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ABSTRACT

Techniques for Spatio-temporal Analysis of Trajectory Data

Praveen Kumar Tripathi, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Ramez Elmasri

The goal of this thesis is to develop novel techniques for the analysis of spatio-

temporal trajectory data. Recent advances in tracking devices such as Global Posi-

tioning System (GPS) and mobile phones have resulted in an abundance of spatio-

temporal trajectory data. Because of the importance of both the space and time

dimensions in trajectory data, different analysis techniques are needed. The analysis

techniques explored in this thesis involve two variations: point based analysis and

trajectory based analysis.

Point based analysis has been done to identify the hot spots in the trajectory

dataset (hurricane data). Here we consider the trajectory data as a point data set,

comprised of specific points along the trajectory where line segments start and end.

This analysis involves different combinations of spatial, temporal and non-spatial

attributes. We use density based clustering algorithms DBSCAN to identify these

hot spots. We extend the DBSCAN algorithm to incorporate non-spatial attributes

(for example, wind speed and time) with spatial attributes. This approach has also

been used to identify the starting region and the landing regions of hurricanes.
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In the trajectory based analysis, we focus on trajectory simplification (smooth-

ing), outlier filtration and directional analysis. Some trajectory data sets are noisy

in nature, therefore we need some pre-processing to remove the noise. In the pre-

processing stage, we smooth the trajectories to remove some trajectory points to

obtain smooth and directionally consistent trajectories. We propose methods for

smoothing the trajectories considering the directional attribute, and then propose a

framework for the directional analysis of the trajectory data to obtain the directional

patterns.

The framework involves segmentation of the smooth trajectories into direction-

ally consistent categories of sub-trajectories. We identify 16 directional categories for

this task. After this stage of the framework, we performs outlier filtration using a

novel convex hull based approach. The outlier filtration stage is followed by a clus-

tering algorithm on these sub-trajectories to obtain the directional patterns. For the

evaluation of the proposed framework we used two real datasets: a hurricane data set

and an animal movement data set.
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CHAPTER 1

Introduction

Trajectory data of an object is obtained when its consecutive locations are

monitored over a sequence of time in multi-dimension (two or three dimensional)

space [3]. Some examples of applications involving trajectory data are: global po-

sitioning system (GPS), hurricane and storm tracking and animal movement. Due

to the recent advances in mobile technology many trajectory data sets have become

readily available. The analysis for this data is vital in knowing and managing the

traffic patterns of vehicles, monitoring and predicting weather conditions, examining

wild animal behavior and movement. A number of attempts have been made in this

domain to analyze these kinds of data set for example in [4–12]

In this thesis we propose novel techniques for the spatio-temporal analysis of

trajectory data. These techniques basically involve point based and trajectory based

concepts.

We perform point based analysis to extract dense regions in the trajectory data

set to identify the prominent regions of activity. This analysis is done on hurricane

data to identify the dense regions and hence the hot spots of the hurricane activ-

ity. This analysis involved clustering of the hurricane data while considering different

combinations of spatial, non-spatial and temporal attributes. We used two density

based clustering algorithms which are DBSCAN [13] and CLIQUE [14]. We further

identify the regions from where the hurricanes start and the regions where the hur-

ricanes land. This kind of point based analysis of the trajectory data (hurricane) is

1



novel. It is an important analysis as it provides some key information which would

be very valuable to the domain experts.

Second, we propose a directional framework for trajectory data analysis. This

framework considers the directional attribute of a trajectory as its most important

attribute. We segment trajectories into directional sub-trajectories and group them

into similar directional categories. We consider 16 directional categories in this work.

This segmentation is done to keep the sub-trajectory directionally consistent. In

each directional category we do outlier filtration using a novel convex hull based

method. Finally we obtain the final directional patters as the clusters in the respective

directional category. We applied this framework to hurricane and animal movement

data. This kind of directional analysis has not been done before. It is a valuable

analysis for map matching problems and traffic management problems.

Another important problem addressed in this work relates to the simplification

of trajectories. Some trajectories like animal movement tend to be very chaotic. In

order to obtain a general global patterns (directional) from these trajectories, we need

to simplify them. We identify that these non-smooth behavior of the trajectories are

mostly marked by the frequent sharp angular movements. We propose a trajectory

smoothing technique where we identify these sharp angular turns and remove those

from the original trajectories.

