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ABSTRACT

Personalization and Data Relation

Exploration using Predictive Analytics for

the Production and Distributed Analysis System (PanDA)

Mikhail Titov, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Gergely Záruba

Efficient data distribution among computing centers is one of the biggest chal-

lenges in large-scale scientific distributed computing systems. Such data distribution

issues include: i) the rational utilization of storage and computing resources, ii) the

minimization of the completion time for data processing (which requires a reduction

in redundant data transfers, and intelligent allocation of processing tasks), and iii)

user experience enhancement, i.e., availability and fast access to the desired data,

and discovery of new relevant data. In the literature and in practice, there have been

significant new approaches to the improvement of workflow management to address

the above described issues, especially the first two. However, scientific computing

systems usually miss out on enhancing user experience, although significant improve-

ments could be done by exploring the relationships between the involved entities,

e.g., inter-user, user-data relationships. Such revealed relationships would not only

be to the benefit of the users, but could also improve data distribution strategies.
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The focus of this dissertation is on the discovery of hidden correlations between users

and corresponding data, and on the interpretation of the reasons of those correlations

in terms of a quantitative assessment.

The scientific computing system on which this research is focused is the pilot-

job based workload management system called PanDA (Production and Distributed

Analysis) that operates at the ATLAS experiment. The dissertation describes a

research effort that was conducted to detect data usage patterns in PanDA to validate

a thesis that a recommender system would enhance user experience as well as provide

important data with which scheduling of computing tasks could be improved. Data

mining techniques are investigated and applied to estimate the correlation between

users’ data needs, and to collect and manage groupings of data (based on data origin

and usage patterns) and users (based on interests and data usage history).

This work also presents the design of Data Watcher, a system that can create

and maintain user models and thus reveal relationships between users and data. The

goal is to be able to analyze, model, and predict user preferences based on estimated

ratings and user provided feedback. The core analytics of Data Watcher is based

on various recommender system techniques to provide methods in assisting users

in finding interesting data (i.e., data similar to what the user has used previously,

or relevant data that similar users have used). More precisely, Data Watcher i)

can predict the degree of users’ potential interest in particular data, ii) dynamically

forms groups of similar objects (groups of similar users, and data collections), and

iii) maintains data popularity metrics based on implicit and explicit ratings.
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CHAPTER 1

INTRODUCTION

Scientific computing has undergone a major transformation in the last decades.

Most large science experiments require vast computing and data storage resources in

order to provide results or predictions based on the raw data obtained. For scientific

distributed computing systems with hundreds of petabytes of data and thousands

of users, it is important to keep track not just of how data is distributed in the

system (i.e., the efficiency of data distribution among computing centers), but also of

individual user’s interests in the distributed data. Furthermore, with limited resources

for storage it is important that data is replicated only at centers where it will be most

likely (and most frequently) accessed. Such information can be discovered based on

the variations of user interests in the distributed data. This however requires the

collection and use of specific statistics such as correlations between data distributions,

user preferences and the mechanics of data distribution and utilization.

This dissertation is in the context of the Production and Distributed Anal-

ysis system (PanDA) designed for the use in the ATLAS experiment (one of the

largest physics experiments of our time) housed at CERN. The reader is referred

to Section 1.2: Background for more information about CERN and ATLAS, and

Section 1.3: Related Work for PanDA description.

1.1 Motivation

This research highlights that correlation between objects in highly dynamic

(variable) scientific computing environments (with high rate of the data production
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and changes of user interests during data processing campaigns) can be detected

and used to extend the capabilities of workload management systems thus increasing

their usability. Distributed data management and workload management systems

should thus focus on improving the quality of such relationship estimations in order

to achieve more efficient resources allocation. Furthermore, the revealed relationships

between users, and users and data could help to minimize the computational time

spent in such time-sensitive processes as search requests, queuing of computational

tasks, retrieving results, etc.

The deep understanding of inter-data relationships (with their corresponding

strength) between objects can i) facilitate the rationalization of resource usage, ii)

simplify workflow management, while maintaining the quality of service provided.

Such understanding could also help introduce novel, and better management strate-

gies and help review scheduling priorities.

1.1.1 Problem Statement

The inherent complexity in the data and workload management systems of

scientific distributed computing systems can pose strong limitations on how data

and data workflow need to be organized. Most of the current implementations thus

have to cope with such limitations resulting in reduced performance and overall the

usage experience. As a result, the following negative effects could surface: i) data

distribution (i.e., creating additional replicas of popular data) reacts slowly to changes

in user interests; ii) it can become difficult to discover new data that is similar to

data that was used earlier (as an offline option, it is possible to use shared bulletin

boards with the descriptions on what properties the new data contains); iii) it can

be burdensome to keep track of data that was used by users of different groups who

work on the same analysis tasks.
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The current production and analysis ecosystem does not consider user prefer-

ences and is thus not well suited to dynamically react to changing user demands,

i.e., to predict which data will be popular for certain groups of users and prepare the

processing resources ahead of time (i.e., create additional data replicas at particular

computing nodes for better computing task scheduling). Data distribution currently

does not explicitly follow user interests, and thus distribution of new data does not

meet user needs sufficiently and in a timely manner. This also means that redundant

data transfers cause an unwanted increase in the waiting time during data processing.

These reasons underline the need for a properly designed system that models user

interests and uses this model to follow user activity. Such system would be able:

• to predict the degree of user interest in any data,

• to reveal similarity between users and between data, and

• to consider explicit user ratings per data (i.e., the capability to indicate the

significance of various data).

This system would also serve as an artificial assistant that could:

• guide users in the discovery of new data that is in the users’ interest area (based

on an estimated degree of interest in particular data properties),

• help to discover similar users (i.e., users with similar areas of interest),

• inform users about the availability of particular data that comes with personal

recommendation,

• provide feedback about any data, i.e., numerical rating to express the signifi-

cance and the quality of a particular data for the user.

Furthermore, the system provided quantitative estimations of the relationships be-

tween user and data will:
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• further enhance the quality of distribution of data among computing centers

(choosing the appropriate storage type, and the number data replicas),

• improve the quality of computational tasks scheduling (i.e., pre-allocation of

computational tasks), and finally

• enrich user experience (i.e., extend user possibilities in management of analysis

process).

There are three main classes that need to be distinguished within PanDA:

• data (i.e., data unit),

• location (i.e., storage and/or computing nodes/sites),

• user (i.e., consumer of the processed data according to the provided computing

task description).

In terms of distributing data (among storage nodes) or computational tasks

(among computing nodes) a user could also be considered as one of the many input

parameters (as the recipient and the owner) and not strictly as a distinct class to

build relations with. Our emphasis is on exploring relations between user and data

classes to be able to extensively utilize this obtained knowledge.

Every user activity in the past (e.g., the number of connections between user and

data during a particular period of time) form a base for relation representation with a

corresponding degree that denotes how strong the connection is. Descriptions of user

and data objects provide a set of properties that are used to refine the corresponding

relation. Relationships between user and data objects are used to build relations

inside each class as well, and thus to reveal the degree of similarity between objects

of the same class.
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The goals for new models of users and relations (i.e., user profile and user

activity respectively) are to meet appropriate requirements (of the highly variable

environment), i.e.,:

• to keep track of new data that are produced with high rate and distribution of

that data might be correlated with user;

• to consider the short lifetime of user interest to a particular data (or data

feature) due to data processing campaigns (in the ATLAS experiment, data

gets reprocessed relatively frequently, when a better software model is found);

• to keep popularity metrics up to date based on discovered correlations between

the data needs of users.

1.1.2 Overview of Methodology

The general approach we have chosen to address the research problem is heav-

ily influenced by the involved entities (user and data), the expected outcomes, and

that the actions of users should be able to affect the outcome (e.g., users should be

able to provide explicit feedback as well as users’ reactions to the system outcomes

should trigger implicit feedback mechanisms). Applied analysis should be focused on

the revealing of hidden relations between objects and on the discovery of behavioral

patterns. Based on the above considerations, data mining provides appropriate tech-

niques in the exploration of data and in the endeavour of finding the most applicable

structured information within. During our research, the following classes of tasks

were used for solving specific problems:

• association analysis with association rule mining,

• sequential pattern mining,

• classification, and clustering.
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Discovered relations and patterns are ranked to express their significance as an

input to the decision making process; thus the techniques broadly described as of

information filtering were applied to build a recommender system as the core of the

solution.

At a high level, the main intention of a general recommender system is to pro-

vide relevant and valuable recommendations to users (i.e., discover data, that would

benefit users); however, the core components in achieving this are data mining pro-

cesses, which produce the predicted value of the user’s interest (likeliness score) in

particular data (which is later used when filtering the actual data that is presented

to the user). The input sources to the corresponding mining processes are user activ-

ity, data description (that could be taken from a system where analysis has already

been applied to the data to retrieve such information, or from external information

systems), and possibly user feedback as a reaction to the system-presented estimated

ratings (i.e., the output of the recommender system may trigger a user to provide a

corresponding feedback either as an action, e.g., “accept” or “reject”, or as an explicit

rating of a particular data or data collection, e.g., 3 out of 5 stars).

1.1.3 Rationale and Significance

Data distribution processes always depend on such factors as: availability

(which is usually restricted by storage space), accessibility (time to access, which

also depends on the number of data replicas), and efficiency (minimizing time costs,

e.g., reducing the number of data transfers between computing centers). To be able

to react to temporal variances in users’ interest areas, thus to minimize resources

when following new user interests, a system that is responsible for data distribution

should be aware of relationships between users and data, and thus preferably be able
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to predict the popularity of certain data among certain group of users. This can be

achieved by revealing usage patterns and correlations between users’ data needs.

The understanding of the nature of relations between users and data helps in

learning the reasons of user interest in particular data, and predict the degree of

interest to the new data (i.e., data that was not used by the same user earlier).

More precisely, the comprehensive analysis of user behavior will require a complex

description of user needs, but in turn will help to assist users in discovering new data

that might be in the user’s interest area or would benefit the user.

1.2 Background

This section provides an overview of the environment for the research conducted

in this dissertation, that:

• introduces experiments in high energy physics (with an emphasis on the ATLAS

experiment) that deal with exploring and analyzing the data produced by the

particle detectors;

• describes the computing infrastructure for data distribution used in the ATLAS

experiment; and

• presents the ATLAS Computing Model with description of data types and for-

mats, and corresponding policies for data processing and allocation.

1.2.1 The ATLAS Experiment

CERN is the European Organization for Nuclear Research (french “Conseil

Européen pour la Recherche Nucléaire”). Its main area of research is particle physics

the study of the fundamental constituents of matter and the forces acting between

them. The instruments used at CERN are purpose-built particle accelerators and

detectors. Accelerators boost beams of particles to high energies before the beams
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are made to collide with each other or with stationary targets. Detectors located

around possible collision points along the ring observe and record the results of these

collisions 1. The main particle accelerator at CERN and in the world is currently the

Large Hadron Collider (LHC).

Figure 1.1: The LHC particle accelerator with four main detectors (ALICE, ATLAS,
CMS, and LHCb)

The LHC consists of a 27-kilometer long ring surrounded by superconducting

magnets with a number of accelerating structures to boost the energy of the parti-

cle beams along the way 2. Inside the accelerator, two high-energy particle beams

1http://home.cern/about
2http://home.cern/topics/large-hadron-collider
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travel in opposite directions close to the speed of light before they are made to col-

lide. Seven experiments at the LHC use detectors to analyse the myriad of particles

produced by collisions in the accelerator 3: ATLAS (A Toroidal LHC ApparatuS),

CMS (Compact Muon Solenoid), ALICE (A Large Ion Collider Experiment), LHCb

(Large Hadron Collider beauty), TOTEM (TOTal Elastic and diffractive cross section

Measurement), LHCf (Large Hadron Collider forward), and MoEDAL (Monopole and

Exotics Detector at the LHC). Figure 1.1 4 illustrates the LHC particle accelerator

with the four main detectors.

The context of this dissertation is the ATLAS experiment, which investigates

a wide range of physics, from the search for the Higgs boson to extra dimensions

and particles that could make up dark matter. Although it has the same scientific

goals as the CMS experiment, it uses different technical solutions and a different

magnet-system design.

The ATLAS detector (Figure 1.2 5) is nominally forward-backward symmet-

ric with respect to the interaction point. The magnet configuration comprises a

thin superconducting solenoid surrounding the inner-detector cavity, and three large

superconducting toroids (one barrel and two end-caps) arranged with an eight-fold

azimuthal symmetry around the calorimeters. This fundamental choice has driven

the design of the rest of the detector [1].

Beams of particles from the LHC collide at the center of the ATLAS detector

making collision debris in the form of new particles, which fly out from the collision

point in all directions. Six different detecting subsystems arranged in layers around

the collision point record the paths, momentum, and energy of the particles, allowing

3http://home.cern/about/experiments
4http://atlasexperiment.org/photos/lhc.html
5http://atlasexperiment.org/photos/full-detector-cgi.html
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Figure 1.2: A detailed computer-generated image of the ATLAS detector and its
systems

them to be individually identified. A huge magnet system bends the paths of charged

particles so that their momenta can be measured.

Over a billion particle interactions take place in the ATLAS detector every

second, and only one in a million collisions are flagged as potentially interesting and

recorded for further study. Events are the lowest significant units of data in high

energy physics, representing a collision captured in the detector.

1.2.2 The Worldwide LHC Computing Grid

Hundreds of research institutions participate in analysis of data from the LHC,

and are connected by a distributed computing infrastructure called the Worldwide

LHC Computing Grid (WLCG). Distributed computing resources for analysis by

end-user physicists are provided by the European Grid Infrastructure (EGI/EGEE),

10



the Open Science Grid (OSG), and the Nordic Data Grid Facility (NDGF) with

NorduGrid middleware (ARC, Advanced Resource Connector).

Figure 1.3: WLCG Tier centers

The WLCG is composed of four levels, or “Tiers”, numbered from 0 to 3 (see

Figure 1.3 6). Each Tier is made up of several computer centers and provides a

specific set of services. Tier-0 is the CERN Data Center. It is responsible for the safe

keeping of the raw data and performs the first pass at reconstructing the raw data

6http://wlcg-public.web.cern.ch/tier-centres
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into meaningful information. Tier-0 distributes data to Tier-1s. There are 13 Tier-1

designated computer centers. They are responsible for storing a proportion of raw and

reconstructed data, as well as performing large-scale reprocessing; distributing data to

Tier-2s; and storing a share of the simulated data that the Tier-2s produce. Tier-2s are

typically hosted by universities and other scientific institutes that can store sufficient

data and provide adequate computing power for specific analysis tasks. Individual

scientists can access the Grid through local (or Tier-3) computing resources.

The structure of the WLCG can be described with the four main component

layers: networking, hardware, middleware, and physics analysis software. Exchanging

data between WLCG centers is managed by the Grid File Transfer Service (FTS).

