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ABSTRACT

TOWARD AUTOMATED

FACT MONITORING AND CHECKING

NAEEMUL HASSAN, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Chengkai Li

Public figures such as politicians make claims about “facts” all the time. Of-

tentimes there are false, exaggerated and misleading claims on important topics, due

to careless mistakes and even deliberate manipulation of information. With technol-

ogy and modern day media helping spread information to mass audiences through

all types of channels, there is a pressing need for checking the veracity of factual

claims important to the public. Journalists and citizens spend a good amount of

time doing that. More and more dedicated platforms and institutes are being cre-

ated for fact-checking. This nascent genre of investigative reporting has become a

basic feature of political coverage, especially during elections, and plays an important

role in improving political discourse and increasing democratic accountability. Part

of the goal of computational journalism is use computing to automate fact-checking.

There are many computational and journalistic challenges toward a fully automated

fact-checking system. This dissertation presents these challenges and focuses on the

research areas where breakthroughs are needed. Toward automated fact-checking, we

developed tools to find check-worthy factual claims from natural language sentences.
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Specifically, we prepared a U.S. presidential debate dataset and built classification

models to distinguish check-worthy factual claims from non-factual claims and unim-

portant factual claims. We also identified the most effective features based on their

impact on the classification models’ accuracy. We built a platform, ClaimBuster,

which uses the classification model and presents check-worthy factual claims spoken

during all the 2016 U.S. presidential election primary debates.

Like for automated fact-checking, advanced computation techniques are also

necessary for newsworthy fact discovery, especially from live events. Reporters always

try hard to bring out attention-seizing factual statements backed by data, which may

lead to news stories and investigation. Facts can be stated on data from domains

outside of sports and social media, including stock data, weather data, and criminal

records. These facts are not only interesting to reporters but also useful to financial

analysts, scientists, and citizens. Database and data mining researchers have started

to push the frontiers of automated significant fact discovery and monitoring. This

dissertation addresses the problem of significant facts monitoring during live events

such as a basketball game, hourly weather updates and so on. Technically, we consider

an ever-growing table of objects with dimension and measure attributes. We define

situational fact, a “contextual” skyline tuple that stands out against historical tuples

in a context when a set of measure attributes are compared. A context is specified by

a conjunctive constraint involving dimension attributes. New tuples are constantly

added to the table, reflecting events happening in the real world in a live fashion. The

goal is to discover constraint-measure pairs that qualify a new tuple as a contextual

skyline tuple and discover them quickly before the event becomes yesterday’s news.

A brute-force approach requires exhaustive comparison with every tuple, under every

constraint, and in every measure subspace. We design algorithms in response to these
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challenges using three corresponding ideas—tuple reduction, constraint pruning, and

sharing computation across measure subspaces. Furthermore, we present an end-to-

end system, including fact ranking, fact-to-statement translation and keyword-based

fact search.

In addition to addressing the fact-checking and fact-monitoring problem and

thereby pushing the boundary of computational journalism forward, this dissertation

also focuses on multi-dimensional Pareto-optimal analysis; specifically, given a set of

multi-dimensional points, finding the set of points which are not worse than any other

points on all dimensions. This dissertation finds applications of Pareto-optimality and

its variants in group recommendation, crowdsourcing, and other domains. Traditional

Pareto frontier (skyline) computation is inadequate to answer queries which need to

analyze not only individual points but also groups of points. To fill this gap, this

dissertation proposes a novel concept Skyline Groups that represents groups which

are not dominated by any other groups. It also demonstrates applications of Skyline

Group through a web-based system in question answering, expert team formation and

paper reviewer selection.
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CHAPTER 1

Introduction

Computational journalism emerged recently as a young interdisciplinary field

[1] that brings together experts in journalism, social sciences and computer science,

and advances journalism by innovations in computational techniques. Database and

data mining researchers have also started to push the frontiers of this field [2], [3],

[4]. One of the important tasks in journalism field is fact-checking. The growing

movement of political fact-checking plays an important role in increasing democratic

accountability and improving political discourse [5, 6]. Politicians and media figures

make claims about “facts” all the time, but the new army of fact-checkers can of-

ten expose claims that are false, exaggerated or half-truths. The number of active

fact-checking websites has grown from 44 a year ago to 64 this year, according the

Duke Reporters’s Lab 1. In this dissertation, we study the process of fact-checking

and investigate opportunities for automating it. We discuss the technical challenges

we will face in automating fact-checking and propose potential solutions. Specifically,

we study the problem of finding important checkworthy factual claims from political

discourses. We model this problem as a multi-class classication task and we follow a

supervised learning approach to tackle it. We constructed a labeled dataset of spo-

ken sentences by presidential candidates during 1960–2012 U.S. presidential debates.

Each sentence is given one of three possible labels–it is not a factual claim; it is an

unimportant factual claim; it is an important factual claim. We trained and tested

several multi-class classication models using the labeled dataset. Experiment results

1http://reporterslab.org/snapshot-of-fact-checking-around-the-world-july-2015/

1



demonstrated promising accuracy of the models. We also built a fact-finding platform

named ClaimBuster. It allows to find important factual claims from any document.

The platform has live-covered some of the latest primary debates of 2016 U.S. presi-

dential elections and archived all of them. It also has a social component which keeps

monitoring Twitter for checkworthy factual tweets.

Another task where journalist and reporters spend a good amount of time is

bringing out attention-seizing factual statements backed by data, which may lead to

news stories and investigation. While such statements take many different forms, we

consider some common forms. In this dissertation, we study how to find situational

facts pertinent to the new tuples in an ever-growing database, where the tuples cap-

ture real-world events. Specifically, we study the novel problem of finding situational

facts and formalize it as discovering constraint-measure pairs that qualify a tuple

as a contextual skyline tuple. We devise efficient algorithms based on three main

ideas tuple reduction, constraint pruning and sharing computation across measure

subspaces. We use a simple prominence measure for ranking situational facts and

discovering prominent situational facts. We conduct extensive experiments on two

real datasets (NBA dataset and weather dataset) to investigate their prominent sit-

uational facts and to study the efficiency of various proposed algorithms and their

tradeoffs.

Another interesting problem we study in this dissertation is finding one of the

best teams of experts to complete a task. In day-to-day journalism, oftentimes it

becomes necessary to form a team of experts to investigate/report an event. We

approach this team formation problem with a novel technique called Skyline Groups.

Specifically, we formulate and investigate the novel problem of finding the skyline

k-tuple groups from an n-tuple dataset—i.e., groups of k tuples which are not dom-

inated by any other group of equal size, based on aggregate-based group dominance

2



relationship. The major technical challenge is to identify effective anti-monotonic

properties for pruning the search space of skyline groups. To this end, we first show

that the anti-monotonic property in the well-known Apriori algorithm does not hold

for skyline group pruning. Then, we identify two anti-monotonic properties with

varying degrees of applicability: order-specific property which applies to SUM, MIN,

and MAX as well as weak candidate-generation property which applies to MIN and

MAX only. Experimental results on both real and synthetic datasets verify that the

proposed algorithms achieve orders of magnitude performance gain over the baseline

method.
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CHAPTER 2

Finding Check-worthy Factual Statements

Our purpose in this chapter is twofold: To argue for the advancement of research

on automated fact-checking and to report our progress toward that end with a tool

called ClaimBuster. We describe the current state-of-the-art of fact checking research

and describe the approach we have taken with ClaimBuster. We report the prelimi-

nary results of a field test comparing ClaimBuster’s ability to identify check-worthy

factual claims made during the 2016 U.S. presidential election primary debates with

those of professional journalists and fact-checking organizations. Significant overlaps

between the machine scoring and human judgments were observed. Using the Claim-

Buster model, we developed a platform which was used to live-cover some of the latest

2016 Republican and Democrat primary debates. We describe various components of

the platform and explain how each of them works.

2.1 Introduction

Technology, social media and new forms of journalism have made it easier than

ever to disseminate falsehoods and half-truths faster than the fact-checkers can expose

them. The challenge is that the human fact-checkers frequently have difficulty keeping

up with the rapid spread of misinformation. Computation may hold the key to far

more effective and efficient fact-checking, as Cohen et al. [7, 8] and Diakopolous 1

have pointed out. Over and over again, computing has reshaped journalism. Tasks

that required huge amounts of manual labor such as analyzing data and finding

1http://towknight.org/research/thinking/scaling-fact-checking/

4



patterns and relationships are now accomplished with ease. There is little doubt that

computers can substantially aid fact-checking too.

The eternal quest, the “Holy Grail”, is a completely automatic fact-checking

platform that can detect a claim as it appears in real time, and instantly provide

the voter with a rating about its accuracy. It makes its calls by consulting databases

of already checked claims, and by conducting novel analysis of relevant data from

reputable sources.

In this chapter, we advocate the pursuit of the “Holy Grail” and discuss the

technical challenges we will face in automating fact-checking and potential solutions.

The “Holy Grail” may remain far beyond our reach for many, many years to come.

But in pursuing this ambitious goal, we can help fact-checking and improve the

political discourse. One such advancement is our own progress on ClaimBuster, a tool

that helps journalists find political claims to fact-check. We have used it on the pres-

idential debates of U.S. Election 2016. During a debate, for every sentence spoken by

the candidates and extracted into transcripts, ClaimBuster immediately determines

if the sentence has a factual claim and whether its truthfulness is important to the

public.

2.2 Limitations Of Current Practices Of Fact-Checking

Fact-checking is difficult and time-consuming for journalists, which creates a

significant gap between the moment a politician makes a statement and when the

fact-check is ultimately published.

The growth of fact-checking has been hampered by the nature of the work. It

is time-consuming to find claims to check. Journalists have to spend hours going

through transcripts of speeches, debates and interviews to identify claims they will

research.

5



Also, fact-checking requires advanced research techniques. While ordinary jour-

nalism can rely on simple “on-the-one-hand, on-the-other-hand” quotations, a fact-

check requires more thorough research so the journalist can determine the accuracy

of a claim.

Fact-checking also requires advanced writing skills that go beyond “just the

facts” to persuade the reader whether the statement was true, false or somewhere

in between. Fact-checking is a new form that has been called “reported conclusion”

journalism.

Those factors mean that fact-checking often takes longer to produce than tra-

ditional journalism, which puts a strain on staffing and reduces the number of claims

that can be checked. It also creates a time gap between the moment the statement

was made and when the fact-check is ultimately published. That can take as little

as 15 to 30 minutes for the most simple fact-check to a full day for a more typical

one. A complicated fact-check can take two or more days. (By contrast, Leskovec,

Backstrom and Kleinberg [9] found a meme typically moves from the news media to

blogs in just 2.5 hours.)

For voters, that means a long gap between the politician’s claim and a de-

termination whether it was true. The voters don’t get the information when they

really need it. They must wait and look up on a fact-checking site to find out if the

claim was accurate. This is one of several factors that emboldens politicians to keep

repeating claims even when they are false.

Another limitation is the outdated nature of the fact-checkers’ publishing plat-

forms. Many fact-checking sites still use older content management systems built

for newspapers and blogs that are are not designed in a modern style for structured

journalism. This limits how well they can be used in computational projects.
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2.3 The “HOLY GRAIL”

We should not be surprised if we can get very close but never reach the “Holy

Grail”. A fully automated fact-checker calls for fundamental breakthroughs in mul-

tiple fronts and, eventually, it represents a form of Artificial Intelligence (AI). As

remote and intangible as AI may have appeared initially, though, in merely 60 years

scientists have made leaps and bounds that profoundly changed our world forever.

The quest for the “Holy Grail” of fact-checking will likewise drive us to constantly

improve this important journalistic activity.

The Turing test [10] was proposed by Alan Turing as a way of gauging a ma-

chine’s ability to exhibit artificial intelligence. Although heavily criticized, the con-

cept has served well in helping advance the field. Similarly, we need explicit and

tangible measures for assessing the ultimate success of a fact-checking machine. The

“Holy Grail” is a computer-based fact-checking system bearing the following charac-

teristics:

Fully automated: It checks facts without human intervention. It takes as input the

video/audio signals and texts of a political discourse and returns factual claims and

a truthness rating for each claim (e.g., the Truth-O-Meter by PolitiFact).

Instant: It immediately reaches conclusions and returns results after claims are

made, without noticeable delays.

Accurate: It is equally or more accurate than any human fact-checker.

Accountable: It self-documents its data sources and analysis, and makes the pro-

cess of each fact-check transparent. This process can then be independently verified,

critiqued, improved, and even extended to other situations.

Such a system mandates many complex steps–extracting natural language sen-

tences from textual/audio sources; separating factual claims from opinions, beliefs,

hyperboles, questions, and so on; detecting topics of factual claims and discerning

7



which are the “check-worthy” claims; assessing the veracity of such claims, which it-

self requires collecting information and data, analyzing claims, matching claims with

evidence, and presenting conclusions and explanations. Each step is full of challenges.

We now discuss in more detail these challenges and potential solutions.

2.3.1 Computational Challenges

On the computational side, there are mainly two fundamental challenges. One

is to understand what one says. Computer scientists have made leaps and bounds in

speech recognition and Natural Language Processing (NLP). But these technologies

are far from perfect. The other challenge lies in our capability of collecting sufficient

evidence for checking facts. We are in the big-data era. A huge amount of useful

data is accessible to us and more is being made available at every second. Semantic

web, knowledge base, database and data mining technologies help us link together

such data, reason about the data, efficiently process the data and discover patterns.

But, what is being recorded is still tiny compared to the vast amount of information

the universe holds. Below we list some of the more important computational hurdles

to solve.

Finding claims to check

—Going from raw audio/video signals to natural language. Extracting contextual

information such as speaker, time, and occasion.

—Defining “checkable” and “check-worthy” of claims. Is the claim factual (falsifiable)

or is it opinion? Should or can we check opinions? How “interesting” is the claim?

How do we balance “what the public should know” and “what the public wants to

consume”? Can these judgements be made computationally?

—Extracting claims from natural language. What to do when a claim spans multiple

sentences? What are the relevant features useful for determining whether a claim is

8



“checkable” or “check-worthy”?

Getting data to check claims

—We should consider at least two types of data sources: 1) claims already checked by

various organizations; 2) unstructured, semi-structured and structured data sources

that provide raw data useful for checking claims, e.g., voting records, government

budget, historical stock data, crime records, weather records, sports statistics, and

Wikipedia.

—Evaluating quality and completeness of sources.

—Matching claims with data sources. This requires structure/metadata in the database

of already checked claims, as well as data sources.

—Synthesizing and corroborating multiple sources.

—Cleansing data. Given a goal (e.g., to verify a particular claim), help journalists

decide which data sources–or even which data items in a database–are worthy inves-

tigating as high priority.

Checking claims

—How to remove (sometimes intentional) vagueness, how to spot cherry-picking of

data (beyond correctness), how to evaluate and how to come up with convincing

counterarguments using data [11, 12, 13].

—The methods in [11, 12, 13] rely on being able to cast a claim as a mathematical

function that can be evaluated over structured data. Who translate a claim into this

function? Can the translation process be automated?

—Fact verification may need human participation (e.g., social media as social sensors)

or even crowdsourcing (e.g., checking whether a bridge really just collapsed). Can a

computer system help coordinate and plan human participation on an unprecedented

level? How to remove bias and do quality control of human inputs? Should such a

system be even considered fully automated?

9



Monitoring and anticipating claims

—Given evolving data, we can monitor when a claim turns false/true [14, 13]. Can

we anticipate what claims may be made soon? That way, we can plan ahead and be

proactive.

—Challenges in scalable monitoring and parallel detection of a massive number of

claim types/templates.

2.3.2 Journalistic Challenges

A major barrier to automation is the lack of structured journalism in fact-

checking. Although there’s been tremendous growth in the past few years – 20 new

sites around the world just in the last year, according to the Duke Reporters’ Lab – the

vast majority of the world’s fact-checkers are still relying on old-style blog platforms

to publish their articles. That limits the articles to a traditional headline and text

rather than a newer structured journalism approach that would include fields such as

statement, speaker and location that would allow for real-time matching. There are

no standards for data fields or formatting. The articles are just published as plain

text.

There also is no single repository where fact-checks from various news organi-

zations are catalogued. They are kept in the individual archives of many different

publications, another factor that makes real-time matching difficult. Another jour-

nalistic barrier is the inconsistency of transparency. Some fact-checkers distill their

work to very short summaries, while others publish lengthy articles with many quo-

tations and citations.2 The lack of structure, the absence of a repository and the

inconsistency in publishing provides a lack of uniformity for search engines, which

2http://reporterslab.org/study-explores-new-questions-about-quality-of-global-fact-

checking/
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do not distinguish fact-checks from other types of editorial content in their search

results.

Another challenge is the length of time it takes to publish more difficult fact-

checks and to check multiple claims from the same event. PolitiFact, for example,

boasted that it published 20 separate checks from the Aug. 6 Republican presidential

debate. But it took six days for it to complete all of those checks. 3

2.4 Related Work

To the best of our knowledge, no prior study has focused on computational

methods for detecting factual claims and discerning their importance. The most

relevant line of work is subjectivity analysis of text (e.g., [12, 1, 10]) which classifies

sentences into objective and subjective ones. However, not all objective sentences are

check-worthy important factual claims. Part of the goals of computational journalism

[3, 4] is use computing to automate fact checking [11, 9]. Wu et al. [11] studied how to

model the quality of facts and find their supporting arguments and counterarguments.

Vlachos and Riedel [9] analyzed the tasks in fact-checking and presented a dataset

of factual claims collected from PolitiFact.com and Channel4.com. Another area

of related research is checking information credibility in micro-blog platforms. For

instance, [13] finds trending rumors containing disputed factual claims. [2, 6] focus

on assigning credibility scores to tweets. The scoring models are highly dependent on

Twitter specific features such as the credibility of twitter users. A tweet with high

credibility does not necessarily contain a check-worthy factual claims.

3http://www.politifact.com/truth-o-meter/article/2015/aug/12/20-fact-checks-

republican-debate/

11



2.5 ClaimBuster

ClaimBuster is a tool that helps journalists find claims to fact-check. Figure 2.6

is the screenshot of the current version of ClaimBuster. For every sentence spoken

by the participants of a presidential debate, ClaimBuster determines whether the

sentence has a factual claim and whether its truthfulness is important to the public.

As shown in Figure 2.6, to the left of each sentence there is a score ranging from 0

(least likely an important factual claim) to 1 (most likely). The calculation is based on

machine learning models built from thousands of sentences from past debates labeled

by humans. The ranking scores help journalists prioritize their efforts in assessing the

varacity of claims. ClaimBuster will free journalists from the time-consuming task of

finding check-worthy claims, leaving them with more time for reporting and writing.

Ultimately, ClaimBuster can be expanded to other discourses (such as interviews and

speeches) and also adapted for use with social media. Note that ClaimBuster does

not yet determine if a factual claim is true or false. This will be a direction of the

future work further toward the “Holy Grail”.

2.5.1 Classification and Ranking

We model ClaimBuster as a classifier and ranker and we take a supervised

learning approach to construct it. We categorize sentences in presidential debates

into three categories:

Non-Factual Sentence (NFS): Subjective sentences (opinions, beliefs, declara-

tions) and many questions fall under this category. These sentences do not contain

any factual claim. Below are some examples.

• But I think it’s time to talk about the future.

• You remember the last time you said that?

Unimportant Factual Sentence (UFS): These are factual claims but not check-
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worthy. The general public will not be interested in knowing whether these sentences

are true or false. Fact-checkers do not find these sentences as important for checking.

Some examples are as follows.

• Next Tuesday is Election Day.

• Two days ago we ate lunch at a restaurant.

