence, the equations used for 

evaluating the structure response due to temperature can also be used for that due to the 

moisture.  

For an orthotropic material thermal strain is written as the equation shown below. 

 𝜀𝑖
𝑇 = α𝑖 ∆T (2.27) 

Where 

α𝑖  is the coefficient of thermal expansion. 

i = 1,2,3 represents normal component of thermal strain 

∆T is the temperature gradient. 

It is noted that no shear strains are induced when an orthotropic material is experienced in 

temperature environment.  This gives  

 𝛾12
𝑇 = 𝛾13

𝑇 = 𝛾23
𝑇 = 0 (2.28) 

For a ply under both mechanical and thermal loads, the total ply strain can be expressed as 

 

𝜀1 = 
1

𝐸1

[𝜎1 −  𝜈 12𝜎2] + α1 ∆T 

𝜀2 = 
1

𝐸2

[𝜎2 −  𝜈 21𝜎1] + α2 ∆T 

𝛾12 =
𝜏12

𝐺12

 

(2.29) 
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Where  

𝜀1 and 𝜀2 are strains in local 1 and 2 directions respectively 

𝜎1 and 𝜎2 are stresses in corresponding local directions of ply 

𝐸1 and  𝐸2 are modulus in their respective local directions 

α1 and α2 are CTE’s in corresponding local directions of ply 

The above equation can be written in the matrix form as. 

 [

𝜀1

𝜀2

𝛾12

]

𝑡𝑜𝑡𝑎𝑙

= [𝑆1−2] [

𝜎1

𝜎2

𝜏12

] + [
α1

α2

0
] ∆T (2.30) 

 

Using equation 2.7 for axes transformation, strain in x-y co-ordinate system are given as  

 [𝜀𝑥−𝑦]
𝐾

= [𝑇𝜀(−𝜃)]𝐾 [𝜀1−2]𝐾  (2.31) 

Where  

[𝜀𝑥−𝑦]
𝐾

 are the strains in Kth layer in global(x-y) co-ordinate system. 

[𝜀1−2]𝐾 are the strains in Kth layer in local(1-2) co-ordinate system. 

The transformation of thermal strains from local to global co-ordinate system is given by 

following equation. 

 [α𝑥−𝑦]
𝐾

= [𝑇𝜀(−𝜃)]𝐾 [α1−2]𝐾  (2.32) 

Total strains in global co-ordinate system including the thermal strains can be written as. 

 [𝜀𝑥−𝑦]
𝐾,𝑡𝑜𝑡𝑎𝑙

= [𝑆𝑥̅−𝑦]
𝐾
 [𝜎𝑥−𝑦]

𝐾
+ [α𝑥−𝑦]

𝐾
 ∆T (2.33) 

Where 

  [𝑆𝑥̅−𝑦] = [𝑇𝜎(𝜃)]𝑇[𝑆1−2][𝑇𝜎(𝜃)]   (2.34) 
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 Rearranging Equation 2.33 

 [𝜎𝑥−𝑦]
𝐾

= [𝑄 ̅
𝑥−𝑦]

𝐾
 {[𝜀𝑥−𝑦]

𝐾,𝑡𝑜𝑡𝑎𝑙
− [α𝑥−𝑦]

𝐾
 ∆T} (2.35) 

Expanding the global strains[𝜀𝑥−𝑦] , by using Equation 2.17 and rewriting Equation 2.33. 

 [𝜎𝑥−𝑦]
𝐾

= [𝑄 ]𝐾 {[𝜀⁰] + 𝑧[к] − [α𝑥−𝑦]
𝐾
 ∆T} (2.36) 

 

By summing up the forces from the ply stresses, we get the following equation. 

 

[𝑁] =  ∑ ∫ [𝜎𝑥−𝑦]
𝐾
 𝑑𝑧 = 

ℎ𝑘

ℎ𝑘−1

𝑛

𝐾=1

{∑ ∫ [𝑄̅]𝐾 𝑑𝑧

ℎ𝑘

ℎ𝑘−1

𝑛

𝐾=1

} [𝜀⁰]

+ {∑ ∫ [𝑄̅]𝐾 𝑧𝑑𝑧

ℎ𝑘

ℎ𝑘−1

𝑛

𝐾=1

} [к]

− {∑ ∫ [𝑄̅]𝐾 [α𝑥−𝑦]
𝐾
𝑑𝑧

ℎ𝑘

ℎ𝑘−1

𝑛

𝐾=1

}∆T  

(2.37) 

 

From Equation 2.22, the above equation can be written as. 

 [𝑁] = [𝐴][𝜀⁰] + [𝐵][к] − [𝑁𝑇] (2.38) 

 Where  

[𝑁] is the total force matrix. 

[A] gives in-plane extensional stiffness matrix. 

[B] is extensional-bending coupling stiffness matrix. 

[к] represents the mid-plane curvatures. 

[𝜀⁰] is the mid-plane strain matrix. 

[𝑁𝑇] is the force due to temperature, and is given by the expression below. 
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 [𝑁𝑇] =  {∑ ∫ [𝑄̅]𝐾 [α𝑥−𝑦]
𝐾
𝑑𝑧

ℎ𝑘

ℎ𝑘−1

𝑛

𝐾=1

}∆T  (2.39) 

The moment induced because of temperature can be obtained similarly and is given by the 

following expression. 

 [𝑀𝑇] =  {∑ ∫ [𝑄̅]𝐾 [α𝑥−𝑦]
𝐾
𝑧𝑑𝑧

ℎ𝑘

ℎ𝑘−1

𝑛

𝐾=1

}∆T  (2.40) 

The Equation 2.22, of the force and moment matrices obtained in the lamination theory can be 

modified to include the temperature induced forces and moments. 

Now, the total force and moment matrices are given as. 

 
[𝑁̅]  =  [𝐴][𝜀⁰] + [𝐵][к] 

[𝑀̅]  =  [𝐵][𝜀⁰] + [𝐷][к] 
(2.41) 

Where  

 
[𝑁̅]  = [𝑁] + [𝑁𝑇] 

[𝑀̅]  = [𝑀] + [𝑀𝑇]  
(2.42) 

Where  

[𝑁̅] is the total force matrix, which includes thermal and mechanical forces. 

[𝑀̅] is the total moment matrix, which includes thermal and mechanical moments. 

Equation 2.41 describes the laminate constitutive equation of laminate under mechanical 

and thermal load environment. If the moisture environment is present, additional moisture 

induced load can be superimposed into the above equation. The expression of the moisture 

induced load will be identical to the thermal induced load except replacing the α-matrix by the 

β-matrix. 

It should be noted that the above equation is valid for the composite material properties 

remain constants under the environmental condition.  
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2.5 Laminated Beam   
 

 The foundation of beam analysis is based upon the one-dimensional moment-curvature 

relationship along the longitudinal axis of the beam under bending. This approach used for 

laminated composite beam is not different from the isotropic beam.  However, evaluation of this 

relationship depends on the sectional properties which possess a unique behavior that is different 

from the isotropic beam.  These properties are not only dependent of geometry of the cross-section 

but also of the composite material property and their stacking sequence of laminate as well. 

 Analysis of a beam structure which is one-dimensional problem requires for inputting one 

dimensional structural property in its constitutive equation. However, composite material is 

inherent with two-dimensional property. Hence, an equivalent one-dimensional property of 

composite beam is needed.  The equivalent one-dimensional property is dependent of the structural 

response of the deformed beam and the structural response of the beam is dependent on the ratio 

of the width to height of the beam cross-section.  The following describes those behaviors. 

 

2.5.1 Constitutive Equation of Narrow Laminated Beam under Bending  
 

Figure 2.6 shows a sketch of structural response of a beam under bending. As shown in 

the figure, if the width to height ratio of the cross section is small (namely “narrow beam”, the 

lateral curvature is induced due to the effect of Poisson’s ratio. Conversely, the induced lateral 

curvature is negligible except at the neighborhood of the laminate edge (namely “wide beam”), if 

the width to height ratio is large. Hence, the response of structure beam exhibits  𝑀𝑦 ≠ 0  and 

𝐾𝑦 = 0 for a wide beam and 𝑀𝑦 = 0 and 𝐾𝑦 ≠ 0 for a narrow beam. 

 

Figure 2.5 Deformed shape of narrow vs. wide beam 

Narrow beam 

Wide beam 

x 

y 

z x 
z 

y 
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Moreover, if the width of the flange laminate is much smaller than the height (depth) of the 

beam. The flange will have refrain from its twisting. With this in mind, a further assumption of 

zero Kxy is enforced in deriving the beam’s constitutive equation.   

 

 
𝑁𝑥 ≠ 0, 𝑁𝑦 = 0,  𝑁𝑥𝑦 = 0, 𝑀𝑥 ≠ 0,𝑀𝑦 = 0,𝑀𝑥𝑦 ≠ 0 

𝜀𝑥
0 ≠ 0, 𝜀𝑦

0 ≠ 0, 𝛾𝑥𝑦
0 ≠ 0,𝐾𝑥 ≠ 0,𝐾𝑦 ≠ 0,𝐾𝑥𝑦 = 0 

(2.43) 

 

With the above assumption, the constitutive equation for a narrow beam can be written 

as a pseudo-one dimensional relationship below [3]:   

 

(
εx
o

Kx
) = (

a11 b11

b11 d11
) (

Nx

Mx
) 

(
Nx

Mx
) = (

A1
* B1

*

B1
* D1

*
) (

εx
o

Kx
) [

εx
o

Kx
] 

(2.44) 

And 

 [
A1

∗ B1
∗

B1
∗ D1

∗] =  [
𝑎∗ 𝑏∗

𝑏∗ 𝑑∗]
−1

  (2.45) 

 

Where, 

 

𝑎∗ = 𝑎11  −  
𝑏16

2

𝑑66
  ,  𝑏∗ = 𝑏11  −  

𝑏16𝑑16

𝑑66
      

𝑑∗ = 𝑑11  −  
𝑑16

2

𝑑66
  

(2.46) 

0

x and x  are the mid-plane strain and curvature along the longitudinal axis of the beam, 

A1
∗ , B1

* , and D1
*  refer to the axial, coupling and bending stiffness and 𝑎∗

,𝑏∗
 and 𝑑∗

 are the compliance, 

coupling and flexibility components of narrow laminate, respectively. The matrices of a, b and d are 

the conventional laminated plate properties. 
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2.5.2 Wide Beam 
 

Opposite to a narrow beam, wide beam acting essentially as a plate does not show 

distortion of the cross-section except at the outer edges (See Fig. 2.5). As a result of this, its 

curvatures κy and κxy are restrained.  

Substituting 0 xyy

o

xy

o

y   in laminate constitutive equation, we obtain,  

 [
Nx

Mx
] = [

A11 B11

B11 D11
] [

εx
o

Kx
] (2.47) 

 

It should remind that the non-zero terms, Ny, Nxy, My, and Mxy, are induced due to strains 

and curvatures restrained. Rearranging the above equation, we relate the axial force per unit 

width to the corresponding axial strain and the bending moment to the corresponding curvature, 

directly.  We obtain 

 
0

11

2

11
11 xx

D

B
AN 








     and         xx

A

B
DM 












11

2

11
11                     (2.48) 
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Chapter 3  
 

CONSTITUTIVE EQUATIONS OF LAMINATED Z-BEAM 
 

This chapter covers derivations of the analytical equations to determine the sectional 

properties of Z-beam. The laminate constitutive equation of narrow beam, Eq. (2-44) is selected 

because of it’s the width and the height ratio of the beam. The closed-form expression of 

sectional property such as centroid, axial and bending stiffness are included. Equations for 

calculating the ply stresses of Z-beam under mechanical and thermal load are also presented.   

3.1 Geometry and Notation of Composite Z-Beam  

Figure 3.1 shows the geometry of the Z-beam, which is divided into three parts 

(laminates), the top and bottom flanges and the web laminates, which are denoted by f1, f2 and 

w, respectively. W and h are designated for the width and thickness of the corresponding 

laminate. It is noted that the height and width of the web are actually the width and thickness of 

the web laminate, respectively. Hence, Ww and hw represent the width and thickness of the web 

laminate. Wf1 and Wf2, and hf1 and hf2 represent the width and thickness of the top and bottom 

flange laminates, respectively.   
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Figure 3.1 Geometry of Z-beam. 

 

3.2 Constitutive Equation of Beam Structure 

                For a beam under axial load in the x-direction and beam bending, 𝑀̅𝑦 and chord 

bending, 𝑀̅𝑧 with respect to z-axis at its centroid the characteristic equation of beam under 

loads can be written as: 

 [

𝑁̅𝑥

𝑀̅𝑦

𝑀̅𝑧

] =  [

𝐸𝐴̅̅ ̅̅ 0 0
0 𝐷̅𝑦 𝐷̅𝑦𝑧

0 𝐷̅𝑦𝑧 𝐷̅𝑧

] [

εx
c

к𝑦
𝑐

к𝑧
𝑐

] (3.1) 

Where 𝐸𝐴̅̅ ̅̅ ,  𝐷̅𝑦,  𝐷̅𝑧 , 𝑎𝑛𝑑  𝐷̅𝑥𝑧 are the corresponding axial and bending stiffness and the 

corresponding axial strain at the mid-plane of i-th laminate can be expressed as.  

 εx,i
o = εx

c + 𝑧𝑖,𝑐к𝑦
𝑐 + 𝑦𝑖,𝑐к𝑧

𝑐

 
 (3.2) 

Where, 𝑧𝑖,𝑐 and 𝑦𝑖,𝑐 are the distance from the midpoint of i-th laminate to the centroid location. 
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3.3 Location of Centroid 

The location of the centroid for a given cross-section is the point where the induced 

moment is balanced when an axial load in applied or vice versa. Hence, the centroid of a cross-

section area refers to the geometric center of the area only if the material is symmetrically 

distributed in the entire area.  Moreover, the centroid is a location on the cross-section of a beam 

where the structural response due to axial and bending loads is decoupled.  This states that if an 

axial load is applied at the centroid, it will result in axial strain only. Conversely, if bending 

moment is applied at the centroid, the beam exhibits curvature deformation with no axial strain.  

3.3.1 Isotropic Material Centroid 

 For Isotropic materials, the centroid depends only on geometrical parameters. The 

equations to determine the centroid location for isotropic materials are described below. 

 𝑦𝑐 = 
∑𝑦𝑖 𝐴𝑖

∑𝐴𝑖
    and  𝑧𝑐 = 

∑𝑧𝑖  𝐴𝑖

∑𝐴𝑖
 (3.3) 

 

Where 𝑦𝑐 and 𝑧𝑐 are the distance from the reference coordinates to the location of the centroid 

of the entire cross-section. 𝑦𝑖 and 𝑧𝑖  the centroid location of each element i, and 𝐴𝑖  is the cross-

section area of element i.  

3.3.2 Composite Material Centroid 

The centroid for a composite section can be calculated by taking summation of the 

moments of axial loads acting on the centroids of each laminate and equating them to the total 

axial force acting on the centroid of the whole structure. With aid of Equation 2.44 and zero 

curvature at its centroid, we obtain the centroid of the asymmetric composite Z-beam given as. 

 𝑧̅𝑐 = 
∑ 𝑤𝑖𝑁𝑥,𝑖𝑧𝑐,𝑖

3
𝑖=1

∑ 𝑤𝑖𝑁𝑥,𝑖
3
𝑖=1

=
𝑤𝑓1𝐴1,𝑓1

∗ 𝑧𝑐,𝑓1 + 𝑤𝑓2𝐴1,𝑓2
∗ 𝑧𝑐,𝑓2 + 𝑤𝑤𝐴1,𝑤

∗ 𝑧𝑐,𝑤

𝑤𝑓1𝐴1,𝑓1
∗ + 𝑤𝑓2𝐴1,𝑓2

∗ + 𝑤𝑤𝐴1,𝑤
∗  (3.4) 

 𝑦̅
𝑐

= 
𝑤𝑓1𝐴1,𝑓1

∗ 𝑦𝑐,𝑓1 + 𝑤𝑓2𝐴1,𝑓2
∗ 𝑦𝑐,𝑓2 + 𝑤𝑤𝐴1,𝑤

∗ 𝑦𝑐,𝑤

𝑤𝑓1𝐴1,𝑓1
∗ + 𝑤𝑓2𝐴1,𝑓2

∗ + 𝑤𝑤𝐴1,𝑤
∗  (3.5) 
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Where, 𝑧𝑐,𝑓1 ,  𝑧𝑐,𝑤,  𝑧𝑐,𝑓2 , 𝑦𝑐,𝑓1 , 𝑦𝑐,𝑤, 𝑦𝑐,𝑓2 are y and z distances from the reference zr and yr axis 

to the centroid of each section namely, web (w), flange 1 (f1) and flange 2 (f2), and are shown in 

Figure 3-2.  

 

Figure 3.2 Distances between the reference axes and centroids of the sections. 
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3.4 Equivalent Axial Stiffness  

3.4.1 Constitutive Equation for Sub-laminates 

To determine the axial stiffness, the constitutive equations without the thermal loads are 

considered. Hence, constitutive equation of sub-laminates can be obtained from the narrow 

beam section, Equation 2.44 through 2.46. The equations representing flange sub-laminates fi, 

are given as. 

 
𝑁𝑥,𝑓𝑖 = 𝐴1,𝑓𝑖

∗ 𝜀𝑥,𝑓1
0 + 𝐵1,𝑓𝑖

∗ к𝑥,𝑓𝑖 

𝑀𝑥,𝑓𝑖 = 𝐵1,𝑓𝑖
∗ 𝜀𝑥,𝑓1

0 + 𝐷1,𝑓𝑖
∗ к𝑥,𝑓𝑖 

(3.6) 

Where i refers to the different sections of the beam, and i=1 denotes top flange and i=2 denotes 

bottom flange. Also, 𝜀𝑥,𝑓𝑖
°  and к𝑥,𝑓𝑖 represent the respective mid-plane strains and curvatures of 

the sub-laminates. Constitutive equations for web are similar, and w is used in subscript instead 

of fi.    

 
𝑁𝑥𝑤 = 𝐴𝑤

∗ 𝜀𝑥,𝑤
° + 𝐵𝑤

∗ к𝑥,𝑤 

𝑀𝑥𝑤 = 𝐵𝑤
∗ 𝜀𝑥,𝑤

° + 𝐷𝑤
∗ к𝑥,𝑤 

(3.7) 

If the web is of symmetric layup, then 𝐵𝑤
∗  would be zero. 

 

3.4.2 Expression for Axial Stiffness 

              For a structure made of isotropic material, the force and strain relationship is given as. 

 𝑁̅𝑥  = (𝐸𝐴)𝜀𝑥 (3.8) 

Where, 

𝑁̅𝑥 is total applied force on the structure. 

EA is the axial stiffness of the structure. 
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The total axial force on composite Z-beam is given by the following expression. 