Each Tier’s grid center manages a large collection of computers and storage systems

with specialized storage tools, such as dCache system, CERN Advanced STORage

system (CASTOR), etc. Middleware represents the software infrastructure which

allows access to distributed computing resources and archives, and is able to support

complicated and time-consuming data analysis (thus connects operating systems of

the computers with the physics applications software). The immense and changing

demands of the high energy physics environment require dedicated software to analyse

vast amounts of data efficiently. One of the main physics analysis software is ROOT 7.

Recent updates to the grid infrastructure loosen the strictly hierarchically struc-

tured roles of the Tier centers to be able to best use their full set of capabilities (e.g.,

use Tier-2s for reconstruction of MC 8 data), but keeps certain levels of requirements

(e.g., the quality of service) the same [2].

7ROOT is an object-oriented data analysis framework based on C++, specifically designed for
large scale data analysis.

8Simulated Monte Carlo data (during ATLAS data taking MC data are produced with the same
releases as are used for online selection and offline reconstruction of the real data).
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1.2.3 The ATLAS Computing Model

The ATLAS Computing Model embraces the “grid paradigm” and calls for

a high degree of decentralisation and sharing of computing resources [3]. Its goal

is to form a model for a production and analysis ecosystem which would provide

seamless access to all ATLAS data and resources [4]. Thus, a complex set of tools and

distributed services are provided, enabling the automatic distribution and processing

of the large amounts of data. This infrastructure consists of the following two main

building blocks:

• the Athena software framework, with its associated modular structure of the

event data model, including the software for: event simulation, event trigger,

event reconstruction, and physics analysis tools; and

• the Distributed Computing tools that are built on top of Grid middleware:

the Distributed Data Management (DDM) system, the Distributed Production

system, the Ganga/pAthena frameworks for distributed analysis on the Grid,

monitoring and accounting.

1.2.3.1 Data Representation

Data organization is represented with different level of granularities for book-

keeping: events (that are collected during an operational period of the detector or

generated by simulation mimicking various physics process) are stored in files, and

files with events of the same experimental property are grouped into datasets. Thus,

a dataset can be (loosely) defined as a collection (i.e., aggregation) of files (that are

processed together and usually comprise the input or output of a computation or data

acquisition process) plus associated metadata. Furthermore, every file can be part of

multiple datasets at the same time when it is involved in various data management
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activities. Knowing that a dataset represents files that are used together, the system

can optimise its units of data transfer and discovery.

1.2.3.2 The Event Data Model

The physics event store holds a number of successively derived event represen-

tations, beginning with raw or simulated data and progressing through reconstruction

into more streamlined event representations suitable for analysis [3]. Corresponding

Event Data Model defines a number of different data formats:

• RAW data are events as output by the Event Filter in “byte-stream” format,

reflecting the format in which data are delivered from the detector, rather than

in any object-oriented representation. Each file contains events belonging to a

single run (corresponding to a prolonged period of data taking using the same

trigger selections on the same fill in the accelerator), but the events in each file

will not be consecutive nor ordered.

• ESD (Event Summary Data) is event data written as the output of the

reconstruction process (including low level information as hits/tracks and

cells/clusters), produced from the RAW data; it has an object-oriented

format (POOL 9/ROOT).

• AOD (Analysis Object Data) is a reduced event representation (i.e., summary

of event reconstruction with “physics” objects), derived from ESD, suitable for

analysis; it has an object-oriented format (ROOT). xAOD is a new AOD format

that is completely redesigned for analysis use, thus is readable by both ROOT

(for high level reconstruction objects such as jets or muon tracks), and Athena

(allowing full access to all objects) [2].

9POOL is a hybrid technology store for C++ objects, using a mixture of streaming and relational
technologies to implement both object persistency and object metadata catalogs and collections
(Persistency Framework).
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• DPD (Derived Physics Data) is a representation for end-user analysis, that is

produced for working groups or individual end-users (group-specific format).

Derived data dESD (for performance groups) and dAOD (for physics groups)

are produced from ESD and AOD respectively, and are aimed to reduce the

overall dataset size and therefore improve the processing time by either skim

events (event selection) or slim (reduce the information of selected objects),

trim (removing collections of objects) or thin (removal of individual objects

from a collection) the event content. D2/3PD are secondary (more refined and

contain analysis data) and tertiary (i.e., NTUP format, organized in flat ROOT

n-tuples files and suitable for plotting final results) Derived Physics Data.

• TAG data are event-level metadata (thumbnail information about events to

support efficient identification and selection of events of interest to a given

analysis) and stored in a relational database.

1.2.3.3 The Operational Model

The ATLAS experiment has a hierarchical model for data production and distri-

bution. The primary event processing occurs at CERN in the Tier-0 facility (CERN

Analysis Facility, CAF). The RAW data is archived at CERN and copied (along with

the primary processed data) to the Tier-1 facilities around the world. These facilities

archive the RAW data, provide the reprocessing capacity, provide access to the vari-

ous processed versions and allow scheduled analysis of the processed data by physics

analysis groups. Derived datasets produced by the physics groups are copied to the

Tier-2 facilities for further analysis. The Tier-2 facilities also provide the simulation

capacity for the experiment, with the simulated data housed at Tier-1s. In addition,

Tier-2 centers provide analysis facilities and some provide the capacity to produce

calibrations based on processing some raw data. The CERN Analysis Facility pro-
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vides an additional analysis capacity, with an important role in the data-intensive

calibration and algorithmic development work [3].

1.2.3.4 Modern Architecture of the Operational Model

Historically the ATLAS experiment used a strictly hierarchical cloud model. At

the time when the original computing model was defined, sufficient network connectiv-

ity was only guaranteed within the national research networks and on the dedicated

links between the Tier-1 computing centers. Therefore, static regional groupings

(known as clouds) were defined, each consisting of one Tier-1 and several Tier-2s.

The computing model also constrained jobs to be executed in those computer centers

where the data was locally available.

The new model is about to relax the boundaries of the old computing model a

step further, adding dynamic cloud configurations defined as follows [5]:

• Nuclei are made up of Tier-1s and selected Tier-2s, which pass certain qualifying

criteria. These sites will be the center of a temporary cloud. Tasks will be

assigned to them and task outputs will be aggregated in the nuclei.

• Satellites will be made up of other Tier-2s in the cloud that provide the process-

ing capacity. Satellites can be assigned to nuclei outside their regional cloud.

In the setting of the ATLAS data management, each Tier-1 hosts a WLCG

FTS (File Transfer Service) to handle file transfers within and into its representative

association, while the transfers to and from the Tier-0 are managed by another FTS

instance directly from CERN. Tiers association also forms the structure around which

the management of the ATLAS computing activities is organized.
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1.3 Related Work

This dissertation focuses on the analysis of user activities and interests to dis-

cover data, and influence user behavior aiding data distribution in the high-

performance Workload Management System (WMS) PanDA (Production ANd Dis-

tributed Analysis system). In order to help the reader understand some of the later

detail, in this section we will describe the current organization of the data manage-

ment and distribution, and of the management of workload for data processing.

1.3.1 The ATLAS Distributed Data Management System

The management of the massive amount of data (hundreds petabytes) dis-

tributed over the storage facilities of the computer centers in the WLCG relies on the

Distributed Data Management system called Rucio [6] in the ATLAS experiment.

Rucio is the latest generation of the DDM system (it is the successor of DQ2, Don

Quixote 2) with a scalable and reliable data organization and placement property.

The distribution of data also relies on the policies defined by the Computing Re-

source Management (CREM) and is guided by the ATLAS Computing Model (within

the operational constraints). Thus, such parameters as proposed data lifetime, data

type, and the minimum number of data replicas are also considered in a decision

making process on where to store the data (Tier-1 or Tier-2, disk or tape storage).

Features of Rucio include a unified dataset/file catalogue, a global namespace

with a deterministic translation to local file names, the consequent removal of the need

for local file catalogues [2], inter-operations with different Grid resources, enforcement

of management policies like the ATLAS Computing Model, and enforcement of access

controls, management of user and group quotas, and accounting of data replicas.

Figure 1.4 10 shows main DDM components and related services. The following

10http://rucio.cern.ch/overview Architecture.html
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subsection will describe the most significant concepts and features of the DDM system

Rucio.

Figure 1.4: Overview of Rucio Architecture

1.3.1.1 Key Concepts

A DDM account represents every user, group, or organized activity at the

ATLAS experiment, and associates them with corresponding permissions, (storage)

quotas, and data namespace (which is called scope) [7].

Data management supports different types of data structures, that are referred

as data identifiers (DID): files, datasets, and containers (aggregations of datasets or

other containers) [6]. Thereby a file is the smallest operational unit of data.
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Every DID is unique and defined as a tuple made up of a scope and a name. A

DID name is unique within a scope, and can be used in different scopes at the same

time [6].

Rucio Storage Element (RSE) is a logical concept to address and utilize storage

systems in the Grid infrastructure. RSE is a container of physical files (file repli-

cas) and represents a unit of storage space within Rucio. It is described by unique

name, access protocols, host names, storage type, space availability, quality of service,

etc. There are several protocols that are used by Rucio to interact with the storage

systems, in particular WebDAV, or Amazon S3.

The physical paths of files (Physical File Name, PFN) are obtained via a de-

terministic function of the scope and name of the file (Logical File Name, LFN). The

PFN is prefixed by the protocol and the site specific part (that are obtained from the

internal Rucio catalog) to give a Uniform Resource Identifier (URI) [8]. Every file

replica is associated with a corresponding URI.

1.3.1.2 Data Distribution

Rucio uses replication rules and a subscription mechanism for replicas manage-

ment. A replication rule describes how a particular DID must be replicated on a list

of RSEs. The minimum number of replicas (that satisfy the rule) will be determined

to optimise the usage of the storage space, to minimize the number of data transfers,

and to enable automated data distribution. A subscription is defined as a replication

policy which is based on metadata for DIDs that will be produced in the future.

Thus, Rucio will generate a rule for every DID that matches the parameters of the

subscription, and based on this rule, it will create corresponding replicas [6].
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1.3.1.3 Rucio Components

This subsection will provide a short overview of the main components of the

current DDM system Rucio. The reader is referred to Figure 1.4 for the below de-

scriptions.

The Database is a primary storage used to persist all the logical data; direct

access is only granted to the Rucio server and its daemons (Rucio uses an ORM 11

approach).

The Rucio Server layer combines several Rucio core components together and

offers a common, https-based, REST 12 API for external interaction (i.e., a passive

component listening to incoming queries). The server is also responsible for authen-

tication and authorization of clients, and for management of the request execution at

the request-defined core component. Rucio core components are allowed to commu-

nicate with each other, as well as with the Rucio Storage Element abstraction.

Rucio Daemons represent agents that operate on user requests or requests made

by the Rucio core asynchronously:

• the Conveyor is responsible for requests for data transfers,

• the Reaper is responsible for deletion of the expired data replicas,

• the Undertaker is responsible for obsoleting data identifiers with expired life-

time,

• the Transmogrifier is responsible to apply subscriptions on newly created or

existing data to generate replication rules, and

• the Judge is the replication rule engine.

11ORM is an object-relational mapping that makes it possible to address, access and manipulate
objects without having to consider how those objects relate to their data sources.

12REST (Representational State Transfer) is an architectural style for designing distributed sys-
tems. It is not a standard but a set of constraints, such as being stateless, having a client/server
relationship, and a uniform interface.
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The Rucio Storage Element (RSE) is an abstraction layer that is responsible

for all interactions with different Grid middleware tools which interact with the Grid

storage systems. It effectively hides the complexity of these tools and combines them

into one interface used by Rucio. The abstraction layer is used by the clients, the

server as well as the Rucio daemons.

The Rucio Clients layer offers a command line client for users as well as appli-

cation programming interfaces which can be directly integrated into user programs.

All Rucio interactions are transformed by the client into https requests which are sent

to the REST interface of the Rucio server. Consequently, external programs can also

choose to directly interact with the REST API of the server (e.g., by libcurl).

1.3.2 The Production and Distributed Analysis System

The Production and Distributed Analysis system (PanDA) is a workload man-

agement system that federates hundreds of heterogeneous computing centers of the

WLCG into a unique job submission system and manages distributed resources in-

telligently [5] (the term task is applied for a set of jobs, that are combined based

on same specifications, the term job is applied to a computational task or unit of

work). PanDA is an automated yet flexible workload management system which can

optimally make distributed resources accessible to all users. PanDA was originally

developed for US physicists and adopted as the ATLAS wide WMS in 2008 (in use

for all ATLAS computing applications).

Key features of PanDA are:

• pilot-based job execution system (i.e., there is a lightweight process scheduled

on computing nodes that interacts with the core to schedule computing tasks);

• central job queue;
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• fair-share or policy driven priorities for thousands of users and hundreds of

resources;

• automated brokerage based on CPU and storage resources;

• automatic error handling and recovery;

• extensive monitoring;

• modular design.

The purpose of PanDA is to manage the data production process (manage

central and group production of data for the overall ATLAS collaboration and/or a

particular physics working group) and to manage analysis process.

1.3.2.1 PanDA Components

The objective of this section is to introduce the essential components of PanDA

(Figure 1.5 [9]) with emphasis on their features that benefit the system and thus

make PanDA flexible with on-demand access to distributed resources through a pilot

mechanism.

The PanDA Server is a central hub that is responsible for jobs/tasks queue

management [10], and communications with the pilot sub-system and DDM system.

Its component systems are:

• Database backend is the primary storage for information about all submitted

jobs, data and user descriptions.

• Task Buffer represents a job queue manager that keeps track of all active jobs

in the system.

• Job Brokerage operates to prioritize and assign work on the basis of job type,

priority, input data and its locality, software availability, and required resource

capacity (e.g., CPU speed, memory, disk space, etc.).
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Figure 1.5: General Structure of the PanDA system

• Job Dispatcher dispatches job payloads upon pilot requests, and manages heart-

beat and other status information coming from pilots.

The Panda Pilot represents the lightweight execution environment (effectively

a wrapper) for PanDA jobs: to prepare the computing element, to request and receive

the actual job payloads from the Job Dispatcher, perform setup, execute the payload,

i.e., run the jobs themselves, and cleanup work surrounding the job [11]. In the

context of PanDA Pilot:

• Job wrapper is a process that is responsible to copy the input files, setup the

runtime environment, execute the job payload, transfer the job output files
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(either by itself or by delegating this task to the DDM system) and finally

to perform cleanups.

• Pilot Factory represents an independent and automatic system for the pilot

dispatch and control. Particularly, PanDA uses AutoPyFactory that is a pilot

submission, management and monitoring system. (Supersedes first generation

PandaJobScheduler, as well as the second generation system, the AutoPilot.)

