
i

FITTING B-SPLINES CURVES TO COARSE DATA CLOUD USING MODIFIED

SQUARED DISTANCE MINIMIZATION METHOD

by

VINAY VIVEK MHALA

THESIS

Submitted in partial fulfillment of the requirements for

 the degree of Master of Science in

Mechanical Engineering

at

The University of Texas at Arlington

August 1st, 2016

Arlington, Texas

Supervising Committee:

Dr. Robert Taylor, Supervising Professor

Dr. Ashfaq Adnan

Dr. Ratan Kumar

ii

Copyright by

VINAY VIVEK MHALA

2016

iii

ACKNOWLEDGEMENTS

I would like to express gratitude to my supervising professor, Dr. Robert M. Taylor for

giving me this wonderful opportunity. His tremendous support and advice throughout my

research work has been a great aid. I would like to thank Supervising Committee Members Dr.

Ashfaq Adnan and Dr. Ratan Kumar for their valuable input and time. Finally, I would like to

acknowledge, University of Texas at Arlington and Department of Aerospace and Mechanical

Engineering for providing a great opportunity to nurture my interest.

iv

DEDICATION

I will like to dedicate my work to my parents, Mr. Vivek Mhala and Ms. Usha Mhala and

my sister Ms. Anushree Mhala. My achievements are result of their enormous efforts and support

in all possible form. I also like to thank my friends for believing in me and encouraging me

throughout my academic life. I would take this opportunity to thank my roommates Mr. Tanmay

Srivastava, Mr. Kunal Choudhari and Mr. Avinash Rai for their help throughout my research work.

Finally, I would like to thank god for his blessings.

v

ABSTRACT

Additive manufacturing has made us realize that we can fabricate complex shapes that

were difficult to manufacture with subtractive processes. Topology optimizations results have

complex shapes and have rough surfaces which are difficult to manufacture even by additive

manufacturing. To automate the process of converting rough surfaces into smooth surfaces for

the benefit of manufacturability would be very desirable.

Computing curve segments to approximate point cloud data that represents rough

surfaces and then lofting it to have a smooth surface seems to be a promising methodology to

achieve automation. We implement B-spline formulation along with Pottmann’s iterative

method based on Squared Distance Minimization to automate the process of smoothening of

rough surfaces. Calculation of foot points is a repetitive step within Squared Distance

Minimization (SDM) method and accounts for considerable amount of computation time. In this

research work, we proposed and implemented an algorithm on simple and complex shapes to

help gain reduction in time required for foot point calculation. We will discuss ways to use this

method effectively, dealing with instability, steps to reduce computation time and future work.

Keywords: B-spline, Squared Distance Minimization (SDM), SD error term, Foot point calculation,

Point cloud data, Control points, Curve fitting.

vi

TABLE OF CONTENTS:

1. INTRODUCTION .. 1

1.1 PROBLEM DEFINITION ... 1

1.2 APPROACH .. 4

2. BACKGROUND WORK ... 6

2.1 CURVES .. 6

2.2 CURVE FITTING WITH ERROR TERMS .. 9

2.2.1 POINT DISTANCE ERROR TERM (ePD) ... 10

2.2.2 TANGENT DISTANCE ERROR TERM (eTD) ... 11

2.2.3 SQUARED DISTANCE ERROR TERM (eSD) ... 14

3. METHODOLOGY .. 15

3.1 SQUARE DISTANCE MINIMIZATION .. 15

3.1.1 STEPS ... 19

3.1.2 PROBLEM .. 20

3.2 FAST ALGORITHM.. 21

3.2.1 CALCULATION OF FOOT POINT ... 21

3.2.2 INITIALIZING CURVES .. 22

3.2.2.1 MANUAL SETUP .. 23

3.2.2.2 AUTOMATIC SETUP ... 23

4. EXPERIMENTS AND RESULTS ... 24

4.1 CASE 1: CIRCLE .. 24

4.2 CASE 2: IRREGULAR SHAPE ... 26

4.3 CASE 3: IRREGULAR SHAPE WITH STRAIGHT LINE .. 28

4.4 CASE 4: IRREGULAR SHAPES WITH DEEP AND HIGH CURVATURE CAVITIES 30

4.5 CASE 4: SHARP EDGES ... 32

4.6 EFFECT OF CHANGE IN PARAMETERS ... 33

4.6.1 EFFECT OF INITIAL DEFINITION ... 34

4.6.2 EFFECT OF NUMBER OF CURVE SLICES ... 35

4.6.3 EFFECT OF ‘λ’ VALUE ... 36

4.7 OBSERVATIONS AND GUIDELINES ... 38

5. METHOD LIMITATIONS ... 40

vii

5.1 ABSENCE OF POINTS IN DATA CLOUD: ... 40

5.1.1 CASE: 1 ... 40

5.1.2 CASE: 2 ... 41

5.2 INSTABILITY DUE TO UPDATE .. 41

5.3 INSTABILITY DUE TO FOOT POINT CALCULATION ... 41

6. CONCLUSION .. 43

7. FUTURE WORK ... 44

8. REFERENCES ... 46

9. APPENDIX ... 47

9.1 DATA CLOUDS ... 47

9.1.1 SHAPE: CIRCLE ... 47

9.1.1.1 EXCEL FILE ... 47

9.1.1.2 CODE ... 48

9.1.2 SHAPE: IRREGULAR SHAPE .. 48

9.1.2.1 EXCEL FILE ... 48

9.1.2.2 CODE ... 53

9.1.3 SHAPE: IRREGULAR SHAPE WITH STRAIGHT LINE ... 54

9.1.3.1 EXCEL FILE ... 54

9.1.3.2 CODE ... 57

9.1.4 SHAPE: IRREGULAR SHAPE WITH DEEP AND HIGH CURVATURE CAVITY 58

9.1.4.1 EXCEL FILE ... 58

9.1.4.2 CODE ... 63

9.1.4.3 IMAGE ... 63

9.1.5 SHAPE: SHARPE EDGES .. 63

9.1.5.1 EXCEL FILE ... 64

9.1.5.2 CODE ... 67

9.2 MAIN.M ... 68

9.3 B-SPLINE.M .. 71

9.4 PRE_REC.M .. 74

9.5 MIN_FUN.M .. 76

9.6 FIND_PIECE.M ... 81

9.7 XY_U.M.. 81

9.8 TN.M .. 82

viii

9.9 F1_INT.M ... 82

9.10 F2_INT.M ... 83

ix

TABLE OF FIGURES:

Figure 1.1: Original model considered for topology optimization ... 2

Figure 1.2: Optimized result for same design consideration with noisy surface 2

Figure 1.3: Optimized result for same design consideration with noisy surface 2

Figure 1.4: Smoothened surface using software (Evolve, Inspire) ... 2

Figure 1.5: Original model considered for topology optimization ... 3

Figure 1.6: Optimized result for same design consideration with noisy surface 3

Figure 1.7: Smoothened surface using software (Evolve, Inspire) ... 3

Figure 1.8: Smoothened surface using software (Evolve, Inspire) ... 3

Figure 1.9: Different contours in one frame ... 4

Figure 1.10: Flow Chart ... 5

Figure 2.1: Initial Hermite Curve with 4 control points .. 6

Figure 2.2: Effect of moving control point P2 on Hermite Curve ... 7

Figure 2.3: Initial Bezier Curve with 4 control points ... 7

Figure 2.4: Effect of moving control point P3 on Bezier Curve .. 7

Figure 2.5: Graphic representation of B-Spline curve segment with 6 control points 8

Figure 2.6: Effect of moving control point P2 on B-Spline Curve ... 8

Figure 2.7: Graphical representation of point distance error term.. 10

Figure 2.8: Graphical representation of point tangent error term .. 11

Figure 2.9: Initial Definition .. 12

Figure 2.10: Solution by PD error term – after 10 iterations .. 12

Figure 2.11: Solution by TD error term – after 10 iterations .. 12

Figure 2.12: Solution by SD error term – after 10 iterations .. 12

Figure 2.13: Initial Definition .. 13

Figure 2.14: Solution by PD error term – after 20 iterations .. 13

Figure 2.15: Solution by TD error term – after 20 iterations .. 13

Figure 2.16: Solution by SD error term – after 20 iterations .. 13

Figure 3.1: Scattered data cloud obtained by taking cross-section of optimized result 15

x

Figure 3.2: Defined control points to generate initial B-spline .. 16

Figure 3.3: Calculating shortest distance to find foot point ... 20

Figure 3.4: Fast Algorithm – Grouping of data points based on nearest midpoint 21

Figure 3.5: Interpolating foot point .. 22

Figure 3.6: Less effective way of defining control points ... 23

Figure 3.7: Effective way to define control points .. 23

Figure 4.1: Simple data cloud representing a circle with control points defined less effectively 24

Figure 4.2: Convergence after 4 iterations ... 24

Figure 4.3: Convergence after 6 iterations ... 25

Figure 4.4: After 9 iterations - SDM formulation converges B-spline towards the data cloud 25

Figure 4.5: Random shape with control points defined closely to the data cloud (automatically

defined control points) ... 26

Figure 4.6: Convergence after 3 iterations ... 26

Figure 4.7: Convergence after 4 iterations ... 27

Figure 4.8: After 6 iterations - SDM formulation converges B-spline towards the data cloud 27

Figure 4.9: Random shape with control points defined closely to the data cloud (manually

defined control points) ... 28

Figure 4.10: Convergence after 2 iterations ... 28

Figure 4.11: Convergence after 5 iterations ... 29

Figure 4.12: After 6 iterations - SDM formulation converges B-spline towards the data cloud .. 29

Figure 4.13: Irregular data cloud with complex and sharp change in shape 30

Figure 4.14: Convergence after 3 iterations ... 30

Figure 4.15: After 6 iterations - SDM formulation converges B-spline towards the data cloud .. 31

Figure 4.16: Irregular data cloud with sharp change in shape ... 32

Figure 4.17: Convergence after 2 iterations ... 32

Figure 4.18: After 3 iterations - SDM formulation converges B-spline towards the data cloud .. 33

Figure 4.19: Less effective way of defining control points ... 34

Figure 4.20: Effective way of defining control points ... 34

Figure 4.21: Result after 11 iterations in case of less effective way of defining control points .. 34

xi

Figure 4.22: Result after 6 iterations in case of effective way of defining control points 34

Figure 4.23: Number of curve slices - 14 .. 35

Figure 4.24: Number of curve slices - 30 .. 35

Figure 4.25: Number of curve slices - 50 .. 35

Figure 4.26: Number of curve slices - 120 .. 36

Figure 4.27: λ = 0.5 .. 36

Figure 4.28: λ = 0.05 .. 37

Figure 4.29: λ = 0.01 .. 37

Figure 4.30: λ = 0.005 .. 37

Figure 5.1: Sparse data cloud .. 40

Figure 5.2: Sparse data cloud with far away data point ... 41

1

1. INTRODUCTION

In this section, we will discuss the problem definition and understand motivation behind

the research work. The section, also explains the approach adopted to achieve the aim of

automating, generation of smooth surfaces from noisy optimization result.

1.1 PROBLEM DEFINITION

Evolution of manufacturing processes have introduced us to a very versatile

manufacturing methodology; ‘Additive Manufacturing’. Additive manufacturing is a process of

manufacturing a product by layer-by-layer deposition of materials as compared to the traditional

subtractive manufacturing process, wherein material is removed from a sheet or block of

material to manufacture a product. Additive manufacturing process can be classified into seven

categories; VAT Photopolymerisation, Material Jetting, Binder Jetting, Material Extrusion,

Powder Bed Fusion, Sheet Lamination and Directed Energy Deposition. Additive manufacturing

has made us realize that we can manufacture complex geometry, which is difficult or impossible

to manufacture by conventional manufacturing techniques. With advance in this field we have

encountered various problems that make this method less practical.

Optimization is carried out on an object to have an optimal design for the same design

consideration. Design optimization can be classified into three types: Shape optimization, Size

optimization and Topology optimization. This research work deals with problems that are faced

after topology optimization is performed on a design (Blattman, 2008). As material is removed

from the original design the optimized result has noisy/rough surfaces, making it difficult to

manufacture by subtractive as well as additive manufacturing. Also, manufacturing rough

surfaces result into stress concentration, which is undesirable; Figure 1 and 2 demonstrates the

scenario. Figure 1.1 and Figure 1.5 are the initial design and are consider for material reduction.

Figure 1.2, Figure 1.3 and Figure 1.6 project results after topology optimization, of the initial

model. Now, these rough surfaces need to be smoothened out so that the object is

manufacturable. Software’s such as SolidThinking, Evolve, Inspire, etc. help solve these problems,

Figure 1.4, Figure 1.7 and Figure 1.8 demonstrates results of smoothened surfaces. These

softwares require a professional to perform the task manually and the results will depend on

knowledge and experience of the operator. This also leads to variation of results from one

professional to other.

2

Figure 1.1: Original model considered for
topology optimization

Figure 1.2: Optimized result for same design

consideration with noisy surface

Figure 1.3: Optimized result for same design
consideration with noisy surface

Figure 1.4: Smoothened surface using
software (Evolve, Inspire)

3

Figure 1.5: Original model considered for
topology optimization

Figure 1.6: Optimized result for same design
consideration with noisy surface

Figure 1.7: Smoothened surface using
software (Evolve, Inspire)

Figure 1.8: Smoothened surface using
software (Evolve, Inspire)

4

We might be able to eliminate these restrictions and reduce the time consumed, by

automating the process of smoothening of noisy surfaces. In this research paper, we have

implemented one such method and have proposed an algorithm to speed it.

1.2 APPROACH

The process of acquiring smooth surfaces goes through three different stages; first we

take cross-section of the result obtained after optimization and generate point cloud data from

this cross-section. Then data cloud is grouped based on different contours as there could be more

than one contour in a cross-section; as shown in Figure 1.9. The second step involves defining an

approximate initial curve and then fitting curve segments to the data cloud with accuracy. Finally,

use the curve segments to generate surfaces and deal with surface interaction at joints.