Check-worthy Factual Sentence (CFS): They contain factual claims and the

general public will be interested in knowing whether the claims are true. Journalists

look for these type of claims for fact-checking. Some examples are:

• He voted against the first Gulf War.

• Over a million and a quarter Americans are HIV-positive.

Given a sentence, the objective of ClaimBuster is to derive a score that reflects

the degree by which the sentence belongs to CFS. Many widely-used classification

methods support ranking naturally. For instance, consider a Support Vector Machine

(SVM). We treat CFSs as positive examples and both NFSs and UFSs as negative

examples. SVM finds a decision boundary between the two types of training exam-

ples. Following Platt’s scaling technique [15], for a given sentence x to be classified,

we calculate the posterior probability P (class = CFS|x) using the SVM’s decision

function. The probability scores of all sentences are used to rank them.

2.5.2 Data Collection

This section describes the U.S. presidential debate dataset and our data collec-

tion procedure.

2.5.3 Dataset

The custom of organizing debates between U.S. presidential candidates before

a general election started in 1960. There have been a total of 14 presidential elections
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Figure 2.1. Distribution of Sentences

from 1960 to 2012. Except 1964, 1968 and 1972 there have been debates before all

the 11 remaining election years. Number of debates before an election varies from

year to year; for example, there were two and three debates before 1988 and 2012

elections, respectively. In total, there are 30 debates in these 11 election years. We

have collected the transcripts of these debates and used in experiments.

There are 28029 sentences in the transcripts. Using parsing rules and human

annotation, we determined the speaker identity of each sentence. 23075 sentences are

spoken by presidential candidates and 4815 are by the debate moderators. For our

experiments, we concentrated on the 20788 sentences spoken by the candidates which

have at least 5 words. Figure 2.1 shows the distribution of sentences among these 30

debates.
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2.5.4 Ground-truth Collection

We developed a rich and controlled data collection platform to collect ground-

truth of the sentences 4. We have invited university students, professors, journalists

and reporters who are aware of U.S. politics to contribute in the data collection

process. The process has been running for 15 months in multiple phases and it is still

going on. Figure 2.2 shows the interface of the data collection platform. A participant

is presented one sentence at a time from the pool of all sentences. S/he can assign one

of three [NFS, UFS, CFS] possible labels for the sentence. If the participant is not

confident to assign a label for the sentence, it is possible to skip and move forward. To

maintain high quality and avoid spammers or low quality participants, we undertook

some control mechanisms.

Figure 2.2. Data Collection Interface

4http://idir-server2.uta.edu/classifyfact survey/
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2.5.4.1 Context

With just the text of the sentence under consideration, it is sometimes hard

for a participant to assign a label. To resolve this issue, we provided a button to

show the context of the sentence. When the button is clicked, the system shows four

preceding sentences of the sentence in the question.

2.5.4.2 Screening Sentences

To detect spammers and low-quality participants, we used 1032 (731 NFS, 63

UFS, 238 CFS) screening sentences, picked from all the sentences. Three experts

agreed upon the labels of these sentences. On average, one out of every ten sentences

given to a participant (without letting the participant know) was randomly chosen

to be a screening sentence selected from the pool. A random number X, where

1 <= X <= 3, decides the type of the screening question. If X = 1, the type is

NFS, if X = 2, the type is UFS, if X = 3, the type is CFS. Once the type is selected,

the screening question is randomly picked from the pool of screening questions of

that particular type. The participants were ranked by the degree of agreement on

screening sentences between them and the three experts.

2.5.4.3 Quality Measure

We defined quality measures to order the participants according to their job

quality. These measures help us to identify low-quality participants. We observed that

not all mislabeling has equal significance. For example, labeling an NFS sentence as a

CFS is a more critical mistake than labeling a UFS as a CFS. We defined weights for

different types of mistakes and incorporated them into the quality measure. Formally,
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ifXY is the number of times a participant p labels anX sentence as Y , then the quality

of p, Q(p), is-

Q(p) = (−0.2 ∗ (NFS NFS +UFS UFS +CFS CFS) + 0.7 ∗ (NFS UFS +

UFS CFS + CFS UFS + UFS NFS) + 2.5 ∗ (NFS CFS + CFS NFS))/total

number of screening sentences labeled by p

The weights are defined empirically. The maximum possible quality is −0.2 and

the minimum possible quality is 2.5. Figure 2.3 shows the frequency distribution of

Q(p) for all participants. If Q(p) <= 0 for a participant p, we define p as a top-quality

participant. A total of 329 participants contributed in the data collection process.

Among them, 52 are top-quality participants.

2.5.4.4 Reward Program

We devised a reward program to encourage participants for performing a high-

quality job. For a participant p, his/her reward is dependent on Q(p), number of
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Precision Recall F-measure

NFS 0.90 0.96 0.93

UFS 0.65 0.26 0.37

CFS 0.79 0.74 0.77

Table 2.1. Performance

sentences labeled, average length of sentences labeled and number of sentences skipped

by p. In general, it is possible to earn up to 10 cents for each sentence as the reward.

In addition to this reward, we also offered about $1000 as first, second, third and

honorary prizes.

2.5.4.5 Leaderboard & Tips

To provide participants a sense of competition, our data-collection website fea-

tures a leaderboard of participants. It allows a participant to see his/her rank among

other participants. This is a mechanism to encourage serious participants to perform

better and discourage spammers from further participation. Along with the leader-

board, the website provided helpful tips and messages from time to time to keep the

participants motivated.

We collected responses from two participants for each sentence. For training

and evaluating our classification models, we only used a sentence if its label was

agreed upon by two top-quality participants. Thereby we got 8015 sentences (5860

NFSs, 482 UFSs, 1673 CFSs).
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k P@k AvgP nDCG

10 1.000 1.000 1.000

25 1.000 1.000 1.000

50 0.980 0.995 0.987

100 0.943 0.979 0.956

200 0.916 0.955 0.931

300 0.848 0.937 0.874

400 0.764 0.915 0.801

500 0.679 0.897 0.827

Table 2.2. Ranking Accuracy: Past Presidential Debates

2.5.5 Feature Extraction

We extracted multiple categories of features from the sentences. We use the

following sentence to explain the features.

When President Bush came into office, we had a budget surplus and the national

debt was a little over five trillion.

Sentiment: We used AlchemyAPI to calculate a sentiment score for each sentence.

The score ranges from -1 (most negative sentiment) to 1 (most positive sentiment).

The above sentence has a sentiment score -0.846376.

Length: This is the word count of a sentence. Natural language toolkit NLTK was

used for tokenizing a sentence into words. The example sentence has length 21.

Word: We used words in sentences to build tf-idf features. After discarding rare

words that appear in less than three sentences, we got 6130 words. We did not apply
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k P@k AvgP nDCG

10 0.400 0.642 0.441

20 0.450 0.520 0.456

30 0.367 0.500 0.401

40 0.325 0.477 0.368

50 0.300 0.456 0.346

60 0.300 0.431 0.356

70 0.300 0.411 0.390

80 0.275 0.406 0.401

90 0.267 0.394 0.422

100 0.270 0.381 0.452

Table 2.3. Ranking Accuracy: 2015 Republican Debate

stemming or stopword removal.

Part-of-Speech (POS) Tag: We applied NLTK POS tagger on all sentences. There

are 43 POS tags in the corpus. We constructed a feature for each tag. For a sentence,

the count of words belonging to a POS tag is the value of the corresponding feature.

In the example sentence, there are 3 words (came, had, was) with POS tag VBD

(Verb,Past Tense) and 2 words (five, trillion) with POS tag CD (Cardinal Number).

Entity Type: We used AlchemyAPI to extract entities from sentences. There are

2727 entities in the labeled sentences. They belong to 26 types. The above sentence

has an entity “Bush” of type “Person”. We constructed a feature for each entity

type. For a sentence, its number of entities of a particular type is the value of the

corresponding feature.
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Figure 2.4. Feature Importance

Feature Selection: There are 6201 features in total. To avoid over-fitting

and attain a simpler model, we performed feature selection. We trained a random

forest classifier for which we used GINI index to measure the importance of features

in constructing each decision tree. The overall importance of a feature is its average

importance over all the trees. Figure 2.4 shows the importance of the 30 best features

in the forest. The black solid lines indicate the standard deviations of importance

values. Category types are prefixes to feature names. We observed that unsurprisingly

POS tag CD (Cardinal Number) is the best feature–check-worthy factual claims are

more likely to contain numeric values (45% of CFSs in our dataset) and non-factual

sentences are less likely to contain numeric values (6% of NFSs in our dataset).
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2.5.6 Evaluation

We performed 3-class (NFS/UFS/CFS) classification using several supervised

learning methods, including Multinomial Naive Bayes Classifier (NBC), Support Vec-

tor Machine (SVM) and Random Forest Classifier (RFC). These methods were eval-

uated by 4-fold cross-validation. SVM had the best accuracy in general. We exper-

imented with various combinations of the extracted features. Table 2.1 shows the

performance of SVM using words and POS tag features. On the CFS class, Claim-

Buster achieved 79% precision (i.e., it is accurate 79% of the time when it declares

a CFS sentence) and 74% recall (i.e., 74% of true CFSs are classified as CFSs). The

classification models had better accuracy on NFS and CFS than UFS. This is not

surprising, since UFS is between the other two classes and thus the most ambiguous.

More detailed results and analyses based on data collected by an earlier date can be

found in [16].

We used SVM to rank all 8015 sentences (cf. Section 2.5.2) by the method in

Section 2.5.1. We measured the accuracy of the top-k sentences by several commonly-

used measures, including Precision-at-k (P@k), AvgP (Average Precision), nDCG

(Normalized Discounted Cumulative Gain). Table 2.2 shows these measure values for

various k values. In general, ClaimBuster achieved excellent performance in ranking.

For instance, for top 100 sentences, its precision is 0.96. This indicates ClaimBuster

has a strong agreement with high-quality human coders on the check-worthiness of

sentences.

2.5.6.1 Comparison with Subjectivity Classifiers

We also compared the performance of ClaimBuster with state-of-the-art sub-

jectivity classifiers [17, 18]. Our hypothesis was that an subjectivity classifier can be

used to separate NFS from UFS and CFS. However, experiment results showed that
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NFS UFS CFS

subjective 157 5 44

objective 574 58 194

Table 2.4. Comparison with [17]

the subjectivity classifiers failed to filter NFS. We used the OpinionFinder 5 package

for classification. This tool provides two subjectivity classifiers [17, 18].

The first classifier [17] tags each sentence as either subjective or objective based

on a model trained on the MPQA Corpus 6. Based on a 10 fold-cross validation on

11168 sentences extracted from the MPQA Opinion Corpus, this classifier has an

accuracy of 76%, subjective precision of 79%, subjective recall of 76%, and subjective

F-measure of 77.5%.

The second classifier [18] is a rule-based classifier. It optimizes precision at the

expense of recall. That is, it classifies a sentence as subjective or objective only if

it can do so with confidence. Otherwise, it labels the sentence as “unknown”. This

rule-based classifier is reported to have about 91.7% subjective precision and 30.9%

subjective recall. Objective precision is 83.0% and objective recall is 32.8%.

Table 2.4 shows the comparison between [17] and ClaimBuster. We used the

1032 screening sentences for this experiment. 574 NFS sentences were labeled as ob-

jective sentence and 44 CFS sentences were labeled as subjective sentence. This inval-

idates our hypothesis that a subjectivity classifier may be used to filter NFS sentences

5http://mpqa.cs.pitt.edu/opinionfinder/
6http://mpqa.cs.pitt.edu/corpora/
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NFS UFS CFS

subjective 21 0 4

unknown 175 5 45

objective 535 58 189

Table 2.5. Comparison with [18]

NFS UFS CFS

NFS prediction 5803 0 93

UFS prediction 470 0 16

CFS prediction 1508 0 341

Table 2.6. Performance of a Rule-based Classifier

from UFS and CFS. Table 2.5 also shows similar comparison between ClaimBuster

and [18].

2.5.6.2 Comparison with Rule-based Classifiers

We used a simple rule-based classifier as a baseline and compared it with an

SVM-based model. Table 2.6 shows performance of the baseline. The following

regular expression were used as the rules.

1. . ∗ (percent|times|%). ∗ of. ∗ $

2. (?!. ∗ think|. ∗ believe). ∗ (more|less|lower|higher|bigger|smaller|increasing|

decreasing). ∗ than. ∗ $
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Figure 2.5. ClaimBuster Platform

3. (?!. ∗ think|. ∗ believe). ∗ (increas|decreas). ∗ $

4. . ∗ [0− 9] + (to|or|and)[0− 9] + . ∗ $

5. . ∗ there. ∗ (is|was|are|has|had). ∗ (never|not). ∗ $

6. . ∗ (support|oppose). ∗ (abortion|tax|civil|wage|gun|health|security|energy). ∗ $

This baseline approach performed significantly worse than an SVM-based model.

For example, 1508 CFS sentences were labeled as NFS by this baseline technique. The

results validate the hypothesis that it is not simple to produce a reasonably accurate

rule-based classifier and a bag-of-words model with POS tags outperforms a rule-

based classifier.
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Figure 2.6. Find Factual Claims in any Text

2.5.7 ClaimBuster Platform

We have developed a platform 7 for fact-checking enthusiasts. It allows to find

check-worthy factual claims from any political discourse. Major components of the

platform are- text mining, social media analysis and collaborative fact-checking. The

platform has covered all the Democratic and Republican primary debates of the 2016

U.S. presidential election. It has received substantial media attention from multiple

news outlets, including Austin American Statesman, Poynter, PolitiFact and New

Scientist, to name a few 8. Figure 2.5 shows the landing page of the ClaimBuster

platform. Below, each part of the platform is explained-

1. Find factual claims in any text: Clicking this button takes the user to a new

page as shown in Figure 2.6. A user can write/paste any text in the textbox,

press the Submit button and the system will show check-worthiness score for

each sentence of the text. The Edit button allows the user to edit the text.

7http://idir.uta.edu/claimbuster
8http://idir.uta.edu/claimbuster/press
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Figure 2.7. A Debate Page
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Order by Score allows the user to see the highly check-worthy sentences in the

text.

2. Twitter factual claim monitor: This part shows the automatically detected

check-worthy factual claims related to U.S. politics in Twitter. A Twitter ac-

count 9 is used to retweet the detected tweets. The underlying system first

collects tweets from a list of U.S. political Twitter accounts, news organization

and applies multiple filters to perform preprocessing. Then it applies Claim-

Buster model over these tweets for finding the check-worthiness score of each

tweet, and then applies several filters to eliminate redundant and irrelevant

tweets. Only highly scored tweets are retweeted using the account.

3. Event list: This part shows a list of debates covered by the platform. When a

debate is broadcasted in a television channel, this platform covers the debate

live and the top-entry of the list features the live debate. Closed captions

of the debate are fed to the platform through a device called TextGrabber.

Past debates are listed below the live debates in inverse chronological order.

Figure 2.7 is a screenshot of the platform when a past debate is selected. The

background colors of the sentences indicate how check-worthy they are. Darker

colors correspond to higher check-worthiness scores. By default, all sentences

having scores higher than or equal to 0.5 are highlighted. A slider allows the

user to modify this threshold. An Order by Score button allows the user to

order all the sentences by their check-worthiness scores. This way of ranking

helps fact-checkers prioritize their efforts in assessing the veracity of claims.

Thus, ClaimBuster will free journalists from the time-consuming task of finding

check-worthy claims, leaving them with more time for reporting and writing.

9http://twitter.com/ClaimBusterTM
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2.6 CASE STUDY: 2016 U.S. Presidential Election Primary Debates

Using the 21 primary debates, we compared ClaimBuster against the human

fact-checkers at several popular fact-checking organizations. We are interested in

testing the hypothesis that the claims picked by ClaimBuster are also more likely to

be fact-checked by professionals. If the hypothesis is true, we can expect ClaimBuster

to be effective in assisting professionals choose what to fact-check and thus helping

improve their work efficiency.

2.6.1 Data Collection

There have been 12 Republican10 and 9 Democratic primary debates in the

2016 U.S. presidential election. The debates featured as many as 11 Republican

Party candidates and 5 Democratic Party candidates at the beginning, respectively.

These debates took place between August, 2015 and April, 2016. We collected the

transcripts of all these debates from several news media websites, including Wash-

ington Post, CNN, Times, and so on. There are a total of 30737 sentences in the

21 transcripts. We pre-processed these transcripts and identified the speaker of each

sentence. Furthermore, we identified the role of the speaker. Sentences spoken by

debate moderators were excluded from the study.

2.6.2 Finding Check-worthy Factual Claims

We use ClaimBuster to calculate the check-worthiness scores of the sentences

and thereby identify highly check-worthy factual claims. Figure 2.8 shows the dis-

tributions of ClaimBuster scores on all the sentences for both political parties. The

distributions for the two parties are similar. One distinction is that the distribution

for the Republican Party has a higher peak and a slightly thinner right tail than

10We only considered the “prime time” debates which included the more popular candidates.
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Figure 2.8. Distributions of ClaimBuster scores over all the sentences for both parties

the distribution for the Democratic party. There are 776 check-worthy factual claims

spoken by the Republicans with ClaimBuster scores over 0.5. This is 5.06% of all the

sentences spoken by the Republican candidates. From Democrat candidates, there

are 484 (6.73%) sentences with ClaimBuster score higher than 0.5.

Figure 2.9 shows the check-worthiness score distributions for the major can-

didates (nomination winners and runner-ups) from both parties. Among these four

candidates, Donald Trump appears to have presented less number of highly check-

worthy factual claims (ClaimBuster score ≥ 0.5) than the other three candidates.

He has used more non-factual sentences (ClaimBuster score ≤ 0.3) compared to the

other candidates.

2.6.3 Topic Detection

From each of the 21 debates, the 20 highest-scoring sentences were selected and

manually placed in topic categories, a modified version of the most important prob-
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Figure 2.9. Distributions of ClaimBuster scores over all the sentences for the major

candidates

lems (MIP) used by Gallup and other researchers for decades [19, 20, 21]. The major

topics in the primary debates were: economy, crime, international affairs, immigra-

tion, health care, social issues, education, campaign finance, environment, Supreme

Court, privacy and energy. Some of these topics were further broken down into

subtopics. The 420 sample sentences were used to cultivate a list of keywords most

often found for each of these topics. For example, the keywords for subtopic “abor-

tion” were abortion, pregnancy and planned parenthood. Some topics had a small

number of keywords, others had more than 20.

A topic-detection program is created to detect each debate sentence’s topic.

Provided a sentence, the program computes a score for each topic in our list based

on presence of each topic’s keywords in the sentence. The score is the total number

of occurrences of such keywords. The sentence is assigned to the topic attaining

the highest score among all the topics. However, if the highest score is lower than a

threshold (two occurrences of topic keywords), the program does not assign any of the

topics to the sentence. If there is a tie between two or more topics, the program uses
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Platforms avg(YES) avg(NO) t-value p-value

CNN 0.433 0.258 21.137 1.815E-098

PolitiFact 0.438 0.258 16.362 6.303E-060

Table 2.7. Score differences between sentences fact-checked and those not chosen for

checking

the topic of the preceding sentence if it matches one of the tied topics. Otherwise, it

randomly picks one of the tied topics.

In order to evaluate the above approach to detect topics, we created ground-

truth data for one Republican debate and one Democratic debate. We only used

sentences with at least 0.5 ClaimBuster score. In our ground-truth data for the

Democratic debate, there are 52 sentences and 39 of them are labeled with a topic.

