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ABSTRACT

General solutions to temperature distribution in orthotropic systems subject to

variable heat transfer and biological systems during bioheat transfer

DAIPAYAN SARKAR, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professors: Ankur Jain and A. Haji-Sheikh

Bioheat transfer is the phenomenon of heat transfer in biological systems where

the dominant modes of heat transfer are conduction and advection. Other factors

such as rate of metabolism that are unique to biological systems contribute signifi-

cantly towards bioheat transfer. In the present work, the Pennes bioheat equation

has been solved for a multilayer system to derive steady state and transient tem-

perature solutions in the multilayer skin tissue with a tumor. In nanoparticle based

hyperthermia therapy, the body temperature elevates from the physiological core

body temperature, 37◦ C. Analytical solutions for three different therapeutic tech-

niques have been developed to predict the steady state temperature distribution for

a five-layer perfused skin tissue model. The transient bioheat model based on Pennes

equation introduces an additional challenge for determining the temperature in a two

dimensional multilayer skin tissue model. The existence of both real and imaginary

eigenvalues in the temperature solution makes it different from classical transient

heat conduction problems. This observation has been addressed by introducing a

special transformation which modifies the temperature solution such that the tran-
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sient solution agrees well with the results from the steady state model. The transient

temperature model accounts for the specific absorption rate (SAR) as a function of

both space and time. Finally, temperature in vascular tissue with a tumor of any

arbitrary shape is derived. The equation for the tumor boundary can be determined

using medical imaging techniques. In addition, different values for thermo-physical

and physiological parameters are accounted for in the tissue and tumor region of the

vasculature. This helps in determining the temperature distribution in the vascular

tissue as a function of SAR for nanoparticle assisted hyperthermia therapy which is

critical for planning nanoparticle assisted thermal based therapy for cancer.

Another fundamental heat transfer problem is that of the cooling of a cylinder,

such as temperature in a Li-ion cell is examined when subject to variable heat trans-

fer. In particular, a general solution for the temperature distribution in the cylinder

is derived, accounting for circumferential varying convective heat transfer coefficient

around the cylinder, and orthotropic thermal conductivity of the cylinder. This solu-

tion procedure is later extended to derive an analytical temperature in an orthotropic

and partially orthotropic sphere subject to circumferential varying heat transfer coef-

ficient. A general solution for temperature can provide very fast and highly accurate

solutions for different functionally graded materials, heat generation/dissipation rates

subject to different cooling loads. Finally, the mathematical procedure derived earlier

is applied to estimate the error in steady- state heat transfer measurements due to

lateral conduction effects in the heater foil. The error due to lateral conduction effects

is quantified by a heat flux correction factor. Correlations for peak error as a function

of non-dimensional parameters such as Biot number, ratio of maximum to minimum

heat transfer and gradient of shear layer, for both slot and radial jets are obtained.

These correlations can help experimentalists estimate error during measurement of

steady-state heat transfer coefficient.
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CHAPTER 1

INTRODUCTION

Thermal transport in biological and energy conversion systems have been topics

of significant technological importance in recent times. General solutions for temper-

ature in such biological and engineered systems provide good understanding of the

physics of thermal transport and also act as an analytical tool that can be used for

accurate temperature estimation for variety of cases. This is important as one needs

to account for various physiological process while analyzing thermal transport in a

human body for therapeutic purposes. In the case of non-biological systems, a general

expression for temperature field estimation can provide fast and highly accurate re-

sults in comparison to numerical simulations. However, careful interpretation of these

analytical solutions are required since they are developed for much simpler geometries

than encountered by most engineering and biological systems.

Heat transfer in biological systems is an integral part for design and planning

therapies for a disease like cancer, to improve the quality of life of patients and their

life expectancy. Researchers in science, oncology, engineering and mathematics par-

ticipate in addressing such problems related to health-care and translational medicine,

study fundamentals of transport and it’s application to design of novel therapeutics

to develop protocol for an efficient and cost-effective solution. Modern therapeutic

measures for treating tumors includes thermo-chemotherapy [3–5] and photo-dynamic

therapy [6–9], where in heat generated from exciting nanoparticles is used to destroy

tumor cells. However, to date the two most popular choice as recommended by on-
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cologists across world still remain chemical based therapy such as chemotherapy and

radiation.

In applications related to cryosurgery the heat transfer coefficient is known to

vary spatially. For non-biological systems, such as batteries, microprocessors, gas tur-

bines, etc. use this variation in heat transfer coefficient to enhance heat transfer from

a surface and thereby ensuring safe device operation. The most common technique

of thermal management of such low-high power devices for proper device operation

is convective cooling. Convective cooling is known to vary spatially primarily due to

fluid flow across objects generating or dissipating moderate to high heat fluxes. Such

variation in flow field is incorporated in the heat transfer coefficient which can be used

to accurately predict the temperature distribution inside these systems. Furthermore,

a general temperature solution accounting for orthotropic thermal properties of novel

engineered energy conversion systems subject to spatially varying convective heat

transfer can account for thermal management of such devices and contribute towards

the design of next generation energy systems for safe operating cycles.

Our focus in preparing this dissertation is in-line with two such areas. They

can be broadly categorized as: (1) Thermal based therapy of biological systems such

as the human body for treating fatal diseases such as cancer (2) Heat transfer in

orthotropic systems (Li-ion batteries) when subject to variable heat transfer. In the

best of our interest and the reader, we define the set of problems presented in this

dissertation, as a collection of the following chapters.

Thermal transport in tissues is an important physical phenomenon for both

healthy and diseased tissue. A significant amount of research in bioheat transfer over

the past few decades has led to an understanding of the governing dynamics of ther-

mal transport in a tissue [10–12]. A number of thermal based therapeutic measures

have been developed and adopted in practice, including laser surgery, cryosurgery,

2



magnetic nanoparticle based hyperthermia and chemotherapy [13]. Several models

governing the flow of heat in tissues have been proposed. A classical model was

presented by H.H. Pennes in 1948 [10], followed by several refinements and related

models [12, 14, 15]. Detailed reviews of these bioheat transfer models are also avail-

able [14, 15]. The Pennes model includes the effect of heat transfer in a biological

body due to diffusion, advection, volumetric heat generation due to metabolism and

spatial heating. Thermophysical properties of blood and various tissue have been

measured using a variety of methods [16]. The skin tissue can broadly be classified

into muscle, subcutaneous and dermal regions. The thermo-physical properties of

each region differs from the others and hence consideration of a multi-layer model is

necessary for accurate estimation of temperature used in planning of thermal based

therapy. The Pennes model is used widely due to its simplicity, but it must be mod-

ified depending on unique attributes of the tissue under study. This model includes

the effect of heat transfer in a biological body due to diffusion, advection, volumet-

ric heat generation due to metabolism and spatial heating. Diffusion and transient

thermal effects in any tissue are based on its thermo- physical properties such as

thermal conductivity, density and specific heat. The Pennes equation accounts for

blood flow through an advection term, consisting of the thermophysical properties of

blood along with the difference between the blood temperature and the local tissue

temperature. Some analytical work has been reported on solving the Pennes bioheat

transfer equation for specific conditions. Deng et al. reported a closed form analyt-

ical solution for spatial and time dependent surface or volumetric conditions using

the Greens function method [17]. Laplace transform was used to study the transient

effects of sinusoidal heat flux on a one-dimensional semi-infinite tissue [13]. Mahjoob

and Vafai developed an analytical model for a biological tissue, assuming a porous

media with contributions due to conduction between tissue and vascular system, con-
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vective heat transfer between blood and tissue, heat generation due to metabolism

and induced surface heat flux [18]. A dual layer biological media was also consid-

ered, and analytical solutions for two specific cases were discussed [19]. An analytical

study of an axisymmetric tissue-vascular system is used to analyze the effect due

to the radio-frequency ablation treatment due to volumetric heat generation in the

tissue region due to a heater probe [20]. The application of Pennes equation to mag-

netic fluid hyperthermia has been studied, where a theoretical solution is presented

for a spherical tumor surrounded by a thin shell of magnetic nanoparticles [21]. An

analytical model was proposed to investigate the rate of cell destruction during a

freezethaw cryosurgical procedure, in order to minimize damage to healthy cells [22].

Steady state temperature distribution in a one dimensional cylindrical tissue has been

developed for human limbs [23]. Steady state thermal penetration depth has been de-

rived analytically using method based on Laplace transforms [24]. Analytical solution

based on the Laplace transforms is used to solve a two-dimensional Pennes bioheat

equation for both Fourier and non-Fourier heat conduction effects for a cylindrical

skin tissue [25]. In addition to such analytical models, numerical solutions have also

been developed for scenarios where temperature solutions are difficult to determine

explicitly. Steady state temperature in breast cancer was studied numerically through

user-defined functions to account for blood perfusion and metabolism [26]. An in-

vestigation of minimum invasive methods such as microwave thermal therapy was

performed both numerically and experimentally, in vivo and in vitro, to determine

the extent of the tissue injury [27]. Temperature solution in a system with time-

dependent spatial heating has been studied numerically [28]. The cooling of human

brain and neck in emergency medical situations has been studied using finite element

simulations [29]. In a recent finite element based analysis, an alternating magnetic

field is applied to ferrofluids to generate heat inside a tumor. The Pennes bioheat
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equation was coupled with Maxwells equation in the finite element model to calculate

the input parameters such as the magnetic flux intensity [30]. Skin surface cooling

based on optical window contact cooling, cryogenic spray cooling are considered for

the Pennes bioheat equation and Weinbaum - Jiji bioheat model. Combined con-

duction and radiation effects are considered in Pennes equation and the temperature

field in the multilayer tissue structure is computed numerically [31]. A number of

experimental investigations of bioheat transfer in tissue have also been reported. The

different theories involved with hyperthermia treatment were verified by performing

experiments on a large bovine kidney by turning it into tissue phantom using alcohol

fixation technique [32]. Most of these papers investigate therapy of cancerous tissue,

including electroporation-based chemotherapy [33–35], magnetic nanoparticle based

heating [21,36] and gold nanoparticle laser heating [37] . In a recent study, a high res-

olution micro-computed tomography imaging system has been used to investigate the

concentration and distribution of injected nanoparticles. Also nanoparticle induced

volumetric heat generation rate was measured experimentally [36]. Several studies on

estimating the thermal damage potential due to Joule heating and the importance of

considering the multilayer nature of skin tissue have also been presented [38, 39]. In

a related work, detection of shape, size and depth of a melanoma lesion by applying

a cold stimulus at the surface has been reported [40]. In addition, an extension to

Pennes bioheat equation is made to include the effect of water evaporation during

in the tissue during laser heating. A source term is added to the Pennes bioheat

equation to account for the energy required for evaporation process to occur, based

on which, a relationship for effective specific heat is derived. Experiments on a liver

tissue along with numerical solutions are presented to illustrate the effect of water

evaporation from the tissue [41].

5



Another fundamental topic of importance is the estimation of temperature field

in anisotropic systems which are subject to variable heat transfer cooling. The fun-

damental and applied nature of this research can be easily related to industry appli-

cations, such as cooling of microprocessors using liquid jets, cooling of turbine blades

using jet impingement and cooling of batteries using natural and forced convection.

Such variation in heat transfer due to impinging jets can also lead to lateral conduc-

tion errors in transient and steady state heat transfer measurements. Flow past ’blunt

bodies’ has been a field of study for several decades. Past research has mostly focused

towards flow characterization, without much focus in analyzing the temperature dis-

tribution inside geometries subject to spatially varying heat transfer. Convective heat

transfer between a solid body and fluid flow past the body is an important technolog-

ical problem for which a vast amount of literature on experimental investigation as

well as theoretical modeling exists [42, 43]. For fluid flow past a solid body, the con-

vective heat transfer coefficient h at the surface of the body is known to vary spatially.

For the specific case of flow past a cylinder, the variation of h as a function of the cir-

cumferential angle, θ is well known. This variation has been experimentally measured

for a number of Reynolds numbers [43], and has also been computed by solving the

governing energy and momentum conservation equations of the flow [44,45]. Starting

from the stagnation point (θ = 0◦), h first decreases due to laminar boundary layer de-

velopment. For laminar flow, a minima is reached at around θ = 80◦ where separation

occurs. For large values of the Reynolds number Re, a sharp increase occurs beyond

the first minima due to transition to turbulence, following which a second minima

occurs due to separation at around θ = 140◦. For the case of flow past a cylinder, the

velocity and temperature boundary layer in the flow around the cylinder have been

computed theoretically and analytically [45]. However, not much work exists that

addresses the computation of temperature within the cylinder while accounting for
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the θ-dependence of h. The problem of variable convective heat transfer coefficient

occurs commonly in the thermal analysis of extended surfaces [46]. This problem has

been analyzed in a number of papers. Steady state temperature distribution for a one

dimensional rectangular fin with temperature-dependent heat transfer coefficient has

been presented [47]. A solution method to determine temperature involving direct

integration of the governing differential equation has been presented [48]. A method

based on Fourier series expansion has been adopted to determine the two-dimensional

temperature field in a rectangular fin in which the heat transfer coefficient varies

along the length of the fin [49]. Another paper analyzes the variable heat transfer

coefficient problem for computing temperature in the thermal entry region of a hy-

drodynamically developed duct flow [50]. The Frobenius series expansion technique

has been used for fins with different cross-sectional areas with varying heat transfer

coefficients [51]. Another paper highlights the performance of annular fins of differ-

ent profiles when subjected to variable heat transfer coefficient [52]. Semi-analytical

solution methods such as the Galerkin based integral method has also been adopted

to account for variable heat transfer coefficient in fins [53]. An inverse problem that

estimates the functional form of the heat flux at the base of the fin when the surface

of the fin is subjected to variable heat transfer coefficient has been presented [54].

Another paper has addressed the inverse problem of computing the space dependent

heat transfer coefficient when temperature at certain locations inside the body at

certain locations is known a priori [55]. A hybrid numerical scheme has been used for

transient thermo-elastic analysis of an annular fin [56]. Numerical analysis has also

been carried out for determining the transient natural convective heat transfer with

variable heat transfer coefficient in the case of domestic refrigerators [57]. The litera-

ture cited above indicates that the variable heat transfer coefficient problem has been

adequately addressed for extended surfaces. However, there is a lack of literature for
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addressing variable heat transfer coefficient in the context of cross flow past a solid

cylinder, a problem of considerable technological importance. This is particularly so

when thermal conduction inside the cylinder is anisotropic in nature. Recent research

on Li-ion batteries suggests the existence of strong anisotropy in thermal conduction

in Li-ion cells [2]. Thermal conductivity measurements indicate a 100-fold difference

in thermal conductivity in the radial and axial directions [2]. The cooling of Li-ion

cells is a problem of much technological importance [58]. Li-ion cells are commonly

used energy storage and conversion, and thermal runaway is a significant problem in

insufficiently cooled Li-ion cells, which in extreme cases leads to explosion and fire, as

evidenced in recent incidents on aircraft [59]. As a result, it is important to develop

analytical techniques for computing the temperature of a Li-ion cells that account for

the anisotropic nature of thermal conduction within the cell, and also the variable

convective heat transfer coefficient around the cell that may occur due to flow of a

coolant fluid past the cell.

An extension to flow across a cylinder is that for flow past a sphere where the

convective heat transfer coefficient is also known to vary with both azimuthal and

polar angles, φ and θ, respectively. The dependence of h around the periphery of

the sphere has been studied for a variety of flow conditions [45, 60, 61]. The value

of the heat transfer coefficient is the largest at the stagnation point (φ = 0◦) where

flow impinges, following which, h first decreases due to laminar boundary layer de-

velopment. For laminar flow, a minima is reached at around (φ = 109.6◦) where

separation occurs [45,60]. The temperature and velocity fields in the flow around the

sphere have been measured and numerically computed [62]. The overall heat transfer

coefficient was measured for three small spheres in a fluid flow and a relationship

between heat transfer, flow velocity and fluid properties was derived using experi-

mental data [63]. An analytical solution for transient heat transfer from a sphere
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at low Reynolds number under steady velocity conditions has been developed [64].

Analytical solution for unsteady heat transfer at small Peclet numbers has been de-

veloped when the surface temperature of the sphere undergoes a step change [65]. In

addition to such analytical approaches, numerical methods have also been used to

analyze cases with space-varying heat transfer coefficient. A finite difference based

model has been adopted to study the transient heat transfer of a solid sphere in cross

flow [66].

Finally, temperature distribution in solids subject to variable temperature can

come useful in experimental measurements for heat and mass transfer. The trend

of increasing inlet temperatures in gas turbines and the corresponding high cooling

requirements of turbine blades requires the development of novel cooling schemes.

Accurate measurements that characterize the performance of these cooling schemes

are critical for reliable design. In order to estimate the true operating tempera-

tures of various hot section components, designers rely on heat transfer coefficient

data obtained from low temperature tests. Small errors in measurements of the heat

transfer coefficient can lead to moderate uncertainties in metal operating tempera-

ture, and large uncertainties in blade lifetime prediction [67]. Despite considerable

care taken by researchers, it is well known that uncertainties in heat transfer exper-

iments are rarely less than 8 − 10%. Several techniques are currently used for the

measurement of heat transfer coefficients in lab-scale experiments. In recent years,

thermocouple-based measurements of temperature at discrete spatial locations have

almost completely given way to high resolution whole surface measurements utilizing

Thermochromic Liquid Crystals (TLCs), Infra-Red Thermography (IRT), Tempera-

ture Sensitive Paint (TSP) or Pressure Sensitive Paint (PSP). All of these techniques,

when carefully calibrated, enable temperature measurements with high spatial resolu-

tion and low measurement uncertainty of the order of 0.5 K [68]. Independent of the

9



temperature measurement technique, there are mainly two methods for measurement

of heat transfer coefficient on a surface, given by the thermal boundary condition on

the surface. Steady-state measurements typically use a constant heat flux surface,

established by thin metal foil heaters. The local heat transfer coefficient is found by

the relation, h(~r) = qw/(Tw − T∞) where qw is the convective heat flux into the fluid

after subtracting losses from the power input. The heat loss can be minimized by

insulating the heater foil from the back, i.e. on the side not exposed to the flow, and

by minimizing radiation loss, which may not always be possible. The uncertainty in

estimation of the lost power input can be reduced by having a good knowledge of the

emissivity of the foil material, and the thermal properties of the insulation.

