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ABSTRACT

IMPROVING ACCURACY IN LARGE VOCABULARY

SIGN SEARCH SYSTEMS

Christopher Conly, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Vassilis Athitsos

An automated computer vision-based dictionary system for looking up the

meaning of signs can be an invaluable tool both for students and native users of

sign languages. Students may not know the meaning of a sign they encounter and

would like to learn what it is. A native signer knows what it means to them but

may be unsure of the equivalent in English. Such a system can return a ranked

video list of the most similar signs to a query video and allow the user to browse

the video results to find the desired sign and its meaning. This thesis investigates

and proposes improvements in large vocabulary sign search systems and culminates

in an automated American Sign Language dictionary search system with improved

accuracy over former variants.

This type of dictionary system presents several challenges. When a large vo-

cabulary is desired, it is often not feasible to generate a large enough training set to

train statistical and machine learning recognition methods that have achieved good

accuracy on smaller vocabularies. In this case, exemplar-based methods must be used

and improved upon. Secondly, there are large variations in the performance of signs
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inherent in user-independent systems. Generative statistical methods like Hidden

Markov Models can model these variations but may be unusable in such a system

due to the insufficient number of training samples required for learning transition

probabilities.

This thesis makes the following contributions. First, there is a lack of pub-

licly available, fully annotated, large vocabulary RGB-D gesture datasets for use in

gesture recognition research. Thus, a multimodal 3D body part detection and large

vocabulary American Sign Language dataset is presented that allows researchers to

evaluate both body part (i.e. hands and shoulders) detection and gesture recognition

methods. This dataset is used to establish benchmarks and for testing the methods

developed in this work. The primary differences between this dataset and others are

the vocabulary size and the full annotations of joint positions in every frame of each

gesture.

Second, this thesis proposes Intra-Class Variation Modeling, a method that

addresses the wide variability in sign performance by generating models for same-

class differences in several geometric properties of the hand trajectories comprising

the signs. These models can be used to generate features that describe the likelihood

that a query sign matches an example sign given the observed differences in these

properties and provide an improvement to the exemplar-based similarity measure.

The third contribution of this work is Multiple-Pass Dynamic Time Warping, a

way to better handle various size and spatial translation differences in the performance

of signs by multiple users. Each DTW pass centers and sizes the sign using a different

set of properties to generate multiple scores that can be combined to provide a better

measure of similarity.

The two methods are evaluated using a vocabulary of 1,113 signs in both user-

dependent and more realistic user-independent experiments with fluent signers. While
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either method alone achieves an improvement in accuracy, particularly on subjects

who perform the signs with large variation from the models, the combination of both

techniques provides the best and most significant results. Finally, an improvement in

accuracy is demonstrated on actual users of the dictionary system, who are unfamiliar

with American Sign Language.
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CHAPTER 1

INTRODUCTION

This thesis presents work towards a computer vision-based Large Vocabulary

American Sign Language (ASL) video dictionary system. We propose novel methods

for significantly increasing the accuracy of automated sign search systems by improv-

ing sign representation and similarity measure. This chapter explains the problem at

hand and introduces the need for a better sign language dictionary system. A list of

the contributions and a brief overview of the thesis is given.

1.1 The Need for Sign Language Dictionaries

Users of written languages have the distinct advantage of being able to quickly

and easily search for the meaning of an unknown word; the sortable nature of alpha-

bets affords them this opportunity. A simple Internet or printed dictionary search

provides results in short time. Sign languages, however, lack this inherent sortability,

as there is no obvious way to assign some type of order to a series of motions and hand

shapes. With an estimated 500,000 to 2,000,000 users of American Sign Language

in the United States alone [1, 2], many people are at a disadvantage. Students of a

sign language would like to be able to look up the meaning of a sign they encounter

with which they are unfamiliar. Users of sign languages, on the other hand, know

what it means to them, but are unsure of the English translation. There are many

English to sign dictionaries that are relatively easy to use, but the reverse is not true.

While sign to English dictionaries do exist, the lack of easy sign sortability makes

them cumbersome to use.
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The American Sign Language Handshape Dictionary addresses the problem by

categorizing its approximately 1,900 signs into 40 basic hand shapes [3], but this re-

quires the user to first correctly identify the initial hand shape and then sort through

a large number of signs. Assuming the signs are uniformly distributed into the various

hand shape categories, the user may need to sort through nearly 50 illustrations show-

ing hand shapes and positions with arrows indicating movement; it can be difficult to

decipher what is occurring in these drawings. The Handspeak online ASL-to-English

Dictionary [4] requires the user to first categorize the sign into one of 44 hand shapes;

second, categorize the movement of the sign into one of 18 general movement cate-

gories; and, finally, categorize the location of the sign into one of 12 general locations.

Still others require the addition of a hand orientation category.

ASL dictionaries are beginning to include video examples online or on a DVD,

eliminating the need to decipher the illustrations, but it remains a time-intensive and

non-trivial task to search for the meaning of an unknown sign. It is evident that there

needs to be a better way to determine this meaning. This thesis presents work on a

system that offers users and students of sign languages a more natural way of sign

meaning search: by actually performing the sign.

1.2 Requirements for a Sign Language Dictionary

It is important to determine what capabilities a system that allows for visual

sign search should have and to define a set of user requirements that make the system

acceptable to the general public. Existing sign language dictionary systems exhibit

both good characteristics and features that need improvement, and this thesis ad-

dresses many features that are lacking. For this dictionary system, we have identified

the following required features:
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1. The system must work visually by allowing the user to perform an unknown

sign in front of a camera or other sensor – addressed throughout this thesis.

2. The system must achieve reasonable accuracy. It should maximize the number

of results in the top 20 matches, since the user would likely not want to view

more results than that. This is the primary focus and contribution of this thesis

and is addressed in Chapters 3, 5, and 7.

3. The system must have automatic detection and tracking of the hands. No

manual annotations to initialize a hand tracker should be required – addressed

in Chapters 4–6.

4. The system must be fast, since users should not have to wait for results. This

requirement is addressed in Chapter 6 and is a vast improvement over the

previous variant.

5. The system must be easy to use and as intuitive as possible – addressed in

Chapter 6.

6. Rather than return a single most similar sign, the system must return a list of

signs ranked according to similarity and allow the user to browse the results.

7. The system must present video examples of the matched signs for user verifica-

tion – addresed in Chapter 6.

8. The system must require as little user intervention as possible – addresed in

Chapter 6.

9. The system must have large vocabulary – addressed by using a vocabulary of

1,113 signs as described in all recognition experiments.

1.3 Problem with Large Vocabularies and Limited Training Sets

It is a trivial task to design a gesture set with a relatively small number of

sufficiently dissimilar gestures so as to make recognition easy. But the goal of sign
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language recognition is not to make a gesture set that works well with a given method,

but to design a method that works well with a pre-existing, well-established vocabu-

lary. The latter is a far more difficult task.

A gesture set, like a sign language, with a sufficiently large vocabulary is bound

to exhibit a great degree of similarity in hand trajectories between many gestures.

Many one-handed signs are static, meaning the hand does not really move much.

Instead, the difference lies in the hand shape. Often, this difference can be as little as

the thumb being extended vs. not being extended, as is the case with the signs for the

numbers 14 and 15. Figure 1.1 shows examples of four signs that occur in roughly the

same region and have very little movement. These signs generally have an arbitrary

hand trajectory caused by unintentional movement of the hand, resulting in wide

variation in the trajectory that may confuse trajectory-based recognition methods.

Furthermore, in user independent systems, there will be additional large variability

in the performance of gestures, both in size and position, due to the personal styles

of individual signers. This can result in unintended similarity between gestures.

The similarity in gestures is difficult to deal with. This thesis does not incorpo-

rate any hand shape information into the recognition algorithm and, instead, focuses

on improving the trajectory matching process by somewhat relaxing the assumptions

of where a sign occurs in the signing space and how large the signs may be. It would

be relatively simple to incorporate some hand shape descriptors into the process,

given a reliable method to segment the hands.

When one has few training data, it is difficult to create an algorithm that

generalizes well beyond the training set, and they tend to overfit the training data,

especially when only a few signers are performing the set. Machine learning and

statistical methods certainly prove their worth in gesture recognition as the litera-

ture shows, as long as sufficient training data are provided to generate the required

4



Figure 1.1: Examples of sign similarity. The position is roughly the same, but the
hand shape differs.

probability distributions or training and validation sets that can ensure generalization

to other individuals not in the training set. Generating and annotating these data,

especially for a large vocabulary, however, is expensive in both fiscal and manpower

terms. It is for this reason, that this thesis introduces novel methods for increas-

ing accuracy in large vocabulary systems with minimal training data by improving

similarity measures in exemplar-based recognition.

1.4 Main Contributions

Given the necessarily visual nature of sign languages, it makes sense to approach

the problem from a computer vision perspective. The concept behind the dictionary
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system is that the user performs an unknown sign in front of a camera or other

sensor, the system extracts features from the video frames that represent the sign and

compares them to the features of the signs in the database to rank them according

to similarity. The user is then presented the ranked list of signs and their meaning

with a video example of each that he or she can view to find the desired sign and its

English equivalent. Though the focus of this thesis is on a large vocabulary American

Sign Language (ASL) video dictionary system that meets the requirements outlined

in section 1.2, the techniques are applicable to any gesture set of arbitrary size.

Particular emphasis will be given to increasing the accuracy of such systems, where

there is large variability in the performance of signs among users.

1.4.1 RGB-D ASL Dataset

Since there is a lack of publicly available large vocabulary gesture datasets that

have full annotations, this thesis contributes an RGB-D body part detection and ASL

recognition dataset along with benchmarks for the evaluation of hand detection and

sign recognition methods. This growing dataset currently consists of 1,113 unique

signs performed by multiple fluent signers, and is recorded with a Microsoft Kinect.

Full annotations are provided, including information about the signs themselves, such

as lexicon, or meaning, sign handedness—one-handed or two-handed—and start and

end frames. Also provided are manual annotations in the form of bounding boxes

for the head in the first frame of each sign, as well as those for the hands in every

frame of each sign, points indicating shoulder and elbow locations in each frame of

the signs, and indications of occlusion of the joints. Kinect skeleton joint positions are

also provided in both 2D pixel coordinates and 3D real world coordinates. Though

currently incomplete, the dataset continues to expand with additional annotations, as
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well as signers. The final vocabulary will consist of some 3,000 ASL signs performed

by multiple signers.

1.4.2 Novel Methods to Improve Similarity Measures

The second focus, where the novel contributions are made, is on improved sign

representation and match accuracy. Any gesture and sign recognition system needs

an effective similarity measure for sign comparison. This work explores modification

of the exemplar-based recognition method that is currently used in the system to

include novel features and a way to combine multiple similarity scores. The work

presented in the following chapters will make the following two contributions with

respect to this focus:

1.4.2.1 Intra-Class Variation Modeling (ICVM)

Different signers will lend their own personality to a sign, resulting in wide

variation in some geometric and positional properties of the hand trajectories. Some

signers exaggerate the gestures, while others are more subdued in their performance.

Some perform the sign in a large space, others in a small space. Size normalization and

choice of a coordinate system can account for these differences to a certain degree,

but this variation still remains a problem. ICVM models these differences across

same signs and allows for researchers to generate an indication of likelihood that

two signs are a match given the differences between them in these properties. These

likelihoods can then be used to filter potential matches using, for example random

forests, SVMs, or a cascade weak classifiers, or, as is done in this work, as part of the

similarity measure itself. By weighting and combining these likelihood features, we

can substantially improve recognition accuracy.
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1.4.2.2 Multiple-Pass Dynamic Time Warping (MP-DTW)

MP-DTW is the second novel method presented in this work to handle varia-

tions in sign performance across users. The former variant of the dictionary system

expresses the positions of the hands in a single coordinate system with the center of

the face at the origin and sizes the trajectory based on the size of the face. While

this does a relatively good job at making recognition somewhat scale and video frame

position invariant, it does not do a good job at accounting for differences in the posi-

tional and size variations within the signing space. Each user will perform a sign in a

somewhat different place relative to the face and at a different size. MP-DTW helps

account for these differences by re-centering and resizing a sign using different origins

and size normalization features than the face. For example, one pass may center the

sign on the center of the right hand trajectory and size the sign based on the width

of the trajectory, while another centers on the left hand trajectory and sizes the sign

using the trajectory height. This generates multiple classifier scores for the match,

each focusing on a different aspect of the sign, that can be combined into a single

similarity measure.

1.5 Thesis Overview

Chapter 2 examines the existing work in several human activity analysis areas—

general activity and action recognition, generalized gesture recognition, and sign

language-specific recognition—and their shortcomings. Chapter 3 presents the re-

quired background information for the understanding of the similarity measurement

and gesture representation of this sign recognition system and the concepts behind

the proposed methods.
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Chapter 4 introduces the new RGB-D dataset of ASL signs and their annota-

tions and provides an analysis of the Kinect’s hand tracking capabilities. The dataset

and hand tracking benchmark can be used for body part detection research as well as

gesture recognition projects. The dataset is continually evolving and will ultimately

consist of multiple examples of some 3,000 signs performed by several subjects with

varying signing styles.

In Chapter 5, we establish a baseline recognition method and benchmark accu-

racy on a test set from the dataset described in Chapter 4. It gives us a recognition

system foundation and a way to evaluate the methods presented in Chapter 7.

Chapter 6 presents the dictionary system along with a set of actual usage ex-

periments, illustrating the benefits of the system with users unfamiliar with ASL and

the system itself. The chapter also highlights the benefits and superior performance

over the last variant of the ASL dictionary system, both in terms of accuracy and

speed.

Chapter 7 presents the two novel methods for increasing recognition accuracy

based on variations in geometric properties of signs inherent in user-independent

systems. The first, Intra-Class Variation Modeling, provides the set of features that

serve as a likelihood that a test gesture belongs to the same class as a model gesture

given their differences in these properties. The second proposed method leverages

the fact that different users will perform signs in varying positions in the signing

space with differing amount of sign exaggeration to improve recognition rates. These

two methods are designed to work in systems that contain a large vocabulary but a

limited training set, since our training set currently consists of only three examples

per unique sign.

In Chapter 8, we demonstrate the potential of the two methods in a series of

user-dependent and user-independent experiments and achieve significant improve-
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ments in accuracy using both manual and RGB-D annotations for hand and head

locations. We also show that the methods out perform competitors in large vocabu-

lary systems with few training examples. The chapter additionally presents experi-

ments that apply the techniques to the signs recorded by actual users of the system

discussed in Chapter 6 and demonstrate their benefit in real-world scenarios. Finally,

we present discussion of the statistical significance of the accuracy improvements, as

well as the effect of the number of variation modeling features used.
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CHAPTER 2

RELATED WORK

2.1 Action and Activity Recognition

Most recent work has been in action and activity recognition, some from static

images [5, 6], others from video [7, 8]. Most RGB methods are rooted in parts-based

models, consisting of a collection of parts, for example forearm, upper leg, etc., and

a model of their configuration. Tian et al. [7] extend Felzenszwalb’s deformable

parts model [5] into a temporal dimension to use the concept on video. Hierarchical

approaches have also proven successful. Wang et al. take such an approach to the

parts model, in which any part can consist of a group of subparts [6]. Similarly, Ma

et al. employ a two level system and track parts at the whole body level and subpart

level through time, calling them space-time segments [8]. Song et al. approach

the problem instead through a temporal hierarchy and extract features at different

temporal resolutions [9].