The program detected topics for 27 of the 39 sentences and only one sentence was

assigned with a incorrect topic. For the Republican debate ground-truth data, there

are 62 sentences and 44 sentences are labeled with a topic. The program found topics

for 30 out of the 44 sentences and 5 of these sentences were mis-classified.

We applied the topic detection program on all remaining sentences of these

debates. The topics of the sentences allow us to gain better insight into the data. The

results of our study which leverages the detected topics are reported in Section 2.6.5.

The high accuracy of the topic-detection program on the ground-truth data gives us

confidence on the results.
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Figure 2.10. Distribution of verdicts for each party

2.6.4 Verdict Collection

We used CNN and PolitiFact as the means for comparing ClaimBuster’s results.

These two organizations were selected because each identifies claims they judge to be

worth checking and then rates each claim on a truthfulness scale. The verdicts for

CNN are true, mostly true, true but misleading, false or it’s complicated. Politi-

Fact uses true, mostly true, half true, mostly false, false and “pants on fire” (egre-

giously false). Other organizations focus specifically on false or misleading claims only

(Factcheck.org) or write about debate statements they found interesting or suspicious

(Washington Post) which makes a comparison to ClaimBuster problematic.

For each of the 21 debates CNN and PolitiFact prepared a summary of the

factual claims they chose to check and rendered a verdict on them. We collected all

of these verdicts, 224 from CNN and 118 from PolitiFact.

Table 2.7 shows scores given by ClaimBuster to the claims fact-checked by CNN

and PolitiFact. The ClaimBuster average for sentences fact-checked by CNN is 0.433

compared to 0.258 for those sentences not selected by CNN, a statistically significant

difference. Likewise, the ClaimBuster average for sentences checked by PolitiFact
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Figure 2.11. Distribution of verdicts for each major candidate

is 0.438 compared to 0.258 for those not selected, also a significant difference. The

results of these comparisons demonstrate the utility of ClaimBuster in identifying

sentences likely to contain important factual claims.

Figure 2.10 shows, for each party, the number of fact-checks of different veracity

by CNN and PolitiFact. Figure 2.11 shows number of fact-checks for each major

candidates. One observation is, Donald Trump has presented more Pants on Fire,

False and Mostly False factual claims than other candidates according to PolitiFact.

Similar observation is also evident according to CNN.

2.6.5 Analysis

With the ClaimBuster score, topic and veracity of the sentences at hand, we

study the relation among these and try to find answers to questions such as which

candidate presented more factual claims pertaining to a certain topic compared to

others and so on.

Figure 2.12 shows the distribution of topics among sentences for each party.

Republican candidates are more vocal about Economy, International Affairs, and
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Figure 2.12. Distribution of topics over all the sentences for each party

Immigration compared to the Democrats. On the other hand, Democrats are more

vocal on Energy, Education, Social Issues and Health Care. We roll down to the

candidate level and try to understand the most vocal candidates on each of the

topics. Figure 2.13 shows the topic distribution for each major candidate. Bernie

Sanders was the most vocal on Social Issues among the candidates. Ted Cruz spoke

significantly more on International Affairs compared to other candidates.

We analyzed the check-worthiness of the sentences of each topic. Figure 2.14

shows the topic distribution of sentences having ClaimBuster score ≥ 0.5. This figure

explains how often the candidates used factual claims while speaking about different

topics. For example, both Donald Trump and Bernie Sanders presented significantly

more check-worthy factual claims relating to the Economy compared to their debate

competitors.
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Figure 2.13. Distribution of topics over all the sentences from the major candidates

Figure 2.15 shows the topic distribution of sentences having ClaimBuster score

≤ 0.3. This figure explains how much the candidates spoke about different topics

without presenting factual claims. One interesting observation derived from Figures

2.14 and 2.15 is that Republican candidates spoke about Health Care but used fewer

factual claims regarding this topic. On the other hand, Democratic candidate Hillary

Clinton presented factual statements related to Environment rather than presenting

non-factual, subjective statements.
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Figure 2.14. Distribution of topics over sentences scored high (≥ 0.5) by ClaimBuster

Figure 2.16 shows the topic distributions of CNN, PolitiFact sentences as well

as of highly check-worthy factual sentences (ClaimBuster score ≥ 0.5). This figure

signifies that there are strong similarities between ClaimBuster and the fact-checking

organizations. ClaimBuster tends to give high scores to the topics which CNN and

PolitiFact tend to choose for fact checking. For example, all three have about 50

percent of the fact checks (or high ClaimBuster scores) associated with Economy,

about 14 percent for International Affairs, about 10 percent for Immigration and 4

percent for Crime. One topic where ClaimBuster showed a difference with the human
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Figure 2.15. Distribution of topics over sentences scored low (≤ 0.3) by ClaimBuster

fact-checkers was Social Issues. That topic represented about 9 percent of the CNN

and PolitiFact fact-checks but only about 2 percent of the highly scored ClaimBuster

sentences.

2.7 Future Plan

We look forward to making progress on several fronts in building ClaimBuster

in the future. We are applying ClaimBuster on Australian Parliament Hansard 11.

This will facilitate fact-checking statements made by the members of parliament.

11http://www.aph.gov.au/Parliamentary Business/Hansard
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Building a repository of fact-checks done by professionals is also in our agenda.

This will enable automatic matching of claims during a live event with known fact-

checks in the repository and instantly informing the audience about the claims’ ve-

racity.

We are also studying claims found in the media about various domains such

as politics, sports and so on. Particularly, we are interested in investigating how

numbers, actions and comparisons are used in factual claims. Furthermore, we will
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Figure 2.16. Comparison of topic distributions of CNN, PolitiFact fact-checked sen-

tences and sentences scored high (≥ 0.5) by ClaimBuster
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formulate templates of factual claims. Such templates will enable programs to auto-

matically categorize claims, which can be valuable for improving fact-checking accu-

racy.

All these efforts will bring us closer towards the “Holy Grail” of automated

fact-checking - a fully automated, live, end-to-end fact-checking system [22].
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CHAPTER 3

Automatic Fact Monitoring

Towards computational journalism, we present FactWatcher, a system that helps

journalists identify data-backed, attention-seizing facts which serve as leads to news

stories. FactWatcher discovers three types of facts, including situational facts, one-of-

the-few facts, and prominent streaks, through a unified suite of data model, algorithm

framework, and fact ranking measure. Given an append-only database, upon the

arrival of a new tuple, FactWatcher monitors if the tuple triggers any new facts. Its

algorithms efficiently search for facts without exhaustively testing all possible ones.

Furthermore, FactWatcher provides multiple features in striving for an end-to-end

system, including fact ranking, fact-to-statement translation and keyword-based fact

search.

3.1 Introduction

Computational journalism emerged recently as a young interdisciplinary field [1]

that brings together experts in journalism, social sciences and computer science, and

advances journalism by innovations in computational techniques. Database and data

mining researchers have also started to push the frontiers of this field [2, 3, 4]. One

of the goals in computational journalism is newsworthy fact discovery. Reporters

always try hard to bring out attention-seizing factual statements backed by data,

which may lead to news stories and investigation. While such statements take many

different forms, we consider a common form exemplified by the following excerpts

from real-world news media:
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• “Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers

player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef

Schrempf in December 1992.” (http://espn.go.com/espn/elias?date=20130205)

• “The social world’s most viral photo ever generated 3.5 million likes, 170,000 com-

ments and 460,000 shares by Wednesday afternoon.” (http://www.cnbc.com/id/

49728455/President_Obama_Sets_New_Social_Media_Record)

What is common in the above two statements is a prominent fact with regard

to a context and several measures. In the first statement, the context includes the

performance of Pacers players in games against the Bulls since December 1992 and the

measures are points, rebounds, assists. By these measures, no performance in the context

is better than the mentioned performance of Paul George. For the second statement,

the measures are likes, comments, shares and the context includes all photos posted to

Facebook. The story is that no photo in the context attracted more attention than

the mentioned photo of President Barack Obama, by the three measures. In general,

facts can be put in many contexts, such as photos posted in 2012, photos posted by

political campaigns, and so on.

Similar facts can be stated on data from domains outside of sports and so-

cial media, including stock data, weather data, and criminal records. For example:

1) “Stock A becomes the first stock in history with price over $300 and market cap

over $400 billion.” 2) “Today’s measures of wind speed and humidity are x and y,

respectively. City B has never encountered such high wind speed and humidity in

March.” 3) “There were 35 DUI arrests and 20 collisions in city C yesterday, the

first time in 2013.” Some of these facts are not only interesting to reporters but also

useful to financial analysts, scientists, and citizens.

In technical terms, a fact considered here is a contextual skyline object that

stands out against other objects in a context with regard to a set of measures. Con-
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tuple id player day month season team opp team points assists rebounds

t1 Bogues 11 Feb. 1991-92 Hornets Hawks 4 12 5

t2 Seikaly 13 Feb. 1991-92 Heat Hawks 24 5 15

t3 Sherman 7 Dec. 1993-94 Celtics Nets 13 13 5

t4 Wesley 4 Feb. 1994-95 Celtics Nets 2 5 2

t5 Wesley 5 Feb. 1994-95 Celtics Timberwolves 3 5 3

t6 Strickland 3 Jan. 1995-96 Blazers Celtics 27 18 8

t7 Wesley 25 Feb. 1995-96 Celtics Nets 12 13 5

* Attribute opp team is the short form of opposition team.

Table 3.1. A Mini-world of Basketball Gamelogs

sider a table R whose schema includes a set of measure attributes M and a set of

dimension attributes D. A context is a subset of R, resulting from a conjunctive con-

straint defined on a subset of the dimension attributes D ⊆ D. A measure subspace

is defined by a subset of the measure attributes M ⊆ M. A tuple t is a contextual

skyline tuple if no other tuple in the context dominates t. A tuple t′ dominates t if

t′ is better than or equal to t on every attribute in M and better than t on at least

one of the attributes. Such is the standard notion of dominance relation adopted in

skyline analysis [23].

We study how to find situational facts pertinent to new tuples in an ever-

growing database, where the tuples capture real-world events. We propose algorithms

that, whenever a new tuple t enters an append-only table R, discover constraint-

measure pairs that qualify t as a contextual skyline tuple. Each such pair constitutes

a situational fact pertinent to t’s arrival.
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Example 1. Consider the mini-world of basketball gamelogs R in Table 3.1, where

D={player, month, season, team, opp team} and M={points, assists, rebounds}. The exist-

ing tuples are t1 to t6 and the new tuple is t7. If the context is the whole table (i.e.,

no constraint) and the measure subspace M=M, t7 is not a skyline tuple since it is

dominated by t3 and t6. However, with regard to context σmonth=Feb.(R) (correspond-

ing to constraint month=Feb.) and the same measure subspace M , t7 is in the skyline

along with t2. In yet another context σteam=Celtics∧ opp team=Nets(R) under measure

subspace M={assists, rebounds}, t7 is in the skyline along with t3. Tuple t7 is also a

contextual skyline tuple for other constraint-measure pairs, which we do not further

enumerate.

Discovering situational facts is challenging as timely discovery of such facts

is expected. In finding news leads centered around situational facts, the value of

a news piece diminishes rapidly after the event takes place. Consider NBA games

again. Sports media need to identify and discuss sensational records quickly as they

emerge; any delay makes fans less interested in the records and risks losing them to

rival media. Timely identification of situational facts is also critical in areas beyond

journalism. To make informed investment decisions, investors want to know facts

related to stock trading as soon as possible. Facts discovered from weather data can

assist scientists in identifying extreme weather conditions and help government and

the public in coping with the weather.

Simple situational facts on a single measure and a complete table, e.g., the all-

time NBA scoring record, can be conveniently detected by database triggers. However,

general and complex facts involving multiple dimension and measure attributes are

much harder to discover. Exhaustively using triggers leads to an exponential explo-

sion of constraint-measure pairs to check for each new tuple. In reality, news media

relies on instincts and experiences of domain experts on this endeavor. The experts,
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impressed by an event such as the outstanding performance of a player in a game,

hypothesize a fact and manually craft a database query to check it. This is how Elias

Sports Bureau tackles the task and provides sports records (such as the aforemen-

tioned one by Paul George) to many sports media [24]. With ever-growing data and

limited human resources, such manual checking is time-consuming and error-prune.

Its low efficiency not only leads to delayed and missing facts, but also ties up pre-

cious human expertise that could be otherwise devoted to more important journalistic

activities.

The technical focus of this chapter is thus on efficient automatic approach to

discovering situational facts, i.e., finding constraint-measure pairs that qualify a new

tuple t as a contextual skyline tuple. A straightforward brute-force approach would

compare t with every historical tuple to determine if t is dominated, repeatedly for

every conjunctive constraint satisfied by t under every possible measure subspace.

The obvious low-efficiency of this approach has three culprits—exhaustive comparison

with every tuple, under every constraint, and over every measure subspace. We thus

design algorithms to counter these issues by three corresponding ideas, as follows:

1) Tuple reduction Instead of comparing t with every previous tuple, it is

sufficient to only compare with current skyline tuples. This is based on the simple

property that, if any tuple dominates t, then there must exist a skyline tuple that

also dominates t. For example, in Table 3.1, under constraint month=Feb. and the

full measure space M, the corresponding context contains t1, t2, t4 and t5, and the

contextual skyline has two tuples—t1 and t2. When the new tuple t7 comes, with

regard to the same constraint-measure pair, it suffices to compare t7 with t1 and t2,

not the remaining tuples.

2) Constraint pruning If t is dominated by t′ in a particular measure sub-

space M , then t does not belong to the contextual skyline of constraint-measure pair
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(C,M) for any C satisfied by both t and t′. For example, since t7 is dominated by t3

in the full measure space M, it is not in the contextual skylines for (team=Celtics ∧

opp team=Nets,M), (team=Celtics,M), (opp team=Nets,M) and (no constraint,M). Fur-

thermore, since t7 is dominated by t6 in M, it does not belong to the contextual

skylines for (season=1995-96,M) and (no constraint,M). Based on this, we examine

the constraints satisfied by t in a certain order, such that comparisons of t with sky-

line tuples associated with already examined constraints are used to prune remaining

constraints from consideration.

3) Sharing computation across measure subspaces Since repeatedly

visiting the constraints satisfied by t for every measure subspace is wasteful, we pursue

sharing computation across different subspaces. The challenge in such sharing lies in

the anti-monotonicity of dominance relation—a skyline tuple in space M may or may

not be in the skyline of a superspace or subspace M ′ [25]. Nonetheless, we can first

consider the full spaceM and prune various constraints from consideration for smaller

subspaces. For instance, after comparing t7 with t2 inM, the algorithms realize that

t7 has smaller values on points and rebounds. It is dominated by t2 in three subspaces—

{points, rebounds}, {points} and {rebounds}. When considering these subspaces, we can

skip two contexts—corresponding to constraint month=Feb. and empty constraint,

respectively—as t2 and t7 are in both contexts.

It is crucial to report truly prominent situational facts. A newly arrived tuple

t may be in the contextual skylines for many constraint-measure pairs. Reporting all

of them will overwhelm users and make important facts harder to spot. We measure

the prominence of a constraint-measure pair by the cardinality ratio of all tuples to

skyline tuples in the corresponding context. The intuition is that, if t is one of the

very few skyline tuples in a context containing many tuples under a measure subspace,

then the corresponding constraint-measure pair brings out a prominent fact. We thus
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rank all situational facts pertinent to t in descending order of prominence. Reporters

and experts can choose to investigate top-k facts or the facts with prominence values

above a threshold.

3.2 Related Work

Pioneers in data journalism have considerable success in using computer pro-

grams to write stories about sports games and stock earnings (e.g., StatSheet http:

//statsheet.com/ and Narrative Science http://www.narrativescience.com/). The

stories follow writing patterns to narrate box scores and play-by-play data and a

company’s earnings data. They focus on capturing what happened in the game or

what the earnings numbers indicate. They do not find situational facts pertinent to

a game or an earnings report in the context of historical data.

Skyline query is extensively investigated in recent years, since Börzsönyi et

al. [23] brought the concept to the database field. In [23] and the studies afterwards,

it is assumed both the context of tuples in comparison and the measure space are

given as query conditions. A high-level perspective on what distincts our work is—

while prior studies find answers (i.e., skyline points) for a given query (i.e., a context,

a measure space, or their combination), we study the reverse problem of finding

queries (i.e., constraint-measure pairs that qualify a tuple as a contextual skyline

tuple, among all possible pairs) for a particular answer (i.e., a new tuple).

From a technical perspective, Table 3.2 summarizes the differences among the

more relevant previous studies and this chapter, along three aspects—whether they

consider all possible contexts defined on dimension attributes, all measure subspaces,

and incremental computation on dynamic data. With regard to context, Zhang et

al. [26] integrate the evaluation of a constraint with finding skyline tuples in the

corresponding context in a given measure space. With regard to measure, Pei et
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al. [25] compute on static data the skycube—skyline points in all measure subspaces.

Xia et al. [27] studied how to update a compressed skycube (CSC) when data change.

The CSC stores a tuple t in its minimum subspaces—the measure subspaces in which

t is a skyline tuple and of which the subspaces do not contain t in the skyline. They

proposed an algorithm to update CSC when new tuples come and also an algorithm

to use CSC to find all skyline tuples for a given measure subspace.

We can adapt [27] to find situational facts. While [28] provides experimental

comparisons with the adaptation, here we analyze its shortcomings. Since [27] does

not consider different contexts, the adaptation entails maintaining a separate CSC

for every possible context. Upon the arrival of a new tuple t, for every context,

the adaptation will update the corresponding CSC. Since a CSC only stores t in

its minimum subspaces, the adaptation needs to run their query algorithm to find

the skyline tuples for all measure subspaces, in order to determine if t is one of the

skyline tuples. This is clearly an overkill, caused by that CSC is designed for finding

all skyline tuples. Furthermore, while our algorithms can share computation across

measure subspaces, there does not appear to be an effective strategy to share the

computation of CSC algorithms across different contexts.

Promotion analysis by ranking [29] finds the contexts in which an object is

ranked high. It ranks objects by a single score attribute, while we define object

dominance relation on multiple measure attributes. It considers one-shot computation

on static data, while we focus on incremental discovery on dynamic data. Due to these

distinctions, the algorithmic approaches in the two works are also fundamentally

different.

Wu et al. [4] studied the one-of-the-τ object problem, which entails finding

the largest k value and the corresponding k-skyband objects (objects dominated by

less than k other objects) such that there are no more than τ k-skyband objects.
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all possible contexts measure subspaces incremental

[26] no no no

[25] no yes no

[27] no yes yes

[29] yes no no

[4] no yes no

[30] no no yes

this work yes yes yes

Table 3.2. Comparing Related Work on Three Modeling Aspects

They consider all measure subspaces but not different contexts formed by constraints.

Similar to [29], it focuses on static data.

Alvanaki et al. [30] worked on detecting interesting events through monitor-

ing changes in ranking, by using materialized view maintenance techniques. The

work focuses on top-k queries on single ranking attribute rather than skyline queries

defined on multiple measure attributes. Their ranking contexts have at most three

constraints. The work is similar to [31] which studied how to predict significant events

based on historical data and correspondingly perform lazy maintenance of ranking

views on a database.

3.3 Problem Statement

This section provides a formal description of our data model and problem state-

ment. Consider a relational schema R(D;M), where the dimension space is a set of

dimension attributes D={d1, . . . , dn} on which constraints are specified, and the mea-
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id d1 d2 d3 m1 m2

t1 a1 b2 c2 10 15

t2 a1 b1 c1 15 10

t3 a2 b1 c2 17 17

t4 a2 b1 c1 20 20

t5 a1 b1 c1 11 15

Table 3.3. Running Example

sure space is a set of measure attributes M={m1, . . . ,ms} on which dominance rela-

tion for skyline operation is defined. Any set of dimension attributes D ⊆ D defines

a dimension subspace and any set of measure attributes M ⊆ M defines a measure

subspace. In Table 3.3, R(D;M) = {t1, t2, t3, t4, t5}, D = {d1, d2, d3}, M={m1,m2}.