 𝑁̅𝑥 = 𝑤𝑓1𝑁𝑥,𝑓1 + 𝑤𝑓2𝑁𝑥,𝑓2 + 𝑤𝑤𝑁𝑥,𝑤  (3.9) 

Where, 

𝑁𝑥,𝑓1, 𝑁𝑥,𝑓2,  𝑎𝑛𝑑 𝑁𝑥,𝑤 are the axial forces per unit width of sub-laminates, f1, f2, and w along X-

direction. 𝑁̅𝑥 is total force acting in X-direction, 

Substituting the constitutive Equations 3.6 and 3.7 in the total force Equation 3.9, the following 

is obtained. 

 
𝑁̅𝑥 = 𝑤𝑓1(𝐴1,𝑓1

∗ 𝜀𝑥,𝑓1
° + 𝐵1,𝑓1

∗ к𝑥,𝑓1  ) +  𝑤𝑓2(𝐴1,𝑓2
∗ 𝜀𝑥,𝑓2

° + 𝐵1,𝑓2
∗ к𝑥,𝑓2  )

+  𝑤𝑤(𝐴𝑤
∗ 𝜀𝑥,𝑤

° + 𝐵𝑤
∗ к𝑥,𝑤 ) 

(3.10) 

Now, as the laminates are bonded, the strains for all laminates will be equal along the x-axis. 

 𝜀𝑥,𝑓1
° = 𝜀𝑥,𝑓1

° = 𝜀𝑥,𝑤
° = 𝜀𝑥 (3.11) 

Also, if axial force is applied at the centroid, no curvatures will be present. 

 к𝑥,𝑓1 = к𝑥,𝑓2 = к𝑥,𝑤 = 0 (3.12) 

When conditions from Equations 3.11 and 3.12 are applied on Equation 3.10, following 

expression is obtained. 

 𝑁̅𝑥 = [𝑤𝑓1(𝐴1,𝑓1
∗ ) + 𝑤𝑓2(𝐴1,𝑓2

∗ ) + 𝑤𝑤(𝐴𝑤
∗ )]𝜀𝑥 (3.13) 

Comparing Equation 3.13 and 3.8, the expression for axial stiffness is given as. 

 𝐴̅𝑥 = [𝑤𝑓1(𝐴1,𝑓1
∗ ) + 𝑤𝑓2(𝐴1,𝑓2

∗ ) + 𝑤𝑤(𝐴𝑤
∗ )] (3.14) 
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3.5 Equivalent Bending Stiffness 

3.5.1 Expression for Chord Bending Stiffness 𝐷̅𝑧 

To obtain the bending stiffness of asymmetric composite Z-beam along y axis, a moment 

𝑀̅𝑧
𝑐 is applied at the centroid. With no axial strain existence, 𝑀̅𝑧

𝑐  gives following relationship: 

 𝑀̅𝑧
𝑐  = 𝐷̅𝑦𝑧к𝑦

𝑐 + 𝐷̅𝑧к𝑧
𝑐     (3.15) 

Where,    

𝑀̅𝑧
𝑐  = sum of the moment components of each sub-laminate pointing to the z-direction. 

𝐷̅𝑧 = 𝐸𝐼𝑧𝑧 = equivalent bending stiffness of z-beam about z-axis. 

 к𝑧
𝑐  = curvature of the beam about z-axis and к𝑦

𝑐  is curvature of the beam about y-axis. 

The total moment for the beam, 𝑀̅𝑧
𝑐 referring to Fig. 3.3 is given by following equation; 

 

Figure 3.3 Location of section centroids with respect to the beam centroid. 

 

YC 
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Moment by top flange f1, is given as  

 𝑀̅𝑧,𝑓1 = ∫ (𝑦 ∗ 𝑁𝑥,𝑓1) 𝑑𝑦

−𝑦𝑐,𝑓1+  𝑤𝑓1/2

−𝑦𝑐,𝑓1− 𝑤𝑓1/2

 (3.16) 

Moment by bottom flange f2, is given as 

 𝑀̅𝑧,𝑓2 = ∫ (𝑦 ∗ 𝑁𝑥,𝑓2) 𝑑𝑦

𝑦𝑐,𝑓2+  𝑤𝑓2/2

𝑦𝑐,𝑓2− 𝑤𝑓2/2

 (3.17) 

 Moment by web w, is given as  

 𝑀̅𝑧,𝑤 = 𝑤𝑤 𝑀𝑥,𝑤 + 𝑤𝑤 𝑁𝑥,𝑤𝑦𝑐,𝑤    (3.18) 

Where, 𝑦𝑐,𝑓1, 𝑦𝑐,𝑓2, 𝑦𝑐,𝑤 and 𝑧𝑐,𝑓1, 𝑧𝑐,𝑓2, 𝑧𝑐,𝑤 are the locations of the centroids of section from 

the centroidal axes of the beam and are shown in Figure 3.3. 

When the beam is subjected to bending, the mid-plane strains can be adjusted to: 

 𝜀𝑥 = 𝜀𝑥
⁰ + 𝑦𝑐 к𝑧

𝑐 + 𝑧𝑐  к𝑦
𝑐   (3.19) 

Since the bending moment, 𝑀̅𝑧,𝑓1  is applied at the centroid, no axial strains will be 

induced.  Also, the local co-ordinate system of flange sub-laminates align with the centroidal co-

ordinate system. The centroidal co-ordinate system can be referred as the global co-ordinate 

system of the beam. 

The structure is perfectly bonded, hence curvatures will be equal, following conditions 

are obtained for top flange. 

 

𝜀𝑥
⁰ = 0 

к𝑦,𝑓1 =  к𝑧
𝑐    

к𝑥,𝑓1 =  к𝑦
𝑐    

(3.20) 

By applying Equation 3.19 in Equation 3.6, the constitutive equation for the force on top flange 

can be written as. 

 𝑁𝑥,𝑓1 = 𝐴1,𝑓1
∗ ∗ (𝑦𝑐,𝑓1 к𝑧

𝑐 + 𝑧𝑐,𝑓1 к𝑦
𝑐 ) + 𝐵1,𝑓1

∗ ∗  к𝑦
𝑐      (3.21) 
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Substituting Equation 3.21 in the moment Equation 3.16 for top flange, the following 

expression is obtained. 

 
𝑀̅𝑧,𝑓1 =  ∫ (𝑦𝑐,𝑓1 ∗  (𝐴1,𝑓1

∗ ∗ (𝑦𝑐,𝑓1 к𝑧
𝑐 + 𝑧𝑐,𝑓1  к𝑦

𝑐 ) + 𝐵1,𝑓𝑖
∗

−𝑦𝑐,𝑓1+  𝑤𝑓1/2

−𝑦𝑐,𝑓1− 𝑤𝑓1/2

∗ к𝑦
𝑐 )) 𝑑𝑦 

(3.22) 

The above integral gives following expression for moment by top flange. 

 
M̅𝑧,𝑓1 = {𝐴1,𝑓1

∗  [𝑦𝑐,𝑓1
2  𝑤𝑓1 + (

𝑤𝑓1
3

12
) ] к𝑧

𝑐}

+ {(𝐴1,𝑓1
∗  𝑤𝑓1 𝑦𝑐,𝑓1 𝑧𝑐,𝑓1 + 𝐵1,𝑓1

∗  𝑤𝑓1 𝑦𝑐,𝑓1) к𝑦
𝑐  } 

(3.23) 

Following the same procedure, the equation for moment by bottom flange is given as. 

 
M̅𝑧,𝑓2 = {𝐴1,𝑓2

∗  [𝑦𝑐,𝑓2
2  𝑤𝑓2 + (

𝑤𝑓2
3

12
) ] к𝑧

𝑐} +

{(𝐴1,𝑓2
∗  𝑤𝑓2 𝑦𝑐,𝑓2 𝑧𝑐,𝑓2 + 𝐵1,𝑓2

∗  𝑤𝑓2 𝑦𝑐,𝑓2) к𝑦
𝑐  }  

(3.24) 

Unlike the flanges, the local co-ordinate system of the web is different form the global co-

ordinate system of the beam, which results in following expression mid plane strains of web. 

 𝜀𝑥,𝑤 = 𝜀𝑥
⁰ + 𝑦𝑐,𝑤 к𝑧

𝑐  + 𝑧𝑐,𝑤 к𝑦
𝑐  (3.25) 

Where,  

 

𝜀𝑥
⁰ = 0 

к𝑥,𝑤 =  к𝑧
𝑐    

к𝑦,𝑤 =  к𝑦
𝑐    

(3.26) 

In the local co-ordinate system of web, the curvature in x direction of the web laminate 

corresponds to the curvature about z direction of the beam’s global co-ordinate system and the 

curvature in y direction of the web laminate corresponds to the curvature about y direction of 

the beam’s global co-ordinate system. The local and global co-ordinate systems are shown in 
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Figure 3.4 below, where x, y, and z represent global axes and x’, y’, and z’ represents the local 

axes. 

 

Figure 3.4 Local and global co-ordinate systems. 

From Equations 3.7 and 3.25 the constitutive equations of web for force and moment along x-

axis are given as. 

 𝑁𝑥𝑤 = 𝐴𝑤
∗  [(𝑧𝑐,𝑤  к𝑦

𝑐 ) + (𝑦𝑐,𝑤  к𝑧
𝑐)] + 𝐵𝑤

∗  к𝑧
𝑐   (3.27) 

 𝑀𝑥𝑤 = 𝐵𝑤
∗  [(𝑧𝑐,𝑤  к𝑦

𝑐 ) + (𝑦𝑐,𝑤  к𝑧
𝑐) ] + 𝐷𝑤

∗  к𝑧
𝑐     (3.28) 

Substituting Equations 3.27 and 3.28 in moment Equation 3.18, we get: 

 
𝑀̅𝑧,𝑤 = 𝑤𝑤 (𝐵𝑤

∗  [(𝑧𝑐,𝑤  к𝑦
𝑐 ) + (𝑦𝑐,𝑤  к𝑧

𝑐) ] + 𝐷𝑤
∗  к𝑧

𝑐  )

+ 𝑤𝑤 (𝐴𝑤
∗  [(𝑧𝑐,𝑤  к𝑦

𝑐 ) + (𝑦𝑐,𝑤  к𝑧
𝑐)] + 𝐵𝑤

∗  к𝑧
𝑐) 𝑦𝑐,𝑤    

(3.29) 

Rearranging the above equation. 

 
𝑀̅𝑧,𝑤 = [𝐷𝑤

∗  𝑤𝑤  +  𝐴𝑤
∗  𝑦𝑐,𝑤

2  𝑤𝑤  + 2 𝐵𝑤
∗  𝑦𝑐,𝑤 𝑤𝑤]  к𝑧

𝑐

+ [𝐵𝑤
∗  𝑤𝑤 𝑧𝑐,𝑤 + 𝐴𝑤

∗  𝑤𝑤 𝑧𝑐,𝑤  𝑦𝑐,𝑤]  к𝑦
𝑐  

(3.30) 
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Combining Equations 3.30, 3.23, and 3.24, the equation for the total moment is obtained, 

which is given as. 

 

𝑀̅𝑧
𝑐 = {[𝐴1,𝑓1

∗  [𝑦𝑐,𝑓1
2  𝑤𝑓1 + (

𝑤𝑓1
3

12
) ]] + [𝐴1,𝑓2

∗  [𝑦
𝑐,𝑓2
2  𝑤𝑓2 +

 (
𝑤𝑓2

3

12
) ]] + [𝐷𝑤

∗  𝑤𝑤  +  𝐴𝑤
∗  𝑦𝑐,𝑤

2  𝑤𝑤  +  2 𝐵𝑤
∗  𝑦𝑐,𝑤 𝑤𝑤]} к𝑧

𝑐 +

 {(𝐴1,𝑓1 
∗ 𝑤𝑓1 𝑦𝑐,𝑓1 𝑧𝑐,𝑓1 + 𝐵1,𝑓1

∗  𝑤𝑓1 𝑦𝑐,𝑓1) + (𝐴1,𝑓2 
∗ 𝑤𝑓2 𝑦𝑐,𝑓2

 𝑧𝑐,𝑓2 +

 𝐵1,𝑓2
∗  𝑤𝑓2 𝑦𝑐,𝑓2

)  + (𝐵𝑤
∗  𝑤𝑤 𝑧𝑐,𝑤 + 𝐴𝑤

∗  𝑤𝑤 𝑧𝑐,𝑤  𝑦𝑐,𝑤)} к𝑦
𝑐   

(3.31) 

By comparing Equation 3.31 and Equation 3.15, expressions for bending stiffness 𝐷̅𝑧 and 𝐷̅𝑦𝑧 can 

be obtained. 

 

𝐷̅𝑧 = {[𝐴1,𝑓1
∗  [𝑦𝑐,𝑓1

2  𝑤𝑓1 + (
𝑤𝑓1

3

12
) ]]

+ [𝐴1,𝑓2
∗  [𝑦

𝑐,𝑓2
2  𝑤𝑓2 + (

𝑤𝑓2
3

12
) ]]

+ [𝐷𝑤
∗  𝑤𝑤  +  𝐴𝑤

∗  𝑦𝑐,𝑤
2  𝑤𝑤  +  2 𝐵𝑤

∗  𝑦𝑐,𝑤 𝑤𝑤]} 

(3.32) 

 

 

𝐷̅𝑦𝑧 = {(𝐴1,𝑓1
∗ 𝑤𝑓1 𝑦𝑐,𝑓1 𝑧𝑐,𝑓1 + 𝐵1,𝑓1

∗  𝑤𝑓1 𝑦𝑐,𝑓1)

+ (𝐴1,𝑓2 
∗ 𝑤𝑓2 𝑦𝑐,𝑓2 𝑧𝑐,𝑓2 + 𝐵1,𝑓2

∗  𝑤𝑓2 𝑦𝑐,𝑓2)  

+ (𝐵𝑤
∗  𝑤𝑤 𝑧𝑐,𝑤 + 𝐴𝑤

∗  𝑤𝑤 𝑧𝑐,𝑤  𝑦𝑐,𝑤)} 

(3.33) 

 

The bending stiffness of composite Z-Beam can be obtained from above equations, the 

equations provides bending stiffness about z-direction of the beam 𝐷̅𝑧 and y-z directional 

coupled bending stiffness 𝐷̅𝑦𝑧. 
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3.5.2 Expression for Bending Stiffness 𝐷̅𝑦 

To obtain the bending stiffness of asymmetric composite Z-beam about y-axis, a 

moment 𝑀̅𝑦
𝑐  is applied at the centroid. Mechanics theory gives following relationship: 

 𝑀̅𝑦
𝑐 = 𝐷̅𝑦к𝑦

𝑐 + 𝐷̅𝑦𝑧к𝑧
𝑐    (3.34) 

Where,  

𝑀̅𝑦
𝑐 is sum of the total moment components of each sub-laminate 

𝐷̅𝑦 = 𝐸𝐼𝑦𝑦 = equivalent bending stiffness of Z-beam about y-axis. 

к𝑧
𝑐  is curvature of the beam about z-axis and к𝑦

𝑐  is curvature of the beam about y-axis. 

Since 𝐷̅𝑦𝑧 has been obtained in the previous case, we focus to obtain the term of 𝐷̅𝑦  

which is corresponding to к𝑦
𝑐 .  Hence, in the following derivation, we will ignore the term of 𝐷̅𝑦𝑧.  

Hence, Equation 3.35 will be rewritten as  

 𝑀̅̅𝑦
𝑐 = 𝐷̅𝑦к𝑦

𝑐    (3.35) 

Where 𝑀̅̅𝑦
𝑐 is part of moment caused by к𝑦

𝑐 . 

The equations for moments by top and bottom flanges are given below. The web has different 

co-ordinate system and its equations for moment are described later in this section. 

 𝑀̅̅𝑦
𝑐 = M̅̅𝑦,𝑓 + M̅̅𝑦,𝑤 (3.36) 

Where,  

              M̅̅𝑦,𝑓 is the total moment about global y-direction, by top and bottom flanges.  

              M̅̅𝑦,𝑤 = total moment about global y-direction, by web caused by к𝑦
𝑐 . 

First, obtaining the expression for M̅̅𝑦,𝑓, which can be done by multiplying the local 

moments and forces of the flanges with their respective sectional widths to get the total 
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local/sectional forces and moments. Shifting the local forces and moments to the global centroid, 

following expression is obtained. 

 M̅̅𝑦,𝑓  = 𝑤𝑓1 M𝑥,𝑓1 + 𝑤𝑓1 𝑁𝑥,𝑓1 𝑧𝑐,𝑓1 + 𝑤𝑓2 M𝑥,𝑓2 + 𝑤𝑓2 𝑁𝑥,𝑓2 𝑧𝑐,𝑓2 (3.37) 

 

Adjusting the mid-plane strains and curvatures, to read curvature about y-axis only. 

 𝜀𝑥 = 𝜀𝑥
⁰ + 𝑧𝑐 к𝑦

𝑐     (3.38) 

For top flange, the above equation becomes. 

 𝜀𝑥,𝑓1 = 𝜀𝑥
⁰ + 𝑧𝑐,𝑓1 к𝑥,𝑓1  (3.39) 

The structure is perfectly bonded, and the moment is applied at the centroid, which results in 

following conditions. 

 
𝜀𝑥

⁰ = 0 

к𝑥,𝑓1 = к𝑦
𝑐    

(3.40) 

By implementing above conditions in Equation 3.38, strains for top and bottom flanges are 

given as. 

 
𝜀𝑥,𝑓1 = 𝑧𝑐,𝑓1к𝑦

𝑐   

𝜀𝑥,𝑓2 = 𝑧𝑐,𝑓2к𝑦
𝑐  

(3.41) 

The constitutive equations of the flanges are given as. 

 𝑁𝑥,𝑓𝑖 = 𝐴1,𝑓𝑖
∗  𝑧𝑐,𝑓𝑖 к𝑦

𝑐 + 𝐵1,𝑓𝑖
∗  к𝑦

𝑐      (3.42) 

 𝑀𝑥,𝑓𝑖 = 𝐵1,𝑓𝑖 
∗ 𝑧𝑐,𝑓𝑖 к𝑦

𝑐 + 𝐷1,𝑓𝑖
∗  к𝑦

𝑐     (3.43) 

Where, i= 1 and 2, represents top and bottom flanges, respectively. 

Inserting Equation 3.42 and 3.43 in Equation 3.37, the expression for M̅𝑦,𝑓 is obtained. 