JEDI (Job Execution and Definition Interface) adds the capability to accept

work defined as high level tasks, and breaks these down optimally based on the

dynamic state of the the available resources [5]. Traditional workload management

systems use jobs as the atomic unit and define these at the level of input files. JEDI

on the other hand can handle bookkeeping at different granularities: task, job, file

and event ranges.

PD2P (PanDA Dynamic Data Placement) is an intelligent subsystem of PanDA

and is responsible for the dynamic management of data replicas (e.g., adding new

replicas of popular datasets). PD2P makes secondary copies at corresponding sites

by taking the following factors into account: popularity, locality, the usage pattern of

the data, the distribution of CPU and storage resources, network topology between

sites, site operation downtime and reliability.

Other general use components are, e.g., the Information system, and the Mon-

itoring system (PandaMonitor is a web application to monitor jobs execution and

to manage complex tasks, defining steps and dependencies between the jobs inside a

task).

The latest system developments in PanDA move towards a finer granularity in

the job definition, together with automated tuning of job settings. This is partially

done through the addition of the JEDI component, which tracks work not only at task
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and job level, but also at file and event range level, in order to generate tailored jobs

for each compute resource. The Event Service is based on the JEDI capabilities and

extends these by providing a continuous stream of short jobs to unpledged resources

and takes care of staging out the output into a highly scalable Object Store to avoid

any losses. The Event Service is designed to fully exploit opportunistic usage by

decoupling the processing from the bulkyness of files and instead streaming inputs

and outputs to/from the worker. The Event Service lowers the granularity of jobs

to the event level and allows an almost continuous event streaming to the worker

nodes that write their output quickly and hence have a negligible loss if the worker

vanishes [5].

1.3.2.2 PanDA Workflow

The job submission on the grid is done in multiple steps that involve both the

WMS - PanDA and the DDM system - Rucio. Job specifications (with corresponding

input data) are defined by users (or are taken from the corresponding task) and are

then submitted to PanDA.

The PanDA server receives jobs into the task queue (Task Buffer), upon which

a brokerage module prioritize and assign work (cooperated with DDM system to

determine the replicas location of the jobs input data, its availability, the current

workload, etc.). The AutoPyFactory pre-schedules pilots to computing sites of the

corresponding Grid infrastructure using Condor-G (a Condor system extension that

allows for jobs to be submitted over the Grid through Globus-enabled gatekeepers

that bridge between sites across administrative domains). Pilots retrieve jobs from the

PanDA server in order to run the jobs as soon as CPU slots become available. Pilots

are designed to use resources efficiently; they exit immediately if no job is available

and the submission rate is regulated according to workload. Each pilot executes a job
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on a worker node (WN), detects zombie processes, reports job status to the PanDA

server, and recovers failed jobs. For NDGF, the ARC 13 control tower retrieves jobs

from the PanDA server and sends the jobs together with pilot wrappers to NDGF

sites using NorduGrid/ARC middleware [10].

An independent subsystem inside PanDA manages the delivery of pilot jobs

to WNs, using a number of remote (or local) job submission methods. A pilot once

launched on a WN contacts the PanDA Job Dispatcher and may receive a pending job

appropriate for the site/node. An important attribute of this scheme for interactive

analysis (where minimal latency from job submission to job launch is important) is

that the pilot dispatch mechanism bypasses any latencies in the scheduling system for

submitting and launching the pilot itself. The pilot job mechanism isolates workload

jobs from grid and batch system failure modes (a workload job is assigned only once

the pilot successfully launches on a WN). The pilot also isolates the PanDA system

from grid heterogeneities (which are encapsulated in the pilot), so that at the PanDA

level the compute locations appear homogeneous.

Workflow is different between production and analysis type jobs although

PanDA is designed for both production and analysis to use the same software, mon-

itoring system, and facilities.

For production, PanDA receives centrally defined tasks on the basis of physics

needs and resource allocation in ATLAS. Tasks are assigned to clouds (logical group-

ings of computer centers) based on the amount of disk space available on the Tier-0/1

storage element, the locality of input data, available CPU resources, the Memoran-

dum of Understanding (MoU) share which specifies the contributions expected from

each participating institute, and downtime of the Tier-0/1. Tasks are automatically

13ARC (Advanced Resource Connector) provides a reliable implementation of the fundamental
grid services, such as information services, resource discovery and monitoring, job submission and
management, brokering and data management and resource management.
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converted to many jobs for parallel execution. Once a task is assigned to a cloud,

jobs are assigned to computing centers in the cloud. After jobs successfully finished

on WNs, output files are aggregated back to the Tier-1 from Tier-2 [10].

ATLAS production jobs are roughly categorized into three groups of activities:

MC simulation, data reprocessing, and physics working group production. Generally

jobs for data reprocessing and physics working group production have higher priorities

than jobs for MC simulation because of urgent needs for the former activities [10].

For analysis, each end-user submits a user task (job set) that is split to multi-

ple job subsets according to localities of input datasets, workload distribution, and

available CPU resources at sites. A job subset is sent to a site where input files are

available, i.e., if input files are distributed over multiple sites there will be multiple

job subsets and they will be sent to multiple sites. Each job subset is composed of

many jobs. One of the most significant differences between production and analysis is

policy for data transfers. The DDM system transfers files over the grid for production,

while analysis does not trigger file-transfers since analysis jobs are sent only to sites

where the input files are already available. This is mainly because analysis jobs are

typically I/O intensive and run on many files. In order to demonstrate the magnitude

of jobs executed, we summarized the total number different jobs (with emphasis on

analysis jobs) submitted in Table 1.1.

Table 1.1: Numbers of processed jobs at PanDA (for the last five years)

Year
Number of Number of Number of

all jobs analysis jobs success analysis jobs

2011 222,212,837 122,133,639 91,565,969
2012 297,627,703 176,103,863 122,078,104
2013 340,827,067 207,355,412 142,496,850
2014 316,563,177 185,787,693 135,780,198
2015 371,808,032 206,388,996 140,519,048
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1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 will review

previous work that propose approaches to improve the efficiency in DDM and WM

systems (approaches for corresponding ATLAS systems are considered as well). These

approaches are presented according to the methods that they use (e.g., machine learn-

ing algorithms to predict the next state of data popularity). Chapter 3 provides the

background on techniques and methods that were used in the analysis of PanDA data

and in the synthesis of the personalization solution. Chapter 4 will present the initial

study that was conducted to explore data from PanDA system to find usage patterns

and to utilize it in a simulation prototype of a recommender system. This study

motivates the need of a recommender system for PanDA. Chapter 5 will present a

system called Data Watcher, based on recommender system approach, that can find

correlations among users, and users and data use. Chapter 6 will provide an analysis

of the capabilities of the Data Watcher system and its preliminary results. Finally,

Chapter 7 concludes the dissertation and outlines future directions for extensions and

research.
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CHAPTER 2

LITERATURE REVIEW

This section describes the approaches that have been proposed in data- and

workload-management systems, to improve the operational processes in management

of the vast amounts of data and computing resources. We will focus our investiga-

tions on approaches that include machine learning techniques, as these techniques

are currently seen as the most promising extensions. The following literature review

presents the most closely related work in terms of grid infrastructure based distributed

computing systems.

Before we delve into our literature review, we would like to mention why our

research direction moved towards data mining/machine learning techniques. In one

of our previous studies [12] (that is related to the problem of the current research but

is not a part of it) we estimated the popularity of data in a WMS using stochastic

methods. The primary intention was to build a Bayesian network that would help

to calculate corresponding probabilities for data popularity. Data that was used for

the analysis is input data for PanDA jobs (i.e., datasets that are managed by the

ATLAS DDM system), and only those analysis jobs that finished successfully were

considered. The analysis required a highly complex model design; yet it only showed

negligible correlation between datasets and actual user interests. The methodology

did not consider relationships between different users’ past datasets but was based on

pure popularity analysis. Based on such results our direction of research was changed

towards the study of user personalization.
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2.1 Data Management

Every computing system has specific components that are responsible for data

management, i.e., data organization and handling. Here approaches to improve the

efficiency of data distribution based on machine learning will be reviewed. The goal

of such improvements is to predict the popularity of data and to use the outcome to

replicate data to the computing nodes where it will be most desirable. All reviewed

approaches are focused on calculating the probabilities for a defined data being kept

on a particular storage based on the past data usages, but to the best of our knowledge

ours is the first work using user models in a WMS that could describe preferences of

each user (and thus improve estimated weights).

2.1.1 Data Popularity Prediction for ATLAS DDM

We introduced the ATLAS DDM system Rucio in an earlier section (Sec-

tion 1.3.1). Rucio is responsible for the organization and management of the data

from detector, simulation data, and all of the derived physics data (which is in use

by the ATLAS collaboration).

[13] and its companion work [14] propose a dynamic way of pro-active manage-

ment of data replicas (remove replicas of data with zero user interest and add extra

replicas of data with increasing user interest). This approach is based on predictions

of future data (i.e., datasets in ATLAS terms) accesses by analysing the popularity of

data in the past (such information includes number of accesses, files, involved users

and computing nodes) with focus on datasets that are used in user analysis jobs in

PanDA (production jobs are disregarded). Thus Beermann et al. attempt to forecast

the level of the popularity of data.

The goal of the proposed tool is to estimate the number of dataset accesses

during a certain time period in the near-term future. The implementation relies
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on the training and use of an artificial neural network (ANN) to find trends in the

historic dataset accesses (i.e., common dataset access patterns). Thus, the ANN uses

aggregated accesses for each dataset on the Grid per week as an input data (i.e., n

input neurons for n weeks, A1,2..n), and produces an estimated number of the accesses

for the next week as the output (i.e., the output neuron provides the predicted number

of accesses for the (n+ 1)th week, An+1). This approach also takes into consideration

that datasets with different attribute sets have different access patterns (attributes

that are considered for data partitioning are dataset project and data format), thus

each set of attributes has its own ANN to process datasets.

Evaluation of this approach is done with comparison to the static and linear

prediction methods, and shows a significant advantage of neural networks at picking

up the trend of dataset accesses in the future, i.e., predicting if the popularity of a

certain dataset goes up, down or stays the same from one week to the next.

The efficiency of the data distribution with the usage of the predicted popularity

was evaluated with the help of a simplified grid simulator. Preliminary results of

the simulation of workload based on two sample weeks (to perform data processing

at the set of computing centers that represents one cloud, in terms of the ATLAS

Computing Model) showed that extra replica(s) of datasets predicted to be popular

reduced the job waiting time for the data processing and decreased the number of

jobs waiting in the queues for job slots. Thus, the simulation efforts demonstrated

that the data redistribution following the prediction leads to a better usage of the

available resources.

2.1.2 CMS Popularity Prediction for Dynamic Data Placement

The CMS experiment is another experiment at the LHC (see Section 1.2). De-

spite using the same WLCG infrastructure, CMS’ management systems and workflow
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organization is different from what the ATLAS experiment provides. Here we describe

a new approach that was proposed by [15,16] for the CMS data management system

(as a part of a project that aims to build adaptive data-driven models of CMS Data

Management and Workload Management activities).

CMS data management is organized into the following systems: PhEDEx

(Physics Experiment Data Export - a data placement system), DBS (Dataset Book-

keeping System - provides the means to define, discover and use CMS event data),

Dashboard (global monitoring system which keeps tracks of user jobs), SiteDB

(database for site pledges, deployed resources, and manpower onsite), PopDB

(CMS datasets popularity database), DDM (Dynamic Data Management system)

and others.

The goal of this approach is to model and predict CMS dataset popularity

by using machine learning (ML) algorithms based on historical usage of datasets

via various available meta-data information, and to use these predictions for the

Dynamic Data Management system (thus providing the foundation of data-driven

approach for the CMS computing infrastructure). As the result, the DCAFPilot

(Data and Computing Analysis Framework Pilot) framework was developed. This

framework collects (and transform) structured and semi-structured information about

data description and data usage extracted from CMS data-services (with the focus on

particular type of user based data). It uses ML classifiers such as i) RandomForest,

LinearSVC, SGDClassifier from scikit-learn (machine learning library for the Python

programming language), ii) Vowpal Wabbit (online machine learning system library

and program developed originally at Yahoo! Research, and currently maintained

by Microsoft Research), and iii) xgboost (eXtreme Gradient Boosting package in R

programming language, that includes efficient linear model solver and tree learning

algorithm) to make a prediction of the data popularity (i.e., to predict decline in
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popularity of certain datasets). Predicted values are used to allocate replicas of

popular datasets at various computing nodes by the Dynamic Data Management

system (to improve resource allocation and to reduce redundant activity), that is

later compared with the actual data access patterns.

Preliminary results of this framework showed its high efficiency with the pre-

diction of the data popularity and its utilization in data placement process, where the

number of data replicas kept on Grid nodes is related to their popularity [17] (e.g.,

for a particular data type the true positive rate (i.e., sensitivity) was 0.97± 0.05, and

true negative rate (i.e., specificity) was 0.99± 0.02).

2.1.3 Data Placement Optimization for the LHCb experiment

Optimization of the data storage utilization is one of the crucial tasks for the

LHCb (see Section 1.2) experiment as well. [18] proposes an approach to use machine

learning algorithms to predict future data popularity and its usage intensity; it helps

in selecting datasets that should remain on disk storage (fast access, but the space

is limited), and to reorganize data distribution (e.g., decrease or increase the number

of data replicas). The data usage history and dataset metadata (such as the origin,

detector configuration, files type, dataset type, event type, creation week, first usage

week, last usage week, size for one replica, etc.) are used as an input to the machine

learning algorithms. The provided data usage history in LHCb is relatively sparse,

thus such approaches as artificial neural networks are not applicable as they would

result in over-fitting.

The above approach uses three modules in order to pick the data that will be

popular in future, to predict the level of its popularity (i.e., data usage intensity),

and to adjust its number of replicas at the chosen storage locations (data replicas
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regulation for the most popular datasets would reduce the average access time for

that data):

• The Data Popularity Estimator module uses a classifier (a supervised machine

learning algorithm Gradient Boosting Classifier) to predict data future popu-

larity. The data popularity itself represents the probability for the dataset to

be useful in future, thus unpopular datasets are removed from disk storage.

• The Data Intensity Predictor module uses non-parametric models to predict the

dataset future usage intensities. Time series analysis and regression algorithms

(Nadaraya-Watson kernel smoothing and rolling mean values) are used to make

these predictions. Input information for this module is the dataset usage history.

• The Data Placement Optimizer module uses a loss-function that considers the

cost of storage of the data on disk, the cost of storage of the data on tape,

the cost of mistakes (when a dataset was removed from disk, but then is used).

As the result the loss function (its optimization process) helps to find the data

popularity threshold value and the optimal number of replicas for a dataset

with predicted usage intensity (e.g., increase of the number of replicas for the

popular data will reduce their average access time).