Transient experiments utilize the assumption of one dimensional conduction

into a semi-infinite medium in order to reconstruct the heat transfer coefficient. The

surface temperature field is measured at two different times, and the data are plugged

into an analytical solution to extract the heat transfer coefficient. This method and

its several variations have been extended for simultaneous calculation of heat transfer

coefficient and cooling effectiveness in film cooling flows [69]. Mass transfer based

measurements, such as the naphthalene sublimation technique [70], measure transport

coefficient distributions over a sublimating surface. Using the analogy between heat

and mass transfer in boundary layer flows, these mass transfer distributions can be

converted to heat transfer coefficient distributions. Each of these techniques have

distinct advantages and disadvantages. Steady-state measurements are conceptually

simple and are easy to set up. When used with TLCs, the technique is inexpensive

but time-consuming. The transient IR technique is often preferred nowadays, but

requires greater care in calibration of the IR camera [71]. Both these techniques

suffer from the deficiency that a 1 − D conduction model is assumed for the heat

flux in one instance, and for the thermal penetration in the other. As such, both
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methods are unreliable in regions of strong lateral variation of heat transfer coefficient

or geometry. The mass transfer technique based on naphthalene sublimation avoids

many of these issues. This technique implicitly simulates a constant temperature

boundary condition, and is not subject to lateral conduction error. This technique

is capable of very high spatial resolution, and the conversion from mass transfer

coefficients (Sherwood numbers) to heat transfer coefficients (Nusselt numbers) has

been shown to be reliable in complex systems such as end-wall secondary flows [72];

however, it has not been fully established for regions with recirculating flows, such as

immediately downstream of film holes or backward facing steps, or in regions where

erosion may cause mass transfer, such as stagnation points of impinging jets.

The lateral conduction error introduced in steady state heat transfer measure-

ments. Lateral conduction errors arise when a constant wall flux is assumed in the

presence of large gradients in heat transfer coefficient. If the flux in the heater were

purely normal to the surface, these gradients in heat transfer coefficient would cause

large gradients in wall temperature. As a result, the path of least thermal resistance

from below a low-heat transfer region may involve lateral conduction along the foil

into the region of high heat transfer. Such lateral conduction within the foil leads

to a non-uniform wall-normal heat flux distribution, which needs to be accounted for

during the data reduction process. For the transient heat transfer technique utiliz-

ing the assumption of conduction into a semi-infinite medium, the effects of lateral

conduction have been documented and analyzed. An early study was by Vedula and

Metzger [73], who performed numerical simulations to quantify the effect of lateral

conduction, including the effect of anisotropic conduction. Lin and Wang [74] used

an inverse 3-D algorithm to avoid making the 1-D heat transfer approximation when

processing the raw hue data. They attribute the 12% difference between their results

and the results of the 1−D procedure to the effect of lateral conduction. Kingsley-
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Rowe et al. [75] used a modified version of the 1−D analytical solution and applied

a Biot number correction in order to calculate the heat transfer coefficient in the

presence of lateral conduction. Bons [76] applied a finite volume method to study the

effect of lateral conduction in the presence of surface roughness and showed that the

1−D model is inadequate for rough surfaces, due to large peak-to-valley variation in

heat transfer coefficients. A comprehensive model for the effects of flow temperature

variation and heater foil response in conjunction with lateral conduction on the mea-

surement uncertainty has been presented by von Wolfersdorf and co-workers [77,78].

These studies confirm that the effects of lateral conduction are most pronounced

when there are sharp gradients in the heat transfer coefficient. Such sharp gradi-

ents exist at several locations on a modern gas turbine blade, such as the point of

laminar/turbulent transition, stagnation points on blade leading edge, as well as on

internal channels cooled by shower-head film holes, and separation/reattachment re-

gions near tip/hub end-walls. As an example, consider the distribution of transport

coefficient along the blade suction surface shown in Figure 1.1 for a representative

high-performance blade profile [1]. Starting from its peak near the leading edge stag-

nation point, the Sherwood number drops by a factor of 4 over a stream-wise distance

of 10% of blade chord. Similarly, near the trailing edge, the Sherwood number rises

by a factor of 6 over a stream-wise distance of 20% of the blade chord, due to laminar-

turbulent transition. Such sharp gradients can occur in a region where the upstream

and downstream transport coefficients are relatively uniform (as for Tu = 18% in the

figure) or near a point of nominal symmetry, such as the leading edge.

While the effect of lateral conduction has been well investigated for the transient

measurement technique, little information is available on the appropriate correction

for the steady state technique. The steady state technique continues to be used by

several groups for gas turbine heat transfer [79, 80]. Partly, this is because a quick
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Figure 1.1. Mid-span Sherwood number distribution on the suction surface of a high
performance turbine rotor blade (reproduced with permission from Wang et. al,
1998, [1]).

estimate for the lateral conduction correction can be obtained by taking the Laplacian

of the observed temperature field on the surface, and adding/subtracting that to the

nominal heat flux [81]. However, as we will show, the exact error is sensitive to

the location of the gradient region and the behavior of the heat transfer coefficient

profile on either side of the gradient region. In this chapter, we outline a technique

to estimate a priori the error due to the assumption of a uniform wall heat flux in a

steady state heat transfer experiment.

In subsequent sections of this dissertation, chapters 2 - 4 presents general solu-

tions for temperature field in multilayer skin tissue in the presence of tumor. Chapter

2, illustrates a time independent analysis of temperature distribution in multi-layer

skin tissue in the presence of a tumor [82, 83]. Chapter 3, extends this concept to

a transient analysis wherein different spatial heating patterns of tumor site are con-

sidered to accurately model the time dependent temperature field. This helps in
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monitoring the temperature field of the targeted region of tissue and the tumor si-

multaneously. It has been found that the existence of both positive and negative

eigenvalues (complex) contribute equally towards the temperature solution. This is

an important observation as due to varying properties in different layers of tissue, the

location of the starting eigenvalue continuously varies. The scenario of missing an

eigenvalue due to error in algorithm for locating the first root, may lead to error in

the predicted value temperature which is not a desirable outcome for thermal based

therapy for cancer [84]. Chapter 4, the tissue and tumor thermo-physical properties

are considered to differ. An appropriate model is considered for estimating temper-

ature field inside the vascular tissue during magnetic fluid hyperthermia induced on

an arbitrary shaped primary tumor. This model gives the practitioner flexibility in

identifying different specific absorption rates for tumors of different sizes and char-

acteristics. Such an analysis can become useful as a tool in predictive oncology for

treating different kinds of tumors in different regions of the body [85]. Chapter 5, il-

lustrates a mathematical procedure based on Fourier series expansion to theoretically

estimate the steady state temperature distribution in an orthotropic solid cylinder

when subject to varying heat transfer. Such applications of cross-flow over a cylinder

can be related to cooling of Lithium ion batteries, nuclear fuel rods, etc [86]. Chapter

6, extends the mathematical treatment to an orthotropic spherical system. One chal-

lenge is to find candidate functions to satisfy the Legendre differential equation with

half-integer coefficients. This chapter presents a general approach using two differ-

ent methodologies, in estimating of temperature field inside spheres with orthotropic

thermal properties [87]. In chapter 7, the mathematical procedure to solve variable

heat transfer problems developed above in chapters 5 and 6 is applied to estimate

the presence of lateral conduction errors in steady-state heat transfer measurements

due to impinging jets. Heat flux correction curves illustrates the percentage error in
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steady state heat transfer measurements and correlations provide a tool for experi-

mentalists in design of experimental procedure for measurement of local heat/mass

transfer coefficient [88]. Finally, chapter 8 concludes the dissertation and presents a

short discussion on future directions and some applications of analytical temperature

models developed for biological and engineering systems.
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CHAPTER 2

STEADY-STATE TEMPERATURE IN MULTILAYER SKIN TISSUE

2.1 Introduction

Analytical solutions for heat conduction in multilayer bodies have been pro-

posed for other engineering applications [89–91], however, bioheat transfer in a multi-

layer structure like skin tissue presents additional challenges due to the more compli-

cated nature of the transport phenomena leading to a modified governing equation.

This chapter presents the analytical derivation of temperature distribution for a two-

dimensional, five layer skin tissue in the presence of a tumor.The tumor is located in

the dermal layer of the tissue. The Pennes bioheat equation is solved analytically for

a multilayer geometry with varying thermal properties and bio-transport parameters

in the layers. Modeling the reaction term adds an additional challenge in the analyt-

ical framework since the blood perfusion rate varies in different layers of the tissue.

Further, it is found that the analytical treatment needs to be modified significantly de-

pending on the nature of the boundary condition, based on the therapeutic treatment

adopted, at the top of the skin surface. In addition to different physical boundary

conditions and the reaction term, the analytical solution also includes the effect of

metabolism in every layer of the skin tissue, modeled as a volumetric source and the

tumor heating region is modeled as a spatially dependent source term. Results are

found to be in good agreement with finite-element simulations. The analytical model

is used for understanding the thermal effect of hyperthermia therapy in the multilayer

skin tissue. Results presented here may help improve the understanding of thermal
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transport in multi-layered tissue such as skin, and in particular contribute towards

effective thermal-based therapies for skin cancers [82].

Figure 2.1. Multilayer skin tissue with tumor.

2.2 Mathematical Model

In this section the mathematical derivation of temperature distributions in a

multilayer biological body is discussed. Consider the geometry of a five-layer skin

tissue shown schematically in Figure 2.1. Consider the presence of a tumor of a given

size in the dermal layer. Heat generation in the tumor, as well as boundary conditions

of the top and bottom surfaces result in a temperature field in the multilayer tissue.

In order to determine this temperature field analytically, the Pennes bioheat equation

for each layer is solved, accounting for temperature and heat flux compatibility at the

interfaces between adjacent layers. Solutions are derived for three specific boundary
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conditions - prescribed temperature, surface heat flux and convective cooling. While

the governing equation remains the same for each case, some algebraic modifications

to the source term in the governing equation is needed to capture the effect of various

terms. The governing energy equation for each layer is given by,

∂2Tj
∂x2

+
∂2Tj
∂y2

−m2
j(Tj − Tbl) +

gmet,j
kj

+ δj
gt,j
kj

= 0 (2.1)

where,

m2
j =

(
wjρc

kj

)
bl

(2.2)

In 2.1, gmet,j refers to the volumetric heat generation inside a tissue due to

metabolism. gt,j(y) refers to inherent heat generation in the tumor due to thermal

based therapy. The factor δj is introduced to determine the presence or absence of

the tumor in the jth layer. Other parameters such as wj, ρ, c and kj refer to blood

perfusion rate, density of blood, specific heat of blood and thermal conductivity of

tissue. The temperature Tj(x, y) refers to the temperature at any spatial location

inside the tissue. The core of the skin tissue is held at a constant temperature of

Tbl = 37◦ C, and side walls are assumed to be adiabatic.

T1 = Tbl at x = 0 (2.3)

∂Tj
∂y

= 0 at y = 0, a (2.4)

Due to the multilayer nature of the problem, additional equations are obtained

from compatibility at the interface between adjacent layers. Assuming perfect thermal

contact,
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Tj = Tj+1 atx = bj, j = 1, 2, 3, 4 (2.5)

kj

(
∂Tj
∂x

)
= kj+1

(
∂Tj+1

∂x

)
at x = bj, j = 1, 2, 3, 4 (2.6)

Three specific boundary conditions that model various physical phenomena at

the top of the skin are considered next.

2.2.1 Temperature prescribed at the top surface of skin tissue

This sub-section considers the case where a prescribed temperature is applied

at the top surface of the skin tissue.

T5 = Tsur at x = b5 (2.7)

The solution to equations (2.1)-(2.7) can be obtained by the following superpo-

sition technique,

Tj(x, y) = Tj,r(x) + Tj,s(x, y) (2.8)

Substituting equation (2.8) in the equations (2.1)-(2.7) results in the following

set of equations for Tj,r(x):

∂2Tj,r
∂x2

= 0 (2.9)

T1,r = Tbl at x = 0 (2.10)

19



T5,r = Tsur at x = b5 (2.11)

Similarly the Tj,s(x, y) problem is given by:

∂2Tjs
∂x2

+
∂2Tj,s
∂y2

−m2
jTjs +

gmet,j
kj

+ δj
gt,j
kj

+m2
jTbl −m2

jTj,r(x) = 0 (2.12)

T1,s = 0 at x = 0 (2.13)

T5,s = 0 at x = b5 (2.14)

∂Tj,s
∂y

= 0 at y = 0, a (2.15)

Note that both Tj,r(x) and Tj,s(x, y) follow interface compatibility equations

similar to equations (2.5) and (2.6). The solution for Tj,r(x) is obtained using resistor

network analogy [42] as follows:

Tj,r(x) = Tj−1,r(bj−1) +Q

(
x− bj−1

akj

)
(2.16)

where,

Q =
Tsur − Tbl∑5

j=1
dj
kj

(2.17)

where dj = bj − bj−1 The solution for Tj,s(x, y) is obtained using the method of

separation of variables, starting with a general transformation,
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Tj,s(x, y) =
∞∑
n=0

∞∑
p=1

CnpXp,j,s(x)Yn,j,s(y) (2.18)

ψj,s(x, y) =
gmet,j
kj

+ δj
gt,j
kj

+m2
jTbl −m2

jTj,r(x) (2.19)

Substituting equations (2.18) and (2.19) into equation (2.12) results in

∞∑
n=0

∞∑
p=1

Cnp(γ
2
p + β2

n +m2
j)Xp,j,s(x)Yn,j,s(y) = ψj,s(x, y) (2.20)

where γp and βn are the eigenvalues. The respective ordinary differential equa-

tions in X and Y are given by,

X ′′j,s
Xj,s

= −γ2
p ∀ p ∈ Z+ (2.21)

Y ′′j,s
Yj,s

= −β2
n ∀ n ∈ Z+ (2.22)

Solutions to equations (2.22) and (2.23) are obtained as follows:

Xj,s = Aj,s cos(γp(x− bj−1)) +Bj,s sin(γp(x− bj−1)) (2.23)

Yj,s = cos(βny); βn =
nπ

a
∀ n ∈ Z∗ (2.24)

The coefficients in equation (2.23) are obtained by using the compatibility con-

dition at the interface of adjacent layers. The coefficients are found out to be governed

by recursive relations [89],

Aj+1,s = Aj,s cos(γpdj) +Bj,s sin(γpdj) ; j = 1, 2, 3, 4 (2.25)

Bj+1,s =
kj
kj+1

(−Aj,s sin(γpdj) +Bj,s sin(γpdj)) ; j = 1, 2, 3, 4 (2.26)
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where the coefficients A1 is zero. B1 can be selected as any constant. A value

of B1 = 1 is selected arbitrarily to be as one. The final step is to determine the series

coefficients in equation (2.21) using the orthogonality principle [92],

Cnp =

∑5
j=1

a∫
y=0

bj∫
x=bj−1

kj

(
Ψj,s(x,y)Xp,j,s(x)

γ2p+β2
n+m2

j

)
Yn,j,s(y)dxdy

NxNy

(2.27)

where, the respective norm integrals Nx and Ny are calculated as,

Nx =
5∑
j=1

bj∫
x=bj−1

kjX
2
p,j(x)dx (2.28)

Ny =

a∫
y=0

Y 2
n,j(y)dy (2.29)

An expression for the final solution for case 2.2.1 is obtained by adding the two

solutions,

Tj(x, y) = Tj−1,r(bj−1) +
Tsur − Tbl∑5

j=1
dj
kj

(
x− bj−1

akj

)

+
∞∑
n=0

∞∑
p=1

∑5
j=1

a∫
y=0

bj∫
x=bj−1

kj

(
Ψj,s(x,y)Xp,j,s(x)

γ2p+β2
n+m2

j

)
Yn,j,s(y)dxdy

NxNy

Xp,j,s(x)Yn,j,s(y) (2.30)

2.2.2 Heat flux prescribed at the top surface of skin tissue

The second case considers a prescribed heat flux applied at the top surface of

the skin tissue. The governing equations for this case are given by equations (2.1, 2.3,

2.4), similar to case 2.2.1. In addition, equation (2.7) in section 2.2.1 is replaced by,

k5
∂T5

∂x
= qsur(y) at x = b5 (2.31)
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The solution procedure for equations (2.1)-(2.6) and (2.31) proceeds along sim-

ilar lines as the solution in section 2.2.1. However, an additional transformation is

required, wherein the core body temperature Tbl is subtracted out from the temper-

ature distribution:

T̃j(x, y) = Tj(x, y)− Tbl (2.32)

The ˜ notation is dropped for convenience and from equation (2.32)the following

problem is described to analyze temperature rise:

∂2Tj
∂x2

+
∂2Tj
∂y2

−m2
jTj +

gmet,j
kj

+ δj
gt,j
kj

= 0 (2.33)

T1 = 0 at x = 0 (2.34)

∂Tj
∂y

= 0 at y = 0, a (2.35)

∂T5

∂x
=
qsur
k5

at x = b5 (2.36)

Similar to the previous sub-section, Tj(x, y) is split into two components to

account for the two non-homogeneities in the governing equations,

Tj(x, y) = Tj,f (x, y) + Tj,s(x, y) (2.37)

Inserting equation (2.36) in equation (2.33) we obtain the following set of equa-

tions given by,
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∂2Tj,f
∂x2

+
∂2Tj,f
∂y2

−m2
jTj,f = 0 (2.38)

∂2Tj,s
∂x2

+
∂2Tj,s
∂y2

−m2
jTj,s +

gmet,j
kj

+ δj
gt,j
kj

= 0 (2.39)

Tj,s(x, y) can be determined using a procedure similar to Tj,s(x, y) in the previ-

ous subsection, with a minor change in the value of the coefficients.Tj,f (x, y) presents

additional difficulty as discussed below. This derivation starts with the transforma-

tion,

Tj,f (x, y) =
∞∑
n=0

DnXn,j,f (x)Yn,j (2.40)

Substituting equation (2.40) in equation (2.38) results in,

X ′′j,s
Xj,s

+
Y ′′j,s
Yj,s
−m2

j = 0 ∀ n ∈ Z∗ (2.41)

Xj(x, y) and Yj(x, y) can be separated as follows:

Y ′′j,s
Yj,s

= −β2
n ∀ n ∈ Z∗ (2.42)

and

X ′′j,s
Xj,s

= β2
n +m2

j = η2
n ∀ n ∈ Z∗ (2.43)

Solution to the differential equations (2.42) and (2.43) are given by,

Yj,s = cos(βny); βn =
nπ

a
∀ n ∈ Z∗ (2.44)

Xn,j,f = En,j,f cosh(ηn(x− bj−1)) + Fn,j,f sinh(ηn(x− bj−1)) ∀ n ∈ Z∗ (2.45)
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Note that in the special case of mj = 0, i.e., zero blood perfusion rate in layer

j, ηn in equation (2.43) becomes zero for n = 0. As a result, for mj = 0 and n = 0 is

given by the following expression instead of equation (2.45),

X0,j,f = E0,j,f (x− bj−1) + F0,j,f ; mj = 0, n = 0 (2.46)

In this specific case, this scenario is encountered for the epidermis layer (m5 = 0)

due to zero perfusion rate of blood in that layer [93]. Heat flux and temperature

compatibility at the interfaces are used to derive expressions for the coefficients in

equations (2.45) and (2.46):

En,j+1,f = En,j,f cosh(ηndj) + Fn,j,f sinh(ηndj) ; j = 1, 2, 3, 4, n 6= 0,mj 6= 0

Fn,j+1,f =
mjkj

mj+1kj+1

(En,j,f sinh(ηndj) + Fn,j,f cosh(ηndj)) ; j = 1, 2, 3, 4, n 6= 0,mj 6= 0

(2.47)

Note that for the epidermis layer, where m5 = 0, the coefficients corresponding

to n = 0 are given by,

E0,5,f =

(
k4

k5

)
m4(E0,4,f sinh(m4d4) + F0,4,f cosh(m4d4)) ;n = 0,m5 = 0

F0,5,f = E0,4,f sinh(m4d4) + F0,4,f cosh(m4d4) ;n = 0,m5 = 0 (2.48)

Similar to section 2.2.1, the coefficients En,1,f are zero, whereas the coefficients

Fn,1,f could be chosen to be any constant are selected to be 1. The final step is to

determine the series coefficients in equation (2.40), a procedure similar to section 2.2.1.

