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ABSTRACT 

 

Additive manufacturing has made us realize that we can fabricate complex shapes that 

were difficult to manufacture with subtractive processes. Topology optimizations results have 

complex shapes and have rough surfaces which are difficult to manufacture even by additive 

manufacturing. To automate the process of converting rough surfaces into smooth surfaces for 

the benefit of manufacturability would be very desirable. 

Computing curve segments to approximate point cloud data that represents rough 

surfaces and then lofting it to have a smooth surface seems to be a promising methodology to 

achieve automation. We implement B-spline formulation along with Pottmann’s iterative 

method based on Squared Distance Minimization to automate the process of smoothening of 

rough surfaces. Calculation of foot points is a repetitive step within Squared Distance 

Minimization (SDM) method and accounts for considerable amount of computation time. In this 

research work, we proposed and implemented an algorithm on simple and complex shapes to 

help gain reduction in time required for foot point calculation. We will discuss ways to use this 

method effectively, dealing with instability, steps to reduce computation time and future work. 

Keywords: B-spline, Squared Distance Minimization (SDM), SD error term, Foot point calculation, 

Point cloud data, Control points, Curve fitting. 
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1. INTRODUCTION 
 

In this section, we will discuss the problem definition and understand motivation behind 

the research work. The section, also explains the approach adopted to achieve the aim of 

automating, generation of smooth surfaces from noisy optimization result. 

 

1.1 PROBLEM DEFINITION 
 

Evolution of manufacturing processes have introduced us to a very versatile 

manufacturing methodology; ‘Additive Manufacturing’. Additive manufacturing is a process of 

manufacturing a product by layer-by-layer deposition of materials as compared to the traditional 

subtractive manufacturing process, wherein material is removed from a sheet or block of 

material to manufacture a product. Additive manufacturing process can be classified into seven 

categories; VAT Photopolymerisation, Material Jetting, Binder Jetting, Material Extrusion, 

Powder Bed Fusion, Sheet Lamination and Directed Energy Deposition. Additive manufacturing 

has made us realize that we can manufacture complex geometry, which is difficult or impossible 

to manufacture by conventional manufacturing techniques. With advance in this field we have 

encountered various problems that make this method less practical.  

Optimization is carried out on an object to have an optimal design for the same design 

consideration. Design optimization can be classified into three types: Shape optimization, Size 

optimization and Topology optimization. This research work deals with problems that are faced 

after topology optimization is performed on a design (Blattman, 2008). As material is removed 

from the original design the optimized result has noisy/rough surfaces, making it difficult to 

manufacture by subtractive as well as additive manufacturing. Also, manufacturing rough 

surfaces result into stress concentration, which is undesirable; Figure 1 and 2 demonstrates the 

scenario. Figure 1.1 and Figure 1.5 are the initial design and are consider for material reduction. 

Figure 1.2, Figure 1.3 and Figure 1.6 project results after topology optimization, of the initial 

model. Now, these rough surfaces need to be smoothened out so that the object is 

manufacturable. Software’s such as SolidThinking, Evolve, Inspire, etc. help solve these problems, 

Figure 1.4, Figure 1.7 and Figure 1.8 demonstrates results of smoothened surfaces. These 

softwares require a professional to perform the task manually and the results will depend on 

knowledge and experience of the operator. This also leads to variation of results from one 

professional to other. 
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Figure 1.1: Original model considered for 
topology optimization 

 
 
 

 
 
 
 
Figure 1.2: Optimized result for same design 

consideration with noisy surface 

 
 
 

 
 
 

Figure 1.3: Optimized result for same design 
consideration with noisy surface 

 
 

Figure 1.4: Smoothened surface using 
software (Evolve, Inspire) 
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Figure 1.5: Original model considered for 
topology optimization 

 
 

 

Figure 1.6: Optimized result for same design 
consideration with noisy surface 

 
 
 

Figure 1.7: Smoothened surface using 
software (Evolve, Inspire) 

 
 

Figure 1.8: Smoothened surface using 
software (Evolve, Inspire) 
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We might be able to eliminate these restrictions and reduce the time consumed, by 

automating the process of smoothening of noisy surfaces. In this research paper, we have 

implemented one such method and have proposed an algorithm to speed it. 

 

1.2 APPROACH  
 

The process of acquiring smooth surfaces goes through three different stages; first we 

take cross-section of the result obtained after optimization and generate point cloud data from 

this cross-section. Then data cloud is grouped based on different contours as there could be more 

than one contour in a cross-section; as shown in Figure 1.9. The second step involves defining an 

approximate initial curve and then fitting curve segments to the data cloud with accuracy. Finally, 

use the curve segments to generate surfaces and deal with surface interaction at joints.  

 

 

 
 

Figure 1.9: Different contours in one frame  
(cross-section) 

 

In this research, we implemented B-spline curves to fit through the point cloud data that 

defines a rough cross-section, as B-spline formulation (equation (1)) provides local control and 

various other advantages over other types of curves such as Bezier Curve or Hermite Curve [Refer 

section 2.1 for explanation]. To improve the accuracy of fit, we will be using iterative optimization 

scheme based on Squared Distance Minimization (equation (5)) and propose an algorithm to 

reduce computation time required to calculate foot point on the curve from data cloud.  

Flowchart shown in Figure 1.10, describes start to end steps involved in acquiring a 

manufacturable optimized part.  
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Figure 1.10: Flow Chart 

The paper will advance with discussion on background work, followed by implementation 

of the method and algorithm to reduce computation time. After explaining the methodology, we 

will examine some results and analyze limitations to SDM and ways to overcome them.  Finally, 

we will derive conclusions from this research and comment on the future work. 

  

3-D MODEL WITH DESIGN CONSTRAINTS 

TOPOLOGY OPTIMIZATION ON THE MODEL 

OPTIMIZED RESULT WITH NOISY/ROUGH 

SURFACE 

TAKE CROSS-SECTIONS OF THE OPTIMIZED RESULT TO GENERATE POINT 

CLOUD DATA 

CONTOUR RECOGNITION 

DEFINE INITIAL B-SPLINE 

IMPLEMENT SQUARED DISTANCE MINIMIZATION METHOD TO CONVERGE 

INITIAL B-SPLINE TOWADS THE DATA CLOUD 

LOFT SURFACE FROM THE CONVERGED CURVE 

SEGMENTS 

INTERACTION OF SURFACES 
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2. BACKGROUND WORK 
 

In this section, we will briefly discuss different curves (Mortenson, 2006)and error terms 

along with advantages B-spline and SDM formulation has over others. As mentioned in the 

section 1, we need curve segments that could fit through simple and complex point cloud data 

with ease. So, we need curve segments that will give higher degree of freedom and an error term 

that will give accurate updates to the control points. Now, we will briefly discuss some curve 

options and error terms in the following section: 

 

2.1 CURVES 
 

Curve can be roughly classified as Known-Form curves and Free-Form curves. Circle, 

ellipse, hyperbola, rectangle, triangle, etc. have a Known-Form while Bezier curves, Hermite’s 

curves and B-spline curves don't have a known form and hence termed as Free-Form curves. 

Free-Form curves can be further classified as interpolation and approximation curves. 

Interpolation curves like Hermite’s curve will always pass through the control points and have 

global control. Due to global control, if one control point is moved to a new location it will affect 

the entire curve, also this will affect the continuity of the curve segments; Refer Figure 2.1 and 

Figure 2.2. Hence, for our problem definition we don’t opt for interpolation curves (Mortenson, 

2006).  

 

 

Figure 2.1: Initial Hermite Curve with 4 
control points 
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Figure 2.2: Effect of moving control point P2 
on Hermite Curve 

 

Bezier curve (Mortenson, 2006) has similar properties as of Hermite’s curve but Bezier 

curve is an approximation curve and hence the curve segments do not pass through the control 

points. As mentioned, even Bezier curve has a disadvantage of providing only global control, 

similar to Hermite’s curve [Refer Figure 2.3 and Figure 2.4]. As the number of control points 

increase so does the degree of curve which results in mathematical complexity because of which 

it is not possible to fit curve segments to complex shape with lower degree curve segments. 

 

 
 

Figure 2.3: Initial Bezier Curve with 4 control 
points  

 

 

Figure 2.4: Effect of moving control point P3 
on Bezier Curve 
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Figure 2.5: Graphic representation of B-Spline 
curve segment with 6 control points 

 
 

Figure 2.6: Effect of moving control point P2 
on B-Spline Curve 

 

B-spline curve is a generalized form of Bezier curve and hence share many properties with 

Bezier curve. B-spline provides local control, that means if one control point is moved to a new 

location only some part of the curve segment is affected which is decided by ‘Knot’ value [Refer 

Figure 2.5 and Figure 2.6]. Also, in case of B-spline curves degree of curve is independent of 

number of control points and that helps defining complex geometry with lower degree 

polynomial. The B-spline formulation is discussed below (Mortenson, 2006):      

 

 

𝑃𝑐(𝑡) =  ∑ 𝐵𝑖(𝑡)
𝑛

𝑖=1
𝑃𝑖  

 
Where, 
Pc(t) – B-spline curve 
Bi(t) – Basis function 
t – Parameter  (0 ≤ t ≤ (n-K+2))  
Pi – Control point 

i – Number of control points - Index (0,1,…n) 

(1) 
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𝐵𝑖,1(𝑡) = {

1, 𝑚𝑖 ≤ 𝑡 ≤  𝑚𝑖+1
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
and 

(2) 

 

 

𝐵𝑖,𝑘(𝑡) =  
(𝑡 − 𝑚𝑖) ∗ 𝐵𝑖,𝑘−1(𝑡)

𝑚𝑚+𝑘−1 −𝑚𝑖
+ 
(𝑚𝑖+𝑘 − 𝑡) ∗ 𝐵𝑖+1,𝑘−1(𝑡)

𝑚𝑖+𝑘 − 𝑚𝑖+1
 

 
  

(3) 

 

Where, 
K – Parameter controlling degree of curve (K – 1) 
k – 2,…,K 
i – Index (0,1,…n) 
mi – Knots 
 

 

 

𝑚𝑗 = {

0                            𝑖𝑓   𝑗 < 𝐾
𝑖 − 𝐾             𝑖𝑓 𝐾 ≤ 𝑗 ≤ 𝑛
𝑛 − 𝐾 + 2            𝑖𝑓   𝑗 > 𝑛

 

 
Where, 
Value of tj – o to ( n-K+2 ) 
j – o,…,n+k  

(4) 

 

As B-spline has many advantageous properties that will help fit complex shapes, we 

choose B-spline. Ultimately, our goal is to move towards Non-Uniform Rational B-spline which 

provides an added advantage of assigning weightages to control points giving more freedom in 

fitting complex and sharp shapes.  

 

2.2 CURVE FITTING WITH ERROR TERMS 
 

To fit the curve segments to data cloud, there are various curve fitting methods. The basic 

three curve fitting method could be classified as Interpolation (Brooks, Thomas, Wynne, & 

Coulston, 2012), Regression (Brown, 2001) (Dimitrov & Golparvar-Fard, 2014) (Fang & Gossard, 

1995 ) and Fourier’s Approximation (Brooks, Thomas, Wynne, & Coulston, 2012).In this research, 

we have used non-linear error type regression method. In this method, the control points of the 

curve are assigned updates using error terms generated by minimizing the objective function to 

fit the data cloud with accuracy. The objective function consists of error term and the 

regularization term (𝜆𝑓𝑆). In this section, we will discuss three different error terms and their 

advantages over one another:  
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a) Point Distance error term 

b) Tangent Distance error term 

c) Squared Distance error term  

2.2.1 POINT DISTANCE ERROR TERM (ePD) 
 

 

Point distance error term calculates squared distances between foot point, P(tk) and cloud 

point, Xk as shown in Figure 2.6Figure 2.7. So, the objective function (equation (5)) can be 

transformed into equation 3 to calculate PD error term to yield updates for control points (Wang, 

Pottmann, & Liu, 2006). 

 

 
𝑓𝑃𝐷,𝑘 =

1

2
∑𝑒𝑃𝐷,𝑘
𝑘

+ 𝜆𝑓𝑆 
 
(6) 

                                             
                                            where, 

𝑒𝑃𝐷 = ‖𝑃(𝑡𝑘) − 𝑋𝑘‖
 

 
 

 

PD error term is commonly applied term in various area of curve fitting that includes 

computer graphics, surface fitting, etc. PD error terms are preferred because of their simplicity 

but they have poor approximation. Figure 2.9 - Figure 2.16 (Wang, Pottmann, & Liu, 2006) shows 

results of using PD, TD and SD error terms, PD error term takes numerous iterations to converge 

and fails to fit curve segments in the areas of complex shapes. PD error term has the slowest 

convergence and poorest approximation among the three terms. Figure 2.10 and Figure 2.14 

demonstrate the issues with PD error term.   

 
𝑓𝑒𝑟𝑟𝑜𝑟,𝑘 =

1

2
∑(𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚)

𝑘

+ 𝜆𝑓𝑆  

 

(5) 

 

Figure 2.7: Graphical representation of 
point distance error term 
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2.2.2 TANGENT DISTANCE ERROR TERM (eTD) 
 

 

Figure 2.8: Graphical representation of point 
tangent error term 

 

Tangent distance error term calculates squared distances between cloud point, Xk and 

tangent drawn to the curve Pc(t) at P(tk) as shown in Figure 2.8. So, the objective function 

(equation (5)) can be transformed into equation (7) to calculate TD error term to yield updates 

for control points, where Nk is the normal at the foot point (Wang, Pottmann, & Liu, 2006). 