Figure 1.9: Different contours in one frame
(cross-section)

In this research, we implemented B-spline curves to fit through the point cloud data that

defines a rough cross-section, as B-spline formulation (equation (1)) provides local control and

various other advantages over other types of curves such as Bezier Curve or Hermite Curve [Refer

section 2.1 for explanation]. To improve the accuracy of fit, we will be using iterative optimization

scheme based on Squared Distance Minimization (equation (5)) and propose an algorithm to

reduce computation time required to calculate foot point on the curve from data cloud.

Flowchart shown in Figure 1.10, describes start to end steps involved in acquiring a

manufacturable optimized part.

5

Figure 1.10: Flow Chart

The paper will advance with discussion on background work, followed by implementation

of the method and algorithm to reduce computation time. After explaining the methodology, we

will examine some results and analyze limitations to SDM and ways to overcome them. Finally,

we will derive conclusions from this research and comment on the future work.

3-D MODEL WITH DESIGN CONSTRAINTS

TOPOLOGY OPTIMIZATION ON THE MODEL

OPTIMIZED RESULT WITH NOISY/ROUGH

SURFACE

TAKE CROSS-SECTIONS OF THE OPTIMIZED RESULT TO GENERATE POINT

CLOUD DATA

CONTOUR RECOGNITION

DEFINE INITIAL B-SPLINE

IMPLEMENT SQUARED DISTANCE MINIMIZATION METHOD TO CONVERGE

INITIAL B-SPLINE TOWADS THE DATA CLOUD

LOFT SURFACE FROM THE CONVERGED CURVE

SEGMENTS

INTERACTION OF SURFACES

6

2. BACKGROUND WORK

In this section, we will briefly discuss different curves (Mortenson, 2006)and error terms

along with advantages B-spline and SDM formulation has over others. As mentioned in the

section 1, we need curve segments that could fit through simple and complex point cloud data

with ease. So, we need curve segments that will give higher degree of freedom and an error term

that will give accurate updates to the control points. Now, we will briefly discuss some curve

options and error terms in the following section:

2.1 CURVES

Curve can be roughly classified as Known-Form curves and Free-Form curves. Circle,

ellipse, hyperbola, rectangle, triangle, etc. have a Known-Form while Bezier curves, Hermite’s

curves and B-spline curves don't have a known form and hence termed as Free-Form curves.

Free-Form curves can be further classified as interpolation and approximation curves.

Interpolation curves like Hermite’s curve will always pass through the control points and have

global control. Due to global control, if one control point is moved to a new location it will affect

the entire curve, also this will affect the continuity of the curve segments; Refer Figure 2.1 and

Figure 2.2. Hence, for our problem definition we don’t opt for interpolation curves (Mortenson,

2006).

Figure 2.1: Initial Hermite Curve with 4
control points

7

Figure 2.2: Effect of moving control point P2
on Hermite Curve

Bezier curve (Mortenson, 2006) has similar properties as of Hermite’s curve but Bezier

curve is an approximation curve and hence the curve segments do not pass through the control

points. As mentioned, even Bezier curve has a disadvantage of providing only global control,

similar to Hermite’s curve [Refer Figure 2.3 and Figure 2.4]. As the number of control points

increase so does the degree of curve which results in mathematical complexity because of which

it is not possible to fit curve segments to complex shape with lower degree curve segments.

Figure 2.3: Initial Bezier Curve with 4 control
points

Figure 2.4: Effect of moving control point P3
on Bezier Curve

8

Figure 2.5: Graphic representation of B-Spline
curve segment with 6 control points

Figure 2.6: Effect of moving control point P2
on B-Spline Curve

B-spline curve is a generalized form of Bezier curve and hence share many properties with

Bezier curve. B-spline provides local control, that means if one control point is moved to a new

location only some part of the curve segment is affected which is decided by ‘Knot’ value [Refer

Figure 2.5 and Figure 2.6]. Also, in case of B-spline curves degree of curve is independent of

number of control points and that helps defining complex geometry with lower degree

polynomial. The B-spline formulation is discussed below (Mortenson, 2006):

𝑃𝑐(𝑡) = ∑ 𝐵𝑖(𝑡)
𝑛

𝑖=1
𝑃𝑖

Where,
Pc(t) – B-spline curve
Bi(t) – Basis function
t – Parameter (0 ≤ t ≤ (n-K+2))
Pi – Control point

i – Number of control points - Index (0,1,…n)

(1)

9

𝐵𝑖,1(𝑡) = {

1, 𝑚𝑖 ≤ 𝑡 ≤ 𝑚𝑖+1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and

(2)

𝐵𝑖,𝑘(𝑡) =
(𝑡 − 𝑚𝑖) ∗ 𝐵𝑖,𝑘−1(𝑡)

𝑚𝑚+𝑘−1 −𝑚𝑖
+
(𝑚𝑖+𝑘 − 𝑡) ∗ 𝐵𝑖+1,𝑘−1(𝑡)

𝑚𝑖+𝑘 − 𝑚𝑖+1

(3)

Where,
K – Parameter controlling degree of curve (K – 1)
k – 2,…,K
i – Index (0,1,…n)
mi – Knots

𝑚𝑗 = {

0 𝑖𝑓 𝑗 < 𝐾
𝑖 − 𝐾 𝑖𝑓 𝐾 ≤ 𝑗 ≤ 𝑛
𝑛 − 𝐾 + 2 𝑖𝑓 𝑗 > 𝑛

Where,
Value of tj – o to (n-K+2)
j – o,…,n+k

(4)

As B-spline has many advantageous properties that will help fit complex shapes, we

choose B-spline. Ultimately, our goal is to move towards Non-Uniform Rational B-spline which

provides an added advantage of assigning weightages to control points giving more freedom in

fitting complex and sharp shapes.

2.2 CURVE FITTING WITH ERROR TERMS

To fit the curve segments to data cloud, there are various curve fitting methods. The basic

three curve fitting method could be classified as Interpolation (Brooks, Thomas, Wynne, &

Coulston, 2012), Regression (Brown, 2001) (Dimitrov & Golparvar-Fard, 2014) (Fang & Gossard,

1995) and Fourier’s Approximation (Brooks, Thomas, Wynne, & Coulston, 2012).In this research,

we have used non-linear error type regression method. In this method, the control points of the

curve are assigned updates using error terms generated by minimizing the objective function to

fit the data cloud with accuracy. The objective function consists of error term and the

regularization term (𝜆𝑓𝑆). In this section, we will discuss three different error terms and their

advantages over one another:

10

a) Point Distance error term

b) Tangent Distance error term

c) Squared Distance error term

2.2.1 POINT DISTANCE ERROR TERM (ePD)

Point distance error term calculates squared distances between foot point, P(tk) and cloud

point, Xk as shown in Figure 2.6Figure 2.7. So, the objective function (equation (5)) can be

transformed into equation 3 to calculate PD error term to yield updates for control points (Wang,

Pottmann, & Liu, 2006).

𝑓𝑃𝐷,𝑘 =

1

2
∑𝑒𝑃𝐷,𝑘
𝑘

+ 𝜆𝑓𝑆

(6)

 where,

𝑒𝑃𝐷 = ‖𝑃(𝑡𝑘) − 𝑋𝑘‖

PD error term is commonly applied term in various area of curve fitting that includes

computer graphics, surface fitting, etc. PD error terms are preferred because of their simplicity

but they have poor approximation. Figure 2.9 - Figure 2.16 (Wang, Pottmann, & Liu, 2006) shows

results of using PD, TD and SD error terms, PD error term takes numerous iterations to converge

and fails to fit curve segments in the areas of complex shapes. PD error term has the slowest

convergence and poorest approximation among the three terms. Figure 2.10 and Figure 2.14

demonstrate the issues with PD error term.

𝑓𝑒𝑟𝑟𝑜𝑟,𝑘 =

1

2
∑(𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚)

𝑘

+ 𝜆𝑓𝑆

(5)

Figure 2.7: Graphical representation of
point distance error term

11

2.2.2 TANGENT DISTANCE ERROR TERM (eTD)

Figure 2.8: Graphical representation of point
tangent error term

Tangent distance error term calculates squared distances between cloud point, Xk and

tangent drawn to the curve Pc(t) at P(tk) as shown in Figure 2.8. So, the objective function

(equation (5)) can be transformed into equation (7) to calculate TD error term to yield updates

for control points, where Nk is the normal at the foot point (Wang, Pottmann, & Liu, 2006).

𝑓𝑇𝐷,𝑘 =

1

2
∑𝑒𝑇𝐷,𝑘
𝑘

+ 𝜆𝑓𝑆

(7)

 where,
𝑒𝑇𝐷,𝑘 = [(𝑃(𝑡𝑘) − 𝑋𝑘) 𝑁𝑘]

2

 TD error term converges in fewer iterations as compared to PD error term. TD error terms

become unstable in case the data point lie on the tangent from the foot point as the distance

yields zero value, thus resulting in poor approximation. This usually results, in areas of sharp

shape change and resultant fit is undesirable as shown in Figure 2.15 (Wang, Pottmann, & Liu,

2006). While Figure 2.11 demonstrates that TD error term works with similar accuracy as SDM

and requires equivalent number of iterations for simple shapes.

12

Figure 2.9: Initial Definition
Reference (Wang, Pottmann, & Liu, 2006)

Figure 2.10: Solution by PD error term – after
10 iterations

Reference: (Wang, Pottmann, & Liu, 2006)

Figure 2.11: Solution by TD error term – after
10 iterations

Reference: (Wang, Pottmann, & Liu, 2006)

Figure 2.12: Solution by SD error term – after
10 iterations

Reference (Wang, Pottmann, & Liu, 2006)

13

Another example:

Figure 2.13: Initial Definition
Reference: (Wang, Pottmann, & Liu, 2006)

Figure 2.14: Solution by PD error term – after
20 iterations

Reference: (Wang, Pottmann, & Liu, 2006)

Figure 2.15: Solution by TD error term – after
20 iterations

Reference: (Wang, Pottmann, & Liu, 2006)

Figure 2.16: Solution by SD error term – after
20 iterations

Reference: (Wang, Pottmann, & Liu, 2006)

14

2.2.3 SQUARED DISTANCE ERROR TERM (eSD)

Squared Distance error term was introduced Weeping Wang, Helmut Pottmann and Yang

Liu in (Wang, Pottmann, & Liu, 2006).SDM calculates the foot point more accurately as compared

to PD and TD error term and hence the results are comparatively more stable and achieve faster

convergence. Result due to PD, TD and SD error terms can be compared in Figure 2.9 - Figure

2.16. Figure 2.12 and Figure 2.16 show result due to SD error term which converged faster and

in a stable fashion for simple as well as complex shape as compared to PD and TD error term. We

will discuss working of SDM and Implementation of it in section 3.

15

3. METHODOLOGY

In this section, we will understand how Squared Distance Minimization method is

implemented and ways to properly initialize the B-spline. Further, in this section we will propose

and discuss an algorithm to speed up Squared Distance Minimization.

3.1 SQUARE DISTANCE MINIMIZATION

As discussed in section 1 and 2, we fit B-spline to the point cloud to obtain smooth surface

from rough optimization results and to improve the accuracy of the fit, we need to adjust control

points based on the point cloud data. To refine this fit, Squared Distance Minimization (SDM)

method is implemented on simple and complex data clouds in this research. SDM formulation

converges the initial curve towards the data cloud in ‘n’ number of iteration depending on

complexity of data cloud and initial definition of control points (Cheng, et al.) (Yanga, Wanga, &

Sun, 2003) (Wang, Pottmann, & Liu, 2006) (Pottmann, Leopoldseder, & Hofer).

Consider Xk where k = 1,2,3,...,n be a set of unorganized point cloud data obtained from

a noisy cross-section as shown below Figure 3.1. To this data cloud, we define an initial B-spline

Pc(t) = ∑ Bi(t)
n
i=1 Pi that would approximately fit the point cloud data as shown in Figure 3.2.

Here, Bi(t) is the basis function of curve segments with ‘t’ being the parameter and Pi‘s are the

control points (Wang, Pottmann, & Liu, 2006).

Figure 3.1: Scattered data cloud obtained by
taking cross-section of optimized result

Now, to fit the initial curve more accurately to this data cloud we use the SDM formulation

(equation (8)). The objective function, fSD has two components, first the Squared Distance error

term and second is known as regularization term (λfS). The ‘½’ in the objective function is

considered for ease, as the objective function needs to be differentiated in future computation

(Pekelny, 2005).

16

Figure 3.2: Defined control points to generate
initial B-spline

𝑓𝑆𝐷,𝑘 =
1

2
∑𝑒𝑆𝐷,𝑘
𝑘

+ 𝜆𝑓𝑆

Where,

fSD – SDM objective function
λ – Weighing factor
fS – Regularization term
eSD – Squared distance error term

(8)

Closed Curve:

𝑒𝑆𝐷,𝑘(𝐷) = {

𝑑

𝑑 − 𝜌
[(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑇𝑘]
2 + [(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑁𝑘]
2 , 𝑖𝑓 𝑑 < 0

 [(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)
𝑇𝑁𝑘]

2 , 𝑖𝑓 0 ≤ 𝑑 < 𝜌

(9)

Open Curve:

 𝑒𝑆𝐷,𝑘(𝐷) = {
 cos 𝜃 𝑒𝑃𝐷,𝑘 + (1 − cos 𝜃)𝑒𝑆𝐷,𝑘 , 𝑓𝑜𝑟 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠

 𝑒𝑆𝐷,𝑘 , 𝑓𝑜𝑟 𝑖𝑛𝑛𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠

(10)

Where,

D – update for control point (DX and DY for PX and PY)
d – Distance between foot point and data point
ρ – radius of curvature at P(tk)
Tk – Tangent at P(tk)
Nk – Normal at P(tk)

17

tk – Parameter
θ – angle between the data point and curve segment

ePD,k – Point Distance error term

Squared distance error term calculates the update required to converge the curve with

higher accuracy as compared to PD and TD error term. SD error term accounts Distance between

foot point and data point, radius of curvature at P(tk), Tangent at P(tk), Normal at P(tk) to yield a

more precise update (Dx, Dy).