Others leverage the depth-sensing capabilities of RGB-D to recognize actions.

Some work at the pixel level. Lu et al. developed a depth feature based on a set of

comparisons between the depths at pairs of pixels at different points in time and then

use an SVM classification system [10]. Others instead rely on the Kinect skeleton de-

tector output of joint positions or the angles between joints. Vemulapalli et al. model

relative geometry between body parts that are not necessarily directly connected [11].

Though it is impressive what these action recognition works achieve, they tend

to focus on classifying small vocabularies of general actions, for example recognizing

golf vs. gymnastics, rather than one gymnastics move vs. another. This is somewhat
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analogous to identifying a video as sign language vs. juggling or aircraft marshal-

ing, rather than identifying specific signs. Some action recognition works do test

their methods on gesture datasets [12, 13], but the vocabularies are limited, and the

methods are generally not directly applicable to our large vocabulary gesture sets.

2.2 Generalized Gesture Recognition

Other research focuses on general gesture recognition and is more applicable to

this work. The gesture sets may be created specifically for this task and can be chosen

so as to minimize similarity between classes. Long Short-Term Memory (LSTM) Re-

currect Neural Networks (RNNs), one of our comparison methods in Chapter 8, have

seen success, and Google has incorporated one into Android to recognize keyboard

gestures [14]. Hidden Markov models, also one of our comparison methods remain

popular, as can be seen throughout the literature and this thesis Section.

There is an abundance of computer vision gesture recognition research employ-

ing RGB cameras. Many of these methods are model-based, using Hidden Markov

Models [15, 16, 17], or alternative approaches such as recognizing motion patterns

from hand trajectories using Time Delay Neural Networks [18] and classifying hand

shapes using a recursive partition tree approximator [19]. All of these methods use

a small vocabulary of signs (less than 100 signs) and have unknown potential for

scalability.

There has also been work in RGB-D generalized gesture recognition. In early

Kinect research, Doliotis et al. reach 95% gesture recognition accuracy in cluttered

scenes but only employ a simple vocabulary of 10 digits drawn in space with the hand

and make the assumption that the hand will be the closest body part to the sensor

[20]. This is often not the case with ASL.
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With the recent ChaLearn Gesture Challenge [21], there have been a number of

works in one-shot learning, in which a single training example is used per class. Wan

et al. propose utilizing the multimodal data of the Kinect to create a 3D Enhanced

Motion Scale-Invariant Feature Transform (3D EMoSIFT) to describe both motion

and appearance for use in a Bag of Features style approach [22]. Konečný et al.

propose using Dynamic Time Warping and a combination of Histogram of Oriented

Gradients (HOG) features to describe appearance of the depth images and Histogram

of Optical Flow (HOF) features to describe the motion [23]. Jiang et al. propose a 3

classifier hierarchical approach that progressively eliminates candidate matches with

each layer [24]. Fanello et al. use a sparse representation approach of appearance

and motion from RGB-D video using HOG and HOF with an SVM classification

system for real time recognition [25]. Pfister et al. combine a strongly supervised

model (one-shot learning) and multiple weakly supervised examples, using a Global

Alignment Kernel [26] for sequence alignment [27]. Goussies et al. employ decision

forests and transfer knowledge from training on one gesture set to other similar gesture

sets. Pitsikalis et al. use motion, handshape, and audio streams from the Kinect to

generate multiple scores and hypotheses that are weighted and combined into a single

best hypothesis [28].

The experiments for the ChaLearn gesture challenge, however, were user de-

pendent. The multiple performances of the gestures occur in the same scene and

position in the video frame, and many of the methods take advantage of this fact and

use global level features on entire video frames or large regions of interest in video

frames. Others assume that the gesture performer provides the only motion found

in the video frames. These assumptions are unrealistic in our work, and it is unclear

how well these methods generalize to handle inter-user variation and scale from the

8 to 12 gesture ChaLearn vocabularies to ours of 1,113.
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2.3 Sign Language Recognition

2.3.1 Fingerspelling, Sign Spotting, and Continuous

A third focus is on developing methods for well-established gesture sets, such

as sign languages. One branch of work is in continuous sign language recognition

and fingerspelling, or the spelling out of words with a signed alphabet. Kim et al.

propose a method to break a video into variable length segments, using letter tran-

sition probabilities, hand shape similarities scores, and a semi-Markov Conditional

Random Field (CRF) to identify the string of letters in fingerspelling videos [29].

Some research focuses on distinguishing between signs and movement epenthesis, or

transitions between signs, to improve recognition [30, 31, 32, 33]. Nayak et al. fo-

cus on unsupervised learning of signs by looking for patterns in multiple videos of

continuous sign language that can be automatically extracted as signs or subunits of

signs [34, 35, 36]. Kelly et al. also work toward automatic learning and extraction of

30 signs in continuous sign language videos with accompanying text translations [37].

To learn the signs, they use Multiple Instance Learning (MIL) on sets of videos that

contain the desired sign more often than any of the other signs; their method does

not require the usual set of videos that do not contain the desired word. The method,

however, does require the user to wear colored gloves so that they can accurately

segment the hands.

Continuous sign language recognition and sign spotting methods can require

large amounts of training data, generally use small vocabularies and are not par-

ticularly useful with our dictionary system goals, though experimentation with sign

spotting could be warranted in an attempt to eliminate the user-provided temporal

segmentation of the sign as is currently required.
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2.3.2 Segmented Sign Recognition

Other research focuses instead on classification of individually segmented signs.

Gloves were once a commonly used input source for sign language recognition [38,

39, 40]. Yao et al. [38] and Liang et. al [39] collected more than 1,000 signs and

250 signs by gloves, respectively. Both systems used HMMs to model the signs. Yao

et al.[38] proposed a pre-processing method, called One-Pass pre-search, to speed

up the recognition process. Wang et al. [40] studied how to track the movement of

fingers through video of a glove with differently colored fingers and areas. Sandjaja et

al. achieve 85.52% accuracy in a Filipino Sign Language number recognition system

but require the user to wear a multi-colored glove [41] to automate hand and finger

location and tracking. It is undesirable for the system described in this thesis to

require the user to wear any special equipment for sign recognition; it is to be as user

friendly as possible.

One popular intuitive method is to segment a sign into motion or other types of

subunits and then use HMMs to model the temporal changes in subunits throughout

each sign. Cooper et al. provide a comparison of two subunit methods, experimenting

with both an HMM and Sequential Pattern Boosting [42]. Using an HMM only

on frames their method designates as high-ranked key frames, Wang et al. achieve

good results in user-independent tests on their large Kinect dataset of Chinese Sign

Language (DEVISIGN) using a vocabulary of 1,000 signs [43, 44]. Their work is

perhaps most similar to what we are trying to do with out ASL recognition research.

HMMs work well with enough training examples to learn the transition probabilities,

but our experiments show that 3 examples per class, as found in our dataset, is

insufficient.

Instead of taking an HMM approach, Han et al. break the signs into subunits

based on hand motion discontinuity and generate a codebook of medoid segments for
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each sign [45, 46, 47]. They train classifiers for the subunits instead of the signs to use

on the video input, since there are far fewer types of subunits than there are signs.

Once the codebooks are generated, they use AdaBoost to train a classifier for each

signs. While they claim scalability, they only tested with a vocabulary of 20 signs,

and it is unclear whether the experiments were user independent.

Lichtenauer et al. propose separating the alignment and classification portions

of recognition by using Statistical DTW (SDTW) for alignment and then a separate

algorithm for classification [48]. Rather than identifying the sign as belonging to the

class with the highest likelihood according to SDTW, they hypothesize that some

of the transition probabilities that played a role in alignment (i.e. those related to

going from rest into the sign movement) should be ignored, and thus use a separate

classification scheme on the aligned features. They experimented with a relatively

small vocabulary of 120 signs with 75 examples of each.

Much of the research involves vocabularies of limited size or requires user-

dependent tests to achieve high accuracy. Zieren et al. achieve 99.3% accuracy in

user-dependent sign language recognition experiments using a 232 sign vocabulary;

the accuracy, however, decreases to 44.1% in user-independent experiments with a

vocabulary of 221 signs [49]. Similarly, Kadir et al. achieve high accuracy with a

vocabulary of 164 signs, but also use the same signer for the training and testing

sets [50]. User dependence is not a realistic requirement in a sign video dictionary

system, since it is an unacceptable expectation that the user pre-perform the signs in

the vocabulary and then manually annotate joint positions.

In the work on which this thesis builds [51, 52, 53, 54], the authors use vo-

cabularies of comparable size and ensure user-independence, but require the user to

provide hand locations either for each frame or for the first frame to initialize a hand
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tracker. The work presented herein automates the process of hand detection and

relieves the user of this responsibility.

There is also a body of research using the Kinect or similar RGB-D cameras

for gesture and sign language recognition, but these studies also tend to use limited

vocabulary size and gesture complexity. Agarwal and Thakur achieve good results

using a static hand gesture vocabulary, consisting of Chinese Sign Language signs for

digits [55].

Zafrulla et al. conduct a Kinect-based ASL recognition feasibility study in which

they recognize 60 distinct, simple phrases of 3 to 5 signs using a 19 word vocabulary

[56]. The authors conducted both seated and standing tests. They achieve word and

sentence recognition accuracy of 74.48% and 36.2%, respectively, for seated tests and

73.62% and 36.3% for standing tests.

Pedersoli et al. explore real-time gesture recognition using a vocabulary of 16

relatively simple one-handed gestures and achieve better than 70% accuracy [57].

However, it requires an open palm, forward-facing orientation for hand segmentation

and assumes the hand is the closest object to the camera for hand pixel clustering

to work. The vocabularies for these works are clearly too small for a sign language

dictionary system.

The methods and experiments presented in this thesis were designed with the

shortcomings of this previous work in mind and more accurately simulate a real-

world usage scenario, thereby providing a more realistic baseline measurement. The

experiments use a large vocabulary of 1,113 signs, ensure user-independence, and

require no special gloves or markers to track the hands; it is as automated as possible.
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CHAPTER 3

BACKGROUND

3.1 Dynamic Time Warping Review

Dynamic Time Warping (DTW) is a time series analysis technique, easily im-

plemented with dynamic programming, that creates an optimal alignment between

to sequences [58]. In our case, the sequences are the representations of two signs—a

model sign, M , and a query sign, Q. DTW creates a minimal cost warping path

between two signs by effectively matching frame by frame what is occurring in the

test and model videos, as described by the feature vectors introduced in Section

3.2.2. The score for matching model sign M to query sign Q given any warping path

W =
(
(q1,m1), ..., (q|W |,m|W |)

)
of length |W | is the summation of the individual costs

c(Qqi ,Mmi) to match query frames qi to model frames mi in the warping path:

C(W,Q,M) =

|W |∑
i=1

c(Qqi ,Mmi). (3.1)

The base DTW score Db between query Q and example M is provided by the

lowest cost of all warping paths:

Db(Q,M) = min
W

C(W,Q,M). (3.2)

Section 7.4 on Multiple-Pass DTW that focus on various aspects of the hand trajecto-

ries builds on this concept and generates multiple scores to be linearly combined with

this base score. DTW enforces three constraints to determine the optimal warping

path:

1. Boundary constraints: q1 = 1, m1 = 1, q|Q|, m|W | = |M |. This ensures, in

our case, that the first frame of the query matches the first frame of the model.
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2. Monotonicity: qi+1 − qi ≥ 0, mi+1 − mi ≥ 0. The frame matches can only

progress forward or remain still; there is no backwards movement in time.

3. Continuity: qi+1 − qi ≤ 1, mi+1 −mi ≤ 1. No frames numbers in either the

query or model sign will be skipped.

Figure 3.1: Example DTW alignment between two same-class sign trajectories using
only hand positions.

Figure 3.1 shows an example alignment, using hand positions only, between the

dominant hand trajectories of two examples of the ASL sign for cheap. The solid

circles represent the positions of the hands throughout the sign. The lines indicate
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frame matches. It can be seen that several hand positions on the left side match with

many hand positions on the right side. This indicates that one signer performed the

gesture at a faster rate. The sum of the squared Euclidean distances between these

frame matches becomes the DTW score.

3.2 Sign Representation

We need an efficient way to describe a sign, since it would be computationally

inefficient and, due to differences in the size and location of signs in a video, not

particularly productive to vectorize the pixels of each frame and run it through the

DTW algorithm. We need a set of descriptors that represent what is occurring at

each time t in a sign, both in terms of positions of the hands and of motions. For this

task, we use the feature vector described in [52], slightly modified to account for the

differences in RGB and RGB-D technology. Since automation is a key requirement

of this sign language video dictionary system, as detailed in Chapter 1, the feature

extraction and vector construction method is modified to use Kinect-provided joint

positions, rather than those derived from the manually annotated hand and face

bounding boxes.

3.2.1 Face-Centric Coordinate System

Since the recognition system does not have control over where the user performs

the sign in the video frame, it is important to choose a coordinate system to describe

hand positions that allows for translation invariance. There are several options to

choose from to be at the origin of the coordinate system. Past work has shown the

center of the face to serve well. Therefore, before constructing any feature vectors to

describe each frame of the sign, the hands—and other body parts, if being used—

need to expressed in this new coordinate system by subtracting the position of the
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face center. This effectively centers the sign viewpoint on the user’s face and ensures

translation invariance.

3.2.2 Extraction of Features

To represent a sign, a feature vector based on 2D hand position information

is built for each video frame that describes what is occurring at that point in time.

For the DTW pass, the hand positions are expressed in the face-centric coordinate

system for the reasons outlined above. For one-handed signs, the position of the

non-dominant hand is set to (0, 0) so as not to contribute to the DTW score. The

following features compose the vectors for each frame t of sign video X:

1. Ld(X, t): Pixel position of the dominant hand.

2. Lnd(X, t): Pixel position of the non-dominant hand.

3. Lδ(X, t) = Ld(X, t)− Lnd(X, t): Position of the dominant hand relative to the

non-dominant hand.

4. Od(X, t): Motion direction, expressed as unit a vector, from frame t−1 to frame

t+ 1 for the dominant hand.

5. Ond(X, t): Motion direction, expressed as unit a vector, from frame t − 1 to

frame t+ 1 for the non-dominant hand.

6. Oδ(X, t): Direction of change for Lδ from frame t− 1 to frame t+ 1, expressed

as a unit vector.