 

 
𝑓𝑇𝐷,𝑘 =

1

2
∑𝑒𝑇𝐷,𝑘
𝑘

+ 𝜆𝑓𝑆 

 

(7) 

 where, 
𝑒𝑇𝐷,𝑘 = [(𝑃(𝑡𝑘) − 𝑋𝑘) 𝑁𝑘]

2 

 

 

    TD error term converges in fewer iterations as compared to PD error term. TD error terms 

become unstable in case the data point lie on the tangent from the foot point as the distance 

yields zero value, thus resulting in poor approximation. This usually results, in areas of sharp 

shape change and resultant fit is undesirable as shown in Figure 2.15 (Wang, Pottmann, & Liu, 

2006). While Figure 2.11 demonstrates that TD error term works with similar accuracy as SDM 

and requires equivalent number of iterations for simple shapes. 
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Figure 2.9: Initial Definition 
Reference (Wang, Pottmann, & Liu, 2006) 

 
 

 
 
 

Figure 2.10: Solution by PD error term – after 
10 iterations  

Reference: (Wang, Pottmann, & Liu, 2006) 

 
 
 

Figure 2.11: Solution by TD error term – after 
10 iterations  

Reference: (Wang, Pottmann, & Liu, 2006) 

 

Figure 2.12: Solution by SD error term – after 
10 iterations  

Reference (Wang, Pottmann, & Liu, 2006) 
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Another example: 

 

Figure 2.13: Initial Definition 
Reference: (Wang, Pottmann, & Liu, 2006) 

 
 

 
 
 

Figure 2.14: Solution by PD error term – after 
20 iterations  

Reference: (Wang, Pottmann, & Liu, 2006) 

 

Figure 2.15: Solution by TD error term – after 
20 iterations  

Reference: (Wang, Pottmann, & Liu, 2006) 

 
 

 

Figure 2.16: Solution by SD error term – after 
20 iterations  

Reference: (Wang, Pottmann, & Liu, 2006) 
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2.2.3 SQUARED DISTANCE ERROR TERM (eSD) 
 

Squared Distance error term was introduced Weeping Wang, Helmut Pottmann and Yang 

Liu in (Wang, Pottmann, & Liu, 2006).SDM calculates the foot point more accurately as compared 

to PD and TD error term and hence the results are comparatively more stable and achieve faster 

convergence. Result due to PD, TD and SD error terms can be compared in Figure 2.9 - Figure 

2.16. Figure 2.12 and Figure 2.16 show result due to SD error term which converged faster and 

in a stable fashion for simple as well as complex shape as compared to PD and TD error term.  We 

will discuss working of SDM and Implementation of it in section 3. 
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3. METHODOLOGY 
 

In this section, we will understand how Squared Distance Minimization method is 

implemented and ways to properly initialize the B-spline. Further, in this section we will propose 

and discuss an algorithm to speed up Squared Distance Minimization. 

 

3.1 SQUARE DISTANCE MINIMIZATION 
 

As discussed in section 1 and 2, we fit B-spline to the point cloud to obtain smooth surface 

from rough optimization results and to improve the accuracy of the fit, we need to adjust control 

points based on the point cloud data. To refine this fit, Squared Distance Minimization (SDM) 

method is implemented on simple and complex data clouds in this research. SDM formulation 

converges the initial curve towards the data cloud in ‘n’ number of iteration depending on 

complexity of data cloud and initial definition of control points (Cheng, et al.) (Yanga, Wanga, & 

Sun, 2003) (Wang, Pottmann, & Liu, 2006) (Pottmann, Leopoldseder, & Hofer). 

Consider Xk where k = 1,2,3,...,n be a set of unorganized point cloud data obtained from 

a noisy cross-section as shown below Figure 3.1. To this data cloud, we define an initial B-spline 

Pc(t) =  ∑ Bi(t)
n
i=1 Pi that would approximately fit the point cloud data as shown in Figure 3.2. 

Here, Bi(t) is the basis function of curve segments with ‘t’ being the parameter and Pi‘s are the 

control points (Wang, Pottmann, & Liu, 2006).  

 

 
 

Figure 3.1: Scattered data cloud obtained by 
taking cross-section of optimized result 

 

Now, to fit the initial curve more accurately to this data cloud we use the SDM formulation 

(equation (8)). The objective function, fSD has two components, first the Squared Distance error 

term and second is known as regularization term (λfS). The ‘½’ in the objective function is 

considered for ease, as the objective function needs to be differentiated in future computation 

(Pekelny, 2005).  
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Figure 3.2: Defined control points to generate 
initial B-spline   

 

 

 

𝑓𝑆𝐷,𝑘 =
1

2
∑𝑒𝑆𝐷,𝑘
𝑘

+ 𝜆𝑓𝑆 

 
Where, 
 
fSD – SDM objective function 
λ – Weighing factor 
fS – Regularization term 
eSD – Squared distance error term 

 

(8) 

 

Closed Curve: 
 

𝑒𝑆𝐷,𝑘(𝐷) = {

𝑑

𝑑 − 𝜌
[(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑇𝑘]
2 + [(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑁𝑘]
2  ,   𝑖𝑓 𝑑 < 0

 [(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)
𝑇𝑁𝑘]

2                                                , 𝑖𝑓 0 ≤ 𝑑 <  𝜌

 

(9) 

 

Open Curve: 
 

        𝑒𝑆𝐷,𝑘(𝐷) =  {
  cos 𝜃 𝑒𝑃𝐷,𝑘 + (1 − cos 𝜃)𝑒𝑆𝐷,𝑘      , 𝑓𝑜𝑟 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠

 𝑒𝑆𝐷,𝑘                                                      ,   𝑓𝑜𝑟  𝑖𝑛𝑛𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠
 

(10) 

 

Where, 
 
D – update for control point (DX and DY for PX and PY) 
d – Distance between foot point and data point 
ρ – radius of curvature at P(tk) 
Tk – Tangent at P(tk)  
Nk – Normal at P(tk) 
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tk – Parameter 
θ – angle between the data point and curve segment  

ePD,k – Point Distance error term 

 
 

Squared distance error term calculates the update required to converge the curve with 

higher accuracy as compared to PD and TD error term. SD error term accounts Distance between 

foot point and data point, radius of curvature at P(tk), Tangent at P(tk), Normal at P(tk) to yield a 

more precise update (Dx, Dy).  

Given the data cloud and define initial B-spline, let P(tk) be the closed point for a point 

cloud on the curve known as the foot point (Aigner & Juttler, 2005). Let the distance between Xk 

and P(tk) be ‘d’ i.e |d| = || Xk – P(tk) ||. Also, consider the local Frenet frame of curve with its 

origin at P(tk) with its two co-ordinate axis parallel to tangent and normal vector (Tk, Nk). The 

curvature of Pc(t) at P(tk) be denoted by ‘ρ’.  If Xk and center of curvature are on the same side of 

the curve, then 0<d< ρ else d won’t be the shortest distance, while d > 0 if Xk and center of 

curvature are on the same side of the curve. The SD error term formulation differs based on, side 

on which data point lie of the curve segment (equation (9)). Also, the formulation changes based 

on open or closed curve. Within open curve, the formulation considers for inner data points and 

outer data points differently as shown in equation (10). 

The second half on the right hand side of equation (8) consists of, fs which is the 

regularization term, ensures smoothness of the curves segments while λ alters the weight factor 

to the regularization term. λ is always a positive value and ranges from zero to one and is 

incremented with desired step (e.g.: 0.01 0r 0.001) (Mortenson, 2006). F1 and F2 are first order 

and second order regularization terms respectively as shown below and may have different 

weightage as shown in equation (11), (12) and (13). 

 

 
 

𝐹1 = ∫‖𝑃𝐷
′ (𝑡)‖ (11) 

 

 

𝐹2 = ∫‖𝑃𝐷
′′(𝑡)‖ 

 
(12) 

 

 

𝑓𝑆𝐷,𝑘 =
1

2
∑𝑒𝑆𝐷,𝑘
𝑘

+ 𝛼𝐹1 + 𝛽𝐹2 

Where, 
α and β are weight factors 

(13) 
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The objective function is minimized as shown in equation (14) (Pekelny, 2005) to solving 

the system of linear equations to yield update Dx and Dy. Dx and Dy are assigned to Px and Py 

respectively to move the curve segment towards data cloud where Px and Py are X and Y co-

ordinates of control points. These steps are repeated till the convergence is achieved.  

 

(

 
 
 
 
 
 
 
 
(
𝜕𝑓𝑆𝐷
𝜕𝐷1,𝑥

)
1,𝑥

(
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𝜕𝐷1,𝑥

)
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 ⋯  (
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(

 
 
 
 
 
 

𝐷1,𝑥
𝐷2,𝑥
⋮
𝐷𝑛,𝑥
𝐷1,𝑦
𝐷2,𝑦
⋮
𝐷𝑛,𝑦)

 
 
 
 
 
 

  

=  

(

 
 
 
 
 
 

𝑏1,𝑥
𝑏2,𝑥
⋮
𝑏𝑛,𝑥
𝑏1,𝑦
𝑏2,𝑦
⋮
𝑏𝑛,𝑦)

 
 
 
 
 
 

  

(14) 
                              Matrix Order, 

(2n*2n) (2n*1) = (2n*1) 
                              Where, 

n = number of control points  
 

DIFFRENTIATING (eSD) WITH RESPECT TO DX AND DY: 

 

 

  

 

For 0 ≤ d < ρ , 
𝑒𝑆𝐷,𝑘 (𝐷) =   [(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑁𝑘]
2 

 
𝜕𝑒𝑆𝐷,𝑘
𝜕𝐷𝑖,𝑥

= 
𝜕[(𝑃𝑐(𝑡𝑘) − 𝑋𝑘)

𝑇𝑁𝑘]
2

𝜕𝐷𝑖,𝑥
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Similarly, we differentiate with respect to Dx and Dy for eSD,k where d < 0 and also for the 

regularization term. 

 

3.1.1 STEPS   

   

 Following steps are carried out in SDM formulation: 

1. Define an initial B-spline curve. 

2. Calculating foot point on the initial curve for each point in the data cloud. 

3. Minimize fSD by solving liner system of equation to calculate SD error term, eSD. 

4. Assign updates to initial control points, generated by error term. 

5. Generate the new B-spline. 

6. Repeat steps 2 through 5 till converges is achieved. 

  

 

Differentiating with respect to Dx , 

𝜕𝑒𝑆𝐷,𝑘
𝜕𝐷𝑖,𝑥

=  2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥
2 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑥

𝑛

𝑗=1

) +  2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥𝑁𝑘,𝑦 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑦

𝑛

𝑗=1

)

+  2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥[(𝑃(𝑡𝑘) − 𝑋𝑘)
𝑇𝑁𝑘]  

 

 

 

Similarly, differentiating with respect to Dy , 

𝜕𝑒𝑆𝐷,𝑘
𝜕𝐷𝑖,𝑦

= 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥𝑁𝑘,𝑦 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑥

𝑛

𝑗=1

) + 2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑦
2 (∑𝛽𝑗(𝑡𝑘)𝐷𝑗,𝑦

𝑛

𝑗=1

)

+  2𝛽𝑖(𝑡𝑘)𝑁𝑘,𝑥[(𝑃(𝑡𝑘) − 𝑋𝑘)
𝑇𝑁𝑘] 
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3.1.2 PROBLEM  

 

 
 

Figure 3.3: Calculating shortest distance to 
find foot point 

 

 Every point in the data cloud has the shortest distance on the curve as foot point. To find 

the foot point for any point Xk, its distance is calculated throughout the curve segments and the 

compared to find the shortest distance as shown in Figure 3.3. Consider the following example; 

there are 135 points in the point cloud data, we specify 10 control points to define initial curve. 

The initial curve has 10 curve segments with parameter ‘tk’ incrementing from 1 to 10 with an 

increment of 0.01. If the simulation iterates for 6 iterations to converge, the total number of 

equations solved is 810,000 equations. Solving these many equations require a substantial time 

and based on the experiments carried out, the total time required for this simulation is six hours 

and fourteen minutes. If the data cloud is even denser the time consumed will grow 

exponentially. 

 Exploring timing data in TABLE 1 reveals maximum time is utilized to solve SDM 

formulation and then for calculation of foot point. For this particular example SDM requires 1915 

sec while foot point calculation take 1702 sec.  

TABLE 1: TIME DISTRIBUTION TABLE 

 

Functions Area Time in 
seconds 

Cloud Generation 0.97 

B-spline Generation 9-15 

Pre-requisite for SDM 1702 

SDM formulation 1915 

Regularization Term (F1) 13 

Regularization Term (F2) 8 
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3.2 FAST ALGORITHM  
 

As discussed in section 3.1.2, calculation of foot point takes a lot of time and should be 

dealt with. There are various methods in which we can encounter this problem. Fast Marching 

method developed by Professor James Sethian can be used for calculation of foot point (d). This 

method uses upwind, viscosity solution and finite difference scheme to solve non-linear partial 

differential equation for wave front propagation known as the Eikonal Equation (J.A.Sethain, 

1995) (Sethain, 1999). Other possibility could be to generate a grid and approximate the value of 

all data points in one patch by calculating value of one data point (Wang, Pottmann, & Liu, 2006). 

In this paper, we would like to propose and implement an algorithm to calculate d, as discussed 

below in section 3.2.1. 