Given the data cloud and define initial B-spline, let P(tk) be the closed point for a point

cloud on the curve known as the foot point (Aigner & Juttler, 2005). Let the distance between Xk

and P(tk) be ‘d’ i.e |d| = || Xk – P(tk) ||. Also, consider the local Frenet frame of curve with its

origin at P(tk) with its two co-ordinate axis parallel to tangent and normal vector (Tk, Nk). The

curvature of Pc(t) at P(tk) be denoted by ‘ρ’. If Xk and center of curvature are on the same side of

the curve, then 0<d< ρ else d won’t be the shortest distance, while d > 0 if Xk and center of

curvature are on the same side of the curve. The SD error term formulation differs based on, side

on which data point lie of the curve segment (equation (9)). Also, the formulation changes based

on open or closed curve. Within open curve, the formulation considers for inner data points and

outer data points differently as shown in equation (10).

The second half on the right hand side of equation (8) consists of, fs which is the

regularization term, ensures smoothness of the curves segments while λ alters the weight factor

to the regularization term. λ is always a positive value and ranges from zero to one and is

incremented with desired step (e.g.: 0.01 0r 0.001) (Mortenson, 2006). F1 and F2 are first order

and second order regularization terms respectively as shown below and may have different

weightage as shown in equation (11), (12) and (13).

𝐹1 = ∫‖𝑃𝐷
′ (𝑡)‖ (11)

𝐹2 = ∫‖𝑃𝐷
′′(𝑡)‖

(12)

𝑓𝑆𝐷,𝑘 =
1

2
∑𝑒𝑆𝐷,𝑘
𝑘

+ 𝛼𝐹1 + 𝛽𝐹2

Where,
α and β are weight factors

(13)

18

The objective function is minimized as shown in equation (14) (Pekelny, 2005) to solving

the system of linear equations to yield update Dx and Dy. Dx and Dy are assigned to Px and Py

respectively to move the curve segment towards data cloud where Px and Py are X and Y co-

ordinates of control points. These steps are repeated till the convergence is achieved.

(

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
1,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
2,𝑥
 ⋯ (

𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
𝑛,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
1,𝑦

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
2,𝑦

…(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
𝑛,𝑦

⋮

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑥

)
1,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑥

)
2,𝑥
 … (

𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑥

)
𝑛,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑥

)
1,𝑦

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑥

)
2,𝑦

…(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑥

)
𝑛,𝑦

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑦

)
1,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑦𝑦

)
2,𝑥
 ⋯ (

𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑦

)
𝑛,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑦

)
1,𝑦

(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑦

)
2,𝑦

…(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑦

)
𝑛,𝑦

⋮

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑦

)
1,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑦

)
2,𝑥
 ⋯ (

𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑦

)
𝑛,𝑥

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑦

)
1,𝑦

(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑦

)
2,𝑦

…(
𝜕𝑓𝑆𝐷
𝜕𝐷𝑛,𝑦

)
𝑛,𝑦)

(

𝐷1,𝑥
𝐷2,𝑥
⋮
𝐷𝑛,𝑥
𝐷1,𝑦
𝐷2,𝑦
⋮
𝐷𝑛,𝑦)

=

(

𝑏1,𝑥
𝑏2,𝑥
⋮
𝑏𝑛,𝑥
𝑏1,𝑦
𝑏2,𝑦
⋮
𝑏𝑛,𝑦)

(14)
 Matrix Order,

(2n*2n) (2n*1) = (2n*1)
 Where,

n = number of control points

DIFFRENTIATING (eSD) WITH RESPECT TO DX AND DY:

For 0 ≤ d < ρ ,
𝑒𝑆𝐷,𝑘 (𝐷) = [(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑁𝑘]
2

𝜕𝑒𝑆𝐷,𝑘
𝜕𝐷𝑖,𝑥

=
𝜕[(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑁𝑘]
2

𝜕𝐷𝑖,𝑥

19

Similarly, we differentiate with respect to Dx and Dy for eSD,k where d < 0 and also for the

regularization term.

3.1.1 STEPS

 Following steps are carried out in SDM formulation:

1. Define an initial B-spline curve.

2. Calculating foot point on the initial curve for each point in the data cloud.

3. Minimize fSD by solving liner system of equation to calculate SD error term, eSD.

4. Assign updates to initial control points, generated by error term.

5. Generate the new B-spline.

6. Repeat steps 2 through 5 till converges is achieved.

Differentiating with respect to Dx ,

𝜕𝑒𝑆𝐷,𝑘
𝜕𝐷𝑖,𝑥

= 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥
2 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑥

𝑛

𝑗=1

) + 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥𝑁𝑘,𝑦 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑦

𝑛

𝑗=1

)

+ 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥[(𝑃(𝑡𝑘) − 𝑋𝑘)
𝑇𝑁𝑘]

Similarly, differentiating with respect to Dy ,

𝜕𝑒𝑆𝐷,𝑘
𝜕𝐷𝑖,𝑦

= 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥𝑁𝑘,𝑦 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑥

𝑛

𝑗=1

) + 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑦
2 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑦

𝑛

𝑗=1

)

+ 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥[(𝑃(𝑡𝑘) − 𝑋𝑘)
𝑇𝑁𝑘]

20

3.1.2 PROBLEM

Figure 3.3: Calculating shortest distance to
find foot point

 Every point in the data cloud has the shortest distance on the curve as foot point. To find

the foot point for any point Xk, its distance is calculated throughout the curve segments and the

compared to find the shortest distance as shown in Figure 3.3. Consider the following example;

there are 135 points in the point cloud data, we specify 10 control points to define initial curve.

The initial curve has 10 curve segments with parameter ‘tk’ incrementing from 1 to 10 with an

increment of 0.01. If the simulation iterates for 6 iterations to converge, the total number of

equations solved is 810,000 equations. Solving these many equations require a substantial time

and based on the experiments carried out, the total time required for this simulation is six hours

and fourteen minutes. If the data cloud is even denser the time consumed will grow

exponentially.

 Exploring timing data in TABLE 1 reveals maximum time is utilized to solve SDM

formulation and then for calculation of foot point. For this particular example SDM requires 1915

sec while foot point calculation take 1702 sec.

TABLE 1: TIME DISTRIBUTION TABLE

Functions Area Time in
seconds

Cloud Generation 0.97

B-spline Generation 9-15

Pre-requisite for SDM 1702

SDM formulation 1915

Regularization Term (F1) 13

Regularization Term (F2) 8

21

3.2 FAST ALGORITHM

As discussed in section 3.1.2, calculation of foot point takes a lot of time and should be

dealt with. There are various methods in which we can encounter this problem. Fast Marching

method developed by Professor James Sethian can be used for calculation of foot point (d). This

method uses upwind, viscosity solution and finite difference scheme to solve non-linear partial

differential equation for wave front propagation known as the Eikonal Equation (J.A.Sethain,

1995) (Sethain, 1999). Other possibility could be to generate a grid and approximate the value of

all data points in one patch by calculating value of one data point (Wang, Pottmann, & Liu, 2006).

In this paper, we would like to propose and implement an algorithm to calculate d, as discussed

below in section 3.2.1.

3.2.1 CALCULATION OF FOOT POINT

Figure 3.4: Fast Algorithm – Grouping of data
points based on nearest midpoint

 In this method, we divide the data cloud in groups by calculating their distances

with the midpoint of each curve segments. Group all the points that have shortest distance with

the same midpoint as shown in Figure 3.4. To find the foot point, we first find the distance

between the start and end point of each curve segment with the point in the data cloud. The

parameter value for the start and end point are known and we now approximate the parameter

value for the data point in that group using equation (15) (Wang, Pottmann, & Liu, 2006) [Refer

Figure 3.5 for understanding]. Consider the same example as in section 3.1.2, here we have 135

data points, 10 curve segments (due to initial definition of 10 control points) with parameter tk

incrementing from 1 to 10 with an increment of 0.01. In this case, we also evaluate unit normal,

distance ‘d’, curvature ρ, parameter and theta in case of open curve. If the simulate takes 6

iterations to converge, we manage to bring down solving 810,000 equations to 32,400 equations.

This change might not give the same accuracy but will reduce time considerably. The accuracy

22

issues can be dealt with by dividing curve segments into more parts. Even after dividing the curve

segments into smaller slices the number of equations remain comparatively low.

Figure 3.5: Interpolating foot point

 𝑡𝑘 = (𝑥1𝑡1 + 𝑥2𝑡2)/(𝑥1 + 𝑥2) (15)

 After implementing this algorithm, the results obtain show considerable time

reduction, which is demonstrated in the TABLE 2.

TABLE 2: TIME DISTRIBUTION TABLE

Functions Area Time in
seconds

Cloud Generation 0.97

B-spline Generation 120

Pre-requisite for SDM 300

SDM formulation 800

Regularization Term (F1) 13

Regularization Term (F2) 8

3.2.2 INITIALIZING CURVES

 Defining initial curve is an important step in SDM simulation. Inaccurately defined B-spline

would take numerous iteration to converge B-spline towards the point cloud. Figures below,

shows two different scenarios Figure 3.6 describes less effectively define initial B-spline which

23

takes 11 iterations and a total time of 10 hours and 30 minutes to achieve equivalent

convergence as compared to a well-defined initial B-spline as shown in Figure 3.7.

Figure 3.6: Less effective way of defining
control points

Figure 3.7: Effective way to define control
points

3.2.2.1 MANUAL SETUP

Once we have the data cloud, control points can be assigned manually in an appropriate

manner. The goal is to keep control points to the minimum, as number of control points

increase the number of calculations increases as well and thus the time required for each

iteration. Figure 4.1 in section 4.1, is an example of manual setup.

3.2.2.2 AUTOMATIC SETUP

Another technique that could result in an appropriate initial B-spline curve is by assigning

every nth point in the data cloud as a control point. This works well in most of the cases

as shown in Figure 4.5 in section 4.2 and Figure 4.9 in section 4.3, but in some cases if

there is a quick change in shape and the nth control point does not lie in the region of

quick shape change, it would take more iterations to fit the B-spline through the data

cloud.

24

4. EXPERIMENTS AND RESULTS

In this section, we will analyze some experiments and there results that were carried out

on simple and complex shapes with simple and coarse data cloud. The parameters were varied

to study their effects and suggest guidelines to yield best possible results.

4.1 CASE 1: CIRCLE

The data cloud as shown in Figure 4.1, has 40 data points which represents a simple circle,

to which 10 initial control points (Px, Py) are defined. Weightage of 0.005 is assigned to the

regularization factor for smoothness of the curve segments. TABLE 3 displays various parameter

and their values involved in this experiment.

Figure 4.1: Simple data cloud representing a
circle with control points defined less

effectively

Figure 4.2: Convergence after 4 iterations

25

Figure 4.3: Convergence after 6 iterations

Figure 4.4: After 9 iterations - SDM
formulation converges B-spline towards the

data cloud

TABLE 3: PARAMETER SPECIFICATION

Parameters Value

Data cloud 40

Control points 10

Curve segments 10

Weightage for Regularization term,
λ

0.005

Iterations 9

Figure 4.2 and Figure 4.3 project results after 4th and 6th iteration during the simulation

while Figure 4.4 shows converged B-spline after 9 iterations. The control points are defined in a

less effective way so the simulation takes 9 iterations to converge with predefined convergence

percentage of 3%. We can observe that, due to continuity issues we have C0 continuity at start

and end point of curve. As the curve segments are very close to the data cloud and the

approximation represent a circle, we can comment that the SDM formulation successfully yields

a good fit.

26

4.2 CASE 2: IRREGULAR SHAPE

The data cloud as shown in Figure 4.5, has 163 data points, to which 8 initial control points

(Px, Py) are defined. The eight curve segments are further divided into 50 slices to improve

accuracy and reduce number of iterations. Weightage of 0.005 is assigned to the regularization

factor for smoothness of the curve segments.

TABLE 4 displays various parameter and their values involved in this experiment.

Figure 4.5: Random shape with control points
defined closely to the data cloud

(automatically defined control points)

Figure 4.6: Convergence after 3 iterations

27

Figure 4.7: Convergence after 4 iterations

Figure 4.8: After 6 iterations - SDM
formulation converges B-spline towards the

data cloud

TABLE 4: PARAMETER SPECIFICATION

Parameters Value

Data cloud 163

Control points 8

Curve segments 50

Weightage for Regularization term,
λ

0.005

Iterations 6

Figure 4.6 and Figure 4.7 project results after 3rd and 4th iteration during the simulation

while Figure 4.8 shows converged B-spline after 6 iterations. The control points are defined in an

effective way, so the simulation takes 6 iterations to converge with predefined convergence

percentage of 3%. The curve passes well within the data cloud, accounting for the coarseness of

the data cloud. We can also observe, that due to continuity issues we have C0 continuity at start

and end point of curve. The SDM formulation is able to converge curve segments through

irregular change of curvature, yielding a good fit.

28

4.3 CASE 3: IRREGULAR SHAPE WITH STRAIGHT LINE

The data cloud as shown in Figure 4.9, has 138 data points, to which initial control points

(Px, Py) are defined. The 11 curve segments are further divided into 40 slices to improve accuracy

and reduce the number of iterations. Weightage of 0.005 is assigned to the regularization factor

for smoothness of the curve segments.

TABLE 5 displays various parameters and their values involved in this experiment.

Figure 4.9: Random shape with control points
defined closely to the data cloud (manually

defined control points)

Figure 4.10: Convergence after 2 iterations

29

Figure 4.11: Convergence after 5 iterations

Figure 4.12: After 6 iterations - SDM
formulation converges B-spline towards the

data cloud

TABLE 5: PARAMETER SPECIFICATION

Parameters Value

Data cloud 138

Control points 11

Curve segments 40

Weightage for Regularization term,
λ

0.005

Iterations 6

Figure 4.10 and Figure 4.11 project results after 2nd and 5th iteration during the

simulation while Figure 4.12 shows converged B-spline after 6 iterations. The control points are

defined automatically in an effective way so the simulation takes 6 iterations to converge with

predefined convergence percentage of 2%. We can also observe, that due to continuity issues we

have C0 continuity at start and end point of curve but the curve passes well within the data cloud

in region of curvature change but has difficulty at corners where shape changes to a straight line.