On substituting equation (2.40) into equation (2.38) and then using orthogonality

theorem, the series coefficients are obtained as,
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D0 =

a∫
y=0

qsur(y)dy

k5E0,5,f

;n = 0

Dn =

a∫
y=0

qsur(y)Yn,j(y)dy

k5X ′n,j,f (b5)Ny

∀n ∈ Z+ (2.49)

Following a procedure similar to section for the Tj,s(x, y) solution, the tem-

perature solution for the governing equation represented by equation (2.39) for all

homogeneous boundary conditions is given by,

Tj,s(x, y) =

∞∑
n=0

∞∑
p=1

∑5
j=1

a∫
y=0

bj∫
x=bj−1

kj

(
Φj,s(x,y)Xp,j,s(x)

γ2p+β2
n+m2

j

)
Yn,j,s(y)dxdy

NxNy

Xp,j,s(x)Yn,j,s(y) (2.50)

where, the norm integrals are similar to the integrals in equation (2.28, 2.29)

and the source term is given by,

Φj,s(x, y) =
gmet,j
kj

+ δj
gt,j
kj

(2.51)

The final temperature solution for the prescribed heat flux boundary condition

at the surface of the skin tissue is given by the following expression,

Tj(x, y) = Tbl +

a∫
y=0

qsur(y)dy

k5E0,5,f

+
∞∑
n=1

a∫
y=0

qsur(y)Yn,j(y)dy

k5X ′n,j,f (b5)Ny

Xn,j,f (b5)Yn,j(y)

+
∞∑
n=0

∞∑
p=1

∑5
j=1

a∫
y=0

bj∫
x=bj−1

kj

(
Φj,s(x,y)Xp,j,s(x)

γ2p+β2
n+m2

j

)
Yn,j,s(y)dxdy

NxNy

Xp,j,s(x)Yn,j,s(y) (2.52)
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2.2.3 Convective cooling at top of skin surface

The third scenario considered here involves convective cooling of the top surface

of the skin tissue, resulting in a boundary condition of third kind,

−k5
∂T5

∂x
= h(T (b5, y)− T∞) at x = b5 (2.53)

A solution for this case may be derived using a procedure similar to section

2.2.1. The only departure from section 2.2.1 comes in the resistor network solution,

shown in equation (2.16). In this case, Tj,r(x) continues to be given by equation (2.16).

However, due to the additional convective cooling term in the boundary condition at

the top surface, the expression for Q in equation (2.17) must be modified as follows:

Q =
T∞ − Tbl∑5
j=1

dj
kj

+ 1
h

(2.54)

where, dj = bj − bj−1, j =1 to 5 and b0 = 0. Thus, Tj,r(x) is given by equations

(2.16) where Q is replaced by equation (2.54). The rest of the solution continues to

be similar to the solution previously derived for Tj,s(x, y) in section 2.2.1. A detailed

derivation of this case can also be found in [83].

Thus in this section an analytical solution for temperature distribution in a

two-dimensional multilayer tissue is derived. The extension of the solution to a three

dimensional case is quite straightforward, but more computationally intensive, due

to the introduction of double summations and double integrals.

2.3 Results and Discussion

This section discusses temperature distribution in a five-layer skin tissue com-

puted using the analytical models discussed in the previous section. These examples

serve as tools to understand the fundamental behavior of the problem. Previously
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reported thermophysical property data for various skin layers are used [40, 82]. Fig-

ure 2.2(a) shows a comparison between the theoretical solution and a finite element

simulation. Temperature at the interface of papillary dermis and epidermis layer is

compared. In this case, the temperature is prescribed to be 17◦ C at the top surface of

the skin tissue. Note that in finite-element simulations, the m2T term is modeled as a

temperature-dependent volumetric heat sink. Grid refinement is carried out in order

to ensure grid independence of the finite-element simulation results. There is good

agreement between the two. Similar validation against finite-element simulations is

shown in Figures 2.2(b) and 2.2(c) for constant heat flux and convective boundary

conditions respectively at the top surface (sections 2.2.2 and 2.2.3 respectively). In

Figure 2.2(b), 10 W/m2 heat flux is prescribed, while in Figure 2.2(c), a heat transfer

coefficient of 5 W/m2−K is assumed with an ambient temperature of 17◦ C. The per-

centage error in peak temperature between the analytical and finite element solutions

is found to be ≈ 4% from the blood physiological temperature of 37◦ C. However,

one must note that the finite element simulation under predicts the temperature rise

≈ 14%. This error occurs both due to truncation of infinite series in the model, as

well as due to discretization involved in the finite-element simulations. In addition to

comparison with finite-element simulations, residuals for the governing equation and

boundary conditions are computed and found to be very small for each case discussed

in section 2.2.

Figures 2.3(a)-2.3(c) present contour plots of the entire tissue region for the

three cases discussed in section 2.2. Same parameters as Figure 2.2 are used. A

detailed representation of the layer containing the tumor is also shown for each case.

These plots illustrate the temperature distribution in the cross section of tissue under

study in the presence of a tumor. A parametric analysis is carried out to understand

the effect of various geometric and bio-transport parameters, as well as boundary
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Figure 2.2. Temperature distribution along the interface of papillary dermis and
epidermis layer computed using the analytical model, and comparison with finite-
element simulations for (a) prescribed skin surface temperature (b) constant heat
flux (c) convective heat transfer.

conditions on the temperature distribution in the multilayer structure. The effect

of heat generation rate in the tumor is considered first. Figures 2.5(a)-2.5(c) show

temperature plots at the interface of the papillary dermis and epidermis layer for

different values of the volumetric heat generation rate in the tumor, while maintaining

the tumor length at the half-length of the tissue. These figures correspond to the

three boundary conditions discussed in section 2, using the same numerical values as

Figures 2.2(a)-2.2(c). Volumetric heat generation rates, gt (W/m3) considered here

are within the range of values reported in the past for magnetic nanoparticle based

thermal therapies for cancer [36]. It is found, as expected, that the temperature at

the interface increases within increasing volumetric heat generation strength. The

peak temperature rise occurs along the region where the tumor is present, and tapers

off outwards.

Figures 2.6(a)-2.6(c) plot the temperature distribution at the same location,

as a function of the tumor length for constant total heating strength. These figures

correspond to the three boundary conditions discussed in section 2.2. It is found that

the temperature distribution widens and the peak temperature rise reduces as the size
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(a) (b) (c)

Figure 2.3. Contour plots of temperature distribution in a multilayer skin tissue for
(a) prescribed skin surface temperature (b) constant heat flux (c) convective heat
transfer boundary conditions.

Figure 2.4. Temperature distribution along the centerline (y = a/2) for all layers as a
function of x (a) prescribed skin surface temperature (b) constant heat flux (c) con-
vective heat transfer boundary conditions.
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Figure 2.5. Temperature distribution at the interface between papillary dermis
and epidermis layer as a function of volumetric heat generation rate in the tumor
for (a) prescribed skin surface temperature (b) constant heat flux (c) convective heat
transfer boundary conditions.

of the tumor increases. This occurs due to the reduced volumetric heat generation as

the tumor size increases.

30



0 0.01 0.02 0.03 0.04 0.05
19

20

21

22

23

24

25

26

y [m]

T
em

p
er

at
u

re
 [

 o
C

]

 

 

0.025 

0.01 

0.005

L
t
 (m)

(a)

0 0.01 0.02 0.03 0.04 0.05
35

40

45

50

55

60

65

y [m]

T
em

p
er

at
u

re
 [

 o
C

]

 

 

0.025
0.01
0.005 

L
t
 (m)

(b)

0 0.01 0.02 0.03 0.04 0.05
35

40

45

50

55

60

y [m]

T
em

p
er

at
u

re
 [

 o
C

]

 

 

0.025

0.01 

0.005

L
t
 (m)

(c)

Figure 2.6. Temperature distribution at the interface between papillary dermis and
epidermis layer as a function of tumor size for (a) prescribed skin surface tempera-
ture (b) constant heat flux (c) convective heat transfer boundary conditions.
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Figure 2.7. Temperature distribution at the interface between papillary dermis and
epidermis layer as a function of the boundary condition for (a) prescribed skin surface
temperature (b) constant heat flux (c) convective heat transfer boundary conditions.

Figure 2.7(a) plot the temperature distribution at the same location, as a func-

tion of the tumor length for constant total heating strength. These figures correspond

to the three boundary conditions discussed in section 2.2. It is found that the tem-

perature distribution widens and the peak temperature rise reduces as the size of the

tumor increases. This occurs due to the reduced volumetric heat generation as the

tumor size increases. presents the dependence of the temperature distribution on the

top surface temperature for the boundary condition of the first kind. As the surface

temperature at the top surface drops from 40◦ C to 4◦ C, a significant drop in the

temperature profile at the top region of the tumor is observed. This is expected as a

larger gradient is being created when the value of the surface temperature is reduced.
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The analytical model presented in section 2.2 can accurately predict the temperature

around the tumor for a constant temperature applied at the surface of skin tissue

and can serve as a design tool for various heating or cooling scenarios for skin tissue.

Figure 2.7(b) presents similar results for the boundary condition of the second kind.

The tissue temperature increases with increase in the intensity of the applied heat

flux. This may help in designing and regulating the heat intensity supplied by an

external device during therapy. The effect of convective cooling on the top surface of

skin is analyzed in Figure 2.7(c) using the derived analytical solution in section 2.2.3.

As the value of the convective heat transfer coefficient increases, resulting in a shift

from natural to forced convection, the temperature at the interface of papillary dermis

and epidermis layer drops. Figures 2.7(a)-2.7(c) quantify the effect of external ther-

mal interventions on the temperature distribution in the multilayer skin structure.

Through the analytical derivation of the temperature distribution in the multilayer

structure, these analyses may help the design of cooling devices for athletes [94] as

well as thermal-based therapies for skin cancers.
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CHAPTER 3

TRANSIENT TEMPERATURE IN MULTILAYER SKIN TISSUE

3.1 Introduction

Transient bioheat transfer involves temperature rise in biological systems during

hyperthermia therapy. As seen from previous chapter, steady state heat transfer

in multilayer tissue occurs due to several heat transfer modes such as conduction,

advection and heat generation, wherein heat generation is commonly associated with

the distribution of nanoparticles in the tumor and metabolism of the tissue. In this

chapter, a transient model of the Pennes bioheat transfer equation is considered as

the governing equation for the model. The main focus of this chapter is to illustrate

the existence of both real and imaginary eigenvalues, their respective contribution to

the temperature solution. The eigenvalues are functions of the blood perfusion rate

and since the blood perfusion rate varies in different layers of multilayer tissue, special

requirement in the mathematical model is necessary to obtain accurate temperature

solutions. The model presented here includes a two layer skin tissue, cutaneous and

subcutaneous layers. A two dimensional transient Pennes bioheat equation with the

tumor heating source term being a function of both space and time is considered.

The cross-section of tissue is subject to adiabatic boundary conditions on the side,

constant wall temperature at the muscle core and convective cooling at the surface

of the skin, see Figure 3.1.
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Figure 3.1. Two-layer skin tissue with tumor.

3.2 Mathematical Model

In this section the mathematical derivation of temperature distributions in a

multilayer biological body is discussed. Consider the geometry of a two-layer skin

tissue. Consider the presence of a tumor of a given size in the subcutaneous layer.

Heat generation in the tumor, as well as boundary conditions of the top and bottom

surfaces result in a temperature field in the multilayer tissue. In order to deter-

mine this temperature field analytically, the Pennes bioheat equation for each layer

is solved, accounting for temperature and heat flux compatibility at the interfaces

between adjacent layers. Solutions are derived using the classical separations of vari-

ables approach. The governing energy equation for each layer is given by:

∂2Tj
∂x2

+
∂2Tj
∂y2

−m2
j(Tj − Tbl) +

gmet,j
kj

+ δj
gt,j(y, t)

kj
= ρc

∂Tj
∂t

(3.1)

where,
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m2
j =

(wjρbcb)bl
(ρc)tissue

(3.2)

In 3.1, gmet,j refers to the volumetric heat generation inside a tissue due to

metabolism. gt,j(y, t) refers to heat generation in the tumor due to thermal based

therapy. The factor δj is introduced to determine the presence or absence of the

tumor in the jth layer. Other parameters such as wj, ρ, c and kj refer to blood

perfusion rate, density of blood, specific heat of blood and thermal conductivity of

tissue. Tj(x, y) refers to the temperature rise above ambient at any spatial location

inside the tissue. The core of the skin tissue is held at a constant temperature of 37◦ C,

where Tbl in equation 3.3 corresponds the rise in core temperature above ambient, and

side walls are assumed to be adiabatic.

Due to the multilayer nature of the problem, additional equations are obtained

from compatibility at the interface between adjacent layers. Assuming perfect thermal

contact,

Tj = Tj+1 at x = bj, j = 1, 2 (3.3)

kj

(
∂Tj
∂x

)
= kj+1

(
∂Tj+1

∂x

)
at x = bj, j = 1, 2 (3.4)

The following initial condition and boundary conditions are considered here,

T1 = Tbl at x = 0 (3.5)

∂Tj
∂y

= 0 at y = 0, a (3.6)
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Tj = Tbl at t = 0, j = 1, 2 (3.7)

k2
∂T2

∂x
+ h T2(b2, y) = 0 at x = b2 (3.8)

The solution to equations (3.1)-(3.9) can be obtained by the following superpo-

sition technique,

Tj(x, y) = Tj,ss(x) + Tj,t(x, y, t) (3.9)

Substituting equation (3.10) in the equations (3.1)-(3.9) results in the following

set of equations for Tj,ss(x):

∂2Tj,ss
∂x2

= 0 (3.10)

T1,ss = Tbl at x = 0 (3.11)

k2
∂T2, ss

∂x
+ h(T2,ss(b2, y)) = 0 at x = b2 (3.12)

Similarly the Tj,t(x, y, t) problem is given by:

∂2Tj,t
∂x2

+
∂2Tj,t
∂y2

−
(
m2
j

αj

)
Tj,t + Φ(x, y, t) =

∂Tj,t
∂t

(3.13)

where

Φ(x, y, t) =
gmet,j
kj

+ δj
gt,j(y, t)

kj
+

(
m2
j

αj

)
Tbl −

(
m2
j

αj

)
Tj,ss(x) (3.14)
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subject to the following initial and boundary conditions,

T1,t = 0 at x = 0 (3.15)

k2
∂T2,t

∂x
+ h T2,t(b2, y) = 0 at x = b2 (3.16)

∂Tj,t
∂y

= 0 at y = 0, a, j = 1, 2 (3.17)

Tj,t = Tbl − Tj,ss(x) = F (x) at t = 0, j = 1, 2 (3.18)

Note that both Tj,ss (x) and Tj,t (x, y, t) follow interface compatibility equations

similar to equations (3.3) and (3.4). The solution for Tj,ss(x), as seen in previous

chapter is obtained using resistor network analogy [42] as follows:

Tj,ss(x) = Tj−1,ss(bj−1)−Q
(
x− bj−1

akj

)
(3.19)

where,

Q =
Tbl∑2
j=1

dj
kj

(3.20)

and dj = bj − bj−1.