 

3.2.1 CALCULATION OF FOOT POINT 

  

  

 
 

Figure 3.4: Fast Algorithm – Grouping of data 
points based on nearest midpoint 

 

 In this method, we divide the data cloud in groups by calculating their distances 

with the midpoint of each curve segments. Group all the points that have shortest distance with 

the same midpoint as shown in Figure 3.4. To find the foot point, we first find the distance 

between the start and end point of each curve segment with the point in the data cloud. The 

parameter value for the start and end point are known and we now approximate the parameter 

value for the data point in that group using equation (15) (Wang, Pottmann, & Liu, 2006) [Refer 

Figure 3.5 for understanding]. Consider the same example as in section 3.1.2, here we have 135 

data points, 10 curve segments (due to initial definition of 10 control points) with parameter tk 

incrementing from 1 to 10 with an increment of 0.01. In this case, we also evaluate unit normal, 

distance ‘d’, curvature ρ, parameter and theta in case of open curve. If the simulate takes 6 

iterations to converge, we manage to bring down solving 810,000 equations to 32,400 equations. 

This change might not give the same accuracy but will reduce time considerably. The accuracy 
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issues can be dealt with by dividing curve segments into more parts. Even after dividing the curve 

segments into smaller slices the number of equations remain comparatively low.  

 

 

Figure 3.5: Interpolating foot point 

 

 𝑡𝑘 = (𝑥1𝑡1 + 𝑥2𝑡2)/(𝑥1 + 𝑥2) (15) 

 

 After implementing this algorithm, the results obtain show considerable time 

reduction, which is demonstrated in the TABLE 2. 

 

TABLE 2: TIME DISTRIBUTION TABLE 

 

Functions Area Time in 
seconds 

Cloud Generation 0.97 

B-spline Generation 120 

Pre-requisite for SDM 300 

SDM formulation 800 

Regularization Term (F1) 13 

Regularization Term (F2) 8 

 

3.2.2 INITIALIZING CURVES  

 

 Defining initial curve is an important step in SDM simulation. Inaccurately defined B-spline 

would take numerous iteration to converge B-spline towards the point cloud. Figures below, 

shows two different scenarios Figure 3.6 describes less effectively define initial B-spline which 
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takes 11 iterations and a total time of 10 hours and 30 minutes to achieve equivalent 

convergence as compared to a well-defined initial B-spline as shown in Figure 3.7.  

 

 
 

Figure 3.6: Less effective way of defining 
control points 

 
 

Figure 3.7: Effective way to define control 
points 

 

3.2.2.1 MANUAL SETUP 

 

Once we have the data cloud, control points can be assigned manually in an appropriate 

manner. The goal is to keep control points to the minimum, as number of control points 

increase the number of calculations increases as well and thus the time required for each 

iteration. Figure 4.1 in section 4.1, is an example of manual setup. 

  

3.2.2.2 AUTOMATIC SETUP 

 

Another technique that could result in an appropriate initial B-spline curve is by assigning 

every nth point in the data cloud as a control point. This works well in most of the cases 

as shown in Figure 4.5 in section 4.2 and Figure 4.9 in section 4.3, but in some cases if 

there is a quick change in shape and the nth control point does not lie in the region of 

quick shape change, it would take more iterations to fit the B-spline through the data 

cloud.   
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4. EXPERIMENTS AND RESULTS 
 

In this section, we will analyze some experiments and there results that were carried out 

on simple and complex shapes with simple and coarse data cloud. The parameters were varied 

to study their effects and suggest guidelines to yield best possible results. 

 

4.1 CASE 1: CIRCLE 
 

The data cloud as shown in Figure 4.1, has 40 data points which represents a simple circle, 

to which 10 initial control points (Px, Py) are defined. Weightage of 0.005 is assigned to the 

regularization factor for smoothness of the curve segments. TABLE 3 displays various parameter 

and their values involved in this experiment. 

 

 
 
 

Figure 4.1: Simple data cloud representing a 
circle with control points defined less 

effectively 

 

 

Figure 4.2: Convergence after 4 iterations 
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Figure 4.3: Convergence after 6 iterations 

 

 

Figure 4.4: After 9 iterations - SDM 
formulation converges B-spline towards the 

data cloud 

 

TABLE 3: PARAMETER SPECIFICATION   

 

Parameters  Value 

Data cloud 40 

Control points 10 

Curve segments 10 

Weightage for Regularization term, 
λ 

0.005 

Iterations 9 
 

Figure 4.2 and Figure 4.3 project results after 4th and 6th iteration during the simulation 

while Figure 4.4 shows converged B-spline after 9 iterations. The control points are defined in a 

less effective way so the simulation takes 9 iterations to converge with predefined convergence 

percentage of 3%. We can observe that, due to continuity issues we have C0 continuity at start 

and end point of curve. As the curve segments are very close to the data cloud and the 

approximation represent a circle, we can comment that the SDM formulation successfully yields 

a good fit.   



26 
 

4.2 CASE 2: IRREGULAR SHAPE 
 

The data cloud as shown in Figure 4.5, has 163 data points, to which 8 initial control points 

(Px, Py) are defined. The eight curve segments are further divided into 50 slices to improve 

accuracy and reduce number of iterations. Weightage of 0.005 is assigned to the regularization 

factor for smoothness of the curve segments. 

TABLE 4 displays various parameter and their values involved in this experiment. 

 

 
 
 

Figure 4.5: Random shape with control points 
defined closely to the data cloud 

(automatically defined control points) 

 
 
 

Figure 4.6: Convergence after 3 iterations 
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Figure 4.7: Convergence after 4 iterations 

 

 

Figure 4.8: After 6 iterations - SDM 
formulation converges B-spline towards the 

data cloud 

 

TABLE 4: PARAMETER SPECIFICATION 

 

Parameters  Value 

Data cloud 163 

Control points 8 

Curve segments 50 

Weightage for Regularization term, 
λ 

0.005 

Iterations 6 

 

Figure 4.6 and Figure 4.7 project results after 3rd and 4th iteration during the simulation 

while Figure 4.8 shows converged B-spline after 6 iterations. The control points are defined in an 

effective way, so the simulation takes 6 iterations to converge with predefined convergence 

percentage of 3%. The curve passes well within the data cloud, accounting for the coarseness of 

the data cloud. We can also observe, that due to continuity issues we have C0 continuity at start 

and end point of curve. The SDM formulation is able to converge curve segments through 

irregular change of curvature, yielding a good fit.  
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4.3 CASE 3: IRREGULAR SHAPE WITH STRAIGHT LINE 
 

The data cloud as shown in Figure 4.9, has 138 data points, to which initial control points 

(Px, Py) are defined. The 11 curve segments are further divided into 40 slices to improve accuracy 

and reduce the number of iterations. Weightage of 0.005 is assigned to the regularization factor 

for smoothness of the curve segments.  

TABLE 5 displays various parameters and their values involved in this experiment. 

 

 
 
 
 

Figure 4.9: Random shape with control points 
defined closely to the data cloud (manually 

defined control points) 

 
 

 
 
 

Figure 4.10: Convergence after 2 iterations 
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Figure 4.11: Convergence after 5 iterations 

 
 

Figure 4.12: After 6 iterations - SDM 
formulation converges B-spline towards the 

data cloud 

 

TABLE 5: PARAMETER SPECIFICATION 

 

Parameters  Value 

Data cloud 138 

Control points 11 

Curve segments 40 

Weightage for Regularization term, 
λ 

0.005 

Iterations 6 

      

Figure 4.10 and Figure 4.11 project results after 2nd and 5th iteration during the 

simulation while Figure 4.12 shows converged B-spline after 6 iterations. The control points are 

defined automatically in an effective way so the simulation takes 6 iterations to converge with 

predefined convergence percentage of 2%. We can also observe, that due to continuity issues we 

have C0 continuity at start and end point of curve but the curve passes well within the data cloud 

in region of curvature change but has difficulty at corners where shape changes to a straight line.  
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4.4 CASE 4: IRREGULAR SHAPES WITH DEEP AND HIGH CURVATURE 

CAVITIES  
 

The data cloud as shown in Figure 4.13, has 174 data points, to which 19 initial control 

points (Px, Py) are defined. The number of control points is high in this case due to the complexity 

of the data cloud. The 19 curve segments are further divided into 90 slices to improve accuracy 

and reduce number of iterations. Weightage of 0.005 is assigned to the regularization factor for 

smoothness of the curve segments. Table 6 displaces various parameters and their values 

involved in this experiment. 

 

 
 
 

Figure 4.13: Irregular data cloud with 
complex and sharp change in shape 

 
 

 
 
 

Figure 4.14: Convergence after 3 iterations 

 
 

 

  



31 
 

 
 
 

Figure 4.15: After 6 iterations - SDM 
formulation converges B-spline towards the 

data cloud 

 

TABLE 6: PARAMETER SPECIFICATION 

 

Parameters  Value 

Data cloud 174 

Control points 19 

Curve segments 90 

Weightage for Regularization term, 
λ 

0.005 

Iterations 6 
 

Figure 4.14 project’s result after 3rd iteration during the simulation while Figure 4.15 

shows converged B-spline after 6 iterations. The control points are defined manually in an 

effective way due to the complex nature of the data cloud which helps gain convergence in 6 

iterations with a predefined convergence percentage of 0.5%. We can also observe, that due to 

continuity issues we have C0 continuity at start and end point of curve. Also, the data cloud is 

sparse in the region of fingertip which generates small errors and hence the curve segments do 

not accurately fit fingertips. On contrary, due to adequate data points in the base region the 

curve fitting has better approximation. 
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4.5 CASE 4: SHARP EDGES 
 

The data cloud as shown in Figure 4.16 has 140 data points, to which initial control points 

(Px, Py) are defined. The 14 curve segments are further divided into 30 slices to improve accuracy 

and reduce the number of iterations. Weightage of 0.001 is assigned to the regularization factor 

for smoothness of the curve segments. TABLE 7 displays various parameter and their values 

involved in this experiment. 

 

 
 
 

Figure 4.16: Irregular data cloud with sharp 
change in shape 

 
 

 
 
 

Figure 4.17: Convergence after 2 iterations 
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Figure 4.18: After 3 iterations - SDM 

formulation converges B-spline towards the 
data cloud 

 

 

TABLE 7: PARAMETER SPECIFICATION 

 

Parameters  Value 

Data cloud 140 

Control points 14 

Curve segments 30 

Weightage for Regularization term, 
λ 

0.001 

Iterations 3 
 

Figure 4.17 project’s result after 2nd iteration during the simulation while Figure 4.18 

shows converged B-spline after 3 iterations. The control points are defined automatically in an 

effective way to fit the sharp edges of the data cloud, so the simulation takes 3 iterations to 

converge with predefined convergence percentage of 0.5%. The curve segments have Cn 

continuity and so cannot fit through corners, as in case of C0 continuity. The curve fits, edges and 

corners with fair approximation. 

 

4.6 EFFECT OF CHANGE IN PARAMETERS 
 

The parameters such as weightage of regularization terms, number of control points and 

number of curve slices have a considerable effect on accuracy of fit and time required for 

convergence. In this section we will analyze effects of varying these parameters. 
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4.6.1 EFFECT OF INITIAL DEFINITION 
 

Initial definition of the B-spline curve plays a very important role in quality of output and 

time required to achieve convergence. The experiment carried out below [Refer Figure 4.19 and 

Figure 4.22] demonstrates the outcome of effectively defined control points and ineffectively 

defined control points.   

 

 
 

 
 

Figure 4.19: Less effective way of defining 
control points 

 

Figure 4.20: Effective way of defining control 
points 

 

 
 

 
 

Figure 4.21: Result after 11 iterations in case 
of less effective way of defining control points 

 

Figure 4.22: Result after 6 iterations in case 
of effective way of defining control points 

 
 

Figure 4.19 requires 11 iterations to converge compared to 6 iterations for Figure 4.20. 

Due to the poor definition of control points the results are poor approximation of data cloud. 

There are less control points in the region on shape change which results into failure to accurately 

fit curve segments through data cloud. Quality of fit is affected by initial definition of control as 

shown in Figure 4.21 and Figure 4.22.  
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4.6.2 EFFECT OF NUMBER OF CURVE SLICES 
 

As SDM formulation on its own requires considerable amount of time, a faster algorithm 

was implemented. The algorithm compromises on the quality of fit but gives considerable time 

reduction. To improve the accuracy of the fit, the curve segments are further divided into 

multiple parts as per the complexity of data cloud. This help in better interpolation of the 

parameter value for foot point computation. Figure 4.23 - Figure 4.26 demonstrates the 

experiments carried out on same data cloud with 14, 30, 50 and 120 curve slices. 

 

 
 
 

Figure 4.23: Number of curve slices - 14 

 
 

 

Figure 4.24: Number of curve slices - 30 

 

Figure 4.25: Number of curve slices - 50 
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Figure 4.26: Number of curve slices - 120 

 

 Form above experiments we can observe that Figure 4.24 gives better approximation of 

the data cloud as compared to Figure 4.23, while there is no considerable change in Figure 4.25 

and Figure 4.26 with increase in number of slices. From this study we understand, that accuracy 

increases as number of curve slices are increased but after a certain values the change in accuracy 

is minimal. 

4.6.3 EFFECT OF ‘λ’ VALUE 
 

Regularization term in objective function helps gain smoothness to the curve segments, 

weightage of this regularization term is govern by λ. Experiments carried out with different λ are 

shown in Figure 4.27 - Figure 4.30.  

 

 

Figure 4.27: λ = 0.5 
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Figure 4.28: λ = 0.05 

 
 
 

Figure 4.29: λ = 0.01 

 
 

 
 
 

Figure 4.30: λ = 0.005 

 
 

From the above experiments we can observe, that as the λ values is reduced, the SDM 

formulation gain better fit to data cloud. Figure 4.30 has better fit compared to Figure 4.29, 

Figure 4.28 and Figure 4.27. 
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4.7 OBSERVATIONS AND GUIDELINES 
 

 Better initialization results into quicker convergence. 