 

 

 

 

M̅̅𝑦,𝑓 = 𝑤𝑓1 [𝐵1,𝑓1
∗  𝑧𝑐,𝑓1к𝑦

𝑐 + 𝐷1,𝑓1
∗  к𝑦

𝑐 ] + 𝑤𝑓1 [𝐴1,𝑓1
∗ 𝑧𝑐,𝑓1к𝑦

𝑐 + 𝐵1,𝑓1
∗  к𝑦

𝑐 ] 𝑧𝑓1 +  

𝑤𝑓2 [𝐵1,𝑓2
∗ 𝑧𝑐,𝑓2к𝑦

𝑐 + 𝐷1,𝑓2
∗  к𝑦

𝑐 ] + 𝑤𝑓2 [𝐴1,𝑓2
∗ 𝑧𝑐,𝑓2к𝑦

𝑐 + 𝐵1,𝑓2
∗  к𝑦

𝑐 ] 𝑧𝑓2 
(3.44) 
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 M̅̅𝑦,𝑓  = [𝑤𝑓1𝐵1,𝑓1
∗ 𝑧𝑐,𝑓1 + 𝑤𝑓1𝐷1,𝑓1

∗ + 𝑤𝑓1𝐴1,𝑓1
∗ 𝑧𝑐,𝑓1

2 + 𝑤𝑓1𝐵1,𝑓1
∗ 𝑧𝑐,𝑓1 +

𝑤𝑓2 𝐵1,𝑓2
∗  𝑧𝑐,𝑓2 + 𝑤𝑓2 𝐷1,𝑓2

∗ + 𝑤𝑓2 𝐴1,𝑓2 
∗ 𝑧𝑐,𝑓2

2 + 𝑤𝑓2𝐵1,𝑓2 
∗ 𝑧𝑐,𝑓2]к𝑦

𝑐    
(3.45) 

   

Now, obtaining the expression for M̅̅𝑦,𝑤. 

The web has a different co-ordinate system, the global к𝑦
𝑐  is web’s local к𝑦,𝑤. 

Integrating axial force of the web to obtain the moment along the x-direction and shifting the 

moment to centroid of the Z-beam. 

 M̅̅𝑦,𝑤  = ∫ {𝑧 ∗  𝑁𝑥,𝑤} 𝑑𝑧

𝑧𝑐,𝑤+  𝑤𝑤/2

𝑤𝑤
2

 − 𝑧𝑐,𝑤

 (3.46) 

Reading only к𝑦
𝑐  which is local к𝑦,𝑤, and considering that the web is of symmetric layup and the 

beam is perfectly bonded. 

 

𝐵1,𝑤
∗ = 0 

к𝑥,𝑤 = к𝑧
𝑐  

к𝑦,𝑤 = к𝑦
𝑐  

   

(3.47) 

Applying above conditions in Equation 3.7, the constitutive equations for the web are given as. 

 
𝑁𝑥𝑤 = 𝐴1,𝑤

∗  [𝑧𝑐,𝑤 к𝑦
𝑐 ] + 𝐵1,𝑤

∗  к𝑧
𝑐  

𝑀𝑥𝑤 = 𝐵1,𝑤
∗ [𝑧𝑐,𝑤 к𝑦,𝑤] + 𝐷1,𝑤

∗ к𝑧
𝑐   

(3.48) 

Reading curvature к𝑦
𝑐  and inserting Equation 3.48 in Equation 3.46, and expanding the integral, 

the following expression is obtained. 

 M̅̅𝑦,𝑤= 𝐴1,𝑤
∗  [𝑧𝑐,𝑤

2  𝑤𝑤 + (
𝑤𝑤

3

12
) ] к𝑦

𝑐    (3.49) 

Combining Equation 3.49, 3.45 and inserting them in Equation 3.36, the equation for the total 

moment about y-direction is obtained, which is given as. 
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 𝑀̅̅𝑦
𝑐 = [𝑤𝑓1 𝐷1,𝑓1

∗ + 𝑤𝑓1 𝐴1,𝑓1
∗  𝑧𝑐,𝑓1

2 + 2 𝑤𝑓1 𝐵1,𝑓1
∗  𝑧𝑐,𝑓1 + 𝑤𝑓2 𝐷1,𝑓2

∗ +

𝑤𝑓2 𝐴1,𝑓2
∗  𝑧𝑐,𝑓2

2 + 2 𝑤𝑓2 𝐵1,𝑓2 
∗ 𝑧𝑐,𝑓2 + 𝐴1,𝑤

∗  [𝑧𝑐,𝑤
2  𝑤𝑤 + (

𝑤𝑤
3

12
) ]] к𝑦

𝑐  

(3.50) 

 

By comparing Equation 3.50 and Equation 3.35, expressions for bending stiffness 𝐷̅𝑦 can be 

obtained. 

 

𝐷̅𝑦 = [𝑤𝑓1 𝐷1,𝑓1
∗ + 𝑤𝑓1 𝐴1,𝑓1

∗  𝑧𝑐,𝑓1
2 + 2 𝑤𝑓1 𝐵1,𝑓1

∗  𝑧𝑐,𝑓1 + 𝑤𝑓2 𝐷1,𝑓2
∗

+ 𝑤𝑓2 𝐴1,𝑓2
∗  𝑧𝑐,𝑓2

2 + 2 𝑤𝑓2 𝐵1,𝑓2 
∗ 𝑧𝑐,𝑓2

+ 𝐴1,𝑤
∗  [𝑧𝑐,𝑤

2  𝑤𝑤 + (
𝑤𝑤

3

12
) ]] 

(3.51) 

   

3.5.3 Stresses in Layers of Flange Sub-laminates  
 

                The approach of finding mid-plane strain and curvature and then using lamination 

theory equations to find stresses in the layers was followed to find the stresses. Individual forces 

in the Laminates were obtained by using curvatures of the beam under bending load. 

Applying moments at the centroid of Z-beam, and considering following equations. 

 
M̅𝑦

𝑐
= 𝐷̅𝑦к𝑦

𝑐 + 𝐷̅𝑦𝑧к𝑧
𝑐 

M̅𝑧
𝑐

= 𝐷̅𝑦𝑧к𝑦
𝑐 + 𝐷̅𝑧к𝑧

𝑐  
(3.52) 

Rearranging above equations, the equations for curvatures к𝑦
𝑐  and к𝑧

𝑐  can be obtained.  

 

к𝑦
𝑐 = 

M̅𝑦
𝑐
𝐷̅𝑧 − M̅𝑧

𝑐
𝐷̅𝑦𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2  

к𝑧
𝑐 = 

M̅𝑧
𝑐
𝐷̅𝑦 − M̅𝑦

𝑐
𝐷̅𝑦𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2  

(3.53) 
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The stresses are extracted by applying a moment M̅𝑦
𝑐

 at the centroid of the beam, therefore 

modifying the above equations for curvatures. 

 

 

к𝑦
𝑐 = 

M̅𝑦
𝑐
𝐷̅𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2 

к𝑧
𝑐 = 

−M̅𝑦
𝑐
𝐷̅𝑦𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2 

(3.54) 

Equation 3.53 and 3.54 can be used to obtain the curvature values, when a moment 

about y-direction is applied at the beam centroid.  

Considering the fact that the moment is applied at the centroid and the conditions in 

Equation 3.40, the strains for top flange can be written as. 

 𝜀𝑥,𝑓1 = 𝑧𝑐,𝑓1  к𝑦
𝑐 + 𝑦𝑐,𝑓1 к𝑧

𝑐 (3.55) 

The axial force and moment in top flange is given by the constitutive equations for top flange 

as. 

 

𝑁𝑥,𝑓1 = 𝐴1,𝑓1
∗ ∗ (𝑧𝑐,𝑓1  к𝑦

𝑐 + 𝑦𝑐,𝑓1 к𝑧
𝑐) + 𝐵1,𝑓1

∗ ∗  к𝑦
𝑐  

𝑀𝑥,𝑓1 = 𝐵1,𝑓1
∗  (𝑧𝑐,𝑓1  к𝑦

𝑐 + 𝑦𝑐,𝑓1 к𝑧
𝑐) + 𝐷1,𝑓1

∗ ∗  к𝑦
𝑐  

(3.56) 

The force and moment obtained from Equations 3.60 and 3.61 can be used to calculate the stress 

values in all layers of top flange sub-laminate from lamination theory. 

The relation between mid-plane strains and forces on a composite laminate can be written in 

matrix from as. 

 

[
 
 
 
 
 
 
𝜀𝑥

0

𝜀𝑦
0

𝛾𝑥𝑦
0

к𝑥

к𝑦

к𝑥𝑦]
 
 
 
 
 
 

𝑓1

= 

[
 
 
 
 
 
𝑎11

𝑎12

𝑏11

𝑏12

𝑎16

𝑏11

𝑏12

𝑏16

𝑑11

𝑑12

𝑏16 𝑑16

𝑏16

𝑏26

𝑏66

𝑑16

𝑑26

𝑑66]
 
 
 
 
 

𝑓1

  [

𝑁𝑥,𝑓1

𝑀𝑥,𝑓1

𝑀𝑥𝑦,𝑓1

] (3.57) 
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The strains in kth layer of top flange sub-laminate can be calculated as. 

 [𝜀𝑓1]𝑘  = [𝜀⁰]
𝑓1

+ 𝑧𝑘[к]𝑓1 (3.58) 

Where, zk is the position of kth layer from the mid-plane of sub-laminate f1 (top flange). 

 [

𝜀𝑥,𝑓1

𝜀𝑦,𝑓1

𝜀𝑥𝑦,𝑓1

]

𝑘

 = [

𝜀𝑥,𝑓1
0

𝜀𝑦,𝑓1
0

𝛾
𝑥𝑦,𝑓1
0

] + 𝑧𝑘 [

к𝑥,𝑓1

к𝑦,𝑓1

к𝑥𝑦,𝑓1

] (3.59) 

Stress in global directions of kth layer of top flange sub-laminate can be calculated from 

laminations theory by using following equation.  

 [𝜎𝑥−𝑦𝑓1
]𝑘  = [𝑄̅]𝑘  [𝜀𝑓1]𝑘 (3.60) 

The above method can also be used to extract stress values from bottom flange sub-

laminate, as both flanges have same orientation with respect to global co-ordinates. 

 

3.5.4 Stresses in Layers of Web Sub-laminate  
 

The strains for web laminate under bending load from moment M̅𝑦
𝑐

 are given as.  

 𝜀𝑥,𝑤 = 𝜀𝑥
⁰ + 𝑧𝑐,𝑤  к𝑦

𝑐 + 𝑦𝑐,𝑤  к𝑧
𝑐 (3.61) 

Where,   
𝜀𝑥

⁰ = 0 

к𝑦,𝑤 =   к𝑦
𝑐    and к𝑥,𝑤 =  к𝑧

𝑐   
(3.62) 

The force and moment in web is given by the constitutive equations for web as. 

 𝑁𝑥,𝑤 = 𝐴1,𝑤
∗ ∗ (𝑧𝑐,𝑤 к𝑥,𝑤 + 𝑦𝑐,𝑤 к𝑧,𝑤) + 𝐵1,𝑤

∗ ∗  к𝑧
𝑐      (3.63) 

 𝑀𝑥,𝑤 = 𝐵1,𝑤
∗  (𝑧𝑐,𝑤 к𝑥,𝑤 + 𝑦𝑐,𝑤 к𝑧,𝑤) + 𝐷1,𝑤

∗ ∗  к𝑧
𝑐     (3.64) 

The force and moment obtained from Equation 3.63 and 3.64 can be used to calculate 

the stress values in all layers of web sub-laminate from lamination theory, by using Equation 3.57 

through Equation 3.60. 
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3.6 Temperature Effects  
 

3.6.1 Temperature Induced Bending Moments  

When the cross section of the beam is exposed to a temperature change, and different 

sections are exposed to different temperature gradients, a normal force and moments about the 

centroid are generated. The figure below shows, temperature induced moments on an isotropic 

material, asymmetric beam of Z cross-section. When top flange is exposed to a positive 

temperature gradient, and Web and Bottom flange experience zero temperature gradient, the 

top flange will experience a normal force Nt which will tend to move out of the plane of paper 

and as the sections are joined, it will generate moments 𝑀𝑥,𝑡,𝑐   and 𝑀𝑦,𝑡,𝑐 about the centroid of 

the beam. 

 

Figure 3.5 Temperature induced moments in an isotropic Z beam 

The beam shown in above figure is an asymmetric isotropic beam of Z cross-section and 

the centroidal axes of this beam are different from the centroidal axes of the composite 

laminated Z-beam, this means that the moment directions shown in Figure 3.5 do not reflect 

moment directions of the composite Z-beam.  
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3.6.2 Temperature Effects on Isotropic Material Beams 

The beams in aircraft are generally thin walled and do not necessarily have axes of 

symmetry, also they are subjected to temperature gradient while in service. Depending on the 

location and purpose on the beam in the structure, the beam experiences different temperate 

gradients on different sections like in case of a Z-Beam, web, top and bottom flange experiencing 

different temperature gradients causing each component have their own normal force and 

moments, and as explained previously. 

The effects of temperature on such beams have been determined for isotropic beam 

cross-sections. The equations for the moment and force resultants due to temperature gradients 

on an isotropic beam an arbitrary cross section are given below [15].  

 𝑁𝑥,𝑡,𝑐 = ∑𝐸 α ∆T 𝐴𝑖 (3.65) 

 

 𝑀𝑥,𝑡,𝑐 = ∑𝐸 α ∆T 𝑦̅𝑖 𝐴𝑖 (3.66) 

 

 𝑀𝑦,𝑡,𝑐 = ∑𝐸 α ∆T 𝑥̅𝑖 𝐴𝑖 (3.67) 

Where,  

𝑁𝑥,𝑡,𝑐 is the normal force resultant. 

𝑀𝑥,𝑡,𝑐   and 𝑀𝑦,𝑡,𝑐 are the moment resultants about the centroidal x and y directions 

respectively. 

𝐴𝑖 is the cross-sectional areas of the components. 

𝑥̅𝑖   and 𝑦̅𝑖 are the coordinates of its centroid. 

The above equations are summation equations, as the cross-section of the structure is 

divided into different sections and temperature effects on each section are evaluated separately 

and summarized. The temperature induced normal forces and moments can be used to obtain 

stresses, and the stresses can be added to the mechanical stresses for the analysis of structure 

and the beam.  
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3.6.3 Temperature effects on Composite Beam 

The thermal behavior of the composite laminates is different from the thermal behavior 

of the isotropic materials, as discussed in the thermal section of Chapter 2, each ply has its own 

coefficient of thermal expansion. This section covers the equations for the moments generated 

by the different temperature gradients on different sections of the laminated Z-Beam. 

 

Figure 3.6 Temperature induced forces and their locations on cross-section of Z-beam 

The above figure shows normal forces generated in the sections of composite Z-beam, 

where script T represents the forces and moments because of temperature gradient, all other 

notations remain same as before. For example 𝑁𝑥,𝑓1
𝑇  represents normal force due to temperature 

gradient, along x-direction of top flange sub-laminate. 
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3.6.4 Temperature Induced Bending Moment  
 

To calculate the moments generated about the centroid because of temperature 

gradients on composite Z-beam, normal forces generated because of temperature are used to 

derive the expression for induced moments.  

Temperature change also generates moments in composite laminates, but for balanced 

and symmetric laminates those moments are zero. So for a balanced and symmetric laminate, 

which is the desired laminate setup for thermal applications of composites, the resultant thermal 

moments about the centroid are induced by the normal forces generated in the sections because 

of temperature gradient. 

Moment about z-axis of Z-beam can be given by following expression. 

 𝑀𝑧
𝑐𝑇 = 𝑀𝑧,𝑓1

𝑐𝑇 + 𝑀𝑧,𝑓2
𝑐𝑇 + 𝑀𝑧,𝑤

𝑐𝑇  (3.68) 

Where, 

𝑀𝑧
𝑐𝑇 = Moment induced about z-axis of Z-beam by normal thermal forces. 

Subscripts f1, f2, and w refers to top flange, bottom flange, and web respectively.  

Now, evaluating moments generated by two flanges and web separately. 

Moment about z-axis of the centroid, induced by top flange: 

 𝑀𝑧,𝑓1
𝑐𝑇 = ∫ {𝑦 ∗ 𝑁𝑥,𝑓1

𝑇 } 𝑑𝑦

−𝑦𝑐,𝑓1+  𝑤𝑓1/2

−𝑦𝑐,𝑓1− 𝑤𝑓1/2

 (3.69) 

Moment about z-axis of the centroid, induced by bottom flange: 

 𝑀𝑧,𝑓1
𝑐𝑇 = ∫ {𝑦 ∗ 𝑁𝑥,𝑓1

𝑇 } 𝑑𝑦

𝑦𝑐,𝑓2+  𝑤𝑓2/2

𝑦𝑐,𝑓2− 𝑤𝑓2/2

 (3.70) 

Moment about z-axis of the centroid, induced by web: 

 𝑀𝑧,𝑤
𝑐𝑇  = 𝑤𝑤 ∗ 𝑁𝑥,𝑤

𝑇 ∗ 𝑦𝑐,𝑤   (3.71) 
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Where, 

𝑦𝑐,𝑓1 and 𝑦𝑐,𝑓2 are distances from centroid of the beam to the centroids of top and bottom flanges 

respectively.  

𝑁𝑥,𝑖
𝑇  is the force in x-direction induced by the temperature change, which was explained in section 

2.2.3 of Chapter 2, expression for which is given by Equation 2.39. 

Expanding the integrals in Equation 3.72 through 3.74, and inserting them in Equation 3.71, the 

total moment 𝑀𝑧
𝑐𝑇 is given by following expression. 

 
𝑀𝑧

𝑐𝑇 = −(𝑁𝑥,𝑓1
𝑇 ∗ 𝑦𝑓1 ∗ 𝑤𝑓1) + (𝑁𝑥,𝑓2

𝑇 ∗ 𝑦𝑓2 ∗ 𝑤𝑓2) + (𝑁𝑥,𝑤
𝑇 ∗ 𝑦𝑤

∗ 𝑤𝑤) 
(3.72) 

Similar method can be followed to obtain the equation for 𝑀𝑦
𝑐𝑇, which is shown below. 

 

𝑀𝑦
𝑐𝑇 = −(𝑁𝑥,𝑓1

𝑇 ∗ 𝑧𝑓1 ∗ 𝑤𝑓1) + (𝑁𝑥,𝑓2
𝑇 ∗ 𝑧𝑓2 ∗ 𝑤𝑓2) + (𝑁𝑥,𝑤

𝑇 ∗ 𝑧𝑤

∗ 𝑤𝑤) 

 

(3.73) 

3.6.5 Stresses in Layers of Sub-laminates by Temperature Induced Moments. 
 

The temperature induced moments 𝑀𝑦
𝑐𝑇 and 𝑀𝑧

𝑐𝑇 are experienced simultaneously by the 

beam, considering Equations 3.52 through 3.54, and inserting temperature induced moments in 

place of respective mechanical moments, the curvatures can be given by following expressions.  

 к𝑦
𝑐 = 

𝑀𝑦
𝑐𝑇𝐷̅𝑧 − 𝑀𝑧

𝑐𝑇𝐷̅𝑦𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2  (3.74) 

 к𝑧
𝑐 = 

𝑀𝑦
𝑐𝑇𝐷̅𝑦 − 𝑀𝑦

𝑐𝑇𝐷̅𝑦𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2  (3.75) 

 

The stresses in layers of sub-laminates can be calculated by following the exact procedure 

explained in the previous section.  
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Chapter 4  

FINITE ELEMENT ANALYSIS  
 

This chapter explains finite element modeling of the composite Z-Beam in detail. 

Validation of the model, applied boundary conditions and extraction of the results is covered in 

this chapter. Modeling of the composite Z-Beam was done in ANSYSTM Classic (APDL) version 16 

and 17. 