There are four main types of two-handed signs: signs in which the hands move

in a symmetric manner, signs in which the hands move in an anti-symmetric manner,

signs in which the hand movement is a combination of the other types, and signs in

which one hand is static and the other moves. In the above feature descriptions, the

dominant hand is the hand that will be moving.
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The feature vectors for each frame are then combined into a single matrix to

describe the sign, so that each row represents a single frame of video. Given the

features described above, the DTW local cost of matching Query frame number qi to

model frame number mi, as described in Section 3.1, now becomes a weighted linear

combination of the squared Euclidean distances between the six components of the

features:

c(Qqi ,Mmi) =s1‖Ld(Q, qi)− Ld(M,mi)‖2 +

s2‖Lnd(Q, qi)− Lnd(M,mi)‖2 +

s3‖Lδ(Q, qi)− Lδ(M,mi)‖2 +

s4‖Od(Q, qi)−Od(M,mi)‖2 +

s5‖Ond(Q, qi)−Ond(M,mi)‖2 +

s6‖Oδ(Q, qi)−Oδ(M,mi)‖2,

where weights {s1, ..., s6} are empirically determined on a validation set.

Figure 3.2 shows the alignment of the same trajectories as Figure 3.1 but using

the full feature vector described above. By including motion direction and the other

components, the alignment better matches similar areas of the trajectories. Rather

than matching based purely on Euclidean distance between points on the trajectory,

it allows matching the curvature of the trajectories as well.

3.2.3 Sign Size Normalization

Just as the system does not have control over the position in the video frame

where the user performs the sign, it also does not have control over the signer’s

distance to the camera or the resolution of the camera. When the user is further

away from the camera, the same trajectory will appear smaller, so it is important to

normalize the size of the sign to make the method scale invariant. For the experiments
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Figure 3.2: Example DTW alignment between two same-class sign trajectories using
the full feature vectors.

using the manual annotations of the hand positions, the sign is size-normalized so that

the diagonal of the face bounding box is 1. This technique has proven to provide a

good representation of the coordinate space.

Other experiments use the positions of the hands and head provided by RGB-D

skeleton detectors, so we do not have access to a bounding box for the face. We can

use a face detector, but experimentation has shown that the bounding box size varies

greatly, even without the person adjusting their distance to the camera. We instead

want to use information about joints that are easily located by the skeleton detectors.
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Resizing the sign based on the head-neck distance is one such option and was used

in the early experimentation with the system. However, it makes sense that shoulder

width would provide a better indication of the size at which a user would perform

a given sign. A person with broad shoulders is more likely to perform the sign in a

larger space, due to longer arms, while their head-neck distance is likely nearly the

same as a narrow-shouldered individual.

The Kinect does a good job at locating the shoulders, so they they are what

the system currently uses. Due to the slight joint location stability problems inherent

in the skeleton detection algorithm, the sign is size-normalized so that the average

non-zero shoulder width throughout the sign is 1.25. This provides a more consistent

resizing distance by reducing the effect of outlier shoulder positions, and ensures that

frames in which the shoulders are not detected (and set by default to 0,0 in our

annotations) are not included in the resizing calculations.

3.2.4 Frame Length Normalization

One issue with using DTW for gesture recognition tasks is that it is biased

toward shorter model signs. With fewer frames to match, fewer error distances are

added to the sum of local frame distances in Equation 3.1. In order to eliminate this

bias, we can make all model signs the same number of frames using interpolation. Ex-

perimentation has shown that bicubic interpolation on the feature matrix produces

the best results. A frame normalization length of 25 has also been empirically deter-

mined to provide the best combination of accuracy and time required by the dynamic

programming DTW algorithm.
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3.3 Convex Hulls

This section briefly introduces the concept of convex hulls and the motivation

for using them in this work. Given a set of points in space—2-Dimensional space in

this work—if we were to stretch a rubber band around the points and release it, the

rubber band would contact certain points and form a polygon that encompasses the

entire set of points with a minimal set of vertices. The points that are in contact

with the rubber band become the vertices of the polygon; all other points are interior

points and do not define the polygon.

Figure 3.3 illustrates this concept with the ASL sign for the English word check.

If we remove the temporal aspect of the sign, we can look at the trajectory as a set

of points (i.e. hand positions) in space. In 3.3a, the entire set of these positions

from the entire trajectory are shown for the dominant hand. In this thesis, we are

interested in various properties of the general shape of the closed trajectory. If we

stretch the rubber band around the points, certain points will define the convex hull

polygon, shown as red points in 3.3b and shown isolated in 3.3c. Figure 3.3d shows

the resulting polygon with the extraneous interior points removed. It can be seen

that the centroid of the convex hull better describes the center of the trajectory than

does the center of the trajectory bounding box.

To understand the motivation for using convex hulls, consider figure 3.4. The

trajectory forming the sign is shown as a blue line, while the hand positions at each

frame are shown as blue circles. The red circle is the center of the trajectory bounding

box, while the black circle is the centroid of the convex hull. The centroid provides

a better indication of the true center of the trajectory shape than does the bounding

box center. The method decribed in Section 7.4 explores the potential of centering

the coordinate system on a position other than the face, as is done in the base DTW

method. If we were to center the sign, for example, on the centroid or center of
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the trajectory, we would potentially achieve a better DTW alignment. This figure

demonstrates that the centroid would perhaps be a better choice for alignment, as it

is closer to the true center of the trajectory.
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(b) Convex Hull Points in Red
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(c) Isolated Convex Hull Points
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(d) Trajectory Convex Hull

Figure 3.3: Shows the development of the trajectory convex hull. The center of the
trajectory bounding box is shown as a green circle, while the centroid of the convex
hull polygon is shown as a black circle.
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Figure 3.4: Plot of the center (red circle) of the trajectory bounding box and the cen-
troid (black asterisk) of the convex hull centroid. The centroid is a better indication
of the center of the trajectory.
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CHAPTER 4

3D BODY PART DETECTION AND ASL RECOGNITION DATASET

4.1 Introduction

This chapter introduces a new 3D body part detection and ASL recognition

dataset that will become part of the ASL video dictionary system and will be used to

develop the new methods proposed in this thesis. A sign language video dictionary

system like that described in [53, 52] or the updated version in this work necessitates a

certain level of visual human-computer interaction. More specifically, it requires a vi-

sion system that is able to reliably detect and track a user’s hands (and possibly other

body parts), so that information about them—for example position, appearance, and

movement—can be used to look up the meaning of the unknown sign. With the

advent of the Microsoft Kinect in 2010, computer vision researchers were presented

with an opportunity to utilize scene depth information, a capability previously only

available with more expensive or cumbersome systems, such as laser depth sensors,

stereo cameras, or multi-camera systems. The Kinect and its kin are thus usable in

products that are more approachable by the average consumer and offer the potential

to more reliably detect and track the hands using this scene depth information.

In addition to improving hand detection rates, incorporating information about

the third dimension into gesture recognition tasks affords us a more accurate repre-

sentation of what is actually occurring in the scene. A gesture is not merely a 2D,

planar event. It has a 3D trajectory and thus, for the utmost accuracy in its repre-

sentation, requires the third dimension information for trajectory matching. There is
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Figure 4.1: Sample dataset sign frame. Left: color video frame; Right: scene depth
information.

a lack, however, of publicly available 3D ASL datasets. It is with these motivations

that the dataset described herein is being created.

Reliable detection of the hands can be difficult in real-world sign recognition

scenarios, and the dataset presented in this chapter allows researchers to develop new

hand detection and tracking algorithms and experiment with both 2D and 3D gesture

and sign recognition methods. A hand location accuracy benchmark is presented in

this chapter that provides a baseline measurement to which researchers can compare

their own hand detection and tracking methods.

4.2 Dataset-Specific Related Work

One of the highest quality video datasets useful for hand detection and ges-

ture recognition research is the American Sign Language Lexicon Video Dataset

(ASLLVD) [59]. It consists of a large set of recordings from multiple camera an-

gles of the signs contained in the Gallaudet Dictionary of American Sign Language

[60], performed by native signers. Each sign is annotated with the gloss label (ap-

proximate English translation), start and end frames, hand shapes at the start and
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end frames, and position of the hands and face, with multiple examples per sign.

Such datasets, while useful, lack any information about scene depth, since they were

recorded with standard RGB cameras. Thus, when using them, researchers suffer

from the limitations of having to use conventional 2D hand detection and tracking

algorithms based on, for example, skin color and motion.

There are also available some 3D gesture datasets. Guyon, et al., present a

Kinect–based 3D gesture dataset for the ChaLearn gesture recognition competition

in [21] that contains 50,000 gestures recorded by 20 different users, organized into 500

batches of 100 gestures. Compared to the ChaLearn dataset, the dataset described in

this chapter has certain advantages. First, our dataset is recorded at a higher frame

rate of 25 frames per second (fps), as opposed to 10 fps. Secondly, only 400 frames

are manually annotated with any skeletal information in the ChaLearn dataset, which

makes it difficult to quantify the efficacy of any body part locator or tracker being

developed. Our dataset contains skeletal information for every frame of each sign.

Third, our dataset sonsists of a much larger vocabulary. Finally, as the ChaLearn

videos are offered only as AVI files, we cannot translate the pixels into x, y, z coor-

dinates in a 3D world reference frame. Our dataset provides access to the raw scene

depth information and allows us to determine the x, y, z coordinates in the Kinect

reference frame.

The MSRGesture3D dataset from Zicheng Liu at Microsoft Research is an ASL

dataset recorded with a Kinect [61]. It consists of 12 dynamic signs from 10 signers,

each performed 2-3 times, with the hands segmented above the wrist. Due to its

limited vocabulary size, it is unusable in this work.

The most similar dataset to ours is the large DEVISIGN database of standard

Chinese Sign Language created in a collaboration between Microsoft Research Asia,

the Chinese Academy of Sciences, and Beijing Union University recorded by 30 signers
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[44]. This dataset is particularly useful for recognition methods, such as HMMs, that

require a larger dataset for training. While it has a larger vocabulary than ours and

consists of more signers and training examples, it only provides Kinect annotations

for the joint positions. It lacks the manual annotations of body part locations that

can provide the ground truth for evaluating, for example, hand detectors, as well as

any temporal segmentation of the signs.

4.3 Dataset

The goal is to create a structured motion dataset that will enable researchers

to explore body part detection and tracking methods, as well as gesture and sign

recognition algorithms not possible with such datasets as the ASLLVD [62] by using

depth-based features. The dataset is being recorded with a Microsoft Kinect. Figure

4.1 shows an example from one of the recording sessions. In the depth image of this

figure, the darker gray areas of the image are located closer to the camera. The black

regions are portions of the scene for which depth information was not available in the

IR shadows.

4.3.1 Size and Scope

Ultimately, the final dataset will contain the 3,000 signs found in The Gal-

laudet Dictionary of American Sign Language [60], offering an abundance of complex

movements of the hands and arms. Currently, 1,113 signs, both one-handed and

two-handed, have been recorded with one fluent signer and 750 with another, but

we are in the planning stage to record additional signers, so that there are multiple

examples of each sign. As with [59], fingerspelled signs, loan signs, and classifiers are

not included in the dataset. A fingerspelled sign is a word that is spelled out by using

the manual alphabet. When a signer has to use a letter that is part of the overall
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sign, that letter is known as a loan sign. Classifiers provide additional information

about the object being signed, but since there are infinite variations of them, they

are excluded.

4.3.2 Technical Specifications

Both the Kinect color frames and depth frames have a resolution of 640× 480

pixels and are recorded at frame rate of 25 frames per second. Since the native

resolution of the Kinect depth sensor is 320× 240, the depth frames are resized using

interpolation.

The signers perform groups of ten signs per video in front of a plain backdrop

in a lab with consistent lighting. The signs are performed while standing, and the

scene is framed so as to include the region from about the knees to several inches

above the signer’s head. This ensures that the entire signing space is included in the

video frames. Each video begins with a calibration pose that can be used to detect

the signer and initialize tracking. After the pose, between each sign, and after the

last sign, the signer returns her hands to her side, ensuring a clear separation of the

signs in the video.

The now defunct PrimeSense, LTD. OpenNI framework [63] was used to record

the signs in the ONI format. OpenNI was an open source sensing development frame-

work used in many third party APIs. Its purpose was to standardize compatibility

and interoperability of Natural Interactive devices and applications. Though the

company no longer exists, OpenNI and third party software developed around it are

still useful to and are used by researchers that want to develop their own detection

and tracking tools. Compressed and uncompressed 8-bit AVI videos of the record-

ings are also available for both the RGB and depth sensors, as are 16-bit binary files

containing full resolution depth data.
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All new signers, however, will be recorded with the improved time-of-flight-

based Microsoft Kinect version 2, a device with higher resolution in both depth and

RGB video, more precise depth measurements, and an improved depth range. The

new skeleton joint positions will be provided by the Microsoft Kinect SDK, and pre-

liminary experimentation—described in Chapter 6—has shown the joint locations to

be more stable and reliable than those from NiTE.

4.3.3 Annotations

Each video in the dataset is annotated with the start and end frames of each

sign so that any sign can be quickly accessed. The first depth video frame of each sign

is manually annotated with a bounding box around the signer’s face to give an idea

of the scale of the individual in the video. Using this information, the researcher can

scale the query and model signs to be the same size before comparison. Furthermore,

every depth frame belonging to a sign is manually annotated with bounding boxes

around the hands. The hand and face annotations for an example sign frame are

shown overlain on the depth frame image in figure 4.2. In addition to the position and

frame information, the annotations include information about the signs themselves,

such as signer ID, file locations, sign type (two-handed or one-handed), and gloss, or

approximate English equivalent.

4.4 Hand Detection Benchmark

In order to establish the benchmark, we chose to use the hand location capa-

bilities of the user skeleton tracker included in the OpenNI 1.5 NiUserTracker sample

program [63], since it was freely available to everyone. In particular, the upper body

joint positions provided by the tracker were recorded for each frame of the videos, as

well as the confidence level of those positions.
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Figure 4.2: Sample hands and face annotations of a single depth video frame.

To evaluate the efficacy of using the skeleton tracker to approximate the posi-

tions of the hands, we used 606 signs of varying complexity from the dataset—206

one-handed and 400 two-handed—and processed them with the tracker. For one-

handed signs, only the signing hand was considered. Once the hand positions were

obtained, they were compared to the ground truth positions from the manual annota-

tions, and the Euclidean pixel distance between them was recorded as a score, so that

a lower score would indicate a closer estimation of the hand’s actual location. This

operation was performed on each frame of the signs, and the accuracy was calculated

to serve as the benchmark for the evaluation of future methods.
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Figure 4.3: Skeletal tracker pixel error for hand locations.

Accuracy is described as a percentage of frames in which the automatically

generated hand locations fell within in various pixel distances (termed pixel error) of

the manual hand annotations. Figure 4.3 shows the accuracy of the skeletal tracker in

locating the signer’s hands in both one-handed and two-handed signs. For example,

in 80% of the frames of two-handed signs, the skeletal tracker had a pixel error of 27

pixels or less for the right hand. These results set the standard to which the hand

detection method proposed in chapter 6 will be compared.