We will use this table as a running example.

Definition 1 (Constraint). A constraint C on dimension space D is a conjunctive

expression of the form d1=v1∧d2=v2∧ . . .∧ dn=vn (also written as 〈v1, v2, . . . , vn〉 for

simplicity), where vi∈dom(di)∪ {∗} and dom(di) is the value domain of dimension

attribute di. We use C.di to denote the value vi assigned to di in C. If C.di=∗, we

say di is unbound, i.e., no condition is specified on di. We denote the number of

bound attributes in C as bound(C).

The set of all possible constraints over dimension space D is denoted CD. Clearly,

|CD| =
∏

i(|dom(di)|+ 1).

Given a constraint C ∈ CD, σC(R) is the relational algebra expression that

chooses all tuples in R that satisfy C.
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Algorithm 1: Find Ct

Input: t ∈ R
Output: Ct: constraints satisfied by t

1 Ct ← ∅;
2 Q← ∅; Q.enqueue(⊤);
3 while not Q.empty() do
4 C ← Q.dequeue();
5 Ct ← Ct ∪ {C};
6 i← n;
7 while i > 0 and C.di = ∗ do
8 C′ ← C;
9 C′.di ← t.di;

10 Q.enqueue(C′);
11 i← i− 1;

12 return Ct;

Example 2. For Table 3.3, an example constraint is C = 〈a1, ∗, c1〉 in which d2 is

unbound. σC(R) = {t2, t5}.

Definition 2 (Skyline). Given a measure subspace M and two tuples t, t′ ∈ R, t

dominates t′ with respect to M , denoted by t �M t′ or t′ ≺M t, if t is equal to or

better than t′ on all attributes in M and t is better than t′ on at least one attribute

in M . A tuple t is a skyline tuple in subspace M if it is not dominated by any other

tuple in R. The set of all skyline tuples in R with respect to M is denoted by λM(R),

i.e., λM(R)={t ∈ R|@t′ ∈ R s.t. t′ �M t}.
We use the general term “better than” in Def. 2, which can mean either “larger

than” or “smaller than” for numeric attributes and either “ordered before” or “or-

dered after” for ordinal attributes, depending on applications. Further, the preferred

ordering of values on different attributes are allowed to be different. For example,

in a basketball game, 10 points is better than 5 points, while 3 fouls is worse than

1 foul. Without loss of generality, we assume measure attributes are numeric and a

larger value is better than a smaller value.
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Algorithm 2: BruteForce

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← ∅;
2 foreach M ⊆M do
3 foreach C ∈ Ct do
4 pruned ← false;
5 foreach t′ ∈ R do
6 if t ≺M t′ and t′ ∈ σC(R) then
7 pruned ← true;
8 break;

9 if not pruned then St ← St ∪ {(C,M)};

10 R← R ∪ {t};
11 return St;

Definition 3 (Contextual Skyline). Given a relation R(D;M), the contextual sky-

line under constraint C∈CD over measure subspace M⊆M, denoted λM(σC(R)), is

the skyline of σC(R) in M .

Example 3. For Table 3.3, if M =M, λM(R) = {t4}. In fact, t4 dominates all other

tuples in space M . If the constraint is C = 〈a1, b1, c1〉, σC(R) = {t2, t5}, λM(σC(R))

= {t2, t5} for M =M, and λM(σC(R)) = {t2} for M = {m1}.

Problem Statement Given an append-only table R(D;M) and the last tuple t

that was appended onto R, the situational fact discovery problem is to find each

constraint-measure pair (C,M) such that t is in the contextual skyline. The result,

denoted St, is {(C,M)|C∈CD,M⊆M, t∈λM(σC(R))}. For simplicity of notation, we

call St “the contextual skylines for t”, even though rigorously speaking it is the set

of (C,M) pairs whose corresponding contextual skylines include t.
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Algorithm 3: BaselineSeq

Input: R(M,D): existing tuples; t: the new tuple
Output: St: the contextual skylines for t

1 St ← ∅;
2 foreach M ⊆M do
3 S ← Ct;
4 foreach t′ ∈ R do

5 if t ≺M t′ then S ← S − Ct,t′ ;
6 foreach C ∈ S do
7 St ← St ∪ {(C,M)};

8 R← R ∪ {t};
9 return St;

3.4 Solution Overview

Discovering situational facts for a new tuple t entails finding constraint-measure

pairs that qualify t as a contextual skyline tuple. We identify three sources of ineffi-

ciency in a straightforward brute-force method, and we propose corresponding ideas

to tackle them. To facilitate the discussion, we define the concept of tuple-satisfied

constraints, which are all constraints pertinent to t, corresponding to the contexts

containing t.

Definition 4 (Tuple-Satisfied Constraint). Given a tuple t ∈ R(D;M) and a con-

straint C ∈ CD, if ∀di ∈ D, C.di = ∗ or C.di = t.di, we say t satisfies C. We denote

the set of all such satisfied constraints by CtD or simply Ct when D is clear in context.

It follows that given any C ∈ Ct, t ∈ σC(R).

For C∈Ct, C.di can attain two possible values {∗, t.di}. Hence, Ct has 2n con-

straints in total for |D|=n. Alg.1 is a simple routine used in all algorithms for finding

all constraints of Ct. It generates the constraints from the most general constraint

>=〈∗, ∗, . . . , ∗〉 to the most specific constraint 〈t.d1, t.d2, . . . , t.dn〉. > has no bound

attributes, i.e., bound(>)=0. Alg.1 makes sure a constraint is not generated twice, for
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efficiency, by not continuing the while-loop in Line 7 once a specific attribute value

is found in C.

A brute-force approach to the contextual skyline discovery problem would com-

pare a new tuple t with every tuple in R to determine if t is dominated, repeatedly

for every constraint satisfied by t in every possible measure subspace. It is shown in

Alg.2. The obvious inefficiency of this approach has three culprits—the exhaustive

comparison with every tuple, for every constraint and in every measure subspace. We

devise three corresponding ideas to counter these causes, as follows:

(1) Tuple reduction For a constraint-measure pair (C,M), t is in the contextual

skyline λM(σC(R)) if t belongs to σC(R) and is not dominated by any tuple in σC(R).

Instead of comparing t with every tuple, it suffices to only compare with current

skyline tuples. This simple optimization is based on the following proposition which

ways, if any tuple dominates t, there must exist a skyline tuple that also dominates

t.

Proposition 1. Given a new tuple t inserted into R, a constraint C ∈ Ct and a

measure subspace M , t ∈ λM(σC(R)) if and only if @ t′ ∈ λM(σC(R)) such that

t′ �M t.

To exploit this idea, our algorithms conceptually maintain the contextual sky-

line tuples for each context (i.e., measure subspace and constraint), and compare t

only with these tuples for constraints that t satisfies.

(2) Constraint pruning For constraints satisfied by t, we need to determine

whether t enters the contextual skyline. To prune constraints from consideration,

we note the following property: if t is dominated by a skyline tuple t′ under measure

subspace M , t is not in the contextual skyline of constraint-measure pair (C,M) for

any C satisfied by both t and t′.
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To enable constraint pruning, we organize all constraints in Ct into a lattice by

their subsumption relation. The constraints satisfied by both t and t′, denoted Ct,t′ ,

also form a lattice, which is the intersection of lattices Ct and Ct′ . Below we formalize

the concepts of lattice and lattice intersection.

Definition 5 (Constraint Subsumption). Given C1, C2 ∈ CD, C1 is subsumed by or

equal to C2 (denoted C1 E C2 or C2 D C1) iff

1. ∀di ∈ D, C2.di = C1.di or C2.di = ∗.
C1 is subsumed by C2 (denoted C1 C C2 or C2 B C1) iff C1 E C2 but C1 6= C2. In

other words, the following condition is also satisfied in addition to the above one—

2. ∃di ∈ D such that C2.di=∗ and C1.di 6=∗, i.e, di is bound to a value belonging to

dom(di) in C1 but is unbound in C2.

By definition, σC1(R) ⊆ σC2(R) if C1 E C2.

Example 4. Consider C1=〈a, b, c〉 and C2=〈a, ∗, c〉. Here C1.d1=C2.d1, C1.d3=C2.d3,

C1.d2=b and C2.d2=∗. By Definition 5, C1 is subsumed by C2, i.e. C1 / C2.

Definition 6 (Partial Order on Constraints). The subsumption relation E on CD
forms a partial order. The partially ordered set (poset) (CD, E) has a top element

> = 〈∗, ∗, . . . , ∗〉 that subsumes every other constraint in CD. > is the most general

constraint, since it has no bound attributes. Note that (CD, E) is not a lattice and

does not have a single bottom element. Instead, it has multiple minimal elements.

Every minimal element C satisfies the condition that ∀di, C.di 6= ∗.

If C1 C C2, we say C1 is a descendant of C2 (C2 is an ancestor of C1). If

C1 C C2 and bound(C1)− bound(C2) = 1, then C1 is a child of C2 (C2 is a parent of

C1). Given C ∈ CD, we denote C’s ancestors, descendants, parents and children by

AC, DC, PC and CHC, respectively.
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Definition 7 (Lattice of Tuple-Satisfied Constraints). Given t∈R(D;M), Ct⊆CD by

definition. In fact, (Ct,E) is a lattice. Its top element is >. Its bottom element

〈t.d1, t.d2, . . . , t.dn〉, denoted ⊥(Ct), is a minimal element in CD.

Given C∈Ct, we denote C’s ancestors, descendants, parents and children within

Ct by At
C, Dt

C, P t
C and CHt

C, respectively. |CHt
C |=n−bound(C) where n=|D|, i.e.,

each child of C is a constraint by adding conjunct di=t.di into C for unbound at-

tribute di. It is clear that |P t
C |=bound(C). By definition, At

C=AC and P t
C=PC,

while Dt
C⊆DC and CHt

C⊆CHC.

Example 5. Fig.3.1 presents lattice Ct5 for t5 in Table 3.3. For simplicity, we omit

values on unbound dimension attributes (e.g., 〈∗, ∗, c1〉 is represented as c1). Consider

C = 〈a1, ∗, c1〉. At5
C = {>, 〈a1, ∗, ∗〉, 〈∗, ∗, c1〉}, P t5

C = {〈a1, ∗, ∗〉, 〈∗, ∗, c1〉}, CHt5
C =

{〈a1, b1, c1〉} and Dt5
C = {〈a1, b1, c1〉}.

Definition 8 (Lattice Intersection). Given t, t′ ∈ R(D;M), Ct,t′=Ct ∩ Ct′ is the

intersection of lattices Ct and Ct′. Ct,t′ is non-empty and is also a lattice. By Def-

inition 7, the lattices for all tuples share the same top element >. Hence > is also

the top element of Ct,t′. Its bottom ⊥(Ct,t′)=〈v1, v2, . . . , vn〉 where vi=t.di if t.di=t
′.di

and vi=∗ otherwise. ⊥(Ct,t′) equals > when t and t′ do not have common attribute

value.

Example 6. Fig.3.4 shows Ct4 and Ct5 for t4 and t5 in Table 3.3. The constraints

connected by solid lines represent the lattice intersection Ct4,t5. Its bottom is ⊥(Ct4,t5)

= 〈∗, b1, c1〉. In addition to Ct4,t5, Ct4 and Ct5 further include the constraints connected

by dashed and dotted lines, respectively.

The algorithms we are going to propose consider the constraints in certain lat-

tice order, compare t with skyline tuples associated with visited constraints, and

use t’s dominating tuples to prune unvisited constraints from consideration—thereby
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a1,c1 b1,c1a1,b1

b1 c1a1

Τ

a1,b1,c1

a1,c1 b1,c1a1,b1

b1 c1a1

Τ

a2,b1 a2,c1

a2

a1,b1,c1 a2,b1,c1

Figure 3.1. Lattice Ct5

reducing cost. This idea of lattice-based pruning of constraints is justified by Propo-

sitions 2 and 3 below.

Proposition 2. Given a tuple t, if t /∈ λM(σC(R)), then t /∈ λM(σC′ (R)), for all

C ′ ∈ AC.

If t ≺M t′, then t /∈ λM(σ⊥(Ct,t′ )(R)). Hence, according to Proposition 2, we

have the following Proposition 3.

Proposition 3. Given two tuples t and t′, if t ≺M t′, then t /∈ λM(σC (R)), for all

C ∈ Ct,t′.
(3) Sharing computation across measure subspaces Given t, we need to

consider not only all constraints satisfied by t, but also all possible measure sub-

spaces. Sharing computation across measure subspaces is challenging because of

anti-monotonicity of dominance relation—a skyline tuple under space M may or may

not be a skyline tuple in another space M ′, regardless of whether M ′ is a superspace

or subspace of M [25]. We thus propose algorithms that first traverse the lattice in the

full measure space, during which a frontier of constraints is formed for each measure

subspace. Top-down (respectively, bottom-up) lattice traversal in a subspace com-
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mences from (respectively, stops at) the corresponding frontier instead of the root,

which in effect prunes some top constraints.

Two Baseline Algorithms We introduce two baseline algorithms BaselineSeq (Alg.3)

and BaselineIdx. They are not as naive as the brute-force Alg.2. Instead, they exploit

Proposition 3 straightforwardly. Upon t’s arrival, for each subspace M , they identify

existing tuples t′ dominating t. BaselineSeq sequentially compares t with every existing

tuple. S is initialized to be Ct (Line 3). Whenever BaselineSeq encounters a t′ that

dominates t, it removes constraints in Ct,t′ from S (Line 5). By Proposition 3, t is not

in the contextual skylines for those constraints. After t is compared with all tuples, the

constraints having t in their skylines remain in S. The same is independently repeated

for every M . The pseudo code of BaselineIdx is similar to Alg.3 and thus omitted.

Instead of comparing t with all tuples, BaselineIdx directly finds tuples dominating t by

a one-sided range query
∧

mi∈M(mi≥t.mi) using a k -d tree [32] on full measure space

M.

3.5 Prototype System: FactWatcher

Figure 3.2 shows FactWatcher’s customized GUI for NBA (National Basketball

Association) data, where new tuples—players’ statistics in individual games—come

into the database when a game is over. The GUI’s structure is dataset-agnostic as long

as the data table is modeled by R(D;M) as given in Section 3.3. For instance, for data

analytics of a social network service, suppose the dimension attributes are D={user

age, user city, post type, timestamp} and the measure attributes areM={number of

likes, number of comments, number of shares}. FactWatcher finds facts such as “no

one in Dallas has posted a photo that gets as many likes, comments and shares.” The

GUI consists of four areas, as follows.
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Figure 3.2. FactWatcher User Interface

id player team opposition team pts ast reb

t1 Lamar Odom Clippers Nets 12 9 13

t2 Lamar Odom Clippers Lakers 8 11 6

t3 Lamar Odom Clippers Lakers 9 9 7

t4 Eddie House Heat Nets 9 7 8

t5 Lamar Odom Heat Nets 10 11 12

t6 Eddie House Clippers Nets 10 11 10

t7 Eddie House Heat Wizards 8 6 9

t8 Lamar Odom Clippers Lakers 10 11 11

Table 3.4. A Data Table for the Running Example
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1. Stories This area shows a ranked list of textual news leads (stories) trans-

lated from facts that have ever been discovered and are still valid. It also allows

users search for translated stories by keywords. The translation is guided by a set of

templates and rules. For example, if t8 in Table 3.4 triggers a situational fact with

regard to constraint-measure pair (〈*, Clippers, Lakers〉, {pts, ast, reb}), the story is

“Lamar Odom had 10 points, 11 assists and 11 rebounds to become the first Clippers

player with a 10/11/11 (points/ assists/ rebounds) game against the Lakers.”

If a story is clicked, FactWatcher shows below it more stories for the same

constraint-measure pair (C,M) or grouping-measure pair (G,M), as illustrated in

Figure 3.2. It also presents bar charts to compare the stories by their values on M .

2. Ranking FactWatcher allows users to choose from several ways of ranking

facts and their corresponding stories.

Recentness This default option simply orders facts by their triggering tuples’ times-

tamps.

Popularity This option ranks facts by the frequencies of facts appearing in search

results within the last x months, where x can be controlled using a slidebar.

Interestingness This option ranks facts by the elapsed time since their last compa-

rable facts were discovered. Suppose tuple t triggers a new situational fact f1 with

regard to constraint-measure pair (C,M) and a new prominent streak f2 with regard

to grouping-measure pair (G,M). The interestingness of f1 (f2) is the elapsed time

since the last fact was discovered in (C,M) ((G,M)). The longer the elapsed time

is, the more interesting a fact is, since a long elapsed time indicates the fact does not

come by easily.

3. Exploration This area presents a faceted interface for exploring the sto-

ries. Each facet corresponds to a dimension or measure attribute. Under the facet

for a dimension attribute, the attribute values are associated with and ordered by
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numbers, which indicate how many facts involve the values. For instance, Figure 3.2

shows that there are 31 facts for such (C,M) that the constraint C has a conjunct

player=Lamar Odom. FactWatcher places a checkbox beside each attribute value.

A user can select/unselect the checkboxes across multiple facets. The selected val-

ues within one facet correspond to a disjunctive condition, and the disjuncts from

different facets form a conjunctive condition. They together correspond to multiple

constraints. Each fact (story) displayed in the “stories” area must satisfy one such

constraint.

Beside the facet for a measure attribute, FactWatcher presents a slidebar and

a button. A user can click the button to enable or disable a measure attribute.

Accordingly the “stories” area displays such stories whose corresponding measure

subspaces M only involve one or more enabled measure attributes. The user can

also use the slidebar to set the minimum and maximum desired values on an enabled

attribute mi. Accordingly the displayed facts (stories) must have values on mi within

the range.

4. Analytics This area visualizes statistics on facts related to objects selected

by a user. The “stories” area highlights the objects (values on object identification

attributes) in stories, e.g., Allen Iverson, Lamar Odom, etc. in Figure 3.2. When a

user clicks on an object, it is added to the object list in the middle of the “analytics”

area. The user can remove an object by clicking the crossmark beside it. The top

part of the “analytics” area is a line chart, which shows one line per selected object

that represents the number of facts (among the displayed facts in the “stories” area)

triggered by the object over each time period. When the user hovers the mouse on

a data point, a pop-up box shows, for each measure attribute, the number of facts

whose measure subspaces contain the measure attribute. The bottom part of this
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area is a radar chart, which shows one polygon per selected object that represents

how many facts triggered by the object are related to each measure attribute.

3.6 Usage Scenario of FactWatcher

We will demonstrate FactWatcher on several datasets, including an NBA dataset

and a weather dataset. The NBA dataset has 317,371 tuples of NBA box scores from

1991-2004, on 8 dimension and 7 measure attributes. The weather dataset has 7.8

million daily weather forecast records for 5,365 locations of UK from Dec. 2011 to

Nov. 2012. It has 7 dimension attributes and 7 measure attributes. When we explain

the demonstration steps below, we refer to the GUI in Figure 3.2 and its corresponding

NBA scenario.

Stories When a user visits FactWatcher, FactWatcher shows a list of stories

in area “stories” of Figure 3.2. The user enters a keyword query in the search box.

The list of stories will be updated. The faceted interface in area “exploration” and

the line chart and radar chart in area “analytics” will change accordingly. The user

then clicks a particular story. Similar stories will be shown below it, with bar charts

to compare the stories.