4.1 Material Properties 

The material used for the composite laminate was 0.005” thick AS4/3501-6 

graphite/epoxy laminate, unidirectional layer orthotropic properties for which are given as. 

E1 = 19.3 ∗ 106  psi E2 = 1.62 ∗ 106  psi E1 = 1.62 ∗ 106  psi 

𝜈12 = 0.288 𝜈23 = 0.288 𝜈13 = 0.288 

𝐺12 = 1.02 ∗ 106  psi 𝐺23 = 1.02 ∗ 106  psi 𝐺13 = 1.02 ∗ 106  psi 

α1 = 2.0 ∗ 10-6 in/in/0F  α2 = 15 ∗ 10-6 in/in/0F  α3 = 15 ∗ 10-6 in/in/0F  

Where E1, E2, and E3 are the Young’s moduli, and α1, α2, α3 are co-efficient of thermal 

expansion of the composite lamina in lamina’s local coordinates. 𝐺12, 𝐺23, 𝐺13 are the shear 

moduli, 𝜈12 ,  𝜈23, and 𝜈13 are Poisson’s ratio with respect to the 1-2, 2-3 and 1-3 planes, 

respectively. 

4.2 Model Geometry and Stacking Sequence  

The composite Z-Beam was asymmetric, the web had a width of 1”, the top flange was 

0.5” wide and bottom flange was 0.7” wide. The stacking sequence for the web laminate was 4 

ply [ 45−
+ ]𝑆 laminate, which was kept same throughout the study. The stacking sequence for the 

top and bottom flanges were identical initially, which was an 8 ply [ 45/ 0/ 90 −
+ ]𝑆 laminate, each 

ply was 0.005” thick. The dimensions of the model beam were parameterized, to consider cases 

of different dimensions, if required.  
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4.3 Modeling  

The composite beam was modeled in ANSYSTM Classic (APDL) version 16 and 17, a 

SOLID185, layered structural solid element was used to model the beam. The element is a 3D 

block element with eight nodes and three degrees of freedom per node. 

 

Figure 4.1: Meshed and layered asymmetric Z-Beam in ANSYSTM. 

The SOLID185 is a structural layered solid element, the element can be assigned different 

layers and each layer can be assigned different properties like fiber orientation, co-ordinate 

system etc. The cross section of the Z-beam was modeled as three different volumes for web, 

top and bottom flange, each of which was assigned their specific stacking sequences separately. 

The meshing was done manually to obtain an efficient mesh, which would provide accurate 

solution by not consuming much processing power and time. To better explain the application of 

forces and boundary conditions, the two ends of the beam were named, the end at zero length 
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(l=0) was named as origin end, and the end where forces and moments were applied was named 

force end. These names will be used further in this document. 

The length of the beam was 10”, this length was selected by considering the cross-

sectional dimensions of the beam to minimize any interference of the results by the applied 

boundary conditions. As the beam was asymmetric, its centroid did not lie on the cross section, 

it was a point outside the cross-section. Location of centroid varied depending on the ply layup 

and material properties, so the location of the centroid was also parameterized in the model. 

 

     Figure 4.2: Cross-section of the beam showing nodes, centroidal node encircled in red. 

The study required application of loads on the centroid to obtain the axial and bending 

properties of the beam. In order to ensure uniform longitudinal cross-sectional deformation 

along x-axis under the influence of finite tension load applied at the centroidal node a multi-point 

constraint was generated about the centroidal node. The multi-point constraint is used to couple 

degrees of freedom of a set of nodes (Slave nodes) to a parent node (Pilot node), this feature 

also served as a connection to transmit the loads between the centroidal node and nodes on the 
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beam cross-section, as centroid was not connected to the beam initially. The multi-point 

constraint connected the centroidal node and the nodes on the end of cross-section by 

generating constraint equations that mathematically relates nodes on the cross-section. The 

constraint equations generated are based on small deflection theory. 

The centroidal node was created at both ends of the beam and the nodes along the free 

edges of the beam were identified before issuing the command. Multiple rigid lines were formed 

to link the slave nodes (nodes on the edges) to the pilot node (centroidal node). 

 

Figure 4.3: Nodes on both ends connected/coupled to the centroidal node. 

The loads were applied to the centroidal node on the force end and the boundary 

conditions on origin end were applied on the centroidal node at that end.  
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4.4 Model Validation  
 

4.4.1 Axial Stiffness  

The finite element model was validated by changing the material to isotropic while 

maintaining same model size, geometry, element orientation, and comparing the beam 

properties obtained by different methods. 

Material of the model was changed from an orthotropic to isotropic material, aluminum 

was chosen for this validation, and properties of aluminum are given as. 

𝐸 = 𝐸1 = 𝐸2 = 𝐸3 = 1.02 ∗ 107𝑝𝑠𝑖 

𝑣 = 𝑣12 = 𝑣23 = 𝑣13 = 0.30 

𝐺 = 𝐺12 = 𝐺12 = 𝐺12 = 
𝐸

2(1 + 𝑣)
= 3.7 ∗ 106𝑝𝑠𝑖 

α 1 = α 2 = α 3 =  α =  13.1 ∗ 10−6 in/in/0𝐹 

The properties compared were axial and bending curvatures of the beam, and were 

obtained from Mechanics theory, current method and Finite Element methods. 

Mechanics method and present method were covered in Chapter 3, Equation 3.6 and 

Equation 3.12 were used to obtain the values of axial stiffness Ax from mechanics’ method and 

current method, respectively.  

Axial stiffness of the beam was obtained from the finite element analysis by applying a 

force of 1 lb on the centroid in x-direction and axial deflection (𝑈𝑥) was observed.  

Following equation was used to calculate the axial stiffness of the beam. 

 
𝐴𝑥 =

𝐹𝐿

2(𝑈𝑥 𝑎𝑡 𝑥=𝐿/2)
 (4.1) 

Where, 

𝐴𝑥 is axial stiffness of the beam. 
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F is force applied on the centroid.  

L is length of the beam.  

𝑈𝑥 is the displacement in x direction. 

To minimize the distortion of the results by boundary conditions or the applied load, the results 

were read halfway through the length of the beam, at L/2. 

Table 4-1 Comparison of axial stiffness calculated from three different methods. 

Length 

L 

(in) 

Load 

F 

(lb) 

Mechanics 

Eqn. 3.6 

𝐴𝑥,𝑚  

(lb) 

Present 
method 

(Eq. 3.12) 
𝐴𝑥,𝑒  

(lb) 

FEM 

𝐴𝑥,𝑓𝑒  

(lb) 

Difference 

%  

𝐴𝑥,𝑚- 𝐴𝑥,𝑓𝑒  

Difference 

%  

𝐴𝑥,𝑒- 𝐴𝑥,𝑓𝑒  

10 1 68000 67980 69787 2.5 0.02 

 

4.4.2 Bending Stiffness  

To obtain the bending stiffness and bending curvatures, a bending moment should be 

applied at the centroid of the beam and to ensure effective transfer of the bending effect to the 

cross-section of the beam, some more modeling was performed at force end of the beam. The 

conditions on the origin end, where boundary conditions would be applied were not changed. 

A small circular beam was modeled at the centroid location at force end and the small 

beam was meshed in such a way that the middle node of the beam was a point lying on the 

centroid location of the force end. The circular beam was 0.02” in length in global x-direction, 

with its middle point on centroid, the beam ran parallel to the web of the Z beam, and the local 

co-ordinate system of the small beam was aligned with the global co-ordinate system of the Z-

Beam.  

The circular beam had total three nodes along its length, mid node being at the centroid. 

Middle node of the circular beam was coupled to all the nodes on the force end of the Z beam 

by using multi-point constraint explained earlier in section 4.3. 
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In order to apply the moments at the centroid of the Z beam, two equal and opposite 

forces were applied on the nodes at two opposite ends of the circular beam, simulating a 

moment. To avoid distortions in moment application because of local deformations in circular 

beam, properties of the circular beam were adjusted considering its length and material to 

minimize the deformation of the circular beam in the process. 

 

Figure 4.4: Forces and boundary conditions applied on centroidal nodes. 
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Figure 4.5: Moment applied by equal and opposite forces. 

To apply a moment on the centroidal node, which was at the center of the circular beam 

and was coupled to the slave nodes at the force end of the beam, two equal and opposite forces 

were applied on the end nodes of the circular beam as shown in the figure above. The circular 

beam was 0.02” long and forces of magnitude 5 lb were applied at the two ends of the circular 

beam, generating a concentrated moment of 0.1 lb-in at the centroid of the beam. 

Both moments M̅𝑦
𝑐

 and M̅𝑧
𝑐
 had same magnitude of 0.1 lb-in and were applied in the same 

manner as described above, the direction of forces were changed, magnitude was kept same.  

The beam was showing significant curvatures in both x and y directions, upon application 

of moment on the centroid, regardless of the moment applied (Mz or My) because of coupling, 

as Dyz was non-zero. Thus the values of 𝐷̅𝑦, 𝐷̅𝑧, and 𝐷̅𝑦𝑧 could not be obtained directly from the 

available equations. 
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Hence, to verify the model, curvatures к𝑦
𝑐  and к𝑧

𝑐  of the beam were obtained from the 

finite element analysis were compared with the curvatures obtained from developed equations, 

which were assigned isotropic material properties. 

The values of bending stiffness of the isotropic beam were obtained from current method 

and were used to calculate the curvature values. Equation 3.53 and Equation 3.54 were modified, 

as only one moment was applied at a time. 

 
к𝑦

𝑐 = 
M̅𝑦

𝑐
𝐷̅𝑦

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2 (4.2) 

 
к𝑧

𝑐 = 
−M̅𝑦

𝑐
𝐷̅𝑥𝑦

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2 (4.3) 

 
к𝑦

𝑐 = 
−M̅𝑧

𝑐
𝐷̅𝑥𝑦

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2 (4.4) 

 
к𝑧

𝑐 = 
M̅𝑧

𝑐
𝐷̅𝑥

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2 (4.5) 

The above equations give values of both curvatures к𝑦
𝑐  and к𝑧

𝑐, for applied bending moment M̅𝑦
𝑐

 

or M̅𝑧
𝑐
.  

The method to obtain the curvatures from the finite element analysis is explained in Appendix A 

[16]. 
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Table 4-2 Comparison of bending stiffness obtained from mechanics theory and present 
method. 

Isometric Bending Stiffness 

Property 
Method 

% Difference  
Mechanics Present Method 

𝐷̅𝑦 (lb-in2) 143980 143979 0.0 

𝐷̅𝑧 (lb-in2) 56218 56218 0.0 

𝐷̅𝑦𝑧 (lb-in2) -71576 -71575 0.0 

 

Table 4-3 Comparison of bending curvatures obtained from mechanics theory, present method 
and finite element analysis. 

 Bending curvature - M̅𝑦
𝑐

= 0.1  

Property 

Method 
% Difference  

Eqn. vs FEA Mechanics 
Present 

Method 
FEA 

к𝑦
𝑐  (1/in) 1.892E-06 1.892E-06 1.882E-06 -0.531 

к𝑧
𝑐  (1/in) 2.41E-06 2.411E-06 2.388E-06 -0.963 

 

 Bending curvature - M̅𝑧
𝑐
= 0.1  

Property 

Method 
% Difference  

Eqn. vs FEA Mechanics 
Present 

Method 
FEA 

к𝑦
𝑐  (1/in) 2.41E-06 2.411E-06 2.39E-06 -0.879 

к𝑧
𝑐  (1/in) 4.846E-06 4.846E-06 4.823E-06 -0.477 
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4.5 Thermal Model Validation 

 To validate the developed equations for the temperature induced moments on Z-beam, 

a finite element thermal analysis was to be performed on the laminated Z-beam. To validate the 

finite element thermal techniques, a finite element thermal analysis was performed on the 

isotropic Z-beam model.  

4.5.1 Thermal Model Description  

Thermal model was similar to the developed and validated finite element model, but with 

some minor modifications. It had different boundary conditions and results extraction 

techniques. The model was connected to its centroids on both ends by multi point constraints, 

the slave nodes on both ends of the beam shared boundary conditions with the master nodes, 

which were centroidal nodes.  

All degrees of freedom were constrained for the centroidal node on the origin end of the 

beam, and only y and z directional displacements were constrained for the centroid at the force 

end of the Z-beam.  

Temperature gradients on sections will generate forces and moments in the beam and as 

force end of the beam cannot displace in z and y directions, the beam can elongate in x-direction, 

hence, the moments were captured as reaction moments at the origin end centroidal node. 

4.5.2 Validation of Temperature Induced Moment Model  

The finite element thermal model was validated by comparing the temperature induced 

moments for an isotropic Z-beam of identical cross-sectional geometry. The moments obtained 

from the isotropic Equations 3.69 and 3.70 were compared against the moments obtained from 

the isotropic finite element model. 

To validate the thermal model, top flange of the Z beam was subjected to a temperature 

gradient of 70 degree Fahrenheit, with web and bottom flange experiencing zero change in 

temperature.  
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Figure 4.6: Temperature gradients in sections for model validation. 

 

Table 4-4 Comparison of moments obtained from FEA and equations for isotropic beam. 

Property Unit 
FEA 

(𝑀𝑦
𝑐𝑇) 

Present 
Method 
 (𝑀𝑦

𝑐𝑇) 
% Diff. 

FEA 
(𝑀𝑧

𝑐𝑇) 

Present 
Method 
 (𝑀𝑧

𝑐𝑇) 
% Diff. 

Moment lb-in 108.2 106.6 1.4 -59.4 -56.8 4.3 
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Chapter 5  
 

RESULTS AND DISCUSSIONS 
 

This chapter covers detailed validation of the results for the analytical equations developed in 

Chapter 3. The results were compared for different layer arrangements. 

5.1 Material and Stacking Sequence  

The material with following properties was used to obtain the results throughout the 

study. The composite laminate was 0.005” thick AS4/3501-6 graphite/epoxy laminate, 

unidirectional layer orthotropic properties for which are given as. 

E1 = 19.3 ∗ 106  psi E2 = 1.62 ∗ 106  psi E1 = 1.62 ∗ 106  psi 

𝜈12 = 0.288 𝜈23 = 0.288 𝜈13 = 0.288 

𝐺12 = 1.02 ∗ 106  psi 𝐺23 = 1.02 ∗ 106  psi 𝐺13 = 1.02 ∗ 106  psi 

α1 = 2.0 ∗ 10-6 in/in/0F  α2 = 15 ∗ 10-6 in/in/0F  α3 = 15 ∗ 10-6 in/in/0F  

Where E1, E1, and E1 are the Young’s moduli of the composite lamina along the material 

coordinates. 𝐺12, 𝐺12, 𝐺12 and are the Shear moduli and 𝜈12 ,  𝜈23, and 𝜈13 are Poisson’s ratio 

with respect to the 1-2, 2-3 and 1-3 planes, respectively. 

Different layer arrangements were considered for the results comparison. In this section 

each layer arrangement will be given a case number which will be used in results comparison 

tables. 

The cross-sectional geometry of the beam depended on the stacking sequence and 

number of plies used, that effected the height of the sections. The width of sections was not 

altered for any of the cases. The web was 1 inches wide, top flange was 0.5 inches wide and the 

bottom flange was 0.7 inches wide. 

The cases are listen in the table on next page. 
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Table 5-1 Results comparison cases and stacking sequence 

Case Description 
Layup for Top Flange  

( 0.5 in wide) 
Layup for Bottom Flange 

( 0.7 in wide)  
Layup for 

Web 

1 
Balanced and 

Symmetric  
[ 45/ 0/ 90 −
+ ]𝑆 [ 45/ 0/ 90 −

+ ]𝑆 [ 45−
+ ]𝑆 

2 
Balanced and 

Symmetric  
[ 45/ 0/ 90 −
+ ]𝑆 [ 45/ 02/ 90 −

+ ]𝑆 [ 45−
+ ]𝑆 

3 
Balanced and 
Asymmetric 

[ 45−
+ /0/90/0/90/ 45−

+ ]T [ 45−
+ /0/90/0/90/ 45−

+ ]T [ 45−
+ ]𝑆 

4 
Unbalanced 

and 
Asymmetric 

[ 45−
+ /-60/15/30/0/ 45−

+ ]T [ 45−
+ /-60/15/30/0/ 45−

+ ]T [ 45−
+ ]𝑆 

 

The stacking sequences for the cases listed in table 5.1 were determined by 

understanding the role of stacking sequence on the practical manufacturing of laminated beam 

of Z-Section. The arrangement and its respective modeling was carefully examined and the web 

was kept symmetric for all the cases, which is desirable for the practical application of Z-Beam.  
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5.2 Centroid Locations for Results Comparison Cases  
 

The centroid of a composite beam or laminate depends on the geometry, stacking 

sequence and ply orientation, unlike isotropic materials. The centroid locations of isotropic case 

and for all the cases listed above are listed in the following table. The centroid locations are 

according to the Figure 3.2 in chapter 3. 

Table 5-2 Centroid locations for result cases 

Case Description 
Centroid 𝑧̅𝑐  

(in) 

Centroid 𝑦̅
𝑐
 

(in) 

1 
Balanced and 

Symmetric  
0.466 0.573 

2 
Balanced and 

Symmetric  
0.369 0.633 

3 
Balanced and 
Asymmetric 

0.466 0.573 

4 
Unbalanced and 

Asymmetric 
0.467 0.572 
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5.3 Results Comparison for Axial Stiffness  
 

The results for axial stiffness from finite element analysis were compared with the results 

obtained from developed equations. The results comparison for all the cases is provided in the 

following table. 

Table 5-3 Axial Stiffness Comparison 

Case Property  Unit 
Present 
Method 

FEA % Difference 

1 𝐴̅𝑥 (In-lb)/in 4.436E5 4.424E5 -0.251 

2 𝐴̅𝑥 (In-lb)/in 5.787E5 5.779E5 -0.125 

3 𝐴̅𝑥 (In-lb)/in 4.430E5 4.423E5 -0.161 

4 𝐴̅𝑥 (In-lb)/in 4.222E5 4.223E5 0.026 
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5.4 Results Comparison for Bending Stiffness  
 

The results for bending stiffness comparison are listed in this section. As described in 

section 4.4.2 of Chapter 4, curvatures and stresses from finite element analysis were compared 

with the curvature and stresses obtained from the developed equations. The bending curvatures 

were obtained by applying both moments M̅𝑦
𝑐

 and M̅𝑧
𝑐
 , the moments were applied by applying 

two equal and opposite forces of 5 lb in magnitude and both forces were applied at 0.01” from 

the centroid, hence the magnitude of both applied moments is 0.1 lb-in.  

The values of bending stiffness were obtained from the developed equations, bending 

stiffness values were used to obtain the curvature values by using Equation 4.5 thru 4.8. The 

curvature values were obtained by applying only one moment and keeping other moment as 

zero. Both moments were applied by one by one and curvature values were obtained from both 

moments were compared with the curvature values obtained from finite element analysis. The 

equations to obtain the curvature are listed below. 

All the stresses were obtained by applying moment M̅𝑦
𝑐

 of magnitude 0.1 lb-in at the centroid. 