30

4.4 CASE 4: IRREGULAR SHAPES WITH DEEP AND HIGH CURVATURE

CAVITIES

The data cloud as shown in Figure 4.13, has 174 data points, to which 19 initial control

points (Px, Py) are defined. The number of control points is high in this case due to the complexity

of the data cloud. The 19 curve segments are further divided into 90 slices to improve accuracy

and reduce number of iterations. Weightage of 0.005 is assigned to the regularization factor for

smoothness of the curve segments. Table 6 displaces various parameters and their values

involved in this experiment.

Figure 4.13: Irregular data cloud with
complex and sharp change in shape

Figure 4.14: Convergence after 3 iterations

31

Figure 4.15: After 6 iterations - SDM
formulation converges B-spline towards the

data cloud

TABLE 6: PARAMETER SPECIFICATION

Parameters Value

Data cloud 174

Control points 19

Curve segments 90

Weightage for Regularization term,
λ

0.005

Iterations 6

Figure 4.14 project’s result after 3rd iteration during the simulation while Figure 4.15

shows converged B-spline after 6 iterations. The control points are defined manually in an

effective way due to the complex nature of the data cloud which helps gain convergence in 6

iterations with a predefined convergence percentage of 0.5%. We can also observe, that due to

continuity issues we have C0 continuity at start and end point of curve. Also, the data cloud is

sparse in the region of fingertip which generates small errors and hence the curve segments do

not accurately fit fingertips. On contrary, due to adequate data points in the base region the

curve fitting has better approximation.

32

4.5 CASE 4: SHARP EDGES

The data cloud as shown in Figure 4.16 has 140 data points, to which initial control points

(Px, Py) are defined. The 14 curve segments are further divided into 30 slices to improve accuracy

and reduce the number of iterations. Weightage of 0.001 is assigned to the regularization factor

for smoothness of the curve segments. TABLE 7 displays various parameter and their values

involved in this experiment.

Figure 4.16: Irregular data cloud with sharp
change in shape

Figure 4.17: Convergence after 2 iterations

33

Figure 4.18: After 3 iterations - SDM

formulation converges B-spline towards the
data cloud

TABLE 7: PARAMETER SPECIFICATION

Parameters Value

Data cloud 140

Control points 14

Curve segments 30

Weightage for Regularization term,
λ

0.001

Iterations 3

Figure 4.17 project’s result after 2nd iteration during the simulation while Figure 4.18

shows converged B-spline after 3 iterations. The control points are defined automatically in an

effective way to fit the sharp edges of the data cloud, so the simulation takes 3 iterations to

converge with predefined convergence percentage of 0.5%. The curve segments have Cn

continuity and so cannot fit through corners, as in case of C0 continuity. The curve fits, edges and

corners with fair approximation.

4.6 EFFECT OF CHANGE IN PARAMETERS

The parameters such as weightage of regularization terms, number of control points and

number of curve slices have a considerable effect on accuracy of fit and time required for

convergence. In this section we will analyze effects of varying these parameters.

34

4.6.1 EFFECT OF INITIAL DEFINITION

Initial definition of the B-spline curve plays a very important role in quality of output and

time required to achieve convergence. The experiment carried out below [Refer Figure 4.19 and

Figure 4.22] demonstrates the outcome of effectively defined control points and ineffectively

defined control points.

Figure 4.19: Less effective way of defining
control points

Figure 4.20: Effective way of defining control
points

Figure 4.21: Result after 11 iterations in case
of less effective way of defining control points

Figure 4.22: Result after 6 iterations in case
of effective way of defining control points

Figure 4.19 requires 11 iterations to converge compared to 6 iterations for Figure 4.20.

Due to the poor definition of control points the results are poor approximation of data cloud.

There are less control points in the region on shape change which results into failure to accurately

fit curve segments through data cloud. Quality of fit is affected by initial definition of control as

shown in Figure 4.21 and Figure 4.22.

35

4.6.2 EFFECT OF NUMBER OF CURVE SLICES

As SDM formulation on its own requires considerable amount of time, a faster algorithm

was implemented. The algorithm compromises on the quality of fit but gives considerable time

reduction. To improve the accuracy of the fit, the curve segments are further divided into

multiple parts as per the complexity of data cloud. This help in better interpolation of the

parameter value for foot point computation. Figure 4.23 - Figure 4.26 demonstrates the

experiments carried out on same data cloud with 14, 30, 50 and 120 curve slices.

Figure 4.23: Number of curve slices - 14

Figure 4.24: Number of curve slices - 30

Figure 4.25: Number of curve slices - 50

36

Figure 4.26: Number of curve slices - 120

 Form above experiments we can observe that Figure 4.24 gives better approximation of

the data cloud as compared to Figure 4.23, while there is no considerable change in Figure 4.25

and Figure 4.26 with increase in number of slices. From this study we understand, that accuracy

increases as number of curve slices are increased but after a certain values the change in accuracy

is minimal.

4.6.3 EFFECT OF ‘λ’ VALUE

Regularization term in objective function helps gain smoothness to the curve segments,

weightage of this regularization term is govern by λ. Experiments carried out with different λ are

shown in Figure 4.27 - Figure 4.30.

Figure 4.27: λ = 0.5

37

Figure 4.28: λ = 0.05

Figure 4.29: λ = 0.01

Figure 4.30: λ = 0.005

From the above experiments we can observe, that as the λ values is reduced, the SDM

formulation gain better fit to data cloud. Figure 4.30 has better fit compared to Figure 4.29,

Figure 4.28 and Figure 4.27.

38

4.7 OBSERVATIONS AND GUIDELINES

 Better initialization results into quicker convergence.

Guidelines:

1) For simple shapes, define control points by automatic method of control point

selection. [Refer section 3.2.2.2]

2) For complex shapes input control points manual. [Refer section 3.2.2.1]

 Higher number of control points does not necessarily result into better fit.

Guidelines:

1) For simple shapes use fewer control points. Example: For simple shape like circle

6 control points would yield similar results as 10 control points or for shapes like

rectangle 8 control points are sufficient to yield a good fit.

2) In case of complex geometry, assign control points just before, in the region and

just after the sharp change. This gives higher flexibility to fit sudden shape change.

While fitting rest of the simple shape with fewer control points. This keeps the

total control points to minimum and will require comparatively less time.

3) In regions, where data cloud closely represents a straight line only 2 control points

are required; one near the start and other near the end.

4) Remember, the aim is to fit curve segments to the data cloud with fewer control

points and with accuracy.

 Accuracy can be increased by having optimal number of curve slices. [Refer section 4.6.2]

Guidelines:

1) For simple data clouds such as circle or rectangle the number of segments

generated by definition of control points is adequate to give good results. This is

valid only if the size of simple shapes like circle or rectangle is small, in case of a

larger shape and bigger data cloud the number of slices should be increased.

2) Data cloud with complex and sharp change should have multiple slices. Example:

If the size of data cloud ranges between 100 – 250, curve slices can range between

40-100 slices.

39

 Regularization factor works best with appropriate, λ value. [Refer section 4.6.3]

Guidelines:

1) Weightage, λ between 0 and 0.010 for the regularization term yield better results

as compared to higher λ values.

40

5. METHOD LIMITATIONS

In this section, we will discuss the method limitations [also refer: (Wang, Pottmann, & Liu,

2006)] with implementing Squared Distance Minimization method, instability issues and ways to

overcome them.

5.1 ABSENCE OF POINTS IN DATA CLOUD:

Sparse data cloud or absence of data points results into instability and undesirable outcome. In

this section, we will study effect of sparse data cloud or absence of data points on the final result.

5.1.1 CASE: 1

Figure 5.1: Sparse data cloud

 In a closed data cloud, a case may arise where there is no foot point on a particular curve

segment due to sparse data cloud as shown in Figure 5.1. In such cases, the SDM algorithm cannot

calculate the appropriate update for the control point in the region. The result is an inaccurate

final curve which is undesirable.

41

5.1.2 CASE: 2

Figure 5.2: Sparse data cloud with far away
data point

 In a similar case, where the data cloud is sparse and a data point that has foot point on

the curve segment is far away as compared to the rest of the cloud points, the error term might

become huge and the resultant update will be abnormal as shown in Figure 5.2. This undesirable

error term may amplify the error in successive iterations making the curve unstable. To

encounter such issues there are two alternatives; (1) a faraway point in a data cloud can be

neglected for initial or all iterations or (2) movement of the curve to fit the data cloud can be

restricted or controlled. In the latter case, the update is restricted to some ‘x’ unit of maximum

change. This is an idea method to maintain stability in the simulation.

5.2 INSTABILITY DUE TO UPDATE

 Linear system of equations is evaluated to find SD error term; this error term produces an

update to the existing location of control points which converges the curve towards data cloud.

These updates yield appropriate relative movements but have an amplified numerical value,

which induces instability in the result. By assigning a scaling factor this instability can be

controlled. Also, this increases the number of iterations required, but can be considered as a

tradeoff between time and instability.

5.3 INSTABILITY DUE TO FOOT POINT CALCULATION

 This is a very rare scenario; foot point calculations may sometimes make the fitting B-

spline unstable. The calculation for distance between foot point and data point may yield a zero

value. Situation like these causes the error term to rise to infinity resulting into undesirable

outcome. As these problem exists near convergence they can be encountered by neglecting such

42

data points. In our experiments, we have specified a value of 1*e-6 as zero values, such that if

distance between foot point and data point is less that 1*e-6 the data point will be neglected.

43

6. CONCLUSION

In this research work, we have studied different types of curve along with various curve

fitting error term and have implemented fitting of B-spline to point cloud data using modified

SDM method. Based on implementation and experimentations with Squared Distance

Minimization Method, we can derive following conclusions.

Ability to gain local control of the fitting curve was the desired characteristic required for

your problem. Use of B-spline has successfully fulfilled this requirement and by varying the

degree of the curve, the number of control points controlling the curve segments can be varied.

This proves advantageous when tracing a geometry with high curvature.

A method was required to fit the initial curve to the desired data cloud accurately, the

aim was achieved by implementing Squared Distance Minimization method. The method can be

implemented on simple as well as complex data cloud with same accuracy. The regularization

term improves the smoothness of fitting B-spline, when a suitable weighing factor is used. The

SDM formulation when implemented consumes a lot of time in foot point calculation. The SDM

formulation iterates to fit B-spline to the data cloud. The iteration stops when the curves fit the

data cloud accurately and successive percentage change drops below an assigned value. The

defined value of converges can be increased or decreased depending on the desired accuracy of

fit.

Time consumed to calculate foot point was encountered by algorithm mentioned in 3.2.1.

The algorithm when implemented brings down the time required considerably. Time required for

calculation of foot point is reduced approximately by 82% per iteration. Implementation of Fast

Algorithm does bring down the accuracy of approximation but can be improved by increasing

number of iteration and/or curve segments, which is a considerable tradeoff when time is a

priority.

Stability and implementation issues were resolved as mentioned in section 5. By assigning

a scaling factor to the numerical value of the update, the iterations have stable convergence. The

results acquired by implementing refined codes were stable and operate with similar accuracy

for complex and simple data cloud.

44

7. FUTURE WORK

The future work that can be undertaken to improve implementation of Squared Distance

Minimization method and also to achieve your aim of automating the process of smoothening of

surfaces from the noisy optimization results is discussed in this section.

In this research work, to fit the data cloud with curve segments we have used B-spline

curves which gives local control as compared to the global control in case of Bezier or Hermite

curve. This proves to be an advantage while fitting through complex geometry but this capability

can be enhanced by incorporating Non Uniform Rational B-Spline (NURBS) curve (Mortenson,

2006). Use of NURBS curve will help assign weightage to control points. By assigning weightage

to control points in the region of sharp or complex geometry, we will be able to fit curve segments

with higher accuracy and achieve convergence much faster.

An average data cloud with 170 points and 11 control points (as shown in Figure 4.5 would

require 6 iterations to converge and estimated time of 7000 seconds. When explored, 800

seconds are utilized per iteration, in solving the SDM formulation which in this example accounts

for 69% of the simulation time. If this time can be brought down or an alternate method with

same accuracy can be used it would be more desirable method. Some research papers suggest a

C++ program would be around 500 times faster than a Matlab code (Andrews).

Computation of foot point for each point in data cloud is time consuming step and was

tackled in this research work by method mention in section 3.2. The method speeds up the

simulation by compromises the accuracy to some extent. By studying and implementing

alternative methods like Fast Marching method, with SDM formulation we could compare time

required and accuracy to select a better method (J.A.Sethain, 1995).

As discussed in section 5.1, a coarse data cloud with sparse data points will result in

instability in simulation and undesirable results. A probable solution would be to manually input

some data cloud to help gain accuracy in the result. Other method by which this can be avoided

is by aiming for denser point cloud data while taking a cross-section of the noisy surface.

The number of control points are user defined and hence fixed. The number of control

points does affect the accuracy of fit. Automating change in number of control points will be very

advantageous, as it will remove control points where there are more than required and add

control points in areas where they are required.

The simulation stops when a set value of convergence is achieved. This convergence does

not define the quality of fit with which the curve has fit the data cloud. There is a desperate need

to find a metric to check quality of fit.

As discussed in section 1, the big picture of this work is to automate the process of

converting rough surfaces to smooth once to improve its manufacturability. Merging generation

45

of data cloud, data cloud recognition, fitting B-spline to data cloud using SDM and lofting surfaces

will give much clear idea about areas were improvement or change is required and hence

compilation for this different sections is required.

46

8. REFERENCES
1. Aigner, M., & Juttler, B. (2005). Robust Computation of Foot Points on Implicitly Defined

Curves. Brentwood, Tennessee: Nashboro Press.

2. Blattman, W. R. (2008). Generating CAD Parametric Features Based onTopology

Optimization Results. Brigham Young University.