Ranking By default, the stories are ordered by recentness. The user explores

other ranking schemes by choosing the radio button for interestingness or popularity

in area “ranking”. When popularity is chosen, the user further uses the slidebar beside

it to control the period for assessing popularity of stories.

Exploration The user uses the faceted interface in area “exploration” to ex-

plore stories. The user checks Lamar Odom, Allen Iverson and some others under

player and 2003-2004, 2004-2005 under season. The area “stories” will show stories

related to any of the selected players when they played for or against any team (as

she did not select anything under team) during 2003-2004 or 2004-2005 season. The
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user further uses the slidebars for measure attributes to adjust the ranges of values

on these attributes. The area “stories” will only show those stories whose measure

attribute values do not fall out of the ranges. If the user wants to exclude a measure

attribute from the filtering criteria, she can click the button beside its slidebar to

disable it, e.g., Turnover in Figure 3.2.

Analytics When the user reads the stories, she can click on any underlined

objects, i.e., players. After a while, the user has clicked on multiple objects, which are

shown in the box in the middle of area “analytics”. The top line chart and bottom

radar chart in that area visualize the statistics on facts related to these objects, as

described in Section 3.5. If the user is not interested in an object anymore, she

can remove the object from comparison by clicking the “X” beside the object in the

middle box.
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CHAPTER 4

Expert Team Finding

4.1 Introduction

The traditional skyline tuple problem has been extensively investigated in re-

cent years [23, 33, 34, 35, 36, 37, 38]. Consider a database table of n tuples and m

numeric attributes. The domain of each attribute has an application-specific pref-

erence order, with “better” values being preferred over “worse” values. A tuple t1

dominates t2 if and only if every attribute value of t1 is either better than or equal

to the corresponding value of t2 according to the preference order and t1 has better

value on at least one attribute. The set of skyline tuples are those tuples that are not

dominated by any other tuples in the table.

In this chapter, we formulate and investigate the novel problem of computing

skyline groups. In contrast to the skyline tuple problem which has been extensively

investigated, the skyline groups problem surprisingly has not been studied in prior

work. In this problem, we refer to any subset of k tuples in the table as a k-tuple

group. Our objective is to find, for a given k, all k-tuple skyline groups, i.e., k-tuple

groups that are not dominated by any other k-tuple groups.

The notion of dominance between groups is analogous to the dominance relation

between tuples in skyline analysis. The dominance relation between two groups of k

tuples is defined by comparing their aggregates. To be more specific, we calculate for

each group a single aggregate tuple, whose attribute values are aggregated over the

corresponding attribute values of the tuples in the group. The groups are then com-

pared by their aggregate tuples using traditional tuple dominance. While many ag-
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database indexing

t1 3 0

t2 0 3

t3 2 1

t4 2 2

t5 0 2

Table 4.1. Experts

gregate functions can be considered in calculating aggregate tuples, we focus on three

distinct functions that are commonly used in database applications—SUM (i.e, AVG,

since groups are of equal size), MIN and MAX. Intuitively, SUM captures the collec-

tive strength of a group, while MIN/MAX compares groups by their weakest/strongest

member on each attribute. Note that throughout the paper, we assume the larger

the SUM/MIN/MAX values are, the better a group is. As an simple example, con-

sider two 3-tuple groups—G={〈0, 3〉,〈2, 1〉,〈2, 2〉} and G′={〈2, 1〉,〈2, 2〉,〈0, 2〉}. Their

aggregate tuples under the function SUM are SUM(G)=〈4, 6〉 and SUM(G′)=〈4, 5〉.

Hence G dominates G′.

The need for finding expert groups prevails in several application areas, includ-

ing question answering, crowdsourcing, panel selection, project team formation, and

so on. This is illustrated by the following motivating examples.

CrowdSourcing Consider forming a team of Wikipedia editors to write a new Wikipedia

article related to “database” and “indexing”. Table 4.1 shows all relevant editors

t1, . . . , t5 and their expertise on the two topics. We want to assign the task to a team

of 2 editors. Table 4.2 shows the aggregate vectors under AVG, MIN and MAX, for
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team AV G MIN MAX

G1,2 〈1.5, 1.5〉 〈0, 0〉 〈 3, 3〉

G1,3 〈2.5, 0.5〉 〈2, 0〉 〈3, 1〉

G1,4 〈 2.5, 1.0〉 〈2, 0〉 〈3, 2〉

G1,5 〈1.5, 1.0〉 〈0, 0〉 〈3, 2〉

G2,3 〈1.0, 2.0〉 〈0, 1〉 〈2, 3〉

G2,4 〈 1.0, 2.5〉 〈 0, 2〉 〈2, 3〉

G2,5 〈0, 2.5〉 〈 0, 2〉 〈0, 3〉

G3,4 〈 2.0, 1.5〉 〈 2, 1〉 〈2, 2〉

G3,5 〈1.0, 1.5〉 〈0, 1〉 〈2, 2〉

G4,5 〈1.0, 2.0〉 〈 0, 2〉 〈2, 2〉

Table 4.2. All possible 2-expert teams

all possible 2-expert teams where Gi,j stands for a team of experts ti and tj. A simple

scheme such as picking top editors on individual topics does not work. For example,

G1,2 consists of the top editor on each topic and has an aggregated vector 〈1.5, 1.5〉

with regard to AVG. G3,4, with vector 〈2.0, 1.5〉, dominates G1,2 (denoted G3,4�G1,2)

under AVG. Hence, G3,4 is a better team in terms of collective expertise. In fact, G3,4

is a 2-expert skyline team, since no other team dominates it under AVG. Table 4.2

highlights all 2-expert skyline teams for every aggregate function.

Questing Answering Consider a question-answering platform such as Quora.com.

A question is displayed to users who might answer it. The question asker can also

explicitly solicit answers from certain users, oftentimes by offering rewards. To receive

quality answers, it is necessary to intelligently post the question to users with proper

expertise. More often than not, a question requires expertise on several aspects that
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cannot be fulfilled by any single user, needing attention from a diverse team of experts

who collectively excel. For instance, consider question “Is C or Python better for high-

performance computing?” To get a comprehensive answer, we need experts in “high

performance computing”, “C”, and so on.

Other Motivating Applications The need for finding expert teams arises in several

other applications. 1) Consider the task of choosing a panel of experts to evaluate a

research paper or a grant proposal. An expert can be modeled as a tuple in the multi-

dimensional space defined by the paper’s topics, to reflect the expert’s strength on

these topics. The collective expertise of a panel is modeled as the aggregate vector of

the corresponding tuples. 2) Forming collaborative teams for a software development

project can be viewed as finding programmers who are collectively strong in the multi-

dimensional space of desired skills for the project. 3) In a variety of applications we

look for “teams” in more general sense, such as bundles of products, reviews, stocks,

and so on. For instance, to summarize a product’s many customer reviews, choosing a

set of diverse reviews is forming a “team” of reviews, where the reviews are modeled

by attributes such as “sentiment”, “length”, “quality”, etc. Another example is

online fantasy sports where gamers compete by forming and managing team rosters

of real-world athletes, aiming at outperforming other gamers’ teams. The teams are

compared by aggregated statistics (e.g., “points”, “rebounds”, “assists” in basketball

games) of the athletes in real games.

The capability of recommending groups is valuable in the above-mentioned

applications. An attractive property of skyline groups is that a skyline group cannot

be dominated by any other group. In contrast, given a non-skyline group, there

always exists a better group in the skyline. Hence the skyline groups present those

groups that are worth recommending. They become the input to further process that

ultimately recommends one group.
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Recommending a few groups becomes non-trivial when there are many skyline

groups. In addition to eyeballing skyline groups by browsing and visualization inter-

face, such post-processing can also be automatic. One approach is to filter and rank

skyline groups according to user preference. For instance, if groups are ranked by a

monotonic scoring function on attributes A1, . . . , Am, regardless of the specific scor-

ing function, the skyline always contains a group attaining the best score. Another

automatic approach is to return a small number of representative skyline groups, by

criteria proposed for skyline tuples [39, 40, 41, 42], since each group corresponds to

an aggregate tuple. We do not further investigate such post-processing here. In Sec-

tion 4.2, we provide a more detailed discussion of previous work on choosing from a

large number skyline tuples.

To find k-tuple skyline groups in a table of n tuples, there can be
(
n
k

)
different

candidate groups. How do we compute the skyline groups of k tuples each from all

possible groups? Interestingly, the skyline groups problem is significantly different

from the traditional skyline tuple problem, to the extent that algorithms for the later

are quite inapplicable.

A simple solution is to first list all
(
n
k

)
groups, compute the aggregate tuple for

each group, and then use any traditional skyline tuple algorithm to identify the skyline

groups. The main problem with such an approach is the significant computational

and storage overhead in creating this huge intermediate input for the traditional

skyline tuple algorithm (i.e., O(
(
n
k

)
) aggregate tuples). The skyline groups problem

also has another idiosyncrasy that is not shared by the skyline tuple problem. For

certain aggregate functions, specifically MAX and MIN, even the output size—i.e., the

number of skyline groups—while significantly smaller that
(
n
k

)
, may be nevertheless

too large to explicitly compute. To address these two problems, we develop novel

techniques, namely output compression, input pruning, and search space pruning.
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For MAX and MIN aggregates, we observe that numerous groups may share the

same aggregate tuple. Our approach to compressing the output is to list the distinct

aggregate tuples, each representing possibly many skyline groups, and also provide

enough additional information so that actual skyline groups can be reconstructed if

required. Interestingly, there is a difference between MIN and MAX in this regard:

while the compression for MIN is relatively efficient, the compression for MAX re-

quires solving the NP-Hard Set Cover Problem (which fortunately is not a real issue

in practice, as we shall show in the paper). Note that both output compression and

the aforementioned post-processing are for tackling large output. Output compres-

sion is incorporated into the process of finding skyline groups and is performed before

post-processing.

Our approach to input pruning is to filter input tuples and significantly reduce

the input size to the search of skyline groups. The idea is that if a tuple t is dominated

by k or more tuples, then we can safely exclude t from the input without influencing

the distinct aggregate tuples found at the end. We also find that, for MAX, we can

safely exclude any non-skyline tuple without influencing the results.

Our final ideas (perhaps, technically the most sophisticated of the paper) are on

search space pruning. Instead of enumerating every k-tuple combination, we exclude

from consideration many combinations. To enable such candidate pruning, we identify

two properties inspired by the anti-monotonic property in the well-known Apriori

algorithm for frequent itemset mining [43]. It is important to emphasize here that

the anti-monotonic property in Apriori does not hold for skyline groups defined by

SUM, MIN or MAX. More specifically, a subset of a skyline group may not necessarily

be a skyline group itself. We identify two anti-monotonic properties with different

applicability—while the Order-Specific Anti-Monotonic Property (OSM) applies to

SUM, MIN and MAX, the Weak Candidate-Generation Property (WCM) applies to
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MIN and MAX but not SUM. We develop a dynamic programming algorithm and an

iterative algorithm to compute skyline groups, based on OSM and WCM, respectively.

Our algorithms iteratively generate larger candidate groups from smaller ones and

prune candidate groups by these properties.

We briefly summarize our contributions as follows.

• We motivate and formulate the novel problem of computing skyline groups, and

discuss the inapplicability of traditional skyline tuple algorithms in solving this

problem.

• We develop novel algorithmic techniques for output compression, input pruning,

and search space pruning. In particular, for search space pruning, we identify

interesting anti-monotonic properties to filter out candidate groups.

• We run comprehensive experiments on real and synthetic datasets to evaluate the

proposed algorithms.

4.2 Related Work

Skyline query has been intensively studied over the last decade. Kung et

al. [44] first proposed in-memory algorithms to tackle the skyline problem. Börzsönyi

et al. [23] was the original work that studied how to process skyline queries in

database systems. Since then, this line of research includes proposals of improved

algorithms [33, 34], progressive skyline computation [35, 36, 37], query optimiza-

tion [38], and the investigation of many variants of skyline queries [25, 27, 45, 46, 47,

48, 49, 50, 51, 52, 53].

With regard to the concept of skyline groups, the most related previous works

are [54] and [55]. In [54] the groups are defined by GROUP BY in SQL, while the

groups in our work are formed by combinations of k tuples in a tuple set. Zhang et
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al. [55] studied set preferences where the preference relationships between k-subsets of

tuples are based on features of k-subsets. The features are more general than numeric

aggregate functions considered in our work. The preferences given on each individual

feature form a partial order over the k-subsets instead of a total order by numeric

values. Their general framework can model many different queries, including our

skyline groups problem. The optimization techniques for that framework, namely the

superpreference and M-relation ideas, when instantiated for our specific problem, are

essentially equivalent to input pruning in our solution as well as merging identical tu-

ples. Hence such an instantiation is a baseline solution to our problem. However, the

important search space pruning properties (OSM and WCM) and output compression

in Section 4.4 are specific to our problem and were not studied before. These ideas

bring substantial performance improvement, as the comparison with the baseline in

Section 4.6 shall demonstrate.

With regard to the problem of forming expert teams to solve tasks, the most

related prior works are [56] and [57]. In [57] teams are ranked by a scoring function,

while in our case groups are compared by skyline-based dominance relation. Hence

the techniques proposed in [57] are not applicable to our setting. In [56], instead of

measuring how well teams match tasks, the focus was on measuring if the members in

a team can effectively collaborate with each other, based on information from social

networks.

A large number of skyline points may exist in a given dataset, due to various

reasons such as high dimensionality. Such large size of skyline hinders the usefulness

of skyline to end users. Researchers have noticed this issue and various approaches

are proposed to alleviate the problem. One direction is to perform skyline analysis in

subspaces instead of the original full space [25, 58]. Another direction is to choose a

small number of representative skyline points. The semantics and methods proposed
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in various works on this line can be directly adopted for post-processing when there are

many skyline groups, since each group corresponds to an aggregate tuple. Specifically,

Chan et al. [39] propose to return only frequent points and they measure the frequency

of a point by how often it is in the skyline of different subspaces. Lin et al. [40] select

k most representative points such that the total number of data points dominated

by the k points is maximized. Tao et al. [41] define representative skyline points

differently, aiming at minimizing the maximal distance between non-representative

skyline points and their closest representatives. Chan et al. [42] define k-dominant

skyline as the points that are not dominated by any other points in any k-attribute

subspace.

4.3 Skyline Groups Problem

In this section we formulate the skyline groups problem. Table 4.3 lists the

major notations used in the paper. Consider a database table D of n tuples t1, . . . , tn

and m attributes A1, . . . , Am. We refer to any subset of k tuples in the table, i.e.,

G : {ti1, . . . , tik} ⊆ D, as a k-tuple group. Our objective is to find the skyline of k-

tuple groups. Whether a k-tuple group belongs to the skyline or not is determined by

the dominance relation between this group and other k-tuple groups. The dominance

test, when taking two groups G1 and G2 as input, produces one of three possible

outputs—G1 dominates G2, G2 dominates G1, or neither dominates the other. A

k-tuple group is a skyline k-tuple group, or skyline group in short, if and only if it

is not dominated by any other k-tuple group in D. Note that a tuple ti may be in

multiple skyline groups.

Groups are compared by their aggregates. Each group is associated with an

aggregate vector, i.e., an m-dimensional vector with the i-th element being an aggre-

gate value of Ai over all k tuples in the group. While this definition allows general
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t a tuple with m attributes {A1, . . . , Am}

D a database table of n tuples {t1, . . . , tn}

G {ti1, . . . , tik} ⊆ D, a k-tuple group

G � G′ G dominates G′

v an aggregate vector

F(G) aggregate vector of group G under function F

Tn the first n tuples

Skynk all k-tuple skyline groups in Tn

Skyk all k-tuple skyline groups in D

OSM order-specific property

WCM weak candidate-generation property

Table 4.3. Notations

aggregate functions, we focus on three commonly used functions—SUM (i.e, AVG,

since groups are of equal size), MIN, and MAX. Functions such as MEDIAN and

VARIANCE do not satisfy the properties in Section 4.4 and thus do not lend them-

selves to efficient algorithms proposed in the paper. The aggregate vectors for two

groups are compared according to the traditional tuple dominance relation which

is defined according to certain application-specific preferences. Such preferences are

captured as a combination of total orders for all attributes, where each total order is

defined over (all possible values of) an attribute, with “larger” values preferred over

“smaller” values. Hence, an aggregate vector v1 dominates v2 if and only if every

attribute value of v1 is larger than or equal to the corresponding value of v2 according

to the preference order and v1 is larger than v2 on at least one attribute.
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A1 A2

t1 3 0

t2 0 3

t3 2 1

t4 2 2

t5 0 2

Table 4.4. Running example

t2

t5 t4

t3

t1

tuple

MAX skyline
aggr vector

MIN skyline
aggr vector

Figure 4.1. Running example in 2-d space

Tuples SUM MAX MIN

G t2〈0, 3〉 t3〈2, 1〉 t4〈2, 2〉 〈4, 6〉 〈2, 3〉 〈0, 1〉

G′ t3〈2, 1〉 t4〈2, 2〉 t5〈0, 2〉 〈4, 5〉 〈2, 2〉 〈0, 1〉

Dominance Relation G � G′ G � G′ G = G′

Table 4.5. Examples of aggregate-based comparison

Table 4.4 depicts a 5-tuple, 2-attribute table which we shall use as a running

example. Figure 4.1 depicts the tuples on a 2-dimensional plane defined by the two

attributes. We consider the natural order of real numbers as the preference order.

For instance, t2 dominates t5 while neither t2 nor t3 dominates each other. Table 4.5

shows a sample case of comparing two 3-tuple groups for each aggregate function.

Figure 4.1 also shows the symbols corresponding to MIN and MAX aggregate vectors

of skyline 2-tuple groups in the running example. For instance, the skyline 2-tuple

group under MAX function is {t1, t2}, with aggregate vector 〈3, 3〉. The aggregate
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vectors of skyline 2-tuple groups under MIN are 〈2, 1〉 (for group {t3, t4}) and 〈0, 2〉

(for groups {t2, t4}, {t2, t5}, {t4, t5}).

Our methods allow a mixture of different aggregate functions on different at-

tributes. For example, if we use SUM on the first attribute and MAX on the second

attribute, then for the two groups in Table 4.5, the aggregated vectors for G and G′ are

〈4, 3〉 and 〈4, 2〉, respectively. Our order-specific property (Section 4.4.3.1) can han-

dle arbitrary mixture of SUM, MIN, and MAX, while the weak candidate-generation

property (Section 4.4.3.2) handles any mixture of MIN and MAX. Section 4.6 presents

the experimental results on such mixed functions.

4.4 Finding Skyline Groups

In this section, we develop our main ideas for finding skyline groups. We start by

considering a brute-force approach which first enumerates each possible combination

of k tuples in the input table, computes the aggregate vector for each combination, and

then invokes a traditional skyline-tuple-search algorithm to find all skyline groups.

This approach has two main problems. One is its significant computational overhead,

as the input size to the final step, i.e., skyline tuple search, is
(
n
k

)
, which can be

extremely large.

The other problem is on the seemingly natural strategy of listing all skyline

groups as the output. For certain aggregate functions (e.g., MAX and MIN), even

the output size, i.e., the number of skyline groups produced, may be nevertheless too

large to explicitly compute and store. Consider an extreme example under MAX. If

a tuple t dominates all other tuples, then every k-tuple combination that contains t

is a MAX skyline group—leading to a total of O(nk−1) skyline groups. Such a large

output size not only leads to significant overhead in computing skyline groups, but

also makes post-processing (e.g., ranking and browsing of skyline groups) costly.
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Another idea is to consider skyline tuples only. While seemingly intuitive, this

idea will not work correctly in general. In particular, we have the following two

observations:

1) A group solely consisting of skyline tuples may not be a skyline group. Consider

G={t1, t2} in the running example. Note that both t1 and t2 are skyline tuples.