We also calculated the maximum pixel error for each sign, separated into one-

handed and two-handed signs. Figures 4.4 and 4.5 show the results for the skeletal

tracker and its comparison to the single hand detector, respectively. We can see in
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figure 4.5, for example, that 50% of the signs had a maximum pixel error of about 22

pixels or less when the comparison method of [20] was used to detect the hands.

Figure 4.4: Maximum hand location pixel error on a per sign basis for the skeletal
tracker.
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Figure 4.5: Skeletal tracker and one hand gesture method maximum pixel error on a
per sign basis.
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CHAPTER 5

BASELINE ASL RECOGNITION EXPERIMENTS

5.1 Introduction

In Chapter 4, a 3D structured motion dataset was presented that can be used

to test body part detection and gesture or ASL recognition algorithms. The chapter

also presented a hand detection benchmark to which the methods developed in this

thesis can be compared. This chapter deals with ASL sign recognition, and several

methods are proposed for improving recognition rates. Section 3.1 introduces the

similarity measure on which the methods developed in this thesis are based. Using this

similarity measure, Section5.2 establishes a sign recognition benchmark that provides

results from using both the ground truth hand location knowledge obtained from

manual annotations and the imperfect hand location knowledge from a popular Kinect

skeleton detection algorithm. This allows comparisons of potential improvements in

both the sign recognition and hand detection methods. The standard set forth in this

chapter will be used throughout this thesis to evaluate the efficacy of the proposed

methods.

5.2 Sign Recognition Benchmark

This section introduces the benchmark we created for evaluation of the methods

presented in this thesis. In it, we describe the model and test sets used for the

experiments, as well as the experiments, and provides a discussion of the results.

This discussion outlines problems inherent in large vocabulary gesture sets and Kinect

provided hand positions that reduce recognition accuracy.
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5.2.1 Training Set

Due to the lack of publicly available 3D ASL datasets and the incomplete status

of that described in Chapter 4, we chose to use a standard 2D RGB dataset for

training and were, thus, working with 2D projections of the signs onto the image

plane. In the experiments, we used a 1,113 gesture vocabulary training set to which

we matched our smaller subset of RGB-D signs. To ensure user independence, no

videos from the test set signer appear in any of the training sets. As additional

annotations are made available and the 3D dataset is expanded to include several

additional signers, 3D trajectory matching experiments will be performed to establish

an additional benchmark. Three examples each, from different signers, of the 1,113

gesture vocabulary were taken from the dataset described in [59] to be used as training

examples. Since the videos are standard 2D RGB videos and there is no real-world

distance information for the hand and head positions, we used their pixel locations

in our training data.

5.2.2 Test Set

We calculate baseline accuracy on two datasets, JK850 and CK368, from our

3D dataset recorded with OpenNI [63]. The first set consists of a mix of 850 one-

handed and two-handed signs of varying complexity. The second consists of 368

signs and is a more difficult set due to the wide variation in performance from the

models. We used the NiTE skeleton tracker [64] to determine the hand positions in

each frame and the head position in the first frame of each sign. As the NiTE tracker

provides positions for joints in a 3D Kinect-centric coordinate system, we used the

projections of those positions onto the 2D depth image plane, so that instead of the

real-world distance measures for the joints, we were using their pixel coordinates. This

allowed for proper comparison with the pixel coordinates used in the training set, once
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Figure 5.1: Baseline accuracy for JK850

they were expressed in the face-centric coordinate system and normalized to ensure

translation and scale invariance. For comparison to a best possible scenario using this

similarity measure, experiments were performed using the manual annotations of the

hand positions in each frame in addition to the skeleton tracker generated positions.

5.2.3 Benchmark Results

After running the gesture recognition experiments using the skeleton tracker

data, the accuracy was calculated as a percentage of signs for which the correct

match was ranked in the top k results returned by the system. Figures 5.1 and 5.2

show the results on the individual datasets. For example, 65.3% of the two-handed

signs in the JK850 dataset ranked in the top 20 matches using the Kinect annotations

vs. 55.8% of the CK368 set.
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Figure 5.2: Baseline accuracy for CK368

Figure 5.3 compares the combined one-handed and two-handed accuracy of the

JK850 and CK368 datasets. The results indicate that the CK368 dataset is a more

difficult set.

Finally, we present the overall accuracy on all signs using the skeleton tracker

and manual annotations in figure 5.4, giving both datasets equal representation in

the results. This figure gives us two goals. First, both the best-case and skeleton

detector results provide a benchmark for improvement of the similarity measures by

incorporating the methods discussed in Sections 7.3 and 7.4. Second, the results of

experiments using Kinect skeleton output provide a baseline for comparison of future

automatic hand detection methods being developed. There is a clear discrepancy in

the accuracy using the manual annotations and Kinect annotations. Since automation

is an ease-of-use requirement of this ASL dictionary system, a major goal becomes

to improve recognition using Kinect annotations. The methods presented in sections
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Figure 5.3: Comparison of JK850 and CK368

7.3 and 7.4 work toward this end and show a significant improvement on signs using

the Kinect annotations.

5.2.4 Discussion

There are several key observations to be made when examining the results. One

is that two-handed signs tend to be easier to recognize than one-handed signs. This is

due to the increased uniqueness of the sign classes resulting from having trajectories

for two hands. When there is only one trajectory to compare, many signs will share

similar trajectories, especially since we have many static signs. One of the goals in

this research thus becomes to address this discrepancy. Chapters 7.3 and 7.4 address

this concern to an certain extent, and do significantly improve one-handed accuracy,

but it is left to future work to create classifiers that are specific to one-handed signs.

DTW is not necessarily the best method to use.
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A second key observation to make is the large difference in accuracy between

the two datasets. It is clear that the DTW-based recognition struggles on the CK368

dataset. This is due to the fact the its signer produces signs with different degrees of

gesture exaggeration when compared to our model sets, resulting in much different

sizes of trajectories with far more warping of the sequence than DTW can sufficiently

handle. There tends to be a significant degree of trajectory misalignment that causes

incorrect matches. Chapters 7.3 and 7.4 do a great deal to account for these variations

in gesture size and expressiveness by modeling these variations among same-class signs

and by both refocusing the coordinate system on different parts of the trajectory and

adjusting the manner in which a sign is size normalized. The results of the experiments

in Chapter 8 show a far better improvement in accuracy on the CK368 dataset and

demonstrate the potential of the methods in a dictionary system where students of
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ASL will likely perform the query signs with large variations compared to the example

signs.

When we examine the results and take note of the specific signs with poor recog-

nition rates, two other general causes of problems become apparent: large vocabulary

sign similarity and skeleton tracker inaccuracies. The intra-class variation modeling

and multiple-pass dynamic time warping proposed in sections 7.3 and 7.4 also help

minimize the impact of these problems.

5.2.4.1 Gesture Similarity

Many gestures, particularly one-handed gestures, share a similar trajectory, and

it can be seen in figures 5.1 and 5.2 that the one-handed signs are matched in the

top 10 signs at a much lower rate than the two-handed gestures. Many of these signs

are static gestures, in which the position is approximately the same across signs and

only hand shape differs. Figure 5.5 shows frames from 4 such signs.

It is evident that the skeleton tracker alone does not output enough information

to distinguish between the signs, since it does not estimate the structure or finger con-

figuration of the hand itself. In order to incorporate automatic hand shape detection,

this would first require the development of an algorithm to cluster the pixels belong-

ing to the hands using the Kinect hand positions as a starting point. The positions,

however are far too unstable to use them directly, and this clustering is beyond the

scope of this work. The incorporation of hand shape or appearance comparison, how-

ever, can significantly improve the results and is left for future work. The methods

presented in this thesis instead try to account for the variation in position and size

of the performed signs, as well as the arbitrary trajectory resulting from the inability

of a signer to keep the hand still in static signs.
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Figure 5.5: Examples of sign similarity. The position is roughly the same, but the
hand shape differs.

5.2.4.2 Skeleton Tracker Inaccuracies

It is clear that existing skeleton trackers are not designed for tracking complex

and intricate skeletal joint movement. Joint proximity to each other or the body can

cause problems. The current depth-based trackers sometimes fail in instances when

the hands and arms come into contact with the body, likely due to the limited depth

resolution of the Kinect, as well as limitations inherent in the depth disparity feature

that is used by the algorithms [65]. Signs for which there is no clear separation and

obvious distance between the limbs and the body often cause the tracker to lose the

joints.
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In the test dataset, when the signer lowers her hands between signs and places

her arms at her sides, the tracker often loses lock of the joints as they blend into the

mass of the body. When she lifts her arms to perform the next sign, the tracker can

take a significant portion of the sign to relocate the joints. Such is the case in figure

5.6. The green shows the centroid of the manually annotated bounding box, while the

red shows the skeleton tracker hand estimate before it reacquired the hand position.

This would indicate that the NiTE skeleton tracker is attempting to track a located

joint rather than detect it in each frame as the Microsoft Kinect SDK detector does.

This may not be an issue in a sign language video dictionary system when the user

Figure 5.6: Failure of the skeleton tracker after the signer’s arms were at her side.
The red square is the tracker hand position estimate. The green square is the centroid
of the hand bounding box.
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can ensure that the tracker is properly tracking movements before performing the

sign.

Gestures in which the arms cross can also provide considerable difficulty for the

skeleton tracker. The tracker struggles to distinguishing between the arms, the joint

position estimates begin to destabilize, and the tracker loses lock on the joints.

There are also joint estimate stabilization issues between frames. Even when

the skeleton tracker does not lose track of the joints, the hand position, for example,

can jump around the hand from frame to frame, even in a static gesture in which

there is little movement of the hands. When part of the feature vector extracted from

hand positions includes various directions of motion and changes in those directions

from frame to frame, this instability can have an effect on scores and recognition

accuracy. The newer Microsoft SDK appears to address this issue to some extent,

but it remains a problem. Work is clearly needed on the stability of joint position

estimates and the responsiveness of tracking to movement, but it is beyond the scope

of this work.

It is evident that the existing trackers are geared more towards whole body pose

estimation and do well in recognizing action poses that use large deliberate movement,

such as kicking, jumping, large arm movements, etc [65]. This makes sense, as the

Kinect was designed to be part of a gaming system. Besides these full body poses,

the only hand gestures it was designed to handle are for simple menu navigation.

Due to the depth disparity feature used, the Kinect was never intended to achieve

fine-grained discrimination between joints in close proximity to the body.
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CHAPTER 6

ASL VIDEO DICTIONARY SYSTEM

6.1 Introduction

The ASL Video Dictionary System (ASLVDS) presented herein offers users

the ability to quickly and easily search for the meaning of an unknown sign in a

more integrated and automated manner than the previous variant, while improving

accuracy and reducing the time required per query. It eliminates inconsistencies in

sign size normalization due to human factors and streamlines the dictionary search

process.

There are several advantages over the previous system. The previous system

required the use of two pieces of software. The user would first record a video of the

sign using third-party web-cam software and would then import the recorded video

into the dictionary system for sign matching. The system described in this chapter

integrates the recording and matching into a single program, thus making sign search

both easier and faster.

The earlier version of the dictionary system also required the user to initialize a

hand tracker and trajectory generation algorithm by drawing bounding boxes around

the hands and face in the first frame of the sign. The tracker could then track the

hands throughout the sign. If the tracker lost the hands during the sign, the user could

then correct the frame where it lost track and have the algorithm retrack the hands.

This requirement is eliminated by using a Microsoft Kinect for Windows v2 [66] to

automate the hand detection process, but other methods may also be employed.
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As the recorded query signs are scaled based on the size of the user’s face in

the previous system, differences in the sizes of the bounding box users draw for the

face can affect system performance. This system seeks to eliminate inconsistencies

by using a proportion of the distance between two easily located joints in the user’s

skeleton as detected by the RGB-D skeleton detection algorithm. This proportion is

learned through experimentation on a validation set containing none of the users that

participated in this study.

The system is evaluated by performing a series of sign match accuracy and

timing tests on a random set of signs from the 1,113 sign vocabulary, employing a

user-independent experimental protocol. In order to recreate a realistic usage scenario

in the tests, participants with little to no knowledge of ASL are used, and none of

them are familiar with the dictionary system itself.

6.2 Video Dictionary-Specific Related Work

Recent work using RGB videos for sign language recognition is found in [67,

68, 69]. Bragg [67] proposes a system called ASL-Search. When a user encounters an

unfamiliar sign, ASL-Search requests the user to select sets of features including hand

shapes, orientations, locations, and movements from the interface based on his/her

observation, and recognition is based on these selected features. Requiring the user

to select from among these features reduces system ease of use, and can introduce

potential for error, as the user may classify a feature incorrectly.

Depth sensing technology, like the Kinect, has also been explored for sign lan-

guage recognition systems [70, 71]. Elliott et al. [71] proposed a Kinect camera based

sign look-up tool which includes an interactive sign recognition system and a real-time

sign synthesis system. The method uses hidden Markov models (HMMs) to model

signs. Pavlakos et al. [70] combined visual cues (color and depth images) and au-
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dio under an HMM framework, and the proposed method was evaluated on a public

gesture dataset: the ChaLearn multi-modal gesture challenge dataset [21]. Given the

amount of training data often required by such techniques, this is an unreasonable

approach for this dictionary system.

6.3 The ASL Video Dictionary System

This section introduces the new fully integrated RGB-D ASL video dictionary

system and experiment platform for which the methods in this thesis are being de-

veloped, and outlines the improvements over the previous system. It demonstrates

an improved sign match accuracy and significantly reduced time required per query.

6.3.1 System Description

The ASL Video Dictionary System is a combination of hardware and software:

Microsoft’s Kinect 2 RGB-D sensor and a custom Graphical User Interface (GUI).

The system is written in C++, using the Qt 5.3 application and UI framework [72]

for the GUI, OpenCV 2.4.9 [73] for image processing, and Microsoft’s Kinect SDK v2

to access the sensors and generate the skeleton data [74]. At present, the dictionary

is trained three examples each of the 1,113 sign vocabulary discussed in chapter 4,

obtained from the American Sign Language Lexicon Video Dataset [75].

6.3.1.1 Hardware

The dictionary system uses a Microsoft Kinect v2 RGB-D sensor and the associ-

ated Kinect SDK v2 to provide several streams of data. Specifically, the depth, color,

body, and body index streams are utilized. Whereas the color (RGB) stream provides

standard 1920× 1080 pixel video frames, the depth (D) stream provides scene depth

information with a resolution of 512 × 424 pixels. It is this scene depth information
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Figure 6.1: The ASL Video Dictionary System

that enables the skeleton detector to work (see [65] for details). The output of the

skeleton detector is provided by the body stream, which consists of the 3D coordi-

nates (with the sensor as the frame of reference origin) of all 25 joint positions that

the Kinect SDK v2 provides. The coordinates can be mapped to their corresponding

2D projected pixel positions in the depth image. The body index stream provides

information about which depth frame pixels belong to different people in the video.