3. Cheng, K.-S. D., Wang, W., Qin, H., Wong, K.-Y. K., Yang, H., & Liu, Y. (n.d.). Fitting

Subdivision Surfaces to Unorganized Point Data Using SDM. Pacific Conference on

Computer Graphics and Applications. IEEE.

4. Dimitrov, A., & Golparvar-Fard, M. (2014). Robust NURBS Surface Fitting from

Unorganized 3D Point Clouds for Infrastructure As-Built Modeling.

5. J.A.Sethain. (1995). A Fast Marching Level Set Method for Monotonically Advancing

Fronts. Proceedings of the National Academy of Science .

6. Mortenson, M. E. (2006). Geometric Modelling, Third Edition. New York: Indusrtial Press

Inc.

7. Pekelny, Y. (2005). Implementation of fitting B-Spline curves to Point Clouds by Squared

Distance Minimization.

8. Pottmann, H., & Hofer, M. (2002, january). Geometry of the Squared Distance Function

to Curves and Surfaces.

9. Pottmann, H., Leopoldseder, S., & Hofer, M. (n.d.). Approximation with Active B-spline

Curves and Surfaces. Vienna, Austria: Institute of Geometry, Vienna University of

Technology.

10. Sethain, J. (1999). Level Set Method and Fast Marching Method. Cambridge University

Press.

11. WANG, W., POTTMANN, H., & LIU, Y. (2006). Fitting B-Spline Curves to Point Clouds by

Curvature-Based Squared Distance Minimization.

12. Yang, Z., Deng, J., & Chen, F. (2005). Fitting unorganized point clouds with active implicit

B-spline curves. Springer-Verlag 2005.

13. Yanga, H., Wanga, W., & Sun, J. (2003). Control point adjustment for B-spline curve

approximation. Elsevier Ltd.

47

9. APPENDIX

Implemented MATLAB code is as follows:

9.1 DATA CLOUDS

Five data clouds for which experiments were carried out are as follows:

9.1.1 SHAPE: CIRCLE

9.1.1.1 EXCEL FILE

X - CO-ORDINATE Y - CO-ORDINATE

10 0

9.935251313 0.802056404

9.74268221 1.583339969

9.427280128 2.32361586

8.997213817 3.003711321

8.463621768 3.606012237

7.840323734 4.114919329

7.143462807 4.517252173

6.39108732 4.802590558

5.602683401 4.96354437

4.798670299 4.995944991

3.999871531 4.89895326

3.226975565 4.675081213

2.5 4.330127019

1.837773122 3.873024809

1.257446259 3.315613291

0.774049572 2.672329131

0.400102782 1.959833049

0.145290913 1.196578321

0.016213459 0.402332844

0.016213459 -0.402332844

0.145290913 -1.196578321

48

0.400102782 -1.959833049

0.774049572 -2.672329131

1.257446259 -3.315613291

1.837773122 -3.873024809

2.5 -4.330127019

3.226975565 -4.675081213

3.999871531 -4.89895326

4.798670299 -4.995944991

5.602683401 -4.96354437

6.39108732 -4.802590558

7.143462807 -4.517252173

7.840323734 -4.114919329

8.463621768 -3.606012237

8.997213817 -3.003711321

9.427280128 -2.32361586

9.74268221 -1.583339969

9.935251313 -0.802056404

10 -1.22E-15

9.1.1.2 CODE

function [pcx,pcy]=cloud_gen_circle()
disp('Entering Cloud_gen');
N=20;
theta1=linspace(0,2*pi,2*N);
r=5;
X=r+(r*cos(theta1));
Y=r*sin(theta1);

title('Proposed Point cloud data');
hold on;
pcx=X;
pcy=Y;
scatter(X,Y,'filled');
disp('Exiting Cloud_gen');
end

9.1.2 SHAPE: IRREGULAR SHAPE

9.1.2.1 EXCEL FILE

49

X - CO-ORDINATE Y - CO-ORDINATE

0.794039854 1.244973648

1.30435201 1.585876229

0.541498267 1.480367585

1.273632868 1.36137088

0.421931343 1.988165465

1.1870588 3.418809665

1.6383329 2.791405778

1.211235264 3.947865137

2.370257319 3.962625542

1.640501706 3.448612051

2.793761614 4.483090166

3.259936225 3.964568203

3.036638221 4.542581458

3.74159826 4.61660668

3.520332136 5.107369433

4.466836533 5.690387854

3.920317232 5.279747647

4.200588009 5.906147594

5.253803212 5.21819497

5.020153965 5.710064568

6.563483325 5.824207531

5.65209324 5.04433876

7.207723312 5.576015542

6.965056664 5.987056114

7.319454739 5.473606116

8.210947866 5.82446695

7.993034418 5.305304057

9.302577956 4.228870371

9.042755629 4.493854556

8.927326407 4.001763299

9.880703138 4.808437263

9.277070983 4.175429224

9.519647399 4.16086759

10.63067248 2.959955925

10.69319302 2.707363423

10.95616761 2.118103369

9.964574239 2.083065504

11.30053306 1.092705309

10.63233823 1.526072437

50

10.05877673 1.419487485

11.14550999 0.838230826

10.26159137 0.214701474

10.7201164 0.428429659

11.15496107 -0.147029051

10.79244541 -1.508574153

11.05014732 -1.911798824

9.841663502 -2.546331747

10.37097799 -2.803767201

10.24129378 -2.63890027

10.31716786 -3.808324357

10.06134601 -4.903219185

8.410311631 -5.071477235

8.897404129 -5.167226907

9.050151973 -5.571616199

7.995712425 -5.969117882

8.04493742 -7.139555334

7.786495114 -7.311943711

6.892957859 -7.480262527

6.301511635 -7.190380389

5.558622301 -8.059168248

5.142841395 -8.455023545

4.863332677 -7.672614511

4.594894552 -8.60716572

3.661235876 -7.953615172

3.49810308 -8.307489289

3.296254644 -9.149382316

3.168659865 -8.649562605

2.024686698 -8.69056292

2.145527261 -9.324262256

0.767699344 -9.101485455

1.086780999 -8.943356437

-0.231678402 -8.865686182

0.103898907 -9.09730864

-1.042728492 -9.360176787

-2.266415141 -9.441328232

-2.747436083 -8.878986512

-3.378389893 -8.034463799

-2.924129146 -9.210991191

-4.327495296 -8.680415967

-4.163059486 -8.556731795

51

-5.291237549 -7.386724877

-5.216699403 -7.01235884

-5.520261187 -7.210683384

-6.51129402 -7.451259846

-6.839664948 -6.273511856

-6.986115426 -5.52106471

-6.412520688 -4.937023535

-7.2937667 -5.633208435

-7.99382623 -4.722818947

-7.47237625 -4.555307278

-8.181673111 -3.651939371

-7.730343667 -3.889762997

-8.239908668 -2.774997438

-8.844027619 -1.814402946

-9.058101055 -2.362562913

-8.824033528 -1.177825405

-9.380771152 -0.386186986

-8.444131214 0.408532385

-9.795271543 -0.183861529

-9.9645513 0.911148916

-9.833786018 0.611189262

-8.661846607 1.312284868

-9.398458586 1.287970584

-9.230935925 2.885717615

-9.623659956 2.619562031

-8.419458669 2.422069391

-8.541236313 4.246329365

-9.007624286 3.372637171

-8.239847426 4.89971574

-8.169679737 5.215026461

-8.598774955 5.288984934

-8.159100767 5.037544443

-8.223128835 5.847898538

-7.288326401 5.892542311

-6.780057174 5.004760388

-6.318857376 5.72228915

-6.367281143 6.113607606

-6.008262786 5.210676403

-6.326311114 5.831077146

-5.376013274 6.037334032

-5.200156145 5.49317545

52

-5.447387948 5.69199523

-6.058775867 5.485478205

-5.302420573 3.919625312

-4.613011133 3.767777062

-5.351611374 4.080905001

-5.039604703 3.264082473

-4.692510462 2.966543666

-4.611014461 2.828119898

-4.857313077 1.733561496

-4.906093494 1.460231019

-3.857642789 0.841262705

-3.889451796 1.039227621

-3.76388268 1.241966324

-4.545292992 0.193756318

-4.157006692 -0.049477612

-3.621369162 0.417188361

-3.933441157 -0.655276703

-3.621293637 -0.938404925

-3.805594617 -0.936085196

-3.507086572 -0.231693066

-2.985635109 -0.434722864

-3.550793702 -1.276383863

-3.593867021 -1.073466905

-2.522375739 -1.036688736

-1.686405137 -1.014648273

-2.290182591 -2.466554113

-1.824029787 -2.184737602

-2.035727346 -2.007624141

-1.951620884 -1.345765814

-0.708415718 -1.593925832

-1.067456137 -1.073941307

-0.500120631 -0.772465436

0.242217642 -1.53446707

-0.061931449 -1.385382511

0.249192916 -0.524311619

0.609045017 -1.324631191

0.875733951 -1.251158891

0.390581871 0.047388448

1.041193928 -0.247324953

1.058853174 0.800974682

0.349249972 -0.075902082

53

0.337601823 0.525020879

9.1.2.2 CODE

function [pcx,pcy]=cloud_gen()
disp('Entering Cloud_gen');

N=20;
theta1=linspace(pi,0,2*N);
r=5;
x1=r+(r*cos(theta1));
y1=r*sin(theta1);
theta2=linspace(0,-pi,3*N);
R=r*2;
x2=R*cos(theta2);
y2=R*sin(theta2);
theta3=linspace(pi,0,5*N/3);
x3=-(3*r/2)+(r*cos(theta3)/2);
y3=r*sin(theta3);
theta4=linspace(pi,0,1.5*N);
x4=-(r/2)+(r*cos(theta4)/2);
y4=-0.5*r*sin(theta4);
X=[x1,x2, x3,x4];
Y=[y1,y2,y3,y4];
%scatter(X,Y);
% figure;
%plot(X,Y);
hold on;

temp=size(X);
xsize=temp(2);
for i=1:xsize
 xnew(i)=(rand(1,1)*1.5)+X(i);
 ynew(i)=(rand(1,1)*1.5)+Y(i);
end

%removing Redundancies
for i=1:xsize
 for j=i+1:xsize
 if(xnew(i)==xnew(j))&&(ynew(i)==ynew(j))
 xnew(i)=[];
 ynew(i)=[];
 xsize=xsize-1;
 end
 end

end
scatter(xnew,ynew,'filled');
title('Proposed Point cloud data');
hold on;
pcx=xnew;
pcy=ynew;
disp('Exiting Cloud_gen');

54

end

9.1.3 SHAPE: IRREGULAR SHAPE WITH STRAIGHT LINE

9.1.3.1 EXCEL FILE

X - CO-ORDINATE Y - CO-ORDINATE

11.72934509 0.839920739

11.15092128 1.240560224

12.28899304 1.9772807

13.83454363 2.038134805

13.98231434 2.194197173

14.91686857 1.221322197

14.28579666 1.5533569

15.70127618 3.075944493

15.13530253 3.083936123

15.75083777 3.822095612

15.01138136 4.057336821

15.11655041 5.371436454

15.2417281 6.110357337

16.71752742 6.600062478

14.99563882 7.683307023

16.25490979 7.86656865

14.25670828 8.039164346

13.918543 9.770746808

14.20274388 10.10185596

14.15297706 10.31558069

13.42680538 11.26037219

12.86978845 11.50610981

11.82781851 10.20232

10.36059307 11.42345015

10.16777551 11.32219941

10.192237 10.93673724

9.673339943 10.6907956

8.606655405 10.39865428

8.933024845 9.823648337

6.778977087 9.094821427

7.460659577 9.795956239

7.648045298 7.994835613

55

6.92304783 8.133330858

5.986088852 7.350264903

6.036539629 6.973903014

6.487412289 5.603906938

5.17922387 6.651930965

5.190938724 6.550609707

4.182267602 5.218722419

5.045610794 6.752702008

4.646643952 6.728509372

2.132578574 6.089364884

3.4658206 6.022016308

2.629377293 5.140442945

2.269195121 6.845426859

0.834404192 5.862924107

-0.206663811 6.441446856

-1.443277102 5.748120386

-0.213453089 6.092959296

-1.699285084 5.993074637

-2.617351955 6.901675118

-1.85954285 6.027126207

-2.426585069 5.911687404

-4.147918238 5.426429558

-4.613501039 6.665508492

-3.591976992 6.730657717

-3.522024222 7.353933091

-4.298437445 7.391694946

-4.532114779 7.850022838

-5.986395532 9.48406484

-5.327567798 9.053286189

-6.248513854 10.30490086

-6.520041438 9.658135783

-7.904729216 9.683173189

-8.051070388 10.85161092

-9.232065769 11.31354862

-10.18848341 10.23431605

-8.988533856 11.87135588

-11.48325589 10.74304627

-10.44397444 9.990596672

-11.08594458 10.80004865

-12.03174742 8.769833727

-13.00590945 10.09850502

56

-12.81216294 8.512131169

-13.24093492 7.655957741

-13.61245644 8.508542519

-13.22028391 6.459672845

-13.63005 5.940573214

-13.00601793 4.719776047

-14.37402779 5.510088561

-14.51232815 4.305633807

-12.8017317 4.108303171

-13.76175901 2.936862254

-12.91321357 2.501681749

-11.94264221 1.382453978

-10.75383517 1.988144529

-11.63924602 1.534182319

-9.466951954 1.746389464

-9.299792055 0.977689761

-9.479363809 1.138536342

-9.502458674 0.638603183

-8.156064322 1.102513745

-8.321596033 0.518750061

-9.441937149 -0.956777555

-8.390681118 -0.815589327

-8.118754408 -2.501862932

-7.726483704 -2.268623032

-7.724498772 -4.340107063

-6.75929979 -4.988970795

-7.190365698 -5.42176439

-7.087707872 -4.571833824

-6.928329225 -4.939001983

-5.526630687 -6.431939963

-5.958439294 -7.130814475

-4.397310258 -7.950976761

-4.010246396 -7.18836647

-3.312448292 -6.814987985

-3.441520599 -8.550497933

-1.839138656 -7.719614143

-2.040513649 -9.369101596

-1.189663852 -9.352820859

-0.599914374 -9.150635896

-0.371389907 -8.496295213

0.697395946 -8.413125841

57

0.743134933 -8.638203482

1.105928002 -8.347433426

3.020430823 -7.96868465

2.501317788 -7.910709896

3.982661883 -8.321217842

4.22622013 -9.176831147

5.910575756 -8.781855323

5.546789137 -7.524716416

7.375927336 -7.394234448

7.912819878 -7.597631606

7.252288888 -6.243384586

7.081205796 -5.692913674

8.257321919 -5.085212461

8.607204424 -5.559363249

10.21651774 -4.223109133

9.43038251 -4.898905951

10.39430661 -3.235488611

9.35418262 -3.662876419

11.40988333 -2.286649735

9.689519059 -2.534290921

10.08136465 -0.204911228

10.84241503 -0.211156077

10.96658148 -0.53235536

11.79529308 0.577130618

9.1.3.2 CODE

function [pcx,pcy]=cloud_gen1()
disp('Entering Cloud_gen');
N=6;

theta1=linspace(-1*pi/2,pi,3*N);
theta2=linspace(0,3*pi/2,3*N);
theta3=linspace(-1*pi,0,4*N);

r1=5;
r2=10;

x1=(r1*cos(theta1))+2*r1;
y1=(r1*sin(theta1))+r1;

x2=linspace(5,-5,1.5*N);
y2=5*ones(1,1.5*N);

x3=(r1*cos(theta2))-2*r1;