 

Guidelines: 

1) For simple shapes, define control points by automatic method of control point 

selection. [Refer section 3.2.2.2] 

2) For complex shapes input control points manual. [Refer section 3.2.2.1] 

  

 Higher number of control points does not necessarily result into better fit. 

 

Guidelines: 

1) For simple shapes use fewer control points. Example: For simple shape like circle 

6 control points would yield similar results as 10 control points or for shapes like 

rectangle 8 control points are sufficient to yield a good fit. 

2) In case of complex geometry, assign control points just before, in the region and 

just after the sharp change. This gives higher flexibility to fit sudden shape change. 

While fitting rest of the simple shape with fewer control points. This keeps the 

total control points to minimum and will require comparatively less time. 

3) In regions, where data cloud closely represents a straight line only 2 control points 

are required; one near the start and other near the end. 

4) Remember, the aim is to fit curve segments to the data cloud with fewer control 

points and with accuracy. 

 

 Accuracy can be increased by having optimal number of curve slices. [Refer section 4.6.2] 

 

Guidelines: 

1) For simple data clouds such as circle or rectangle the number of segments 

generated by definition of control points is adequate to give good results. This is 

valid only if the size of simple shapes like circle or rectangle is small, in case of a 

larger shape and bigger data cloud the number of slices should be increased. 

2) Data cloud with complex and sharp change should have multiple slices. Example: 

If the size of data cloud ranges between 100 – 250, curve slices can range between 

40-100 slices. 
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 Regularization factor works best with appropriate, λ value. [Refer section 4.6.3] 

 

Guidelines: 

1) Weightage, λ between 0 and 0.010 for the regularization term yield better results 

as compared to higher λ values. 
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5. METHOD LIMITATIONS 
 

In this section, we will discuss the method limitations [also refer: (Wang, Pottmann, & Liu, 

2006)] with implementing Squared Distance Minimization method, instability issues and ways to 

overcome them. 

 

5.1 ABSENCE OF POINTS IN DATA CLOUD: 
 

Sparse data cloud or absence of data points results into instability and undesirable outcome. In 

this section, we will study effect of sparse data cloud or absence of data points on the final result. 

 

5.1.1 CASE: 1 

 

 
 

Figure 5.1: Sparse data cloud 

 In a closed data cloud, a case may arise where there is no foot point on a particular curve 

segment due to sparse data cloud as shown in Figure 5.1. In such cases, the SDM algorithm cannot 

calculate the appropriate update for the control point in the region. The result is an inaccurate 

final curve which is undesirable. 
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5.1.2 CASE: 2 

 

 

Figure 5.2: Sparse data cloud with far away 
data point 

 

 In a similar case, where the data cloud is sparse and a data point that has foot point on 

the curve segment is far away as compared to the rest of the cloud points, the error term might 

become huge and the resultant update will be abnormal as shown in Figure 5.2. This undesirable 

error term may amplify the error in successive iterations making the curve unstable. To 

encounter such issues there are two alternatives; (1) a faraway point in a data cloud can be 

neglected for initial or all iterations or (2) movement of the curve to fit the data cloud can be 

restricted or controlled. In the latter case, the update is restricted to some ‘x’ unit of maximum 

change. This is an idea method to maintain stability in the simulation. 

 

5.2 INSTABILITY DUE TO UPDATE 
 

 Linear system of equations is evaluated to find SD error term; this error term produces an 

update to the existing location of control points which converges the curve towards data cloud. 

These updates yield appropriate relative movements but have an amplified numerical value, 

which induces instability in the result. By assigning a scaling factor this instability can be 

controlled. Also, this increases the number of iterations required, but can be considered as a 

tradeoff between time and instability. 

 

5.3 INSTABILITY DUE TO FOOT POINT CALCULATION 
 

 This is a very rare scenario; foot point calculations may sometimes make the fitting B-

spline unstable. The calculation for distance between foot point and data point may yield a zero 

value. Situation like these causes the error term to rise to infinity resulting into undesirable 

outcome. As these problem exists near convergence they can be encountered by neglecting such 
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data points. In our experiments, we have specified a value of 1*e-6 as zero values, such that if 

distance between foot point and data point is less that 1*e-6 the data point will be neglected. 
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6. CONCLUSION 
 

In this research work, we have studied different types of curve along with various curve 

fitting error term and have implemented fitting of B-spline to point cloud data using modified 

SDM method. Based on implementation and experimentations with Squared Distance 

Minimization Method, we can derive following conclusions. 

Ability to gain local control of the fitting curve was the desired characteristic required for 

your problem. Use of B-spline has successfully fulfilled this requirement and by varying the 

degree of the curve, the number of control points controlling the curve segments can be varied. 

This proves advantageous when tracing a geometry with high curvature. 

A method was required to fit the initial curve to the desired data cloud accurately, the 

aim was achieved by implementing Squared Distance Minimization method. The method can be 

implemented on simple as well as complex data cloud with same accuracy. The regularization 

term improves the smoothness of fitting B-spline, when a suitable weighing factor is used. The 

SDM formulation when implemented consumes a lot of time in foot point calculation. The SDM 

formulation iterates to fit B-spline to the data cloud. The iteration stops when the curves fit the 

data cloud accurately and successive percentage change drops below an assigned value. The 

defined value of converges can be increased or decreased depending on the desired accuracy of 

fit. 

Time consumed to calculate foot point was encountered by algorithm mentioned in 3.2.1. 

The algorithm when implemented brings down the time required considerably. Time required for 

calculation of foot point is reduced approximately by 82% per iteration. Implementation of Fast 

Algorithm does bring down the accuracy of approximation but can be improved by increasing 

number of iteration and/or curve segments, which is a considerable tradeoff when time is a 

priority. 

Stability and implementation issues were resolved as mentioned in section 5. By assigning 

a scaling factor to the numerical value of the update, the iterations have stable convergence. The 

results acquired by implementing refined codes were stable and operate with similar accuracy 

for complex and simple data cloud.  
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7.  FUTURE WORK 
 

The future work that can be undertaken to improve implementation of Squared Distance 

Minimization method and also to achieve your aim of automating the process of smoothening of 

surfaces from the noisy optimization results is discussed in this section.  

In this research work, to fit the data cloud with curve segments we have used B-spline 

curves which gives local control as compared to the global control in case of Bezier or Hermite 

curve. This proves to be an advantage while fitting through complex geometry but this capability 

can be enhanced by incorporating Non Uniform Rational B-Spline (NURBS) curve (Mortenson, 

2006). Use of NURBS curve will help assign weightage to control points. By assigning weightage 

to control points in the region of sharp or complex geometry, we will be able to fit curve segments 

with higher accuracy and achieve convergence much faster. 

An average data cloud with 170 points and 11 control points (as shown in Figure 4.5 would 

require 6 iterations to converge and estimated time of 7000 seconds. When explored, 800 

seconds are utilized per iteration, in solving the SDM formulation which in this example accounts 

for 69% of the simulation time. If this time can be brought down or an alternate method with 

same accuracy can be used it would be more desirable method. Some research papers suggest a 

C++ program would be around 500 times faster than a Matlab code (Andrews). 

Computation of foot point for each point in data cloud is time consuming step and was 

tackled in this research work by method mention in section 3.2. The method speeds up the 

simulation by compromises the accuracy to some extent. By studying and implementing 

alternative methods like Fast Marching method, with SDM formulation we could compare time 

required and accuracy to select a better method (J.A.Sethain, 1995). 

As discussed in section 5.1, a coarse data cloud with sparse data points will result in 

instability in simulation and undesirable results. A probable solution would be to manually input 

some data cloud to help gain accuracy in the result. Other method by which this can be avoided 

is by aiming for denser point cloud data while taking a cross-section of the noisy surface. 

The number of control points are user defined and hence fixed. The number of control 

points does affect the accuracy of fit. Automating change in number of control points will be very 

advantageous, as it will remove control points where there are more than required and add 

control points in areas where they are required.  

The simulation stops when a set value of convergence is achieved. This convergence does 

not define the quality of fit with which the curve has fit the data cloud. There is a desperate need 

to find a metric to check quality of fit. 

As discussed in section 1, the big picture of this work is to automate the process of 

converting rough surfaces to smooth once to improve its manufacturability. Merging generation 
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of data cloud, data cloud recognition, fitting B-spline to data cloud using SDM and lofting surfaces 

will give much clear idea about areas were improvement or change is required and hence 

compilation for this different sections is required. 
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9. APPENDIX  
 

Implemented MATLAB code is as follows: 

 

9.1 DATA CLOUDS 
 

Five data clouds for which experiments were carried out are as follows: 

 

9.1.1 SHAPE: CIRCLE 
 

9.1.1.1 EXCEL FILE 

 

X - CO-ORDINATE Y - CO-ORDINATE 

  

10 0 

9.935251313 0.802056404 

9.74268221 1.583339969 

9.427280128 2.32361586 

8.997213817 3.003711321 

8.463621768 3.606012237 

7.840323734 4.114919329 

7.143462807 4.517252173 

6.39108732 4.802590558 

5.602683401 4.96354437 

4.798670299 4.995944991 

3.999871531 4.89895326 

3.226975565 4.675081213 

2.5 4.330127019 

1.837773122 3.873024809 

1.257446259 3.315613291 

0.774049572 2.672329131 

0.400102782 1.959833049 

0.145290913 1.196578321 

0.016213459 0.402332844 

0.016213459 -0.402332844 

0.145290913 -1.196578321 
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0.400102782 -1.959833049 

0.774049572 -2.672329131 

1.257446259 -3.315613291 

1.837773122 -3.873024809 

2.5 -4.330127019 

3.226975565 -4.675081213 

3.999871531 -4.89895326 

4.798670299 -4.995944991 

5.602683401 -4.96354437 

6.39108732 -4.802590558 

7.143462807 -4.517252173 

7.840323734 -4.114919329 

8.463621768 -3.606012237 

8.997213817 -3.003711321 

9.427280128 -2.32361586 

9.74268221 -1.583339969 

9.935251313 -0.802056404 

10 -1.22E-15 

 

 

9.1.1.2 CODE 

 

function [pcx,pcy]=cloud_gen_circle() 
disp('Entering Cloud_gen'); 
N=20; 
theta1=linspace(0,2*pi,2*N); 
r=5; 
X=r+(r*cos(theta1)); 
Y=r*sin(theta1); 

  
title('Proposed Point cloud data'); 
hold on; 
pcx=X; 
pcy=Y; 
scatter(X,Y,'filled'); 
disp('Exiting Cloud_gen'); 
end 

 

 

9.1.2 SHAPE: IRREGULAR SHAPE 
 

9.1.2.1 EXCEL FILE 
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X - CO-ORDINATE Y - CO-ORDINATE 

  

0.794039854 1.244973648 

1.30435201 1.585876229 

0.541498267 1.480367585 

1.273632868 1.36137088 

0.421931343 1.988165465 

1.1870588 3.418809665 

1.6383329 2.791405778 

1.211235264 3.947865137 

2.370257319 3.962625542 

1.640501706 3.448612051 

2.793761614 4.483090166 

3.259936225 3.964568203 

3.036638221 4.542581458 

3.74159826 4.61660668 

3.520332136 5.107369433 

4.466836533 5.690387854 

3.920317232 5.279747647 

4.200588009 5.906147594 

5.253803212 5.21819497 

5.020153965 5.710064568 

6.563483325 5.824207531 

5.65209324 5.04433876 

7.207723312 5.576015542 

6.965056664 5.987056114 

7.319454739 5.473606116 

8.210947866 5.82446695 

7.993034418 5.305304057 

9.302577956 4.228870371 

9.042755629 4.493854556 

8.927326407 4.001763299 

9.880703138 4.808437263 

9.277070983 4.175429224 

9.519647399 4.16086759 

10.63067248 2.959955925 

10.69319302 2.707363423 

10.95616761 2.118103369 

9.964574239 2.083065504 

11.30053306 1.092705309 

10.63233823 1.526072437 
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10.05877673 1.419487485 

11.14550999 0.838230826 

10.26159137 0.214701474 

10.7201164 0.428429659 

11.15496107 -0.147029051 

10.79244541 -1.508574153 

11.05014732 -1.911798824 

9.841663502 -2.546331747 

10.37097799 -2.803767201 

10.24129378 -2.63890027 

10.31716786 -3.808324357 

10.06134601 -4.903219185 

8.410311631 -5.071477235 

8.897404129 -5.167226907 

9.050151973 -5.571616199 

7.995712425 -5.969117882 

8.04493742 -7.139555334 

7.786495114 -7.311943711 

6.892957859 -7.480262527 

6.301511635 -7.190380389 

5.558622301 -8.059168248 

5.142841395 -8.455023545 

4.863332677 -7.672614511 

4.594894552 -8.60716572 

3.661235876 -7.953615172 

3.49810308 -8.307489289 

3.296254644 -9.149382316 

3.168659865 -8.649562605 

2.024686698 -8.69056292 

2.145527261 -9.324262256 

0.767699344 -9.101485455 

1.086780999 -8.943356437 

-0.231678402 -8.865686182 

0.103898907 -9.09730864 

-1.042728492 -9.360176787 

-2.266415141 -9.441328232 

-2.747436083 -8.878986512 

-3.378389893 -8.034463799 

-2.924129146 -9.210991191 

-4.327495296 -8.680415967 

-4.163059486 -8.556731795 
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-5.291237549 -7.386724877 