Example corresponding color, depth, and registered (color pixels mapped to depth

pixels) video frames can be seen in figure 6.2.
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(a) Color Frame

(b) Depth Frame (c) Registered Frame

Figure 6.2: Example corresponding color, depth, and registered video frames

6.3.1.2 Graphical User Interface

The system GUI is composed of two main sections: a query recording section

and a results section. The query recording section allows a user to select a video

stream to display, record and review a video, ensure skeleton detection works properly,

perform temporal segmentation of the sign, and initiate the matching process. When

the user records a video, all data streams are recorded, though only one is displayed.
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Figure 6.3: The system GUI: Highlighted in blue is the query recording portion.
Highlighted in green is the results section.

The results section presents a ranked list of sign matches, enables the user to

view a video of each matched sign, and provides result search capabilities. Figure

6.3 shows the GUI before recording of a sign has begun. The depth stream has been

selected, the user’s body isolated, and the limbs are being drawn. Figure 6.1 shows

the GUI after a search has been performed. In it, the registered image—in which

each depth image pixel’s corresponding color pixel is drawn—is displayed with the

head and hands positions and limbs drawn.
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6.3.1.3 Feature and Trajectory Generation

The hand positions are expressed in the new coordinate system using the skele-

ton detector head position in the first frame of the sign as the origin, as described

in Section 3.2. Instead of using the face size, the sign size is normalized based on a

proportion of the head-neck joint distance; this proportion was learned through exper-

imentation. The new coordinate system and resizing ensures scale- and translation-

invariance. Future experimentation will determine if the shoulder-to-shoulder dis-

tance would be a more appropriate basis for resizing the sign. Preliminary experi-

ments show that this might be the case, as shoulder width, rather than head-neck

distance, can be a better indication of both the size of and the arm length of the user.

6.3.1.4 Sign Matching

Using the method described in Section 3.1, two sign rankings are generated. One

contains all three examples of each sign of the same type, while the other contains

just the best scoring of the three examples in each sign class. Either set of rankings

can be displayed.

6.3.1.5 Results Display

When sign comparison is complete and the results are ranked according to

similarity, a list of the definitions of the results is generated and displayed. By

clicking on any of the results the user can play a video of the sign to determine if it is

correct match. Since there are three training examples of each sign and two ranked

lists are generated as described in Section 3.1, the results display output mode can be

selected to show either all matches or just the matches using the lowest of the three

scores from the training examples. The results section of the GUI also provides search
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functionality, which can be useful in an experimental setting in which the meaning of

the sign is known.

6.3.1.6 System Usage

There are three phases to using the system. First a query sign is recorded.

Second, temporal segmentation is performed to isolate the sign. Third, handedness

is selected, matching is performed and the results displayed.

Figure 6.4: System Controls

When the ASL Video Dictionary System starts, the Kinect starts streaming and

the live video is displayed along with the locations of the hands and head; the user

has the option of adding limbs to the display. When ready, the user presses the record

button, and the system starts recording joint positions (both 3D world coordinates

and 2D pixel locations), joint states (i.e. tracked, inferred, or not tracked), the 16-bit

depth video, the color video, and the registered video, in which each depth pixel is

mapped to its corresponding color pixel. The left side of the blue outlined area in

figure 6.4 contains recording and streaming controls that allow the user to start and

stop the Kinect as well as the query recording. The green area of figure 6.4 contains
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the available data stream and display options. All streams, as well as timing and

accuracy data, can be written to disk for later analysis and detection of bottlenecks.

The user then performs the sign and can use the skeletal overlay on the display

to ensure the detector is working properly. When the sign has been performed to the

user’s liking, he can stop the recording, view what has been saved, and move on to

temporal segmentation. The slider and buttons in the top and right sections of the

blue area in figure 6.4 allow the user to set the start and end frames of the query and

to play the full or cropped recording with the skeletal overlay.

During the temporal segmentation phase, the user marks what he or she feels

are the start and end frames of the recorded sign. The user can again review the

segmented sign and make any changes to the start and end frames that may be

needed. After ensuring that the appropriate sign type (i.e. one or two handed sign)

has been selected in the matching options section (red area of figure 6.4) and whether

it is left hand dominant in the case of two-handed signs, the user can begin the match

process.

When the Match Sign button is clicked, the joint position data is cropped and

sent to the trajectory generation algorithm, which builds the modified version of the

feature vectors described in Section 3.2. As the skeleton detector does not provide a

face bounding box, the system uses a portion of the head–neck distance to normalize

the size of the sign. This portion was learned through experimentation on a signer

not participating in the study. The feature vectors are then used for sign matching

using DTW, as described in Section 3.1. After matching is complete and the results

displayed, the user looks through the videos associated with the ranked list for the

sign in question.
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6.3.2 Experiments

An assortment of experiments were run to evaluate the performance of the

system with respect to sign match accuracy and the amount of time it takes to use the

system. To simulate a typical usage scenario, we chose experiment participants with

little to no experience with sign languages. This enables us to asses the performance

of the system with a typical user, instead of a regular user of ASL who knows how to

perform the signs properly. Furthermore, they had never used the system before and

had not yet developed the ability to very quickly perform a sign search.

For the study, five participants, designated P01–P05, were given a brief intro-

duction to the system so they could observe how to use it and were presented with

video examples of 30 signs chosen randomly from the 1,113 signs in the dictionary

system’s vocabulary. A separate set of 30 random signs was generated for each par-

ticipant. After viewing video of the sign to be performed, the participant used the

system to search for the meaning of the sign without intervention from the experiment

coordinators.

For each sign that the participants performed, the color, depth, and registered

videos were written to disk, as well as position information for all 25 joints output by

the skeleton detector, the ranked results lists, and timing information, including the

time from the start of the query recording to results display, the time required for the

entire matching algorithm (trajectory generation, results ranking and display), and

the time required by DTW.

If the participant made a mistake, for example forgot to mark a sign as one-

handed, and needed to rerun the matching algorithm on one-handed signs, the entire

time from their first attempt until they received appropriate results was logged. As

real users of the system are expected to make mistakes, especially when learning the

system, this provides more realistic usage timing data.
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In Section 6.3.3, a comparison is provided of sign recognition results from the old

and new systems on the same videos. To generate accuracy results on the old system,

we imported the color videos recorded on the new system and used the same start and

end frames as determined by the participant. As the old system is not intuitive to

use, an individual experienced with the system performed all experiments. Since the

old system offers the ability to incorporate handshape into the matching algorithm,

we ran the signs twice, both with and without handshape, and recorded each sign’s

best rank between the two.

We also recorded informal timing data with the old system. Since the video had

already been recorded on the new system, however, we did not include the recording

time for these signs. Instead, we record the time from the beginning of sign video

importation to the display of results. Timing data from the two systems is compared

in Section 6.3.4.

6.3.3 Accuracy Results

System accuracy is computed as the percentage of signs whose correct match

is found in the top k results returned by the system. Figures 6.5a–6.5e show system

accuracy for the individual participants. It can be seen that in all but one case,

the new system outperforms the old system to varying degrees. For example, for

participant P04, the old system returned the correct sign in the top 10 matches for

20% of the query signs versus 66.7% with the new system.

We calculated an average accuracy for both systems, as well as and expected

accuracy for a random system. Since there are fewer one-handed signs in the system
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dictionary than two-handed signs, the maximum possible rankm is the number of two-

handed signs, and the expected accuracy f(r) at a rank level r ∈ [1..m] is calculated:

f(r) =


2r
N

: r <= n

r+n
N

: r > n

(6.1)

for number of one-handed signs n in a dictionary of size N , alternatively expressed:

f(r) =
r + min(r, n)

N
. (6.2)

Figure 6.6a shows the accuracy for all rank levels and table 6.1 for a small subset.

It can be seen that while both systems far outperform a system that randomly ranks

the result signs, the new system shows a performance increase over the old. Figure

6.6b is a closer view of the accuracy in the maximum rank 1–100 levels. In the new

system, for 62% of the query signs, the correct match is returned in the top 20 results,

whereas this percentage drops to 46.7% in the old system. It is apparent that skeleton

detection using scene depth information outperforms the skin color and motion-based

hand tracking in the previous generation software. The same results can be seen in

tabular format in table 6.1.

6.3.4 Query Time Results

The informal timing experiments show a significant performance increase in the

new system. Table 6.2 shows the average and median times required by each user to

perform a query, as well as the standard deviations. The Average row contains the

averages of participants P01–P05, while the System row includes timing data from

all participants in the calculations.

An experienced user performed the matching on the old system with the same

videos. The timing data obtained here is informal, as it was obtained from a stop-
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Figure 6.5: System sign recognition accuracy – green: old; red: new
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Figure 6.6: Average System Accuracy Comparison

watch. Furthermore, it did not include the time to record the videos, since they were

not recorded with this system. The timed portion consisted of importing the video

into the system, marking the start and end frames as the participant marked them in

the new system, initialization of the hand tracker, tracking, the matching algorithm,

and results display. Once the first set of results was displayed, the timer was stopped.

Whereas the new system showed an average query search time of 22.0 seconds, the

old system had a mean time of 106.2 seconds per query. See table 6.3 for details.
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Table 6.1: Accuracy of the Old and New Systems

Max Rank Old System New System

1 12.0% 14.7%

2 16.7% 22.7%

3 20.7% 27.3%

4 26.0% 32.7%

5 28.0% 36.0%

10 36.7% 45.3%

15 40.7% 54.0%

20 46.7% 62.0%

30 54.0% 68.7%

50 61.3% 77.3%

Table 6.2: Timing Data in Seconds for Study Participants.

Participant Mean Median Std. Dev.

P01 13.1 11.0 6.18

P02 25.1 21.9 9.33

P03 15.1 14.8 3.19

P04 27.4 24.7 13.0

P05 29.2 27.5 9.93

Average 22.0 20.0 8.33

System 22.0 19.4 11.1

Table 6.3: Query Time Comparison

System Mean Median Std. Dev.

Old 106.2 106.4 9.847

New 22.00 19.40 11.06
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CHAPTER 7

LEVERAGING INTRA-CLASS VARIATIONS TO IMPROVE RECOGNITION

7.1 Introduction

It is clear that gesture and sign language recognition is a challenging research

field in computer vision. Many popular probabilistic methods like Hidden Markov

Models (HMM) [76] and Conditional Random Fields (CRF) [77] require large training

sets to learn probability distributions. Neural network based approaches similarly

require large training and validation sets to increase generalization and minimize

overfitting to the training examples. This requirement often limits the vocabulary

size of such systems. When a large vocabulary is desired, however, time and fiscal

constraints may force researchers to restrict the size of the training set and thus limit

the techniques that can be used for classification. As using only a few examples per

gesture class precludes the use of many statistical and machine learning methods,

researchers are often limited to exemplar-based recognition and similarity measures.

In such cases, Dynamic Time Warping (DTW) [58] is often used on hand posi-

tion or other information to generate scores that serve as a measure of similarity to

training examples [78, 79, 80, 52]. DTW is improved with the use of a well-designed

feature vector that includes more than hand positions to represent the state of a

gesture at each point in time [52]. The performance of DTW-based recognition, how-

ever, can suffer due to variations in gesture performance inherent in user-independent

systems. The two methods presented in this chapter address this problem.

These methods build on past work in ASL recognition. The base method used

as a measure of gesture similarity is DTW, a dynamic programming technique that
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creates an optimal alignment of two sequences [58], in this case, the hand trajecto-

ries of test and model signs. It has the benefit of being able to warp the temporal

dimension of the series, so that is can properly align gestures performed at different

speeds. The score provided by DTW is a measurement of error in the alignment, so

that a lower score indicates a better match.

Rather than solely using the hand positions to describe the trajectories, we

modify the feature vector introduced in [52] and further adapted in [81] to use in-

formation available from RGB-D output and then use multiple passes through DTW

to generate several scores per example sign. Each pass focuses on a different gesture

property and size normalization technique. We also introduce a new set of features

that describe the likelihood of the measured variations between the test and exam-

ple sign in several geometric and positional properties. The scores from the features

and from multiple DTW passes can then be linearly combined to improve recogni-

tion accuracy. See chapter 3 for reviews of the feature vector we use for our sign

representation and DTW.

Both methods are based on the natural variations that occur when multiple

persons perform the same gesture. The intuitive notion behind the methods is that

individuals each have their own style and will perform the same gesture in different

positions and orientations in the gesture space or at different sizes. One signer may

perform a sign directly in front of their torso, while another may perform it slightly

to the side. Some signers perform the sign with very minor hand movement, and still

others exaggerate the performance and show large movements. If we can somewhat

relax the assumptions of what these characteristics of each sign class should be like,

we can potentially improve trajectory alignment. The goal, then, becomes to use

knowledge of these inherent variations to improve gesture recognition accuracy. Two

methods have been developed.
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The first method models this intra-class variation (ICV) in the geometric and

positional properties of same-class gestures to provide indications of likelihood that

a test gesture belongs to the same class as a training gesture, given their observed

differences in these properties. The idea is that each sign class may show variations

in these properties in different degrees, so that the variations that are considered

relatively normal in one sign may be unusual for another. These likelihoods can

become features that, when linearly combined and used in conjunction with DTW

scores, provide a better indication of gesture similarity.

The second method, Multiple-Pass DTW (MP-DTW), involves generating mul-

tiple DTW scores for a test gesture. The purpose of this method is to better account

for the fact that individuals will locate a sign in a different area of the signing space

than others and that they will alter the size of the trajectory to match their body

type and signing style. Rather than generate likelihoods, as with ICVM, MP-DTW

seeks to generate multiple similarity scores by effectively creating several classifiers

that focus on different aspects of the sign and normalizing the size in different ways.

The DTW technique on which this work is based, detailed in Chapter 3, expresses

hand positions in a single coordinate system centered on the head and normalizes the

gesture size based on size of the face. This works well when the testing and training

subjects perform the gesture in roughly the same position and at the same size. In

practice, however, there is wide variation in both where a gesture is performed and

how large the space it occupies. It makes sense, then, to adjust both this coordinate

system and how the gesture is sized, and to combine weighted scores from multiple

DTW passes using the alternative centering and and resizing techniques.

We show that either of these contributions alone or in combination can provide a

substantial improvement in accuracy over DTW, even when using noisy and unstable

RGB-D skeletal data. We then compare these methods to HMM and LSTM network
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approaches [82, 83, 84] to demonstrate the benefit of using them in gesture recognition

systems that comprise a large vocabulary but have a small training set size.