The present work is different from previous works on trajectory data analysis

as discussed in the next several paragraphs.

The article [5] proposes a partition-and-group framework for clustering trajec-

tory data. Using the concept of minimum descriptive length (MDL) the original

trajectories are segmented. These segments are called trajectory partitions, which

are then clustered using a modified version of DBSCAN algorithm, which clusters

the line segments. Finally the clusters are represented by representative trajectories.

2



This work is different from our work because in this paper the trajectories are seg-

mented into line segments and these line segments are clustered. In our work we

consider the sub-trajectories which need not be line segments but can be polylines

with a consistent direction. The criteria for segmentation in our work is directional

consistency, whereas [5] uses MDL as the segmentation criteria.

In [6], a clustering algorithm is given for the trajectory data that uses a combi-

nation of techniques from data mining, computational geometry and string processing.

In [9], the trajectory clustering technique of [5] has been extended for trajectory clas-

sification. A spatio-temporal pattern called convoy has been proposed in [11]. In this

article the authors propose various efficient algorithms for convoy detection. In [7], a

similar technique to [11] for mining spatio temporal pattern called flocking behavior

is proposed. A flock refers to the set of the trajectories that remain close to each

other for some reasonable time interval. In a flock pattern mining both the time as

well as the spatial attributes are required. All these works are related to trajectories

and trajectory clustering, but none of these methods consider the directional aspect

of the trajectories as we have done in this work.

Trajectory smoothing has been addressed in [15–17]. In [15] the authors pro-

pose a trajectory smoothing method that preserves the direction information. How-

ever, our approach to trajectory smoothing is very different compared to these works.

We do smoothing as a preprocessing step for the directional analysis. Therefore, we

do smoothing to capture the global directional orientation while removing the local

arbitrary sharp angular movements.

This thesis is organized as follows.

• Chapter 2: Related Work and Background: Describes the related work

and the background.
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• Chapter 3: Extracting dense regions from hurricane data: This work

has been done on a hurricane dataset. Here we consider the problem of iden-

tifying the dense regions (hot spots) of hurricane activity. This work considers

the trajectory data as point data and used DBSCAN algorithm. The analysis

involves clustering using only spatial attributes (longitude and latitude), clus-

tering with spatial as well as non spatial attribute (wind speed) and clustering

involving spatial as well as temporal attribute (relative time). The clustering

results under different combinations of parameters (spatial only, spatial and

non spatial, and spatial and temporal) have been compared. The regions of the

storms origin and landing have been also identified.

• Chapter 4: Directional framework for trajectory data analysis: In

this work we analyzed trajectory datasets from the directional point of view. We

believe that direction is one of the main attribute of a trajectory. We propose a

framework for the directional analysis of trajectory dataset. In this framework

16 directions have been identified. On the basis of these directions, trajectories

are segmented to retain their directional consistency. After the segmentation

process, the outlier trajectories in each directional class are removed using a

novel convex hull based filtration process. At the end we identify the directional

patterns as the directional clusters. These directional clusters are identified

using DBSCAN algorithm which works on sub-trajectories as the basis data.

• Chapter 5: Trajectory Smoothing and Simplification: In this chapter

we propose two novel methods for smoothing trajectory data sets. We also

highlight the significance of our approach and the weakness with the existing

window based trajectory smoothing concepts.

• Chapter 6: Conclusion: This chapter will conclude the thesis.
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CHAPTER 2

Related Work and Background

The abundance of spatio-temporal tracking data in applications like global po-

sitioning system (GPS), hurricane and storm tracking data and animal movement

data have made their analysis very important. This analysis is vital in knowing and

managing the traffic pattern of vehicles, monitoring and predicting weather condi-

tions, examining wild animal behavior and movement as well as analyzing the spread

of a disease. A number of attempts have been made in this domain to analyze these

kinds of data sets. Some of these analysis could be found in [4–12]

2.1 Related Work

In [8] a non-parametric approach to spatial trajectory clustering, called DEN-

TRAC (DENsity based TRAjectory Clustering) is proposed. DENTRAC is a tra-

jectory based approach which uses the non-parametric density estimation technique.