As the outcome of the above method, the distribution of data on disk storage

was reorganized such that it released unpopular data and increased the number of

popular data, thereby reducing the average access time. As comparison, the Last

Recently Used (LRU) algorithm showed slightly reduced performance in space savings,

but had a significantly higher number of wrongful removals (number of datasets which

are proposed to be removed from disk storage, but are then used again in future).
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2.2 Workload Management

2.2.1 General Concepts

The Workload Management System (WMS) is responsible for distributing and

managing computational tasks across distributed computing infrastructure (repre-

sented by computing elements (CE) and storage elements (SE)) in order to provide

optimal processing performance for defined requirements and to maintain the load

balance across the entire infrastructure. The management of a workload is deemed

“intelligent” when it can self-identify necessary processing needs and security pro-

tocols; determine the capacity at which it can best perform its given tasks; and is

fully integrated into business services in such a way that its processing work does not

interfere with other organizational computing efforts.

Matteo et al. [19] provide a comprehensive analysis of Pilot-Job based systems,

which are the quintessence of WMSs. There are five representative features of Pilot-

Job systems:

• Task-level distribution and parallelism on multiple resources;

• Master worker/node to coordinate the processing and execution of the compu-

tational tasks (i.e., jobs);

• Multi-tenancy, that defines the way resources are used (e.g., queues organization

for efficient and fair resource sharing, like Job Schedulers);

• Multi-level scheduling strategy to increase the granularity level of control (e.g.,

a global scheduling decision results from a set of local scheduling decisions);

• Resource placeholders that decouple the acquisition of compute resources from

their use to execute the tasks of an application.

In general, Pilot-Job abstraction generalizes the reoccurring concept of utilizing

a placeholder job (which instance is commonly referred to as Pilot-Job or pilot) as a
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container for a set of compute tasks [20]. Pilot-Job systems are characterized by the

following concepts:

• using late binding to utilize resources dynamically (i.e., the workload is dis-

tributed onto resources only when they are effectively available); and

• decoupling the workload specification from the management of its execution

(i.e., scheduling of workloads on selected resources).

2.2.2 Pilot-Data Abstraction

Pilot-Data (PD) represents an extension of the Pilot-Job abstraction for sup-

porting the management of data in conjunction with compute tasks (for data-intensive

applications) [21]. Thus PD separates logical compute and data from physical resource

providing efficient placements of compute/data in a way it would not be dependent

on the underlying infrastructure. The following capabilities of PD are emphasised by

André et al. [21] as key characteristics:

• Dynamic resource management with a unified access layer to different hetero-

geneous data computing infrastructures;

• Distributed namespace for data;

• Higher-level abstraction for compute/data coupling;

• Compute/data scheduling (i.e., data-aware workload management service).

The concept of Pilot-Data was implemented as an extension in BigJob [22].

BigJob is a Pilot-Job system which implementation is based on SAGA (SAGA is

a programming system that provides a high-level API for accessing distributed re-

sources. It provides the building blocks to develop the abstractions and functionalities

to support the characteristics required by distributed applications whether directly,

or as tools in interoperable and extensible fashion). BigJob natively supports parallel
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applications (e.g., based on MPI, Message Passing Interface) and works independent

of the underlying Grid infrastructure across different heterogeneous backend [22].

The PD abstraction raises an essential question that every WMS should be able

to answer: whether to assign and move computational tasks to where data is located,

or to move data to where computational tasks can be executed. Thus, “intelligence” in

WMSs relates to the efficient answer of the above PD question. However, WMSs could

benefit from additional intelligence (in the form of machine learning techniques) for

example by being able to monitor user behavior in order to make scheduling decision;

this is what our work is focused on.

2.3 Summary

The approaches reviewed in this chapter significantly extended the capabilities

of data- and workload-management systems of scientific computing platforms. Pro-

posed solutions for the data popularity prediction showed a demand for parameters

that can describe future data behavior, and that can be represented as trustful metrics

for data distribution. The diversity of the investigated methods (ANN, ML classifiers,

regression analysis, etc.) allows for the adjustment of the input parameters in order

to enhance the quality of the predictions.

WMSs rely on rational data distribution, and provide appropriate metrics (such

as waiting time, processing time, brokerage weights, etc.) to the data management

system that help in reducing the operational burden of the WMS workflow. Proposed

abstractions for Pilot-Job and Pilot-Data approaches describe the general architecture

of a WMS with an emphasis on intelligent data- and computing-resource utilization.

The lack of user-centric approaches (that could be able to resolve the problem of

finding reasons for data popularity, and to utilize the obtained information in building
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relational models) opens possibilities for further improvements in data management

for storage and processing resource utilization.
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CHAPTER 3

METHODOLOGY

Research objectives revolve around the discovery of (hidden) relationships be-

tween objects in distributed computing systems; thus, methods and techniques were

taken from data mining field with an emphasis on machine learning. The goal of our

research is to build user model that would reflect user interests and preferences in

the usage of data. It includes the investigation of such processes as data extraction

and filtering, model creation based on selected and transformed data, management

of models (comparison, grouping, etc.), and prediction (with estimation of the corre-

sponding weights) of model behavior.

The user model is then built based on personalization techniques as data min-

ing processes. An essential component of the proposed approach is a recommender

system (information filtering) with its implementation as collaborative and content-

based filtering. Methods used in recommender system approaches represent predictive

analytics that can provide estimated ratings for users in particular data and thus can

reveal corresponding user interests and their significance in real time. The rating

subsystem assists in collecting explicit user feedback to adjust the quality of the esti-

mated data popularity (i.e., comprehensive data rating) and data significance metrics

(i.e., objects’ weights).

The methods and techniques applied in this research embrace different aspects

of reaching the goals by considering not just conditional parameters of the context,

but also by focusing on the content of objects and their projections (compared to

others). Thus the content of data (i.e., the data description) is represented by a set
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of attributes (i.e., data features) that are used to form user profiles to describe user

preferences (and to justify the interest in a particular data). Such information would

also be considered in grouping data based on representative attributes (i.e., attributes

that characterize data at the highest extent). Another class of the applied methods

is focused on object behavior within objects; e.g., the activity of a particular user

(i.e., timeline of the data usage) is compared to activities of other users in order to

discover usage patterns. Such methods do not need the content of data but rather

the history of data access by a group of users.

The quality of the personalization process depends on comprehensive data anal-

ysis that reveals the reasons of user interest in a particular data and defines the

significance of that data to the user (compared to other users and data).

The rest of this chapter will provide the background information needed i) to

understand various technologies used to analyse PanDA data, and ii) to be able design

our system called Data Watcher. More precisely, the following related techniques

will be reviewed: data mining and recommender system basics, as encompassed by

collaborative and content-based filtering approaches.

3.1 Data Mining

Data mining, in general, is considered as the analysis step of the Knowledge

Discovery in Databases (KDD) process, and is defined as the application of specific

algorithms for extracting patterns from data. Figure 3.1 provides a high-level de-

scription of the main steps in the KDD process [23].

Data mining functionality is used to specify the kind of patterns to be found in

data mining tasks. In general, data mining tasks can be classified into two categories:

descriptive and predictive. Descriptive mining tasks are aimed at characterizing the

general properties of the data in the database. Predictive mining tasks on the other
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hand perform inference on the current data in order to make predictions [24]. Our

focus is on both descriptive and predictive mining tasks. Thus the goal of our mining

process is to capture, model, and analyze the behavioral patterns and profiles of users

interacting with data.

Figure 3.1: High-level overview of the KDD process

As Figure 3.1 shows, the three main cumulative steps of KDD are Data Prepro-

cessing, Data Analysis, and Result Interpretation. The background on data analysis

techniques that are employed is presented in the remainder of this chapter while the

two other steps will be presented in Chapter 4.

In order to shed more lights on the purpose of data analysis techniques, we

provide the following highlights in the context of our own research. The initial analysis

described in Chapter 4 is focused on the discovery of associations and correlations

within PanDA data. More precisely, the goal of that analysis is to detect frequently

appearing patterns, i.e.,
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• frequent itemsets (sets of items that frequently appear together in a transac-

tional data set);

• frequent sequential patterns (e.g., frequently occurring subsequences, ordered

subsequences of itemsets that appear in certain sequences of transactions);

• generalized frequent structured patterns (where data substructure can refer to

different structural forms, such as graphs, trees, or lattices, which may be com-

bined with itemsets or subsequences).

3.1.1 Association Analysis

The task of association analysis is to discover association rules by mining fre-

quent itemsets. In general, the goal of association analysis is to discover hidden

relationships in large data sets; we will denote the complete data set by I (set of

items). Thus our objective is to identify item pairs that co-occur more frequently

than a value predetermined by the analyst.

A rule is defined as an implication of the form X ⇒ Y (a.k.a., the if-then

rule), where X, Y ⊆ I and X ∩ Y = ∅. Association rules are rules, which surpass

analyst-specified minimum support and minimum confidence thresholds. The support

supp(X) over the set of items X determines how often the rule is applicable to a given

data set, and is defined as the fraction of transactions (groups of elements from I)

that contain the defined set of items: supp(X) = |{tm | X ⊆ tm, tm ∈ T}|
|T| ; where T is a

set of subsets from I. The confidence of a rule X ⇒ Y determines how frequently

items in Y appear in transactions that contain X, i.e., conf(X ⇒ Y ) = supp(X∪Y )
supp(X)

.

Therefore X ⇒ Y will be used as an association rule if it satisfies analyst-predefined

minimum support (σ) and minimum confidence (δ) limits:

42



supp(X ∪ Y ) ≥ σ

conf(X ⇒ Y ) ≥ δ

(3.1)

Another measure for quantifying association rules is lift :

lift(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)supp(Y )
(3.2)

and can be interpreted as the deviation of the support of the whole rule from the

support expected under independence of both sides of the rule. Greater lift values

(� 1) indicate stronger associations.

3.1.1.1 Association Rule Mining Algorithms

A common strategy for association rule mining algorithms is to decompose the

problem into two major sub-tasks [25]:

• Frequent Itemset Generation, where the objective is to find all the sets of items

that satisfy the minimum support threshold (these sets are then called frequent

itemsets);

• Rule Generation, where the objective is to extract all the high-confidence rules

from the frequent itemset generation step (these rules are then referred to as

strong rules).

Frequent Itemset Generation is based on the transitive property of itemsets

that every sub-itemset of a frequent itemset is also frequent, i.e., if X, Y ⊆ I and

X ⊆ Y and Y is a frequent itemset then X is frequent itemset as well; this implies

that supp(X) ≥ supp(Y ) (anti-monotone property of support). This property helps

to eliminate the need to evaluate supersets that contain non-frequent itemsets. A

frequent itemset is called a maximal itemset if it does not have a frequent superset.
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Most associative rule mining algorithms are based on the Apriori [26] algorithm.

Apriori is an iterative algorithm based on the above described properties and uses

so-called prior knowledge discovered at each iteration. It operates by constructing

candidate k-itemsets, filtering these candidates based on frequency, and using the

results to explore and construct (k+1)-itemsets (supersets over the previous candidate

k-itemsets). These steps repeat until there are no more new candidates.

3.1.2 Sequential Pattern Mining

The sequential pattern mining technique encompasses the mining of frequently

occurring patterns ordered by time (i.e., ordered events). In our case these are the

so called paths that users follow (data-sequences). The problem is to find all or the

longest (with the most number of items and/or with the most number of transac-

tions, i.e., internal groupings of items) sequential patterns within an analyst-specified

minimum support, where the support of a sequential pattern relates to the number

of data-sequences that contain the pattern (patterns are subsequences).

Association rules indicate intra-transaction relationships, while sequential pat-

terns represent the correlation between transactions. They help to reduce the poten-

tially large number of sequences into only the most interesting sequential patterns.

To meet different user requirements, it is important to use a minimum support which

prunes sequential patterns of no interest.

Sequential pattern mining algorithms are generally categorized into: Apriori-

like algorithms, BFS (Breadth First Search)-based algorithms (e.g., GSP, MFS), DFS

(Depth First Search)-based algorithms (e.g., SPADE, FreeSpan, PrefixSpan, SPAM),

closed sequential pattern based algorithms (e.g., CloSpan, BIDE), and incremental-

based algorithms (e.g., SuffixTree, FASTUP, ISM, ISE, GSP+, MFS+, IncSP, etc.).
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For a more thorough taxonomy on sequential pattern mining algorithms, the reader

is referred to [27].

In our case, performance (i.e., how long it takes to identify patterns) was not

of utmost importance as our goal was to determine if there are significant patterns

in our data. SPADE (Sequential PAttern Discovery using Equivalence classes) [28]

was identified to best suit our needs as it lends itself for easy modifications (to satisfy

our custom criteria). SPADE shows linear scalability with respect to the number of

sequences. SPADE is based on lattice search techniques and provides the possibility

to impose constraints on the mined sequences. The key features of SPADE include the

layout of the database in a vertical id-list database format (the rows of the database

consist of object-timestamped pairs associated with an event) with the search space

decomposed into sub-lattices which are processed independently in main memory

thus enabling the database to be scanned a maximum of only three times (sometimes

just once on some pre-processed data). There are two search strategies used to find

sequences in the lattices:

• BFS: the lattice of equivalence classes is explored in a bottom-up manner and

all child classes at each level are processed before moving to the next.

• DFS: all equivalence classes for each path are processed before moving to the

next path.

Using the vertical id-list database format, all frequent 1-sequences (initial se-

quences with only one element) can be computed over a single database scan. Com-

puting the frequent 2-sequences can be achieved in one of the following ways; by

pre-processing and collecting all 2-sequences above a specified lower bound, or by

performing a vertical to horizontal transformation dynamically. Once this has been

completed, the process continues by decomposing the 2-sequences into prefix-based
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parent equivalence classes followed by the enumeration of all other frequent sequences

via either BFS or DFS within each equivalence class. The enumeration process is the

union or join of a set of sequences or items whose counts are then calculated by per-

forming an intersection of the id-lists of the elements that comprise the newly formed

sequence. By proceeding in this manner it is only necessary to use the first two sub-

sequences lexicographically at the last level to compute the support of a sequence at

a given level [28].

3.2 Data Mining for Personalization

Personalization is the process of making a system tailored to the needs and

preferences of individuals. As the result of this process a system creates and maintains

user profiles. User profiles are represented by a set of attributes categorized into:

factual (that describe the user itself), and transactional/behavioral (that describe

user actions). There are two different ways of creating user profiles that depend on

who controls the creation: i) manual, i.e., customization, when user preferences are set

by the user or operator, and ii) automatic, where information about user preferences is

extracted automatically by the system (with minimal explicit control by the user). In

this work the term personalization will be used more restrictively, i.e., only meaning

automatic personalization.