-5.216699403 -7.01235884 

-5.520261187 -7.210683384 

-6.51129402 -7.451259846 

-6.839664948 -6.273511856 

-6.986115426 -5.52106471 

-6.412520688 -4.937023535 

-7.2937667 -5.633208435 

-7.99382623 -4.722818947 

-7.47237625 -4.555307278 

-8.181673111 -3.651939371 

-7.730343667 -3.889762997 

-8.239908668 -2.774997438 

-8.844027619 -1.814402946 

-9.058101055 -2.362562913 

-8.824033528 -1.177825405 

-9.380771152 -0.386186986 

-8.444131214 0.408532385 

-9.795271543 -0.183861529 

-9.9645513 0.911148916 

-9.833786018 0.611189262 

-8.661846607 1.312284868 

-9.398458586 1.287970584 

-9.230935925 2.885717615 

-9.623659956 2.619562031 

-8.419458669 2.422069391 

-8.541236313 4.246329365 

-9.007624286 3.372637171 

-8.239847426 4.89971574 

-8.169679737 5.215026461 

-8.598774955 5.288984934 

-8.159100767 5.037544443 

-8.223128835 5.847898538 

-7.288326401 5.892542311 

-6.780057174 5.004760388 

-6.318857376 5.72228915 

-6.367281143 6.113607606 

-6.008262786 5.210676403 

-6.326311114 5.831077146 

-5.376013274 6.037334032 

-5.200156145 5.49317545 
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-5.447387948 5.69199523 

-6.058775867 5.485478205 

-5.302420573 3.919625312 

-4.613011133 3.767777062 

-5.351611374 4.080905001 

-5.039604703 3.264082473 

-4.692510462 2.966543666 

-4.611014461 2.828119898 

-4.857313077 1.733561496 

-4.906093494 1.460231019 

-3.857642789 0.841262705 

-3.889451796 1.039227621 

-3.76388268 1.241966324 

-4.545292992 0.193756318 

-4.157006692 -0.049477612 

-3.621369162 0.417188361 

-3.933441157 -0.655276703 

-3.621293637 -0.938404925 

-3.805594617 -0.936085196 

-3.507086572 -0.231693066 

-2.985635109 -0.434722864 

-3.550793702 -1.276383863 

-3.593867021 -1.073466905 

-2.522375739 -1.036688736 

-1.686405137 -1.014648273 

-2.290182591 -2.466554113 

-1.824029787 -2.184737602 

-2.035727346 -2.007624141 

-1.951620884 -1.345765814 

-0.708415718 -1.593925832 

-1.067456137 -1.073941307 

-0.500120631 -0.772465436 

0.242217642 -1.53446707 

-0.061931449 -1.385382511 

0.249192916 -0.524311619 

0.609045017 -1.324631191 

0.875733951 -1.251158891 

0.390581871 0.047388448 

1.041193928 -0.247324953 

1.058853174 0.800974682 

0.349249972 -0.075902082 
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0.337601823 0.525020879 

 

9.1.2.2 CODE 

 

function [pcx,pcy]=cloud_gen() 
disp('Entering Cloud_gen'); 

  
N=20; 
theta1=linspace(pi,0,2*N); 
r=5; 
x1=r+(r*cos(theta1)); 
y1=r*sin(theta1); 
theta2=linspace(0,-pi,3*N); 
R=r*2; 
x2=R*cos(theta2); 
y2=R*sin(theta2); 
theta3=linspace(pi,0,5*N/3); 
x3=-(3*r/2)+(r*cos(theta3)/2); 
y3=r*sin(theta3); 
theta4=linspace(pi,0,1.5*N); 
x4=-(r/2)+(r*cos(theta4)/2); 
y4=-0.5*r*sin(theta4); 
X=[x1,x2, x3,x4]; 
Y=[y1,y2,y3,y4]; 
%scatter(X,Y); 
% figure; 
%plot(X,Y); 
hold on; 

  
temp=size(X); 
xsize=temp(2); 
for i=1:xsize 
    xnew(i)=(rand(1,1)*1.5)+X(i); 
    ynew(i)=(rand(1,1)*1.5)+Y(i); 
end 

  
%removing Redundancies 
for i=1:xsize 
    for j=i+1:xsize 
        if(xnew(i)==xnew(j))&&(ynew(i)==ynew(j)) 
            xnew(i)=[]; 
            ynew(i)=[]; 
            xsize=xsize-1; 
        end     
    end 

  
end 
scatter(xnew,ynew,'filled'); 
title('Proposed Point cloud data'); 
hold on; 
pcx=xnew; 
pcy=ynew; 
disp('Exiting Cloud_gen'); 
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end 

 

9.1.3 SHAPE: IRREGULAR SHAPE WITH STRAIGHT LINE 
 

9.1.3.1 EXCEL FILE 

 

X - CO-ORDINATE Y - CO-ORDINATE 

  

11.72934509 0.839920739 

11.15092128 1.240560224 

12.28899304 1.9772807 

13.83454363 2.038134805 

13.98231434 2.194197173 

14.91686857 1.221322197 

14.28579666 1.5533569 

15.70127618 3.075944493 

15.13530253 3.083936123 

15.75083777 3.822095612 

15.01138136 4.057336821 

15.11655041 5.371436454 

15.2417281 6.110357337 

16.71752742 6.600062478 

14.99563882 7.683307023 

16.25490979 7.86656865 

14.25670828 8.039164346 

13.918543 9.770746808 

14.20274388 10.10185596 

14.15297706 10.31558069 

13.42680538 11.26037219 

12.86978845 11.50610981 

11.82781851 10.20232 

10.36059307 11.42345015 

10.16777551 11.32219941 

10.192237 10.93673724 

9.673339943 10.6907956 

8.606655405 10.39865428 

8.933024845 9.823648337 

6.778977087 9.094821427 

7.460659577 9.795956239 

7.648045298 7.994835613 
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6.92304783 8.133330858 

5.986088852 7.350264903 

6.036539629 6.973903014 

6.487412289 5.603906938 

5.17922387 6.651930965 

5.190938724 6.550609707 

4.182267602 5.218722419 

5.045610794 6.752702008 

4.646643952 6.728509372 

2.132578574 6.089364884 

3.4658206 6.022016308 

2.629377293 5.140442945 

2.269195121 6.845426859 

0.834404192 5.862924107 

-0.206663811 6.441446856 

-1.443277102 5.748120386 

-0.213453089 6.092959296 

-1.699285084 5.993074637 

-2.617351955 6.901675118 

-1.85954285 6.027126207 

-2.426585069 5.911687404 

-4.147918238 5.426429558 

-4.613501039 6.665508492 

-3.591976992 6.730657717 

-3.522024222 7.353933091 

-4.298437445 7.391694946 

-4.532114779 7.850022838 

-5.986395532 9.48406484 

-5.327567798 9.053286189 

-6.248513854 10.30490086 

-6.520041438 9.658135783 

-7.904729216 9.683173189 

-8.051070388 10.85161092 

-9.232065769 11.31354862 

-10.18848341 10.23431605 

-8.988533856 11.87135588 

-11.48325589 10.74304627 

-10.44397444 9.990596672 

-11.08594458 10.80004865 

-12.03174742 8.769833727 

-13.00590945 10.09850502 
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-12.81216294 8.512131169 

-13.24093492 7.655957741 

-13.61245644 8.508542519 

-13.22028391 6.459672845 

-13.63005 5.940573214 

-13.00601793 4.719776047 

-14.37402779 5.510088561 

-14.51232815 4.305633807 

-12.8017317 4.108303171 

-13.76175901 2.936862254 

-12.91321357 2.501681749 

-11.94264221 1.382453978 

-10.75383517 1.988144529 

-11.63924602 1.534182319 

-9.466951954 1.746389464 

-9.299792055 0.977689761 

-9.479363809 1.138536342 

-9.502458674 0.638603183 

-8.156064322 1.102513745 

-8.321596033 0.518750061 

-9.441937149 -0.956777555 

-8.390681118 -0.815589327 

-8.118754408 -2.501862932 

-7.726483704 -2.268623032 

-7.724498772 -4.340107063 

-6.75929979 -4.988970795 

-7.190365698 -5.42176439 

-7.087707872 -4.571833824 

-6.928329225 -4.939001983 

-5.526630687 -6.431939963 

-5.958439294 -7.130814475 

-4.397310258 -7.950976761 

-4.010246396 -7.18836647 

-3.312448292 -6.814987985 

-3.441520599 -8.550497933 

-1.839138656 -7.719614143 

-2.040513649 -9.369101596 

-1.189663852 -9.352820859 

-0.599914374 -9.150635896 

-0.371389907 -8.496295213 

0.697395946 -8.413125841 
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0.743134933 -8.638203482 

1.105928002 -8.347433426 

3.020430823 -7.96868465 

2.501317788 -7.910709896 

3.982661883 -8.321217842 

4.22622013 -9.176831147 

5.910575756 -8.781855323 

5.546789137 -7.524716416 

7.375927336 -7.394234448 

7.912819878 -7.597631606 

7.252288888 -6.243384586 

7.081205796 -5.692913674 

8.257321919 -5.085212461 

8.607204424 -5.559363249 

10.21651774 -4.223109133 

9.43038251 -4.898905951 

10.39430661 -3.235488611 

9.35418262 -3.662876419 

11.40988333 -2.286649735 

9.689519059 -2.534290921 

10.08136465 -0.204911228 

10.84241503 -0.211156077 

10.96658148 -0.53235536 

11.79529308 0.577130618 

 

9.1.3.2 CODE 

 

function [pcx,pcy]=cloud_gen1() 
disp('Entering Cloud_gen'); 
N=6; 

  
theta1=linspace(-1*pi/2,pi,3*N); 
theta2=linspace(0,3*pi/2,3*N); 
theta3=linspace(-1*pi,0,4*N); 

  
r1=5; 
r2=10; 

  
x1=(r1*cos(theta1))+2*r1; 
y1=(r1*sin(theta1))+r1; 

  
x2=linspace(5,-5,1.5*N); 
y2=5*ones(1,1.5*N); 

  
x3=(r1*cos(theta2))-2*r1; 
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y3=(r1*sin(theta2))+r1; 

  
x4=(r2*cos(theta3)); 
y4=(r2*sin(theta3)); 

  
X=[x1,x2, x3,x4]; 
Y=[y1,y2,y3,y4]; 

  
temp=size(X); 
xsize=temp(2); 
for i=1:xsize 
    xnew(i)=(rand(1,1)*2)+X(i); 
    ynew(i)=(rand(1,1)*2)+Y(i); 

  
end 

  
%removing Redundancies 
for i=1:xsize 
    for j=i+1:xsize 
        if(xnew(i)==xnew(j))&&(ynew(i)==ynew(j)) 
            xnew(i)=[]; 
            ynew(i)=[]; 
            xsize=xsize-1; 
        end     
    end 

  
end 
scatter(xnew,ynew,'filled'); 
% hold on; 
% pcx=xnew; 
% pcy=ynew; 
pcx=X; 
pcy=Y; 
disp('Exiting Cloud_gen'); 

  
end 

 

9.1.4 SHAPE: IRREGULAR SHAPE WITH DEEP AND HIGH CURVATURE CAVITY 
 

9.1.4.1 EXCEL FILE 

 

X - CO-ORDINATE Y - CO-ORDINATE 

  

5.076187259 93.3767767 

6.903516096 89.47324415 

8.622444362 79.75280162 

9.481700743 89.13136037 

7.820725008 107.7565363 

8.109000879 115.5047373 
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11.44036899 120.8143695 

12.0796673 131.2152972 

14.44874972 151.7717387 

14.19203663 250.2674433 

15.72157996 163.4855143 

13.31291484 232.8254029 

13.1913752 259.953028 

14.15200614 173.8169773 

16.96948934 204.7497983 

16.05345594 265.9636192 

16.03986111 186.0358966 

18.97337106 234.426823 

18.01143136 251.440194 

18.38818092 166.7223808 

18.92287207 213.0447047 

16.37923073 274.803854 

19.56029804 188.5281553 

18.81128972 283.6087984 

22.30799333 71.23230763 

22.60945432 77.53692526 

26.80231804 294.9674892 

30.03932726 295.1637029 

30.10975488 302.0244312 

32.49884456 99.74773112 

34.21719388 94.16344132 

34.97006524 105.7467344 

38.44076096 122.588913 

38.91767642 120.2599844 

39.95847756 308.0792465 

43.95896057 142.7347028 

45.4466269 150.1305303 

45.32783208 157.994988 

48.57746583 163.6769519 

52.8088204 164.1730809 

53.0056539 126.3142892 

56.6619064 104.5823861 

54.93002647 126.7709599 

54.24701981 143.2212551 

57.01516709 83.52778992 

55.42368848 167.5834839 

58.54208491 104.0849582 
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58.37632288 135.1522826 

56.00137153 153.9535185 

58.91614446 92.81046438 

56.86510482 136.9053381 

59.37294317 80.21761431 

61.87081153 77.58387932 

59.76010191 70.0071973 

63.84705505 54.47090716 

63.47323164 35.15609191 

67.3927781 40.41725402 

70.06572964 321.0300296 

75.75573345 29.7840815 

80.49414583 322.4531058 

83.41827736 26.96774732 

88.24133324 80.45090843 

88.20323636 38.19256686 

90.18256651 68.12436906 

88.40439373 95.21718942 

90.83481847 66.97171377 

88.64990594 116.4542654 

92.6515017 86.92662792 

92.40722381 326.2396552 

90.74703818 49.98879943 

90.21675537 70.43584583 

93.10892972 104.0442564 

90.11100035 137.9615411 

93.0037597 322.3279899 

93.69553256 326.5025456 

99.30053933 128.0039415 

98.6140752 124.4271488 

99.5758032 131.4024306 

101.351479 96.10078597 

100.0240439 325.2076479 

102.9896331 75.15137137 

104.4836501 113.8913743 

104.6723437 52.71531117 

104.2019814 106.8395003 

105.3840867 70.23428284 

106.9381294 91.54369779 

104.855348 49.13852025 

105.8044952 72.05517823 
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106.894843 324.8047884 