The post processing of the obtained spatial clusters is performed to get more domain

specific knowledge.

The article [5] proposes a partition-and-group framework for clustering the tra-

jectory data. Using the concept of minimum descriptive length (MDL) principle, the

most important points on the trajectory, called characteristic points, are identified.

The original trajectories are now represented by connecting the consecutive charac-

teristic points. Each segments thus obtained are called trajectory partitions. These

trajectory partitions are then clustered using a modified version of DBSCAN algo-
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rithm, which clusters the line segments. Finally the clusters are represented by the

representative trajectories.

In [6], a clustering algorithm is given for the trajectory data that uses the combi-

nation of techniques from data mining, computational geometry and string processing.

The trajectories are preprocessed to remove noise after which they are segmented into

sub-trajectories. These segments are then classified and accordingly labeled on their

geometric properties e.g., “wide left right” or “short straight segments”. The next

phase of the algorithm finds the frequent occurring substrings; these are called the

motifs. The algorithm then maps the sub trajectories corresponding to the motifs

to some feature space. The next stage performs the density based clustering and the

final stage does the post processing of the clusters.

In [10] a novel algorithm called Slicing-STS-Miner has been proposed for mining

the sequential patterns from the spatio-temporal data. This analysis is very valuable

for analyzing the evolution of phenomena in spatial and temporal domain.

A spatio-temporal pattern called convoy has been proposed in [11]. Convoy

is defined as the collection of trajectories that move together for a significant time.

Closeness of trajectories at different time is computed on the basis of the density con-

nected property [13]. In this article the authors propose various efficient algorithms

for convoy detection.

In [7], a similar technique to [11] for mining spatio-temporal pattern called

flocking behavior is proposed. The flock refers to the set of the trajectories that remain

close to each other for some reasonable time interval. Closeness between trajectories

is based on the size of a disc through which trajectories should pass. Therefore, unlike

convoys, flock patterns are always dependent on the disc size assumption. In the flock

pattern mining both the time as well as the spatial attributes are required.
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In the article [9], the trajectory clustering technique of [5] has been extended for

trajectory classification. In this article two levels of clustering; namely, the region-

based and trajectory based clustering is done. Clustering is used to find the dis-

criminative features for classification. The first level of the clustering is region level

which identifies the higher level, region based features of the trajectories. The second

level of the clustering identifies the lower level movement based features. These two

clustering collaboratively identify the high-quality features for the classification.

In [12] the authors propose a classification technique for the trajectory data

which incorporates the duration of the trajectory as an important feature.

Trajectory simplification (smoothing) has been addressed in [15–17]. These

methods can be classified as 1) position preserving and 2) direction preserving. Sim-

plification methods presented in [16] and [17] belong to position preserving category

whereas, the method in [15] belongs to direction preserving category. In the position

preserving simplification method trajectories are simplified considering a positional

threshold error, whereas in direction preserving simplification methods the simplifi-

cation threshold is an angle.

2.2 Background

2.2.1 Trajectory data

In this section, we give formal definitions for a trajectory and its major defining

characteristics.
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Figure 2.1: Trajectory example

2.2.1.1 Trajectory Definition

A trajectory Tri of size s is a sequence of points [p1, p2, . . . , ps], where p1 is the

initial point, ps the final point and pi is the ith sampled point in Tri. The trajectory

in Figure 2.1, [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10] is of size s = 10.

A given trajectory can be characterized by the following attributes:

• Size (s): of trajectory in Figure 2.1 is 10.

• Trajectory segments (Li): A trajectory Tri consists of line segments Li = pipi+1

which are formed by joining the ith and i+ 1th consecutive points in it.

– The line segments in a trajectory can be characterized by their length

len(Li). This length will be the distance between its end points which

are pi and pi+1 .We take the Euclidean distance as the distance between

the end points of the line segments, which becomes the length of the line

segments forming a trajectory.
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– If the size of the trajectory is s, then it will have s− 1 line segments in it.