58

y3=(r1*sin(theta2))+r1;

x4=(r2*cos(theta3));
y4=(r2*sin(theta3));

X=[x1,x2, x3,x4];
Y=[y1,y2,y3,y4];

temp=size(X);
xsize=temp(2);
for i=1:xsize
 xnew(i)=(rand(1,1)*2)+X(i);
 ynew(i)=(rand(1,1)*2)+Y(i);

end

%removing Redundancies
for i=1:xsize
 for j=i+1:xsize
 if(xnew(i)==xnew(j))&&(ynew(i)==ynew(j))
 xnew(i)=[];
 ynew(i)=[];
 xsize=xsize-1;
 end
 end

end
scatter(xnew,ynew,'filled');
% hold on;
% pcx=xnew;
% pcy=ynew;
pcx=X;
pcy=Y;
disp('Exiting Cloud_gen');

end

9.1.4 SHAPE: IRREGULAR SHAPE WITH DEEP AND HIGH CURVATURE CAVITY

9.1.4.1 EXCEL FILE

X - CO-ORDINATE Y - CO-ORDINATE

5.076187259 93.3767767

6.903516096 89.47324415

8.622444362 79.75280162

9.481700743 89.13136037

7.820725008 107.7565363

8.109000879 115.5047373

59

11.44036899 120.8143695

12.0796673 131.2152972

14.44874972 151.7717387

14.19203663 250.2674433

15.72157996 163.4855143

13.31291484 232.8254029

13.1913752 259.953028

14.15200614 173.8169773

16.96948934 204.7497983

16.05345594 265.9636192

16.03986111 186.0358966

18.97337106 234.426823

18.01143136 251.440194

18.38818092 166.7223808

18.92287207 213.0447047

16.37923073 274.803854

19.56029804 188.5281553

18.81128972 283.6087984

22.30799333 71.23230763

22.60945432 77.53692526

26.80231804 294.9674892

30.03932726 295.1637029

30.10975488 302.0244312

32.49884456 99.74773112

34.21719388 94.16344132

34.97006524 105.7467344

38.44076096 122.588913

38.91767642 120.2599844

39.95847756 308.0792465

43.95896057 142.7347028

45.4466269 150.1305303

45.32783208 157.994988

48.57746583 163.6769519

52.8088204 164.1730809

53.0056539 126.3142892

56.6619064 104.5823861

54.93002647 126.7709599

54.24701981 143.2212551

57.01516709 83.52778992

55.42368848 167.5834839

58.54208491 104.0849582

60

58.37632288 135.1522826

56.00137153 153.9535185

58.91614446 92.81046438

56.86510482 136.9053381

59.37294317 80.21761431

61.87081153 77.58387932

59.76010191 70.0071973

63.84705505 54.47090716

63.47323164 35.15609191

67.3927781 40.41725402

70.06572964 321.0300296

75.75573345 29.7840815

80.49414583 322.4531058

83.41827736 26.96774732

88.24133324 80.45090843

88.20323636 38.19256686

90.18256651 68.12436906

88.40439373 95.21718942

90.83481847 66.97171377

88.64990594 116.4542654

92.6515017 86.92662792

92.40722381 326.2396552

90.74703818 49.98879943

90.21675537 70.43584583

93.10892972 104.0442564

90.11100035 137.9615411

93.0037597 322.3279899

93.69553256 326.5025456

99.30053933 128.0039415

98.6140752 124.4271488

99.5758032 131.4024306

101.351479 96.10078597

100.0240439 325.2076479

102.9896331 75.15137137

104.4836501 113.8913743

104.6723437 52.71531117

104.2019814 106.8395003

105.3840867 70.23428284

106.9381294 91.54369779

104.855348 49.13852025

105.8044952 72.05517823

61

106.894843 324.8047884

107.9958091 22.5456912

111.7257335 18.32354594

117.2985873 326.8119944

120.5222407 12.70347417

125.9633745 324.9505323

129.787664 324.0403988

130.1675167 131.808694

131.3967948 90.56172332

130.953506 114.9057542

131.0931962 33.71966121

129.8286323 54.29360552

129.4434809 75.50084022

130.3196159 325.3684207

133.2684754 115.1267413

132.0844882 134.0972388

131.4810511 43.50180061

132.3865947 88.33847754

133.2984663 108.4557506

132.7942523 59.68980385

135.6073255 132.7966287

135.1931366 133.9860811

138.5596169 326.0056584

138.107981 122.1358327

141.2969982 97.65121761

140.0590547 105.8110592

143.0269886 324.5250644

143.2597261 79.43431984

144.937005 83.81401621

148.2551183 323.5737384

147.2143007 47.50020631

151.0999767 55.66119048

152.6488756 319.2768231

153.3191187 33.81694268

158.0688589 28.2798926

162.8001358 25.63283914

164.1457835 314.7485165

167.5645993 161.0483466

170.8853077 168.7153805

170.9284154 189.9993921

170.6292784 195.9579668

62

172.0834019 165.8763094

173.3695516 185.6517316

174.2649411 154.1755104

172.8764208 310.2380999

174.750317 308.9474089

176.0797355 202.3183234

176.8243391 204.3813457

178.0114965 133.9868888

179.4605306 115.2721108

180.8741838 89.39502525

179.1879083 301.6118796

178.4281606 78.89666468

180.4547294 119.1318728

181.2664823 61.24527663

181.3071034 81.77611678

182.4858086 299.0304088

183.1552927 95.89212256

184.3152068 50.28992635

184.9045861 68.11284416

181.2913232 88.00489442

188.3247545 207.6893524

189.3080972 290.2162771

193.1530013 288.8531795

197.283001 283.807626

197.3050916 182.8346843

199.9397058 279.5955822

204.0724977 180.3300533

209.9814952 175.5990039

211.8158113 261.7292128

214.7506102 167.2734157

215.5233901 247.5383179

218.4529145 161.6304778

220.4747989 240.873595

224.0136554 227.6421431

224.8257241 229.3544147

229.2965025 223.9477298

231.0488759 215.3183739

236.5133108 202.2438009

237.7635059 196.337032

241.2529505 197.1572423

246.0722316 150.9323611

63

248.349447 179.8358955

252.4439261 180.6433444

253.4155167 156.3887452

255.0148724 165.8101126

9.1.4.2 CODE

function [pcx,pcy]=cloud_gen_hand()
disp('Entering Cloud_gen');
 I=imread('hand.png');
 I=rgb2gray(I);
 the_edge = edge(I);
 [y, x] = find(the_edge);
 temp=size(x);
xsize=temp(1);
count=1;
for i=1:18:xsize
 xnew(count)=(rand(1,1)*4)+x(i);
 ynew(count)=(rand(1,1)*4)+y(i);
 count=count+1;
end
pcx=xnew;
pcy=ynew;
scatter(pcx,pcy)
end

9.1.4.3 IMAGE

The image used in above code is:

9.1.5 SHAPE: SHARPE EDGES

64

9.1.5.1 EXCEL FILE

X - CO-ORDINATE Y - CO-ORDINATE

5.251920041 -4.693595206

5.064883535 -4.734055415

4.411382376 -4.773053267

4.179472701 -4.516973625

3.930717182 -4.652305024

3.635944375 -4.826552405

3.189529693 -4.721652684

2.664454506 -4.718971977

2.588780955 -4.786772232

2.314686934 -4.634306467

1.731739659 -4.772893814

1.400091501 -4.612222679

1.229204518 -4.784861077

0.864117666 -4.527393256

0.564530092 -4.647214071

-0.117746673 -4.805034671

-0.221789014 -4.770309976

-0.836898972 -4.885656208

-0.789802021 -4.992177654

-1.119868705 -4.960965473

-1.562030429 -4.749894338

-2.132382411 -4.714192137

-2.525112321 -4.664416884

-2.631241709 -4.972011921

-3.24769056 -4.923749681

-3.610879122 -4.782412227

-3.549406504 -4.691304914

-4.05028012 -4.568065889

-4.606323455 -4.545973898

-4.945991653 -4.741501621

-4.928421989 -4.720314714

-4.997710188 -4.271831414

-4.575645387 -3.851934192

-4.506515863 -3.71295069

-4.864289188 -3.570314399

-4.746075585 -2.983057506

-4.618556452 -2.889553158

65

-4.669201903 -2.327717389

-4.914475991 -1.772100378

-4.704758411 -1.676234384

-4.529040535 -1.223767228

-4.774027145 -0.787047841

-4.733688249 -0.585125433

-4.659967235 -0.333646427

-4.880354697 0.117047953

-4.566556473 0.375802173

-4.943692429 0.739164298

-4.849907799 1.062762392

-4.583318218 1.408710883

-4.804912031 1.731948585

-4.92987232 2.026616821

-4.95659245 2.456077979

-4.871358608 2.734984589

-4.787570794 2.990638112

-4.752466538 3.629065683

-4.878213314 4.013224696

-4.962955212 4.162458955

-4.998302939 4.420683274

-4.999349716 4.749762249

-4.928757973 5.134038

-4.912553967 5.069324486

-4.330186824 5.450528953

-3.789569376 5.110592228

-3.647553201 5.188005558

-3.2566285 5.132436297

-3.113969538 5.218163539

-2.690851259 5.013053554

-1.93006827 5.21529826

-1.55625775 5.381207242

-1.662992336 5.34001932

-1.31369129 5.322564393

-1.390511744 4.738683995

-1.28048356 4.373273421

-1.481234307 4.334353299

-1.238478213 3.719735293

-1.507657108 3.452465863

-1.211569053 3.232326872

-1.370869462 2.573693111

66

-1.240134852 2.258235984

-1.214488928 1.68325637

-1.400453425 2.02491534

-1.206645374 1.83493313

-0.832069452 1.827630258

-0.3536272 1.940949817

-0.160815889 1.943032733

0.322590888 1.787417538

0.677128145 1.743746391

1.404134106 2.134497354

1.705653515 2.030797591

1.754572531 1.846852155

1.761061653 1.667265865

1.824876424 2.38684553

1.979294257 2.678938495

1.886185268 2.921491412

1.91749622 3.528921241

2.047870691 3.806546469

2.040498085 4.211656142

1.728276426 4.511458189

1.840297323 4.675703472

1.740591401 5.099084851

2.002801785 5.215755591

2.384238992 5.128392282

2.412286732 5.266141536

2.91747376 5.473115077

3.601369781 5.196342288

3.530946135 5.335718398

4.307474207 5.485749819

4.287725702 5.225161906

4.92086478 5.343318907

5.359716376 5.325020376

5.363457275 5.186923833

5.290791042 4.71323167

5.028827181 4.80022744

5.142411863 4.263004391

5.481080516 3.713578787

5.096519908 3.446684121

5.466448948 3.126368251

5.136608354 2.662180436

5.198554421 2.428740544

67

5.065557354 2.114072083

5.045756584 1.859037617

5.005489546 1.493526743

5.394864929 0.979752352

5.224009857 0.801920471

5.030700721 0.420558236

5.321157617 -0.061780928

5.418528223 -0.031703764

5.423186444 -0.609069238

5.139437806 -0.833587941

5.118465192 -1.073051497

5.310130018 -1.596420651

5.086302251 -2.196205941

5.127631101 -2.156921631

5.455533527 -2.581217599

5.362591178 -3.16091903

5.288026728 -3.215375603

5.201921684 -3.471297608

5.044999407 -4.149874311

5.255704469 -4.624869231

5.362843962 -4.721722126

9.1.5.2 CODE

function [pcx,pcy]=cloud_gen_sq()
disp('Entering Cloud_gen');

N=30;
x1=linspace(5,-5,N);
y1=-5*ones(1,N);
x2=-5*ones(1,N);
y2=linspace(-5,5,N);
x3=linspace(-5,-10/6,N/3);
y3=5*ones(1,N/3);
x4=(-10/6)*ones(1,N/3);
y4=linspace(5,10/6,N/3);
x5=linspace(-10/6,10/6,N/3);
y5=(10/6)*ones(1,N/3);
x6=(10/6)*ones(1,N/3);
y6=linspace(10/6,5,N/3);
x7=linspace(10/6,5,N/3);
y7=5*ones(1,N/3);
x8=5*ones(1,N);
y8=linspace(5,-5,N);
X=[x1,x2,x3,x4,x5,x6,x7,x8];
Y=[y1,y2,y3,y4,y5,y6,y7,y8];