107.9958091 22.5456912 

111.7257335 18.32354594 

117.2985873 326.8119944 

120.5222407 12.70347417 

125.9633745 324.9505323 

129.787664 324.0403988 

130.1675167 131.808694 

131.3967948 90.56172332 

130.953506 114.9057542 

131.0931962 33.71966121 

129.8286323 54.29360552 

129.4434809 75.50084022 

130.3196159 325.3684207 

133.2684754 115.1267413 

132.0844882 134.0972388 

131.4810511 43.50180061 

132.3865947 88.33847754 

133.2984663 108.4557506 

132.7942523 59.68980385 

135.6073255 132.7966287 

135.1931366 133.9860811 

138.5596169 326.0056584 

138.107981 122.1358327 

141.2969982 97.65121761 

140.0590547 105.8110592 

143.0269886 324.5250644 

143.2597261 79.43431984 

144.937005 83.81401621 

148.2551183 323.5737384 

147.2143007 47.50020631 

151.0999767 55.66119048 

152.6488756 319.2768231 

153.3191187 33.81694268 

158.0688589 28.2798926 

162.8001358 25.63283914 

164.1457835 314.7485165 

167.5645993 161.0483466 

170.8853077 168.7153805 

170.9284154 189.9993921 

170.6292784 195.9579668 
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172.0834019 165.8763094 

173.3695516 185.6517316 

174.2649411 154.1755104 

172.8764208 310.2380999 

174.750317 308.9474089 

176.0797355 202.3183234 

176.8243391 204.3813457 

178.0114965 133.9868888 

179.4605306 115.2721108 

180.8741838 89.39502525 

179.1879083 301.6118796 

178.4281606 78.89666468 

180.4547294 119.1318728 

181.2664823 61.24527663 

181.3071034 81.77611678 

182.4858086 299.0304088 

183.1552927 95.89212256 

184.3152068 50.28992635 

184.9045861 68.11284416 

181.2913232 88.00489442 

188.3247545 207.6893524 

189.3080972 290.2162771 

193.1530013 288.8531795 

197.283001 283.807626 

197.3050916 182.8346843 

199.9397058 279.5955822 

204.0724977 180.3300533 

209.9814952 175.5990039 

211.8158113 261.7292128 

214.7506102 167.2734157 

215.5233901 247.5383179 

218.4529145 161.6304778 

220.4747989 240.873595 

224.0136554 227.6421431 

224.8257241 229.3544147 

229.2965025 223.9477298 

231.0488759 215.3183739 

236.5133108 202.2438009 

237.7635059 196.337032 

241.2529505 197.1572423 

246.0722316 150.9323611 
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248.349447 179.8358955 

252.4439261 180.6433444 

253.4155167 156.3887452 

255.0148724 165.8101126 

 

9.1.4.2 CODE 

 

function [pcx,pcy]=cloud_gen_hand() 
disp('Entering Cloud_gen'); 
 I=imread('hand.png'); 
 I=rgb2gray(I); 
 the_edge = edge(I); 
 [y, x] = find(the_edge); 
 temp=size(x); 
xsize=temp(1); 
count=1; 
for i=1:18:xsize 
    xnew(count)=(rand(1,1)*4)+x(i); 
    ynew(count)=(rand(1,1)*4)+y(i); 
    count=count+1; 
end 
pcx=xnew; 
pcy=ynew; 
scatter(pcx,pcy) 
end 

 

9.1.4.3 IMAGE 

 

The image used in above code is: 

 

 

 

9.1.5 SHAPE: SHARPE EDGES 
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9.1.5.1 EXCEL FILE 

 

X - CO-ORDINATE Y - CO-ORDINATE 

  

5.251920041 -4.693595206 

5.064883535 -4.734055415 

4.411382376 -4.773053267 

4.179472701 -4.516973625 

3.930717182 -4.652305024 

3.635944375 -4.826552405 

3.189529693 -4.721652684 

2.664454506 -4.718971977 

2.588780955 -4.786772232 

2.314686934 -4.634306467 

1.731739659 -4.772893814 

1.400091501 -4.612222679 

1.229204518 -4.784861077 

0.864117666 -4.527393256 

0.564530092 -4.647214071 

-0.117746673 -4.805034671 

-0.221789014 -4.770309976 

-0.836898972 -4.885656208 

-0.789802021 -4.992177654 

-1.119868705 -4.960965473 

-1.562030429 -4.749894338 

-2.132382411 -4.714192137 

-2.525112321 -4.664416884 

-2.631241709 -4.972011921 

-3.24769056 -4.923749681 

-3.610879122 -4.782412227 

-3.549406504 -4.691304914 

-4.05028012 -4.568065889 

-4.606323455 -4.545973898 

-4.945991653 -4.741501621 

-4.928421989 -4.720314714 

-4.997710188 -4.271831414 

-4.575645387 -3.851934192 

-4.506515863 -3.71295069 

-4.864289188 -3.570314399 

-4.746075585 -2.983057506 

-4.618556452 -2.889553158 
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-4.669201903 -2.327717389 

-4.914475991 -1.772100378 

-4.704758411 -1.676234384 

-4.529040535 -1.223767228 

-4.774027145 -0.787047841 

-4.733688249 -0.585125433 

-4.659967235 -0.333646427 

-4.880354697 0.117047953 

-4.566556473 0.375802173 

-4.943692429 0.739164298 

-4.849907799 1.062762392 

-4.583318218 1.408710883 

-4.804912031 1.731948585 

-4.92987232 2.026616821 

-4.95659245 2.456077979 

-4.871358608 2.734984589 

-4.787570794 2.990638112 

-4.752466538 3.629065683 

-4.878213314 4.013224696 

-4.962955212 4.162458955 

-4.998302939 4.420683274 

-4.999349716 4.749762249 

-4.928757973 5.134038 

-4.912553967 5.069324486 

-4.330186824 5.450528953 

-3.789569376 5.110592228 

-3.647553201 5.188005558 

-3.2566285 5.132436297 

-3.113969538 5.218163539 

-2.690851259 5.013053554 

-1.93006827 5.21529826 

-1.55625775 5.381207242 

-1.662992336 5.34001932 

-1.31369129 5.322564393 

-1.390511744 4.738683995 

-1.28048356 4.373273421 

-1.481234307 4.334353299 

-1.238478213 3.719735293 

-1.507657108 3.452465863 

-1.211569053 3.232326872 

-1.370869462 2.573693111 
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-1.240134852 2.258235984 

-1.214488928 1.68325637 

-1.400453425 2.02491534 

-1.206645374 1.83493313 

-0.832069452 1.827630258 

-0.3536272 1.940949817 

-0.160815889 1.943032733 

0.322590888 1.787417538 

0.677128145 1.743746391 

1.404134106 2.134497354 

1.705653515 2.030797591 

1.754572531 1.846852155 

1.761061653 1.667265865 

1.824876424 2.38684553 

1.979294257 2.678938495 

1.886185268 2.921491412 

1.91749622 3.528921241 

2.047870691 3.806546469 

2.040498085 4.211656142 

1.728276426 4.511458189 

1.840297323 4.675703472 

1.740591401 5.099084851 

2.002801785 5.215755591 

2.384238992 5.128392282 

2.412286732 5.266141536 

2.91747376 5.473115077 

3.601369781 5.196342288 

3.530946135 5.335718398 

4.307474207 5.485749819 

4.287725702 5.225161906 

4.92086478 5.343318907 

5.359716376 5.325020376 

5.363457275 5.186923833 

5.290791042 4.71323167 

5.028827181 4.80022744 

5.142411863 4.263004391 

5.481080516 3.713578787 

5.096519908 3.446684121 

5.466448948 3.126368251 

5.136608354 2.662180436 

5.198554421 2.428740544 



67 
 

5.065557354 2.114072083 

5.045756584 1.859037617 

5.005489546 1.493526743 

5.394864929 0.979752352 

5.224009857 0.801920471 

5.030700721 0.420558236 

5.321157617 -0.061780928 

5.418528223 -0.031703764 

5.423186444 -0.609069238 

5.139437806 -0.833587941 

5.118465192 -1.073051497 

5.310130018 -1.596420651 

5.086302251 -2.196205941 

5.127631101 -2.156921631 

5.455533527 -2.581217599 

5.362591178 -3.16091903 

5.288026728 -3.215375603 

5.201921684 -3.471297608 

5.044999407 -4.149874311 

5.255704469 -4.624869231 

5.362843962 -4.721722126 

 

9.1.5.2 CODE 

 

function [pcx,pcy]=cloud_gen_sq() 
disp('Entering Cloud_gen'); 

  
N=30; 
x1=linspace(5,-5,N); 
y1=-5*ones(1,N); 
x2=-5*ones(1,N); 
y2=linspace(-5,5,N); 
x3=linspace(-5,-10/6,N/3); 
y3=5*ones(1,N/3); 
x4=(-10/6)*ones(1,N/3); 
y4=linspace(5,10/6,N/3); 
x5=linspace(-10/6,10/6,N/3); 
y5=(10/6)*ones(1,N/3); 
x6=(10/6)*ones(1,N/3); 
y6=linspace(10/6,5,N/3); 
x7=linspace(10/6,5,N/3); 
y7=5*ones(1,N/3); 
x8=5*ones(1,N); 
y8=linspace(5,-5,N); 
X=[x1,x2,x3,x4,x5,x6,x7,x8]; 
Y=[y1,y2,y3,y4,y5,y6,y7,y8]; 
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plot(X,Y); 
% pcx=0; 
% pcy=0; 
temp=size(X); 
xsize=temp(2); 
for i=1:xsize 
    xnew(i)=(rand(1,1)*0.5)+X(i); 
    ynew(i)=(rand(1,1)*0.5)+Y(i); 
end 
pcx=xnew; 
pcy=ynew; 
scatter(pcx,pcy) 
end 

 

9.2 MAIN.M 
 

%Shree 
%Main Control Program 
clear all 
close all 
clc 

  
 K=3;               %Order of the curve of b-spline curve 
 red_fac=70;        %Ratio of reduction | scaling factor 
 run_num=15;        %Number of iteration runs 
 open=0;            %open = 0 curve is closed 
                    %open = 1 curve is open 
 cur_sli=9;         %Decides number of parts the curve should be divided in 
 max_per=0.5;       %Minimum allowable percentage of distance change      
 max_mov=1;         %Maximum Units a point can move 

  
% GRAPH LABELS 
str_iter1=' Iter='; 
str_order1=' Order='; 
str_red_fac1=' Fac='; 
str_cur_sli1=' Slices='; 
str_red_fac2=int2str(red_fac); 
str_order2=int2str(K); 
str_cur_sli2=int2str(cur_sli); 
str_order=strcat(str_order1,str_order2); 
str_red_fac=strcat(str_red_fac1,str_red_fac2); 
str_cur_sli=strcat(str_cur_sli1,str_cur_sli2); 

  
%Generating point cloud data 
[pcx,pcy]=cloud_gen_sq; 
[temp,cl_size]=size(pcx); 

  
 %Creating control points for first b-spline curve 
 count=0;  
 for i=1:10:cl_size 

    
    count=count+1; 
    PX(count)=pcx(i); 
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    PY(count)=pcy(i); 

     

  
 end 

  
%   
% PX= [-5,0,5,5.5,5,2,2,0,-2,-1.6,-5,-5]; 
% PY= [-5,-5,-5,0,5.5,5.5,2,2,2,5.5,5.5,0]; 

  

  
% assuming PX and PY are row arrays  
PX=PX';  % UNCOMMENT WHEN AUTOMATIC C. P 
PY=PY'; 
if open==0 
[a,b]=size(PX); 
PX(a+1)=PX(1); 
PY(a+1)=PY(1); 
count=count+1; 
end 

  
d_mean1=0; 

  

  

  
for j=1:run_num 

     

     

     

  
str_iter2=int2str(j); 
tit=strcat(str_iter1,str_iter2,str_order,str_red_fac,str_cur_sli); 
title(tit); 
disp('Run number'); 
j 
%Plotting Cloud point data 
scatter(pcx,pcy,'filled'); 
hold on; 

  
%Initial B-spline curve 
[basis,bspx,bspy,u,knots,basis_pre,piece_u,piece_x,piece_y,piece_mid_x,piece_

mid_y,piece_mid_u,fx,fy]=b_spline(PX,PY,K,cur_sli); 
max_u=max(piece_u); 

  
%Find theta,Unit tangential, normal,d and rho for each cloud point data 
[N,T,d,rho,t,fpx,fpy,side]=pre_req(fx,fy,pcx,pcy,basis,PX,PY,piece_mid_x,piec

e_mid_y,piece_u,piece_x,piece_y,knots,K); 

  
% for i=1:cl_size 
% plot([pcx(i) fpx(i)],[pcy(i) fpy(i)]); % connect point to foot point 
% end 
% hold on; 
% CONVERGENCE  
d_mean1 
d_mean2=eval(mean(d)) 
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d_per=abs(d_mean2-d_mean1)*100/d_mean1 
d_rec(j)=d_per; 

  
if (d_per<max_per) 
    disp('Convergence due to maximum percenatge'); 
    break 

     
end 

  
if ((d_mean1<d_mean2)&&(j>1)) 
    disp('Convergence due to increasing distance'); 
    break 
end 