The solution for Tj,t(x, y, t) is obtained using the method of separation of vari-

ables, starting with a general transformation,

Tj,t(x, y, t) =
∞∑
n=1

∞∑
p=1

Bnp(t)Xi,n,p(x)Yn(y)e−(λ2n,p+m2
0)t (3.21)
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In equation (3.21) the quantity m0 is chosen to be a reference value which

assumes the largest value between m1 and m2. Substituting equation (3.21) in the

governing differential equation, equation (3.1) to obtain,

∞∑
n=1

∞∑
p=1

(
X ′′j,np(x)Yn(y) +Xj,np(x)Y ′′n (y)−

m2
j

αj
Xj,np(x)Yn(y)

)
Bnp(t)e

−(λ2np+m2
0)t

+ Φ(x, y, t) =
∞∑
n=1

∞∑
p=1

(
B′np(t)− (λ2

np +m2
0)Bnp(t)

)
Xinp(x)Yn(y)e−(λ2np+m2

0)t (3.22)

From equation 3.22, one can hypothesize the following ode’s to determine the

eigenvalues in X and Y co-ordinates,

X ′′1np
X1,np

= −γ2
1,np =⇒ X1np = C1 sin

(
γ1,np

x

d1

)
+D1 cos

(
γ1,np

x

d1

)
(3.23)

X ′′2,np
X2,np

= −γ2
2,np =⇒ X2,np = C2 sin

(
γ2,np

x− b1

d1

)
+D2 cos

(
γ1,np

x− b1

d1

)
(3.24)

Y ′′n (y)

Yn(y)
= −β2

n =⇒ Yn(y) = cos

(
βny

a

)
, βn = (n− 1)π (3.25)

The constant, D1, is determined using equation (3.15) and is zero. The value of

the constant C1 is arbitrarily chosen to be unity. The constants D2 and C2 are then

determined using the contact conditions between the layers given by equations (3.3)

and (3.4) respectively, a procedure adopted from [84, 89]. The only undetermined

constant is the time dependent series coefficient, Bnp (t). Substituting equations

(3.23) - (3.25) in equation (3.22) to obtain,
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∞∑
n=1

∞∑
p=1

(
−
γ2
j,np

d2
j

− β2
n

a2
+
λ2
n,p

α2
j

−
m2

0 −m2
j

αj

)
Bnp(t)Xi,np(x)Yn(y)

+ Φ(x, y, t)e(λ2np+m2
0)t =

∞∑
n=1

∞∑
p=1

1

αj
B′np(t)Xi,np(x)Yn(y) (3.26)

The eigencondition is derived from the first term of the left hand side in equation

(3.26) and is given by,

γj,np = di

√
λ2
np

αj
+
m2

0 −m2
j

αj
− β2

n

a2
(3.27)

The eigenvalues, λnp are then determined by substituting equation (3.24) in

equation (3.16) using a second order Newton scheme. Equation (3.27) will result

in imaginary values for γj,np if β2
n > a2 (λ2

np + m2
0 − m2

j)/αj . In such a scenario

the choice of a suitable starting value is essential to determine the eigenvalues. The

starting value for λnp for all n and p is given by λnp = (βn/a) α
1/2
0 , where is equal to

the greater of and . Substituting equation (3.27) in equation (3.26) to obtain,

∞∑
n=1

∞∑
p=1

B′np(t)Xj,npYn(y) =
αjΦ(x, y, t)

kj
e(λ2np+m2

0)t (3.28)

From orthogonality principle [92,95], applying to equation (3.28),

B′n,p(t) =
2∑
j=1


a∫

y=0

bj∫
x=bj−1

Φ(x, y, t)Xj,np Yn(y) dx dy

bj∫
x=bj−1

(ρcp)j X2
j,np dx

a∫
y=0

Y 2
n (y) dy

 e(λ2np+m2
0)t (3.29)

The value of b0 is zero in equation (3.29) as it represents the datum, see Figure

3.1. The coefficient Bnp(t) is then determined by integrating over time from 0 to t,
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Bnp(t) = Anp +

t∫
τ=0

2∑
j=1


a∫

y=0

bj∫
x=bj−1

Φ(x, y, τ)Xj,np(x) Yn(y) dx dy

bj∫
x=bj−1

(ρcp)j X2
j,n,p(x) dx

a∫
y=0

Y 2
n (y) dy

 e(λ2np+m2
0)τ dτ

(3.30)

where τ is a dummy variable of integration. Substituting equation (3.30) in

equation (3.21) to obtain,

Tj,t(x, y, t) =
∞∑
n=1

∞∑
p=1

{
Anp +

t∫
τ=0

2∑
j=1

a∫
y=0

bj∫
x=bj−1

Φ(x, y, τ)Xj,np(x) Yn(y) dx dy

bj∫
x=bj−1

(ρcp)j X2
j,n,p(x) dx

a∫
y=0

Y 2
n (y) dy

e(λ2np+m2
0)τdτ

}
Xi,n,p(x)Yn(y)e−(λ2n,p+m2

0)t

(3.31)

The above procedure obtains the values of series coefficient in the temperature

solution, equation (3.21). The undetermined coefficient Anp is the constant of inte-

gration and can be obtained by applying orthogonality principle to equation (3.31)

and using the initial condition given by equation (3.18),

Anp =
2∑
j=1

a∫
y=0

bj∫
x=bj−1

F (x)Xj,np(x) Yn(y) dx dy

bj∫
x=bj−1

(ρcp)j X2
j,n,p(x) dx

a∫
y=0

Y 2
n (y) dy

(3.32)

The final temperature solution is given by,
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Tj,t(x, y, t) =
∞∑
n=1

∞∑
p=1

2∑
j=1

{ a∫
y=0

bj∫
x=bj−1

F (x)Xj,np(x) Yn(y) dx dy

bj∫
x=bj−1

(ρcp)j X2
j,n,p(x) dx

a∫
y=0

Y 2
n (y) dy

+

t∫
τ=0

a∫
y=0

bj∫
x=bj−1

Φ(x, y, τ)Xj,np(x) Yn(y) dx dy

bj∫
x=bj−1

(ρcp)j X2
j,n,p(x) dx

a∫
y=0

Y 2
n (y) dy

e(λ2np+m2
0)τ dτ

}
Xi,n,p(x)Yn(y)e−(λ2n,p+m2

0)t

(3.33)

where F (x) is the effect of initial condition, equation (3.18) and Φ(x, y, t) is the

contribution of the source term, equation (3.14) respectively.

3.3 Results and Discussion

This section will present the temperature distribution in multilayer perfused

skin tissue subject to thermal therapy of cancer. The thermophysical properties of

human skin are obtained from [16,82] and are tabulated here.

Table 3.1. Themophysical properties of skin

Layer Thermal conductivity Blood perfusion Heat generation Heat Capacity
W/m−K m3/s/m3 W/m3 J − kg/K

Muscle 0.56 0.0005 684.2 3770
Dermal 0.37 0.0002 368.1 3400
Tumor 0.37 0.0002 500000 3400

Blood density = 1060 kg/m3, Blood heat capacity = 3770 J/kg −K

Length of tissue = 5 cm, Muscle density = 1080 kg/m3, Tumor density = 1200 kg/m3
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3.3.1 Skin cooling with skin surface temperature equal to blood temperature

In this example, the heat transfer coefficient, h = 10 W/m2 −K. Initially the

tissue remains at the blood temperature, Tb for both layers. To illustrate the behavior

of eigenvalues, in this example the skin surface temperature is assumed to be the same

as the blood temperature, 37◦ C. This simplifies the problem with the transformation,

Θj(x, y, t) = Tj(x, y, t) − Tb, where Θj(x, y, t) here is the temperature rise anywhere

in the tissue above blood temperature. Figure 3.2 illustrates the behavior of eigenval-

ues. Note the starting eigenvalue for the eigencondition from equation (3.16) varies.

In order to compute the starting eigenvalue using a second order Newton scheme,

equation (3.27) is necessary to satisfy the initial condition.

(a) (b) (c)

Figure 3.2. Eigenvalue plots for (a) β = 0 (b)β = π (c) β = 2π.

Figure 3.3 illustrates a plot of temperature as function of time at the interface

of two layers, x = b1, y = a/2. From the figure steady state is observed to be

reached around 800s. In figure 3.4 the transient temperature solution at time of

1400s is compared against the steady state solution. The steady state solution for

the present problem is derived using the methodology in Chapter 2. A shot note

on the derivation is presented at end of this chapter, see 3.4. Results indicate that

the transient temperature solution agrees well with steady state temperature profile,
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Figure 3.3. Temperature at the interface of the two layers, x = b1 and y = a/2 with
respect to time.

given by equation (3.38). This verifies the behavior of the transient model and 3.33

gives the temperature as a function of space and time in tissue during hyperthermia.

Figure 3.5 is an illustration of temperature distribution at the interface of the

two layers and at time equals to 500s versus the length of tissue when a tumor

with varying volumetric heat generation rate is considered while maintaining the

same length for the tumor. As expected as the strength of the tumor increases the

temperature in the tissue increases. Figure 3.6 presents the temperature distribution

along the interface when the tumor volumetric strength is held constant at 0.000375

W/mm3 for time equals to 500s while varying the length of the tumor section. As
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Figure 3.4. Temperature versus length of tissue at the interface of the two layers,
x = b1 for constant volumetric strength, gt = 0.0005 W/mm3 and size of the tumor
is maintained uniform at half the tissue length.

Figure 3.5. Temperature at the interface of two layers versus the length of tissue for
x = b1 and t = 500s when the length of the tumor is maintained uniform and the
volumetric strength is varied.

observed from the figure that a smaller size tumor causes less internal heat generation

as compared to a larger tumor, which is along expected lines.
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Figure 3.6. Temperature at the interface of two layers versus the length of tissue for
x = b1 and t = 500s when the volumetric strength is kept uniform, gt = 0.000375
W/mm3 and the length of the tumor section is varied.

3.4 Appendix: Steady State Temperature Solution

The mathematical procedure adopted to derive the steady state temperature

solution is obtained from [82,83]. The governing equation is given by,

∂2Tj
∂x2

+
∂2Tj
∂y2

−m2
j(Tj − Tbl) +

gmet,j
kj

+ δj
gt,j(y, t)

kj
= 0 (3.34)

The interface and boundary conditions are similar to the transient problem

discussed in section 3.2 by equations (3.3) - (3.8). The solution of respective ODEs

after separating variables in X and Y-directions are given by,

X̃1,p(x) = sin (γp x) (3.35)

45



X̃2,p(x) = sin (γp b1) cos (γp (x− b1)) +
k1

k2

cos (γp b1) sin (γp (x− b1)) (3.36)

Ỹn(y) = cos
(nπy

a

)
(3.37)

The final form of the steady state temperature solution is given by,

Tj(x, y) =

∞∑
n=0

∞∑
p=1

2∑
j=1

a∫
y=0

bj∫
x=bj−1

gj(y)X̃j,p(x)Ỹn(y)dxdy

(
γ2
p + β2

n +m2
j

) bj∫
x=bj−1

kjX̃2
j,p(x)dx

a∫
y=0

Ỹ 2
n (y)dy

X̃j,p(x) Ỹn(y) (3.38)

where b0 = 0 and gj(y) = gmet,j + gt,j(y).
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CHAPTER 4

BIOHEAT TRANSFER WITH TUMOR OF ARBITRARY SHAPES DURING

NANOPARTICLE BASED HYPERTHERMIA THERAPY

4.1 Introduction

Bioheat transfer for regular or orthogonal shaped tissue and tumor is dis-

cussed previously in chapters 2 and 3 of this dissertation. In most situations for

one-dimensional isotropic diffusion problems an exact solution is possible [42,92,96].

In this chapter a general mathematical procedure for handling orthogonal and non-

orthogonal shapes for tumor and tissue is presented. The mathematical procedure

to develop the general solution to Pennes bioheat equation in this chapter uses the

Galerkin based-integral method [97]. The Galerkin method in principle is very simi-

lar to the finite element method [98]. The major difference is finite element method

includes a large set of elements of simple geometry, where the trial function is often

a low-order polynomial. However, a higher order-polynomial approximation is pos-

sible using Galerkin method. In both methods, the linear combination of these trial

functions is approximated to the real solution for the partial differential equation.

The range of the Galerkin method encompasses boundary value problems in

heat conduction with homogeneous or non-homogeneous boundary conditions and

governing equation. In addition to its application to diffusion problems in geome-

tries involving arbitrary shape, the Galerkin method is well-suited for encompassing

heterogeneity in the domain. This is important it helps us consider different thermal

properties for the tumor and surrounding vasculature [96, 97]. For optimal planning

of cancer therapy using nanoparticle mediated hyperthermia therapy, a general tem-
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perature solution can help provide an accurate temperature distribution in diseased

tissue associated with ablation therapies.

4.2 Mathematical model

The Pennes bioheat equation, 4.1, can be written in a generalized form

∇(k(~r)∇T ) +wb(~r, t)ρb(~r)cb(~r) (Tb − T ) + gmet(~r, t) + gNP (~r, t) = ρ(~r)c(~r)
∂T

∂t
(4.1)

where T = T (~r, t) is the temperature rise of the vasculature above ambient, ~r

is the position vector and t is corresponding to time. The thermo-physical proper-

ties are space dependent thermal conductivity, k(~r), specific heat, cp(~r) and density,

ρ(~r). The index ’b’ denotes blood thermo-physical properties and Tb corresponds to

arterial temperature or core body temperature. For cases discussed in this chapter,

the arterial temperature is held constant at the physiological temperature of 37◦ C.

Figure 4.1 illustrates the geometry of the problem considered in this chapter.

The inclusion region marked in red denotes the tumor and rest is vascular tissue. The

tissue and tumor thermal conductivity is found to vary [99].

The tissue as shown in Figure 4.1, represent the muscle or dermal region of skin

tissue. A tumor of arbitrary shape, ΓE represent the affected region of the tissue. In

principle the thermal properties and blood perfusion in tumor domain (equation of

curve, ΓE = 0) can vary with respect to the tissue domain, ΓM . The intersection of

tumor and tissue domains, represent the vasculature diagnosed with tumor growth, Γ.

In equation (4.1), the source terms gmet represent the metabolic heat generation rate

of tissue and tumor and gNP represent the volumetric heat generation inside tumor

region due to nanoparticle distribution for laser or magnetic flux assisted hyperther-

mia therapy. The tissue sidewalls in the x-direction are assumed to be maintained
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Figure 4.1. Tissue with arbitrary shape tumor.

at blood arterial temperature. In y-direction, convective boundary conditions with

constant heat transfer coefficient are considered.

∂T

∂x
= 0 at x = −a, a (4.2)

∂T

∂y
± hT = 0 at y = −b, b (4.3)

Following the above discussion, this chapter will present a detailed mathemat-

ical procedure to obtain a general temperature field in the vasculature. To perform

a transient analysis for the bioheat equation, the tissue and tumor are assumed to

maintain the same initial conditions. The Galerkin method based on the principles

of variational calculus, helps in capturing the physical effects associated with hyper-

thermia therapy in a less complicated technique as compared to alternate numerical
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techniques for solving partial differential such as Finite Difference and Finite Vol-

ume methods [100]. However, the choice of method is independent to the problem

discussed here and alternate techniques may serve equally well in providing accurate

temperature solutions.

The tissue domain, ΓM and tumor domain, ΓE is considered to maintain perfect

contact between them. This is expressed by,

(TM)ΓE=0 = (TE)ΓE=0 (4.4)

kM

(
∂TM
∂n

)
ΓE=0

= kE

(
∂TE
∂n

)
ΓE=0

(4.5)

Let equation (4.6) be a general temperature solution at any point in the vascu-

lature,

T (~r, t) =
N∑
n=1

Pn(t) ψn(~r) e−λnt (4.6)

In equation (4.6), the coefficient Pn(t) is to be determined. The undetermined

coefficient will account for the contribution of the different source terms in equation

(4.1). In the same equation, ψn(~r) and λn correspond to basis functions and eigenval-

ues respectively. A set of candidate basis functions can either be orthogonal functions

such as sine or cosine or regular polynomials. The choice of special polynomials such

as Chebyshev polynomials, the solution technique is very similar to spectral tech-

niques [101]. Substituting equation (4.4) in equation (4.1) for every value of n results

in,
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N∑
n=1

Pn(t) [∇(k(~r)∇ψn(~r)− wb(~r, t)ρb(~r)cb(~r) ψn(~r) + λnρ(~r)c(~r) ψn(~r)] e−λnt

+ S(~r, t) =
N∑
n=1

ρ(~r)c(~r)ψn(~r)
∂Pn(t)

∂t
(4.7)

where,

S(~r, t) = gmet(~r, t) + gNP (~r, t) + wb(~r, t)ρb(~r)cp(~r) Tb (4.8)

Based on the Galerkin-integral method, ψn(~r) is the eigenfunction which is given

by a linear summation of polynomial, fj(~r) also known as basis functions,

ψn(~r) =
N∑
n=1

dnjfj(~r) (4.9)

Using equation (4.7), multiplying with fi and integrating over the domain, Γ

N∑
j=1

Pn(t) e−λnt
∫

Γ

fi [∇(k(~r)∇ψn(~r)− wb(~r, t)ρb(~r)cb(~r) ψn(~r)

+λnρ(~r)c(~r) ψn(~r)] dΓ +

∫
Γ

fi S(~r, t) dΓ =
N∑
j=1

∂Pn(t)

∂t

∫
Γ

ρ(~r)c(~r)fiψn(~r)dΓ (4.10)

The first term in equation (4.10) constitutes the eigenvalue problem based on

the Galerkin procedure found in [96,97].

∫
Γ

fi [∇(k(~r)∇ψn(~r)− wb(~r, t)ρb(~r)cb(~r) ψn(~r) + λnρ(~r)c(~r) ψn(~r)] dΓ = 0 (4.11)

In matrix form, the eigenvalue problem for the homogeneous governing bioheat

equation is represented as,

(A + λnB)dn = 0 (4.12)
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where elements of square matrices A and B of size N are given by,

aij =

∫
Γ

fi [∇(k(~r)∇fj − wb(~r, t)ρb(~r)cb(~r) fj] dΓ

bij =

∫
Γ

fi ρ(~r)c(~r) fj dΓ (4.13)

Subsequently, rest of the procedure in obtaining the coefficients Pn(t) is very

similar to the mathematical procedure adopted in Chapter 3. In addition, detailed

procedure on obtaining final temperature solution is presented in [96,102]. Therefore,

the expression for final temperature solution is given by,

T (~r, t) =
N∑
n=1

N∑
m=1

pnm ψn(~r)

[∫
Γ

ρ(~r)c(~r)F (~r)fm(~r) dΓ e−λnt

+

∫ t

τ=0

∫
Γ

e−λn(t−τ)S(~r, τ)fm(~r) dΓ dτ

]
(4.14)

where, F (~r) = Tb − T∞, represent the initial condition. The coefficient pnm is given

by [(DB)T ]−1 and square matrix D of size N is composed of the eigenvectors (dn)T .

4.3 Basis function for heterogeneous vasculature

In this section a procedure to obtain basis function for heterogeneous bodies will

be discussed in brief. For detailed section on the methodology please see [96,102,103].

For this section only, the boundary at y = ±b of the vascular domain, Γ is assumed to

be maintained at uniform blood arterial temperature, Tb. Equation (4.3) is replaced

by the following equation (4.15) and since T represents the temperature rise, we

obtain,

T = 0 at y = ±b (4.15)
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The sidewalls along X-axis are assumed to be sufficiently long to consider adi-

abatic boundary conditions, equation (4.2). Hence we can start with the assumption

that basis function in variable y is a polynomial of jth order as given by,

fj(y) = (c1 + c2y
2) y(2j−2) (4.16)

Using any one condition given by equation (4.15), a relationship between the

two constants c1 and c2 can be obtained. Finally, the basis function for prescribed

vascular wall temperature is given by,

fj(y) = (b2 − y2) y(2j−2) (4.17)

Using similar procedure, the basis for adiabatic vascular walls in x-direction is

given by,

fi(x) = (a2i− (i− 1)x2) x(2i−2) (4.18)

The basis function for the inclusion is obtained from [103]

fij,e = fij,m + U + ΓEH for i = 1, 2, . . . N ; j = 1, 2, . . . N (4.19)

where fij,e is the basis function of the inclusion, fij,m is the basis function for the main

domain which in this case is given by the product of equations (4.17) and (4.18). The

expressions for parameters U and H are as follows,

U = −km
C

(
∂fij,m
∂n

)
ΓE=0

(4.20)

H =
(∇fij,m · ∇ΓE)ΓE=0 (km/ke − 1)−∇U · (∇ΓE)ΓE=0

(∇ΓE · ∇ΓE)ΓE=0

(4.21)
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In equation (4.20), C stands for contact conductance which in the present analysis is

infinite since perfect contact is assumed between tumor wall and surrounding tissue

in the vasculature. Hence, as C →∞, U → 0 and hence equations (4.4) and (4.5) are

satisfied. The parameters, km and ke represent the thermal conductivities of tissue

and tumor region respectively.