68

plot(X,Y);
% pcx=0;
% pcy=0;
temp=size(X);
xsize=temp(2);
for i=1:xsize
 xnew(i)=(rand(1,1)*0.5)+X(i);
 ynew(i)=(rand(1,1)*0.5)+Y(i);
end
pcx=xnew;
pcy=ynew;
scatter(pcx,pcy)
end

9.2 MAIN.M

%Shree
%Main Control Program
clear all
close all
clc

 K=3; %Order of the curve of b-spline curve
 red_fac=70; %Ratio of reduction | scaling factor
 run_num=15; %Number of iteration runs
 open=0; %open = 0 curve is closed
 %open = 1 curve is open
 cur_sli=9; %Decides number of parts the curve should be divided in
 max_per=0.5; %Minimum allowable percentage of distance change
 max_mov=1; %Maximum Units a point can move

% GRAPH LABELS
str_iter1=' Iter=';
str_order1=' Order=';
str_red_fac1=' Fac=';
str_cur_sli1=' Slices=';
str_red_fac2=int2str(red_fac);
str_order2=int2str(K);
str_cur_sli2=int2str(cur_sli);
str_order=strcat(str_order1,str_order2);
str_red_fac=strcat(str_red_fac1,str_red_fac2);
str_cur_sli=strcat(str_cur_sli1,str_cur_sli2);

%Generating point cloud data
[pcx,pcy]=cloud_gen_sq;
[temp,cl_size]=size(pcx);

 %Creating control points for first b-spline curve
 count=0;
 for i=1:10:cl_size

 count=count+1;
 PX(count)=pcx(i);

69

 PY(count)=pcy(i);

 end

%
% PX= [-5,0,5,5.5,5,2,2,0,-2,-1.6,-5,-5];
% PY= [-5,-5,-5,0,5.5,5.5,2,2,2,5.5,5.5,0];

% assuming PX and PY are row arrays
PX=PX'; % UNCOMMENT WHEN AUTOMATIC C. P
PY=PY';
if open==0
[a,b]=size(PX);
PX(a+1)=PX(1);
PY(a+1)=PY(1);
count=count+1;
end

d_mean1=0;

for j=1:run_num

str_iter2=int2str(j);
tit=strcat(str_iter1,str_iter2,str_order,str_red_fac,str_cur_sli);
title(tit);
disp('Run number');
j
%Plotting Cloud point data
scatter(pcx,pcy,'filled');
hold on;

%Initial B-spline curve
[basis,bspx,bspy,u,knots,basis_pre,piece_u,piece_x,piece_y,piece_mid_x,piece_

mid_y,piece_mid_u,fx,fy]=b_spline(PX,PY,K,cur_sli);
max_u=max(piece_u);

%Find theta,Unit tangential, normal,d and rho for each cloud point data
[N,T,d,rho,t,fpx,fpy,side]=pre_req(fx,fy,pcx,pcy,basis,PX,PY,piece_mid_x,piec

e_mid_y,piece_u,piece_x,piece_y,knots,K);

% for i=1:cl_size
% plot([pcx(i) fpx(i)],[pcy(i) fpy(i)]); % connect point to foot point
% end
% hold on;
% CONVERGENCE
d_mean1
d_mean2=eval(mean(d))

70

d_per=abs(d_mean2-d_mean1)*100/d_mean1
d_rec(j)=d_per;

if (d_per<max_per)
 disp('Convergence due to maximum percenatge');
 break

end

if ((d_mean1<d_mean2)&&(j>1))
 disp('Convergence due to increasing distance');
 break
end

%SDM formulation
%function giving change in control points as output
%count=No. of control points on the curve
if open==0
[Dx,Dy]=min_fun(N,T,d,rho,t,fpx,fpy,side,pcx,pcy,count,basis,basis_pre,knots,

K,PX,PY,max_u);
end
% REMOVED OPEN CURVE MIN FUN

%1st pt is last pt
Dx(count)=Dx(1);
Dy(count)=Dy(1);
for i=1:count
 if (Dx(i)<=(-max_mov*red_fac))
 Dx(i)= -max_mov*red_fac;
 end
 if (Dx(i)>=(max_mov*red_fac))
 Dx(i)= max_mov*red_fac;
 end
 if (Dy(i)<=(-max_mov*red_fac))
 Dy(i)= -max_mov*red_fac;
 end
 if (Dy(i)>=(max_mov*red_fac))
 Dy(i)= max_mov*red_fac;
 end
end

% scaling
PX=PX+(Dx/red_fac);
PY=PY+(Dy/red_fac);

d_mean1=d_mean2;

title(tit);
figure;

end
% centroid
X_cen=eval(mean(bspx));

71

X_cen=num2str(X_cen);
Y_cen=eval(mean(bspy));
Y_cen=num2str(Y_cen);
% plot(X_cen,Y_cen);

cent=['The Centroid Coordinates are X=',X_cen,'Y=',Y_cen];
%plot Convergence
num=linspace(1,j,j);
figure;
d_rec(1)=d_rec(2);
plot(num,d_rec);

9.3 B-SPLINE.M

% close all
% clear all
% clc
function

[basis,bspx,bspy,u_mem,t,basis_pre,piece_u,piece_x,piece_y,piece_mid_x,piece_

mid_y,piece_mid_u,fx,fy]=b_spline(PX,PY,K,cur_sli)
disp('Entering b_spline');
% plot(PX,PY);
hold on;
%dependancy of n
[a,~]=size(PX);
n=(a-1);
syms Us;
% Knots
for j = 0:(n+K)
 if j < K
 t(j+1) = 0;
 else if (K<=j)&&(j<=n)
 t(j+1) = j-K+1;
 else if j > n
 t(j+1) = n-K+2;
 end
 end
 end
end
% Basics function for K = 1
Ng = zeros(n+1,n+K);
for i = 1:n+1
 for l = 1:n+K
 if i == l
 Ng(i,l)= 1;
 end
 if (i == n+1)&&(l>n+1)
 Ng(i,l)=1;
 end
 end

end
%evaluating non N part

72

% Basis function for K = 2
for Kv=2
 for i = 1:n+1
 for l = 1:n+K

 W1 = ((Us-t(i))*(Ng(i,l))/((t(i+Kv-1))-(t(i))));
 if ((W1==Inf)||(isnan(W1)))
 W1 = 0;
 end

 if i==n+1
 c2=0; %thats N(i+1,K-1)of U
 else
 c2=((Ng((i+1),l)));
 end
 W2 = ((t(i+Kv)- Us)*c2/((t(i+Kv))-(t(i+1))));
 if ((W2==Inf)|| (isnan(W2)))
 W2 = 0;
 end

 Ne(i,l) = W1+W2;
 end
 end
end

for Kv=3:K
 for i = 1:n+1
 for l = 1:n+K

 W1 = ((Us-t(i))*(Ne(i,l))/((t(i+Kv-1))-(t(i))));
 if ((W1==Inf)||(isnan(W1)))
 W1 = 0;
 end

 if i==n+1
 c2=0; %thats N(i+1,K-1)of U
 else
 c2=((Ne((i+1),l)));
 end
 W2 = ((t(i+Kv)- Us)*c2/((t(i+Kv))-(t(i+1))));
 if ((W2==Inf)|| (isnan(W2)))
 W2 = 0;
 end

 Nf(i,l) = W1+W2;
 end
 end
 basis_pre=Ne;
 Ne=Nf;

end

73

if K>2
for i=1:K-1
 Nf(:,1)=[];
 [a,b]=size(Nf);
 Nf(:,b)=[];
 basis_pre(:,1)=[];
 [a,b]=size(basis_pre);
 basis_pre(:,b)=[];
end
else if K==2
 Nf=Ne;
 end
end

basis_pre(1,:)=0;

fx=(Nf')*PX;
fy=(Nf')*PY;

count=1;
q=1;
edge=(n-K+2)/cur_sli;
num=1;

for u=0:0.01:n-K+2
 count=int16(fix(u))+1;
 if(count>t(n+K))
 count=t(n+K);
 end

 Cx(q)=subs(fx(count),Us,u);
 Cy(q)=subs(fy(count),Us,u);
 u_mem(q)=u;

 % If loop to store edges of curve slices
 if rem(u,edge)==0
 piece_u(num)=u;
 piece_x(num)=Cx(q);
 piece_y(num)=Cy(q);
 % loop to store mid points of all the curve pieces
 if num>1
 mid_u=(piece_u(num)+piece_u(num-1))/2;
 count=int16(fix(mid_u))+1;
 if(count>t(n+K))
 count=t(n+K);
 end
 piece_mid_x(num-1)=subs(fx(count),Us,mid_u);
 piece_mid_y(num-1)=subs(fy(count),Us,mid_u);
 piece_mid_u(num-1)=mid_u;
 end
 num=num+1;
 end
 q=q+1;

74

end
scatter(PX,PY);
hold on;
plot(Cx,Cy);
hold on;
title('Plot of B-Spline Curve');
bspx=Cx;
bspy=Cy;
basis=Nf;
disp('Exiting b_spline');
end

9.4 PRE_REC.M

function

[N,T,d,rho,fpu,fpx,fpy,side]=pre_req(fx,fy,pcx,pcy,basis,PX,PY,piece_mid_x,pi

ece_mid_y,piece_u,piece_x,piece_y,knots,K)

syms Us
disp('Entering new pre_req');
[~,pc_len]=size(pcx); % length of point cloud data

% calacualtion of normal and tangent
dbasis=transpose(diff(basis,Us));
dfx=((dbasis)*PX);
size(dfx);
dfy=((dbasis)*PY);
size(dfy);
[a,~]=size(PX);
n=(a-1);
zero_margin=0.000001;

tic;
%
%Fast Algorithm
for i=1:pc_len
 %Finding the curve piece associated with each cloud point
 piece_num=find_piece(piece_mid_x,piece_mid_y,pcx(i),pcy(i));

 %Finding the distance of point from each end-point of the curve
 dist_a=sqrt(((pcx(i)-piece_x(piece_num))^2)+((pcy(i)-

piece_y(piece_num))^2));
 dist_b=sqrt(((pcx(i)-piece_x(piece_num+1))^2)+((pcy(i)-

piece_y(piece_num+1))^2));

 %Finding the 'u' value of foot point

fpu(i)=((dist_b*piece_u(piece_num))+(dist_a*piece_u(piece_num+1)))/(dist_a+di

st_b);

 %Finding the x-y coordinate of the foot point

75

 [fpx(i),fpy(i)]=(xy_u(fpu(i),fx,fy,n,K,knots));
 fpx(i)=eval(fpx(i));
 fpy(i)=eval(fpy(i));

 %Finding the distance between foot point and cloud point
 d(i)=sqrt(((fpx(i)-pcx(i))^2)+((fpy(i)-pcy(i))^2));
 if d(i)<zero_margin
 d(i)=0;
 end
 d(i)=eval(d(i));
 T(i,:)=tn(dfx,dfy,fpu(i),n,K,knots,1);
 N(i,1)=-T(i,2);
 N(i,2)=T(i,1);

 %

 %Calculating radius of curvature at foot point(rho)

 [prev_x,prev_y]=xy_u(fpu(i)-0.001,fx,fy,n,K,knots);
 [post_x,post_y]=xy_u(fpu(i)+0.001,fx,fy,n,K,knots);

 mr=(fpy(i)-prev_y)/(fpx(i)-prev_x);
 mt=(post_y-fpy(i))/(post_x-fpx(i));

 % cal. center of curvature
 x_cen=((mr*mt*(post_y-prev_y))+(mr*(fpx(i)+post_x))-

(mt*(prev_x+fpx(i))))/(2*(mr-mt));
 y_cen=((-1/mr)*(x_cen-((prev_x+fpx(i))/2)))+((fpy(i)+prev_y)/2);
 rho(i)=sqrt(((fpx(i)-x_cen)^2)+((fpy(i)-y_cen)^2));
 rho(i)=eval(rho(i));

 %Finding the side of the point
 m=T(i,2)/T(i,1);
 side1=y_cen-(m*x_cen)-fpy(i)+(m*fpx(i));
 side1=eval(side1);
 side2=pcy(i)-(m*pcx(i))-fpy(i)+(m*fpx(i));
 side2=eval(side2);
 if ((side1/side2)>0)% For same sides
 side(i)=0;
 else
 side(i)=1;%For opposite sides
 end

end
disp('The time for new pre_req is');
toc

end

76

9.5 MIN_FUN.M

%This function will be where matrices will be formed
function

[Dx,Dy]=min_fun(N,T,d,rho,t,fpx,fpy,side,pcx,pcy,cp_count,basis,basis_pre,kno

ts,order,PX,PY,max_u)
disp('Entering min_fun');
syms Us; % symbolic u

%Ax=b - this is b - constants
right_side=zeros(2*(cp_count),1);
f1_side=zeros(2*(cp_count),1);
f2_side=zeros(2*(cp_count),1);
min_mat=zeros(2*(cp_count));
f1_mat=zeros(2*(cp_count));
f2_mat=zeros(2*(cp_count));
[~,pc_size]=size(pcx);
const=0;
lambda=0;
time_sdm=0;
time_f1=0;
time_f2=0;

for i=1:cp_count
 %Basis function for ith control point
 tic;
 Ni=basis(i,:);
 for j=1:cp_count
 %Basis Function for jth control point
 Nj=basis(j,:);
 %__
 %SQUARE DISTANCE MINIMIZATION MATRIX FORMATION
 for k=1:pc_size
 %To find which column to select for a particular value of t(k)
 count=int16(fix(t(k)))+1;
 if count>max_u % For foot point that lie on the very end of

curve
 count=count-1;
 end
 %Subsistuting and finding values for Bi and Bj
 Bi=subs(Ni(count),Us,t(k));
 if Bi==0 %time shortening strategy
 continue;
 end
 Bj=subs(Nj(count),Us,t(k));

 %when d and rho lie on the same side of curve
 if (side(k)==0)&&(Bj~=0)
 %7A
 right_side(i)=right_side(i)-(2*Bi*N(k,1)*(((fpx(k)-

pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 min_mat(i,j)=min_mat(i,j)+(2*Bi*Bj*N(k,1)*N(k,1));