  
%SDM formulation 
%function giving change in control points as output 
%count=No. of control points on the curve 
if open==0 
[Dx,Dy]=min_fun(N,T,d,rho,t,fpx,fpy,side,pcx,pcy,count,basis,basis_pre,knots,

K,PX,PY,max_u); 
end 
% REMOVED OPEN CURVE MIN FUN 

  

         
%1st pt is last pt 
Dx(count)=Dx(1); 
Dy(count)=Dy(1); 
for i=1:count 
     if (Dx(i)<=(-max_mov*red_fac)) 
         Dx(i)= -max_mov*red_fac; 
     end 
     if (Dx(i)>=(max_mov*red_fac)) 
         Dx(i)= max_mov*red_fac; 
     end 
     if (Dy(i)<=(-max_mov*red_fac)) 
         Dy(i)= -max_mov*red_fac; 
     end 
     if (Dy(i)>=(max_mov*red_fac)) 
         Dy(i)= max_mov*red_fac; 
     end 
end 

  
% scaling 
PX=PX+(Dx/red_fac);   
PY=PY+(Dy/red_fac); 

  
d_mean1=d_mean2; 

  

  
title(tit); 
figure; 

  
end 
% centroid   
X_cen=eval(mean(bspx)); 
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X_cen=num2str(X_cen); 
Y_cen=eval(mean(bspy)); 
Y_cen=num2str(Y_cen); 
% plot(X_cen,Y_cen); 

  
cent=['The Centroid Coordinates are X=',X_cen,'Y=',Y_cen]; 
%plot Convergence 
num=linspace(1,j,j); 
figure; 
d_rec(1)=d_rec(2); 
plot(num,d_rec); 

  

 

9.3 B-SPLINE.M 
 

% close all 
% clear all 
% clc 
function 

[basis,bspx,bspy,u_mem,t,basis_pre,piece_u,piece_x,piece_y,piece_mid_x,piece_

mid_y,piece_mid_u,fx,fy]=b_spline(PX,PY,K,cur_sli) 
disp('Entering b_spline');     
% plot(PX,PY); 
hold on; 
%dependancy of n 
[a,~]=size(PX); 
n=(a-1); 
syms Us; 
% Knots 
for j = 0:(n+K) 
    if j < K 
         t(j+1) = 0; 
    else if (K<=j)&&(j<=n) 
             t(j+1) = j-K+1; 
    else if j > n 
             t(j+1) = n-K+2; 
            end 
        end 
    end 
end 
% Basics function for K = 1 
Ng = zeros(n+1,n+K); 
for i = 1:n+1 
    for l = 1:n+K 
        if i == l 
            Ng(i,l)= 1; 
        end 
        if (i == n+1)&&(l>n+1) 
            Ng(i,l)=1; 
        end 
    end 

     
end 
%evaluating non N part 
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% Basis function for K = 2 
for Kv=2 
    for i = 1:n+1 
    for l = 1:n+K 

         
        W1 = ((Us-t(i))*(Ng(i,l))/((t(i+Kv-1))-(t(i)))); 
         if ((W1==Inf)||(isnan(W1))) 
            W1 = 0; 
         end 

           
       if i==n+1 
           c2=0; %thats N(i+1,K-1)of U 
       else 
           c2=((Ng((i+1),l))); 
       end 
        W2 = ((t(i+Kv)- Us)*c2/((t(i+Kv))-(t(i+1)))); 
        if ((W2==Inf)|| (isnan(W2))) 
            W2 = 0; 
        end 

       

        
    Ne(i,l) = W1+W2; 
   end 
        end 
end 

  
for Kv=3:K 
    for i = 1:n+1 
    for l = 1:n+K 

         
        W1 = ((Us-t(i))*(Ne(i,l))/((t(i+Kv-1))-(t(i)))); 
         if ((W1==Inf)||(isnan(W1))) 
            W1 = 0; 
         end 

           
       if i==n+1 
           c2=0; %thats N(i+1,K-1)of U 
       else 
           c2=((Ne((i+1),l))); 
       end 
        W2 = ((t(i+Kv)- Us)*c2/((t(i+Kv))-(t(i+1)))); 
        if ((W2==Inf)|| (isnan(W2))) 
            W2 = 0; 
        end 

       

        
    Nf(i,l) = W1+W2; 
   end 
    end 
    basis_pre=Ne; 
    Ne=Nf; 

         
end 
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if K>2 
for i=1:K-1 
    Nf(:,1)=[]; 
    [a,b]=size(Nf); 
    Nf(:,b)=[]; 
    basis_pre(:,1)=[]; 
    [a,b]=size(basis_pre); 
    basis_pre(:,b)=[]; 
end 
else if K==2 
    Nf=Ne; 
    end 
end 

  
basis_pre(1,:)=0; 

  
fx=(Nf')*PX; 
fy=(Nf')*PY; 

  
count=1; 
q=1; 
edge=(n-K+2)/cur_sli; 
num=1; 

  
for u=0:0.01:n-K+2 
    count=int16(fix(u))+1; 
    if(count>t(n+K)) 
        count=t(n+K); 
    end 

    
    Cx(q)=subs(fx(count),Us,u); 
    Cy(q)=subs(fy(count),Us,u); 
    u_mem(q)=u; 

     
     % If loop to store edges of curve slices 
    if rem(u,edge)==0 
        piece_u(num)=u; 
        piece_x(num)=Cx(q); 
        piece_y(num)=Cy(q); 
    % loop to store mid points of all the curve pieces     
        if num>1 
            mid_u=(piece_u(num)+piece_u(num-1))/2; 
            count=int16(fix(mid_u))+1; 
            if(count>t(n+K)) 
                count=t(n+K); 
            end 
            piece_mid_x(num-1)=subs(fx(count),Us,mid_u); 
            piece_mid_y(num-1)=subs(fy(count),Us,mid_u); 
            piece_mid_u(num-1)=mid_u; 
        end             
        num=num+1; 
    end 
    q=q+1; 
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end 
scatter(PX,PY); 
hold on; 
plot(Cx,Cy); 
hold on; 
title('Plot of B-Spline Curve'); 
bspx=Cx; 
bspy=Cy; 
basis=Nf; 
disp('Exiting b_spline'); 
end 

 

9.4 PRE_REC.M 
 

function 

[N,T,d,rho,fpu,fpx,fpy,side]=pre_req(fx,fy,pcx,pcy,basis,PX,PY,piece_mid_x,pi

ece_mid_y,piece_u,piece_x,piece_y,knots,K) 

  

  
syms Us 
disp('Entering new pre_req'); 
[~,pc_len]=size(pcx);             % length of point cloud data 

  
% calacualtion of normal and tangent  
dbasis=transpose(diff(basis,Us)); 
dfx=((dbasis)*PX); 
size(dfx); 
dfy=((dbasis)*PY); 
size(dfy); 
[a,~]=size(PX); 
n=(a-1); 
zero_margin=0.000001; 

  
tic; 
% 
%Fast Algorithm 
for i=1:pc_len 
    %Finding the curve piece associated with each cloud point 
    piece_num=find_piece(piece_mid_x,piece_mid_y,pcx(i),pcy(i)); 

     
    %Finding the distance of point from each end-point of the curve 
    dist_a=sqrt(((pcx(i)-piece_x(piece_num))^2)+((pcy(i)-

piece_y(piece_num))^2)); 
    dist_b=sqrt(((pcx(i)-piece_x(piece_num+1))^2)+((pcy(i)-

piece_y(piece_num+1))^2)); 

     
    %Finding the 'u' value of foot point 
    

fpu(i)=((dist_b*piece_u(piece_num))+(dist_a*piece_u(piece_num+1)))/(dist_a+di

st_b); 

     
    %Finding the x-y coordinate of the foot point 
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    [fpx(i),fpy(i)]=(xy_u(fpu(i),fx,fy,n,K,knots)); 
    fpx(i)=eval(fpx(i)); 
    fpy(i)=eval(fpy(i)); 

     
    %Finding the distance between foot point and cloud point 
    d(i)=sqrt(((fpx(i)-pcx(i))^2)+((fpy(i)-pcy(i))^2)); 
    if d(i)<zero_margin 
        d(i)=0; 
    end 
    d(i)=eval(d(i)); 
    T(i,:)=tn(dfx,dfy,fpu(i),n,K,knots,1); 
    N(i,1)=-T(i,2); 
    N(i,2)=T(i,1); 

     
    % 

     
    %Calculating radius of curvature at foot point(rho) 

     
   [prev_x,prev_y]=xy_u(fpu(i)-0.001,fx,fy,n,K,knots); 
   [post_x,post_y]=xy_u(fpu(i)+0.001,fx,fy,n,K,knots); 

     
    mr=(fpy(i)-prev_y)/(fpx(i)-prev_x); 
    mt=(post_y-fpy(i))/(post_x-fpx(i)); 

     
   % cal. center of curvature 
    x_cen=((mr*mt*(post_y-prev_y))+(mr*(fpx(i)+post_x))-

(mt*(prev_x+fpx(i))))/(2*(mr-mt)); 
    y_cen=((-1/mr)*(x_cen-((prev_x+fpx(i))/2)))+((fpy(i)+prev_y)/2); 
    rho(i)=sqrt(((fpx(i)-x_cen)^2)+((fpy(i)-y_cen)^2)); 
    rho(i)=eval(rho(i)); 

     

     
    %Finding the side of the point 
    m=T(i,2)/T(i,1); 
    side1=y_cen-(m*x_cen)-fpy(i)+(m*fpx(i)); 
    side1=eval(side1); 
    side2=pcy(i)-(m*pcx(i))-fpy(i)+(m*fpx(i)); 
    side2=eval(side2); 
    if ((side1/side2)>0)% For same sides 
        side(i)=0; 
    else  
        side(i)=1;%For opposite sides 
    end 

     

    
end 
disp('The time for new pre_req is'); 
toc 

  

     

  

  

  
end 
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9.5 MIN_FUN.M 
 

%This function will be where matrices will be formed 
function 

[Dx,Dy]=min_fun(N,T,d,rho,t,fpx,fpy,side,pcx,pcy,cp_count,basis,basis_pre,kno

ts,order,PX,PY,max_u) 
disp('Entering min_fun'); 
syms Us; % symbolic u 

  
%Ax=b - this is b - constants 
right_side=zeros(2*(cp_count),1); 
f1_side=zeros(2*(cp_count),1); 
f2_side=zeros(2*(cp_count),1); 
min_mat=zeros(2*(cp_count)); 
f1_mat=zeros(2*(cp_count)); 
f2_mat=zeros(2*(cp_count)); 
[~,pc_size]=size(pcx); 
const=0; 
lambda=0; 
time_sdm=0; 
time_f1=0; 
time_f2=0; 

  
for i=1:cp_count 
    %Basis function for ith control point 
    tic; 
    Ni=basis(i,:); 
    for j=1:cp_count 
        %Basis Function for jth control point 
        Nj=basis(j,:); 
        %________________________________________________________________ 
        %SQUARE DISTANCE MINIMIZATION MATRIX FORMATION 
        for k=1:pc_size 
            %To find which column to select for a particular value of t(k) 
            count=int16(fix(t(k)))+1;   
            if count>max_u    % For foot point that lie on the very end of 

curve 
                count=count-1; 
            end 
            %Subsistuting and finding values for Bi and Bj 
            Bi=subs(Ni(count),Us,t(k)); 
            if Bi==0 %time shortening strategy 
                continue; 
            end 
            Bj=subs(Nj(count),Us,t(k));    

             
            %when d and rho lie on the same side of curve 
            if (side(k)==0)&&(Bj~=0) 
            %7A     
            right_side(i)=right_side(i)-(2*Bi*N(k,1)*(((fpx(k)-

pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2)))); 
            min_mat(i,j)=min_mat(i,j)+(2*Bi*Bj*N(k,1)*N(k,1)); 
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min_mat(i,j+cp_count)=min_mat(i,j+cp_count)+(2*Bi*Bj*N(k,1)*N(k,2)); 
            %7B 
            right_side(i+cp_count)=right_side(i+cp_count)-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2)))); 
            

min_mat(i+cp_count,j)=min_mat(i+cp_count,j)+(2*Bi*Bj*N(k,1)*N(k,2)); 
            

min_mat(i+cp_count,j+cp_count)=min_mat(i+cp_count,j+cp_count)+(2*Bi*Bj*N(k,2)

*N(k,2));%Fixed issue here      
            continue; 
            end 

             
            if (side(k)==0)&&(Bj==0) 
            %7A     
            right_side(i)=right_side(i)-(2*Bi*N(k,1)*(((fpx(k)-

pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2)))); 
            %7B 
            right_side(i+cp_count)=right_side(i+cp_count)-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2)))); 
            continue; 
            end 

             

             

             
            %when d and rho lie on the opposite side of curve 
            if (side(k)==1)&&(Bj~=0) 
            %7C 
            right_side(i)=right_side(i)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,1)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,1)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));  
            min_mat(i,j)=min_mat(i,j)+(((2*d(k))/(d(k)-

rho(k)))*Bi*Bj*((T(k,1))^2))+(2*Bi*Bj*((N(k,1))^2)); 
            min_mat(i,j+cp_count)=min_mat(i,j+cp_count)+(((2*d(k))/(d(k)-

rho(k)))*Bi*Bj*(T(k,1))*(T(k,2)))+(2*Bi*Bj*(N(k,1))*(N(k,2))); 

  
            %7D 
            right_side(i+cp_count)=right_side(i+cp_count)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,2)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2)))); 
            min_mat(i+cp_count,j)=min_mat(i+cp_count,j)+(((2*d(k))/(d(k)-

rho(k)))*Bi*Bj*((T(k,1))*(T(k,2))))+(2*Bi*Bj*((N(k,1))*(N(k,2)))); 
            

min_mat(i+cp_count,j+cp_count)=min_mat(i+cp_count,j+cp_count)+(((2*d(k))/(d(k

)-rho(k)))*Bi*Bj*((T(k,2))^2))+(2*Bi*Bj*((N(k,2))^2)); 
            continue; 
            end 