User profiles should follow certain criteria and should be evaluated in terms of

three different metrics:

• popularity - evaluates the significance of the attributes in the profile;

• dissimilarity - evaluates the distinctness of attributes in the defined profile;

• parsimony - evaluates the succinctness of the profiles described by a set of

attributes.
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Data mining is then the automated analysis of massive data sets, knowledge

discovery from data (extraction of interesting, non-trivial, implicit, previously un-

known and potentially useful patterns). Data mining techniques can be employed to

discover a set of rules describing users’ behavior, likewise these types of techniques

can be applied for user profile management.

In our context, the goal of applied data mining techniques is to capture, model,

and analyze the behavioral patterns and profiles of user interactions. The overall

process of personalization based on data mining consists of three phases: i) data

preparation and transformation, ii) pattern discovery, and iii) recommendation.

For data mining to function, we need to be able to determine how well objects

relate to each other, i.e., how similar they are or what the distance between them is.

This is paramount in order to be able to group objects. In the next sub-section we

will recap some of the similarity and distance metrics that are usually employed.

3.2.1 Similarity and Distances

Similarity is the measure that shows how “close” to each other two objects are;

the “closer” objects are to each other the larger the value of the similarity should be.

Dissimilarity is the opposite to the similarity, it shows to what extent two objects

are different (i.e., how “far” from each other two objects are). Distance metrics are

dissimilarity measures that are never negative, and zero only if two objects are the

same (i.e., d(x, y) = 0, if x = y).

1) Euclidean distance; this distance is by far the most well used distance measure

in engineering and science (also sometimes referred to as the L2-norm).

d(x, y) = |x− y| =

√√√√ n∑
i=1

|xi − yi|2 (3.3)

47



2) Pearson’s correlation coefficient is a statistical measure of the strength of a

linear relationship between paired data (covariance/correlation coefficients can only

capture linear dependency between the variables);

pcc(x, y) =
cov(x, y)

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.4)

3) The cosine similarity between two vectors (or two documents in a corre-

sponding vector space) is a measure that calculates the cosine of the angle between

that vectors;

cs(X, Y ) = cos(θ) =
X · Y
‖X‖‖Y ‖

=

∑n
i=1 xi · yi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

(3.5)

4) The Jaccard index, also known as the Jaccard similarity coefficient, is a

statistic used for comparing the similarity and diversity of sample sets.

js(X, Y ) =
|X ∩ Y |
|X ∪ Y |

(3.6)

The Jaccard coefficient measures similarity between sample sets, and is defined as the

size of the intersection divided by the size of the union of the sample sets. Thus, this

index only uses presence-absence data.

3.2.2 Classification

The process of mapping objects to a certain class or set of classes is called

classification. Supervised classification maps objects to a set of classes that are known

in advance. Contrary, unsupervised classification maps objects to classes that are
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formed during the classification process, these classes are not known in advance; the

term clustering is usually used to refer to such process. Most popular classifiers are

Nearest Neighbors, Decision Trees, Rule-based, Bayesian, Artificial Neural Networks.

3.2.3 Clustering

Clustering is the process of finding structure in a set of unlabeled data, and thus

it is considered unsupervised learning. Thus, a cluster is a collection/group of objects

which are “similar”, but are “dissimilar” to the objects belonging to other clusters.

The similarity measure used depends on the type of data. If similarity criterion is

distance (distance-based clustering), then two or more objects belong to the same

cluster if they are “close” according to a given distance (e.g., euclidean distance). If

objects are grouped according to their fit to descriptive concepts (not according to

simple similarity measures) then we refer to the process as conceptual clustering. In

this work we consider only distance-based clustering.

Clustering algorithms can be categorized based on how the underlying models

operate; they can be divided into three categories:

• Partitioning methods (or centroid clustering), create a predefined number of

partitions (clusters) over a given data set:

– Exclusive clustering: data are grouped in an exclusive way, so that if a

certain entity already belongs to a cluster then it can not be included in

another cluster (e.g., k-means clustering, Lloyd’s algorithm);

– Overlapping clustering: uses fuzzy sets to cluster data, so that each point

may belong to two or more clusters with different degrees of membership,

thus data will be associated with an appropriate membership value (e.g.,

Fuzzy C-means clustering);
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• Hierarchical methods create a hierarchy of clusters; they can be:

– Divisive, i.e., top-down approach; starts from the whole data set of items

as a single cluster and recursively partition this data;

– Agglomerative, i.e., bottom-up approach; starts from individual items as

clusters and iteratively aggregates smaller clusters;

• Model-based methods that use a mathematical model to fit data points into

clusters (e.g., a probability distribution, thus clusters are defined based on how

likely the objects included belong to the same distribution).

A good cluster model creates high-quality clusters with high intra-cluster sim-

ilarity and low inter-cluster similarity. The quality of the results however depends

heavily on i) the nature of the data; ii) the similarity measure used by the method;

iii) the actual implementation of the method; and iv) user supplied parameters (e.g.,

the number of clusters selected).

3.3 Recommender Systems Background

A recommender system uses a set of machine learning/data mining processes,

that aim to guide users in a personalized way to interesting or useful items in a large

space of possible options [29]. Frequently cited examples are Amazon’s personal prod-

uct recommendations or Netflix’s personal movie recommendations, each of which is

based on the history of the users behavior, the behavior of “similar” users, and prod-

uct similarities. Users and items are two basic classes of objects that recommender

systems deal with. Each object is represented as a set of attributes (i.e., features),

where an attribute is defined as a property or characteristic of an object [30]. Recom-

mender systems predict the user’s rating (likeliness score) for certain items, and/or

provide a set of items that could be interesting to the user. Prediction thus can
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be expressed as a numerical value, representing the likeliness of the particular user’s

interest in an item that the user has never chosen before. Similarly, recommenda-

tion can then be defined as a list of (certain number of) items that have the highest

predictions of user interest (i.e., top-N recommendations). In general, recommender

systems help their users to decide on appropriate items and ease the task of selecting

the most suiting items from a possibly humongous collection.

In general, there are two substantially different sets of algorithms employed

in recommender systems: i) collaborative filtering algorithms, and ii) content-based

filtering algorithms. A recommender system can employ algorithms from either or

both of these sets. The choice of the actual technique deployed will heavily depend

on the domain where the system will be used. Notwithstanding the type of the

algorithm used, recommender systems rely on data collected from all users. Internally,

recommender systems keep their data in a set of user-item pairs that form an utility

matrix, “giving for each user-item pair, a value that represents what is known about

the degree of preference of that user for that item” [31].

The accuracy of a recommender system depends on relevant feedback forming

statistically significant user preferences; such feedback can be either explicit or im-

plicit. Explicit feedback provides a more clear understanding of user preferences, as

users will be explicitly asked to rate items; thus such feedback can be represented

by ratings and reviews. Implicit feedback, on the other hand, is feedback that is

inferred from users’ interactions and activities and is computed into a rating by an

algorithm. Without loosing generality, we will restrict the representation of feedbacks

to “ratings” (i.e., no textual reviews as feedback so as not to have to focus on natural

language processing). Ratings thus can be classified into following classes: numerical

or scalar, binary, and unary. A numerical rating is represented by a scalar from a

discrete or a continuous rating scale with a limited range (e.g., discrete number of

51



“stars” for products on Amazon). A binary rating is expressed on two states of user

preferences: like or dislike. An unary rating is one possible rating value that mostly

shows only positive relation between user and item (i.e., it does not capture user’s

indifference or dislike).

3.3.1 Collaborative Filtering

Collaborative filtering (CF) provides recommendations and predictions based

on behavior and/or ratings of other users in the system. As the basic approach, it

calculates similarity metrics between users; and thus it works on the premise that

similar users will behave similarly (i.e., most likely will give similar ratings for the

same items). In other words, CF algorithms provide recommendations based on users

previous preferences and the opinions of other, like-minded users.

CF comes in two major flavors: memory-based and model-based. Memory-

based approaches keep all data to be processed in the memory and perform calcu-

lations at the time of generating recommendations. Model-based approaches per-

form the computationally expensive learning phase offline (i.e., learn a predictive

model) [29]. Memory-based approaches can then be further subdivided into user-

based (relies on groups of similar users) and item-based (similar items) categories,

both of which use the entire utility matrix to make predictions/recommendations. In

the user-based approach, the system forms user groups based on a similarity measure

between their ratings and provides recommendations based on the items liked by the

k-nearest neighbors (the k most like-minded users). In the item-based approach, for

each item, the system generates a set of similar items (items with the highest sim-

ilarity measure, i.e., top-k similar items) and then considers other users ratings to

these items to provide the corresponding recommendations. The most widely used
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similarity measures are Pearson correlation coefficient, cosine similarity, and Jaccard

index (a.k.a., Jaccard similarity coefficient).

The model-based approach provides item recommendations by first developing

a model based on user preferences (by using data mining techniques), after that the

system uses learning algorithms to look for habits according to the previously estab-

lished model. Algorithms in this category take a probabilistic approach and envision

the collaborative filtering process as computing the expected value of a user predic-

tion, given users ratings on other items. The model building process is performed by

machine learning algorithms such as Bayesian clustering, Bayesian network learning,

and rule-based approaches.

Limitations

CF system should have information about data usage to be able to provide

recommendations, thus it is not effective for new data, as such data cannot be rec-

ommended to any user because system cannot classify that data (if the data is not

manually classified).

If the chosen approach is memory-based and modeling phase is performed in

real-time then the system faces scalability limitations. As the numbers of users and

items increase, this approach may lead to unacceptable latency for calculation of rec-

ommendations or creation of dynamic content during user interaction [32]. Workload

sharing and data partitioning approaches can be used to scale such systems but they

require the availability of vast processing capabilities (e.g., Hadoop 14 partitioning).

Another limitation is about the density of each user record that decreases with

the increase number of items in the system; as the number of items increases, the

likelihood of a significant overlap of used and/or rated items among pairs decreases

resulting in less reliable computed correlations.

14http://hadoop.apache.org
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3.3.2 Content-based Filtering

Content-based filtering (CBF) uses the content of items (set of features) that

were rated by the user to reveal user preferences. It thus forms the user profile

which is a structured representation of user interests and an essential component to

estimate rate of interest for new items. In other words, the user profile represents the

content descriptions of items that were used by user in the past. Items that are close

(or the closest) to the user profile are considered as possibly interesting to the user

(i.e., content-based filtering uses item features to determine similarity between rated

and unrated items) and provided to the user as a recommendation. The coefficient of

similarity between the user profile and the chosen item is considered as a likeliness-

measure of user interest in a certain item.

Contrary to CF, CBF creates the user profiles based only on ratings that are

provided by the particular user, without consideration of the ratings provided by

other users. Knowing something about the content makes it possible to provide a

rating estimate on new items (that were not rated by other users).

It is important to have a significant number of features of different types when

describing items. There are several types of sources that can be used to discover

features: i) the item itself (e.g., features that could be encoded into the items name,

system attributes like time creation and item owner, etc.); ii) item description (e.g.,

metadata from an information system); iii) users (e.g., folksonomy, where users can

assign some keywords or tags that are associated with items).

One general approach in item representation is the keyword-based Vector Space

Model (VSM) with TF-IDF (Term Frequency - Inverse Document Frequency) weight-

ing. Originally this approach was introduced as a text document representation (set

of documents D = {d1, d2, . . . , dM}) by a set of terms (T = {t1, t2, . . . , tN}). Thus

document dm is represented by a N -dimensional vector: dm = {w1,m, w2,m, . . . , wN,m},
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where wn,m is the weight for term tn in the mth document [30]. The term weighting

scheme is TF-IDF, which calculates the frequency of each term in the document and

relates it to the frequency of the same term in all of the documents, thus representing

how relevant each and every term is to the current document.

TFIDF (tn, dm) = TF (tn, dm)× log (
|D|
|D(tn)|

) (3.7)

where D(tn) is the set of documents that contain term tn at least once.

TF (tn, dm) =
freq(tn, dm)

maxz(freq(tz, dm))
(3.8)

where freq(tn, dm) is the frequency of term tn for document dm and maxz(freq) is

the maximum frequency over the frequencies freq(tz, dm) of all terms tz that are in

document dm. To bring all weights into the interval [0, 1] the following normalization

is applied:

wn,m =
TFIDF (tn, dm)√∑|T |
z=1 TFIDF

2(tz, dm)
(3.9)

Estimation of rate of interest for new items is based on calculating a similarity

measure to determine the closeness between items. The most widely used method is

cosine similarity (see the previous section for possible methods to calculate similarity).

The problem of learning user profiles can be also described as a binary catego-

rization task, where each new item can be classified as either interesting to the user

or not (C = {c+, c−}). The most popular learning algorithms in content-based filter-

ing are decision tree based algorithms, nearest neighbor based algorithms, Rocchio’s

algorithm (based on relevance feedback), linear classifier based algorithms, and Naive

Bayes classifier based algorithms (probabilistic methods).
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Bayesian classifiers within a probabilistic framework can be used for solving

classification problems; they utilize the definition of conditional probability and Bayes

theorem. The Naive Bayes classifier is defined as:

P (c | i) =
P (c)P (i | c)

P (i)
(3.10)

where P (c | i) is a posteriori probability of item i belonging to class c, P (c) is a

probability of class c (a priori probability), P (i | c) is a probability of observing

item i given class c, and P (i) is the probability of item i. To classify the item, the

class with the highest probability is chosen:

c = argmaxcj
P (cj)P (i | cj)

P (i)
(3.11)

Limitations

CBF also has some disadvantages. Its performance is limited by the number of

features that describe items. In CBF, it is not possible to discover new items that

do not share features with any of the items in the user profile. Furthermore, the

system should have a sufficiently high number of ratings from the user to provide

accurate recommendations (i.e., it is not a good approach for new users). In general,

CBF suffers from the problems of limited content analysis (i.e., the content of an item

might be insufficient to determine its quality) and over-specialization.

3.3.3 Evaluation

The effectiveness (i.e., the quality) of a recommender system can be evaluated

by calculating corresponding coefficients that show the rate of True Positive and/or
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Negative recommendations towards False Positive and/or Negative (i.e., compare

recommendations that were actually followed with that were ignored).

• True Positives (TP) - the number of instances classified as belonging to a defined

class that indeed belong to that class;

• True Negatives (TN) - the number of instances classified as not belonging to a

defined class that indeed do not belong to that class;

• False Positives (FP) - the number of instances classified as belonging to a defined

class but which in reality do not belong to that class;

• False Negatives (FN) - number of instances not classified as belonging to a

defined class but which in reality do belong to that class.

Precision is the fraction of retrieved instances that are relevant.

precision =
TP

TP + FP
(3.12)

Recall is the fraction of relevant instances that are retrieved.

recall =
TP

TP + FN
(3.13)

Using a probabilistic view, precision may be defined as the probability that

an object is relevant given that it is returned by the system, while the recall is the

probability that a relevant object is returned [33]. Using precision and recall, the

frequently used, so-called F1-score is defined as:

F1 = 2 · precision · recall
precision+ recall

=
2TP

2TP + FN + FP
(3.14)
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According to [34] the Matthews Correlation (MC) is also well suited as a metric.