4.4 Results and Discussion

A simple test case is considered to analyze the temperature solution, equation

(4.14) derived in section 4.2. The top and bottom vascular sidewalls at y = ±b are

maintained at the blood arterial temperature, Tb = 37◦ C. The sidewalls of vascular

tissue, x = ±a are considered to be long such that the boundary does not affect

the temperature solution. Hence an adiabatic boundary condition is considered. The

effective skin tissue thermal conductivity, km is found to be in range 0.3−0.6W/m−K

for normal flow to enhanced flow conditions [99]. In the present analysis the value of

tissue thermal conductivity is considered to be km = 0.4W/m−K and tumor thermal

conductivity to be ke = 0.6W/m−K. A square domain of size 1cm× 1cm represents

the vascular region affected by tumor growth. All other tissue and tumor properties

for examples presented in this section can be obtained from 3.1.

Figure 4.2 illustrates the temperature plot as a function of x at y = 0. The

heat generation due to metabolism in tissue and tumor is equal to 368 W/m3. In the

tumor domain, ΓE the heat generation due nanoparticle distribution for hyperthermia

therapy is assumed to be equal to 250000 W/m3 [36]. The aspect ratio of the ellipse

is 5:1 with the half major axis equal to 5 mm and half minor axis equal to 1 mm.

From results, considering 21 polynomial trial functions is sufficient for convergence in

the temperature solution.
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Figure 4.2. Temperature plot for verifying convergence of solution of and elliptical
shape tumor for N = 6, N = 21 and N = 55, where N is the number of terms in
series.

(a) (b)

Figure 4.3. Temperature distribution for nanoparticle based hyperthermia at time,
t = 10 mins for a tumor of circular shape, radius = 5mm (a) 3-D temperature
distribution, gNP = 150000 W/m3 (b) Contour plot for temperature as function of x
and y.

Figures 4.3(a) and 4.3(b) illustrate the temperature distribution in vascular tis-

sue in presence of transient hyperthermia therapy. Figure 4.3(a) illustrates a quarter

of the entire vascular region as shown in Figure 4.1. Blood perfusion rate through
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(a) (b)

Figure 4.4. Temperature distribution for nanoparticle based hyperthermia at time,
t = 10 mins for a tumor of elliptical shape (a) 3-D temperature distribution, gNP =
250000W/m3 (b) Contour plot for temperature as function of x and y.

the tumor is assumed same as the tissue. However, in the temperature solution given

by equation (4.14) different blood perfusion rates in the tissue and tumor region can

be easily handled. The source term in the Pennes bioheat equation representing heat

generated due to nanoparticles for this case is equal to gNP = 150000W/m3.

This is important because in principle, malignant tumor cells obtain nutrients

from newer blood vessels that originate from existing blood vessels through signal

exchange of growth factors such as vascular endothelial growth factor (VEGF). The

newer blood vessels that are formed as the tumor grows in size are leaky with pore

size ranging in tens of microns [104]. Nanoparticle assisted hyperthermia therapy,

utilizes functionalized nanoparticles, nanoshells that travel through the blood vessels

and through the pores into the tumor region. Once in the diagnosed region, the

nanoparticles are excited using external sources such as laser beam or an alternating

magnetic field to elevate the temperature of that region. It has been observed that

elevating the temperature of malignant tumor cells increases their susceptibility to

subsequent radiation or chemotherapy treatments [105].
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A similar analysis for an elliptical shape tumor with half major axis equal to 5

mm and half minor axis equal to 1 mm is illustrated as Figure 4.4. The only variation

from Figure 4.3 is the heat generated due to nanoparticles for this case is equal to

gNP = 250000W/m3. The variation in value is due to the different equations of tumor

domain, ΓE = 0 in an attempt to maintain the maximum temperature around 43◦ C.

Figure 4.5. Temperature as a function of time at the core of the tumor for circular
shape tumor (red) and elliptical shape tumor (blue).

Figure 4.5, represents the core temperature of the tumor as a function of time.

As seen from the figure, the circular tumor, (shown in red) being larger in size than

the elliptical tumor, (shown in blue) produces more heat for a given distribution of

nanoparticle volumetric heating. The nanoparticle concentration is proportional to

the heat generation in the tumor volume or the specific absorption rate (SAR).
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In principle, the SAR expression is a distribution over a given space and varies

with time. Hence, consideration of this has been provided in the general temperature

solution, where the source term S(~r, t) given by equation 4.8, is integrated over the

vascular domain Γ over the time planned for the therapy. Therefore, one can use the

methodology presented in this chapter to either determine the temperature anywhere

in diseased tissue or use the temperature distribution obtained from equation 4.14

to accurately estimate the value for SAR, thereby the nanofluid concentration to be

delivered at the tumor, in order to avoid overheating of healthy tissue in the case of

hyperthermia.

Alternately, one can apply the mathematical procedure in 4.2 to solve problems

related to cryo-therapy and cryo-cooling [106] where the heat transfer coefficient is

known to vary. Physical models both living and engineered are often subject to

variable heat transfer conditions such as cryoneedle used in treatment of prostate

cancer [107], jet impingement using a cryogun are common in practice. The next few

chapters of this dissertation will address this fundamental heat transfer model using

a simple mathematical model.
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CHAPTER 5

TEMPERATURE INSIDE AN ORTHOTROPIC CYLINDER SUBJECT TO

VARYING HEAT TRANSFER

5.1 Introduction

Convective heat transfer of a cylinder in cross-flow is a classical boundary layer

problem and have been addressed both using theoretical models based on mass, mo-

mentum and energy conservation of fluid leading to boundary layer theory and from

experimental measurements [43]. Although the fluid velocity and temperature has

continuously been characterized, not sufficient models exist which analyze the tem-

perature inside a heat generating orthotropic cylinder subject to such spatially varying

flows. In this chapter, an analytical method is developed to compute the tempera-

ture profile within an infinite and a finite cylinder subject to internal heat generation

and varying convective heat transfer coefficient at the outer surface . The analytical

model results in a series solution for the temperature profile with coefficients that

can be computed easily by solving a well-defined set of linear algebraic equations.

Using the functional form of h(θ) from well-known experiments, [42,43], the expected

temperature profile is computed inside a cylinder subject to an external coolant flow.

The dependence of the temperature profile on a number of parameters such as the

Reynolds number of the external flow, extent of thermal conduction anisotropy, as-

pect ratio, etc. is discussed. In addition to addressing a classical theoretical problem,

this chapter may also help develop design tools for thermal management of Li-ion

cells using external coolant flow.
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5.2 Mathematical Model

A steady state thermal conduction problem in two and three dimensional cylin-

drical systems is considered here. A cylinder of radius R and uniform internal heat

generation is subject to circumferentially varying heat transfer represented by h(θ).

Note that h(θ) must be an even function and periodic with a period of 2π. Two

specific cases shown in Figure 5.1 are considered an infinitely long cylinder, and a

finite cylinder of height H. The finite cylinder is subjected to a constant convective

heat transfer coefficient h end at the top and bottom surfaces. Thermal conduction

within the cylinder is assumed to be orthotropic, with the radial, circumferential and

axial thermal conductivities given by kr, kθ and kz respectively.

Figure 5.1. Schematic of the geometry under consideration for (a) infinite, and (b)
finite cylinder subjected to circumferentially varying convection at the surface due to
cross-flow.
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Such anisotropy in thermal conduction, occurs in a Lithium-ion battery. Re-

cent experimental measurements have indicated a 100− fold difference in the axial

and radial thermal conductivities [2]. The following sections will present a detailed

derivation of temperature solution in infinite and finite length cylinders when subject

to varying heat transfer.

5.2.1 Infinite cylinder

The governing equation is given by,

kr
r

∂

∂r

(
r
∂T

∂r

)
+
kθ
r2

∂2T

∂θ2
+ g = 0 (5.1)

where T (r, θ) is the temperature rise above ambient. The problem is subject to

the following boundary conditions:

T <∞, bounded and finite,
∂T

∂r
= 0 at r = 0 (5.2)

kr
∂T

∂r
+ h(θ) T = 0 at r = R (5.3)

T (θ) = T (θ + 2π) (5.4)

(
∂T

∂θ

)
θ=0

=

(
∂T

∂θ

)
θ+2π

(5.5)

Equation (5.2) requires the core temperature to be bounded. In other words,

heat cannot move towards the core of the solid cylinder due to forced, spatially-

varying convective cooling outside and thus the temperature of the core must remain
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finite. Equation (5.3) illustrated accounts for Newton cooling at the cylinder external

surface and introduces the spatial variation in heat transfer, h(θ). Equations (5.4)

and (5.5) represent temperature and periodicity in the circumferential direction.

Equations (5.1) - (5.5) , represent a thermal conduction problem in which the

governing energy equation is non-homogeneous, whereas all boundary conditions are

homogeneous. If the convective heat transfer coefficient in equation. (5.3) were to be

constant, this set of equations admits a straightforward solution using the separation

of variables approach. However, h-dependence of h precludes this approach. Instead,

a more general approach that accounts for h-dependence of h must be adopted. The

temperature field is first split into two parts as follows:

T (r, θ) = w(r, θ)− gr2

4kr
(5.6)

Subsequently the w(r, θ) results into a homogeneous governing equation and

with one non-homogeneous boundary condition. The following set of equations are

obtained for the w(r, θ) problem,

kr
r

∂

∂r

(
r
∂w

∂r

)
+
kθ
r2

∂2w

∂θ2
= 0 (5.7)

subject to

w <∞, bounded and finite,
∂w

∂r
= 0 at r = 0 (5.8)

kr
∂w

∂r
+ h(θ) w = F (θ) at r = R (5.9)

w(θ) = w(θ + 2π) (5.10)
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(
∂w

∂θ

)
θ=0

=

(
∂w

∂θ

)
θ+2π

(5.11)

where

F (θ) =
gR

2

(
1 +

h(θ)R

2kr

)
(5.12)

The solution for w(r, θ) is expressed in terms of an infinite series as follows:

w(r, θ) =
∞∑
m=0

Cm cos(mθ)
( r
R

)m √kθ/kr
(5.13)

Equation (5.13) satisfies the governing equation given by equation (5.7) along

with three boundary conditions, equations (5.8), (5.10) and (5.11). The unknown co-

efficients, Cm can be determined using equation (5.9). This would require substituting

equation (5.13) in equation (5.9) to get,

kr

∞∑
m=0

Cmcos(mθ)
m
√
kθ/kr
R

+ h(θ)
∞∑
m=0

Cm cos(mθ) = F (θ) (5.14)

Finally, equation (5.14) is is multiplied by cos(jθ) and integrated from θ = 0 to

θ = 2π. Because h is a function of θ, this results in a set of linear equations involving

the unknown coefficients:

Cjbj +
∞∑
m=0

Cm djm = fj j = 0, 1, 2, ....., (5.15)

where

bj =
j
√
krkθ
R

2π∫
θ=0

cos2jθ dθ (5.16)
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djm =

2π∫
θ=0

h(θ) cos jθ cosmθ dθ (5.17)

fj =

2π∫
θ=0

F (θ) cos jθ dθ (5.18)

Assuming that the maximum value of m in equation (5.14) is M, equation (5.15)

represents a set of (M+1) linear equations in (M+1) unknowns Cj, j = 0, 1, 2, ...,M ,

from where the unknown coefficients can be computed. Once the coefficients are

computed, equations (5.6) and (5.13) represent the temperature distribution in the

anisotropic cylinder. Putting kr = kθ in equations above reduces the solution to that

for an isotropic cylinder with identical thermal conductivity in each direction. It is

to be noted that in the special case of h being independent of θ, djm become zero

except when j = m. As a result, equation (5.15) reduces to (bj + djj)Cj = fj, from

where all Cjs can be obtained explicitly without the need to solve a set of algebraic

equations. This corresponds to the separation of variables approach for constant heat

transfer boundary conditions, in which all coefficients can be obtained explicitly, as

opposed to the case considered here, where the coefficients are determined through

the solution of a set of linear algebraic equations.

5.2.2 Finite cylinder of height H

This sub-section considers a finite cylinder of height H. In this case, the gov-

erning energy equation is given by

kr
r

∂

∂r

(
r
∂T

∂r

)
+
kθ
r2

∂2T

∂θ2
+ kz

∂2T

∂z2
+ g = 0 (5.19)

The temperature field T (r, θ, z) satisfies the boundary conditions given by equa-

tions (5.2)(5.5). Note that the convective heat transfer coefficient in equation (5.3) is
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now a function of h as well as z, i.e. h = h(θ, z). The temperature field also satisfies

the following boundary conditions in the z direction:

kz
∂T

∂z
− hendT = 0 at z = 0 (5.20)

kz
∂T

∂z
+ hendT = 0 at z = H (5.21)

In this case, the solution methodology is similar to that described for the infinite

cylinder in Section 5.2.1. The temperature solution is given by,

T (r, θ, z) = w(r, θ, z) + f(z) (5.22)

where f(z) can be expressed by an exact solution expressed as,

f(z) =
QH2

2kz

(
z

H

(
1− z

H

)
+

1

Bi

)
(5.23)

and Bi = hendH/kZ .

Substituting equation (5.22) in equation (5.19) to obtain the set of equations

for w(r, θ, z) :

kr
r

∂

∂r

(
r
∂w

∂r

)
+
kθ
r2

∂2w

∂θ2
+ kz

∂2w

∂z2
+ g = 0 (5.24)

The functional form for w(r, θ, z) satisfies the boundary conditions given by

equations equations (5.8), (5.10) and (5.11). In addition, w also satisfies

kz
∂w

∂z
− hendw = 0 at z = 0 (5.25)
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kz
∂w

∂z
+ hendw = 0 at z = H (5.26)

and

−kr
(
∂w

∂r

)
r=R

= h(θ, z)(w + f(z)) (5.27)

Using an approach similar to Section 5.2.1, w(r, θ, z) may be written as

w(r, θ, z) =
∞∑
m=0

∞∑
n=1

Cmn Iνm(ηn
√
kz/kr) cos(mθ)

[
hend
ηnkz

sin ηnz + cos ηnz

]
(5.28)

where I is the modified Bessel function of the first kind. The order of the Bessel

function is given by,

νm = m
√
kθ/kr (5.29)

The eigenvalues ηn are determined from roots of the equation,

tan νnH =
2νnHBi

(νnH)2 −Bi2
(5.30)

The solution form shown in equation (5.28), when substituted in the boundary

condition at r = R, given by equation (5.27) results in

krηn

√
kz
kr

∞∑
m=0

∞∑
n=1

Cmn

[
m

ηnR

√
kθ
kz

Iνm

(
ηn

√
kz
kr

R

)
+ Iνm+1

(
ηn

√
kz
kr
R

)]

cos(mθ)

[
hend
ηnkz

sin(ηnz) + cos(ηnz)

]
+
∞∑
m=0

∞∑
n=1

Cmn h(θ, z)Iνm

(
ηn

√
kz
kr
R

)

cos(mθ)

[
hend
ηnkz

sin(ηnz) + cos(ηnz)

]
= −h(θ, z)f(z) (5.31)
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Using a similar approach as shown in Section 5.2.1 following equation (5.14),

use of orthogonality in Eq. (5.31) results in a set of linear equations involving the

unknown coefficients given by,

Cjibji +
∞∑
m=0

∞∑
n=1

Cmndjimn = fji (5.32)

where

bji = ηi
√
kz kr

[
j

ηiR

kθ
kz

Iνj

(
ηi

√
kz
kr

R

)
+ Iνj+1

(
ηi

√
kz
kr

R

)]
NθNz (5.33)

djimn = Iνm

(
ηn

√
kz
kr
R

) H∫
z=0

2π∫
θ=0

h(θ, z) cos (mθ) cos (jθ

[
hend
ηnkz

sin(ηnz) + cos(ηnz)

] [
hend
ηikz

sin(ηiz) + cos(ηiz)

]
dθ dz (5.34)

fji = −
H∫

z=0

2π∫
θ=0

h(θ, z)f(z) cos(jθ)

[
hend
ηnkz

sin(ηnz) + cos(ηnz)

]
dθdz (5.35)

The norms Nθ and Nz in equation (5.33) are given by [92]

Nθ =

2π∫
θ=0

cos2(jθ)dθ =


2π when j = 0

π when j 6= 0

(5.36)

Nz =
hend
ηnkz

sin(ηnz) + cos(ηnz) =

(
h2
end

(ηikz)2
+ 1

)
H

2
+
hend
kzη2

i

(5.37)

Solving the set of linear algebraic equations involving the coefficients Cmn given

by equation (5.32) results in the determination of the temperature distribution for the
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finite cylinder given by equation (5.22). Note that the ratios of various thermal con-

ductivities appearing in the solution account for the thermal conduction anisotropy

in the cylinder. Putting kr = kθ = kz results in a solution for the isotropic cylinder.

5.3 Results and Discussions

Fig. 5.2 presents a polar plot of temperature distribution in an infinite cylinder

of radius 13 mm with Re = 7960 computed using the model in Section 5.2.1. The

h-variation of θ is obtained from well-known experimental data [43]. Radial and

circumferential thermal conductivities are assumed to be kr = 0.2W/m −Kand θ =

30W/m −K, respectively, based on recent measurements on a 26650 Li-ion cell [2].

While the h-variation in the temperature distribution shown in Figure 5.2 may not be

readily apparent due to the much larger radial variation, it is clearly seen in Figure 5.3,

which presents line plots of temperature distribution as a function of h at the outer

surface (Figure 5.3(a) ), and as a function of r (Figure 5.3(b)). Inset in Figure 5.3(a)

shows the variation of h as a function of θ. Figures 5.3(a) and 5.3(b) also present

the temperature distributions predicted by a finite-element simulation. Similar plots

are presented for a finite-cylinder at the mid-height in Figures 5.4(a) and 5.4(b). For

the finite cylinder case, a cylinder of radius 13 mm and height 65 mm is used, which

corresponds to the geometry of the commonly used 26650 Li-ion cell. Figs. 5.3 and

5.4 show that the infinite cylinder and finite cylinder models are both in excellent

agreement with finite-element simulation results. The temperature field is found to

have maxima and minima at h locations where the distribution of the heat transfer

coefficient has minima and maxima respectively. This is along expected lines since

a large value of the local convective heat transfer coefficient results in greater local

heat transfer from the solid to the fluid, and thus lower solid temperature.
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Figure 5.2. Polar plot of the temperature distribution in an anisotropic infinite cylin-
der at Re = 7960.