• The angular attribute of the trajectory is computed considering the angle be-

tween its Li and Li+1 consecutive line segments. Which signifies that we need

to consider three successive points which are pi, pi+1 and pi+2. More formally

let us denote the angle between the two line segments pipi+1 and pi+1pi+2 as

angle(pipi+1, pi+1pi+2) which is measured in anti-clockwise rotation from pipi+1

to pi+1pi+2. Finally we consider the angle:

θ = min(angle(pipi+1, pi+1pi+2), 360− angle(pipi+1, pi+1pi+2)) (2.1)

This formulation means that we consider the smaller of the angles between the

two line segments considered here.

2.2.2 DBSCAN

DBSCAN is a density based clustering algorithm [13]. It has two important pa-

rameters called the MinPts and MinDst. These two parameters determine the density

of the data to be clustered. For a point to be evaluated as dense, we need to look at

a neighborhood of size MinDst centered around it. In this neighborhood there should

be at least MinPts number of data points to make this particular data item dense. On

the basis of the density of the data points in the data set, DBSCAN identifies three

types of points viz., 1) core points, 2) boundary points and 3) noise points. Fig-

ure 3.1 gives a scenario of the data points and distinguishes between the three kinds of

data points. Formally, these points are defined on the basis of MinPts−neighborhood,

viz., (NMinPts
(p)) for a point p in the dataset D.

NMinPts
(p) = (a|a ∈ D and dist (p, a) ≤MinDst) (2.2)
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Figure 2.2: DBSCAN Types of data points: Core points, Boundary points and Out-
liers

For every point p in the dataset D, its MinPts−neighborhood, viz., (NMinPts
(p))

is determined on the basis of the parameter MinDst and similarity measure viz.,

dist (p, a) (for example, Euclidean distance), between the point and its neighbors. If

the size of NMinPts
(p) for a particular point p, is not less than MinPts then the point

is considered a core point. If the point p is not core but it lies in the NMinPts
(q) of

a core point q, then it is called a boundary point. If it is not a core point and also

does not lie in the neighborhood of any core point, then it is called an outlier (see

Figure 2.2).

To define the clusters in terms of DBSCAN, three more concepts have been

defined, these are:

1) directly density reachable, 2) density reachable and 3) density connected. A

point q will be directly density reachable only from a core point (p), only when it lies
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Algorithm 1 The DBSCAN Algorithm

DBSCAN(D,MinDst,MinPts)

C = 0

for all unvisited point P in dataset D do

mark P as visited

NeighborPts = regionQuery(P,MinDst)

if sizeof(NeighborPts) < MinPts then

mark P as NOISE

else

C = nextcluster

expandCluster(P,NeighborPts, C,MinDst,MinPts)

end if

end for

in the NMinPts
(p). For example, point q is directly density reachable from the core

point p in Figure 2.2. Similarly a point t would be density reachable from a core point

p, if there is a sequence of data points {x1, x2, . . . , xn|xi ∈ D}, where xi is directly

density reachable from xi−1, and also x1 = p, whereas xn = t. For example point v is

density reachable from core point p in Figure 2.2. Similarly the density connectivity

between two points a and b in the data set is defined as the existence of a core point c

such that the points a and b are density reachable from c. For example in Figure 2.2,

points q and u are density connected with respect to the core point s (also r).

A cluster C is defined as the subset of objects satisfying two criteria: 1) Con-

nected: means that ∀p, q ∈ C, p and q are density connected, 2) Maximal: It means

that ∀p, q, if p ∈ C and q is density reachable from p, then q ∈ C.

The structure of the DBSCAN is given in Algorithm 4, Algorithm 5 and Algorithm 6.
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Algorithm 2 expandCluster

expandCluster(P,NeighborPts, C,MinDst,MinPts)

add P to cluster C

for all each point P ′ in NeighborPts do

if P’ is not visited then

mark P ′ as visited

NeighborPts′ = regionQuery(P ′,MinDst)

if sizeof(NeighborPts′) >= MinPts then

NeighborPts = NeighborPts joined with NeighborPts′

end if

end if

if P ′ is not yet member of any cluster then

add P ′ to cluster C

end if

end for

2.3 Summary

In this chapter, we discuss previous work, and formally defined the trajectory

concepts. We also gave an overview of DBSCAN [13], which is used for spatial

clustering in our work.