Result comparison tables are listed from next page onwards. 
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Table 5-4 Bending Stiffness and curvature values 

Bending Stiffness Values – Current Method 

Case 

# 
Property Unit Value 

Curvatures – Present Method 

M̅𝑦
𝑐

= 0.1 lb-in M̅𝑧
𝑐

= 0.1 lb-in 

к𝑦
𝑐  (1/in) к𝑧

𝑐  (1/in) к𝑦
𝑐  (1/in) к𝑧

𝑐  (1/in) 

1 

𝐷̅𝑦  (lb-in2) 1.047e+05 

2.951e-06 3.771e-06 3.771e-06 7.123e-06 𝐷̅𝑧  (lb-in2) 4.339e+04 

𝐷̅𝑦𝑧  (lb-in2) -5.544e+04 

2 

𝐷̅𝑦  (lb-in2) 1.057e+05 

2.929e-06 3.761e-06 3.761e-06 7.135e-06 𝐷̅𝑧  (lb-in2) 4.339e+04 

𝐷̅𝑦𝑧  (lb-in2) -5.573e+04 

3 

𝐷̅𝑦  (lb-in2) 1.046e+05 

2.954e-06 3.774e-06 3.774e-06 7.131e-06 𝐷̅𝑧  (lb-in2) 4.332e+04 

𝐷̅𝑦𝑧  (lb-in2) -5.536e+04 

4 

𝐷̅𝑦  (lb-in2) 9.908e+04 

3.002e-06 3.805e-06 3.805e-06 7.266e-06 𝐷̅𝑧  (lb-in2) 4.094e+04 

𝐷̅𝑦𝑧  (lb-in2) -5.189e+04 
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Table 5-5 Bending Stiffness Curvature Comparison for applied 𝑀̅𝑦
𝑐 . 

Bending curvature - M̅𝑦
𝑐

= 0.1 

Case Property  Unit 
Present 
Method 

FEA % Difference 

1 
к𝑦

𝑐  (1/in) 2.951E-06 2.953E-06 0.07 

к𝑧
𝑐  (1/in) 3.771E-06 3.777E-06 0.16 

2 
к𝑦

𝑐  (1/in) 2.928E-06 2.93E-06 0.07 

к𝑧
𝑐  (1/in) 3.761E-06 3.768E-06 0.19 

3 
к𝑦

𝑐  (1/in) 2.953E-06 2.955E-06 0.07 

к𝑧
𝑐  (1/in) 3.774E-06 3.746E-06 -0.75 

4 
к𝑦

𝑐  (1/in) 3.0022e-06 3.11E-06 2.99 

к𝑧
𝑐  (1/in) 3.8054e-06 3.874E-06 1.29 

 

 

Graph 5-1: Comparison of Bending Curvatures for applied moment 𝑀̅𝑦
𝑐 . 
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Table 5-6 Bending Stiffness Curvature Comparison for applied 𝑀̅𝑧
𝑐 . 

Bending curvature - M̅𝑧
𝑐
= 0.1 

Case Property  Unit 
Present 
Method 

FEA % Difference 

1 

к𝑦
𝑐  (1/in) 3.771E-06 3.788E-06 0.45 

к𝑧
𝑐  (1/in) 7.123E-06 7.098E-06 -0.35 

2 
к𝑦

𝑐  (1/in) 3.761E-06 3.758E-06 -0.08 

к𝑧
𝑐  (1/in) 7.135E-06 7.142E-06 0.10 

3 

к𝑦
𝑐  (1/in) 3.774E-06 3.748E-06 -0.69 

к𝑧
𝑐  (1/in) 7.131E-06 7.099E-06 -0.45 

4 
к𝑦

𝑐  (1/in) 3.8054e-06 3.962E-06 3.48 

к𝑧
𝑐  (1/in) 7.2660e-06 7.394E-06 1.20 

 

 

Graph 5-2: Comparison of Bending Curvatures for applied moment 𝑀̅𝑧
𝑐 . 
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Table 5-7 Bending Stiffness Stress Comparison for case 1 – Top Flange 

Case 1- Balance and Symmetric – Top Flange 
 [ 45/ 0/ 90 −

+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 2.973 2.998 0.83 

𝜎𝑦  lb/in2 1.376 1.402 1.85 

𝜏𝑥𝑦 lb/in2 1.752 1.821 3.79 

2 -45 

𝜎𝑥  lb/in2 2.966 2.985 0.64 

𝜎𝑦  lb/in2 1.418 1.561 9.16 

𝜏𝑥𝑦 lb/in2 -1.782 -1.825 2.36 

3 0 

𝜎𝑥  lb/in2 10.842 11.552 6.15 

𝜎𝑦  lb/in2 -0.025 -0.027 7.41 

𝜏𝑥𝑦 lb/in2 -0.003 -0.003 0.00 

4 90 

𝜎𝑥  lb/in2 0.818 0.854 4.22 

𝜎𝑦  lb/in2 -2.921 -2.857 -2.24 

𝜏𝑥𝑦 lb/in2 -0.002 -0.002 0.00 

5 90 

𝜎𝑥  lb/in2 0.778 0.801 2.87 

𝜎𝑦  lb/in2 -2.576 -2.652 2.87 

𝜏𝑥𝑦 lb/in2 0.002 0.002 0.00 

6 0 

𝜎𝑥  lb/in2 9.702 10.341 6.18 

𝜎𝑦  lb/in2 0.009 0.01 10.00 

𝜏𝑥𝑦 lb/in2 0.003 0.003 0.00 

7 -45 

𝜎𝑥  lb/in2 2.591 2.681 3.36 

𝜎𝑦  lb/in2 1.338 1.412 5.24 

𝜏𝑥𝑦 lb/in2 -1.585 -1.621 2.22 

8 +45 

𝜎𝑥  lb/in2 2.584 2.642 2.20 

𝜎𝑦  lb/in2 1.381 1.4 1.36 

𝜏𝑥𝑦 lb/in2 1.614 1.7 5.06 
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Table 5-8 Bending Stiffness Stress Comparison for case 1 – Bottom Flange 

Case 1- Balance and Symmetric – Bottom Flange 
 [ 45/ 0/ 90 −

+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -1.63 -1.58 -3.2 

𝜎𝑦  lb/in2 -0.908 -0.879 -3.3 

𝜏𝑥𝑦 lb/in2 -1.037 -1.021 -1.6 

2 -45 

𝜎𝑥  lb/in2 -1.637 -1.587 -3.2 

𝜎𝑦  lb/in2 -0.865 -0.845 -2.4 

𝜏𝑥𝑦 lb/in2 1.007 1.001 -0.6 

3 0 

𝜎𝑥  lb/in2 -6.177 -5.841 -5.8 

𝜎𝑦  lb/in2 -0.011 -0.01 -10.0 

𝜏𝑥𝑦 lb/in2 -0.003 -0.003 0.0 

4 90 

𝜎𝑥  lb/in2 -0.504 -0.512 1.6 

𝜎𝑦  lb/in2 1.632 1.717 5.0 

𝜏𝑥𝑦 lb/in2 -0.002 -0.002 0.0 

5 90 

𝜎𝑥  lb/in2 -0.544 -0.556 2.2 

𝜎𝑦  lb/in2 1.978 1.998 1.0 

𝜏𝑥𝑦 lb/in2 0.002 0.002 0.0 

6 0 

𝜎𝑥  lb/in2 -7.316 -7.21 -1.5 

𝜎𝑦  lb/in2 0.022 0.024 8.3 

𝜏𝑥𝑦 lb/in2 0.003 0.003 0.0 

7 -45 

𝜎𝑥  lb/in2 -2.012 -1.981 -1.6 

𝜎𝑦  lb/in2 -0.945 -0.931 -1.5 

𝜏𝑥𝑦 lb/in2 1.204 1.187 -1.4 

8 +45 

𝜎𝑥  lb/in2 -2.019 -1.987 -1.6 

𝜎𝑦  lb/in2 -0.903 -0.874 -3.3 

𝜏𝑥𝑦 lb/in2 -1.175 -1.112 -3.2 
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Table 5-9 Bending Stiffness Stress Comparison for case 1 – Web 

Case 1- Balance and Symmetric – Web 
[ 45−
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Current 
Method 

FEA % Difference 

1 +45 

𝜎𝑥  lb/in2 -0.244 -0.256 4.69 

𝜎𝑦  lb/in2 -0.011 -0.012 8.33 

𝜏𝑥𝑦 lb/in2 -0.118 -0.121 1.67 

2 -45 

𝜎𝑥  lb/in2 -0.244 -0.254 3.94 

𝜎𝑦  lb/in2 0.041 0.042 4.76 

𝜏𝑥𝑦 lb/in2 0.075 0.078 3.85 

3 -45 

𝜎𝑥  lb/in2 -0.516 -0.528 2.27 

𝜎𝑦  lb/in2 -0.080 -0.083 0.00 

𝜏𝑥𝑦 lb/in2 0.256 0.268 4.48 

4 +45 

𝜎𝑥  lb/in2 -0.380 -0.412 5.00 

𝜎𝑦  lb/in2 0.006 0.006 0.00 

𝜏𝑥𝑦 lb/in2 -0.144 -0.145 0.69 

 

 

Graph 5-3: Comparison of Stresses in layers of top-flange sub-laminate for case 1. 
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Table 5-10 Bending Stiffness Stress Comparison for case 2 – Top Flange 

Case 2- Balance and Symmetric – Top Flange 
 [ 45/ 0/ 90 −

+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 2.956 2.998 1.40 

𝜎𝑦  lb/in2 1.368 1.421 3.73 

𝜏𝑥𝑦 lb/in2 1.743 1.766 1.30 

2 -45 

𝜎𝑥  lb/in2 2.949 3.102 4.93 

𝜎𝑦  lb/in2 1.411 1.621 11.88 

𝜏𝑥𝑦 lb/in2 -1.772 -1.821 2.69 

3 0 

𝜎𝑥  lb/in2 10.78 11.312 4.69 

𝜎𝑦  lb/in2 -0.024 -0.026 7.69 

𝜏𝑥𝑦 lb/in2 -0.003 -0.003 0.00 

4 90 

𝜎𝑥  lb/in2 0.813 0.854 4.80 

𝜎𝑦  lb/in2 -2.905 -3.113 6.68 

𝜏𝑥𝑦 lb/in2 -0.002 -0.002 0.00 

5 90 

𝜎𝑥  lb/in2 0.773 0.785 1.53 

𝜎𝑦  lb/in2 -2.562 -2.654 3.47 

𝜏𝑥𝑦 lb/in2 0.002 0.0019 -5.26 

6 0 

𝜎𝑥  lb/in2 9.649 10.21 5.49 

𝜎𝑦  lb/in2 0.009 0.01 10.00 

𝜏𝑥𝑦 lb/in2 0.003 0.003 0.00 

7 -45 

𝜎𝑥  lb/in2 2.577 2.687 4.09 

𝜎𝑦  lb/in2 1.331 1.432 7.05 

𝜏𝑥𝑦 lb/in2 -1.576 -1.658 4.95 

8 +45 

𝜎𝑥  lb/in2 2.570 2.741 6.20 

𝜎𝑦  lb/in2 1.373 1.412 2.62 

𝜏𝑥𝑦 lb/in2 1.606 1.721 6.68 
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Table 5-11 Bending Stiffness Stress Comparison for case 2 – Bottom Flange 

Case 2- Balance and Symmetric – Bottom Flange 
[ 45/ 02/ 90/ −
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -1.579 -1.545 -2.20 

𝜎𝑦  lb/in2 -0.904 -0.876 -3.20 

𝜏𝑥𝑦 lb/in2 -1.014 -0.987 -2.74 

2 -45 

𝜎𝑥  lb/in2 -1.589 -1.521 -4.47 

𝜎𝑦  lb/in2 -0.865 -0.845 -2.37 

𝜏𝑥𝑦 lb/in2 0.988 0.953 -3.67 

3 0 

𝜎𝑥  lb/in2 -5.901 -5.754 -2.55 

𝜎𝑦  lb/in2 -0.021 -0.021 0.00 

𝜏𝑥𝑦 lb/in2 -0.003 -0.003 0.00 

4 0 

𝜎𝑥  lb/in2 -6.182 -5.897 -4.83 

𝜎𝑦  lb/in2 -0.012 -0.011 -9.09 

𝜏𝑥𝑦 lb/in2 -0.002 -0.002 0.00 

5 90 

𝜎𝑥  lb/in2 -0.504 -0.478 -5.44 

𝜎𝑦  lb/in2 1.628 1.597 -1.94 

𝜏𝑥𝑦 lb/in2 -0.001 -0.001 0.00 

6 0 

𝜎𝑥  lb/in2 -7.307 -7.212 -1.35 

𝜎𝑦  lb/in2 0.022 0.020 -10.00 

𝜏𝑥𝑦 lb/in2 0.002 0.002 0.00 

7 0 

𝜎𝑥  lb/in2 -7.588 -7.325 -3.59 

𝜎𝑦  lb/in2 0.03 0.028 -7.14 

𝜏𝑥𝑦 lb/in2 0.003 0.003 0.00 

8 90 
𝜎𝑥  lb/in2 -0.544 -0.531 -8.80 

𝜎𝑦  lb/in2 1.976 1.887 -4.72 
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𝜏𝑥𝑦 lb/in2 0.001 0.001 0.00 

9 -45 

𝜎𝑥  lb/in2 -2.061 -1.985 -3.83 

𝜎𝑦 lb/in2 -0.947 -0.911 -3.95 

𝜏𝑥𝑦 lb/in2 1.224 1.184 -3.73 

10 +45 

𝜎𝑥  lb/in2 -2.071 -1.998 -3.65 

𝜎𝑦 lb/in2 -0.907 -0.925 -0.78 

𝜏𝑥𝑦 lb/in2 -1.198 -1.098 -9.11 

 

Table 5-12 Bending Stiffness Stress Comparison for case 2 – Web 

Case 2- Balance and Symmetric – Web 
[ 45−
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Current 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -0.223 -0.211 -5.69 

𝜎𝑦  lb/in2 -0.011 -0.011 0.00 

𝜏𝑥𝑦 lb/in2 -0.110 -0.106 -3.77 

2 -45 

𝜎𝑥  lb/in2 -0.223 -0.208 -7.21 

𝜎𝑦  lb/in2 0.04 0.038 -5.26 

𝜏𝑥𝑦 lb/in2 0.067 0.065 -3.08 

3 -45 

𝜎𝑥  lb/in2 -0.493 -0.472 -4.45 

𝜎𝑦  lb/in2 -0.079 -0.072 -9.72 

𝜏𝑥𝑦 lb/in2 0.246 0.229 -7.42 

4 +45 

𝜎𝑥  lb/in2 -0.357 -0.345 -3.48 

𝜎𝑦  lb/in2 0.006 0.006 0.00 

𝜏𝑥𝑦 lb/in2 -0.135 -0.125 -8.00 
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Graph 5-4: Comparison of Stresses in layers of bottom-flange sub-laminate for case 2. 
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Table 5-13 Bending Stiffness Stress Comparison for case 3– Top Flange 

Case 3- Balance and Asymmetric – Top Flange 
 [ 45−

+ /0/90/0/90/ 45−
+ ]T 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 3.121 3.21 2.77 

𝜎𝑦  lb/in2 1.605 1.711 6.20 

𝜏𝑥𝑦 lb/in2 1.888 1.942 2.78 

2 -45 

𝜎𝑥  lb/in2 3.159 3.265 3.25 

𝜎𝑦  lb/in2 1.671 1.821 8.24 

𝜏𝑥𝑦 lb/in2 -1.976 -1.985 0.45 

3 0 

𝜎𝑥  lb/in2 10.881 11.312 3.81 

𝜎𝑦  lb/in2 0.011 0.011 0.00 

𝜏𝑥𝑦 lb/in2 -0.009 -0.009 0.00 

4 90 

𝜎𝑥  lb/in2 0.824 0.874 5.72 

𝜎𝑦  lb/in2 -2.726 -2.895 5.84 

𝜏𝑥𝑦 lb/in2 -0.005 -0.005 0.00 

5 0 

𝜎𝑥  lb/in2 9.988 10.243 2.49 

𝜎𝑦  lb/in2 -0.018 -0.017 -5.88 

𝜏𝑥𝑦 lb/in2 0.005 0.005 0.00 

6 90 

𝜎𝑥  lb/in2 0.748 0.801 6.62 

𝜎𝑦  lb/in2 -2.825 -2.913 3.02 

𝜏𝑥𝑦 lb/in2 0.009 0.009 0.00 

7 -45 

𝜎𝑥  lb/in2 2.402 2.564 6.32 

𝜎𝑦  lb/in2 1.085 1.121 3.21 

𝜏𝑥𝑦 lb/in2 -1.393 -1.451 4.00 

8 +45 

𝜎𝑥  lb/in2 2.44 2.64 7.58 

𝜎𝑦  lb/in2 1.151 1.254 8.21 

𝜏𝑥𝑦 lb/in2 1.480 1.511 2.05 
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Table 5-14 Bending Stiffness Stress Comparison for Case 3– Bottom Flange 

Case 3- Balance and Asymmetric – Bottom Flange 
 [ 45−

+ /0/90/0/90/ 45−
+ ]T 

Ply # 
Ply 

orientation 
Property Unit 

Current 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -1.687 -1.612 -4.65 

𝜎𝑦  lb/in2 -0.998 -0.946 -5.50 

𝜏𝑥𝑦 lb/in2 -1.088 -1.073 -1.40 

2 -45 

𝜎𝑥  lb/in2 -1.716 -1.651 -3.94 

𝜎𝑦  lb/in2 -0.968 -0.913 -6.02 

𝜏𝑥𝑦 lb/in2 1.087 1.025 -6.05 

3 0 

𝜎𝑥  lb/in2 -6.191 -5.982 -3.51 

𝜎𝑦  lb/in2 -0.023 -0.021 -9.5 

𝜏𝑥𝑦 lb/in2 0 0 0 

4 90 

𝜎𝑥  lb/in2 -0.505 -0.497 -1.61 

𝜎𝑦  lb/in2 1.604 1.543 -3.95 

𝜏𝑥𝑦 lb/in2 0 0 0 

5 0 

𝜎𝑥  lb/in2 -7.031 -6.696 -5.00 

𝜎𝑦  lb/in2 0.029 0.025 -16.00 

𝜏𝑥𝑦 lb/in2 0 0 0 

6 90 

𝜎𝑥  lb/in2 -0.558 -0.524 -6.49 

𝜎𝑦  lb/in2 2.435 2.354 -3.44 

𝜏𝑥𝑦 lb/in2 0 0 0 

7 -45 

𝜎𝑥  lb/in2 -1.903 -1.875 -1.49 

𝜎𝑦  lb/in2 -0.795 -0.752 -5.72 

𝜏𝑥𝑦 lb/in2 1.093 1.078 -1.39 

8 +45 

𝜎𝑥  lb/in2 -1.932 -1.852 -4.32 

𝜎𝑦  lb/in2 -0.764 -0.711 -7.45 

𝜏𝑥𝑦 lb/in2 -1.092 -1.012 -7.91 
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Table 5-15 Bending Stiffness Stress Comparison for Case 4– Top Flange 