77

min_mat(i,j+cp_count)=min_mat(i,j+cp_count)+(2*Bi*Bj*N(k,1)*N(k,2));
 %7B
 right_side(i+cp_count)=right_side(i+cp_count)-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));

min_mat(i+cp_count,j)=min_mat(i+cp_count,j)+(2*Bi*Bj*N(k,1)*N(k,2));

min_mat(i+cp_count,j+cp_count)=min_mat(i+cp_count,j+cp_count)+(2*Bi*Bj*N(k,2)

*N(k,2));%Fixed issue here
 continue;
 end

 if (side(k)==0)&&(Bj==0)
 %7A
 right_side(i)=right_side(i)-(2*Bi*N(k,1)*(((fpx(k)-

pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 %7B
 right_side(i+cp_count)=right_side(i+cp_count)-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 continue;
 end

 %when d and rho lie on the opposite side of curve
 if (side(k)==1)&&(Bj~=0)
 %7C
 right_side(i)=right_side(i)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,1)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,1)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 min_mat(i,j)=min_mat(i,j)+(((2*d(k))/(d(k)-

rho(k)))*Bi*Bj*((T(k,1))^2))+(2*Bi*Bj*((N(k,1))^2));
 min_mat(i,j+cp_count)=min_mat(i,j+cp_count)+(((2*d(k))/(d(k)-

rho(k)))*Bi*Bj*(T(k,1))*(T(k,2)))+(2*Bi*Bj*(N(k,1))*(N(k,2)));

 %7D
 right_side(i+cp_count)=right_side(i+cp_count)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,2)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 min_mat(i+cp_count,j)=min_mat(i+cp_count,j)+(((2*d(k))/(d(k)-

rho(k)))*Bi*Bj*((T(k,1))*(T(k,2))))+(2*Bi*Bj*((N(k,1))*(N(k,2))));

min_mat(i+cp_count,j+cp_count)=min_mat(i+cp_count,j+cp_count)+(((2*d(k))/(d(k

)-rho(k)))*Bi*Bj*((T(k,2))^2))+(2*Bi*Bj*((N(k,2))^2));
 continue;
 end

 if (side(k)==1)&&(Bj==0)
 %7C
 right_side(i)=right_side(i)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,1)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,1)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 %7D

78

 right_side(i+cp_count)=right_side(i+cp_count)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,2)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));
 continue;
 end

 end
 end

 time_sdm=time_sdm+toc;

% %___
% % F1 REGULARISATION TERM
 tic;
 %Right side of the matrix(9A-1)and (9A-6)
 temp1=0;
 temp2=0;
 for j=1:cp_count-1
 %f1_int - Aij
 A1ij=f1_int(basis_pre,i,j,knots,order);
 temp1=temp1+((PX(j+1)-PX(j))*A1ij/(knots(j+order)-knots(j+1)));
 temp2=temp2+((PY(j+1)-PY(j))*A1ij/(knots(j+order)-knots(j+1)));
 end
 temp1=temp1*((order-1)^2)*2;
 temp2=temp2*((order-1)^2)*2;
 f1_side(i)=f1_side(i)+lambda*temp1;
 f1_side(i+cp_count)=f1_side(i+cp_count)+lambda*temp2;
 if isfinite(temp1)==1
 right_side(i)=right_side(i)+lambda*temp1;
 end

 if isfinite(temp2)==1
 right_side(i+cp_count)=right_side(i+cp_count)+lambda*temp2;
 end

 %LEFT SIDE (9A-2)AND (9A-7)
 A1ij=f1_int(basis_pre,i,1,knots,order);
 temp1=(2*lambda*((order-1)^2)*A1ij/(knots(order+1)-knots(2)));
 f1_mat(i,1)=f1_mat(i,1)+temp1;
 f1_mat(i+cp_count,1+cp_count)=f1_mat(i+cp_count,1+cp_count)+temp1;
 if isfinite(temp1)==1
 min_mat(i,1)=min_mat(i,1)+temp1;
 min_mat(i+cp_count,1+cp_count)=min_mat(i+cp_count,1+cp_count)+temp1;
 end

 %LEFT SIDE (9A-4) AND (9A-9)
 A1ij=f1_int(basis_pre,i,cp_count-1,knots,order);
 temp1=(2*lambda*((order-1)^2)*A1ij/(knots(order)-knots(2)));
 f1_mat(i,cp_count)=f1_mat(i,cp_count)+temp1;
 f1_mat(i+cp_count,2*cp_count)=f1_mat(i+cp_count,2*cp_count)+temp1;
 if isfinite(temp1)==1
 min_mat(i,cp_count)=min_mat(i,cp_count)+temp1;

79

 min_mat(i+cp_count,2*cp_count)=min_mat(i+cp_count,2*cp_count)+temp1;
 end

 %LEFT SIDE (9A-3) AND (9A-8)
 for j=2:cp_count-1
 A1ij=f1_int(basis_pre,i,j,knots,order);
 Bij=f1_int(basis_pre,i,j-1,knots,order);
 temp1=(Bij/(knots(j+order-1)-knots(j)))-(A1ij/(knots(j+order)-

knots(j+1)));
 temp1=temp1*2*((order-1)^2);
 f1_mat(i,j)=f1_mat(i,j)+lambda*temp1;

f1_mat(i+cp_count,j+cp_count)=f1_mat(i+cp_count,j+cp_count)+lambda*temp1;
 if isfinite(temp1)==1
 min_mat(i,j)=min_mat(i,j)+lambda*temp1;

min_mat(i+cp_count,j+cp_count)=min_mat(i+cp_count,j+cp_count)+lambda*temp1;
 end
 end

 time_f1=time_f1+toc;

%
% %

%__
% % % F2 REGULARISATION TERM
% %
tic;
% RIGHT SIDE TERM
 sumx=0;
 sumy=0;
 for j=1:cp_count-1
 Qix(j)=(order-1)*(PX(j+1)-PX(j))/(knots(order+j)-knots(j+1));
 Qiy(j)=(order-1)*(PY(j+1)-PY(j))/(knots(order+j)-knots(j+1));
 end
 for j=1:cp_count-2
 Rix=(order-2)*(Qix(j+1)-Qix(j))/(knots(order+j)-knots(j+2));
 Riy=(order-2)*(Qiy(j+1)-Qiy(j))/(knots(order+j)-knots(j+2));
 Iij=f2_int(basis,i,j,knots,order);
 sumx=sumx+(Rix*Iij*2*(order-1)*(order-2));
 sumy=sumy+(Riy*Iij*2*(order-1)*(order-2));
 end
 temp1=(2*lambda*(order-1)*(order-2)*sumx);
 f2_side(i)=f2_side(i)+temp1;
 if isfinite(temp1)==1
 right_side(i)=right_side(i)+temp1;
 end
 temp1=(2*lambda*(order-1)*(order-2)*sumy);
 f2_side(i+cp_count)=f2_side(i+cp_count)+temp1;
 if isfinite(temp1)==1
 right_side(i+cp_count)=right_side(i+cp_count)+temp1;
 end
 con=2*((order-1)^2)*((order-2)^2);
 % LEFT SIDE TERM
 for j=1:cp_count

80

 j=j-2;
 aj2=1/((knots(order+j)-knots(j+2))*(knots(j+order+1)-knots(j+2)));
 % f2_int - % Regularization term - Iij
 Iij2=f2_int(basis,i,j,knots,order);
 j=j+1;
 aj1=1/((knots(order+j)-knots(j+2))*(knots(j+order+1)-knots(j+2)));
 cj1=1/((knots(order+j)-knots(j+2))*(knots(j+order)-knots(j+1)));
 Iij1=f2_int(basis,i,j,knots,order);
 j=j+1;
 cj=1/((knots(order+j)-knots(j+2))*(knots(j+order)-knots(j+1)));
 Iij=f2_int(basis,i,j,knots,order);
 temp1=(con*lambda*((aj2*Iij2)-((aj1+cj1)*Iij1)+(cj*Iij)));
 f2_mat(i,j)=f2_mat(i,j)+temp1;
 f2_mat(i,j+cp_count)=f2_mat(i,j+cp_count)+temp1;
 if isfinite(temp1)==1
 min_mat(i,j)=min_mat(i,j)+temp1;
 min_mat(i,j+cp_count)=min_mat(i,j+cp_count)+temp1;
 end
 end

 time_f2=time_f2+toc;

end

% last point is first point and delete extra rows and columns
% Addition of changes

min_mat(1,:)=min_mat(1,:)+min_mat(cp_count,:);
min_mat(:,1)=min_mat(:,1)+min_mat(:,cp_count);
min_mat(1,1)=min_mat(1,1)+min_mat(cp_count,cp_count);

min_mat(1+cp_count,:)=min_mat(1+cp_count,:)+min_mat(2*cp_count,:);
min_mat(:,1+cp_count)=min_mat(:,1+cp_count)+min_mat(:,2*cp_count);
min_mat(1+cp_count,1+cp_count)=min_mat(1+cp_count,1+cp_count)+min_mat(2*cp_co

unt,2*cp_count);

min_mat(cp_count,:)=[];
min_mat(:,cp_count)=[];
min_mat((2*cp_count)-1,:)=[];
min_mat(:,(2*cp_count)-1)=[];

right_side(1)=right_side(1)+right_side(cp_count);
right_side(1+cp_count)=right_side(1+cp_count)+right_side(2*cp_count);
right_side(cp_count)=[];
right_side(2*cp_count-1)=[];

% display results
min_mat
right_side
tic;

81

D=min_mat\right_side;
disp('The time required for Calculaton is');
toc
[temp,~]=size(D);
temp=temp/2;
% Ax=b - seperate Dx, Dy
 for l=1:temp
 Dx(l)=D(l);
 Dy(l)=(D(l+temp));
 end

 Dx=Dx'
 Dy=Dy'
 f1_mat
 f1_side
 f2_mat
 f2_side

disp('Total time for SDM');
time_sdm
disp('Total time for f1');
time_f1
disp('Total time for f2');
time_f2
disp('Exiting min_fun');
end

9.6 FIND_PIECE.M

function piece_num=find_piece(piece_mid_x,piece_mid_y,pcx,pcy)
% help to form groups
[~,mid_len]=size(piece_mid_x);

for i=1:mid_len
 dist(i)=sqrt(((piece_mid_x(i)-pcx)^2)+((piece_mid_y(i)-pcy)^2));
end
[~,piece_num]=min(dist);

end

9.7 XY_U.M

function [x,y]=xy_u(u,fx,fy,n,K,t)
% use 'u' to find (x,y) - for radius of curvature, foot point
syms Us
count=int16(fix(u))+1;
if(count>t(n+K))

82

 count=t(n+K);
end

x=subs(fx(count),Us,u);
y=subs(fy(count),Us,u);

end

9.8 TN.M

function T=tn(dfx,dfy,u,n,K,t,choice)
% calculate Vectors - tangents and normal unit vectors
% pre-rec - SDM fromulation
syms Us;
count=int16(fix(u))+1;
if(count>t(n+K))
 count=t(n+K);
end
T(1)=subs(dfx(count),Us,u)/sqrt(((subs(dfx(count),Us,u))^2)+((subs(dfy(count)

,Us,u))^2));
T(2)=subs(dfy(count),Us,u)/sqrt(((subs(dfx(count),Us,u))^2)+((subs(dfy(count)

,Us,u))^2));

% Unit Tangential Vector
if choice==1
T(1)=eval(T(1));
T(2)=eval(T(2));
end

% Unit Normal Vector
if choice==2
T(1)=-T(2);
T(2)=T(1);
end

end

9.9 F1_INT.M

function a=f1_int(basis,i,j,t,k)
% Regularization term - Aij
 syms Us;
 row_a=0;
 if i>1
 row_a=basis(i-1,:);
 end
 row_b=basis(j,:);
 prod=row_a.*row_b;
 [siz,~]=size(prod);

83

 suma=0;
 for c=1:siz
 suma=suma+int(prod(c),Us,c-1,c);
 end
 a=suma/(t(i+k-1)-t(i));

 row_a=basis(i,:);
 row_b=basis(j,:);
 prod=row_a.*row_b;
 [siz,~]=size(prod);
 suma=0;
 for c=1:siz
 suma=suma+int(prod(c),Us,c-1,c);
 end
 a=a-(suma/(t(i+k)-t(i+1)));
end

9.10 F2_INT.M

function fin=f2_int(basis,i,j,t,k)
%% Regularization term - Iij
 syms Us;
 i=i-2;
 ai2=1/((t(i+k)-t(i+2))*(t(i+k+1)-t(i+2)));
 i=i+1;
 ai1=1/((t(i+k)-t(i+2))*(t(i+k+1)-t(i+2)));
 ci1=1/((t(i+k)-t(i+2))*(t(i+k)-t(i+1)));
 i=i+1;
 ci=1/((t(i+k)-t(i+2))*(t(i+k)-t(i+1)));
 row_a=0;
 if i>2
 row_a=basis(i-2,:);
 end
 row_b=0;
 if j>0;
 row_b=basis(j,:);
 end
 prod=row_a.*row_b;
 [siz,~]=size(prod);
 suma=0;
 for c=1:siz
 suma=suma+int(prod(c),Us,c-1,c);
 end
 fin=suma*ai2;

 row_a=0;
 if i>1
 row_a=basis(i-1,:);
 end
 row_b=0;
 if j>0;
 row_b=basis(j,:);

84

 end
 prod=row_a.*row_b;
 [siz,~]=size(prod);
 suma=0;
 for c=1:siz
 suma=suma+int(prod(c),Us,c-1,c);
 end
 fin=fin+suma*(ai1+ci1);

 row_a=basis(i,:);
 row_b=0;
 if j>0;
 row_b=basis(j,:);
 end
 prod=row_a.*row_b;
 [siz,~]=size(prod);
 suma=0;
 for c=1:siz
 suma=suma+int(prod(c),Us,c-1,c);
 end
 fin=fin+suma*ci;
end