7.2 Variation-Specific Related Work

Some methods, like HMMs and Parametric Hidden Markov Models (PHMMs)

can explicitly model these variations [85, 86]. Wilson et al. examine PHMMs to

handle variations in gestures that can provide emphasis or an indication of the degree

to which a gesture applies, for example to indicate the size of an object [86], and

compare them to standard HMMs. Depending on the size, the gesture may be exag-

gerated to a certain extent, and the PHMM method can model these variations. Their

experiments, however are user-dependent and only test to see how well the methods

can distinguish between two gestures. They also present a online-learning model

adaptation method that, instead of explicitly modeling these variations, modifies the

existing models to handle variations that may be considered noise and, thus, ignored.

This variation is the variation in position and size of signs that does not particularly

influence meaning but we are looking to handle with our proposed methods.

Ong et al. have several works in which they use spatial variations that alter

sign meaning to gain additional information about the signs [87, 88, 89, 90, 91]. In

our system, we do not attempt to recognize these modifiers, as they are infinite, but

the techniques are perhaps applicable to our work.

These HMM-based methods are unusable in our case sue to the insufficient

number of training examples to learn the transition probabilities and parameters.

There are, however, some works that also approach the idea of specifically modeling

the class variability in one form or another. Reyes et al. use inter-class and intra-class

variability in joint positions to weight the contribution each joint has in DTW scoring

for the classification of 5 action categories [92].
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Some approach the issue by using additional personalization data from a new

signer to tweak the recognition system for each user. Yin et al. use labeled examples

to learn a distance metric and then adapt that metric to a new signer using unlabeled

data from the new signer [93]. Their feature vectors are composed of 3D trajectory

information in a face-centric coordinate system and handshape based on HOG fea-

tures, and they use the learned and adapted metric in a K Nearest Neighbors (KNN)

classifier. They do not seem to model any positional or size variations. To handle

variations inherent in performances of same-class gestures by different subjects, Yao

et al. generate a group of likelihood maximization-based classifiers and use the best

one for each subject based on personalization data [94]. This is an idea that could

be easily incorporated into our dictionary system, and an online learning algorithm

could be used to retrain the system for each user.

Roussos et al. instead focus on modeling variation in handshapes to improve

recognition accuracy and adapt the models to new signers [68]. Bautista et al. use

intra-class variability in gesture feature vectors to learn a Gaussian Mixture Model

and extend DTW to provide probabilistic scores rather than alignment error measure-

ments [95]. Our method instead models variations in geometric properties of whole

gesture trajectories to improve results and combines scores from multiple DTW classi-

fiers focusing on different elements of the trajectories. It may be beneficial to employ

multiple approaches.

7.3 Intra-Class Variation Modeling

This section introduces the intra-class variation modeling (ICVM) of several

hand trajectory geometric properties and describes the new features that are gen-

erated from the models. These features give an indication of likelihood that a test
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Figure 7.1: 2D property example. Shown are trajectories for two examples of the
same sign. The measured variation is shown by the black arrow drawn from the
centroid of one trajectory to the other.

sign would vary in these geometric aspects from a given model sign by the observed

amount.

7.3.1 Method

Two sets—LB1113 and TB1113—of one example each of 1,113 unique signs

obtained from the ASLLVD [75] and a third set GB1113 of the same signs, obtained

from an alternate source, are used to train the variation models. LB1113 and TB1113

are each performed by a single signer, while GB1113 consists of signs performed by

multiple signers. Once the signs are expressed in the size-normalized, face-centric

coordinate system described in section 3.2.2, we measure the difference in the proper-

ties between each sign of the same class. For example, figure 7.1 shows the dominant

hand trajectory for two signs of the same class. The measured variation is between
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Figure 7.2: 2D Property Example: Intra-class variation plot for the centroid of the
convex hull encompassing the dominant and non-dominant hand trajectories. The
learned Gaussian models are overlaid.

the centroids of the convex hulls encompassing the two trajectories. The black arrow

represents this difference vector.

Once the differences between all the same-class examples have been collected for

the measured properties, a separate Gaussian is learned for each property to model

the variation. Figure 7.2 plots the difference vectors as points for the convex hull

centroid property of the dominant and non-dominant hand trajectories. It is clear

that the single Gaussian that is overlaid is sufficient to model the variation in the

property for each hand.

The variations in the following sign properties are modeled, separately for the

dominant (d) and non-dominant (nd) hands in two-handed signs. The trajectory

bounding box is defined as the box that extends from the leftmost to the rightmost

hand position and from the topmost to the bottommost hand position throughout

the sequence of video frames. Some properties, as indicated, are derived from the

convex hull encompassing the set of hand positions throughout the sign.
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1. γd and γnd: center of dominant and non-dominant hand trajectory bounding

boxes, respectively.

2. ψd and ψnd: width of the dominant and non-dominant hand trajectory bounding

boxes.

3. ηd and ηnd: height of the dominant and non-dominant hand trajectory bounding

boxes.

4. αd and αnd : position of the dominant and non-dominant hand in the first frame

of the sign.

5. ωd and ωnd: position of the dominant and non-dominant hand in the last frame

of the sign.

6. λd and λnd: eigenvalue corresponding to the eigenvector describing the principle

orientation of the dominant and non-dominant hand trajectory.

7. σd and σnd: smallest eigenvalue subtracted from the largest eigenvalue for the

dominant and non-dominant hand: an indication of the strength in the trajec-

tory orientation.

8. πd and πnd: perimeter of the dominant and non-dominant hand trajectory con-

vex hulls.

9. ρd and ρnd: area of the dominant and non-dominant hand trajectory convex

hulls.

10. ξd and ξnd: centroid of the dominant and non-dominant hand trajectory convex

hulls.

Figure 7.3 plots the difference vectors of a set of test signs from the model signs

as 2D points. The variation from same-class signs is plotted in yellow, while the

variation from different-class signs is plotted in green. The Gaussian learned on the

training set is overlaid on the figure, and it can be seen that it generalizes well to the

test set.
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Figure 7.3: Plot of the measured differences as 2D points of all test signs from each
example sign for the right hand trajectory convex hull centroid property. The differ-
ences from same-class signs are plotted in yellow and from dissimilar classes in green.
The Gaussian model learned during training is overlaid to show that it generalizes
well to test sets.
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To generate a feature value φi(Q,M) for a given query sign Q using property

i, the 1D difference x or 2D difference (x, y) is measured between Q and M for

property i. The Gaussian for property i is evaluated using learned parameters (µi, σi)

to calculate the feature value for 1D and 2D properties, respectively:

φi(Q,M) =
1

σi
√

2π
e
− (x−µi)

2

2σ2
i

φi(Q,M) =
1

2πσxiσyi
e
− (x−µxi )

2

2σ2xi

+
(y−µyi )

2

2σ2yi

The feature values for multiple properties can be weighted and added to the base

DTW scores to improve accuracy. As an example, if we were to take the convex

hull centroid of a test sign and measure its difference vector, say (2,−2), from a

model sign, then the Gaussian evaluation would result in a low number, since that

point would be located in the fringe of the distribution. This would indicate a low

likelihood that the property of the test sign would vary from that of the example

sign by that amount if they belonged to the same sign class. Consider, however,

that the measured difference may be an outlier and the signs should, in fact, match.

By examining other features, for example, trajectory width, convex hull perimeter,

and strength of orientation, this likelihood would increase if the differences in those

respects are minimal. This is effectively a relaxation of the assumptions of what

characteristics a given sign class should have that may result in a correct match when

otherwise the base method would not have done so.

The ICVM features and corresponding weights are trained using the GB1113

dataset as the query set and the LB1113 and TB1113 datasets as the model sets. This

dataset was chosen to train the features and weights due to the fact that it consists

of multiple signers and is thus more likely to generalize and be more representative of
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other individuals. A separate set of features and weights are learned for one-handed

and two-handed signs as follows. Given the set of available feature properties

F = {γd, γnd, ψd, ψnd, ηd, ηnd, αd, αnd, ωd, ωnd,

λd, λnd, σd, σnd, πd, πnd, ρd, ρnd, ξd, ξnd},

a subset of properties N ⊆ F is simultaneously selected and weighted in a greedy

manner: while an accuracy improvement above a threshold τ is achieved or there

are remaining properties to be chosen, the property and weight combination (ν, β)

that provides the best improvement when combined with previously selected features

and base DTW scores is then included in N and removed from F . For one-handed

signs, only the properties for the dominant hand are considered. We are interested

in maximizing number of matches in the top 20 results returned by the system, since

we feel the user would be willing to look through that many video examples to find

the correct sign. For this reason, we define the above accuracy that is compared to

the threshold τ to be the average accuracy at ranks 1–20. See Section 8.2 for a more

detailed description of the measure of accuracy at various rank levels. In future work,

it would make sense to weight the accuracies depending on rank, so that the lower

ranks have greater importance in the calculations than do the upper ranks.

The GB1113 -trained set of variation properties and weights are used in a our

user-independent experiments described in chapter 8. We also trained a separate

set of properies and weights for each test dataset using both manual and Kinect

annotations for use in our user-dependent experiments, also in described in chapter 8.

Though we also ran the experiments on each test set using the features and weights

learned on the alternate signer test set using the manual and Kinect annotations,

those learned on the GB1113 set proved to generalize the best and are are used in

all user-independent experiments. This is understandable, since the GB1113 dataset
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contains multiple signers and, as a result, encompasses more variation that reduces

the chances of overfitting to a single signer.

The likelihood features can be used in various ways to increase recognition

accuracy. Though a simple weighted linear combination thereof is used in this thesis as

a proof of concept, other methods, such as SVMs and decision forest may prove more

beneficial to filter out potential false positive matches or in a hierarchical classification

scheme.

7.4 Multiple-Pass Dynamic Time Warping

Since different signers will likely vary the position and size of a gesture from

one another, it does not make much sense to solely use the trajectory coordinate

system and size normalization technique described in Section 3.2. It can be beneficial

to use an alternate or even multiple alignment and size normalization methods for

recognition. Figure 7.4 illustrates this benefit. The trajectories of two examples of

the same sign class are shown. On the left, the trajectories are expressed in the face-

centric coordinate system of the base method. On the right, the convex hull centroids

become the origin of the coordinate system and a better alignment is achieved. If

we combine this with a different resizing technique, for example using the height

of the trajectory, it may further improve the trajectory alignment. The MP-DTW

method leverages this opportunity by generating several DTW scores using alternative

coordinate systems and size normalization.

7.4.1 Method

For the following two sets of gesture properties, d indicates the property applies

to the dominant hand trajectory, nd to the non-dominant hand trajectory, and c to
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Figure 7.4: Motivation for MP-DTW. Left: gestures aligned on the face. Right:
gestures aligned on the convex hull centroid. Using the centroid potentially gives a
better DTW gesture alignment than the face. Combining multiple alignment methods
results in better recognition accuracy.

the combined dominant and non-dominant hand trajectories. The set I of properties

available for centering the gesture includes:

1. η: pixel coordinates of the head.

2. Γd, Γnd, Γc: center of dominant, non-dominant, and combined hand trajectory

bounding boxes.

3. Ad and And : position of the dominant and non-dominant hand in the first

frame of the sign.

4. Ωd and Ωnd: position of the dominant and non-dominant hand in the last frame

of the sign.

5. Ξd, Ξnd, Ξc: centroid of the dominant, non-dominant, and combined hand tra-

jectory convex hulls.
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6. Md, Mnd, Mc: mean dominant, non-dominant, and combined hand position

during gesture.

The set K of properties available to use for resizing the gestures includes:

1. Θ: face diagonal size

2. Ψd, Ψnd, Ψc: width of dominant, non-dominant, and combined hand trajectory

bounding boxes.

3. Hd, Hnd, Hc: height of dominant, non-dominant, and combined hand trajectory

bounding boxes.

4. ∆d, ∆nd, ∆c: diagonal of dominant, non-dominant, and combined hand trajec-

tory bounding boxes.

5. Λd, Λnd, Λc: diameter of the dominant, non-dominant, and combined hand

trajectory, defined as as the largest distance between any two hand positions

throughout the gesture.

To generate a feature value ζj(Q,M) for query Q and model M using centering and

size-normalization property pair j, Q and M are centered and resized using j, and

DTW is run to obtain a score. The score becomes the feature value that can be

weighted and combined with other DTW passes.

ζj(Q,M) = Dj(Q,M)

Using the GB1113 dataset as the query set and LB1113 and TB1113 as model

sets, a separate set of centering and size normalization properties are trained for

one-handed and two-handed signs as follows. Given the set of centering properties

I = {η,Γd,Γnd,Γc, Ad, And,Ωd,Ωnd,Ξd,Ξnd,Ξc,Md,Mnd,Mc}

and the set of size normalization properties

K = {Θ,Ψd,Ψnd,Ψc, Hd, Hnd, Hc,∆d,∆nd,∆c,Λd,Λnd,Λc},
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a subset of centering and resizing properties Υ = (υ1, ..., υ|Υ|), where each υ =

(ιm, κn) ∈ I × K, is simultaneously selected (with replacement) and weighted in

a greedy manner: while accuracy improvement is above a threshold τ , each combina-

tion of centering property ιm and size normalization property κn is used to center and

resize the sign for the DTW pass to obtain a score. The property combination and

score weight (υ, β) that provide the best accuracy improvement when linearly com-

bined with the base DTW score, previously selected MP-DTW feature scores, and

ICVM features is included in Υ. For one-handed signs, only features for the dominant

hand are considered. As with ICVM, the accuracy to compare to the threshold τ is

defined as the average accuracy across ranks 1–20.

The GB1113 trained set of property combinations and weights are used in a

our user-independent experiments described in chapter 8. As with section 7.3, we

also trained a separate set of properies and weights for each test dataset for use in

our user-dependent experiments, also in described in chapter 8. The multiple signer

GB1113 set again proved to provide the best generalization to the test sets and were

used for all user-independent MP-DTW experiments.

There were two ways to train the ICVM and MP-DTW features and weights.

One was to train the ICVM features first and then select the best MP-DTW features

that, when combined with the base DTW and ICVM scores, provide the best im-

provement. The other was to reverse the process and select MP-DTW weights first.

While both provided comparable end results, training ICVM feature first seemed to

provide the most stable results across the range of maximum ranks. See section 8.2

for our measure of accuracy.
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7.5 Combining ICVM and MP-DTW

To generate a final score for an alignment between query sign Q and model

sign M , the scores from DTW, MP-DTW, and ICVM features are linearly combined.

Given base DTW score Db, the set N of ICVM features, and the set Z of MP-DTW

scores:

S(Q,M) = Db(Q,M)+

|N |∑
i=1

βiφi(Q,M) +

|Z|∑
j=1

βjζj(Q,M),

where φi ∈ N and ζj ∈ Z. Though the lowest final score of the three examples for each

sign class is used for ranking purposes in our experiments, it is possible to combine

them into a single score. Since this version of DTW provides an error measurement

of the alignment of two gestures, a lower score indicates a better match.

79



CHAPTER 8

EXPERIMENTS AND RESULTS

In this chapter, we demonstrate the significant improvement in accuracy that

ICVM features and MP-DTW provide using both manual annotations and the noisy

joint position data generated by Kinect skeleton detectors. Our results show that

systems using a large vocabulary with few training examples per gesture class ben-

efit from incorporating one or both of the techniques. It is clear that our method

outperforms popular methods that rely on large training sets or smaller vocabularies.