Case 4- Unbalance and Asymmetric – Top Flange 
[ 45−
+ /-60/15/30/0/ 45−

+ ]T 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 1.453 1.497 6.92 

𝜎𝑦  lb/in2 -0.635 -0.701 2.00 

𝜏𝑥𝑦 lb/in2 0.109 0.107 13.10 

2 -45 

𝜎𝑥  lb/in2 2.818 2.816 0.07 

𝜎𝑦  lb/in2 0.794 0.487 8.01 

𝜏𝑥𝑦 lb/in2 -1.688 -1.501 3.53 

3 -60 

𝜎𝑥  lb/in2 0.806 0.722 5.56 

𝜎𝑦  lb/in2 -1.632 -2.225 6.34 

𝜏𝑥𝑦 lb/in2 0.251 0.521 11.32 

4 15 

𝜎𝑥  lb/in2 8.611 8.851 2.63 

𝜎𝑦  lb/in2 0.090 0.058 13.79 

𝜏𝑥𝑦 lb/in2 1.748 1.845 5.47 

5 30 

𝜎𝑥  lb/in2 4.372 4.652 5.72 

𝜎𝑦  lb/in2 0.504 0.564 9.04 

𝜏𝑥𝑦 lb/in2 1.648 1.754 6.16 

6 0 

𝜎𝑥  lb/in2 10.016 10.783 6.41 

𝜎𝑦  lb/in2 -0.275 -0.266 8.65 

𝜏𝑥𝑦 lb/in2 -0.168 -0.201 10.95 

7 -45 

𝜎𝑥  lb/in2 2.713 3.103 5.22 

𝜎𝑦  lb/in2 1.066 1.401 3.35 

𝜏𝑥𝑦 lb/in2 -1.769 -2.141 6.73 

8 +45 

𝜎𝑥  lb/in2 1.199 1.465 6.76 

𝜎𝑦  lb/in2 -0.385 -0.153 13.33 

𝜏𝑥𝑦 lb/in2 0.088 0.256 7.42 
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Table 5-16 Bending Stiffness Stress Comparison for Case 4– Bottom Flange 

Case 4- Unbalance and Asymmetric – Bottom Flange 
[ 45−
+ /-60/15/30/0/ 45−

+ ]T 

Ply # 
Ply 

orientation 
Property Unit 

Current 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -0.644 -0.443 -4.29 

𝜎𝑦  lb/in2 0.385 0.625 -6.88 

𝜏𝑥𝑦 lb/in2 0.025 0.196 -4.59 

2 -45 

𝜎𝑥  lb/in2 -1.547 -1.315 -4.41 

𝜎𝑦  lb/in2 -0.475 -0.21 -6.67 

𝜏𝑥𝑦 lb/in2 0.955 0.719 -8.07 

3 -60 

𝜎𝑥  lb/in2 -0.483 -0.412 4.37 

𝜎𝑦  lb/in2 0.864 1.161 -1.29 

𝜏𝑥𝑦 lb/in2 -0.100 -0.223 -11.21 

4 15 

𝜎𝑥  lb/in2 -5.258 -4.978 -5.77 

𝜎𝑦  lb/in2 -0.057 -0.031 -9.68 

𝜏𝑥𝑦 lb/in2 -1.062 -1.047 -1.43 

5 30 

𝜎𝑥  lb/in2 -3.107 -2.981 -5.37 

𝜎𝑦  lb/in2 -0.370 -0.364 -8.24 

𝜏𝑥𝑦 lb/in2 -1.180 -1.121 -8.64 

6 0 

𝜎𝑥  lb/in2 -7.549 -7.124 -6.71 

𝜎𝑦  lb/in2 0.206 0.162 -6.79 

𝜏𝑥𝑦 lb/in2 0.118 0.121 -2.50 

7 -45 

𝜎𝑥  lb/in2 -2.119 -2.102 -9.47 

𝜎𝑦  lb/in2 -0.790 -1.011 -1.88 

𝜏𝑥𝑦 lb/in2 1.349 1.482 -3.38 

8 +45 

𝜎𝑥  lb/in2 -1.113 -1.187 -7.58 

𝜎𝑦  lb/in2 0.258 0.015 -6.67 

𝜏𝑥𝑦 lb/in2 -0.169 -0.324 0.93 
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Table 5-17 Bending Stiffness Stress Comparison for case 4 – Web 

Case 4- Balance and Symmetric – Web 
[ 45−
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Current 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -0.237 -0.234 -1.28 

𝜎𝑦  lb/in2 -0.012 -0.011 -9.09 

𝜏𝑥𝑦 lb/in2 -0.116 -0.115 -0.87 

2 -45 

𝜎𝑥  lb/in2 -0.236 -0.231 -2.60 

𝜎𝑦  lb/in2 0.041 0.038 -7.89 

𝜏𝑥𝑦 lb/in2 0.072 0.068 -5.88 

3 -45 

𝜎𝑥  lb/in2 -0.513 -0.526 2.09 

𝜎𝑦  lb/in2 -0.081 -0.079 -3.80 

𝜏𝑥𝑦 lb/in2 0.256 0.247 -4.05 

4 +45 

𝜎𝑥  lb/in2 -0.374 -0.324 -16.05 

𝜎𝑦  lb/in2 0.006 0.005 -20.00 

𝜏𝑥𝑦 lb/in2 -0.142 -0.137 -3.65 

 

 

Graph 5-5: Comparison stresses in layers of web sub-laminate case 4. 
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5.5 Results Comparison for Thermal Moments   

The results for temperature induced moments are listed in this section. Moments were 

applied in similar manner as explained in the validation sections of chapter 4. The moments 

generated by temperature gradient on sections will be compared in this section, different cases 

and conditions are listed in Table 5.17. 

Table 5-18 Result comparison cases for thermal analysis 

Case Description 
Layup for Top 
and Bottom 

Flange  
Layup for Web 

∆T  
Top 

Flange 
(°F) 

∆T  
Bottom 
Flange 

(°F) 

∆T  
Web 

 
(°F) 

1 
Balanced and 

Symmetric  
[ 45/ 0/ 90 −
+ ]𝑆 [ 45−

+ ]𝑆 70 0 0 

3 
Balanced and 

Symmetric 
[ 45/ 0/ 90 −
+ ]𝑆 [ 45−

+ ]𝑆 30 120 0 

The temperature induced moments were used to find the stresses in the layers of sub-

laminates/sections by using method explained in Sections 3.4.5 and 3.4.6 of this document. The 

calculated stresses were compared with the stresses from finite element analysis. To find stresses 

from finite element analysis, temperature induced moments were inputted as mechanical loads 

on the same beam and stress values for each layer of sub-laminates were extracted. 

5.5.1 Thermal moment comparison  
 

Table 5-19 Thermal moment comparison – Case 1 

Thermal Case – 1  

Property Unit 
FEA 

(𝑀𝑦
𝑐𝑇) 

Present 
Method 
 (𝑀𝑦

𝑐𝑇) 
% Diff. 

FEA 
(𝑀𝑧

𝑐𝑇) 

Present 
Method 
 (𝑀𝑧

𝑐𝑇) 
% Diff. 

Moment lb-in 15.27 16.08 4.9 -28.81 -29.51 2.4 
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Table 5-20 Thermal Stress Comparison for Case 1 – Top Flange 

Case 1- Balance and Symmetric – Top Flange (∆T = 70) 
 [ 45/ 0/ 90 −

+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 503.67 515.23 2.24 

𝜎𝑦  lb/in2 271.25 280.12 3.17 

𝜏𝑥𝑦 lb/in2 315.77 326.28 3.22 

2 -45 

𝜎𝑥  lb/in2 505.21 520.31 2.90 

𝜎𝑦  lb/in2 262.14 286.34 8.45 

𝜏𝑥𝑦 lb/in2 -309.33 -302.15 -2.38 

3 0 

𝜎𝑥  lb/in2 1894 1947.15 2.73 

𝜎𝑦  lb/in2 2.01 2.12 5.66 

𝜏𝑥𝑦 lb/in2 0.71 0.91 22.22 

4 90 

𝜎𝑥  lb/in2 152.39 160.21 4.88 

𝜎𝑦  lb/in2 -502.51 -480.57 -4.57 

𝜏𝑥𝑦 lb/in2 0.34 0.38 10.53 

5 90 

𝜎𝑥  lb/in2 161.07 170.61 5.59 

𝜎𝑦  lb/in2 -577.36 -544.39 -6.06 

𝜏𝑥𝑦 lb/in2 -0.34 -0.31 -9.68 

6 0 

𝜎𝑥  lb/in2 2141.3 2210.2 3.12 

𝜎𝑦  lb/in2 -5.22 -4.73 -10.64 

𝜏𝑥𝑦 lb/in2 -0.71 -0.62 -16.67 

7 -45 

𝜎𝑥  lb/in2 586.39 612.34 4.24 

𝜎𝑦  lb/in2 279.37 304.23 8.17 

𝜏𝑥𝑦 lb/in2 -352.08 -340.25 -3.48 

8 +45 

𝜎𝑥  lb/in2 587.94 605.81 2.95 

𝜎𝑦  lb/in2 270.26 284.51 5.01 

𝜏𝑥𝑦 lb/in2 503.67 515.23 2.24 
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Table 5-21 Thermal Stress Comparison for Case 1 – Bottom Flange 

Case 1- Balance and Symmetric – Bottom Flange (∆T = 0) 
 [ 45/ 0/ 90 −

+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -559.42 -532.64 -5.03 

𝜎𝑦  lb/in2 -256.11 -248.15 -3.21 

𝜏𝑥𝑦 lb/in2 -328.36 -324.67 -1.14 

2 -45 

𝜎𝑥  lb/in2 -557.88 -535.27 -4.22 

𝜎𝑦  lb/in2 -265.23 -247.31 -7.25 

𝜏𝑥𝑦 lb/in2 334.81 336.31 0.36 

3 0 

𝜎𝑥  lb/in2 -2035.8 -1986.3 -2.49 

𝜎𝑦  lb/in2 5.14 4.85 -5.15 

𝜏𝑥𝑦 lb/in2 0.73 0.66 -6.06 

4 90 

𝜎𝑥  lb/in2 -152.88 -142.57 -7.23 

𝜎𝑦  lb/in2 549.15 536.36 -2.38 

𝜏𝑥𝑦 lb/in2 0.34 0.41 15.00 

5 90 

𝜎𝑥  lb/in2 -144.22 -128.64 -12.10 

𝜎𝑦  lb/in2 474.32 456.23 -3.96 

𝜏𝑥𝑦 lb/in2 -0.34 -0.4 15.00 

6 0 

𝜎𝑥  lb/in2 -1789.11 -1687.52 -6.02 

𝜎𝑦  lb/in2 -2.12 -2.05 -2.44 

𝜏𝑥𝑦 lb/in2 -0.73 -0.67 -4.48 

7 -45 

𝜎𝑥  lb/in2 -476.69 -455.64 -4.62 

𝜎𝑦  lb/in2 -247.99 -229.37 -8.12 

𝜏𝑥𝑦 lb/in2 292.05 304.12 3.97 

8 +45 

𝜎𝑥  lb/in2 -475.15 -468.64 -1.39 

𝜎𝑦  lb/in2 -257.11 -260.12 1.11 

𝜏𝑥𝑦 lb/in2 -559.42 -532.64 -5.03 
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Table 5-22 Thermal Stress Comparison for Case 1 – Web 

Case 4- Balance and Symmetric – Web 
[ 45−
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 247.38 257.42 3.90 

𝜎𝑦  lb/in2 2.47 2.35 -5.10 

𝜏𝑥𝑦 lb/in2 104.37 112.35 7.10 

2 -45 

𝜎𝑥  lb/in2 247.26 260.12 4.94 

𝜎𝑦  lb/in2 -8.64 -7.86 -9.92 

𝜏𝑥𝑦 lb/in2 -95.05 -88.6 -7.27 

3 -45 

𝜎𝑥  lb/in2 306.15 316.56 3.28 

𝜎𝑦  lb/in2 17.28 19.01 9.10 

𝜏𝑥𝑦 lb/in2 -134.16 -140.25 4.34 

4 +45 

𝜎𝑥  lb/in2 276.65 290.34 4.71 

𝜎𝑦  lb/in2 -1.23 -1.22 -2.5 

𝜏𝑥𝑦 lb/in2 109.95 124.13 11.42 

 

 
 

Table 5-23 Thermal moment comparison – Case 2 

Thermal Case – 2  

Property Unit 
FEA 

(𝑀𝑦
𝑐𝑇) 

Present 
Method 
 (𝑀𝑦

𝑐𝑇) 
% Diff. 

FEA 
(𝑀𝑧

𝑐𝑇) 

Present 
Method 
(𝑀𝑧

𝑐𝑇) 
% Diff. 

Moment lb-in 20.766 18.03 -15.17 39.67 37.57 -5.59 
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Table 5-24 Thermal Stress Comparison for Case 2– Top Flange 

Case 2- Balance and Symmetric – (Top Flange  ∆T = 30) (Bottom Flange  ∆T = 120) 
[ 45/ 0/ 90 −
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 503.21 514.21 2.14 

𝜎𝑦  lb/in2 184.34 195.17 5.55 

𝜏𝑥𝑦 lb/in2 272.57 287.53 5.20 

2 -45 

𝜎𝑥  lb/in2 498.5 514.1 3.03 

𝜎𝑦  lb/in2 212.15 227.48 6.74 

𝜏𝑥𝑦 lb/in2 -292.23 -301.21 2.98 

3 0 

𝜎𝑥  lb/in2 1761.6 1875.54 6.08 

𝜎𝑦  lb/in2 -12.14 -11.24 -6.76 

𝜏𝑥𝑦 lb/in2 -2.13 -2.24 6.25 

4 90 

𝜎𝑥  lb/in2 120.83 132.45 8.77 

𝜎𝑦  lb/in2 -484.81 -462.51 -4.82 

𝜏𝑥𝑦 lb/in2 -1.05 -1.12 6.25 

5 90 

𝜎𝑥  lb/in2 94.34 104.43 9.66 

𝜎𝑦  lb/in2 -256.47 -248.73 -3.11 

𝜏𝑥𝑦 lb/in2 1.05 1.11 4.55 

6 0 

𝜎𝑥  lb/in2 1008.8 1124.82 10.31 

𝜎𝑦  lb/in2 9.91 8.74 -13.27 

𝜏𝑥𝑦 lb/in2 2.13 2.21 4.98 

7 -45 

𝜎𝑥  lb/in2 250.83 275.61 8.99 

𝜎𝑦  lb/in2 159.57 165.32 3.48 

𝜏𝑥𝑦 lb/in2 -161.8 -174.52 7.29 

8 +45 

𝜎𝑥  lb/in2 246.13 265.23 7.20 

𝜎𝑦  lb/in2 187.38 196.5 4.64 

𝜏𝑥𝑦 lb/in2 503.21 514.21 2.14 
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Table 5-25 Stress Comparison for thermal Case 2 – Bottom Flange 

Case 2- Balance and Asymmetric – (Top Flange  ∆T = 30) (Bottom Flange  ∆T = 120) 
[ 45/ 0/ 90 −
+ ]𝑆 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 84.56 93.52 9.58 

𝜎𝑦  lb/in2 -23.34 -24.23 3.67 

𝜏𝑥𝑦 lb/in2 18.91 17.56 -7.69 

2 -45 

𝜎𝑥  lb/in2 79.85 82.34 3.02 

𝜎𝑦  lb/in2 4.47 5.02 10.96 

𝜏𝑥𝑦 lb/in2 -38.56 -36.74 -4.95 

3 0 

𝜎𝑥  lb/in2 213.78 224.31 4.69 

𝜎𝑦  lb/in2 -10.82 -11.24 3.74 

𝜏𝑥𝑦 lb/in2 -2.1 -2.21 4.98 

4 90 

𝜎𝑥  lb/in2 0.61 0.62 -1.61 

𝜎𝑦  lb/in2 -70.66 -75.34 6.21 

𝜏𝑥𝑦 lb/in2 -1.05 -1.1 4.55 

5 90 

𝜎𝑥  lb/in2 -25.87 -26.38 1.93 

𝜎𝑦  lb/in2 157.68 174.35 9.56 

𝜏𝑥𝑦 lb/in2 1.05 1.12 6.25 

6 0 

𝜎𝑥  lb/in2 -539.02 -564.21 4.46 

𝜎𝑦  lb/in2 11.07 12.19 9.19 

𝜏𝑥𝑦 lb/in2 2.1 2.31 9.09 

7 -45 

𝜎𝑥  lb/in2 -167.82 -157.85 -6.32 

𝜎𝑦  lb/in2 -48.11 -51.29 6.20 

𝜏𝑥𝑦 lb/in2 91.87 102.34 10.23 

8 +45 

𝜎𝑥  lb/in2 -172.53 -185.64 7.06 

𝜎𝑦  lb/in2 -20.3 -19.74 -2.84 

𝜏𝑥𝑦 lb/in2 84.56 93.52 9.58 
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Table 5-26 Thermal Stress Comparison for Case 2 – Web 

Case 2- Balance and Asymmetric – (Top Flange  ∆T = 30) (Bottom Flange  ∆T = 90) 
 [ 45−

+ /0/90/0/90/ 45−
+ ]T 

Ply # 
Ply 

orientation 
Property Unit 

Present 
Method 

FEA % Difference 

1 +45 

𝜎𝑥   lb/in2 -408.87 -389.62 -4.94 

𝜎𝑦  lb/in2 -7.53 -6.83 -9.29 

𝜏𝑥𝑦 lb/in2 -178.34 -167.82 -6.27 

2 -45 

𝜎𝑥  lb/in2 -408.52 -419.54 2.63 

𝜎𝑦  lb/in2 26.35 27.65 4.70 

𝜏𝑥𝑦 lb/in2 149.93 160.21 6.42 

3 -45 

𝜎𝑥  lb/in2 -498.17 -513.13 2.92 

𝜎𝑦  lb/in2 3.76 4.21 10.69 

𝜏𝑥𝑦 lb/in2 -195.38 -211.39 7.57 

4 +45 

𝜎𝑥  lb/in2 -588.17 -612.84 4.03 

𝜎𝑦  lb/in2 -52.7 -57.72 7.7 

𝜏𝑥𝑦 lb/in2 269.25 282.29 4.62 

 

 

Graph 5-6: Comparison of Stresses in layers of top-flange for thermal case 2. 
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Chapter 6 CONCLUSION AND FUTURE WORK 

               An analytical method was developed to calculate centroid, equivalent axial stiffness, 

equivalent bending stiffness, and ply stresses due to mechanical axial and bending loading on a 

laminated composite beam of asymmetric Z cross-section. The method was extended to calculate 

the temperature induced moments about the centroid of the beam due to different temperature 

gradients on different sections of the beam. A finite element model was created to validate the 

equations, the results from finite element model were compared with the results obtained from 

analytical solution. To compare and validate the method, four parametrically different models 

were investigated for mechanical loading case, layup and ply orientation of the sub-laminates 

were the parameters varied in the models. To compare and validate the thermal model and 

equations, two parametrically different models were investigated, temperature gradients on the 

sections were the parameters for this case. 