(a) (b)

Figure 5.3. Comparison of the analytically computed temperature distribution for
the infinite cylinder with finite-element modeling results (a) shows variation with θ,
(b) shows variation with r.

While the model predictions and finite-element simulation results are within

less than 1% of each other for most of the cylinder, the maximum deviation between

the two is about 3%, which occurs at the temperature peaks. This small error oc-

curs possibly due to approximations related to the number of eigenvalues used in

the model, and due to numerical errors in computing the integrals present in the
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(a) (b)

Figure 5.4. Comparison of the analytically computed temperature distribution for the
finite cylinder at mid-height with finite-element modeling results (a) shows variation
with θ, (b) shows variation with r.

model. Additionally, approximations in the finite-element simulation may also have

contributed to the small error.

Figure 5.5. Polar plots for the temperature distribution in an anisotropic infinite
cylinder with three different values of Reynolds number, with kr = 0.2W/m − K,
kθ = 30W/m−K based on recent measurements.
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Figure 5.6. Polar plots for the temperature distribution in an anisotropic infinite
cylinder with three different values of Reynolds number, with kr = 30W/m − K,
kθ = 0.2W/m−K.

The model presented in Section 5.2 is next used to determine the temperature

distribution within the cylinder for different values of Re. Well-known measurements

of the convective heat transfer coefficient on the cylinder surface as a function of

h at various values of Re [43] are used in these computations. Figure 5.5 shows

polar plots of temperature distribution in the cylinder for three values of Re. The

thermal properties and heat generation rate are the same as used in Figures. 5.2 and

5.3. Figure 5.5 shows that as Re increases, the temperature field within the cylinder

reduces, as expected. In addition, these polar plots also demonstrate the radial and

circumferential variations in the temperature field within the cylinder. As expected,

the core of the cylinder is the hottest in each case, while the outer surface directly

facing the fluid flow is the coolest. In order to illustrate the strong effect of anisotropy

in thermal conduction, Figure 5.6 shows temperature plots at three values of Re, with
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Figure 5.7. Plot of temperature rise as
a function of the degree of thermal con-
duction anisotropy in an infinite cylin-
der.

Figure 5.8. Plot of temperature as
a function of aspect ratio for a finite
cylinder.

kr = 30W/m−K and kθ = 0.2W/m−K, which is the opposite of the assumption for

Figure 5.5. In this case, the much lower value of kθ relative to kr is expected to result

in significant temperature gradients in the h direction, which is clearly seen in Figure

5.6. Recent measurements on a 26650 Li-ion cell [2] indicate that kr is expected to

be much lower than kθ, which is why Figure 5.5 may be more representative of an

actual Li-ion cell than Figure 5.6.

In order to further demonstrate the effect of anisotropic thermal conduction,

the temperature field in the cylinder is computed as a function of the radial thermal

conductivity, while keeping the other thermal conductivities constant. Figure 5.7

plots temperature at θ = 0◦, and θ = 90◦, both at r=R as functions of kr. The ratio

kr/kθ, which represents the degree of anisotropy is also indicated.

Figure 5.7 shows that the temperature at θ = 0◦ increases while the temperature

at θ = 90◦ decreases as kr increases. At large kr, the temperatures at the two points

converge to the same value, which is along expected lines, since the cylinder will

behave as an isothermal body in the limit of large kr. Finally, the finite cylinder model

is used to compute the temperature distribution in a finite cylinder as a function of
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aspect ratio H/R, while keeping the volumetric heat generation rate constant. The

temperature at the stagnation point at mid-height (r = R, h = 0, z = H/2) is plotted

in Figure 5.8 as a function of the aspect ratio. Figure 5.8 also shows the temperature

at this point for an infinite cylinder with the same volumetric heat generation rate

and thermal properties. Figure 5.8 shows that as the aspect ratio increases, the

temperature predicted by the finite model approaches that of the infinite cylinder,

since the finite cylinder approaches the limit of an infinite cylinder as the aspect ratio

increases.
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CHAPTER 6

TEMPERATURE INSIDE AN ORTHOTROPIC SPHERE SUBJECT TO

VARYING HEAT TRANSFER

6.1 Introduction

This chapter presents an analytical derivation to compute the temperature dis-

tribution in a solid sphere with spatially varying convective heat transfer coefficient

on its surface. Thermal conduction within the sphere is assumed to be orthotropic in

general, with different thermal conductivity values in r, φ and θ directions. Volumet-

ric heat generation occurs within the sphere, which is cooled on the outside surface

with a convective heat transfer coefficient that depends on both azimuthal and po-

lar angles. A Fourier series form of the temperature distribution is assumed. It is

shown that the series coefficients can be determined by solving a set of linear algebraic

equations that account for the general spatial variation of h on the sphere surface.

The temperature distribution computed by this analytical solution is found to be in

good agreement with results from finite-element simulations. The dependence of the

temperature profile on a number of parameters such as the heat transfer coefficient,

thermal conduction orthotropy, etc. is discussed. The theoretical derivation of tem-

perature field in a sphere with orthotropic thermal properties is important because

while most commercial finite-element simulation tools enable analysis of orthotropic

thermal conduction in rectangular and cylindrical coordinate systems, the treatment

of orthotropic thermal conduction in spherical coordinates is not available. By deriv-

ing the temperature distribution for this very general case, the treatment presented
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here may help expand the capability of thermal analysis in spherical coordinate sys-

tems.

6.2 Mathematical Model

This section presents the derivation of the steady state temperature distribu-

tion in an orthotropic sphere with internal volumetric heat generation and spatially

dependent h. Based on the general derivation presented next in Section 6.2, a special

case for a partially orthotropic sphere where kφ = kµ is presented in Section 6.2.1.

Section 6.2.3 discusses an alternate analytical approach for solving the general prob-

lem. Finally a brief discussion is presented, showing that for isotropic conditions, i.e.

all thermal conductivities being the same, the solutions presented for the orthotropic

and partially orthotropic cases reduce to that of the isotropic solution as one would

expect.

6.2.1 Orthotropic Sphere

Figure 6.1 shows a schematic of the general heat transfer problem being ad-

dressed in this sub-section. The steady-state governing energy equation in a three

dimensional orthotropic sphere is given by,

kr

[
∂2T

∂r2
+

2

r

∂T

∂r

]
+

kφ
r2(1− µ2)

∂2T

∂φ2
+
kµ
r2

∂

∂µ

[
(1− µ2)

∂T

∂µ

]
+ g = 0 (6.1)

where T (r, φ, µ) is the temperature rise above ambient, µ = cos(θ), kr, kφ and

kµ are thermal conductivities in the r, µ and φ directions, and g is the volumetric

heat generation rate.

The temperature distribution is subject to the following boundary conditions,

T <∞, bounded and finite,
∂T

∂r
= 0 at r = 0 (6.2)
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Figure 6.1. Schematic of the problem.

kr
∂T

∂r
+ h(φ, µ) T = 0 at r = R (6.3)

T (r, φ, µ) = T (r, φ+ 2π, µ) (6.4)

(
∂T

∂φ

)
φ=0

=

(
∂T

∂φ

)
φ+2π

(6.5)

Equation (6.2) represents the requirement for the temperature field to be finite

at r = 0. The circumferential variation of h at r = R is accounted for by equation

(6.3). Equations. (6.4) and (6.5) represent temperature periodicity and heat flux

continuity in the φ direction. In addition to satisfying equations (6.1) - (6.5) the

temperature field must also remain bounded in the µ direction [92].

If h were a constant number, then the solution for equations (6.1) - (6.5) can

be obtained by the separation of variables method in a straightforward fashion [92].
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However, the general case of spatially varying h considered here cannot be addressed

by this approach. In this case, the temperature field is first transformed as follows:

T (r, φ, µ) = w(r, φ, µ)− gr2

6kr
(6.6)

In equation (refeq:7-6), the second term absorbs the non-homogeneity in the

governing equation, thereby leaving a homogeneous governing equation for w(r, φ, µ)

and transferring the non-homogeneity to the boundary condition at r = R for w. The

set of equations for w(r, φ, µ) is as follows,

kr

[
∂2w

∂r2
+

2

r

∂w

∂r

]
+

kφ
r2(1− µ2)

∂2w

∂φ2
+
kµ
r2

∂

∂µ

[
(1− µ2)

∂w

∂µ

]
= 0 (6.7)

subject to

w <∞, bounded and finite,
∂w

∂r
= 0 at r = 0 (6.8)

kr
∂w

∂r
+ h(φ, µ) w = F (φ, µ) at r = R (6.9)

w(r, φ, µ) = w(r, φ+ 2π, µ) (6.10)

(
∂w

∂φ

)
φ=0

=

(
∂w

∂φ

)
φ+2π

(6.11)

where

F (φ, µ) =
gR

3

(
1 +

h(φ, µ)R

2kr

)
(6.12)
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The solution for w(r, φ, µ) is written in the form of the following infinite series:

w(r, φ, µ) =
∞∑
n=0

n∑
m=0

Cnm cos(mφ) P
√
β m

n (µ)
( r
R

)−0.5+
√
αn2+αn+0.25

(6.13)

where α = kµ/kr and β = kφ/kµ.

This particular form of the solution is chosen because it satisfies the governing

differential equation (6.7) and several boundary conditions, given by equations (6.8),

(6.10) and (6.11). Note that in general, the associated Legendre functions in equa-

tion (6.13) may have non-integer order due to unequal thermal conductivities in the

polar and azimuthal directions. The coefficients Cnm in equation (6.13) can then be

calculated to satisfy the boundary condition at the surface r = R, given by equation

(6.9). To do so, the form of w(r, µ, φ) given by equation (6.13) is inserted in equation

(6.9), resulting in

kr

∞∑
n=0

n∑
m=0

Cnm cos(mφ) P
√
β m

n (µ)

(
−0.5 +

√
αn2 + αn+ 0.25

R

)

+ h(φ, µ)
∞∑
n=0

n∑
m=0

Cnm cos(mφ) P
√
β m

n (µ) = F (φ, µ) (6.14)

While equation 6.14 involves infinite series in both polar and azimuthal direc-

tions, it can be simplified by multiplying throughout by cos(jφ) and P
√
βj(µ), and

then integrating over φ and µ. Since h is in general a function of φ and µ, this results

in a set of linear equations involving the unknown coefficients, given by

Cij aij +
∞∑
n=0

n∑
m=0

Cnmbijnm = fij for each i = 0, 1, 2, 3, ....and j ≤ i (6.15)

where,

aij =

(
−0.5 +

√
α i2 + α i+ 0.25

R

) 2π∫
θ=0

cos2(jφ) dφ

1∫
µ=−1

[
P
√
βj

i (µ)
]2

dµ (6.16)
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bijnm =

2π∫
θ=0

1∫
µ=−1

h(φ, µ) cos(mφ) cos(jφ) P
√
βm

n (µ)P
√
βj

i (µ) dµ dφ (6.17)

fij =

2π∫
θ=0

1∫
µ=−1

F (φ, µ) cos(jφ) dφ P
√
βj

i (µ) dµ dφ (6.18)

Assuming that zero through N eigenvalues are considered in the µ direction,

equation (6.15) represents a set of (N + 1)× (N + 2)/2 linear equations in the same

number of unknowns Cij, i = 0, 1, 2, . . . N and j ≤ i, from where the unknown

coefficients can be computed. For example, if eigenvalues up toN = 10 are considered,

the total number of unknown coefficients is 66. Once the coefficients are computed,

equations (6.6) and (6.13) represent the temperature distribution in the orthotropic

cylinder. Note that in the special case of h being a constant, the integral in the

expression for bijnm in equation6.17 would yield all zero values except when i = n

and j = m due to orthogonality of eigenfunctions [92]. As a result, for this case, the

coefficients Cij can be computed explicitly, given by (aij +dijij)Cij = fij. This special

case is the commonly used separation of variables approach where all coefficients are

determined explicitly in case h is a constant. For the more general case of spatially

varying h considered here, a set of linear algebraic equations given by equations (6.15)

- (6.18) are to be solved to determine the series coefficients.

The next sub-section considers two special cases in which the fully orthotropic

thermal conduction within the cylinder is relaxed.

6.2.2 Partially orthotropic and isotropic sphere

In several engineering applications, thermal conduction in the sphere may be

partially orthotropic. For example, when the sphere is made up of multiple concentric

layers, thermal conductivity in the radial direction may be lower than the other
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two components due to thermal contact resistance between layers, whereas thermal

conductivities in the azimuthal and polar directions may be equal, kφ = kµ = kc,

where kc is a constant. The temperature distribution in such a case may be obtained

from the treatment in Section 6.2.1 by setting kφ = kµ = kc, and hence β = 1. The

temperature distribution is still given by equation (6.6), but the modified form for

w(r, φ, µ) is as follows,

w(r, φ, µ) =
∞∑
n=0

n∑
m=0

Cnm cos(mφ) Pm
n (µ)

( r
R

)−0.5+
√
αn2+αn+0.25

(6.19)

In this case, the eigenfunctions in the l direction are associated Legendre polyno-

mials, a special case of associated Legendre functions that appear in equation (6.13),

with integer order, since β = 1. The procedure to determine the unknown coefficients

Cnm in equation (6.19) remains the same as before. The matrix elements aij, bijnm

and fij are somewhat simplified, and are now given by,

aij =

(
−0.5 +

√
α i2 + α i+ 0.25

R

) 2π∫
θ=0

cos2(jφ) dφ

1∫
µ=−1

[
P j
i (µ)

]2
dµ (6.20)

bijnm =

2π∫
θ=0

1∫
µ=−1

h(φ, µ) cos(mφ) cos(jφ) Pm
n (µ)P j

i (µ) dµ dφ (6.21)

fij =

2π∫
θ=0

1∫
µ=−1

F (φ, µ) cos(jφ) dφ P j
i (µ) dµ dφ (6.22)

Note that the integer order of the associated Legendre polynomials leads to

significant reduction in computational cost. Explicit expressions for the integrals in

equations (6.20)(6.22) are available for integer order only [92,108,109]. These integrals

can also be computed symbolically [110] for any arbitrary, even function h(φ, µ). In
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comparison, for the more general, orthotropic case discussed in, Section 6.2.1, exact

expressions for the norm integral, as well as the double integrals for bijnm and fij are

not available, and must be computed numerically.

As a further step, substituting kr = kc in equations above reduces the temper-

ature distribution to the special case of an isotropic sphere with identical thermal

conductivity in all directions. In this case, while T (r, φ, µ) is still given by equation

(6.6), w(r, φ, µ) has a simplified form given by,

w(r, φ, µ) =
∞∑
n=0

n∑
m=0

Cnm cos(mφ) Pm
n (µ)

( r
R

)n
(6.23)

The coefficients are still governed by a set of linear algebraic equations given

by equation (6.15). bijmn and fij are given by equations (6.21) and (6.22) respec-

tively. Due to isotropy in thermal conductivity, expression for aij given previously by

equation (6.20) can be simplified further to,

aij =

(
i

R

) 2π∫
θ=0

cos2(jφ) dφ

1∫
µ=−1

[
P j
i (µ)

]2
dµ (6.24)

6.2.3 Alternate analytical approach for orthotropic sphere

This section presents an alternate approach for solving the general problem

involving orthotropic thermal conduction given by equations (6.1)(6.5) in Section

6.2.1. In this approach, the temperature is still transformed as given by equation

(6.6). However, instead of equation (6.13), the functional form for w(r, φ, µ) is written

as follows,

w(r, φ, µ) =
∞∑
n=0

n∑
m=0

Cnm cos(mφ) P νm
ηn (µ)

( r
R

)n
(6.25)
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where ηn = −0.5 +
√
ᾱn2 + ᾱn+ 0.25, ᾱ = 1/α and νm = βm. α and β are

ratios of thermal conductivities as defined earlier in Section 6.2.1. In general, ηn

and num , the degree and order respectively of the associated Legendre function in

equation (6.25) can be non-integers [111]. Due to the arbitrary nature of both degree

and order, the associated Legendre function appearing in Eq. (25) is now expressed

by a Gauss hypergeometric series [111]. Such functions are encountered, for example

in problems related to a sphere surface cut by a cone [92].

Note that similar to equation (6.13) , the functional form of w represented by

equation (6.25) satisfies equations (6.7), (6.8), (6.10) and (6.11), and the series coeffi-

cient Cnm may be determined using a procedure similar to Section 6.2.1 utilizing the

boundary condition involving the spatially vaying convective heat transfer coefficient,

given by equation (6.9).

kr

∞∑
n=0

n∑
m=0

Cnm cos(mφ) P νm
ηn (µ)

( n
R

)
+ h(φ, µ)

∞∑
n=0

n∑
m=0

Cnm cos(mφ) P νm
ηn (µ) = F (φ, µ) (6.26)

Similar to Section 6.2.1, equation (6.26) is multiplied throughout by cos(jφ)

and P
νj
ηi to result in the following linear system for the series coefficients,

Cij aij +
∞∑
n=0

n∑
m=0

Cnm bijnm = fij for each i = 0, 1, 2, 3, . . . n and j ≤ i (6.27)

where

aij =

(
i

R

) 2π∫
θ=0

cos2(jφ) dφ

1∫
µ=−1

[
P νj
ηi

(µ)
]2

dµ (6.28)
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bijnm =

2π∫
θ=0

1∫
µ=−1

h(φ, µ) cos(mφ) cos(jφ) P νm
ηn (µ) P νj

ηi
(µ) dµ dφ (6.29)

fij =

2π∫
θ=0

1∫
µ=−1

F (φ, µ) cos(jφ) dφ P νj
ηi

(µ) dµ dφ (6.30)

In general, the associated Legendre function is defined by the Gauss hypergeo-

metric series in the region |µ2| < 1 for any arbitrary µ, η and ν [111]. Substituting

α = β = 1 in equation (6.25) results in the solution for isotropic thermal conduction

within the sphere, as expected.