8.1 Experimental Setup

To evaluate ICVM and MP-DTW, we performed a series of user-dependent

and user-independent experiments using both manually annotated hand positions

and Kinect joint positions for two datasets. The user-dependent experiments provide

a measure of the full potential of the methods and illustrate their advantages in a

system that learns from the user, as voice dictation software does. As one uses the

system, a learning algorithm can adapt the Gaussian models and ICVM feature and

MP-DTW score weights to fit that particular individual.

We used the GB1113, LB1113, TB1113 datasets as models for the experiments.

As described in sections 7.3.1 and 7.4.1, the GB1113 dataset was used to select and

learn features and weights for the various geometric properties and MP-DTW. As the

sets consist of RGB video with manually annotated 2D hand positions, this set of

experiments does not incorporate any 3D information from the Kinect. 3D trajectory

matching and ICV modeling of 3D gesture properties remains for future work.
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A separate score is calculated for each of the three examples per sign class, and

the lowest score for each class is used for sign ranking purposes. To these baseline

scores are added scores from the intra-class variation modeling and MP-DTW meth-

ods described in sections 7.3 and 7.4. Hand shape is not considered and is left for

future work.

We used two datasets from [96] as test sets, both of which are of fluent signers

and comprise a combination of 1-handed and 2-handed signs of varying complexity.

The JK850 dataset consists of 850 unique ASL signs, while CK368 contains 368 unique

signs and is a more difficult set due to the wide variation in size and the exaggerated

performance of signs compared to the models. The combined accuracy across both

datasets is reported.

We compare our method to HMMs and LSTM networks. The complexity of the

models is relatively limited due to the lack of training examples. For user indepen-

dent experiments, the model parameters are selected based on performance on the

validation set. The results reported are against the final testing set of JK850 and

CK368.

For the LSTM network, a single layer is used before the LogSoftMax output

layer, and the number of nodes is chosen based on validation performance. 190 and

320 nodes are used for one handed and two handed sign models, respectively. The

network is trained with stochastic gradient descent and early stopping. Even with

regularization techniques, the models were quick to overfit the data.

For HMMs, a separate model is trained for each class. For 1-handed signs,

each model used only a single state. For 2-handed signs, each model contained 4

states. For both cases, the observation model is a single Gaussian. Final evaluation

is performed using one-vs-all classification.
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8.2 Measure of Accuracy

For these experiments, we define the measure of accuracy to be the percentage

of signs whose correct match is ranked in the top k most similar signs for each k ∈

{1, 5, 10, 20, 30, 50, 100}. User-dependent experiment results are found in tables 8.1

and 8.2, while user-independent results are contained in tables 8.3 and 8.4. The best

performance in each table is emphasized with a bold font. Both the JK850 and

CK368 datasets are given equal representation in the results.

8.3 User Dependent Experiments

User-dependent sign recognition can be useful in a system that learns from

the user over time, as does the Nuance Dragon NaturallySpeaking voice dictation

software [97]. As one uses a system based on our proposed methods, a learning

algorithm can adapt the Gaussian models and ICVM and MP-DTW score weights

to fit that particular individual and improve performance. For these experiments,

the ICVM and MP-DTW properties were selected and the weights trained using the

test sets themselves, providing a measure of method potential and setting a goal for

accuracy when training with different signers. Table 8.1 shows the results on the

combined JK850 and CK368 datasets using manual annotations. We achieve a 9.2

percentage point increase in accuracy for rank k ≤ 10.

Since it is not realistic to expect a gesture recognition system to have access

to manually provided ground truth annotations of hand locations, we performed the

same experiments using the hand positions from the Kinect skeleton detector. The

results in table 8.2 show a significant increase in accuracy using these noisy data. As

an example, recognition at rank k ≤ 10 increases from 45.7% to 54.3% when using

the automatic annotations.
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Table 8.1: User-Dependent Accuracy: Manual Annotations

Maximum Rank k of Correct Match

1 5 10 20 30 50 100

HMM 0.206 0.452 0.557 0.652 0.719 0.785 0.870

LSTM 0.165 0.415 0.552 0.668 0.730 0.808 0.890

DTW 0.293 0.558 0.685 0.793 0.839 0.889 0.947

DTW + ICVM 0.316 0.597 0.730 0.821 0.852 0.897 0.947

MP-DTW 0.317 0.628 0.755 0.844 0.874 0.913 0.951

MP-DTW + ICVM 0.333 0.646 0.777 0.855 0.878 0.918 0.955

Table 8.2: User-Dependent Accuracy: Kinect Annotations

Maximum Rank k of Correct Match

1 5 10 20 30 50 100

HMM 0.100 0.259 0.326 0.401 0.462 0.551 0.684

LSTM 0.089 0.246 0.335 0.444 0.516 0.616 0.743

DTW 0.162 0.372 0.458 0.562 0.607 0.682 0.791

DTW + ICVM 0.173 0.408 0.530 0.602 0.646 0.715 0.816

MP-DTW 0.199 0.399 0.493 0.596 0.669 0.702 0.820

MP-DTW + ICVM 0.204 0.431 0.543 0.622 0.664 0.730 0.827

8.4 User-Independent Experiments

User independent experiments demonstrate the potential improvement these

methods provide in a pre-trained gesture recognition system that does not learn from

the user, as our system is currently configured. Table 8.3 shows the accuracy when

using manual annotations. As can be seen, the best results again come from the com-

bination of ICVM and MP-DTW. Table 8.4 provides results using the Kinect skeletal
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Table 8.3: User-Independent Accuracy: Manual Annotations

Maximum Rank k of Correct Match

1 5 10 20 30 50 100

HMM 0.158 0.359 0.459 0.582 0.647 0.725 0.831

LSTM 0.124 0.315 0.428 0.573 0.648 0.735 0.833

DTW 0.293 0.558 0.685 0.793 0.839 0.889 0.947

DTW + ICVM 0.298 0.590 0.714 0.802 0.849 0.897 0.950

MP-DTW 0.336 0.621 0.728 0.823 0.865 0.908 0.948

MP-DTW + ICVM 0.314 0.625 0.731 0.824 0.867 0.908 0.957

annotations. It shows an increase in accuracy from 45.8% to 49.5% for maximum rank

k = 10.

Table 8.4: User-Independent Accuracy: Kinect Annotations

Maximum Rank k of Correct Match

1 5 10 20 30 50 100

HMM 0.089 0.220 0.296 0.376 0.435 0.512 0.645

LSTM 0.060 0.201 0.282 0.397 0.476 0.572 0.701

DTW 0.162 0.372 0.458 0.562 0.607 0.682 0.791

DTW + ICVM 0.176 0.394 0.498 0.576 0.637 0.713 0.815

MP-DTW 0.192 0.385 0.492 0.578 0.632 0.701 0.809

MP-DTW + ICVM 0.197 0.392 0.495 0.592 0.650 0.727 0.823

It is clear from these results that the best overall improvement comes from com-

bining MP-DTW and ICVM features and that the two methods far outperform the

HMM and LSTM network approaches in large vocabulary systems with few training

examples per gesture class. In future work, we will be experimenting with other ways
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Figure 8.1: Accuracy plots for the JK850 datasets. The plot shows the improvement
using both Kinect and manual annotations in user-dependent and user-independent
experiments.

to use the ICVM features, including random decision forests, SVMs, a cascade filter-

ing of potential matches, and a hierarchical classification system. Secondly, due to

time required to do so, we did not train the individual MP-DTW passes with their

own set of DTW score component weights {s1, ..., s6} as discussed in section 3 and

instead left it for future work.

8.5 Further Analysis of Results

The best performance increases are on the CK368 dataset, which contains the

most variation in the location, size, and exaggeration level of the gestures compared

to the models. Figures 8.1 and 8.2 plot the combined one-handed and two-handed

accuracy on the two datasets using manual and Kinect annotations for both user-

dependent and user-independent experiments. It is clear that the variation model-
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Figure 8.2: Accuracy plots for the CK368 dataset. The plot shows the improvement
using both Kinect and manual annotations in user-dependent and user-independent
experiments.

ing and MP-DTW substantially improve accuracy, particularly on the more difficult

CK368 dataset. As the methods are designed to better handle wide variations in the

performance of gestures, this make sense; the signer in CK368 performed the signs

with a greater degree of exaggeration, or emphasis, resulting in signs of different sizes

and geometric properties of the hand trajectories.

One-handed signs are particularly difficult in sign language recognition, so it

is beneficial to examine the performance separately on one-handed and two-handed

signs. Figures 8.3 and 8.4 show the user-dependent and user-independent accuracy

on the CK368 dataset for both one-handed and two-handed signs using manual and

Kinect annotations. Examining the plots shows that in most cases, the largest im-

provement in accuracy is on one-handed signs. One handed signs often have an

arbitrary trajectory because the sign is static and the signer’s inability to keep the
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Figure 8.3: 1-Handed and 2-Handed user dependent and independent accuracy plots
for the CK368 dataset using manual annotations.
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Figure 8.4: 1-Handed and 2-Handed user dependent and independent accuracy plots
for the CK368 dataset using Kinect annotations.
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Figure 8.5: 1-Handed and 2-Handed user dependent and independent accuracy plots
for the JK850 dataset using manual annotations.

hand perfectly stationary causes random directions of movement. MP-DTW and

ICVM somewhat relax the assumptions of what the trajectory should be like for a

sign to belong to a particular class and thus result in a larger improvement on these

signs.

Similarly, figures 8.5 and 8.6 show the user-dependent and user-independent

accuracy on the JK850 dataset for both one-handed and two-handed signs using

manual and Kinect annotations.

8.6 Effect of Number of Features Used

This section presents a look at the effect of the number of ICVM features used

on sign recognition accuracy. Figure 8.7 illustrated the improvement in accuracy that

occurs as additional ICVM features are included in the similarity measure. It shows

sign recognition accuracy, as measured by the method described in section 8.2, after
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Figure 8.6: 1-Handed and 2-Handed user dependent and independent accuracy plots
for the JK850 dataset using Kinect annotations.

adding 1, 3, and 5 features. The best improvement in accuracy clearly comes from

the addition of a single feature. The addition of a few more, however, especially when

combined with MP-DTW (not shown in the graphic), can provide further improve-

ment. In practice, the greedy feature chosing algorithm selected between 3 and 7

ICVM features and between 1 and 11 MP-DTW passes in addition to the base DTW

pass.

8.7 Dictionary System User Experiments

To test how well ICVM and MP-DTW work on actual users of the dictionary

system who are unfamiliar with ASL, we applied the methods to the signs used for the

real-world experiments in Section 6.3.2. The experiments consisted of 5 participants

without any knowledge of ASL, but we included an additional sixth signer here that

was removed from the earlier experiments due to his authorship on the original paper
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Figure 8.7: Shows the effect of the number of features used on accuracy for the CK368
dataset using manual annotations and user-dependent experiments.

comprising that chapter. Each signer performed a set of 30 random signs from the

system vocabulary. As an additional signer was included in this experiments, an

updated baseline DTW accuracy is included in the result.

These experiments are perhaps most indicative of how well the methods would

actually perform, since they involved participants who were not familiar with ASL or

the signs they were performing. After being shown shown a video of a sign, they would

perform it the best they could in front of the kinect and used the actual dictionary

system to look up the meaning. Naturally, the users would show variations from the

model signs.

Figure 8.8 shows the improvement in accuracy obtained by applying ICVM and

MP-DTW to those signs. As with the other user-independent experiments in this

section, the GB1113 dataset was used to train the methods. It is clear from these
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Figure 8.8: 1-Handed and 2-Handed user independent accuracy plots for actual users
of the dictionary system.

results that the methods developed in this thesis show applicability in real-world

systems and more work is warranted to further develop and expand the ideas.

8.8 Statistical Significance

To determine whether the achieved accuracy improvements have any statistical

significance, we performed a series of paired sample t-tests on the classification results.

For the tests, we separately calculate the significance at the maximum rank k = 1–

k = 30 levels of accuracy to show the effectiveness across a range, as each user may

be willing to browse a different number of videos to locate the desired sign. If we

approach it from a binary classification standpoint and assign to each test sign a 1 if

it was correctly matched in the top k results and a 0 if it was not matched in the top

k results, we can compare the results using DTW and using MP-DTW with ICVM

features.
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Table 8.5: Paired Sample T-Tests

User-Dependent User-Independent

Manual Kinect Manual Kinect

Rank

1 0.0363 0.0669 0.1745 0.1442

2 0.0087 0.1216 0.1711 0.1891

3 0.0006 0.0719 0.0072 0.2046

4 0.0000 0.0303 0.0036 0.1201

5 0.0000 0.0063 0.0013 0.0717

6 0.0000 0.0029 0.0029 0.0375

7 0.0000 0.0032 0.0071 0.0260

8 0.0000 0.0060 0.0202 0.0856

9 0.0000 0.0083 0.0397 0.0650

10 0.0000 0.0090 0.0196 0.0325

11 0.0003 0.0051 0.0549 0.0237

12 0.0001 0.0102 0.0587 0.0310

13 0.0001 0.0075 0.0329 0.0215

14 0.0001 0.0096 0.0217 0.0312

15 0.0002 0.0133 0.0133 0.0161

16 0.0004 0.0190 0.0098 0.0261

17 0.0005 0.0395 0.0139 0.0383

18 0.0008 0.0650 0.0215 0.0459

19 0.0074 0.0599 0.0389 0.0605

20 0.0035 0.0859 0.0330 0.0914

21 0.0067 0.0923 0.0226 0.0904

22 0.0083 0.0710 0.0108 0.0371

23 0.0094 0.0854 0.0231 0.0498

24 0.0222 0.0996 0.0436 0.0491

25 0.0246 0.0827 0.0730 0.0366

26 0.0361 0.0749 0.1317 0.0241

27 0.0392 0.0879 0.2254 0.0290

28 0.0284 0.0780 0.1807 0.0357

29 0.0267 0.0714 0.1593 0.0354

30 0.0455 0.0927 0.1921 0.0285
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Table 8.5 shows the results of the t-tests on user dependent and user independent

results using the manual and Kinect annotations rounded to four decimal places. The

statistically significant results at α = 0.05 are emphasized in a blue font. The user-

dependent experiments using manual annotations are the most significant with most

rank levels showing significance at α = 0.01 and even α = 0.001. Also interesting is

the significance in the user dependent experiments using Kinect annotations. Most

of the accuracy improvement is in the lower ranks, so the significance being only in

these lower ranks makes sense, and is indicative of the significance in a system that

learns from the user as he or she interacts with the system. McNemar’s tests provide

similar results to the paired sample t-tests.
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CHAPTER 9

DISCUSSION AND CONCLUSIONS

This thesis chapter summarizes the contributions made by this the work to the

field of sign language search systems. Systems that have a large vocabulary but few

training examples present unique challenges that were addressed in this document.