Following conclusions can be drawn from this research. 

 Equivalent axial stiffness obtained from the finite element model were in excellent 

agreement with the analytical expressions for all four cases. 

 The equivalent axial stiffness of balanced and symmetric (case 1) layup is almost equal to 

the axial stiffness of balanced and asymmetric (case 3), however the bending stiffness of 

the balanced and symmetric (case 1) is slightly greater than the balanced and asymmetric 

(case 3). 

 The equivalent bending stiffness were validated by comparing curvatures and the 

curvatures in y and z directions obtained from the finite element model and analytical 

expressions showed excellent agreement with each other. 

 The equivalent bending stiffness, of balanced and symmetric layup were greater than the 

equivalent bending stiffness of balanced and asymmetric, and unbalanced and 

asymmetric layups with same ply count.  

 The temperature induced moments about the centroid, obtained from finite element 

model were in agreement with analytical expressions for all cases investigated. 
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 The temperature induced moments about the centroid, obtained from the analytical 

expressions can be substituted as mechanical loads at the centroid.  

 The stresses in each ply of asymmetric Z-beam subjected to bending load at the centroid 

were in agreement with the stresses obtained analytically for all mechanical and thermal 

loading cases investigated in the research. 

 The 00 ply above the mid-plane of top flange sub-laminate for balanced and symmetric 

case 1, exhibited maximum axial stress compared to 00 plies of all other cases, for same 

applied load. 

 

The present method is a closed form analytical model which can be used in 

designing stage and can also be used for optimization, by inserting analytical equations in 

a programming software and varying the parameters. 

The current method can be extended to find the shear center and to calculate the 

torsional and warping stiffness of this open section asymmetric Z-beam. 
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Appendix A 

METHOD TO CALCULATE RADIUS OF CURVATURE FROM FINITE ELEMENT ANALYSIS 
[16] 

 

 

 

 

 

 

 

 

 

 

 



87 
 

 

Basic geometrical techniques can be used to find the curvature of a curved beam, the 

beam can be treated as a line. Any three points on a line can be selected to determine the 

curvature of the line from the finite element model under bending. Let Points A, B, and C in 

Figure A.1 represent three arbitrary points on the line in finite element model with the 

following coordinates (x1,y1), (x2,y2), and (x3,y3) respectively. 

 

Figure A.1 Three reference points on curved line or beam. 

The center of the curvature is represented by point O with coordinates (x, y). Using the co-

ordinates of points A and B the slope and center point of line AB can be defined as 

Slope of Line AB, 

𝑆𝐴𝐵 = 
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

Center Point P, 

𝑃(𝑎1,𝑏1) = (
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
) 

The equation of the line L1, which is perpendicular to line AB at point P can be expressed as. 

𝑆𝐿1𝑥 − 𝑦 =  𝑆𝐿1𝑎1 − 𝑏1 
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Where, 

𝑆𝐿1 = −
1

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑙𝑖𝑛𝑒 𝐴𝐵
=  −

1

𝑆𝐴𝐵
 

Similarly, using the same procedure the equation of line L2, perpendicular to line BC at point Q, 

can be expressed as. 

𝑆𝐿1𝑥 − 𝑦 =  𝑆𝐿1𝑎1 − 𝑏1 

Where, 

𝑆𝐿2 = −
1

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑙𝑖𝑛𝑒 𝐵𝐶
=  −

1

𝑆𝐵𝐶
 

𝑁(𝑎2,𝑏2) = (
𝑥2 + 𝑥3

2
,
𝑦2 + 𝑦3

2
) 

Line L1 and L2 intersect at the center of the curve and the coordinates of point O can be 

obtained by solving the equation of lines L1 and L2. The coordinates of center O can be 

expressed as. 

𝑥0 = 
𝑆𝐿1𝑎1 − 𝑆𝐿2𝑎2 − 𝑏1 + 𝑏2

𝑆𝐿1 − 𝑆𝐿2
 

𝑦0 = 
𝑆𝐿1𝑆𝐿2(𝑎1 − 𝑎2) − 𝑆𝐿1𝑏1 + 𝑆𝐿2𝑏2

𝑆𝐿1 − 𝑆𝐿2
 

The distance from the center point O to any of the points A, B, and C is the radius of the 

curvature of the curve ABC. The radius of curvature can be expressed as, 

𝑅 = √(𝑥0 + 𝑥1)2 + (𝑦0 + 𝑦1)2 = √(𝑥0 + 𝑥2)2 + (𝑦0 + 𝑦2)2 = √(𝑥0 + 𝑥3)2 + (𝑦0 + 𝑦3)2  

к =
1

𝑅
 

The above equations were programmed in excel and the curvatures were obtained by 

extracting displacement data from finite element analysis results. 

 



89 
 

 

 

 

 

 

 

 

 

Appendix B 

ANSYS INPUT FILE FOR FINITE ELEMENT MODEL AND ANALYSIS  
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ANSYS INPUT CODE  

Balanced and symmetric laminate, with mechanical and thermal loads and boundary conditions.  

 

!Composite Z-Beam 

!Initial analysis  

finish 

/clear,start 

/FILNAM, Z beam 

/TITLE, Comp z beam 

/UNITS,BIN 

/PREP7 

!PArameters 

tply=0.005 

b1=0.5 

b2=0.7 

w=1.0 

L=10 

yc=0.0831 

zc=-0.0732  

!-------------------- 

!Material Propoerties 

!-------------------- 

MP,EX,1,19.3e6 

MP,EY,1,1.62e6 

MP,EZ,1,1.62e6 

MP,PRXY,1,0.28 

MP,PRYZ,1,0.28 

MP,PRXZ,1,0.28 

MP,GXY,1,1.02e6 
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MP,GYZ,1,1.02e6 

MP,GXZ,1,1.02e6 

MP,CTEX,1,2.0e-6 

MP,CTEY,1,15e-6 

MP,CTEZ,1,15e-6 

!------------- 

!Element Types 

!------------- 

ET,1,SOLID185 

ET,2,MASS21 

ET,3,BEAM188 

KEYOPT,3,1,0 

KEYOPT,3,3,2 

KEYOPT,1,3,1 

KEYOPT,1,8,1 

!------------- 

! co-ordinates 

!------------- 

/triad,lbot 

/VIEW,1,-1   

/ANG,1   

/REP,FAST  

!------------ 

!Modeling  

!------------  

!Defining Keypoints  

K,1,0,-0.49,0.5 

K,2,0,0.01,0.5 

k,3,0,0.01,0.54 
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k,4,0,-0.49,0.54 

k,5,10,-0.49,0.5 

k,6,10,0.01,0.5 

k,7,10,0.01,0.54 

k,8,10,-0.49,0.54 

k,9,0,-0.01,0.5 

k,10,0,-0.01,-0.5 

k,11,0,0.01,-0.5 

k,12,10,-0.01,0.5 

k,13,10,-0.01,-0.5 

k,14,10,0.01,-0.5 

k,15,0,-0.01,-0.54 

k,16,0,0.69,-0.54 

k,17,0,0.69,-0.5 

k,18,10,-0.01,-0.54 

k,19,10,0.69,-0.54 

k,20,10,0.69,-0.5 

!Volumes 

V,1,2,3,4,5,6,7,8 

V,9,10,11,2,12,13,14,6 

V,10,15,16,17,13,18,19,20 

!------------ 

!Section Data 

!------------ 

R,1 

SECTYPE,13,BEAM,CSOLID,LINK 

SECDATA,1,8,2 

! Top flange 

SECTYPE,1,SHELL,,TFlange 
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SECDATA,0.005,1,45,3 

SECDATA,0.005,1,-45,3 

SECDATA,0.005,1,0,3 

SECDATA,0.005,1,90,3 

SECDATA,0.005,1,90,3 

SECDATA,0.005,1,0,3 

SECDATA,0.005,1,-45,3 

SECDATA,0.005,1,45,3 

! Bottom flange 

SECTYPE,2,SHELL,,BFlange 

SECDATA,0.005,1,45,3 

SECDATA,0.005,1,-45,3 

SECDATA,0.005,1,0,3 

SECDATA,0.005,1,90,3 

SECDATA,0.005,1,90,3 

SECDATA,0.005,1,0,3 

SECDATA,0.005,1,-45,3 

SECDATA,0.005,1,45,3 

! Web 

SECTYPE,3,SHELL,,Web 

SECDATA,0.005,1,45,3 

SECDATA,0.005,1,-45,3 

SECDATA,0.005,1,-45,3 

SECDATA,0.005,1,45,3 

!Local co-ordinate sys 

csys,0 

Local,11,0,0,0,0,0,-90,0 

csys,0 
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!------- 

!Meshing 

!------- 

!orientation 

VEORIENT,1,LINE,12 

VEORIENT,2,LINE,20 

VEORIENT,3,LINE,32 

LSEL,S,LENGTH,,L 

LESIZE,ALL,0.08,,, 

LSEL,S,LENGTH,,4*tply 

LESIZE,ALL,tply,,, 

LSEL,S,LENGTH,,w 

LESIZE,ALL,0.01,,, 

LSEL,S,LENGTH,,b1 

LESIZE,ALL,0.025,,, 

LSEL,S,LENGTH,,b2 

LESIZE,ALL,0.025,,, 

LSEL,S,LENGTH,,tply 

LESIZE,ALL,,,1 

!Mesh attributes 

VSEL,S,volu,,1 

VATT,1,1,1,0,1 

VSEL,S,volu,,2 

VATT,1,1,1,11,3 

VSEL,S,volu,,3 

VATT,1,1,1,0,1 

ALLSEL 

VMESH,ALL 

save,Z_BAlSyM_TEMP,db           
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!----------------------------------------- 

!Analysis Specific modeling and conditions 

!----------------------------------------- 

!----------------- 

!Thermal Analysis 

!----------------- 

/PREP7 

TOFFSt,460 

MP,REFT,1,0 

SELTOL,1e-6 

!Centroidal keypoints 

csys,0 

numstr,kp,300 

k,,0,0.yc,zc 

KSEL,S,KP,,300 

KATT,1,1,2,0 

KMESH,ALL 

csys,0 

k,400,l,yc,zc 

KSEL,S,KP,,400 

KATT,1,1,2,0 

KMESH,ALL 

nsel,s,,,88580 

d,all,uy,0 

d,all,uz,0 

nsel,s,loc,x,l 

CERIG,88580,all,UXYZ 
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!BC at origin  

nsel,s,,,88579 

D,all,all,0 

nsel,s,loc,x,0 

CERIG,88579,all,all 

vsel,s,volu,,1 

!applied in GUI 

MPTEMP,1,0   

UIMP,1,REFT,,,0  

!Solution 

ALLSEL 

/SOLU 

SOLVE 

!------------------- 

Mechanical Analysis 

!------------------- 

/prep7 

SELTOL,1e-6 

!Moment beam  

k,400,L+0.01,yc,zc 

k,401,L-0.01,yc,zc 

l,400,401 

lsel,s,LINE,,35 

LESIZE,35,,,4 

LATT,1,1,3,,,,13 

LMESH,ALL 

!Force on the centroidal node  

nsel,s,,,88581 

F,all,Fz,5 
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nsel,s,,,88580 

F,all,Fz,-5 

!Connecting slave nodes to centroid node 

NSEL,S,LOC,X,10 

CERIG,88583,all,all 

!BC at origin  

nsel,s,,,88579 

D,all,all,0 

nsel,s,loc,x,0 

CERIG,88579,all,all 

!Solution 

ALLSEL 

/SOLU 

SOLVE 

!---------------------- 

!Thermal--->Mechanical 

!---------------------- 

/prep7 

SELTOL,1e-6 

!Force on the centroidal node  

nsel,s,,,88581 

F,all,Fz,1878.5 

F,all,Fy,901.5 

nsel,s,,,88580 

F,all,Fz,-1878.5 

F,all,Fy,-901.5 
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!Connecting slave nodes to centroid node 

NSEL,S,LOC,X,10 

!RBE3,1,ALL,ALL 

CERIG,88583,all,all 

!BC at origin  

nsel,s,,,88579 

D,all,all,0 

nsel,s,loc,x,0 

CERIG,88579,all,all 

!Solution 

ALLSEL 

/SOLU 

SOLVE 

!---------------- 

!Post processing  

!---------------- 

!Axial Dispacment  

!At location (l/2) 

allsel 

nsel,s,loc,x,l/2 

nsel,r,loc,y,0 

nsel,r,loc,z,0 

!Bending displacements 

!SET 1 at x,0,0 

!At location (l/2.5) 

allsel 

nsel,s,loc,x,l/2.5 

nsel,r,loc,y,0 

nsel,r,loc,z,0 
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!At location (l/1.5) 

nsel,s,loc,x,6.64 

nsel,r,loc,y,0 

nsel,r,loc,z,0 

nplot 

!At location (l/1.25) 

nsel,s,loc,x,l/1.25 

nsel,r,loc,y,0 

nsel,r,loc,z,0 

nplot 
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Appendix C 

MATLAB CODE FOR ANALYTICAL SOLUTION  
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Mechanical Loading Case 

The following code is for balanced and symmetric (case 1) for applied mechanical moment.  

clear all 
clc 
E1=10e6;E2=10e6; 
v12=0.3; 
tp=0.005; 
G12=3.7e6; 
Iso= 10e6; 
[S] =[1/E1 -v12/E1 0; -v12/E1 1/E2 0; 0 0 1/G12]; 
[Q]= inv(S); 
% The laminate is (+-45,0,90)s 
%Q Bar for 45 deg 
theta=45*pi/180; 
m=cos(-theta); 
n=sin(-theta); 
[Ts45]= [m^2 n^2 2*m*n; n^2 m^2 (-m*n*2); -m*n m*n (m^2-n^2)]; 
m=cos(theta); 
n=sin(theta); 
[Te45]=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
q_45=Ts45*Q*Te45; 
 %Q Bar for -45 
theta=-45*pi/180; 
m=cos(-theta); 
n=sin(-theta); 
Tsn45= [m^2 n^2 2*m*n; n^2 m^2 (-m*n*2); -m*n m*n (m^2-n^2)]; 
m=cos(theta); 
n=sin(theta); 
Ten45=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
q_n45=Tsn45*Q*Ten45; 
%Q Bar for 0 deg 
   q_0=Q; 
 %Q Bar for 90 deg 
theta=pi/2; 
m=cos(-theta); 
n=sin(-theta); 
[Ts90]=[m^2    n^2  2*m*n; 
       n^2    m^2  -2*m*n; 
       -m*n    m*n   m^2-n^2;]; 
m=cos(theta); 
n=sin(theta); 
Te90=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
   q_90=Ts90*Q*Te90; 
   %[+-45/0/90]s 
   h0=-4*tp;h1=-3*tp;h2=-2*tp;h3=-tp;h4=0;h5=tp;h6=2*tp;h7=3*tp;h8=4*tp; 
   A= 2*(q_90*tp+q_0*tp+q_n45*tp+q_45*tp); 
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   B= (0.5)*(q_45*(h1^2-h0^2)+q_n45*(h2^2-h1^2)+q_0*(h3^2-h2^2)+q_90*(h4^2-

h3^2)+q_90*(h5^2-h4^2)+q_0*(h6^2-h5^2)+q_n45*(h7^2-h6^2)+q_45*(h8^2-h7^2)); 
   D=(1/3)*(q_45*(h1^3-h0^3)+q_n45*(h2^3-h1^3)+q_0*(h3^3-h2^3)+q_90*(h4^3-

h3^3)+q_90*(h5^3-h4^3)+q_0*(h6^3-h5^3)+q_n45*(h7^3-h6^3)+q_45*(h8^3-h7^3)); 
   ABD = [ A B; B D]; 
   abd = inv(ABD); 
   a11= abd(1,1);b11= abd(1,4); b16= abd(1,6); d11= abd(4,4); d16= abd(4,6); 

d66= abd(6,6); 
   a= (a11-((b16^2)/d66)); b= (b11-((b16*d16)/d66)); d = (d11-((d16^2)/d66)); 
   abds= [ a b;b d]; 
   ABDS= inv(abds); 
   Aff = ABDS(1,1); 
   Bff= 0; 
   Dff= ABDS(2,2); 
% Calculating A matrices for web  
   %[+-45]s 
   hw0=-2*tp;hw1=-1*tp;hw2=0*tp;hw3=tp;hw4=2*tp; 
   Aw= 2*(q_n45*tp+q_45*tp); 
   Bw= (0.5)*(q_45*(hw1^2-hw0^2)+q_n45*(hw2^2-hw1^2)+q_n45*(hw3^2-

hw2^2)+q_45*(hw4^2-hw3^2)); 
   Dw=(1/3)*(q_45*(hw1^3-hw0^3)+q_n45*(hw2^3-hw1^3)+q_n45*(hw3^3-

hw2^3)+q_45*(hw4^3-hw3^3)); 
   ABDW= [Aw Bw; Bw Dw]; 
   abdw = inv(ABDW); 
   a11w= abdw(1,1);b11w= abdw(1,4); b16w= abdw(1,6); d11w= abdw(4,4); d16w= 

abdw(4,6); d66w= abdw(6,6); 
   aw= (a11w-((b16w^2)/d66w)); bw= (b11w-((b16w*d16w)/d66w)); dw = (d11w-

((d16w^2)/d66w)); 
   abdsw= [ aw bw;bw dw]; 
   ABDSw= inv(abdsw); 
   Aww = ABDSw(1,1); 
   Bww = 0; 
   Dww = ABDSw(2,2); 
   % Centroid 
   wf1=0.5;wf2=0.7;ww=1; 
   hf1=0.04;hf2=0.04;hw=0.02; 
   zcf1=(hf2+ww+(hf1/2));zcf2=(hf2/2);zcw=(hf2+(ww/2)); 
   ycf1=(wf1/2);ycf2=((wf1-hw)+(wf2/2));ycw=(wf1-(hw/2)); 
   Zc= (wf1*zcf1*Aff+ wf2*zcf2*Aff + ww*zcw*Aww)/(wf1*Aff+wf2*Aff+ww*Aww) 
   Yc= (wf1*ycf1*Aff+ wf2*ycf2*Aff + ww*ycw*Aww)/(wf1*Aff+wf2*Aff+ww*Aww) 
   y= Yc-wf1+hw/2 
   z=-(hf2+ww/2-Zc) 
   % Axial Stiffness of the Beam  
   AxStiff= (wf1*Aff) + (wf2*Aff) + (ww*Aww) 
   % Axial FEA 

    
   % Stiffness  
   yw= -y; 
   zw= -z; 
   yf1= -(y-(hw/2)+(wf1/2)); 
   yf2= ((wf2/2)-(hw/2)-y); 
   zf1= (zw+(ww/2)+(hf1/2)); 
   zf2=-((ww/2)-zw+(hf2/2)); 
   Dx= 