MC is based on markedness and informedness.

Markedness combines precision and inverse precision into a single measure and

expresses how marked the classifications of a recommender are in comparison to

chance:

markedness = precision+ inversePrecision− 1 =

=
TP

TP + FP
+

TN

TN + FN
− 1

(3.15)

Informedness combines recall and inverse recall into a single measure and ex-

presses how informed the classifications of a recommender are in comparison to

chance:

informedness = recall + inverseRecall − 1 =

=
TP

TP + FN
+

TN

TN + FP
− 1

(3.16)

Both markedness and informedness return values in the range [−1, 1]. The MC

then combines the markedness and informedness measures into a single metric by

calculating their geometric mean (the ± notation in the formula signifies that the

sign depend on the signs of the markedness and informedness scores):

MC =
TP · TN + FP · FN√

(TP + FN)(FP + TN)(TP + FP )(FN + TN)
=

= ±
√
markedness · informedness

(3.17)

3.4 Summary

In this chapter we have learned about techniques and approaches that fit our

model in revealing relationships between objects or ordered sets of objects, techniques
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that provide the description of how elements are correlated to each other based on spe-

cific characteristics, and how this information can be used in recommender systems.

Our focus will remain on recommender systems, as a machine learning technique in

the oncoming investigation of user preferences and interests (based on predictions of

corresponding ratings).
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CHAPTER 4

THE VIABILITY OF A RECOMMENDER SYSTEM

In this chapter we will be investigating whether or not data coming from PanDA

has hidden patterns in it that could indicate similarities between users and thus

indicate that a recommender system could be to the benefit of users. Thus, given the

per user data usage of datasets (i.e., items) in PanDA, our task is to find correlations

among users and items. We represent data in a transactional form, i.e., each sequence

of transactions is associated with a user, and represents the sequence of itemsets that

the particular user used during the transaction time window.

The first step to reach our goal is to find associations within items. Such

associations will state that there is a relation between two items if the usage of the first

item tends to indicate the usage of the second item (regardless of relations between

users). Having associated items will provide some indication that there are frequent

sequences of itemsets. Establishing then the presence of sequential patterns (relying

on these associations found) will provide confirmation that relationships between user

data usages may exist. More precisely, sequential patterns for which the support is

greater than an analyst-specified minimum support will be considered frequent and

thus show that there are associations between users’ data usages.

Strong correlations between data usages will provide indication that the future

employment of data mining techniques for classifying user preferences and to predict

user’s future activities (data usage) will likely lead to a usable recommender system

for PanDA users.
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The following analysis requires an interaction process with users that have sub-

mitted analysis jobs to PanDA. Based on user activity at PanDA (time when jobs

were submitted, how many jobs were finished successfully, what type of data were

used as input, etc.) users are provided with the list of items with corresponding

ratings (indicating the possibility that items might be in the user’s interest area).

The result of this investigation should be an evidence (or lack of evidence) of the

existence of correlation between user’s data needs. Since for this investigation we do

not need to use live data, information from “archive” tables of the PanDA database

was used. To be able to cover different states of users interests (i.e., increase/decrease

of interest in certain type of data) it would help to reduce or eliminate the influence

of other intelligent systems. Fortunately, we were able to identify PanDA data for the

entire year of 2011 when certain intelligent PanDA subsystems (such as PD2P) were

not in full production yet. As it was mentioned earlier, PanDA collects information

about users, their jobs (as records with specifications as parameters), and data that

is used as the input during the processing of these jobs. The corresponding historical

year-2011 data contains about 220M records, with 1, 597 relevant users (out of 1, 814

in total) and 220, 867 relevant items (out of 380, 111 in total). (Relevant users are

defined as users who had analysis jobs that terminated successfully; relevant items

have a similar definition related to success and parsability.)

Figures 4.1a and 4.1b show how many items were used by each user (indexed

by consecutive user ids) and how many users had requested certain items (indexed

by a consecutive item id) accordingly. The data shows that:

• 95.6% (1, 526 users) of all relevant users had requested at least two distinct

items;

• 68.9% of relevant users (1, 100 users) had requested more than 10% of the av-

erage number of requested items (Figure 4.1a, blue color);
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• 47.6% of relevant items (105, 097 items) were requested by at least two distinct

users (Figure 4.1b, blue color).

(a) Number of items per user (b) Number of users per item

Figure 4.1: Data usage histograms for users and items

In this study we ignore items that have only been used by one user; however,

in a future real recommender system such items may be considered if they show

similarities with other, more popular, items.

The average number of (distinct) items used per user is 500 with a standard

deviation of 1, 758. This large standard deviation indicates strong skew; 39 users

heavily exceed the average (by more than a standard deviation). As users with such

large number of items used would overwhelm with their recommendations, we choose

to remove them from this analysis leaving us with 1, 558 users. (Indeed keeping these

users in our analysis would show a much larger number of frequent data sets but may

be misleading as to how useful such recommendations would be. Furthermore, our

analysis of these users indicates that many of them either represented artificial job

requesting agents or used each item only once. In general, data of such users would

introduce too much noise into the analysis.)
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4.1 Data Modeling and Representation

One of the sub-goals of a data mining application is to create a set of data

models, that can be used as input to a variety machine learning algorithms for pattern

discovery. In our case such data models would represent the interests and activities

of all users thus defining profiles. The output of our data mining application, i.e., the

discovered patterns, could then be used for predicting future interests of users [35].

We elect to represent the data in a transactional form. Thus, we define the set

of transactions T = {t1, t2, . . . , tM}, where tm is a transaction that aggregates objects

from the following sets: set of users U = {u1, u2, . . . , uK} and set of items (used data)

I = {i1, i2, . . . , iN}. Each transaction tm is characterized by its owner, set of used

data, starting time, and duration. Thus tm = {eid, uk, I(tm) | uk ∈ U, I(tm) ⊆ I},

where eid(eventid) is a transaction start time, uk is transaction’s owner, I(tm) is a

nonempty set of items that were used by user uk within the transaction tm (i.e., the

itemset or k-itemset means that it contains k items). Since a transaction is supposed

to describe what items are requested during a certain time window by a user, we

restrict the duration of transactions to a common transaction time window ∆t. (At

the creation of the transaction database, if an activity is longer than ∆t then it gets

split into several ∆t long transactions.)

Transactions can then be grouped by their users; inside each such group, trans-

actions are ordered by their start time (eid), thus representing a data sequence sk

for user uk. The set of all data sequences then is: S = {s1, s2, . . . , sK}, where

sk = {uk, T (uk) | uk ∈ U, T (uk) ⊆ T}, and T (uk) is an ordered subset of trans-

actions for user uk.

The cumulative set of user features and preferences can be represented as a

degree of interest of a user to a specified item; this cumulative set can be seen as the

user profile. The set of user profiles is thus UP = {up1, up2, . . . , upK}, where upk is a
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user-specific function that calculates the rate of interest of user uk to an item in, i.e.,

interest degree(uk, in) = upk(in). The interest degree (rate of interest) value might

be represented as a binary value (interested or not interested), or as numeric value

(e.g., actual ratio).

4.2 Transaction Time Window Estimation

To get a reasonable evaluation by the item association analysis, data usage

should be investigated first to find a good estimate for the transaction time window

(TTW). Thus potential recommendations of items, which were not used by users

before, would be simulated (these recommendations will be stored and cross refer-

enced against real item use). The recommendations would be based on the similarity

between users (i.e., similarity in data usage).

4.2.1 Problem Definition

For every user uk ∈ U, we maintain three associated subsets:

• Used items UI(uk) = {ij : [(tukj, nkj)]|ij ∈ I}, where tukj is the date when item

ij was used by user uk; and nkj is the number of times (i.e., number of jobs)

the corresponding item was used during that day. (This implies, that a specific

item may have several (tukj, nkj) pairs associated with it.)

• Recommended items RI(uk) = {ij : {um : [(trkmj, sckm)]|um ∈ SU(uk)}|ij ∈ I},

where trkmj is a timestamp, time when user um had used item ij; and sckm is

a similarity coefficient between users uk and um. Thus this set contains items

that user uk may receive as recommended based on similar interests.

• Similar users SU(uk) = {um : [(tskm, sckm)]|um ∈ U}, where tskm is a time-

stamp, time when similarity between two users was evaluated by the analysis
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system; and sckm is a similarity coefficient between users uk and um. (When

sckm is updated then tskm is also updates.)

The goal of our simulation based analysis is to find an average time difference

between potential recommendation and actual data usage. Again, this will help us

determine a proper transaction time window needed for the sequential pattern mining.

4.2.2 Evaluation

As described previously the processing time period for used items is set to

calendar days. For every user during each processing period the following actions

have been applied:

1. Maintain UI(uk): the list of objects for used items are created and inserted into

UI(uk), if one of these items was recommended earlier (i.e., the same item was

already in RI(uk)) then move corresponding item from recommended items to

the certain used item object (a list that is maintained in the simulation);

2. Maintain SU(uk): maintain the sets of similar users, i.e., evaluate every user-

pair and create corresponding objects at SU(uk) with the Jaccard index (For-

mula 4.1) as the similarity coefficient, if this coefficient exceeds a threshold

value;

jsc(uk, um) =
|UI(uk) ∩ UI(um)|
|UI(uk) ∪ UI(um)|

= (
num common used items

num total used items
) (4.1)

3. Maintain RI(uk): create new recommendations by inserting the used items of

just established similar users into RI(uk).

Figure 4.2 shows the per day average (per user) number of items used (and its

standard deviation), the average number of recommended items in RI(uk), and the
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true positive recommendations (related to the certain used object list size). PanDA

does not currently have a recommender system; thus the data based on which our

simulation analysis is performed was not influenced by recommendation induced item

usages. As we are interested in establishing possible relationships between the inter-

ests of different users to see if a recommender system would add value to their work,

in this analysis we are not going to consider false positives and false negatives among

our data sets.

Figure 4.2: Number of items (used and recommended) per day during the analysis
period (y-axis is truncated to 300 items)
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Further analysis revealed that the average time difference between a potential

recommendation and actual data use among the true positive simulated recommen-

dations is about 28.7 days with a standard deviation of about 33.5 days. For the sake

of simplicity, we elected to use a transaction time window of 30 days for the following

analysis.

4.3 Association Rule Mining

For most of our association analysis we used R, a language and environment for

statistical computing and graphics. Association rules were generated with arules [36]

(a computational R library for mining association rules and frequent itemsets) by

using the Apriori algorithm. Table 4.1 shows the results for applying the arules tool;

data in columns headed with italics were used as inputs to arules. We varied the

minimum support to show its impact on the number of associated items and rules,

and elected to insert the more meaningful values into the table. Figure 4.3 shows

plots of how indeed the minimum support influences the number of associations and

rules.

Table 4.1: Numbers for association rules (generated with R library arules)

TTW,
days

Number of
transactions
established

Minimum
support

Minimum
confidence

Number of
associated

items found

Number of
associated

rules created

30 7,299

0.036 0.5 23 28
0.035 0.5 71 43,446
0.034 0.5 150 15,652,534
0.0335 0.5 166 39,144,905

5 20,276
0.023 0.5 55 1,629
0.022 0.5 141 9,434,742
0.0215 0.5 161 39,563,180
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(a) (b)

Figure 4.3: Minimum support influence scatter plots (a) for 7,299 transactions (TTW
of 30 days); (b) for 20,276 transactions (TTW of 5 days)

With a transaction time window of 30 days most associated items do not have

a support greater than 0.036 (3.6% of transactions contain associated items); with

smaller transaction time windows this upper threshold for support becomes even

smaller. The results show the existence of associations for 30 day windows at a valid

minimum support.

4.4 Frequent Sequences in Data

The association analysis in Section 4.3 confirmed that certain subsets of used

items are correlated as far as user interests are considered; however this is not enough

to conclude that sequences of used items are correlated as well. As described earlier,

sequential patterns between related users would show to what extent their usage

activities overlap. Users’ data usage activities are represented as data sequences with

the previously determined transaction time window of 30 days (the maximum number

of transactions per user is 12 in the extracted PanDA data).
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There are several implementations of sequential pattern mining algorithms; for

our purposes the most applicable representatives were identified as: i) the R pack-

age arulesSequences - mining frequent sequential patterns with the cSPADE algo-

rithm [37]; and ii) SPMF (Sequential Pattern Mining Framework) - an open-source

data mining library written in Java, specialized in pattern mining [38]. Both tools

worked and showed good results only with certain portions of our data, but not with

the entire data set. The number of sequences in conjunction with their sheer sizes

were causing frequent crashes in the above tools. Thus we took it upon us to create

our own sequential data mining tool, specifically tailored to handle the intricacies

due to the dimensions of our data. As described before, our algorithm of choice

for sequential pattern mining is the Apriori-based - SPADE [28]. In addition to an

implementation of SPADE, we extended it with CMAP (Co-occurrence MAP) [39]

and bit sequence representation; this tailoring of SPADE was done to increase the

computational efficiency. Our implementation in Python is available at [40].

Our custom SPADE tool was applied to every pair of users to detect the degree

of their correlation. The average sequence length (the average sum of lengths of

transactions) in our transactional database is about 700. Sequential pattern mining

revealed that for 998 users (64% of relevant users) the sequences share a significant

portion of the timeline of used items with at least one other user, i.e., there is a

sequence pattern (for every pair of sequences) that is a subsequence for each of the

paired sequences. More precisely, we found that the average length of a sequential

pattern is 43.58% of the lengths of the original sequences (with a standard deviation

of 27.25%). To avoid biases coming from short, completely overlapping sequences, we

removed the outliers and only considered sequences with lengths greater than 5% of

the average length. (The number of users with sequence lengths less than 5% of the

average length is 269 or 16.8% out of the total number of relevant users.) Figure 4.4
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shows histograms of the lengths of users’ data usage sequences with the corresponding

maximum overlap. This significant average length of sequential patterns (43.58%)

indicates a strong correlation between users’ data needs and thus validates our belief

that a recommender system would enable users to find interesting data more readily

and rapidly for their experiments.

(a) Length of sequences per user (b) Number of transactions per user

Figure 4.4: Maximum data usage overlap per user

4.5 Summary

In this chapter we investigated historical PanDA data; we have implemented a

custom version of the SPADE sequential pattern mining algorithm with extensions

that accommodate the dimensionality of said data. Deeper analysis, that included

considerations for relationships between items in relation to users, presented corre-

lations between users based on items relations. Indeed we found that data usage

activity shows about 44% overlap for 64% of all relevant users. We also found that

another about 17% of all relevant users had overlapping, but not significant data
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usage correlations. These findings indicate a strong correlation between users’ data

needs, validating our belief that a recommender system would enable users to find

interesting data more readily and rapidly for their experiments. Indeed our results

have helped us raise awareness of the potential benefits of a recommender system to

PanDA.
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CHAPTER 5

DATA WATCHER DESIGN

The previous chapter confirmed our belief that there are correlations between

users and user data needs in PanDA, and that almost every user activity contains

usage patterns that could be revealed. The ability of recommender systems to explore

user activities in the past and discover that hidden relationships between users’ data

needs lead us to use these methods in designing Data Watcher (DW), a system that

aims at helping users in identifying and tracking data. In this chapter we will provide

a detailed explanation of Data Watcher, the system’s design, and core algorithmic

components of the system.