There is also a large body of remaining work, and this chapter outlines the work that

is currently being planned to both improve accuracy and ease of use of the ASL Video

Dictionary System.

9.1 Contributions

This work has made contributions in a few key areas, primarily in the area of

large vocabulary datasets, sign recognition methods and similarity measures using

small training sets.

9.1.1 Datasets

We have presented a growing RGB-D body part detection and gesture recogni-

tion dataset that can be used in several fields of research and have developed some

benchmarks for gesture recognition and hand detection. The multi-modal dataset

allows researchers to run body part detection and gesture recognition experiments

using multiple types of data, with access to fully annotated ground truth data. At

present, two signers have been recorded, 1,113 signs from one and 750 signs from the

other. A full set of annotations is included that consist of temporal segmentation
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bounding boxes for various body parts and point locations for others, the occlusion

status of joints, and 2D and 3D positions of the joints from the skeleton detector.

Also provided with the dataset is a set of benchmarks for body part detection

and gesture recognition. As more signs are recorded and more annotations are com-

pleted, these benchmarks will be updated to provide the latest results and goals for

developing new methods.

9.1.2 ASL Video Dictionary System

We have presented a new integrated RGB-D ASL video dictionary system that

solves many of the problems associated with its former variant. The new system is

fully contained in one software package, is faster, more intuitive, more automated,

and more accurate.

9.1.3 Similarity Measure Improvements

This thesis presented two novel methods to improve the sign similarity mea-

sure and, thus, increase accuracy that are based on the natural variation in the way

that different signers will perform gestures. They are effectively a relaxation of the

assumptions of what each particular sign should look like, and we demonstrated their

potential in a real-world system. We have demonstrated a significant improvement in

accuracy over DTW alone in user dependent and user independent experiments using

both manual and kinect annotations.

9.1.3.1 Intra-Class Variation Modeling

ICVM creates models for the variations found across signers in a set of geometric

properties of sign hand trajectories. We can then measure the differences in these

properties between a test sign and a model sign to generates a set of likelihood
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features. The combination of these features gives an indication of the likelihood that

the test sign would vary from the model sign by these amounts and can be used in

various ways to filter false positives or, as is done in this thesis, as part of the sign

similarity score itself. Using as few as a single feature as part of the score can provide

a substantial improvement in accuracy.

9.1.3.2 Multiple-Pass Dynamic Time Warping

MP-DTW relaxes assumptions about where a sign should occur in the signing

space and how much space it should occupy. It does so by creating multiple similarity

scores from several DTW passes, each centering and resizing the the sign on a different

set of features, rather than basing everything on facial coordinates and size. This helps

account for one signer performing a sign more to the side and more exaggerated than

the model signs. The multiple scores again can be used in various ways, but a simple

linear combination proved effective. We demonstrated the benefit of using MP-DTW

alone, but the best improvements in accuracy come from combining it with ICVM

features.

9.2 Future Work

This section introduces some of the work that is being planned to continue

research into automated sign recognition systems. It is broken into a few areas:

1) dataset improvements; 2) DTW and similarity measure improvements, including

variation modeling; 3) sign dictionary system ease of use improvements.

9.2.1 Dataset

Work on the dataset is ongoing and improvements are currently being made.

Development continues and the dataset is being expanded to contain a vocabulary
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of 3000 signs. We have begun the process to record two additional fluent signers

who will perform each sign both how the example signs are performed and how they

as individuals prefer to sign them. As more signers are added to the set, machine

learning and statistical methods will become available to researchers. Furthermore, as

it is also a body part detection dataset, annotators are currently providing additional

joint annotation data, such as shoulder and elbow positions. Finally, annotators

are producing hand bounding boxes in the frames between signs in which the signer

begins to move their hands from their sides into position to perform the sign and

in the frames when the hands return to their sides. This will allow us to develop

methods that track motion from the beginning of movement, through the sign, and

to the end of movement.

9.2.2 DTW and Similarity Measure Improvements

This section presents areas of potential improvement in the DTW algorithm

itself and in the similarity measure used, including variation modeling and MP-DTW.

While ICVM and MP-DTW work well, a few changes in the way they are used can

possibly provide substantial improvement.

9.2.2.1 ICVM

There is much that remains to be explored with the variation modeling. First,

with the goal of improving accuracy using the Kinect skeleton annotations, we will

extend the modeling into the third dimension and retrain the selected properties and

corresponding weights as more signers are added to the dataset described in Chapter

4.

Second, the properties were all based on the face-centric and face-normalized

coordinate system detailed in Chapter 3. As MP-DTW shows, the face isn’t the
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only possible origin of coordinate system we can use, and the face diagonal may

not be the best size normalization property. We will fully explore the use of other

property/resizing combinations for use with ICVM.

Third, we will also explore alternative ways to use the features. Their use in

a linear combination with DTW score is a preliminary proof of concept that may

not exploit the full potential of the models. One idea is to use the features in a

probabilistic sense and modify DTW to generate probabilities instead of alignment

error measurements, as is done in [95]. Another option is to use the set of features to

filter out possible false positives. Through the use of random decision forests, SVMs,

or a cascade of weak classifiers, we can examine the effect of various machine learning

techniques.

9.2.2.2 MP-DTW

When we learned the property pairs to use for the origin of the coordinate

system and for size normalizing the signs, we used the DTW score component weights

{s1..s6} that were trained in the face-centric and normalized system. If may be of

benefit to learn a separate set of these weights for each property pair. That way, each

MP-DTW pass is providing the best possible scores for maximum accuracy.

Secondly, there is a chance that MP-DTW relaxes the assumptions about where

a sign can occur too much, so that two unique signs with similar trajectories, but

different positions are confused with each other. It makes sense, then, to impose

some kind of penalty measure for having to recenter the coordinate system, which

the algorithm does not currently do. We will explore this fully in future work.
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9.2.2.3 DTW Transition Costs

During frame alignment in DTW and its multiple-hand-candidate variant Dy-

namic Space-Time Warping (DSTW), we have the option of incorporating frame-to-

frame transition costs into the scoring mechanism. The current dictionary system

does not take such measures. Development of a transition cost can potentially im-

prove recognition accuracy. Preliminary experimentation using the distance the hand

traveled from frame to frame as a basis for the transition cost proved fruitless. This

makes some sense, as this distance traveled is already encoded in the position infor-

mation of the hands. Among the alternative options are creating a cost based on

hand shape similarity from frame to frame as well as one based on hand detector

scores. In future work, we will fully explore the options and make modifications to

the feature vectors as needed to develop an acceptable transition cost.

9.2.2.4 3D Sign Trajectory Matching

Since a gesture or sign is not a planar event, we will explore bringing the

trajectories into the 3rd dimension. This will require modification of the feature

vector to include the z coordinates of the hand positions and motion directions. The

signs will be aligned by setting the position of the head in the first frame to be the

origin of the new coordinate system and will be resized in one of two ways: 1) so that

the shoulder-to-shoulder distance is equal to 1 or 2) so that the distance from the

signer’s head to neck in the first frame is equal to 1.

The first set of experiments will make the assumption that the signer is in the

same orientation in both the training and and testing videos and will perform no

rotations of the point cloud, only translation and resizing. The second set of exper-
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iments will explore whether rotating the point cloud so that the head and shoulders

in the first frame are aligned on the XY plane improves recognition results.

9.2.3 Hand Tracking Improvements

As better hand detection equates to improved sign recognition results, we will

investigate per-model hand detection methods. Two ideas may be explored. First is

the idea of both 2D and 3D moving Gaussian heat maps to provide likelihoods for

the position of the hands in each model sign class. These likelihoods can be used

to narrow a list of hand candidates from a standard hand detector. In the training

models, as the position of the hands moves throughout the duration of the sign,

a Gaussian-shaped curve is moved through space. The longer the hand stays in a

position, the more that region heats up and the higher the likelihood the hand will

be found in that area in the test sign. As the hand moves away from a specific area,

that area begins to cool, and the likelihood the hand will be found in that area drops.

This will require the resizing of the query sign and its alignment to the model sign,

accomplished by aligning the head positions. Figure 9.1 shows a heat map for the

last frame of a sign that has a trajectory moving downward. Red represents a higher

position likelihood; blue represents a lower position likelihood.

Another method that will be explored is to use model hand positions to generate

a region of interest (ROI) in which to search for the hand in the first and last frames

of the query sign; a tracker can then be used to track the hand throughout the sign.

One option is to generate edge images of the handshape from the models and have

a detector that looks for that handshape based on multi-scale search using Chamfer

distance as a measure of similarity. A second option is to use a somewhat more

sophisticated technique like dynamic affine-invariant shape-appearance model (Aff-

SAM) [68]. To avoid forced matching, a score threshold can be empirically learned and
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Figure 9.1: Example hand likelihood heat map

employed to indicate a successful or unsuccessful match. If there is an unsuccessful

match, that sign class could be either discarded as a match or an alternate hand

detection method used.

9.2.4 Dictionary System

We are currently planning improvements to the dictionary system, especially in

the area of ease of use, which also have the potential to improve recognition rates.

9.2.4.1 Automatic 2-Handed Detection

One required step that should be eliminated to maximize system ease of use is

the selection of sign handedness. Most of the longer dictionary system usage time

resulted from the user failing to ensure the correct handedness was selected and having

to rerun the match process after realizing what had happened. There are two ways

to address this problem.
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First, we can group the one-handed and two-handed models into a single set,

and match signs against both types, instead of matching one-handed only to one-

handed and two-handed to two-handed. Experimentation shows that this is a valid

approach, and accuracy only suffers by a few percentage points. We could develop

methods to improve this accuracy, but there might be a better approach.

The second way to address the problem is to use characteristics of two-handed

signs to automatically determine sign handedness, thus relieving the user of the re-

quirement and making the system easier to use. The two handed signs tend to share

a few common characteristics. First, in one-handed signs, the non-dominant hand

tends to stay out of the signing space, or the region in which signs are performed. See

figure 9.2; the red rectangle demarcates the approximate signing space. This method

can check for the presence of the non-dominant hand in the sign space. If it is present,

further analysis is warranted to determine if it is part of the sign.

Furthermore, in two-handed signs, there is often interaction between the dom-

inant hand and either the non-dominant hand or arm. The proposed method can

also look for this interaction. It is often the case, however, that the dominant and

non-dominant hand do not interact. In these cases, their movements tend to be either

symmetric or anti-symmetric. See Section 9.2.4.2 for details and illustrations. The

techniques discussed in that section can be applied here to test for handedness.

9.2.4.2 2-Handed Sign Sub-Classification

There are generally four types of two-handed signs commonly found in American

Sign Language that will allow categorization into unique subclasses:

1. Symmetric: the two hands perform the same motion symmetrically.

2. Anti-Symmetric: the two hands perform a mirror image motion of each other.
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Figure 9.2: Signing space

3. Non-Dominant Static: the non-dominant hand is held stationary while the dom-

inant hand is in motion.

4. Other: a combination of the above classes. Usually, the dominant hand performs

some movement the non-dominant hand does not.

Figure 9.3 shows example trajectories for each two-handed sign type. The green

lines represent the non-dominant hand trajectories, while the red lines correspond

with the dominant hand trajectories. The hand movement characteristics of the

above sign classes can be used to sub-classify the signs and narrow the search space

in the database of known signs. We will develop a means to compare the motion of

the hands and determine the appropriate subclass. The non-dominant static signs

can be distinguished by the lack of significant motion of the non-dominant hand

through the duration of the sign. It will be left to experimentation to define significant
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(a) Anti-Symmetric Trajectory (b) Symmetric Trajectory

(c) Non-Dominant Static (d) Other/Combination

Figure 9.3: Two-handed sign trajectory types.

motion. There are a few options that will be explored to check for symmetric and

anti-symmetric signs.

First, the overall shapes of the dominant and non-dominant hand trajectories

can be compared with a measure like Chamfer distance. This would require the

alignment of the trajectories for symmetric signs (perhaps by aligning the starting

points or by using Iterative Closest Points (ICP) to generate a best alignment), and

in the case of anti-symmetric, the mirroring and alignment of trajectories. Figures

9.4 and 9.5 illustrate the process for anti-symmetric and symmetric two-handed signs,
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(a) Original trajectories (b) Mirrored trajectory (c) Aligned trajectories

Figure 9.4: Anti-symmetric 2-handed trajectory comparison.

(a) Original trajectories (b) Aligned trajectories

Figure 9.5: Symmetric 2-handed trajectory comparison.

respectively. Whereas these illustrations show a comparison on a 2D image plane,

the comparison can be brought into the third dimension by aligning the trajectories

in space.

The above proposed methods, however, ignore the temporal aspect of a sign.

Another method we will explore to compensate for this is to use DTW to determine

how well the two hand trajectories align in both time and space. The trajectories

will be expressed in a new coordinate system with their starting position in the first

frame at the origin, and the non-dominant trajectory will need to be mirrored for the

anti-symmetric comparison.

It remains to be determined how the mixed case will be tested. One option is to

employ a modification to DTW, called gesture spotting, to look for the non-dominant

trajectory inside the dominant trajectory (both mirrored and not mirrored). If there
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(a) Original trajectories (b) Spotted trajectory

Figure 9.6: Spotting non-dominant hand trajectory

is a large portion (to be defined by experimentation) of the dominant trajectory that

is not matched, this could be taken as an indication of the mixed status. Figure 9.6

shows an illustration of the idea. The blue circle marks the unmatched portion of the

dominant hand trajectory.

9.2.4.3 Hand Shape

A large amount of the information conveyed in a sign is found in the shape and

configuration of the hands. One of the top goals to improve the dictionary system is

to incorporate automatic hand shape generation and comparison. By comparing the

hand shapes in the first and last frames of a test and model sign, the accuracy can

potentially be improved. To do so, the system must be able to expand from a single

point for the hand as generated by the skeleton detection algorithm to a set of points

corresponding to the entire hand. We must be able to cluster the pixels belonging

to the hand and not the surrounding context. Furthermore, we will need a rotation

invariant representation of the hand configuration.
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9.3 Conclusions

In this thesis we have presented a new dataset for gesture recognition and body

part detection research. In its final form, the dataset will contain a larger vocabulary

than other publicly available dataset and will have a more complete set of annotations.

From this dataset, we have generated benchmarks for gesture recognition and hand

detection to serve as goals for the improvement of developed methods. We have

also presented two novel improvements to exemplar-based large vocabulary gesture

recognition with few training examples. The first, ICVM, generates a set of likelihoods

that a test sign belongs to the same class as an example. The second, MP-DTW, helps

account for variations in the position and scale of same-class signs in user-independent

recognition systems. We have demonstrated a significant improvement in accuracy

using the two methods. Furthermore, we have introduced a new fully-integrated ASL

video dictionary system that is faster, more accurate, and easier to use than past

variants. Finally, we have laid out several tracts of research to provide direction for

future work in gesture recognition and body part detection.
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