(wf1*Dff)+(wf1*Aff*(zf1^2))+(2*wf1*Bff*zf1)+(wf2*Dff)+(wf2*Aff*(zf2^2))+(2*wf

2*Bff*zf2)+(Aww*((zw^2)*ww+((ww^3)/12))) 
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   Dy= (Aff*(((yf1^2)*wf1)+ ((wf1^3)/12)))+(Aff*(((yf2^2)*wf2)+ 

((wf2^3)/12)))+(Dww*ww)+(Aww*(yw^2)*ww) 
   Dxy= (wf1*(Aff*zf1)*yf1)+ (wf2*(Aff*zf2)*yf2)+ (Aww*zw*yw*ww) 
   % Dxy cals 
   Mz= 0.1; 
   y=0.01; 
   ex= 5.9059e-08 ; 
   Dxyn= sqrt((Dx*Dy)-((Mz*Dx*y)/ex)); 
   % finding ex 
   exx= (Mz*Dx*y)/(Dx*Dy-(Dxy^2)); 
   % Curvature 
   mx= 0.1; 
   kx = (mx*Dy)/(Dx*Dy-(Dxy^2)) 
   kz = (-mx*Dxy)/(Dx*Dy-(Dxy^2)) 

  
   my=0.1; 
   kx_y = (-my*Dxy)/(Dx*Dy-(Dxy^2)) 
   kz_y = (my*Dx)/(Dx*Dy-(Dxy^2))   

    
      % Stress in layers  
   % Top flange  
   Nx_f1 = ((Aff*zf1*kx)+(Aff*yf1*kz)+(0*kx)); 
   Mx_f1 = ((0*zf1*kx)+(0*yf1*kz)+(Dff*kx)); 

   Mxy_f1 = -(1/d66)*((b16)*Nx_f1+(d61)*Mx_f1); 
   N_f1 = [Nx_f1; 0; 0]; 
   M_f1 = [Mx_f1; 0; Mxy_f1]; 
  STN = abd*[N_f1; M_f1]; 
  e_0 = [STN(1,1); STN(2,1); STN(3,1)] 
  k = [STN(4,1); STN(5,1); STN(6,1)] 
  % Stress 
  %45 
  exy_45= e_0+((4*tp)*k); 
  STRxy_45= (q_45*exy_45) 
  % -45 
  exy_n45= e_0+((3*tp)*k);  
  STRxy_n45 = (q_n45*exy_n45) 
  % 0 top and bottom  
  exy_0_top= e_0+((2*tp)*k); 
  STRxy_0= (q_0*exy_0_top) 
  % 90  
   exy_90_top= e_0+((tp)*k); 
  STRxy_90= (q_90*exy_90_top) 
     %45 
  exy_45u= e_0+((-4*tp)*k); 
  STRxy_45u= (q_45*exy_45u) 
  % -45 
  exy_n45u= e_0+((-3*tp)*k);  
  STRxy_n45u = (q_n45*exy_n45u) 
  % 0 top and bottom  
  exy_0_topu= e_0+((-2*tp)*k); 
  STRxy_0u= (q_0*exy_0_topu) 
  % 90  
   exy_90_topu= e_0+((-tp)*k); 
  STRxy_90u= (q_90*exy_90_topu) 

    
   % Bottom flange  



104 
 

   Nx_f2 = ((Aff*zf2*kx)+(Aff*yf2*kz)+(0*kx)); 
   Mx_f2 = ((0*zf2*kx)+(0*yf2*kz)+(Dff*kx)); 
   N_f2 = [Nx_f2; 0; 0]; 
   M_f2 = [Mx_f2; 0; 0]; 
  STN2 = abd*[N_f2; M_f2]; 
  e_02 = [STN2(1,1); STN2(2,1); STN2(3,1)] 
  k2 = [STN2(4,1); STN2(5,1); STN2(6,1)] 
  % Stress 
  %45 
  exy_452= e_02+((4*tp)*k2); 
  STRxy_45_2= (q_45*exy_452) 
  % -45 
  exy_n452= e_02+((3*tp)*k2);  
  STRxy_n45_2 = (q_n45*exy_n452) 
  % 0 top and bottom  
  exy_0_top2= e_02+((2*tp)*k2); 
  STRxy_0_2= (q_0*exy_0_top2) 
  % 90  
   exy_90_top2= e_02+((tp)*k2); 
  STRxy_90_2= (q_90*exy_90_top2) 
     %45 
  exy_45u2= e_02+((-4*tp)*k2); 
  STRxy_45u_2= (q_45*exy_45u2) 
  % -45 
  exy_n45u2= e_02+((-3*tp)*k2);  
  STRxy_n45u_2 = (q_n45*exy_n45u2) 
  % 0 top and bottom  
  exy_0_topu2= e_02+((-2*tp)*k2); 
  STRxy_0u_2= (q_0*exy_0_topu2) 
  % 90  
   exy_90_topu2= e_02+((-tp)*k2); 
  STRxy_90u_2= (q_90*exy_90_topu2) 

   
  % Web Stresses  
     % Stress in layers  
     % B term will be present in ubal case 
  % Web  
   Nx_w = ((Aww*zw*kx)+(Aww*yw*kz)+(0*kx)); 
   Mx_w = ((0*zw*kx)+(0*yw*kz)+(Dww*kx)); 
   N_w = [Nx_w; 0; 0]; 
   M_w = [Mx_w; 0; 0]; 
  STNw = abdw*[N_w; M_w]; 
  e_0w = [STNw(1,1); STNw(2,1); STNw(3,1)] 
  kw = [STNw(4,1); STNw(5,1); STNw(6,1)] 
  % Stress 
  %45 
  exy_45w= e_0w+((2*tp)*kw); 
  STRxy_45w= (q_45*exy_45w) 
  % -45 
  exy_n45w= e_0w+((tp)*kw);  
  STRxy_n45w = (q_n45*exy_n45w) 
     %45 
  exy_45uw= e_0w+((-tp)*kw); 
  STRxy_45uw= (q_45*exy_45uw) 
  % -45 
  exy_n45uw= e_0w+((-2*tp)*kw);  
  STRxy_n45uw = (q_n45*exy_n45uw) 
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Thermal Code  

The following code is for thermal loading case 1.  

clear all 
E1=10e6;E2=10e6; 
v12=0.3; 
tp=0.005; 
G12=3.7e6; 
Nx = 00; 
DT = 70; 
DTB= 0; 
M = [0; 0; 0]; 
N = [0; 0; 0]; 
   alp= [13e-6; 15e-6; 0]; 
[S] =[1/E1 -v12/E1 0; -v12/E1 1/E2 0; 0 0 1/G12]; 
[Q]= inv(S); 
%Q Bar for 45 deg 
theta=45*pi/180; 
m=cos(-theta); 
n=sin(-theta); 
[Ts45]= [m^2 n^2 2*m*n; n^2 m^2 (-m*n*2); -m*n m*n (m^2-n^2)]; 
m=cos(theta); 
n=sin(theta); 
[Te45]=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
q_45=Ts45*Q*Te45; 
%thrermal 45 
m=cos(-theta); 
n=sin(-theta); 
T=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
alp45xy= T*alp;  
Nt_45= q_45*(T*alp); 
 %Q Bar for -45 
theta=-45*pi/180; 
m=cos(-theta); 
n=sin(-theta); 
Tsn45= [m^2 n^2 2*m*n; n^2 m^2 (-m*n*2); -m*n m*n (m^2-n^2)]; 
m=cos(theta); 
n=sin(theta); 
Ten45=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
q_n45=Tsn45*Q*Ten45; 
%thrermal -45 
m=cos(-theta); 
n=sin(-theta); 
T=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
alpn45xy= T*alp; 
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Nt_n45= q_n45*(T*alp); 
%Q Bar for 0 deg 
theta=0; 
   q_0=Q; 
   %thrermal 0 
m=cos(-theta); 
n=sin(-theta); 
T=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
alp0xy= T*alp;    
Nt_0= q_0*(T*alp); 
 %Q Bar for 90 deg 
theta=pi/2; 
m=cos(-theta); 
n=sin(-theta); 
[Ts90]=[m^2    n^2  2*m*n; 
       n^2    m^2  -2*m*n; 
       -m*n    m*n   m^2-n^2;]; 
m=cos(theta); 
n=sin(theta); 
Te90=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
   q_90=Ts90*Q*Te90; 
   %thrermal 90 
m=cos(-theta); 
n=sin(-theta); 
T=[m^2    n^2  m*n; 
       n^2    m^2  -m*n; 
       -2*m*n  2*m*n  m^2-n^2]; 
alp90xy= T*alp; 
Nt_90= q_90*(T*alp); 
   %[+-45/0/90]s 
   h0=-4*tp;h1=-3*tp;h2=-2*tp;h3=-tp;h4=0;h5=tp;h6=2*tp;h7=3*tp;h8=4*tp; 
   A= 2*(q_90*tp+q_0*tp+q_n45*tp+q_45*tp); 
   B= (0.5)*(q_45*(h1^2-h0^2)+q_n45*(h2^2-h1^2)+q_0*(h3^2-h2^2)+q_90*(h4^2-

h3^2)+q_90*(h5^2-h4^2)+q_0*(h6^2-h5^2)+q_n45*(h7^2-h6^2)+q_45*(h8^2-h7^2)); 
   D=(1/3)*(q_45*(h1^3-h0^3)+q_n45*(h2^3-h1^3)+q_0*(h3^3-h2^3)+q_90*(h4^3-

h3^3)+q_90*(h5^3-h4^3)+q_0*(h6^3-h5^3)+q_n45*(h7^3-h6^3)+q_45*(h8^3-h7^3)); 
   ABD = [ A B; B D]; 
   abd = inv(ABD); 
   a11= abd(1,1);b11= abd(1,4); b16= abd(1,6); d11= abd(4,4); d16= abd(4,6); 

d66= abd(6,6); 
   a= (a11-((b16^2)/d66)); b= (b11-((b16*d16)/d66)); d = (d11-((d16^2)/d66)); 
   abds= [ a b;b d]; 
   ABDS= inv(abds); 
   Aff = ABDS(1,1); 
   Bff= 0; 
   Dff= ABDS(2,2); 
   NT= 

(DT*(Nt_90*tp+Nt_0*tp+Nt_n45*tp+Nt_45*tp+Nt_90*tp+Nt_0*tp+Nt_n45*tp+Nt_45*tp)

) 
   N_bar = N+NT; 
   Nxtf1= NT(1,1); 
   % thermal bottom flange 
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     NTB= 

(DTB*(Nt_90*tp+Nt_0*tp+Nt_n45*tp+Nt_45*tp+Nt_90*tp+Nt_0*tp+Nt_n45*tp+Nt_45*tp

)); 
   N_bar_B = N+NTB; 
   Nxtf2= NTB(1,1); 

   
   % Calculating A matrices for web  
   %[+-45]s 
   hw0=-2*tp;hw1=-1*tp;hw2=0*tp;hw3=tp;hw4=2*tp; 
   Aw= 2*(q_n45*tp+q_45*tp); 
   Bw= (0.5)*(q_45*(hw1^2-hw0^2)+q_n45*(hw2^2-hw1^2)+q_n45*(hw3^2-

hw2^2)+q_45*(hw4^2-hw3^2)); 
   Dw=(1/3)*(q_45*(hw1^3-hw0^3)+q_n45*(hw2^3-hw1^3)+q_n45*(hw3^3-

hw2^3)+q_45*(hw4^3-hw3^3)); 
   ABDW= [Aw Bw; Bw Dw]; 
   abdw = inv(ABDW); 
   a11w= abdw(1,1);b11w= abdw(1,4); b16w= abdw(1,6); d11w= abdw(4,4); d16w= 

abdw(4,6); d66w= abdw(6,6); 
   aw= (a11w-((b16w^2)/d66w)); bw= (b11w-((b16w*d16w)/d66w)); dw = (d11w-

((d16w^2)/d66w)); 
   abdsw= [ aw bw;bw dw]; 
   ABDSw= inv(abdsw); 
   Aww = ABDSw(1,1); 
   Bww = 0; 
   Dww = ABDSw(2,2); 
   NTw= (DT*(Nt_n45*tp+Nt_45*tp+Nt_n45*tp+Nt_45*tp)); 
   Nxtw= NTw(1,1); 
   %moments 
      % Centroid 
   wf1=0.5;wf2=0.7;ww=1; 
   hf1=0.04;hf2=0.04;hw=0.02; 
   zcf1=(hf2+ww+(hf1/2));zcf2=(hf2/2);zcw=(hf2+(ww/2)); 
   ycf1=(wf1/2);ycf2=((wf1-hw)+(wf2/2));ycw=(wf1-(hw/2)); 
   Zc= (wf1*zcf1*Aff+ wf2*zcf2*Aff + ww*zcw*Aww)/(wf1*Aff+wf2*Aff+ww*Aww); 
   Yc= (wf1*ycf1*Aff+ wf2*ycf2*Aff + ww*ycw*Aww)/(wf1*Aff+wf2*Aff+ww*Aww); 
   y= Yc-wf1+hw/2; 
   z=-(hf2+ww/2-Zc); 
   % Stiffness  
   yw= -y; 
   zw= -z; 
   yf1= -(y-(hw/2)+(wf1/2)); 
   yf2= ((wf2/2)-(hw/2)-y); 
   zf1= (zw+(ww/2)+(hf1/2)); 
   zf2=-((ww/2)-zw+(hf2/2)); 
   Dx= 

(wf1*Dff)+(wf1*Aff*(zf1^2))+(2*wf1*Bff*zf1)+(wf2*Dff)+(wf2*Aff*(zf2^2))+(2*wf

2*Bff*zf2)+(Aww*((zw^2)*ww+((ww^3)/12))); 
   Dy= (Aff*(((yf1^2)*wf1)+ ((wf1^3)/12)))+(Aff*(((yf2^2)*wf2)+ 

((wf2^3)/12)))+(Dww*ww)+(Aww*(yw^2)*ww); 
   Dxy= (wf1*(Aff*zf1)*yf1)+ (wf2*(Aff*zf2)*yf2); 
   NxT= Nxtf1*wf1 + Nxtf1*wf2 + Nxtw*ww; 
   My= -(Nxtf1*yf1*wf1)+(Nxtf2*yf2*wf2*0) 
   Mx= -(Nxtf1*zf1*wf1)+(Nxtf2*yf2*wf2*0) 
   % Curvature 
   mx= My; 
   my= Mx; 
   kx = ((mx*Dy)-(my*Dxy))/(Dx*Dy-(Dxy^2)) 
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   ky = ((-mx*Dxy)+(my*Dx))/(Dx*Dy-(Dxy^2)) 
   % Stress in layers  
   % Top flange  
   Nx_f1 = ((Aff*zf1*kx)+(Aff*yf1*ky)+(0*kx)); 
   Mx_f1 = ((0*zf1*kx)+(0*yf1*ky)+(Dff*kx)); 
   Mxy_f1 = -(1/d66)*((b16)*Nx_f1+(d61)*Mx_f1); 
   N_f1 = [Nx_f1; 0; 0]; 
   M_f1 = [Mx_f1; 0; Mxy_f1]; 
  STN = abd*[N_f1; M_f1]; 
  e_0 = [STN(1,1); STN(2,1); STN(3,1)] 
  k = [STN(4,1); STN(5,1); STN(6,1)] 
  % Stress 
  %45 
  exy_45= e_0+((4*tp)*k); 
  STRxy_45= (q_45*exy_45) 
  % -45 
  exy_n45= e_0+((3*tp)*k);  
  STRxy_n45 = (q_n45*exy_n45) 
  % 0 top and bottom  
  exy_0_top= e_0+((2*tp)*k); 
  STRxy_0= (q_0*exy_0_top) 
  % 90  
   exy_90_top= e_0+((tp)*k); 
  STRxy_90= (q_90*exy_90_top) 
     %45 
  exy_45u= e_0+((-4*tp)*k); 
  STRxy_45u= (q_45*exy_45u) 
  % -45 
  exy_n45u= e_0+((-3*tp)*k);  
  STRxy_n45u = (q_n45*exy_n45u) 
  % 0 top and bottom  
  exy_0_topu= e_0+((-2*tp)*k); 
  STRxy_0u= (q_0*exy_0_topu) 
  % 90  
   exy_90_topu= e_0+((-tp)*k); 
  STRxy_90u= (q_90*exy_90_topu) 

    
   % Bottom flange  
   Nx_f2 = ((Aff*zf2*kx)+(Aff*yf2*ky)+(0*kx)); 
   Mx_f2 = ((0*zf2*kx)+(0*yf2*ky)+(Dff*kx)); 
   N_f2 = [Nx_f2; 0; 0]; 
   M_f2 = [Mx_f2; 0; 0]; 
  STN2 = abd*[N_f2; M_f2]; 
  e_02 = [STN2(1,1); STN2(2,1); STN2(3,1)] 
  k2 = [STN2(4,1); STN2(5,1); STN2(6,1)] 
  % Stress 
  %45 
  exy_452= e_02+((4*tp)*k2); 
  STRxy_45_2= (q_45*exy_452) 
  % -45 
  exy_n452= e_02+((3*tp)*k2);  
  STRxy_n45_2 = (q_n45*exy_n452) 
  % 0 top and bottom  
  exy_0_top2= e_02+((2*tp)*k2); 
  STRxy_0_2= (q_0*exy_0_top2) 
  % 90  
   exy_90_top2= e_02+((tp)*k2); 
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  STRxy_90_2= (q_90*exy_90_top2) 
     %45 
  exy_45u2= e_02+((-4*tp)*k2); 
  STRxy_45u_2= (q_45*exy_45u2) 
  % -45 
  exy_n45u2= e_02+((-3*tp)*k2);  
  STRxy_n45u_2 = (q_n45*exy_n45u2) 
  % 0 top and bottom  
  exy_0_topu2= e_02+((-2*tp)*k2); 
  STRxy_0u_2= (q_0*exy_0_topu2) 
  % 90  
   exy_90_topu2= e_02+((-tp)*k2); 
  STRxy_90u_2= (q_90*exy_90_topu2) 

   
  % Web Stresses  
     % Stress in layers  
     % B term will be present in ubal case 
  % Web  
   Nx_w = ((Aww*zw*kx)+(Aww*yw*ky)+(0*kx)); 
   Mx_w = ((0*zw*kx)+(0*yw*ky)+(Dww*kx)); 
   N_w = [Nx_w; 0; 0]; 
   M_w = [Mx_w; 0; 0]; 
  STNw = abdw*[N_w; M_w]; 
  e_0w = [STNw(1,1); STNw(2,1); STNw(3,1)] 
  kw = [STNw(4,1); STNw(5,1); STNw(6,1)] 
  % Stress 
  %45 
  exy_45w= e_0w+((2*tp)*kw); 
  STRxy_45w= (q_45*exy_45w) 
  % -45 
  exy_n45w= e_0w+((tp)*kw);  
  STRxy_n45w = (q_n45*exy_n45w) 
     %45 
  exy_45uw= e_0w+((-tp)*kw); 
  STRxy_45uw= (q_45*exy_45uw) 
  % -45 
  exy_n45uw= e_0w+((-2*tp)*kw);  
  STRxy_n45uw = (q_n45*exy_n45uw) 
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