Thus, a general solution for temperature in an orthotropic spherical body has

been derived in two different ways, and special, less restrictive cases have been dis-

cussed. In the next section, the various theoretical models presented in this section

are computed. Results are compared against finite element simulations, and the effect

of various properties and geometry on the temperature distribution is discussed.

6.3 Results and Discussion

Figure 6.2 shows a polar plot of temperature distribution in a solid sphere of

radius 10 cm with uniform heat generation rate, Q = 1432.39W/m3, based on a

total heat generation rate of 6W in the sphere. The φ variation of h is chosen to

be h(φ) = h0 (1 + cos2(φ/2)) with h0 = 100W/m2K, an even function with maxima

at φ = 0 and φ = π/2, and minima at φ = π/2. Radial, azimuthal and polar

thermal conductivities are assumed to be kr = 0.2W/m − K, kµ = 20W/m − K

and kφ = 30W/m−K respectively, consistent with the expectation that for a sphere

made of multiple layered materials, the radial thermal conductivity will be the lowest

due to multiple thermal contact resistances between layers. Temperature variation

in Figure 6.2 is predominantly in the radial direction due to the low value of kr
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Figure 6.2. Polar plot for temperature distribution for an orthotropic sphere with
kr = 0.2W/m−K, kφ = 30W/m−K and kµ = 20W/m−K.

relative to kµ and kφ. The temperature gradient in the φ direction is seen more

clearly in Figure 6.3, which presents line plots of temperature distribution for the

isotropic sphere (k = 0.2W/m −K) as a function of r along the plane θ = π/2 and

φ = 0 which is the region that includes the stagnation point (Figure 6.3(a)), and

similarly temperature as a function of u at r = R (Figure 6.3(b)). Inset in Figure

6.3(b) shows the variation of h as a function of φ. The location of the maxima

in temperature coincides with the minima in h, which is also along expected lines.

Figures 6.3(a) and 6.3(b) also present comparison of the temperature distribution

obtained from the analytical model discussed in Section 6.2 for the isotropic case with

results from finite-element simulation. The finite-element simulations are carried out

in ANSYS CFX, with sufficiently refined grid to rule out grid dependence. Good

agreement is found between the temperature distribution computed from equations

(6.6), (6.23) and (6.24) and the one predicted by the finite element model. Note
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that since orthotropic thermal conduction in spherical coordinate systems cannot be

modeled in ANSYS CFX, the comparison between analytical model and finite-element

simulations shown in Figure 6.3 has been carried out only for the case of isotropic

thermal conduction.

(a) (b)

Figure 6.3. Comparison of analytical solution for the temperature distribution in an
isotropic sphere with finite-element modeling results (a) shows variation with r, (b)
shows variation with φ.

Figure 6.4 shows temperature variation in the radial direction with changing

values of kr, while holding kφ and kµ at a constant value of 0.2W/m−K. The temper-

ature increases as kr reduces, as expected. It is found that the partially orthotropic

temperature distribution given by equation (6.19) reduces to the temperature solution

for an isotropic sphere given by equation (6.24), also shown in Figure 6.4. Figure 6.5

analyzes a different case, where kr is held constant at 0.2W/m−K, and kφ is varied.

The value of kµ is held equal to kφ. Figure 6.5 plots the temperature as a function

of u along the surface at r = R and φ = 0. As expected, the peak temperature of

the temperature curves illustrated in Figure 6.5 reduce as kφ increases. The inset in

Figure 6.5 shows the variation of h with φ. As expected, the maxima in temperature

coincides with minima in the heat transfer coefficient.
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Figure 6.4. Plot for temperature distribution in an orthotropic sphere versus as a
function of r for different values of kr while maintaining kφ = kµ = 0.2W/m−K.

Figure 6.5. Plot for temperature distribution in an orthotropic sphere as a function
of φ for different values of kφ while maintaining kr = 0.2W/m−K. The value of kµ
is equal to the kφ for each case.
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Figure 6.6. Plot for temperature distribution in an orthotropic sphere as a function of
radius using two different solution techniques, for kr = 0.2W/m−K, kφ = 30W/m−K
and kµ = 20W/m−K.

Figure 6.7. Plot for temperature distribution in an orthotropic sphere as a function of
r for spheres of different radii R, while maintaining constant internal heat generation
rate.
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Figure 6.8. Plot for temperature distribution in an orthotropic sphere versus r for
spheres of different radii R, while maintaining constant power.

(a) (b)

Figure 6.9. Comparison of analytical solution for the temperature distribution in an
isotropic sphere with finite-element modeling results (a) shows variation with r, (b)
shows variation with φ.

Figure 6.6 shows a comparison of the temperature distribution as a function of

r for the two solution techniques discussed in Sections 6.2.1 and 6.2.3. There is good

agreement between the two solutions, as expected, which shows that either of the
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two approaches discussed in Sections 6.2.1 and 6.2.3 may be adopted for computing

temperature field in a general, orthotropic sphere.

Figure 6.7 illustrates the variation in radial temperature distribution in spheres

of different sizes with the volumetric heat generation rate maintained constant. The

value of the volumetric heat generation rate is based on 6W power in a solid sphere

of radius 0.1 m as the reference case. As expected, a sphere with a larger radius has

a larger temperature gradient, due to greater power generated inside the sphere of a

larger radius. Conversely, in Figure 6.8, the total power is held constant at 6W, and

it is found that there is greater temperature rise in the small radius sphere due to the

increased volumetric heat generation rate.

Finally, Figure 6.9 analyses the temperature variation in the radial and az-

imuthal directions as functions of convective cooling rates.As expected, the peak

temperature drops in both cases with increase in the cooling rate. The reduction in

temperature is less significant at higher values of h0, which could be because at high

h0, total thermal resistance is dominated by thermal conduction within the sphere

rather than convective thermal resistance at the boundary.
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CHAPTER 7

CORRECTIONS FOR LATERAL CONDUCTION ERROR IN HEAT

TRANSFER MEASUREMENTS

7.1 Introduction

Steady state measurements of convective heat transfer coefficient often use a

constant wall heat flux condition along with measured temperature distribution to

generate heat transfer coefficient maps. Large spatial gradients in the heat transfer co-

efficient may lead to lateral conduction within the heater foil, causing non-uniformity

in the actual convective flux into the fluid, yielding errors in the calculated Nusselt

numbers. This chapter presents an analytical procedure for correcting such errors for

a model system with a known heat transfer coefficient distribution and nominal 1−D

applied wall heat flux. The resulting 2 − D conduction problem is parametrized in

terms of the Biot number Bi and the heat transfer coefficient distribution, expressed

by the change in magnitude r and the peak gradient γ, as well as the proximity of

the gradient region to a symmetry plane. Three model configurations are studied: a

region of large gradients that is located far away from lateral boundaries, and two

cases where the gradient region is located near a symmetry plane, viz. impingement

heat transfer due to a slot jet and a round jet.

It is shown that sharp spatial variations in heat transfer coefficient can lead to

significant error in Nusselt number determination when the wall heat flux is assumed

to be uniform. The error is shown to be amplified when the gradient region is located

near a symmetry plane. Finally, the wall heat flux is correlated using of an expres-

sion that captures the results of the analytical calculations for the ranges of Bi, r
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and γ studied, which can be used to evaluate experimental designs for heat transfer

measurement, and make corrections for the two-dimensional nature of heat transfer

in the foil and insulation.

The rest of this chapter is organized as follows: Section 7.2 presents the mathe-

matical framework used to analyze the two-dimensional conduction problem. Briefly,

it involves expansion of the unknown temperature field in terms of orthogonal func-

tions (Fourier series) and applying the boundary conditions to evaluate the unknown

coefficients. Section 7.2.1 discusses the problem of a slot jet for two cases, one when

the jet width is much larger than the gradient region, and another when it is com-

parable. Section 7.2.2 repeats the analysis for a circular jet. Section 7.2.3 defines a

heat flux correction factor, which can be applied to nominal 1 − D calculations in

order to account for two-dimensional effects. Section 7.3 presents the results of the

calculations, as well as correlations for the correction factor.

7.2 Mathematical Model

A typical test section for studying heat transfer to a jet from a constant-flux

involves the use of a resistive foil of thickness b2 (typically 50 mm) stretched over an

insulating surface, as is shown in Figure 7.1. The insulation is usually a low conduc-

tivity polymer, with or without an air gap to further increase the thermal resistance

beneath the foil. The present mathematical analysis can include variation in the fluid

jet temperature, for example compressible jets and film cooling applications. If one

accounts for such variations in the estimation of local heat transfer distribution, the

analytical procedure illustrated here is well suited to estimate the error in the heat

transfer distribution due to lateral conduction. The thickness b1 of the insulation

is chosen such that even for low values of the heat transfer coefficient, the thermal

resistance in the downward direction (b1/k1) is much greater than the thermal resis-
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tance above the foil (1/hmin). The thermal conductivities of the insulation and foil

are given by k1 and k2. The convective heat transfer coefficient on the top surface is

assumed to vary spatially, h = h(x) or h(r), as is the case with slot and radial jets.

Figure 7.1. (a) Schematic of the experimental setup for jet impingement cooling of
a metal foil with an insulation layer, (b) Geometry for slot jet cooling in cartesian
coordinates, (c) Geometry for circular jet cooling in cylindrical coordinates.

To obtain the local wall heat flux at every location, we solve for the temperature

distribution in a two-layer medium with heat generation in the top layer, which

is convectively cooled. Using the temperature solution in the multilayer body, an

expression for the heat flux correction factor is determined to account for the effect

of lateral conduction. The mathematical model discussed in this section assumes

thermal conduction in the insulation material to be anisotropic, as is often the case.

Heat transfer in the case of isotropic materials is discussed as a special case. The error

estimated by the correction factor results in quantification of the lateral conduction

effects within the foil in regions of sharp gradient of convective heat transfer.
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In order to understand the effects of gradient in heat transfer coefficient, we

choose an idealized distribution which is parametrized in terms of its maximum and

minimum values, as well as the region over which this variation occurs, expressed in

terms of the maximum slope. For the case of a gradient region that is far away from

any boundaries, we use the expression

h(x)

hmax
=

1−R tanh
(
γ
(
x−10
w

))
1 +R

(7.1)

where ρ = hmax/hmin and R = (ρ − 1)/(ρ + 1). The parameter γ is directly

proportional to the maximum slope in the heat transfer coefficient, and inversely

proportional to the region over which the variation occurs. The parameter w, cor-

responds to the width of the gradient region for the case of an asymmetric jet and

jet-half width for the case of a symmetric jet.

This expression is plotted in Figure 7.2 for ρ = 5 and various values of γ. The

function asymptotes to 1 at x/w = 5 and to 0.2 at x/w = 15 where x/w is in the range

of 0 - 20. The steepness of the gradient is characterized by the gradient parameter γ,

and is centered at x/w = 10.

For the case corresponding to a slot/plane jet, we use the distribution to rep-

resent the case of an impingement region where the gradient region is centered on 1,

adjacent to a symmetry plane. The expression is given by, h(x) = hmax(
1 +R tanh

(
γ
(
w
x
− x

w

)))
/(1+R). From observation, when x→ 0, tanh

(
γ
(
w
x
− x

w

))
≈ 1. As a result, in the above expression, h(x) reduces to hmax as x→ 0. A similar

expression in radial coordinates is used in calculations for a round jet in which the

spatial co-ordinate x in above equations for h(x) is replaced by the radial co-ordinate

r.
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Figure 7.2. Heat transfer coefficient as a function of x for different values of γ.

7.2.1 Heat transfer due to a slot jet

The geometry of the slot jet case is shown in Figure 7.1(b). Note that while

the heater foil (layer 2), typically a metal, is usually isotropic (k2x = k2y = k2),

thermal conduction in the insulation layer, typically a low thermal conductivity ma-

terial, may be orthotropic (k1x 6= k1y). The following parameters are used for non-

dimensionalization of this problem:
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x∗ =
x

w
; y∗ =

y

w
;

a∗ =
a

w
; b∗1 =

b1

w
; b∗2 =

b2

w

T ∗j =
k2(Tj − T∞)

g2 w2
(7.2)

Bi =
hmaxb2

k2

ψj =


0 j = 1

1 j = 2

For convenience, the (∗) notation is dropped in the remainder of this paper,

so that all subsequent variables are in dimensionless form. The governing energy

conservation equation is given by

∂2Tj
∂x2

+
kjy
kjx

∂2Tj
∂y2

+
k2 ψj
kjx

= 0 j = 1, 2 (7.3)

where heat generation occurs only in the metal foil layer due to Joule heating. It must

also be noted that the heat generation in the foil due to Joule heating is assumed to

be uniform. This is usually achieved by choosing a material with low temperature

coefficient of resistance. This equation is subject to the following boundary conditions

and interface conditions,

T1(x, 0) = 0 (7.4)

∂T2

∂y
+
Bi

b2

h(x) T2 = 0 y = b2 (7.5)

∂Tj
∂x

= 0 x = 0, a j = 1, 2 (7.6)
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T1(x, b1) = T2(x, b2) (7.7)

k1y

(
∂T1

∂y

)
y=b1

= k2

(
∂T2

∂y

)
y=0

(7.8)

Equations (7.7) and (7.8) represent the compatibility condition at the interface

where each layer is assigned its individual co-ordinate system with the origin at the

bottom-left corner of each layer. The following transformation absorbs the non-

homogeneity from the governing Equation (7.3),

Tjx, y = θj(x, y)− k2

kjx

ψj
2
y2 (7.9)

Based on the above transformation the transformed boundary value problem is

given by

∂2θj
∂x2

+
kjy
kjx

∂2θj
∂y2

= 0 j = 1, 2 (7.10)

subject to the following boundary conditions and interface conditions

θ1(x, 0) = 0 (7.11)

∂θ2

∂y
+
Bi

b2

h(x) θ2 = ψ2b2

(
1 +

Bi h(x)

2

)
y = b2 (7.12)

∂θj
∂x

= 0 x = 0, a j = 1, 2 (7.13)

θ1(x, b1) = θ2(x, b2) (7.14)

k1y

(
∂θ1

∂y

)
y=b1

= k2

(
∂θ2

∂y

)
y=0

(7.15)

96



Using Fourier series expansion and separation of variables, the temperature

solutions in layers 1 and 2 are found to be given by,

θ1(x, y) = C0(y) +
∞∑
n=1

Cn sinh(λny) cos(λnx) (7.16)

θ2(x, y) = C0

(
b1 +

y

k

)
+
∞∑
n=1

Cn (sinh(λnb1) cosh(λny) + (1/κ cosh(λnb1) sinh(λny)) cos(λnx) (7.17)

where λ2
n = β2

n(kjy/kjx) and βn = nπ/a. Substituting equation (7.17) in equa-

tion (7.12) results in a set of linear system of N + 1 equations in N + 1 variables,

namely C0, C1, C2 . . . CN where N is the number of eigenvalues considered in the solu-

tion. In order to determine these unknown coefficients, the principle of orthogonality

is used, resulting in,

C0

(
a

κ
+
Bi

b2

(
b1 +

b2

κ

)) a∫
0

h(x)dx

+
∞∑
n=1

Cn

(
Bi

b2

)
Pn

a∫
0

h(x) cos(λnx)dx =

a∫
0

F (x)dx (7.18)

C0

(
Bi

b2

)(
b1 +

b2

κ

) a∫
0

h(x) cos(λix)dx+ Ciλi
Sia

2

+
∞∑
n=1

Cn

(
Bi

b2

)
Pn

a∫
0

h(x) cos(λnx)cos(λix)dx =

a∫
0

F (x) cos(λix)dx (7.19)

where,

Sn = sinh(λnb1) sinh(λnb2) + (1/κ) cosh(λnb1) cosh(λnb2) (7.20)
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Pn = sinh(λnb1) cosh(λnb2) + (1/κ) cosh(λnb1) sinh(λnb2) (7.21)

F (x) = ψ2b2

(
1 +

Bi h(x)

2

)
(7.22)

Equations (7.18) and (7.19) are the result of the use of orthogonality principle

to obtain a linear system of N + 1 equations in N + 1 variables. The index i in

Equation (7.19) corresponds to the contribution of the diagonal terms of the matrix.

Note that the standard approach of using principle of orthogonality for constant

heat transfer coefficient results in explicit expressions for each unknown coefficient.

However, similar to other papers addressing space - dependent convective heat transfer

coefficient [49, 86, 87], in this case, since h is a function of x, a set of coupled, linear

algebraic equations is obtained. The coefficients, C0 and Cn s can be obtained by

solving this set of linear algebraic equations. The final temperature solution in each

layer is then given by substituting equations (7.16) and (7.17) in equation (7.9). The

mathematical treatment for a slot jet on an infinite plate is the same, however, an

appropriate length of the plate must be chosen during analysis.

7.2.2 Heat transfer due to a radial jet

The methodology for deriving the temperature distribution for a radial jet is

similar to a slot jet, except that the cylindrical coordinate system must be employed.