             
            if (side(k)==1)&&(Bj==0) 
            %7C 
            right_side(i)=right_side(i)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,1)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,1)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2))));  
            %7D 
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            right_side(i+cp_count)=right_side(i+cp_count)-(((2*d(k))/(d(k)-

rho(k)))*Bi*T(k,2)*(((fpx(k)-pcx(k))*T(k,1))+((fpy(k)-pcy(k))*T(k,2))))-

(2*Bi*N(k,2)*(((fpx(k)-pcx(k))*N(k,1))+((fpy(k)-pcy(k))*N(k,2)))); 
            continue; 
            end 

             

             
        end 
    end 

     
    time_sdm=time_sdm+toc; 

  

     

     
%     %_________________________________________________________________ 
%     %      F1 REGULARISATION TERM 
    tic; 
    %Right side of the matrix(9A-1)and (9A-6) 
    temp1=0; 
    temp2=0; 
    for j=1:cp_count-1 
        %f1_int - Aij 
        A1ij=f1_int(basis_pre,i,j,knots,order); 
        temp1=temp1+((PX(j+1)-PX(j))*A1ij/(knots(j+order)-knots(j+1))); 
        temp2=temp2+((PY(j+1)-PY(j))*A1ij/(knots(j+order)-knots(j+1)));     
    end 
    temp1=temp1*((order-1)^2)*2; 
    temp2=temp2*((order-1)^2)*2; 
    f1_side(i)=f1_side(i)+lambda*temp1; 
    f1_side(i+cp_count)=f1_side(i+cp_count)+lambda*temp2; 
    if isfinite(temp1)==1 
        right_side(i)=right_side(i)+lambda*temp1; 
    end 

     
    if isfinite(temp2)==1 
        right_side(i+cp_count)=right_side(i+cp_count)+lambda*temp2; 
    end 

     
    %LEFT SIDE (9A-2)AND (9A-7) 
    A1ij=f1_int(basis_pre,i,1,knots,order); 
    temp1=(2*lambda*((order-1)^2)*A1ij/(knots(order+1)-knots(2))); 
    f1_mat(i,1)=f1_mat(i,1)+temp1; 
    f1_mat(i+cp_count,1+cp_count)=f1_mat(i+cp_count,1+cp_count)+temp1; 
    if isfinite(temp1)==1 
        min_mat(i,1)=min_mat(i,1)+temp1; 
        min_mat(i+cp_count,1+cp_count)=min_mat(i+cp_count,1+cp_count)+temp1; 
    end 

     
    %LEFT SIDE (9A-4) AND (9A-9) 
    A1ij=f1_int(basis_pre,i,cp_count-1,knots,order); 
    temp1=(2*lambda*((order-1)^2)*A1ij/(knots(order)-knots(2))); 
    f1_mat(i,cp_count)=f1_mat(i,cp_count)+temp1; 
    f1_mat(i+cp_count,2*cp_count)=f1_mat(i+cp_count,2*cp_count)+temp1; 
    if isfinite(temp1)==1 
        min_mat(i,cp_count)=min_mat(i,cp_count)+temp1; 
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        min_mat(i+cp_count,2*cp_count)=min_mat(i+cp_count,2*cp_count)+temp1; 
    end 

     

     
    %LEFT SIDE (9A-3) AND (9A-8) 
    for j=2:cp_count-1 
        A1ij=f1_int(basis_pre,i,j,knots,order); 
        Bij=f1_int(basis_pre,i,j-1,knots,order); 
        temp1=(Bij/(knots(j+order-1)-knots(j)))-(A1ij/(knots(j+order)-

knots(j+1))); 
        temp1=temp1*2*((order-1)^2); 
        f1_mat(i,j)=f1_mat(i,j)+lambda*temp1; 
        

f1_mat(i+cp_count,j+cp_count)=f1_mat(i+cp_count,j+cp_count)+lambda*temp1; 
        if isfinite(temp1)==1 
            min_mat(i,j)=min_mat(i,j)+lambda*temp1; 
            

min_mat(i+cp_count,j+cp_count)=min_mat(i+cp_count,j+cp_count)+lambda*temp1; 
        end 
    end 

     
    time_f1=time_f1+toc; 

  
%      
% % 

%__________________________________________________________________________ 
% % %                    F2 REGULARISATION TERM 
% %  
tic;     
%    RIGHT SIDE TERM 
     sumx=0; 
     sumy=0; 
     for j=1:cp_count-1 
         Qix(j)=(order-1)*(PX(j+1)-PX(j))/(knots(order+j)-knots(j+1)); 
         Qiy(j)=(order-1)*(PY(j+1)-PY(j))/(knots(order+j)-knots(j+1)); 
     end 
     for j=1:cp_count-2 
         Rix=(order-2)*(Qix(j+1)-Qix(j))/(knots(order+j)-knots(j+2)); 
         Riy=(order-2)*(Qiy(j+1)-Qiy(j))/(knots(order+j)-knots(j+2)); 
         Iij=f2_int(basis,i,j,knots,order); 
         sumx=sumx+(Rix*Iij*2*(order-1)*(order-2)); 
         sumy=sumy+(Riy*Iij*2*(order-1)*(order-2)); 
     end 
     temp1=(2*lambda*(order-1)*(order-2)*sumx); 
     f2_side(i)=f2_side(i)+temp1; 
     if isfinite(temp1)==1 
         right_side(i)=right_side(i)+temp1; 
     end 
     temp1=(2*lambda*(order-1)*(order-2)*sumy); 
     f2_side(i+cp_count)=f2_side(i+cp_count)+temp1; 
     if isfinite(temp1)==1 
         right_side(i+cp_count)=right_side(i+cp_count)+temp1; 
     end 
     con=2*((order-1)^2)*((order-2)^2); 
     %   LEFT SIDE TERM 
     for j=1:cp_count 
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         j=j-2; 
         aj2=1/((knots(order+j)-knots(j+2))*(knots(j+order+1)-knots(j+2))); 
         % f2_int - % Regularization term - Iij 
         Iij2=f2_int(basis,i,j,knots,order); 
         j=j+1; 
         aj1=1/((knots(order+j)-knots(j+2))*(knots(j+order+1)-knots(j+2))); 
         cj1=1/((knots(order+j)-knots(j+2))*(knots(j+order)-knots(j+1))); 
         Iij1=f2_int(basis,i,j,knots,order); 
         j=j+1; 
         cj=1/((knots(order+j)-knots(j+2))*(knots(j+order)-knots(j+1))); 
         Iij=f2_int(basis,i,j,knots,order); 
         temp1=(con*lambda*((aj2*Iij2)-((aj1+cj1)*Iij1)+(cj*Iij))); 
         f2_mat(i,j)=f2_mat(i,j)+temp1; 
         f2_mat(i,j+cp_count)=f2_mat(i,j+cp_count)+temp1; 
         if isfinite(temp1)==1 
             min_mat(i,j)=min_mat(i,j)+temp1; 
             min_mat(i,j+cp_count)=min_mat(i,j+cp_count)+temp1; 
         end 
     end 

  
     time_f2=time_f2+toc; 

    
end 

  

  

     
% last point is first point and delete extra rows and columns 
% Addition of changes 

  
min_mat(1,:)=min_mat(1,:)+min_mat(cp_count,:); 
min_mat(:,1)=min_mat(:,1)+min_mat(:,cp_count); 
min_mat(1,1)=min_mat(1,1)+min_mat(cp_count,cp_count); 

  
min_mat(1+cp_count,:)=min_mat(1+cp_count,:)+min_mat(2*cp_count,:); 
min_mat(:,1+cp_count)=min_mat(:,1+cp_count)+min_mat(:,2*cp_count); 
min_mat(1+cp_count,1+cp_count)=min_mat(1+cp_count,1+cp_count)+min_mat(2*cp_co

unt,2*cp_count); 

  
min_mat(cp_count,:)=[]; 
min_mat(:,cp_count)=[]; 
min_mat((2*cp_count)-1,:)=[]; 
min_mat(:,(2*cp_count)-1)=[]; 

  
right_side(1)=right_side(1)+right_side(cp_count); 
right_side(1+cp_count)=right_side(1+cp_count)+right_side(2*cp_count); 
right_side(cp_count)=[]; 
right_side(2*cp_count-1)=[]; 

  

  

  
% display results 
min_mat 
right_side 
tic; 
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D=min_mat\right_side; 
disp('The time required for Calculaton is'); 
toc 
[temp,~]=size(D); 
temp=temp/2; 
% Ax=b - seperate Dx, Dy 
    for l=1:temp 
    Dx(l)=D(l); 
    Dy(l)=(D(l+temp)); 
    end    

     
    Dx=Dx' 
    Dy=Dy' 
    f1_mat 
    f1_side 
    f2_mat 
    f2_side 

     
disp('Total time for SDM'); 
time_sdm 
disp('Total time for f1'); 
time_f1 
disp('Total time for f2'); 
time_f2 
disp('Exiting min_fun'); 
end 

 

 

9.6 FIND_PIECE.M 
 

function piece_num=find_piece(piece_mid_x,piece_mid_y,pcx,pcy) 
% help to form groups 
[~,mid_len]=size(piece_mid_x); 

  
for i=1:mid_len 
    dist(i)=sqrt(((piece_mid_x(i)-pcx)^2)+((piece_mid_y(i)-pcy)^2)); 
end 
[~,piece_num]=min(dist); 

  

  

  
end 

 

9.7 XY_U.M 
 

function [x,y]=xy_u(u,fx,fy,n,K,t) 
% use 'u' to find (x,y) - for radius of curvature, foot point 
syms Us 
count=int16(fix(u))+1; 
if(count>t(n+K)) 



82 
 

    count=t(n+K); 
end 

  
x=subs(fx(count),Us,u); 
y=subs(fy(count),Us,u); 

  
end 

 

9.8 TN.M 
 

function T=tn(dfx,dfy,u,n,K,t,choice) 
% calculate Vectors - tangents and normal unit vectors  
% pre-rec - SDM fromulation 
syms Us; 
count=int16(fix(u))+1;  
if(count>t(n+K)) 
    count=t(n+K); 
end 
T(1)=subs(dfx(count),Us,u)/sqrt(((subs(dfx(count),Us,u))^2)+((subs(dfy(count)

,Us,u))^2)); 
T(2)=subs(dfy(count),Us,u)/sqrt(((subs(dfx(count),Us,u))^2)+((subs(dfy(count)

,Us,u))^2)); 

   
% Unit Tangential Vector 
if choice==1 
T(1)=eval(T(1)); 
T(2)=eval(T(2)); 
end 

  
% Unit Normal Vector 
if choice==2 
T(1)=-T(2); 
T(2)=T(1); 
end 

  

  
end 

 

9.9 F1_INT.M 
 

function a=f1_int(basis,i,j,t,k) 
% Regularization term - Aij 
    syms Us; 
    row_a=0; 
    if i>1 
    row_a=basis(i-1,:); 
    end 
    row_b=basis(j,:); 
    prod=row_a.*row_b; 
    [siz,~]=size(prod); 
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    suma=0; 
    for c=1:siz 
        suma=suma+int(prod(c),Us,c-1,c); 
    end 
    a=suma/(t(i+k-1)-t(i)); 

     

     
    row_a=basis(i,:); 
    row_b=basis(j,:); 
    prod=row_a.*row_b; 
    [siz,~]=size(prod); 
    suma=0; 
    for c=1:siz 
        suma=suma+int(prod(c),Us,c-1,c); 
    end 
    a=a-(suma/(t(i+k)-t(i+1))); 
end 

 

9.10 F2_INT.M 
 

function fin=f2_int(basis,i,j,t,k) 
%% Regularization term - Iij 
   syms Us; 
   i=i-2; 
   ai2=1/((t(i+k)-t(i+2))*(t(i+k+1)-t(i+2))); 
   i=i+1; 
   ai1=1/((t(i+k)-t(i+2))*(t(i+k+1)-t(i+2))); 
   ci1=1/((t(i+k)-t(i+2))*(t(i+k)-t(i+1))); 
   i=i+1; 
   ci=1/((t(i+k)-t(i+2))*(t(i+k)-t(i+1))); 
   row_a=0; 
   if i>2 
   row_a=basis(i-2,:); 
   end 
   row_b=0; 
   if j>0; 
   row_b=basis(j,:); 
   end 
   prod=row_a.*row_b; 
   [siz,~]=size(prod); 
   suma=0; 
   for c=1:siz 
       suma=suma+int(prod(c),Us,c-1,c); 
   end 
   fin=suma*ai2; 

    
   row_a=0; 
   if i>1 
   row_a=basis(i-1,:); 
   end 
   row_b=0; 
   if j>0; 
   row_b=basis(j,:); 
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   end 
   prod=row_a.*row_b; 
   [siz,~]=size(prod); 
   suma=0; 
   for c=1:siz 
       suma=suma+int(prod(c),Us,c-1,c); 
   end 
   fin=fin+suma*(ai1+ci1); 

    
   row_a=basis(i,:); 
   row_b=0; 
   if j>0; 
   row_b=basis(j,:); 
   end 
   prod=row_a.*row_b; 
   [siz,~]=size(prod); 
   suma=0; 
   for c=1:siz 
       suma=suma+int(prod(c),Us,c-1,c); 
   end 
   fin=fin+suma*ci; 
end 

 

  
 