Nonetheless, under SUM, G is dominated by G′={t3, t4}, as SUM(G)=〈3, 3〉 while

SUM(G′)=〈4, 3〉. As such, G is not on the skyline.

2) A group containing non-skyline tuples could be a skyline group. Again consider the

running example, this time with G = {t4, t5} and MIN function. Note that t5 is not on

the skyline as it is dominated by t2 and t4. Nonetheless, G (with MIN(G) = 〈0, 2〉)

is actually on the skyline, because the only other groups which can reach A2 ≥ 2

in the aggregate vector are {t2, t4} and {t2, t5}, both of which yield an aggregate

vector of 〈0, 2〉, the same as MIN(G). Thus, G is on the skyline despite containing a

non-skyline tuple.

To address these challenges, we develop several techniques, namely output com-

pression, input pruning, and search space pruning. We start with developing an output

compression technique that significantly reduces the output size when the number of

skyline groups is large, thereby enabling more efficient downstream processes that

consume the skyline groups. Then, we consider how to efficiently find skyline groups.

In particular, we shall describe two main ideas. One is input pruning—filtering the

input tuples to significantly reduce the input size to the search of skyline groups. The

other is search space pruning—instead of enumerating each and every k-tuple combi-

nation, we develop techniques to quickly exclude from consideration a large number

of combinations. Note that the two types of pruning techniques are transparent to

each other and therefore can be readily integrated.
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4.4.1 Output Compression for MIN and MAX

Main Idea: A key observation driving our design of output compression is that while

the number of skyline groups may be large, many of them share the same aggregate

vector. Thus, our main idea for compressing skyline groups is to store not all skyline

groups, but only the (much fewer) distinct skyline aggregate vectors (in short skyline

vector) as well as one skyline group for each skyline vector.

Among the three aggregate functions we consider in the paper, SUM rarely, if

ever, requires output compression. The intuitive reason is that, for any attribute,

the SUM aggregate of a skyline group is sensitive to all tuples in the group, while

MIN (resp. MAX) aggregate is in general only sensitive to tuples with minimum

(resp. maximum) values on certain attributes, making it much more likely for two

groups to share the same MIN (resp. MAX) vector. In the rest of the paper, we shall

focus on finding all skyline k-tuple groups for SUM, and finding all distinct skyline

vectors and their accompanying (sample) skyline groups for MIN and MAX. We use

the term “skyline search” to refer to the process in solving the problem.

Reconstructing all Skyline Groups for a Skyline Vector: While the distinct

skyline vectors and their accompanying (sample) skyline groups may suffice in many

cases, a user may be willing to spend time on investigating all groups equivalent to

a particular skyline vector, and to choose a group after factoring in her knowledge

and preference. Thus, we now discuss how one can reconstruct the skyline groups

corresponding to a given skyline vector, if required.

Consider MIN first. For a given MIN skyline vector v, the process is as simple

as finding Ω(v), the set of all input tuples which dominate or are equal to v. The

reason is as follows. Given any k-tuple subset of Ω(v), its aggregate vector v′ must

be equal to v, because (1) v′ cannot dominate v (otherwise v is not a skyline vector)
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and (2) v′ does not contain smaller value than v on any attribute, by definition of

Ω(v). On the other hand, if a group contains a tuple outside of Ω(v), its aggregate

vector must have smaller values than v on some attributes, and therefore cannot be

in the skyline. The time complexity of a linear scan in finding Ω(v) is O(n). Given

Ω(v), the only additional step is to enumerate all k-tuple subsets of Ω(v).

For MAX, interestingly, the problem is much harder. To understand why, con-

sider each tuple as a set consisting of all attributes for which the tuple reaches the

same value as a MAX skyline vector. The problem is now transformed to finding

all combination of k tuples such that the union of their corresponding sets is the

universal set of all attributes—i.e., finding all set covers of size k. For instance, in

finding the 2-tuple skyline groups for a skyline vector v=〈4, 5, 6〉, consider two tuples

t1=〈3, 5, 2〉 and t2=〈4, 1, 6〉. The set for t1 is {A2}, because t1 has the same value as

v on attribute A2. Similarly the set for t2 is {A1, A3}. Since the union of the two sets

is {A1, A2, A3}, the two tuples together is a set cover of size 2. The NP-hardness of

this problem directly follows from the NP-completeness of SET-COVER, seemingly

indicating that MAX skyline groups should not be compressed.

Fortunately, despite of the theoretical intractability, finding all skyline groups

matching a MAX skyline vector v is usually efficient in practice. This is mainly

because the number of tuples that “hit” the MAX attribute values in v is typically

small. As such, even a brute-force enumeration can be efficient, as demonstrated

by experimental results in Section 4.6. Nonetheless, when a large number of tuples

“hit” the MAX attribute values, it is unclear how one can efficiently find and store all

skyline groups - e.g., by using certain efficient indexing schemes. We leave the design

of such indexing schemes as an open problem for future research.

Before algorithmic discussions, we make an important observation for the case

of MAX when k ≥ m, where k is the size of a skyline group and m is the number of
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attributes. Since it takes at most m tuples to cover the MAX values of all attributes,

there is only one distinct skyline vector—the vector that takes the MAX value on

every attribute. In reconstructing skyline groups, for each skyline group, after finding

tuples that cover the MAX values, the remaining tuples can be arbitrary.

4.4.2 Input Pruning

We now consider the pruning of input to skyline groups searches, which is

originally the set of all n tuples. An important observation is that if a tuple t is

dominated by k or more tuples in the original table, then we can safely exclude t

from the input without influencing the distinct skyline vectors found at the end. To

understand why, suppose that a skyline group G contains a tuple t that is dominated

by h (h≥k) tuples. There is always an input tuple t′ that dominates t and is not in G.

Since t′ dominates t, there must be less than h tuples that dominate t′. Note that if

t′ is still dominated by k or more tuples, we can repeat this process until finding t′ 6∈G

that is dominated by less than k tuples. Now consider the construction of another

group G′ by replacing t in G with t′. For SUM, G′ always dominates G, contradicting

our assumption that G is a skyline group. Thus, no skyline group under SUM can

contain any tuple dominated by k or more tuples.

For MIN and MAX, it is possible that the aggregate vectors of the above G′

and G are exactly the same. Even in this case, we can still safely exclude t from

the input without influencing the distinct skyline vectors. If other tuples in G are

dominated by k or more tuples, we can use the same process to remove them and

finally reach a group that (1) features the same aggregate vector as G, and (2) has

no tuple dominated by k or more other tuples. Thus, we can safely remove all tuples

with at least k dominators for SUM, MIN and MAX.
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Another observation for input pruning is that, for MAX only, we can safely

exclude any non-skyline tuple t from the input without influencing the skyline vectors.

The reason is as follows. Suppose a skyline group G contains a non-skyline tuple t

that is dominated by a skyline tuple t′. If t′ 6∈G, then we can replace t in G with

t′ to achieve the same (skyline) aggregate vector (because G is a skyline group). If

t′∈G, we can remove t from G without changing the aggregate vector of G. In either

way, t can be safely excluded from the input. By repeatedly replacing or removing

non-skyline tuples in the above way, we will obtain a group of size at most k that is

formed solely by skyline tuples.1 Padding the group with arbitrary additional tuples

to reach size k will result in a group of the same aggregate vector as G.

4.4.3 Search Space Pruning: Anti-Monotonicity

Our principal idea for search space pruning is to find and leverage two anti-

monotonic properties for skyline search, somewhat in analogy to the Apriori algorithm

for frequent itemset mining [43]. Nonetheless, it is important to note that the original

anti-monotonic property in Apriori—every subset of a group “of interest” (e.g., a

group of frequent items) must also be “of interest” itself—does not hold for skyline

search over SUM, MIN or MAX. In fact, two examples in Section 4.3 can serve as

proof by contradiction, for SUM and MIN. Specifically, for SUM, skyline 2-tuple group

{t3, t4} contains a non-skyline tuple t3, i.e., a non-skyline 1-tuple group. For MIN,

skyline group {t4, t5} contains a non-skyline tuple t5. For MAX, the inapplicability

can be easily observed from the fact that the set of all tuples is always a skyline n-

1Note that if the resulting group has size smaller than k, then it (and thus G) reaches the

maximum values on all attributes. If there are fewer than k skyline tuples in the input, then we

can immediately conclude that any skyline k-tuple group must reach the maximum values on all

attributes.
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tuple group, while many subsets of it are not on their corresponding skylines of equal

group size. Thus, the key challenge is to find anti-monotonic properties that hold

for skyline search. We stress that the main contribution here is not about proving

these properties, but rather about finding the right ones that can effectively prune

the search space.

4.4.3.1 Order-Specific Anti-Monotonic Property

Our first idea is to make a revision to the classic property in the Apriori algo-

rithm, by factoring in an order of all tuples. To understand how, consider aggregate

function SUM and a skyline k-tuple group Gk which violates the Apriori property,

i.e., a (k−1)-tuple subset of it, Gk−1⊂Gk, is not a skyline (k−1)-tuple group. We

note for this case that all (k−1)-tuple groups which dominate Gk−1 must contain tu-

ple tk=Gk\Gk−1. To understand why, suppose that there exists a (k−1)-tuple group

G′ which dominates Gk−1 but does not contain tk. Then, G′ ∪ {tk} would always

dominate Gk=Gk−1 ∪ {tk} under SUM, contradicting the skyline assumption for Gk.

One can see from this example that while a subset of a skyline group may not be on

the skyline for the entire input table, it is always a skyline group over a subset of

the input table—in particular, D\{tk} in the above example. This observation can

be extended to MIN and MAX, with a small tweak. That is, although Gk−1 might

be dominated by a (k−1)-tuple group G′ not containing tk, the aggregate vectors of

G′ ∪ {tk} and Gk must be equal. Therefore, considering G′ and ignoring Gk−1 will

still lead us to the same skyline vector. If we require every subset Gk−1 of a skyline

group Gk to be a skyline group over table D\{tk}, where tk=Gk\Gk−1, we will not

miss any skyline vector. This leads to the following property:

Definition 9. Order-Specific Property An aggregate function F satisfies the

order-specific anti-monotonic property if ∀k, given a skyline k-tuple group Gk with
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aggregate vector v (i.e., v = F(Gk)), for each tuple t in Gk, there must exist a set of

(k − 1)-tuples Gk−1 ⊆ D with t 6∈ Gk−1, such that (1) Gk−1 is a skyline (k − 1)-tuple

group over an input table D\{t}, and (2) Gk−1 ∪ {t} is a skyline k-tuple group over

the original input table D which satisfies F(Gk−1 ∪ {t}) = v.

It may be puzzling from the definition where the order comes from. We note

that it actually lies in the way search-space pruning can be done according to this

property. Consider an arbitrary order of all tuples, say, 〈t1, . . . , tn〉. For any r < n,

if we know that an h-tuple group Gh (h ≤ r) is not a skyline group over {t1, . . . , tr},

then we can safely prune from the search space all k-tuple groups whose intersection

with {t1, . . . , tr} is Gh—a reduction of the search space size by O((n − r)k−h). The

reason is that, if the aggregate function satisfies the property in Definition 9, either (1)

such groups are not skyline k-tuple groups or (2) the aggregate vectors of such groups

are unchanged if we replace Gh by h-tuple groups that are subsets of {t1, . . . , tr} and

dominate Gh. Such a pruning technique considers all tuples in a specific order—hence

the name of order-specific anti-monotonic property.

Theorem 1. SUM, MIN and MAX satisfy the order-specific anti-monotonic prop-

erty.

Proof. Suppose Gk is a k-tuple skyline group with aggregate vector v (i.e., v = F(Gk))

and t ∈ Gk. Consider Gk−1 = Gk\{t}. (A) If Gk−1 is a skyline (k−1)-tuple group over

D\{t}, then Gk−1 itself satisfies the two conditions in Definition 9; (B) Otherwise,

by definition of skyline group, there must exist a skyline (k − 1)-tuple group over

D\{t}, G′, such that G′ � Gk−1. For SUM, only the above (A) is possible, i.e.,

Gk−1 must be a skyline (k − 1)-tuple group over D\{t}. If (B) is possible, then

G′ ∪ {t} � Gk−1 ∪ {t} = Gk by the concept of SUM, which contradicts with the

assumption that Gk is a k-tuple skyline group. For MIN and MAX, for the above

case (B), we prove that F(G′ ∪ {t})=F(Gk), i.e., G′ satisfies both condition (1) and
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(2) in Definition 9. According to the semantics of MIN (MAX), if G′ � Gk−1, then

either G′ ∪ {t} � Gk−1 ∪ {t} = Gk or G′ ∪ {t} = Gk−1 ∪ {t} = Gk. G′ ∪ {t} � Gk

would contradict with the assumption that Gk is a skyline group. Therefore G′∪{t} =

Gk−1 ∪ {t} = Gk and thus F(G′ ∪ {t})=F(Gk).

We note a limitation of the order-specific property. To prune based on it, one has

to compute for every h∈[k, n− k] the aggregate vectors of skyline 1, 2, . . ., min(k, h)-

tuple groups over the first h tuples (by the order), because any of these groups may

grow into a skyline k-tuple group when latter tuples (again, by the order) are brought

into consideration. Given a large n, the order-specific pruning process may incur a

significant overhead, as we shall show in Section 4.6.

4.4.3.2 Weak Candidate-Generation Property

We now describe an order-free anti-monotonic property which “loosens” the

classic Apriori property to one that holds for skyline search. The main idea is that,

instead of requiring every (k − 1)-tuple subset of a skyline k-tuple group to be a

skyline (k − 1)-tuple group, we consider the following property which only requires

at least one subset to be on the skyline.

Definition 10. (Weak Candidate-Generation Property) An aggregate function

F satisfies the weak candidate-generation property if, ∀k and for any aggregate vector

vk of a skyline k-tuple group, there must exist an aggregate vector vk−1 for a skyline

(k−1)-tuple group, such that for any (k−1)-tuple group Gk−1 which reaches vk−1 (i.e.,

F(Gk−1) = vk−1), there must exist an input tuple t 6∈ Gk−1 which makes Gk−1 ∪{t} a

skyline k-tuple group that reaches vk (i.e., F(Gk−1 ∪ {t}) = vk).

An intuitive way to understand the definition is to consider the case where every

skyline group has a distinct aggregate vector. In this case, the weak anti-monotonic

property holds when every skyline k-tuple group has at least one (k−1)-tuple subset
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being a skyline (k−1)-tuple group. The property is clearly “weaker” than the classic

(Apriori) anti-monotonic property when being used for pruning, in the sense that it

allows more candidate sets to be generated than directly (and mistakenly) applying

the classic property.

In general, this property avoids the pitfall of order-specific property by removing

the requirement of enumerating all tuples in order and generating skyline groups for

each subset of tuples along the way. However, its limitation is that it only holds for

MIN and MAX, but not for SUM.

Theorem 2. MIN and MAX satisfy the weak candidate-generation property.

Proof. We prove the theorem for MAX. The proof for MIN is similar. Suppose Gk is

a skyline k-tuple group with F(Gk)=vk. Consider an arbitrary tuple t1∈Gk and the

corresponding (k−1)-tuple subset of Gk, G=Gk\{t1}.

IfG is a skyline (k−1)-tuple group inD, then for anyG′ (includingG itself) such

that F(G′)=F(G), there are two possible cases to consider: (A) t1 6∈ G′ and (B) t1∈G′.

In Case (A), F(G′∪{t1})=F(G∪{t1})=F(Gk). In Case (B), note that since G′ and G

are of equal size, there must exist at least one tuple t2 ∈ G and t2 /∈ G′. Consider G′∪

{t2}. Since t2∈G and F(G′)=F(G), we have that F(G′ ∪ {t2})=F(G∪ {t2})=F(G).

Furthermore, since t1∈G′, under MAX, F(G′ ∪ {t2})=F(G ∪ {t1})=F(Gk). If G is

not a skyline (k−1)-tuple group in D, consider a skyline (k−1)-group G′′ � G. The

same analysis above applies to G′ instead of G.

In all cases, we always find a skyline (k−1)-tuple group and an extra tuple such

that the aggregate vector of their union equals the original vk under MAX. Therefore

MAX satisfies the weak candidate-generation property in Definition 10.

Theorem 3. SUM does not satisfy the weak candidate-generation property.
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t1:〈-131,-40,-4,-4,-98,-20,4,4,-69,-49,-9,-49,-9,54,-59,16,20,20,-107,-22,27,-22,27,61,-39,13,17,13,17,

68,-12,-12,89,59,82,35,29,29,46,51,40,51,40,55,27,56,20,56,20,40,37,37,103,44,104,53,47,53,47,42,

85,85,78,76,64,64,90,50,106〉

t2:〈-40,-79,-38,-38,-80,-66,-52,-52,-85,-59,-67,-59,-67,-54,14,-47,-15,-15,-56,0,-41,0,-41,1,-76,-18,-

52,-18,-52,-22,-63,-63,18,-52,3,-50,-32,-32,-60,-11,-47,-11,-47,-26,-67,-34,-51,-34,-51,-38,-59,-59,-

22,-51,-18,-4,-32,-4,-32,-21,-17,-17,7,-27,-39,-39,-10,-39,-31〉

t3:〈-49,50,-28,-28,51,33,10,10,64,15,35,15,35,20,-102,39,-44,-44,39,-79,14,-79,14,-65,81,-22,28,-

22,28,-13,58,58,-51,44,-63,15,-24,-24,62,-52,8,-52,8,-31,57,-1,12,-1,12,-8,45,45,-7,19,6,-56,-8,-56,-8,-

35,-9,-9,-68,-10,22,22,-30,5,25〉

t4:〈15,-23,-34,-34,-9,-42,-49,-49,-15,-16,-39,-16,-39,-52,-24,-58,-55,-55,13,-27,-47,-27,-47,-57,-28,-

46,-54,-46,-54,-71,-29,-29,-48,-59,-67,-60,-57,-57,-41,-52,-55,-52,-55,-59,-53,-62,-54,-62,-54,-61,-50,-

50,-68,-57,-75,-62,-63,-62,-63,-61,-63,-63,-63,-67,-64,-64,-72,-64,-70〉

t5:〈67,39,75,-94,68,22,52,-62,58,145,57,-97,-32,-42,22,11,39,-84,86,94,82,-106,-107,-58,50,111,47,-

144,-53,-50,130,-87,-77,-29,-42,-8,13,-54,8,51,28,-129,-66,-41,7,39,20,-105,-33,-27,58,-75,-69,-22,-

34,18,14,-95,-62,-32,51,-139,-61,-45,35,-89,-60,-27,-55〉

t6:〈67,39,-94,75,68,22,-62,52,58,-97,-32,145,57,-42,22,11,-84,39,86,-106,-107,94,82,-58,50,-144,-

53,111,47,-50,-87,130,-77,-29,-42,-8,-54,13,8,-129,-66,51,28,-41,7,-105,-33,39,20,-27,-75,58,-69,-22,-

34,-95,-62,18,14,-32,-139,51,-61,-45,-89,35,-60,-27,-55〉

t7:〈94,-82,44,44,-25,-47,-3,-3,-83,12,-50,12,-50,-11,147,-90,56,56,-66,119,-40,119,-40,84,-122,46,-

46,46,-46,20,-86,-86,90,-75,72,-40,30,30,-124,69,-26,69,-26,38,-91,7,-22,7,-22,12,-71,-71,17,-34,-

57,70,-5,70,-5,43,-13,-13,87,-5,-47,-47,38,-17,-54〉

t8:〈-28,93,75,75,21,95,95,95,68,46,101,46,101,123,-23,115,79,79,1,19,107,19,107,87,80,55,110,55,

110,114,84,84,51,136,52,112,91,91,97,69,112,69,112,101,109,96,104,96,104,104,111,111,111,119,

104,73,107,73,107,93,100,100,77,119,114,114,101,115,130〉

Table 4.6. Counter-example for proving Theorem 3

We would like to note that while the only proof needed here is one counter-

example, our study showed that finding such a counter-example is non-trivial. In
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particular, the weak candidate-generation property indeed holds when k≤3, but fails

when k≥4. For k=4, we constructed through MATLAB an 8-tuple, 69-attribute table

as a counter-example, as shown in Table 4.6. With this counter-example, {t1, t2, t3, t4}

is a skyline group for SUM, whereas none of {t1, t2, t3}, {t1, t2, t4}, {t1, t3, t4}, or

{t2, t3, t4} is on the 3-tuple skyline.