Algorithm 3 regionQuery

regionQuery(P,MinDst)

return all points within P ′s MinDst − neighborhood (includingP )
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CHAPTER 3

Extracting Dense Regions From Hurricane Trajectory Data (Drafted from [1])

3.1 Introduction

The abundance of spatio-temporal tracking data in applications like global po-

sitioning system (GPS), hurricane and storm tracking data and animal movement

data have made their analysis very important. This analysis is vital in knowing and

managing the traffic pattern of vehicles, monitoring and predicting weather condi-

tions, examining wild animal behavior and movement as well as analyzing the spread

of a disease. A number of attempts have been made in this domain to analyze these

kinds of data sets. Some of these analysis could be found in [4–12]

For our task of identifying the dense regions of hurricane activity, we use a

clustering algorithm called DBSCAN [13]. Clustering is a very useful task in data

mining, which groups similar objects (physical or abstract) together [18]. The weather

trajectory data has been analyzed using clustering algorithms in [5] and [6] (see

Section 2).

Since the hurricane data is in the form of a trajectory, that represents the spatial

locations of hurricane at different time instances, DBSCAN has been used which is a

spatial clustering algorithm. For the current analysis we consider the hurricane data

as point data, unlike the approach in [5] and [6]. This approach has been motivated

by the need of the analysis and also by the fact that the hurricane trajectory lengths

are different.

We cluster the data to obtain dense regions that effectively identify the hot

spots for the storm activity. These dense regions have been identified considering
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different combinations of parameters. Initially we do only the spatial dense regions

identification considering latitude and longitude, then we incorporate wind speed also

as an additional attribute. This has been done to evaluate the impact of the non spa-

tial attribute on the dense regions identification. Finally we do clustering considering

the spatial as well as the temporal attribute to identify the spatio-temporal dense re-

gions. For this analysis we consider the relative time framework as we are interested

in the storm progression. We normalize the temporal value in the range of [0− 1], to

handle the different length hurricanes. Our framework for combining the spatial and

non-spatial attributes is inspired by the approach in [4].

We identified some dense regions that would be useful for the domain experts.

First the locations from where the storms are most likely to originate, second the

locations where the storms are most likely to land and finally, the regions that have

been mostly affected by the storm activity. For the storm staring location identi-

fication, we cluster the initial portion of the hurricane, whereas, for the potential

storm landing locations we cluster the last portion of the hurricane trajectory. The

clustering considering the whole hurricane length data will find out the dense regions

of high storm activity.

We have used the hurricane (Atlantic region) data set for 50 years from 1950

to 1999. The data set was obtained from [19]. The data has six attributes, which

are latitude, longitude, time, wind speed, pressure, and status. The data has been

sampled in the interval of 6 hours. The dataset has 15319 data points and 496

trajectories.

3.2 Related work

In this section, we give a brief overview of eight related articles [5–12].
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In [8] a non-parametric approach to spatial trajectory clustering, called DEN-

TRAC (DENsity based TRAjectory Clustering) is proposed. DENTRAC uses the

non-parametric density estimation technique. The post processing of the obtained

spatial clusters is performed to get more domain specific knowledge.

The article [5] proposes a partition-and-group framework for clustering the tra-

jectory data. Using the concept of minimum descriptive length (MDL) principle,

most important points on the trajectory called characteristic points are identified.

The original trajectories are now represented by connecting the consecutive charac-

teristic points. Each segments thus obtained are called trajectory partitions. These

trajectory partitions are then clustered using a modified version of DBSCAN algo-

rithm, which clusters the line segments. Finally the clusters are represented by the

representative trajectories.

In [6], a clustering algorithm is given for the trajectory data that uses the combi-

nation of techniques from data mining, computational geometry and string processing.

The trajectories are preprocessed to remove noise after which they are segmented into

sub-trajectories. These segments are then classified and accordingly labeled on their

geometric properties e.g., “wide left right” or “short straight segments”. The next

phase of the algorithm finds the frequent occurring substrings; these are called the

motifs. Algorithm then maps the sub trajectories corresponding to the motifs to

some feature space. The next stage performs the density based clustering and the

final stage does the post processing of the clusters.

In [10] a novel algorithm called Slicing-STS-Miner has been proposed for mining

the sequential patterns from the spatio temporal data. This analysis is very valuable

for analyzing the evolution of phenomena in spatial and temporal domain.