Further, because the effect of orthotropic thermal conduction in layer 1 is found to

be negligible, as discussed in Section 7.3, the derivation in this section is presented

for an isotropic insulation layer. Non-dimensionalization is first carried out using the

following equations:
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r∗ =
r

w
; z∗ =

z

w
;

a∗ =
a

w
; b∗1 =

b1

w
; b∗2 =

b2

w

T ∗j =
k2(Tj − T∞)

g2 w2
(7.23)

Bi =
hmaxb2

k2

ψj =


0 j = 1

1 j = 2

Similar to section 7.2.1, the (∗) notation is dropped in the remainder of this

section for convenience. In non-dimensional form, the temperature distribution is

governed by,

∂2Tj
∂r2

+
1

r

∂Tj
∂r

+
∂2Tj
∂y2

+ ψj = 0 j = 1, 2 (7.24)

subject to the following boundary conditions and interface conditions,

T1(r, 0) = 0 (7.25)

∂T2

∂z
+
Bi

b2

h(r) T2 = 0 z = b2 (7.26)

∂Tj
∂r

= 0 r = 0, a j = 1, 2 (7.27)

T1(r, b1) = T2(r, b2) (7.28)

k1

(
∂T1

∂z

)
z=b1

= k2

(
∂T2

∂z

)
z=0

(7.29)
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Equations (7.28) and (7.29) represent the compatibility condition at the inter-

face where each layer is assigned its individual co-ordinate system with the origin at

the bottom-left corner of each layer. Similar to previous section, a transformation is

introduced in order to absorb the non-homogeneity in the governing equation (7.24),

Tjr, z = θj(r, z)− ψj
2
z2 (7.30)

Based on the above transformation, the transformed boundary value problem

is given by,

∂2θj
∂x2

+
1

r

∂θj
∂r

+
∂2θj
∂z2

= 0 j = 1, 2 (7.31)

subject to the following boundary conditions and interface conditions

θ1(r, 0) = 0 (7.32)

∂θ2

∂z
+
Bi

b2

h(r) θ2 = ψ2b2

(
1 +

Bi h(r)

2

)
z = b2 (7.33)

∂θj
∂r

= 0 r = 0, a j = 1, 2 (7.34)

θ1(r, b1) = θ2(r, b2) (7.35)

k1

(
∂θ1

∂z

)
z=b1

= k2

(
∂θ2

∂z

)
z=0

(7.36)

Following a similar procedure as Section 7.2.1, the temperature solutions in

layers 1 and 2 are given by the following expressions,
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θ1(r, z) = C0z +
∞∑
n=1

Cn sinh(λnz) J0(λnr) (7.37)

θ2(r, z) = C0

(
b1 +

z

k

)
+
∞∑
n=1

Cn (sinh(λnb1) cosh(λnz) + (1/κ cosh(λnb1) sinh(λnz)) J0(λnr) (7.38)

where λn ’s are roots of J1(λna) = 0. Substituting equation (7.38) in equation

(7.33) results in a linear system of N + 1 equations in N + 1 variables. In order

to determine the coefficients, the principle of orthogonality is used, resulting in the

following set of algebraic equations in the unknown coefficients,

C0

(
a

κ
+
Bi

b2

(
b1 +

b2

κ

)) a∫
0

r h(r)dr

+
∞∑
n=1

Cn

(
Bi

b2

)
Pn

a∫
0

r h(r)J0(λnr)dr =

a∫
0

rF (r)dr (7.39)

C0

(
Bi

b2

)(
b1 +

b2

κ

) a∫
0

r h(r)J0(λir)dr + CiλiSiNλi

+
∞∑
n=1

Cn

(
Bi

b2

)
Pn

a∫
0

rh(r)J0(λnr)J0(λir)dr =

a∫
0

rF (r)J0(λir)dr (7.40)

where

Nλi =
a2

2
J2

0 (λia) (7.41)

F (r) = ψ2b2

(
1 +

Bi h(r)

2

)
(7.42)

Equations (7.39) - (7.41) are the result of the use of orthogonality principle in

radial systems to obtain a linear system of N + 1 equations in N + 1 variables. The
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index i in equations (7.40) and (7.41) corresponds to the contribution of the diagonal

terms of the matrix. In addition, equation (7.41) represents the norm integral in

radial systems [92]. Expressions for Sn and Pn are given by equations (7.20) and

(7.21) in Section 7.2.1. On solving the linear system of equations simultaneously, the

coefficients C0 and Cn s are determined, and thus, the temperature solution in each

layer is given by substituting equations (7.37) and (7.38) in Equation (7.30).

7.2.3 Heat flux correction factor

The heat flux correction factor needed to correctly account for lateral effects

due to spatial variation in the heat transfer coefficient is defined as follows,

q̄c =
(hmaxb2/k2) φ(x∗) T ∗2,top

(b2/w)2
− 1 =

Bi φ(x∗) T ∗2,top
(b∗2)2

− 1 (7.43)

Equation (7.43) is the dimensionless form of the heat flux correction factor, in

which T2,top is T2(x, b2) or T2(r, b2) for Cartesian and cylindrical coordinate systems

respectively. Note that the ’∗’ notation has been adopted only for Equation (7.43) in

this section. This is to distinguish between dimensional and dimensionless parameters

in the general definition of the heat flux correction factor.

Note that when the heat transfer coefficient h(x) is constant, the two terms in

the numerator h(x) (T2,top − T∞) and g2b2 are equal to each other based on overall

energy conservation, and thus q̄c reduces to zero. When there is a spatial variation in

h, Equation (7.43) accounts for the dimensionless correction factor in heat flux needed

as a result. Note that this correction needs to be computed based on the temperature

at the top of the two-layer structure, as given by the final results of Sections 7.2.1

and 7.2.2 for slot and circular jets respectively. For a fixed geometry and appropriate

choice of thermal conductivity ratio, the heat flux correction factor q̄c is a function
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of three non-dimensional parameters - Bi, ρ and γ. While the theoretical models

discussed above capture this dependence exactly, it is also desirable to determine

simple power law correlations to represent these theoretical results. Such correlations

could be used by experimentalists in the design of experiments and improvement in

the accuracy of heat transfer measurements. The following section discusses results

from this analysis.

7.3 Results and Discussion

Figure 7.3(a) illustrates the effects of lateral conduction for parameter values

Bi = 0.001, ρ = 5 and γ = 2, for an infinite plate, i.e. for the case where the gradient

region is far from any geometric boundaries. The peak positive and negative errors

are labeled as e+ and e−. For a packet of thermal energy generated in the foil at

a value of x just greater than 10, the path of least resistance is one that involves

lateral conduction through the foil, and convection into the fluid at x < 10. The

result is that around x = 10, the local wall-normal heat flux is no longer uniform, and

increases above the nominally constant value for x < 10, and decreases for x > 10.

In conventional methods of heat transfer measurements, this effect is not accounted

for due to the one dimensional nature of the problem, whereas the two-dimensional

analysis shown here accounts for this effect, resulting in greater accuracy.

For the case of a slot jet on a finite plate, Figure 7.3(b) shows a comparison

of the heat flux correction curves between an orthotropic insulation material and its

isotropic equivalent for Bi = 0.001, ρ = 5, γ = 2 and κ = 1000 where κ = k2/k1y due

to anisotropy and k1y equals to k1 for isotropic condition. Results indicate that there

is not much variation in the correction factor for the case where the in-plane thermal

conductivity is five times the out-of-plane thermal conductivity in the insulation ma-

terial. For all subsequent results discussed in this section, both the resistive heater
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(a) (b)

Figure 7.3. (a) Heat flux correction curve illustrating lateral conduction effects for a
slot jet over an infinite metal foil. (b) Comparison of finite plate heat flux correction
curves for isotropic insulation layer with an orthotropic case, where in-plane thermal
conductivity is five times the out-of-plane thermal conductivity.

Figure 7.4. Convergence in temperature solution as a function of maximum number
of eigenvalues.

foil and insulation material are considered to have isotropic properties. In order to

determine the number of eigenvalues required for accuracy of the temperature solu-

tion depend strongly on the values of ρ, γ and κ. Figure 7.4 plots the residual as a

function of x∗ along the y = b2 boundary for the case ρ = 5, γ = 2 and κ = 1000.
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The residual is defined based on equation (7.5) as the ratio of the heat flux at the

heater foil boundary exposed to jet impingement to the effect of Newton cooling, in

non-dimensional sense, Bi h(x) T2(x, b2)/b2. The residual characterizes how well the

solution satisfies equation (7.5). Figure 7.4 shows that as the number of eigenvalues

increases, the residual approaches the ideal value of 1. Around 60 eigenvalues are

needed for the residual to be nearly 1 over the entire range of x∗. There may be

significant error if a lower number of eigenvalues is used, particularly around x∗ = 1

which represents the gradient region in the flow field.

(a) (b)

Figure 7.5. Heat flux corrections for slot jet impingement over an infinite plate with
ρ = 5 and γ = 2, for (a) κ = 100, (b) κ = 1000.

(a) (b)

Figure 7.6. Dependence of slot jet infinite plate heat flux corrections on (a) ρ, (b) γ
κ = 1000 and Bi = 0.001.
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Figure 7.7. Heat flux corrections for slot jet impingement over a finite plate with
ρ = 5 and γ = 2, for κ = 1000.

(a) (b)

Figure 7.8. Dependence of slot jet finite plate heat flux corrections on (a) ρ, (b) γ
κ = 1000 and Bi = 0.001.

Figure 7.5(a) and 7.5(b) illustrate the effect of foil to insulation thermal con-

ductivity ratio, κ at varying Biot numbers for the case of a slot jet impinging on an

infinite plate. Figure 7.5(a) shows that for low foil-to-insulation conductivity ratio

and a low value of Biot number, a large fraction of heat (≈ 40%) flows inward through

the foil into the insulation, even for κ = 100. This is expected as the thermal resis-

tance offered by the insulation material is lower than that offered by the impinging

jet (i.e. hmin b1/k1 is O(1)). However, this is not desirable for experiments designed
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to calculate the heat transfer coefficient, as it leads to large q̄c, and hence incorrect

measurement of heat transfer. This can be improved by proper selection of foil and

insulation materials such that (hmin b1/k1 = Bi b κ/ρ >> 1), which is satisfied by

selecting the conductivity ratio greater than 1000. For the same set of parameters

and increased conductivity ratio, Figure 7.5(b) shows improved results in terms of

percentage errors. Regardless, the percentage error due to lateral conduction effect

is still large and can be further reduced by proper design of the experiments. For

example, both Figures 7.5(a) and 7.5(b) show significantly reduced error when the

Biot number is large.

Figure 7.9. Heat flux corrections for slot jet impingement over a disk with ρ = 5 and
γ = 2, for κ = 1000.

Similar results for slot jets are shown in Figures 7.6(a) and 7.6(b) where the non-

dimensional quantities, ρ and γ are varied at a constant Biot number of 0.001. These

results indicate that as the ratio of maximum to minimum heat transfer coefficient

increases, the resulting error increases, as expected. The parameter γ, as described
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(a) (b)

Figure 7.10. Dependence of slot jet finite plate heat flux corrections on (a) ρ, (b) γ
κ = 1000 and Bi = 0.001.

earlier determines the gradient region of the jet. In Figure 7.6(b) for γ = 5, the profile

of the jet is that of a step, and maximum error in heat flux is observed. This is because

due to sudden change in the jet profile, lateral effects are predominant as compared

to the γ = 0.5 case, where the jet profile does not encounter an extreme step change.

Most lab-scale experiments are analyzed by considering a symmetric profile for the

jet. This is a reasonable approximation to make, however by forcing the symmetric

condition, the percentage error increases as shown in Figure 7.7. For instance, the

peak error (e+) in Figure 7.7 is almost double of its infinite case equivalent Figure

7.5(b) for a Biot number of 0.0001. The larger error primarily occurs due to the

symmetric boundary condition forced on the side walls of the foil and insulation at

x = 0. Figure 7.8 illustrates the variation of r and g for Biot number of 0.001 for a

slot jet impinging on a finite length plate. Peak errors increase with increasing values

of ρ and γ, as expected.

Figure 7.9 illustrates the comparison between the errors for a radial jet imping-

ing on a two layered disk for κ = 1000, ρ = 5 and γ = 2. The peak error (e−) is

appreciable for the Bi = 0.0001 case. Also in addition, with reduction in magnitude

of the Biot number, the conduction effects become predominant and hence the error
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increases. Figure 7.10 illustrates the variation in the error for different values of ρ

and γ while maintaining constant values for Bi and κ.

(a) (b)

Figure 7.11. Correlations for peak percentage error for infinite plate (a) positive error,
(b) negative error.

(a) (b)

Figure 7.12. Correlations for peak percentage error for finite plate (a) positive error,
(b) negative error.

The mathematical analysis in Section 7.2 is used to calculate the correction

factor and peak percentage errors for a wide range of test cases spanning the Bi, ρ

and γ parameter space relevant for typical experimental conditions. Based on the

results, correlations for estimating the percentage errors for all cases discussed in

Section 7.2 are determined. These results may be useful to experimentalists in two

ways, by both facilitating better experimental design and by allowing for corrections
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(a) (b)

Figure 7.13. Correlations for peak percentage error for finite plate (a) positive error,
(b) negative error.

to measured data. The ratio of thermal conductivity of heater foil to insulation (κ)

rarely exceeds 100 in practice. Using these values, the experimentalist can use the

correlations given in Figures 7.11 - 7.13 to a priori estimate the error for a given Biot

number, and thus adjust the dimensions of the heater foil and/or insulation thickness

accordingly. This yields bounds on the maximum over- and under-estimation of the

heat transfer coefficient in the vicinity of a gradient region. The correlations are,

strictly speaking, valid only for the peak over- and under-estimate of the heat transfer

coefficient, and do not give local corrections. However, one can observe that these

maximum deviations occur at either end of the gradient region. Therefore, some

information about the distribution can be obtained in the region where the errors are

highest. To obtain a correction everywhere, one would have to repeat the analytical

procedure presented in the paper. A power law expression is used to represent this

data. The pre-factor and exponents in the power law are determined so as to minimize

the least-squares error between the error predicted by the theoretical model and the

power law. This procedure successfully provides correlations to accurately capture

the theoretical model results for each case. Figure 7.11 presents the error from the

theoretical model and from the power-law correlation for a slot jet impinging upon an

infinite plate. The final form of the power law correlation is also shown. The ideal 45◦
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line is shown. Subsequently, correlations with similar capabilities to represent results

from the theoretical models are obtained for slot jets (finite plate) and circular jets

(disk), are illustrated as Figures. 7.12 and 7.13. In each case, the correlation captures

nearly all data within a 10% error band. This accuracy could be improved further by

neglecting test cases corresponding to extremely poor experimental design.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

General temperature solutions for two class of problems in heat transfer have

been derived. The results are compared to finite element models and good agreement

is to be found. These results can come useful in planning thermal based therapeutics

for diseases like cancer and thermal management in energy storage/conversion systems

such as Lithium-ion cells.

Chapter 2, presents an analytical solution for steady state bioheat transfer in

multilayer structure such as skin. This may be of significant technological impor-

tance since several cancer treatment therapies are thermally driven, and since heat-

ing and cooling of skin is carried out for various applications. The effect of heat

generation within a tumor region in the skin, as well as external boundary condi-

tions are accounted for in the models, which are found to be in good agreement

with finite-element simulations. Besides improving the theoretical understanding of

bioheat transport in a multilayer structure, the results discussed here is useful for es-

timating the thermal penetration depth which can help medical practitioners design

novel thermal based therapeutics. Chapter 3, presents an analytical solution to the

transient Pennes bioheat equation for multilayer perfused tissue. A detailed deriva-

tion of the analytical solution is presented. An interesting mathematical observation,

for existence of both real and imaginary eigenvalues is derived and illustrated. The

solution was verified against an equivalent steady state temperature solution derived

from methodology developed in Chapter 2. Note that in both chapters each layer by

itself is homogeneous and hence has a constant thermal conductivity although differ-
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ent layers take different values. In Chapter 4, we relax this condition by assuming the

tumor and surrounding tissue to have different thermal conductivity. A procedure

based on Galerkin method is applied to determine the temperature anywhere in the

vascular tissue subject to nanoparticle based hyperthermia therapy. The specific ab-

sorption rate (SAR) is an important parameter in planning a thermal based therapy

and tumors of different shapes with different thermophysical properties will require

different profiles for nanoparticle distributions and thus different SAR profiles. The

work presented in chapter 4 can be viewed as a general temperature estimation tool

in predictive modeling of SAR for tumors of various shapes and characteristics. In

addition, the methodology developed here provides a highly accurate estimate of the

temperature field factoring different physical processes that are known to occur in

biological systems as suggested by the Pennes bioheat equation. In addition, in many

other biological applications such as cryo-cooling a certain portion of the skin surface

is exposed to heat transfer. The heat transfer in such cases varies as a function of

space and one can compute the temperature field using such predictive models that

can help experimentalists and medical practitioners in their discipline. For example,

results developed here can be considered as solution for the direct problem for solving

inverse problems in optimizing SAR distributions or temperature dependent blood

perfusion rate to prevent tissue necrosis.

Solid bodies generating heat and subject to variable heat transfer is a fundamen-

tal heat transfer problem. Chapter 5, addresses the classical problem of heat transfer

between a solid and the cross flow of a cooling fluid. This chapter presents an ana-

lytical technique which accounts for spatial variation of heat transfer on the cylinder

surface to predict the temperature field inside the cylinder. The results presented in

this chapter contribute to the fundamental theoretical understanding of an important

heat transfer problem. In addition, the results may also help in understanding heat
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transfer in energy conversion devices based on Li-ion cells that generate significant

heat, and are known to have significant anisotropy in thermal conduction. In chapter

6, an extension of the same principle developed in chapter 5 is applied to spherical

systems. The analytical technique presented here accounts for spatial variation of

the heat transfer coefficient on the sphere surface, as well as orthotropic thermal con-

duction within the sphere. The temperature field inside the sphere is expressed in a

series form, where the coefficients are determined by solving a set of linear algebraic

equations. Results derived from two different approaches agree well with each other.

The results presented in this chapter contribute towards the understanding of a clas-

sical heat transfer problem, and enables the analysis of an orthotropic sphere which is

not possible using commercial CFD packages. This chapter may contribute towards

the development of design tools for thermal management of heat-generating spherical

systems with realistic convective heat transfer coefficients. Chapter 7, concludes the

discussion on variable heat transfer problems by presenting an application related to

heat transfer measurements by providing a tool for correction of lateral conduction

error that prevails in the experimental measurements for heat transfer coefficient. A

theoretical procedure to account for lateral thermal effects within a jet-cooled foil

has been derived. The derivation provides a means for calculating a correction fac-

tor in the traditional heat transfer measurement methodology that accounts for two

dimensional nature of thermal transport due to spatial variation in the heat transfer

coefficient. Since an impinging jet is known to present sharp gradients in the heat

transfer coefficient, accounting for these effects is important. Analytical solutions for

the temperature distribution are derived for both slot and circular jets for a foil with

insulation material at the bottom. Results indicate that the correction factor is most

sensitive and is inversely proportional to the Biot number, in addition to also being

dependent on ρand γ . Correlations are obtained for various experimental conditions
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that closely predict the peak errors obtained from the theoretical analysis. While the

anisotropic nature of an insulating material is also accounted for in the theoretical

model, results indicate that variation from the isotropic case is minimal. Results from

this work may help improve the heat transfer measurements and design of equipments

that encounter sharp gradients in heat transfer due to external flow conditions.

Finally, as part of future directions of this dissertation predictive modeling for

temperature distribution in tissue will be extended for realistic SAR expressions ob-

tained from experiments or clinical trial studies. Furthermore, the mathematical

procedure will be extended to study the effect of tissue porosity in bioheat transfer.

A porous tissue models accounts for non-Fourier heat conduction models based on

dual phase lag theory and thus provide additional challenges in developing general

temperature solution. Hence, careful consideration in developing the mathematical

treatment to handle such problems is part of ongoing research. The mathematical

procedure developed for accounting variable heat transfer coefficient can be efficiently

applied towards estimating core temperature of solids from surface Infrared Thermog-

raphy measurements [112] and in developing a thermal management tool for liquid

jet impingement cooling of high heat flux microprocessors.
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