4.5 Algorithms

4.5.1 Dynamic Programming Algorithm Based on Order-Specific Property

Consider an arbitrary2 order of the n tuples in the input table, denoted by

t1, . . . , tn. Let Tr be the set of the first r according to this order, i.e., Tr={t1, . . . , tr}.

Let Skyrk be set of all skyline k-tuple groups with regard to Tr, i.e., each group in

Skyrk is not dominated by any other k-tuple group consisting solely of tuples in Tr.

One can see that our original problem can be considered as finding Skynk . We now

develop a dynamic programming algorithm which finds Skynk by recursively solving

the “smaller” problems of finding Skyn−1
k and Skyn−1

k−1 , etc.

For ease of presentation, we assume aggregate function SUM in all the propo-

sitions, algorithms, and explanations in this section. At the end of the section, we

shall explain why the idea is also applicable for MIN and MAX. The algorithm is

based on the following idea—All skyline k-tuple groups in Skynk can be partitioned

into two disjoint sets S1 and S2 (Skynk ≡ S1 ∪ S2 and S1 ∩ S2 = ∅) according to

whether a group contains tn or not. In particular, S1 = {G|G ∈ Skynk , tn /∈ G} and

S2 = {G|G ∈ Skynk , tn ∈ G}. One can see that S1 ⊆ Skyn−1
k . On the other hand,

S2 is subsumed by a set of groups that can be expanded from Skyn−1
k−1 , the skyline

(k-1)-tuple groups with regard to Tn−1. More specifically, given a skyline k-tuple

2We consider a random order in the experimental studies and leave the problem of finding an

optimal order (in terms of efficiency) to future work.
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group that contains tn, if we remove tn from it, then the resulting group belongs to

Skyn−1
k−1 . These two properties are formally presented as follows. proof. Note that

Proposition 5 can be directly derived from Theorem 1.

Proposition 4. Given G∈Skynk , if tn /∈G, then G∈Skyn−1
k .

Proof. We prove this by contradiction. Assume G /∈ Skyn−1
k . Then, there must be

a k-tuple group G′ ∈ Skyn−1
k such that G′ � G. There are two possible cases. (A)

G′ ∈ Skynk : It contradicts with G ∈ Skynk . (B) G′ /∈ Skynk : There must exist a k-

tuple group G′′ ∈ Skynk such that G′′ � G′. By transitivity of dominance relationship,

G′′ � G. This also contradicts with G ∈ Skynk . Hence G ∈ Skyn−1
k .

Proposition 5. Under aggregate function SUM, given G∈Skynk , if tn∈G, then G\{tn}∈

Skyn−1
k−1 .

We further explain the dynamic programming algorithm by referring to the

outline in Algorithm 4. The idea is also illustrated in Figure 4.2. The function

sky group(k, n) is for finding Skynk . It first recursively computes Skyn−1
k−1 (Line 7).

By adding tn into each group in Skyn−1
k−1 (Line 8-10), the algorithm obtains a superset

of the aforementioned S2, according to Proposition 5. We denote this superset S+
2 .

By recursively calling the sky group function (Line 12), it further computes Skyn−1
k ,

which is a superset of the aforementioned S1, according to Proposition 4. We also

denote Skyn−1
k by S+

1 . S+
1 and S+

2 thus contain all necessary candidate groups for

Skynk . Thus, the skyline over candidate groups (Cn
k =S+

1 ∪ S+
2 , Line 15) is guaranteed

to be equal to Skynk . Existing skyline query algorithms (e.g., [23, 33, 34]) can be

applied over Cn
k . We use skyline() to refer to such algorithms (Line 16). The number

of candidate groups considered (|S+
1 ∪ S+

2 |) can potentially be much smaller than the

number of all possible groups formed by all tuples, i.e.,
(
n
k

)
.

Note that Skynk is needed in calculating both Skyn+1
k and Skyn+1

k+1 . The algo-

rithm recursively calls sky group(k, n) inside sky group (k, n+1), to compute and
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Algorithm 4: sky group(k, n): Dynamic programming algorithm based on

order-specific property

Input: n: input tuples Tn={t1, . . . , tn}; k: group size; k ≤ n

Output: Skynk : skyline k-tuple groups among Tn

1 if Skynk is computed then

2 return Skynk ;

3 if k == 1 then

4 S+
2 ← {{tn}};

5 else

6 S+
2 ← ∅;

7 Skyn−1
k−1 ← sky group(k-1, n-1);

8 foreach group G ∈ Skyn−1
k−1 do

9 candidate group ← G ∪ {tn};

10 S+
2 ← S+

2 ∪ {candidate group};

11 if k < n then

12 Skyn−1
k (i.e., S+

1 ) ← sky group(k, n-1);

13 else

14 S+
1 ← ∅;

15 Cn
k ← S+

1 ∪ S+
2 ;

16 Skynk ← skyline(Cn
k );

17 return Skynk ;

memoize Skynk . Later it calls sky group(k, n) again inside sky group(k + 1, n+1).

This time Skynk is not recomputed. Instead, the stored result is directly used (Line

88



1). Hence it is a dynamic programming algorithm. The sequence of calculating Sky1
1,

..., Skynk is shown by the dashed directed lines in Figure 4.2(b).
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Figure 4.2. (a) Calculate Skynk from Skyn−1
k−1 and Skyn−1

k ; (b) Dynamic programming

algorithm for calculating Skynk

Our discussion in this section so far assumed SUM. For MIN and MAX, Propo-

sition 5 requires a small modification, as shown in the following Proposition 6.

Proposition 6. Under aggregate function MIN and MAX, given G∈Skynk , if tn∈G,

then there exists a group G′ ∈ Skyn−1
k−1 such that F (G′ ∪ {tn})=F (G).

The implication of the applicability of Proposition 6 (instead of Proposition 5)

for MIN and MAX is that, if we still apply Algorithm 4, the S+
2 produced by Line

8-10 is not guaranteed to be a superset of the aforementioned S2. In other words,

Line 16, which applies the skyline operation over candidate groups, cannot guarantee

to produce Skynk . However, the algorithm can still guarantee that the result of it

contains all distinct aggregate vectors in Skynk , based on Proposition 6. Note that

our goal is to find all distinct skyline vectors and their accompanying (sample) skyline

groups for MIN and MAX. Hence the algorithm suffices for our goal without change.
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4.5.2 Iterative Algorithm Based on Weak

Candidate-Generation Property

The weak candidate-generation property (Definition 10) can be summarized as

follows. Consider the scenario when every skyline group has a distinct aggregate

vector. Given a skyline group G and any i, at least one i-tuple sub-group of G must

be a skyline i-tuple group. Based on this property, Algorithm 5 iteratively generates

candidate i-tuple groups by adding new tuples into skyline (i− 1)-tuple groups (Line

6-12) and applies skyline algorithm over these candidates to find skyline i-tuple groups

(Line 14). At every step of iteration, the algorithm only needs to generate i-tuple

candidates by extending skyline (i−1)-tuple groups instead of all (i−1)-tuple groups.

Hence it effectively prunes candidate groups by generation.

In reality, multiple skyline groups can have the same aggregate vector. The

aforementioned statement is not true anymore. That is, given a skyline group G and

any i, it is possible that none of its i-tuple sub-groups is a skyline i-tuple group.

However, by Definition 10 and Theorem 2, a slightly different statement can be made

for MIN and MAX—Given a skyline k-tuple group Gk and any i, there exists at least

a skyline i-tuple group Gi that, when padded with other k−i tuples, will result in a

skyline k-tuple group G′k such that F (G′k)=F (Gk). Furthermore, given any skyline

i-tuple group G′i such that F (G′i)=F (Gi), we can pad G′i with k−i other tuples to

get a skyline k-tuple group that has the same aggregate vector as Gk. Therefore,

although Algorithm 5 does not produce all skyline groups, it guarantees to find all

distinct skyline vectors.

On Feasibility of Combining Order-Specific and Weak Candidate-Generation

Properties: The order-specific and weak candidate-generation properties cannot be

meaningfully combined. The candidate and skyline groups generated in Algorithm 5

are with respect to all n tuples, for different group size k. However, the candidate
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Algorithm 5: sky group(k, n): Iterative algorithm based on weak

candidate-generation property

Input: n: input tuples Tn={t1, . . . , tn}; k: group size; k ≤ n

Output: Skyk: skyline k-tuple groups among Tn

1 C1 ← Tn;

2 Sky1 ← skyline(C1);

3 for i← 2 to k do

4 //generate candidate i-tuple groups Ci from skyline i−1-tuple groups

Skyi−1.

5 Ci ← ∅;

6 foreach G ∈ Skyi−1 do

7 foreach t ∈ Tn do

8 //generate candidate group

9 if t /∈ G then

10 G′ ← G ∪ {t};

11 if G′ /∈ Ci then

12 Ci ← Ci ∪ {G′};

13 //generate skyline i-tuple groups Skyi based on candidates Ci

14 Skyi ← skyline(Ci);

15 return Skyk

and skyline groups in Algorithm 4 are with respect to the first i (i=1..n) tuples by

a particular order. The combination is possible at the last step of Algorithm 4. We

can take the intersection of Cn
k from Algorithm 4 and Ck from Algorithm 5 and then

invoke skyline(Cn
k ∩ Ck). Even for this last step, the cost saving in skyline() due to
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less candidates may not make up for the extra cost in producing both candidate sets

Cn
k and Ck.

Complexity Analysis: The worst-case complexity of both Algorithms 4 and 5 is

O(
(
n
k

)
), which is as poor as the complexity of the brute-force approach of enumerating

all possible groups as candidates. We note that similarly the worst-case complexity

of frequent itemset mining algorithms [43] is also exponential and equally poor as

that of a brute-force approach. For both problems, it is the characteristics of real

datasets that enables the algorithms to prune many candidates and thus to achieve

better efficiency in reality. Specifically, one can see from Algorithms 4 and 5 that

a critical factor determining the average-case complexity of these algorithms is the

number of unique i-tuple skyline vectors in a j-tuple subset of the database (where

i ∈ [1, k] and j ∈ [1, n]) - which in turn depends on the underlying data distribution.

For example, the number of unique skyline vectors tends to be small when values of

different attributes are positively correlated: In the extreme-case scenario where all

attributes share the same value, the number of unique skyline vector is always 1 for

all i and j. On the other hand, there tends to be a large number of unique skyline

vectors when the attributes are independently distributed. We shall evaluate the

efficiency of Algorithms 4 and 5 over real-world datasets in the experiments section.

4.5.3 From Distinct Vectors to Equivalent Groups

For MIN and MAX, even the output size - i.e., the number of skyline groups

produced - may be too large to explicitly compute and store. As discussed in Sec-

tion 4.4.1, for output compression, we only need to retain one representative skyline

group for each distinct aggregated vector. To be more specific, it is sufficient for Skynk

in Algorithm 4 and Skyk in Algorithm 5 to contain one representative group for each

distinct aggregated vector of k-tuple groups. It can be easily achieved by a simple
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modification of the skyline algorithm at Line 16 of Algorithm 4 and Line 14 of Algo-

rithm 5. Whenever a candidate group is compared with current groups in the skyline,

we prune it if it is equivalent to some existing group. This will further reduce the size

of candidate groups and the number of group comparisons in succeeding iterations.

For input pruning, in the case of SUM and MIN, we remove all tuples dominated

by at least k others. In the case of MAX, we remov./skylinegroup/fig/e all tuples not

on the skyline. We showed in Section 4.4.2 that such input pruning techniques are

safe - i.e., we will still obtain all distinct vectors and their representatives.

As discussed in Section 4.4.1, although in many cases distinct vectors and their

representative groups suffice, a user may request all skyline groups equivalent to

a particular aggregated vector, for applying further criteria in choosing a group.

To return such equivalent groups, various postprocessing steps are required, due to

output compression and input pruning. Below we discuss such postprocessing for

individual functions.

Note that the same Algorithm 4 and 5 work if we do not apply output com-

pression and input pruning. However, even if our application is to ultimately find

all skyline groups, it is still beneficial to apply these two techniques and use post-

processing steps to find all skyline groups. Output compression and input pruning

together not only reduce the output size, but also save computational cost by allowing

the algorithms to deal with smaller input and intermediate results. In Section 4.6

we present experimental results to compare the execution time of our methods with

and without k-dominator tuple pruning. The results verify the benefit of applying

this pruning technique regardless of the ultimate output—representative groups for

all distinct aggregated vectors or all skyline groups.

SUM: No postprocessing is necessary for SUM. First, a k-dominator tuple cannot

appear in any skyline k-tuple group, as discussed in Section 4.4.2. Thus, input pruning
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will not trigger postprocessing for SUM. Second, if the ultimate goal is to fetch all

skyline groups, output compression should not be applied, because there is no effective

way of reconstructing skyline groups from distinct aggregated vectors. In Line 16

of Algorithm 4, all skyline i-tuple groups should be retained, without applying the

aforementioned simple modification that removes equivalent groups. Note that SUM

only satisfies the order-specific property. Thus, only Algorithm 4 applies.

Algorithm 6: Finding skyline groups with identical aggregated vectors

(MIN function)

Input: input tuples R; k: group size; k < |R|

Output: Sky: skyline k-tuple groups for R

1 Sky ← ∅;

2 T ← remove k-dominator tuples from R;

3 n ← |T |; /* number the tuples in T as t1, ..., tn */

4 Skyk ← sky group(k, n); /* Algorithm 4 or Algorithm 5 */

5 foreach skyline k-tuple group G ∈ Skyk do

6 RG ← the set of tuples in R that dominate or are equivalent to the

aggregated vector of G;

7 foreach k-combination G′ of tuples in RG do

8 Sky ← Sky ∪ {G′};

9 return Sky;

MIN: Two factors contribute to the need for postprocessing. First, the pruned

k-dominator tuples may appear in skyline groups. Second, the aforementioned equiv-

alent group removal performed at Line 16 of Algorithm 4 and Line 14 of Algorithm 5
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Algorithm 7: Finding skyline groups with identical aggregated vectors

(MAX function)
Input: input tuples R; k: group size; k < |R|

Output: Sky: skyline k-tuple groups among R

1 Sky ← ∅;

2 T ← remove k-dominator tuples from R;

3 n ← |T |; /* number the tuples in T as t1, ..., tn */

4 Skyk ← sky group(k, n); /* Algorithm 4 or Algorithm 5 */

5 foreach skyline k-tuple group G ∈ Skyk do

6 v ← the aggregated vector of G

7 candidate group ← ∅;

8 i← 1;

9 p[1] ← null;

10 while i > 0 do

11 /* Note that it is fine to select a tuple multiple times because a tuple can get the same value

as v on multiple dimensions. */

12 candidate group ← candidate group \ {p[i]};

13 p[i] ← get the next tuple in R that has v’s value on the ith dimension;

14 if p[i] == null then i← i−1; continue;

15 candidate group ← candidate group ∪ {p[i]};

16 if |candidate group| > k then continue;

17 if i==d then

18 /* d is the number of dimensions. */ k′ ← k − |candidate group|;

19 if k′==0 then

20 Sky ← Sky ∪ {candidate group};

21 else

22 R′ ← R \ candidate group;

23 foreach k′-tuple combination G′ among the tuples in R′ do

24 Sky ← Sky ∪ {candidate group ∪ G′};

25 else

26 i← i + 1;

27 p[i] ← null;

28 return Sky;

will only keep one representative for each distinct aggregated vector. Note that both

algorithms are applicable to MIN since MIN satisfies both order-specific and weak
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candidate-generation properties. At the end of both algorithms, we obtain Skyk,

which contains representatives of all distinct aggregated vectors, but not necessarily

all skyline k-tuple groups. To generate all skyline groups from Skyk for MIN, we fol-

low Algorithm 6. For each representative group, we find all the tuples that dominate

or are equal to its aggregated vector. Any k−combination of these tuples is a skyline

k-tuple group. This is based on the results from Section 4.4.1.

MAX: Algorithms 4 and 5 are both applicable to MAX. Similar to MIN, MAX needs

postprocessing due to both input pruning and output compression. We thus devise

Algorithm 7 to produce all skyline groups from representative groups.

For each representative group G that is found by Algorithms 4 and 5, Algo-

rithm 7 uses a backtracking process to find all skyline groups that are equivalent to

G. Denote the aggregated vector for G as v. On each dimension, we maintain a

list of tuples from R (all input tuples to be considered) that attain v’s value on that

dimension. We use the backtracking algorithm to enumerate all possible groups of

the tuples from these lists, such that the groups have the same aggregated vector v

and have less than or equal to k tuples. If a group has less than k tuples, it means

there can be some “free” tuples. Any combination of other tuples will complement

this group to form a skyline k-tuple group (Line 25-27).

A special case for MAX function is when there is only one distinct aggregated

vector, i.e., all skyline k-tuple groups reach the highest possible value on every di-

mension. In Algorithms 4 and 5, whenever an i-tuple candidate group (i ≤ k) is

generated, we test if this group attains the highest possible value on every attribute.

If so, we have already found the aggregated vector for all skyline groups. Using that

vector, we either find one representative group or all skyline groups, by a backtracking

process that is essentially the same as Algorithm 7. We omit the details.
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4.6 Experiments

The algorithms were implemented in C++. We executed all experiments on a

Dell PowerEdge 2900 III server running Linux kernel 2.6.27-7, with dual quad-core

Xeon 2.0GHz processors, 2x6MB cache, 8GB RAM, and three 250GB SATA HDs in

RAID5.

Datasets: We collected 512 tuples of NBA players who played in the 2009

regular season [59]. The tuple of each player has 5 statistics (i.e., 5 attributes) that

measure the player’s performance. The statistics are points per game (PPG), re-

bounds per game (RPG), assists per game (APG), steals per game (SPG), and blocks

per game (BPG). Players and groups of players are compared by these statistics and

their aggregates.

Another dataset is a collection of 35000 tuples that represent stocks for all the

publicly traded firms as of December 31st, 2009 in several international markets [60].

Each tuple has 4 attributes, which are market capital (MC), stock price (SP), interest

coverage ratio (ICR) and net income (NI). All the values were converted to US dollars.

To study the scalability of our methods, we also experimented with synthetic

datasets produced by the data generator in [23]. The datasets have 1 to 10 million

tuples, on 5 attributes. The data generator allows us to produce datasets where the

attributes are correlated, independent, and anti-correlated. In independent datasets,

the attribute values of a tuple were generated by a uniform distribution. In correlated

datasets, attribute values were generated using normal distributions. Anti-correlated

datasets were generated by a more complex procedure, which involves adding and

subtracting values from otherwise uniformly distributed attribute values.