Figure 5.1: Data Watcher workflow organization
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Data Watcher was designed to be able to estimate the degree of dependency

and demand between data objects in the PanDA system (e.g., users, and items that

represent input data for users’ processing tasks), and to utilize this knowledge to pro-

vide corresponding ratings for particular objects. At the heart of DW are algorithms

based on both CF and CBF approaches; users can access DW using a web-interface to

monitor data ratings and corresponding coefficients (e.g., data popularity, the degree

of user interest, etc.). Figure 5.1 illustrates the way DW interacts with PanDA and

Rucio systems.

5.1 System Workflow

The Data Watcher system contains three essential components: i) database; ii)

web-application; and iii) scripts and code for offline data processing (the core of the

system). Figure 5.2 shows a UML class diagram of DW with the most substantial

class attributes. Here, we are going to provide a detailed description to accompany

Figure 5.2. Account and Item are the primary classes of DW; the other classes aid the

primary classes by providing further descriptions to the primary classes or represent

some relations between them.

Class Account (and its sub-class UserAccount) represents PanDA users (i.e.,

the abstraction of a user); this can be: i) an explicit individual user; ii) a service

account (i.e., accounts related to but external to PanDA, e.g., a separate system

that is used to interface with PanDA to submit jobs on behalf of the user); or

iii) group account (e.g., physics group account). Accounts are mapped to the owner of

corresponding PanDA jobs. (AdminAccount is a regular user with extra permissions

to manage system data). Class Interest defines keywords that represent the Accounts ’

interests; they are mapped to some item attributes that describe item content. Class

AccountLabel describes unique Account identities (e.g., X509 certificate distinguished
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Figure 5.2: Data Watcher class diagram

name, e-mail, unique alias). Class AccountSimilarity represents a relation between

two Accounts using a similarity measure.

Class Item is a unit of input data in PanDA jobs. Similarly to class AccountSim-

ilarity, ItemSimilarity represents a relation between two Items respectively with a

similarity measure. Class DataAttribute characterizes the corresponding Item (de-

scribes the Item itself or its content). Class DataCollection represents a collection of

Items that are grouped because of a particular rule or corresponding distance mea-

sure between entities. Class UsedItem captures the list of Items that were used by a

particular Account. Class MarkedItem is used to maintain the list of Items that were
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marked as possibly interesting for a corresponding Account. Class Rating represents

the Account ’s feedback as a rating value to the corresponding Item or DataCollection.

Users interact with Data Watcher using a web-interface. The interactions of

the system with the user and the modules of the system are shown as a UML com-

munication diagram in Figure 5.3.

Figure 5.3: Data Watcher communication diagram

DW’s web interface provides the means for the users to discover new data

(items) and explore revealed relationships between users and between their interests.

Every user is associated with a corresponding profile (path 1) that supplies such

information as:

• the list of similar users (path 1→ 1.1→ 1.1.1), i.e., users that have the largest

intersection of interest with the current user;

• the list of used items (path 1→ 1.2→ 1.2.1), i.e., items that were used by the

user as input data for a processing task;
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• the list of marked items (path 1 → 1.3 → 1.3.1), i.e., items that DW marked

for the user as possibly interesting (fitting the user’s interest area).

Paths 2 → 2.1, and 2 → 2.2 → 2.2.1 will lead the user to the description

of items to which they want to find similar items (path continue from “item:Item”

2.1.1→ 2.1.1.1). Following path 1.2.1→ 1.2 can reveal to the user who has used the

particular item.

Users can interact with the core algorithms by:

• providing personal recommendation (source label=“user”) of chosen items to

other users (by taking path 3);

• providing explicit rating for a particular item (path 4); and/or

• providing explicit rating for a particular collection of items (path 5).

As described before, at the heart of DW is a recommender subsystem; in the

next section we are going to dwell into the internal workings of this subsystem.

5.2 The Recommender Subsystem

In order for Data Watcher to actually work, it needs to rely on a custom built

recommender system. In this section we are going to detail the approach that was

used. Here, we may use a convention to represent matrices as functions, where input

parameters correspond to indices, e.g., M = [mi,j] ⇔ M(i, j) = mij, we believe that

such representation will help the reader to better follow relations between objects.

5.2.1 Data Representation

There are two main sets of data objects: set of users U = {u1, u2, . . . , uK} and

set of items (input data for user processing tasks) I = {i1, i2, . . . , iN}. Each item can

be represented by a set of attributes (features) A = {a1, a2, . . . , aM}. Thereby, each
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user can be represented by a user profile that is a vector of weights that are associated

with the corresponding attributes (same index): UP (uk) = {w1,k, w2,k, . . . , wM,k}.

5.2.1.1 Utility Matrix

The Utility Matrix (user-item matrix) is an essential part of the core recom-

mender subsystem; it represents connections between users and items. An element in

this matrix is a quantitative representation of such relation, i.e., a rating (or interest

degree that shows how much user uk is interested in item in, thus ratingk,n).

UM(uk, in) = [ratingk,n] (5.1)

Initially, the Utility Matrix (UMinitial) contains the number of (successful) anal-

ysis jobs that were created by user uk with the input data represented as item in.

UMinitial(uk, in) = num jobsk(in) (5.2)

There are two facts that should be considered here in the context of PanDA:

i) each item (i.e., data unit) may contain a different number of files; ii) the number

of (successful) jobs usually is proportional to the number of used/requested files in

the input data. Thus, in order for the numbers to be comparable (as the distribution

not the absolute number is of importance) the utility matrix should be normalized.

The first step of the normalization is to calculate for each user the ratio between

the number of user jobs with a particular item (input data) and the average number

of jobs that used the same item:

avg num jobs(in) =

∑
uz∈U(in)

UMinitial(uz, in)

|U(in)|
(5.3)
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UMshifted(uk, in) =
1

avg num jobs(in)
× UMinitial(uk, in) (5.4)

where U(in) is a set of users who had requested item in as an input data for their jobs.

Hence, the first step of normalization is to calculate the ratio between the number

of jobs and the average number of jobs per item. UMshifted(uk, in) will show user

interests according to the average data usage among users who used that data; in the

future we may refer to the scalars in UMshifted(uk, in) as the variation of number of

jobs from the average for item per user.

The second step of the normalization is to normalize elements among items per

user, i.e., calculate coefficients (interest degree) for items per user.

UMnormalized(uk, in) =
1

maxz(UMshifted(uk, iz))
× UMshifted(uk, in) (5.5)

This final normalized matrix thus contains interest degrees for items for a par-

ticular user that considers user interest for particular data among other users that

used that data, and then utilizes that ratio to reveal user preferences among this

particular user’s used data. (In our case ratings are scalars, i.e., they belong to the

numerical class of ratings.)

5.2.1.2 Data Popularity

Ratings estimation for items that are potential recommendations relies on the

popularity of data as one of the essential parameters. Data popularity is calculated

for the defined period of time and includes the aging factor, that is used to be able to

differentiate data created before the defined time period and during the time period
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(i.e., to emphasize the difference between “old” and “new” data that have the same

number of accesses).

popularity(ij,∆t) =
|U(ij,∆t)|
|U(∆t)|

× aging factor, ∆t = [t0, t1]

aging factor =


1, if creation date(ij) ∈ ∆t

1
t0−creation date(ij)+1

, if creation date(ij) /∈ ∆t

(5.6)

5.2.2 Similarity Estimation

Collaborative filtering (described earlier and applied in an oncoming section)

is based on metrics describing similarities between users; because one approach of

calculating user similarity comes from the content-based filtering field, similarity es-

timation will be presented here in a separate sub-section.

There are two (chosen) ways to estimate similarity between pairs of users:

i) compare user activities (i.e., compare how many times users had requested the

same data for the defined period of time); and ii) compare user preferences in certain

item attributes (i.e., compare how many times common attributes with corresponding

weights appeared in requested data for the defined period of time).

The basic representation of user activity is a set of items that were used (or

requested) by the user during a specified period of time. (For further improvements,

the system will use the earlier presented description of the activity, i.e., an ordered

set of transactions, where each transaction is characterized by the user, the set of

items that were used/requested by particular user, the transaction start time and its

duration.) This information will help to estimate coefficients of similarity between

pairs of users in terms of used data; however such information does not reflect the
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magnitude of user interest in each of the items. Thus we extended the Jaccard index

with a correlation coefficient (that could be viewed as an opposite to the distance

between corresponding variances of number of jobs, i.e., UMshifted(uz, in)).

sim(uk, up) =

∑
iz∈I(uk)∩I(up)

d(uk, up, iz)

|I(uk) ∪ I(up)|

d(uk, up, iz) = e−|UMshifted(uk,iz)−UMshifted(up,iz)|

(5.7)

Similarity based on user preferences for attributes and items is calculated ac-

cording to the cosine similarity measure. This approach considers the weights of

attributes in user profiles (that are calculated by the TF-IDF technique and repre-

sent the significance of the corresponding attribute) and user interest degrees in data

(elements of normalized utility matrix). Thus:

sim(uk, up) =

∑
a∈Awk(a) · wp(a)√∑

a∈Aw
2
k(a)

√∑
a∈Aw

2
p(a)

(5.8)

where A is the union of attributes from user profiles UP (uk) and UP (up), and wz(a)

is the corresponding weight for attribute a.

5.2.3 Collaborative Filtering

Collaborative filtering has been described in general in Section 3.3.1; this tech-

nique creates the possibility to consider the preferences of other users that are similar

to a particular user. In DW, each user is placed in a group of similar users that is

based on the similarity between users’ activities and profiles. DW can then place the

most popular items among users in the current user’s similarity group into the user’s

recommendation list.
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The major accent of this approach is on the valid estimation of similarity be-

tween users, thus we consider both of the following sources: pure data usage numbers

and user preferences in used data content (described in previous section). The sec-

ondary task then is to select the most relevant items from the group of similar users.

Thereby, DW groups data into collections and creates a hierarchy of collections in

a tree structure, based on data origin. Table 5.1 shows an example for the tree of

collections; every collection is represented as a tree node and items that belong to the

collection with the highest level number are represented as leaves.

Table 5.1: Example of the tree of collections (without corresponding items)

Collection name Level

AcerMC Wt 0
mc11 7TeV.AcerMC Wt 1
mc11 7TeV.AcerMC Wt.AOD 2
mc11 7TeV.AcerMC Wt.NTUP SMWZ 2

Every item that is used by a user from the group of similar users is associated

with a corresponding collection. Those collections that include items which were used

by every user from the group are picked as a potential source for data recommen-

dations. Items (from corresponding collections) with the highest cumulative metric

based on popularity and user ratings are chosen for recommendations.

5.2.4 Content-based Filtering

Content-based filtering is based on explicitly provided item attributes (features)

applied to user profiles. Item attributes in DW are features that were extracted from

the item name (according dataset nomenclature in the ATLAS experiment): pro-

jectName, dataType, configTag, datasetNumber, physicsShortName, productionStep,
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runNumber, streamName, swReleaseComment, containerName, containerType, con-

tainerVersion, group, user.

The user profile should contain information about item attributes that are in-

teresting to the particular user, with corresponding degrees of interest (i.e., weights).

In terms of the TF-IDF weighting scheme, weights for item attributes can be rep-

resented as AF-IIF (Attribute Frequency - Inverse Item Frequency) for collections

of items or as AF-IUF (Attribute Frequency - Inverse User Frequency) for user pro-

files as collections of user preferred attributes. AF-IUF weights are used to show the

importance of attribute (compared to other attributes in the user profile):

AFIUF (aj, I(uk)) = AF (aj, I(uk))× log (
|U |
|U(aj)|

)

AF (aj, I(uk)) =
counterj(I(uk))

maxz(counterz(I(uk)))

(5.9)

where U(aj) is a set of users who have attribute aj in their profiles; counterj(I(uk)) is

the frequency of attribute aj for a set of items I(uk) used by user uk; maxz(counter)

is the maximum frequency over the counterz(I(uk)) of all attributes az for user’s used

items I(uk).

Finally, the normalized attribute weights wj,k for attribute aj for user uk can

be calculated as:

wj,k =
AFIUF (aj, I(uk))√∑|A|
z=1AFIUF

2(az, I(uk))
(5.10)

Content based filtering could be further improved by exploiting possible associ-

ations between attributes. We will further elaborate on this in the future work section

of the final chapter.
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5.3 Summary

In this chapter we described the core components of the Data Watcher system,

the organization of its internal classes. We have also provided a communication

schema that illustrates how the system assists users in the discovery of new data

(based on similarity between users and data similarity). We then described the way

data was processed and the methods that were applied to obtain the corresponding

data ratings and weights (by highlighting the significant and specific components).

In the following chapter we will discuss the applicability of Data Watcher and show

preliminary results obtained.
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CHAPTER 6

STUDYING DATA WATCHER

Data Watcher was designed as an independent subsystem in the PanDA ecosys-

tem that provides an analytical information to users, as well as to PanDA Brokerage

subsystem. The core components of the system are organized in such way that Data

Watcher can easily interact with other WMS and DDMs. There is a specific compo-

nent in DW, the data collector, that can be easily swapped out and tailored to specific

WMS and DDM systems. (Currently the data collector uses PanDA and Rucio as

information sources.) As a consequence DW is able to analyse data coming from

systems that store information about connections between users and data, notwith-

standing the high rate of new data production or that of the reprocessed versions of

existing data. The current implementation of the component that is responsible for

the collection of information from PanDA and Rucio effectively manages the organi-

zation of data and its representation, the organization of the data processing and the

way it is distributed. Thus only the data collector part of DW depends on the infor-

mation sources and how that information is transformed into corresponding objects

inside DW.

This chapter will provide an insight into what is expected from DW by showing

results that were gathered based on PanDA data. We will present some user-data

statistics and provide preliminary results on the performance of the analytical pro-

cesses. We will also provide an overview of how the user experience is enhanced and

discuss potential future improvements and extensions.
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6.1 Basic Statistics

Data Watcher started to collect information from the PanDA system in May

of 2015. Once a day the DW collector component extracts the successfully finished

analysis jobs from the archival table of the PanDA database (using the parameters

prodSourceLabel=“user”, jobStatus=“finished”) and with the help of calls to the Rucio

system (that contains users and data descriptions) transforms it into DW objects. At

the time of this writing, the DW database contains about 1, 700 user objects, about

570, 000 item (dataset) objects, and about 1.3 million user-item records (i.e., elements

that make up the the utility matrix, described in Section 5.2.1.1).