Aggregate Functions and Methods Compared: We investigated the per-

formance of the two algorithms discussed in Section 4.5, namely the algorithms based

on order-specific property (OSM) and weak candidate-generation property (WCM).
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We also compared these methods with the baseline method (BASELINE), which is

a direct adaptation of the general framework in [55] for our skyline groups problem.

(The detailed discussion of [55] is in Section 4.2.) We executed these methods for the

aggregate functions discussed in previous sections—SUM, MIN, and MAX.

Parameters: We ran our experiments under combinations of two parameter

values, which are number of tuples, i.e., dataset size (n) and number of tuples per

group, i.e., group size (k).

Values Measured: For each applicable combination of aggregate function,

method, and parameter values, we measured the execution time needed to find all

distinct aggregate vectors and their representative groups, as well as the time to

find all skyline groups. Besides execution time, we also measured the total number

of candidate groups generated and number of pairwise group (aggregated vector)

comparisons in the process. Due to the iterative nature of OSM and WCM, they

call the basic skyline function multiple times. Hence, the total number of generated

candidate groups is the cumulative sizes of inputs to all skyline function invocations.

Furthermore, OSM produces candidate groups by merging two disjoint sets of smaller

groups. Here input size was calculated as the summation of the sizes of disjoint sets.

4.6.1 Study of Different Aggregate Functions

Size of Output under Different Functions: Table 4.7 shows, for different

n, k, and aggregate functions, the number of all possible groups (G), the number of

all skyline groups (S), and the number of distinct aggregate vectors (V) for the skyline

groups. The table is for correlated synthetic datasets. The observations made on the

NBA dataset were similar. It can be seen that G quickly becomes very large, which

indicates that any exhaustive method will suffer due to the large space of possible

answers. We want to point out that the number of skyline vectors (V) can be large
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n
k = 2 k = 4 k = 6

G S V G S V G S V

1 M

SUM

4×1011

247 247

4×1022

1654 1654

1×1033

6146 6146

MIN 187 141 1914 436 12816 870

MAX 368 220 147 73 2.9 M 1

4 M

SUM

8×1012

219 219

1×1025

1610 1610

6×1036

7482 7482

MIN 179 131 2182 461 17784 1148

MAX 396 274 164 78 11 M 1

7 M

SUM

2×1013

221 221

1×1026

1374 1374

2×1038

5825 5825

MIN 188 134 2193 455 16347 1002

MAX 552 323 354 90 55 M 1

10 M

SUM

4×1013

210 210

4×1026

1300 1300

1×1039

4487 4487

MIN 183 133 2130 450 15442 913

MAX 402 224 968 63 0.8 B 1

Table 4.7. Number of all groups (G), skyline groups (S), distinct skyline group vectors

(V), under various n, k, and functions. Correlated synthetic dataset. M: million, B: billion

(e.g., under k=6). As discussed in Section 4.1, these distinct vectors become the input

to further post-processing such as filtering, ranking and browsing. When a particular

skyline vector is chosen by a user, the corresponding equivalent skyline groups are

generated upon request.

Among the three functions, in general SUM has the largest number of skyline

vectors and MAX results in the smallest output size (V). This is due to the intrinsic
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Figure 4.3. (a)-(b): Execution time (seconds, log scale) and (c)-(d): number of candidate

groups (log scale), mixture of SUM/MAX/MIN

characteristics of these functions. In computing the aggregate vector for a group,

SUM reflects the strength of all group members on each dimension. Hence it is

more difficult for a group to dominate or equal to another group on every dimension.

In contrast, MIN (MAX) chooses the lowest (highest) value among group members

on each dimension. Hence skyline groups are formed by relatively small number of

extremal tuples.

On the other hand, if we compare the sizes of all skyline groups including the

equivalent ones, it is rare under SUM to have multiple skyline groups sharing the

same aggregate vector. MAX results in much more equivalent groups. Moreover,
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PPG RBG APG SPG BPG

G1 Carmelo Anthony Kobe Bryant Kevin Durant LeBron James Dwyane Wade 283.2 63.4 52.2 15.2 7.6

G2 Andrew Bogut Marcus Camby Monta Ellis Dwight Howard Josh Smith 166.2 96.4 32.2 13.4 19.4

G3 Trevor Ariza Monta Ellis Dwyane Wade Dwight Howard Josh Smith 202 72.6 43.2 16.6 14

G4 Carlos Boozer Baron Davis LeBron James Rajon Rondo Chris Paul 193.8 61.2 80.6 17.6 4.8

G5 Andrew Bogut LeBron James Chris Paul Dwight Howard Jason Kidd 185.8 81 64 14 13.8

PPG:Point Per Game, RBG: ReBound per Game, APG: Assist Per Game, SPG:

Steal Per Game, BPG: Block Per Game

Table 4.8. Sample skyline groups from 512 players, 5 players per group

under MAX, when group size k is larger than or equal to the number of attributes (5

for the datasets), all skyline groups have the same aggregate vector that attains the

highest value on every attribute.

Dealing with a Mixture of Aggregate Functions: Our methods allow a

mixture of different aggregate functions applied on different attributes. OSM can

handle arbitrary mixture of SUM, MIN, and MAX, while WCM can handle any

mixture of MIN and MAX. Figure 4.3 shows the execution time of OSM over the

5-attribute NBA dataset, for 3 different mixtures of functions. For example, 3SUM

means SUM function on the first 3 of the 5 attributes, and MIN and MAX on the

remaining 2 attributes. From Figure 4.3 we can see that SUM function is typically

more expensive. This is because output compression has less effect on SUM, under

which it is more difficult for a group to dominate other groups.

4.6.2 Experiments on NBA Dataset

Sample Resultant Skyline Groups: Table 4.8 shows several sample skyline

5-tuple groups under aggregate function SUM, from the NBA dataset. We see the

sample groups are formed by elite players with different strengths. For instance, G1
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is excellent in scoring (PPG), G2 excels in defense (RBG and BPG), and G3 is a

very balanced group that is strong on many aspects although not the best on any

dimension.

Comparison of Various Methods: Figure 4.4-4.6 show the execution time

and number of generated candidate groups, by BASELINE/OSM/WCM under all

applicable functions, over the NBA dataset. Figure 4.7 further shows the number of

pairwise group (aggregate vector) comparisons performed by these algorithms under

MIN and MAX. In sub-figure (a) and (c) of these figures, we fix the size of dataset

(n) to 300 tuples and vary group size (k). In sub-figure (b) and (d) of these figures,

we fix the group size (k=5 for SUM/MIN and k=3 for MAX) and vary dataset size.

We observed that OSM/WCM performed substantially (often orders of magnitude in

execution time) better than BASELINE. Without the properties, BASELINE pro-

duced much more candidate groups than OSM/WCM and thus incurred much more

pairwise group (aggregate vector) comparisons inside skyline function invocations.

Effect of Input Pruning: Input pruning was applied in all the experiments

for Figure 4.4-4.6. It had a good impact on the performance of all algorithms, since

it significantly reduced the size of input. Table 4.9 shows that, in all considered cases

on NBA dataset, less than 100 tuples remained after k-dominator tuple pruning was

applied. Figure 4.8 shows that substantial saving on execution time was achieved for

all functions.
Search Space Pruning Power of OSM and WCM: Figure 4.5, 4.6 and 4.7

compare OSM and WCM, in terms of execution time, number of candidate groups

produced, and number of pairwise group (aggregate vector) comparisons incurred.

We observed that, in terms of execution time, OSM performed better than WCM

on the NBA dataset under both MIN and MAX. Although WCM demonstrated

better pruning power in most cases as it resulted in less candidate groups (Fig-
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n k = 1 k = 3 k = 5 k = 7

100 19 31 37 44

200 22 37 47 57

300 24 50 61 67

400 29 62 78 86

500 30 62 83 94

Table 4.9. Number of tuples dominated by < k tuples in NBA

ures 4.5(c), 4.5(d), 4.6(c), and 4.6(d)), WCM required more pairwise group com-

parisons than OSM (Figure 4.7). Hence it lost in comparison with OSM.
Effect of Output Compression: Figure 4.9 shows the cost (in execution

time) of post-processing for obtaining all skyline groups from distinct skyline vectors,

on the NBA dataset, for n = 100, MAX function, and OSM algorithm. We can see

that in this configuration finding all skyline groups only doubled the execution time.

This verifies that, even though the problem of finding all skyline groups from distinct

vectors is an NP-hard problem, in practice it is usually efficient due to the small

number of tuples that can “hit” MAX attribute values, as explained in Section 4.4.1.

As n increases, naturally the cost of post-processing will also increase. However, in

reality we may only need to produce the equivalent groups for a skyline vector chosen

by the user, instead of for all skyline vectors.

4.6.3 Experiments on Stock Dataset

We also experimented on the Stock dataset. As the behavior of our algorithms

on this dataset is mostly similar to that on the NBA dataset, we do not present

extensive results. Figure 4.10 shows the performance of OSM and WCM for group
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Figure 4.4. (a)-(b): Execution time (seconds, logarithmic scale) and (c)-(d): number of

candidate groups (logarithmic scale), SUM

size k = 3 under various input sizes. It is observed that, although the stock dataset

is much bigger than the NBA dataset, the execution time is still considerably small.

This is due to the effective input pruning. Table 4.10 shows that only less than

300 tuples remained after k-dominator tuple pruning was applied. We also see that,

in this dataset, WCM took less execution time than OSM for MIN function. This

is partly due to the overhead of OSM in performing candidate generation and sky-

line comparison for multiple (group size, table size) combinations, as mentioned in

Section 4.4.3.1.
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Figure 4.5. (a)-(b): Execution time (seconds, logarithmic scale) and (c)-(d): number of

candidate groups (logarithmic scale), MIN

4.6.4 Experiments on Synthetic Datasets

To show the scalability of our methods, we experimented on the synthetic

datasets with 1 to 10 million tuples. In Figure 4.11, we see that OSM/WCM can

finish within a minute on these large datasets, for k=4 and all 3 functions.

The same methods will not be as efficient on independent or even anti-correlated

data. Figures 4.12 and 4.13 show the performance of OSM/WCM on three different

datasets of equal cardinality, under different number of attributes. We see that the

execution time on anti-correlated and independent data increases quickly and soon the
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Figure 4.6. (a)-(b): Execution time (seconds, logarithmic scale) and (c)-(d): number of

candidate groups (logarithmic scale), MAX

algorithm cannot finish within reasonable amount of time. (Thus the corresponding

bars are not plotted.) This is not surprising. In anti-correlated dataset, values of a

tuple on different attributes are negatively correlated. Hence it is more difficult to find

a tuple dominating other tuples. This means input pruning in such a dataset cannot

reduce the input size effectively, and OSM/WCM cannot prune many candidates

either. Attributes in real datasets may neither be fully correlated nor fully anti-

correlated. The attributes often form groups, such as rebounds and blocks, assists and

steals in basketball games. The attributes within the same group are correlated, while
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Figure 4.7. Number of pairwise group comparisons by different methods for MIN (a)-(b)

and MAX (c)-(d)
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Figure 4.8. Effect of input pruning on OSM, k = 3
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Figure 4.10. Execution time (seconds, logarithmic scale) on stock dataset, k = 3
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Figure 4.11. Execution time (seconds) of OSM/WCM on correlated synthetic dataset with

5 attributes, k = 4
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Figure 4.12. Execution time (seconds, logarithmic scale) of OSM on different synthetic

datasets, k = 3, n = 10 million

n k = 3 k = 5 k = 7

10000 99 139 178

15000 126 172 232

20000 130 180 239

25000 148 205 263

30000 143 217 281

Table 4.10. Number of tuples dominated by less than k tuples in stock dataset

the ones across different groups tend to be independent or anti-correlated. A direction

for future study is to investigate the performance of our methods on synthetic data

with such more realistic correlation patterns.

4.7 Prototype System: CrewScout

We introduce CrewScout (http://idir.uta.edu/crewscout), a system for find-

ing expert teams in accomplishing tasks. The underpinning concept of the system is

skyline teams (called skyline groups in [61, 62]). The new contributions made in this
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Figure 4.13. Execution time (seconds, logarithmic scale) of WCM on different synthetic

datasets, k = 3, n = 10 million

dissertation include an end-to-end system with an interactive user interface that as-

sists users in choosing teams among potentially many skyline teams and an extension

of application and demonstration scenarios into more general areas ([61, 62] mostly

focused on the application of forming teams in fantasy sports games.)

An attractive characteristic of a skyline team is that no other team of equal size

can dominate it. In contrast, given a non-skyline team, there is always a better sky-

line team. This property distinguishes CrewScout from other team recommendation

techniques. The skyline teams consist of the teams that are worth recommending.

They become the input to further manual or automated post-processing that eventu-

ally finds one team. Admittedly, determining the “best” team is a complex task that

may involve more factors than what skyline teams can capture—e.g., which experts

are available for a task, whether they have good relationship to work together, and

so on. The post-processing is thus crucial. Examples of such post-processing include

eye-balling the skyline teams, filtering and ranking them by user preferences, and

browsing and visualization of the skyline teams. Particularly, CrewScout provides
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Figure 4.14. CrewScout Interface

an interactive tool to assist a human user in exploring and choosing skyline teams.

Following portion explains CrewScout’s user interface. In a nutshell, a user starts

their interaction with CrewScout by searching available tasks and selecting a task.

CrewScout then proposes a set of experts who are eligible for forming teams. Then,

the system provides a set of skyline teams and also guides the user to pick a team.

Figure 4.14 shows the GUI of CrewScout, which is comprised of a task panel, a

skill panel, a parameter panel, and a display panel. The task panel presents a list of

available tasks. When a user clicks a task, CrewScout provides more details about it.

CrewScout also provides a keyword search box at the top of this panel for searching

available tasks. The skill panel presents the skills required for completing the selected

task. It shows a checkbox for each skill. By default, all the checkboxes are checked.

The user can check/uncheck some of them according to their preference. When the

111



Figure 4.15. Display Panel Showing Skyline Teams

user clicks the “Show Experts” button, the display panel presents a paginated list

of all experts who have expertise in at least one checked skill. If the user further

checks/unchecks some skills, the expert list is automatically refreshed to reflect the

change. Experts are ordered by summations of their expertise in all selected skills in

the current implementation. In the expert list, a filter is provided for each skill. The

user can filter the experts by setting the minimum and maximum expertise for one or

more skills. The user can also filter the experts by their names through partial string

matching.

The parameter panel allows the user to set parameters for skyline team com-

putation. It includes a textbox for specifying the skyline team size and radio but-
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(a) 1 expert selected (b) 2 experts selected

(c) 3 experts selected (d) Selected skyline teams

Figure 4.16. Selecting and Comparing Teams

tons for choosing an aggregate function (AVG, MIN, or MAX). Once the user clicks

the “Skyline Teams” button, CrewScout calculates all skyline teams (considering all

experts satisfying the aforementioned filters) and shows them in the display panel

(Figure 4.15). Similar to the filters on experts, CrewScout also provides filters for the

skyline team list, including filters on team members’ names and minimum/maximum

aggregated expertise on individual skills. The teams satisfying the conditions are

called the qualifying skyline teams. When the display panel exhibits the skyline

teams, a clustering panel is added below the parameter panel. It provides a “Pick a

Team” button and three drop-down lists that allow the user to choose a clustering

algorithm (e.g., K-means), a similarity/distance function (e.g., Euclidean distance)

for the clustering algorithm, and the number of clusters. When the user clicks the

button, CrewScout will display below the current panels a visualization interface (Fig-

ure 4.16) that clusters the experts in the qualifying skyline teams and assists the user

in exploring and choosing teams.
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The visualization interface has two panels. The left panel visualizes the clusters.

Each expert that belongs to at least one qualifying skyline team is represented as a

circle. Circles in the same cluster are annotated with the same color. Their positions

are automatically determined by the multi-foci force layout (https://github.com/

mbostock/d3/wiki/Force-Layout). The size of a circle is proportional to the number

of qualifying skyline teams containing the corresponding expert. At the beginning,

only the labels of big circles (containing information of corresponding experts) are

visible. When the user hovers the mouse over a circle, the expert’s profile (including

the name and the number of skyline teams containing the expert) is displayed in a

small pop-up window. The user can gradually zoom in to see the labels of smaller

circles. The user can iteratively select k experts. Whenever the user selects an expert,

CrewScout removes those circles whose corresponding experts do not belong to any

skyline teams with all selected experts so far. The remaining circles are re-clustered

and resized, based on only qualifying skyline teams containing the selected experts.

The right panel presents a polar-chart. Each polygon in the polar-chart represents

a selected expert’s expertise on the chosen skills. The aggregated expertise of the

selected experts is also represented by a polygon. The selected experts are listed

under the polar-chart. The user can remove any expert by clicking the cross sign

beside it, and the clusters of circles are refreshed accordingly. Once k experts are

selected, a skyline team is chosen. A “Pick Another Team?” button appears in the

left panel. If the user clicks it, two more panels are added to the lower portion of the

visualization interface—the left one lists all selected teams and the right one presents

another polar-chart that compares them.
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4.8 Usage Scenario of CrewScout

An online demonstration of CrewScout is hosted at http://idir.uta.edu/crewscout.

Its front-end UI is developed in PHP+JavaScript. The system demonstrates three

application scenarios, including paper reviewer selection, question answering, and

team formation, on a 900K-publication dataset collected through Microsoft Academic

Search API, a stackoverflow.com dataset and an NBA dataset from databasebasketball.

com, respectively. It also supports user-uploaded datasets. Below we describe the

demonstration steps for the reviewer selection scenario, with an imaginary user Amy.

1. Amy searches for, say “database”, and matching publications are displayed in

the task panel. A default publication is highlighted.

2. Amy clicks a publication to show or hide its abstract, depending on its status.

When a publication is selected, the skill and display panels are refreshed with the

corresponding required expertise and qualifying reviewers, respectively. Amy

checks/unchecks one or more skills, the qualifying reviewers are automatically

refreshed. Amy filters the reviewers by setting minimum and/or maximum

thresholds on one or more skills. (Figure 4.14)

3. Amy specifies an aggregate function and a skyline team size in the parameter

panel. Once Amy clicks the “Skyline Teams” button, the display panel shows

the skyline teams (Figure 4.15). Amy can filter them by reviewer name and

thresholds on aggregated skills.

4. After choosing clustering parameters, Amy clicks the “Pick a Team” button and

the visualization interface presents the reviewer clusters (Figure 4.16).

5. Amy moves the mouse over the circles to see the reviewers’ profiles and she also

zooms in and out. When Amy selects a reviewer, the corresponding expertise

polygon is inserted into the polar-chart. Amy repeats this step multiple times

until a k-reviewer team is formed.
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6. Amy clicks the “Pick Another Team?” button to select another team. In this

way, Amy chooses multiple teams and compares them in a polar-chart.
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CHAPTER 5

Conclusion

In this dissertation, I studied some of the most challenging and novel problems

of Computational Journalism. I motivated the problems with meaningful applications

and use cases. I designed algorithms and techniques to solve these problems and pre-

sented extensive experimental results. I also developed prototype of the systems and

demonstrated real-life usage scenarios of the systems. This is a small step towards

Computational Journalism. Going forward, I plan to explore several directions, in-

cluding further automation of the fact-checking process, automating comprehensive

fact finding from live events and story telling. I hope that this study will help re-

searchers to have a better understanding of Computational Journalism field and will

also serve as the base for many automatic fact monitoring and checking solutions to

come.
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