Figure 6.1: PanDA active users (that have successfully finished analysis jobs) per
month

Figure 6.1 shows the numbers of users that were active in the PanDA system

during each of the last seven months. Figure 6.2 shows the number of active user-item

records in Data Watcher per month (for the same duration); this shows how many
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Figure 6.2: Data Watcher unique user-item pairs per month

unique user-item pairs were used per month (it does not represent how many times

users have used the same data, it merely provides an estimate on the size of the utility

matrix in each month).

6.2 Preliminary Results

In order to analyze the efficiency of the applied recommender system, we will

consider the two core algorithmic components separately (i.e., the collaborative and

the content-based part) to evaluate to what extent they contribute to their combined

result.

Collaborative filtering is considered as the more essential part of DW, due to

its possibilities to discover data that will benefit users. This approach considers

data that is in the interest areas of users who are similar to the user for whom DW

produces the recommendations. Thus, DW creates a new connection between the

user and data with a corresponding likeliness score (i.e., probability of user interest
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in given data). With only the collaborative filtering component turned on, Data

Watcher shows on average of around 15% of successful recommendations (the ratio

between True Positive and False Positive values), with an average time lag between

the recommendation and the actual data usage of about 22 days. The average number

of distinct users who received recommendations is about 45 per month. Figure 6.3

shows a comparison chart of recommendations provided versus followed (i.e., items

that were marked for users, and marked items the were actually used later by users).

Figure 6.3: Comparison of the provided and followed recommendations per month
(using only the collaborative filtering component)

Using only the content-based filtering component in DW, such parameters as:

weighted data attributes, similarity between items based on content (i.e., set of at-

tributes with pattern-based matching) are included. Since some sets of data are rather

poorly described with the filename provided attributes (i.e., partial description of the
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data content, e.g., items/datasets that do not follow official name nomenclature) the

quality of the produced recommendations decreased significantly. Thus DW with the

collaborative filtering part turned off only produced an average of about 9% success-

ful recommendations. This shows that the lack of the data description brings with

it a noise to the estimated weights for the recommendations, creating an over-fitting

problem. This also provides a reasoning to use the content-based filtering approach

as an extension to the collaborative filtering approach when using both approaches

as a hybrid.

The above described preferential hybrid approach shows substantial improve-

ments to the quality of the recommendations, reducing the total numbers of recom-

mendations at the same time (i.e., reducing clutter). Figure 6.4 shows the corre-

sponding comparison of the provided and followed recommendations; the achieved

average ratio of TP to FP has risen to about 30%.

Figure 6.4: Comparison of the provided and followed recommendations per month
(using collaborative filtering with content-based approach)
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The results obtained show that a predicted hidden relationships between user

data needs indeed exist. This relationship can be revealed by the appropriate com-

bination of machine learning techniques as employed by DW. DW then enables the

identification of data according to the needs of a group of users, and provides an

estimate of the number of future data accesses. We have also shown that is also

important to consider the content of data that reveals relationships between user and

data attributes (another dimension of user interests). It is important to note that

the statistics collected were not based on actual user interaction of the system, thus

DW could not make use of implicit and explicit user feedback (as users have not pro-

vided such feedback) when generating recommendations. Thus, we argue that these

results represent the minimum of what DW could achieve if it was indeed used by the

majority of PanDA users.

6.3 User Experience

Data Watcher extends users’ abilities in discovering new data, and in being

aware of what data is used by other users (especially users who worked on the similar

data in the past). During the analysis the following concern related to the rating

system was raised: due to the high number of data items in the system, it is difficult

to engage users to rate a particular item. Thus users with a small number of used items

(e.g., dozens) could provide data ratings per item with much less effort, compared to

users with large number of used items (e.g., hundreds or thousands of used items);

the latter part of users would likely prefer to rate data on a per collection basis

(i.e., group of items).

Data Watcher provides a possibility to produce recommendations manually from

one user to another. For example if user A provides a recommendation to user B

(i.e., mark data for user B) and user B indeed takes this recommendation into consid-
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eration (i.e., apply action “consider”), then the system can increase the weight for the

data in the recommendation and can send this information to WMS. Such behavior

could trigger so called “lazy data transfers”, transfers with lower priority, but with

specified destination (that would be determined by the Brokerage subsystem based

on the data type), to prepare the system for future user interest in that particular

data.

6.4 Summary

In this chapter we explored the quality of recommendations (i.e., the list of items

with the highest predicted ratings) that DW is able to provide based on the chosen

machine learning filtering approach. The hybrid approach (collaborative filtering

with a content-based filtering extension) showed a significant improvement over of

the component approaches. We have also reviewed what kind of improvement in the

user experience can be expected by the users of DW.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this final chapter of the dissertation, we will provide quick review to the

conducted research; we will discuss the expected benefits to users and to the applicable

WMS (in particularly, PanDA WMS). We will devote the last section to future work;

more precisely, we will describe ideas to the possible improvement of the Data Watcher

system, and its analysis and analytics processes.

7.1 Conclusions

The original goal of our research was to improve the data need foresight in large

scale scientific computing workload management systems by determining which data

will most likely be in demand by users and thus enabling the data distribution system

to create an appropriate number of replicas. During our preliminary investigations

into the topic we have realized that, in general, user as a detached entity is ignored

(only could be considered as one of the parameters) even in approaches that try

to model data demand. We believed that an explicit investigation of user behavior

could significantly advance the foresight to data popularity. Thus the direction we

have chosen is user-centric; more precisely, we proposed to build a user model which

will represent user preferences and will help to predict future user interests (and

behavior), thus to estimate the popularity of data (and its significance) for a defined

group of users.

The Production and Distributed Analysis system PanDA is a pilot-based WMS

that operates at the ATLAS experiment at CERN, and uses resources of the WLCG
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infrastructure. PanDA manages jobs execution on the grid and heavily relies on

the ATLAS Distributed Data Management system (Rucio), since among others its

scheduling heavily depends on the initial data distribution. Our work is focused on

PanDA with an intent to improve PanDA’s brokering process (provide estimated data

weights that represent user future interests) as well as to enhance user experience.

The first step in our research was to determine whether or not there is a correla-

tion between users and/or user-data usage in historical PanDA usage data. Analysis

of archived PanDA usage data via data mining methods indeed showed that existing

data usage patterns could be utilized to predict future user activity. Thus a recom-

mender system approach was selected as a suitable technique for the personalization

and exploration of user-data relationships using machine learning techniques. As an

outcome, the Data Watcher system was designed and implemented. During the anal-

ysis of the archival data and during the design of DW it has become more and more

apparent that modeling of user behavior would likely have a profound effect on user

experience and not just on data distribution. DW was designed with this aim in

mind.

DW provides valuable information about relationships between users and their

data needs, and aims to enhance user experience by providing a possibility to discover

new data based on similarity characteristics between users and between data itself.

As a hub for the user-data relationships, DW also provides a platform for users to

share their feedback (as a quantitative assessment) about how a particular data (or

data collection) fits their needs; and/or to provide “manual” recommendations for

users of the same interest area.

The preliminary results showed that the efficiency of the DW core predictive

subsystem, i.e., the recommender system, heavily depends on the exact information

filtering approaches employed. We have found that collaborative filtering with a
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content-based filtering extension (hybrid approach) showed the highest feasibility in

predicting user interest in a particular data with certain level of confidence. The

quality of predictions produced by the hybrid approach was shown to be significantly

higher than any of its component approaches by themselves. We argued that a wide

user-base acceptance of DW would enable PanDA to use better performing data

replica placements.

7.2 Future Work

Since this work confirmed that a user behavior modeling approach can lead

to better data popularity prediction, future work should be focused on performance

enhancements of the Data Watcher analysis process.

One of the proposed enhancements is to extend the content-based filtering com-

ponent by using deeper associations between attributes. Groups of attribute types

could be established to be considered together. Each group then could have a certain

weight that is proportional to the number of types in the group, and a certain signif-

icance measure of that group among the others. Thus if an item contains attributes

with types from one of the predefined groups then these attributes would form a

collection of attributes. In this case the user profile would be attribute collection

oriented rather than just single attribute based.

In addition to the two main information filtering approaches, there is a possi-

bility to involve a rule-based approach that could be built around sequential pattern

mining technique (see Chapter 4). Sequential pattern mining techniques could ex-

tract sequential patterns from users’ activities (sets of data used during certain time

periods that are ordered).
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Further improvements in Data Watcher could heavily influence the extent to

which PanDA job- and data-placement decisions are made, and could result in sig-

nificant improvement in user experience.
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APPENDIX A

DATA WATCHER DATABASE SCHEMA
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Interests

*P interest_id NUMBER (50)

*U name VARCHAR2 (30 CHAR)

description VARCHAR2 (100 CHAR)

* source_label VARCHAR2 (30 CHAR)

* weight NUMBER (2,4)

* creation_date DATE

IN_PK (interest_id)

IN_N_UN (name)

AccountInterests

*P i d NUMBER (50)

*F account_id NUMBER (10)

*F interest_id NUMBER (50)

* weight NUMBER (2,4)

is_reused CHAR (1)

* start_date DATE

end_date DATE

AIN_PK (id)

AIN_A_FK (account_id)

AIN_IN_FK (interest_id)

UsedItemsTimeline

*P i d NUMBER (50)

*F use_id NUMBER (50)

* number NUMBER (10)

* timestamp DATE

UIT_PK (id)

UIT_UI_FK (use_id)

DataCollections

*P collection_id NUMBER (50)

F parent_id NUMBER (50)

*U name VARCHAR2 (150 CHAR)

description VARCHAR2 (300 CHAR)

* guid VARCHAR2 (50 CHAR)

* level NUMBER (5)

* type VARCHAR2 (50 CHAR)

* creation_date DATE

DC_PK (collection_id)

DC_N_UN (name)

DC_DC_FK (parent_id)

ItemSimilarit ies

*P i d NUMBER (50)

*F item0_id NUMBER (50)

*F item1_id NUMBER (50)

* coefficient NUMBER (2,4)

* creation_date DATE

* timestamp DATE

IS_PK (id)

IS_I_FK0 (item0_id)

IS_I_FK1 (item1_id)

I tems

*P item_id NUMBER (50)

*U name VARCHAR2 (255 CHAR)

* type VARCHAR2 (50 CHAR)

* weight NUMBER (2,4)

* is_active CHAR (1)

* creation_date DATE

* timestamp DATE

I_PK (item_id)

I_N_UN (name)

AccountMarkedItems

*P i d NUMBER (50)

*F mark_setter_id NUMBER (10)

*F mark_id NUMBER (50)

* mode VARCHAR2 (30 CHAR)

* coefficient NUMBER (2,4)

* creation_date DATE

AMI_PK (id)

AMI_MI_FK (mark_id)

AMI_A_FK (mark_setter_id)

CollectionRatingMeta

*PF collection_id NUMBER (50)

* total_rating NUMBER (2,4)

* total_count NUMBER (10)

CRM_PK (collection_id)

CRM_DC_FK (collection_id)

AccountSimilarit ies

*P i d NUMBER (30)

*F account0_id NUMBER (10)

*F account1_id NUMBER (10)

* coefficient NUMBER (2,4)

* creation_date DATE

* timestamp DATE

AS_PK (id)

AS_A_FK0 (account0_id)

AS_A_FK1 (account1_id)

CollectionRatings

*P i d NUMBER (50)

*F account_id NUMBER (10)

*F collection_id NUMBER (50)

* rating NUMBER (1)

* creation_date DATE

* last_changed_date DATE

CR_PK (id)

CR_A_FK (account_id)

CR_DC_FK (collection_id)

Attr ibuteTypes

*P type_id NUMBER (10)

*U name VARCHAR2 (30 CHAR)

* type VARCHAR2 (15 CHAR)

* pattern VARCHAR2 (30 CHAR)

* weight NUMBER (2,4)

AT_PK (type_id)

AT_N_UN (name)

Accounts

*P account_id NUMBER (10)

*U nickname VARCHAR2 (50 CHAR)

fullname VARCHAR2 (150 CHAR)

description VARCHAR2 (300 CHAR)

* type VARCHAR2 (30 CHAR)

* is_active CHAR (1)

* is_admin CHAR (1)

* creation_date DATE

* last_changed_date DATE

A_PK (account_id)

A_N_UN (nickname)

ItemRatings

*P i d NUMBER (50)

*F account_id NUMBER (10)

*F item_id NUMBER (50)

* rating NUMBER (1)

* creation_date DATE

* last_changed_date DATE

IR_PK (id)

IR_A_FK (account_id)

IR_I_FK (item_id)

ItemRatingMeta

*PF item_id NUMBER (50)

* total_rating NUMBER (2,4)

* total_count NUMBER (10)

IRM_PK (item_id)

IRM_I_FK (item_id)

UsedItems

*P i d NUMBER (50)

*F account_id NUMBER (10)

*F item_id NUMBER (50)

* has_mark CHAR (1)

* weight NUMBER (2,4)

* creation_date DATE

UI_PK (id)

UI_A_FK (account_id)

UI_I_FK (item_id)

AccountLabels

*P i d NUMBER (20)

*F account_id NUMBER (10)

*U name VARCHAR2 (200 CHAR)

* type VARCHAR2 (10 CHAR)

* is_active CHAR (1)

* creation_date DATE

AL_PK (id)

AL_N_UN (name)

AL_A_FK (account_id)

I temAttr ibutes

*P i d NUMBER (50)

*F item_id NUMBER (50)

*F attribute_id NUMBER (50)

IDA_PK (id)

IDA_I_FK (item_id)

IDA_DA_FK (attribute_id)

CollectionItems

*P i d NUMBER (50)

*F collection_id NUMBER (50)

*F item_id NUMBER (50)

* distance NUMBER (2,4)

* weight NUMBER (2,4)

* timestamp DATE

DCI_PK (id)

DCI_I_FK (item_id)

DCI_DC_FK (collection_id)

MarkedItems

*P i d NUMBER (50)

*F account_id NUMBER (10)

*F item_id NUMBER (50)

F use_id NUMBER (50)

* source_label VARCHAR2 (30 CHAR)

* weight NUMBER (2,4)

* creation_date DATE

* timestamp DATE

accepted_at DATE

rejected_at DATE

expired_at DATE

MI_PK (id)

MI_A_FK (account_id)

MI_I_FK (item_id)

MI_UI_FK (use_id)

DataAttr ibutes

*P attribute_id NUMBER (50)

* name VARCHAR2 (50 CHAR)

* value VARCHAR2 (100 CHAR)

* weight NUMBER (2,4)

DA_PK (attribute_id)

Data Watcher @PanDA by Mikhail Titov

2016-06-06, ver. 0.0.1.n02

Figure A.1: Data Watcher database schema
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