A spatio-temporal pattern called convoy has been proposed in [11]. In this

article authors propose various efficient algorithms for the convoy detection.
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In the article [9], the trajectory clustering technique of [5] has been extended for

trajectory classification. In this article two levels of clustering; namely, the region-

based and trajectory based clustering is done. Clustering is used to find the dis-

criminative features for classification. The first level of the clustering is region level

which identifies the higher level, region based features of the trajectories. The second

level of the clustering identifies the lower level movement based features. These two

clustering collaboratively identify the high-quality features for the classification.

In [12] authors propose a classification technique for the trajectory data which

incorporates the duration of the trajectory as an important feature.

In [7], a similar technique to [11] for mining spatio temporal pattern called the

flocking behavior is proposed. The flock refers to the set of the trajectories that

remain close to each other for some reasonable time interval. In the flock pattern

mining both the time as well as the spatial attributes are required.

3.3 Trajectory Clustering on Point Data

In our approach we have considered the trajectory data set as consisting of just

the individual data points in the trajectories. In this analysis we are not constraining

these points to belong to their respective parent trajectory or sub trajectory by en-

forcing them to belong to a line segment or a sequence of line segments as has been

done in [5] and [6]. Since the core algorithm behind our analysis is DBSCAN [13] we

review that algorithm first.

3.3.1 DBSCAN

DBSCAN is a density based clustering algorithm. It has two important param-

eters called the MinPts and MinDst. These two parameters determine the density of

the data to be clustered. For a point to be evaluated as dense, we need to look at a
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neighborhood of size MinDst centered around it. In this neighborhood there should

be at least MinPts number of data points to make this particular data item dense. On

the basis of the density of the data points in the data set, DBSCAN identifies three

types of points viz., 1) core points, 2) boundary points and 3) noise points. Fig-

ure 3.1 gives a scenario of the data points and distinguishes between the three kinds of

data points. Formally, these points are defined on the basis of MinPts−neighborhood,

viz., (NMinPts
(p)) for a point p in the dataset D.

NMinPts
(p) = (a|a ∈ D and dist (p, a) ≤MinDst) (3.1)

Figure 3.1: DBSCAN Types of data points: Core points, Boundary points and Out-
liers

For every point p in the dataset D, its MinPts−neighborhood, viz., (NMinPts
(p))

is determined on the basis of the parameter MinDst and similarity measure viz.,
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Algorithm 4 The DBSCAN Algorithm

DBSCAN(D,MinDst,MinPts)

C = 0

for all unvisited point P in dataset D do

mark P as visited

NeighborPts = regionQuery(P,MinDst)

if sizeof(NeighborPts) < MinPts then

mark P as NOISE

else

C = nextcluster

expandCluster(P,NeighborPts, C,MinDst,MinPts)

end if

end for

dist (p, a) (for example, Euclidean distance), between the point and its neighbors. If

the size of NMinPts
(p) for a particular point p, is not less than MinPts then the point

is considered a core point. If the point p is not core but it lies in the NMinPts
(q) of

a core point q, then it is called a boundary point. If it is not a core point and also

does not lie in the neighborhood of any core point, then it is called an outlier (see

Figure 3.1).

To define the clusters in terms of DBSCAN, three more concepts have been

defined, these are:

1) directly density reachable, 2) density reachable and 3) density connected. A

point q will be directly density reachable only from a core point (p), only when it lies

in the NMinPts
(p). For example, point q is directly density reachable from the core

point p in Figure 3.1. Similarly a point t would be density reachable from a core point
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p, if there is a sequence of data points {x1, x2, . . . , xn|xi ∈ D}, where xi is directly

density reachable from xi−1, and also x1 = p, whereas xn = t. For example point v is

density reachable from core point p in Figure 3.1. Similarly the density connectivity

between two points a and b in the data set is defined as the existence of a core point c

such that the points a and b are density reachable from c. For example in Figure 3.1,

points q and u are density connected with respect to the core point s (also r).

A cluster C is defined as the subset of objects satisfying two criteria: 1) Con-

nected: means that ∀p, q ∈ C, p and q are density connected, 2) Maximal: It means

that ∀p, q, if p ∈ C and q is density reachable from p, then q ∈ C.

The structure of the DBSCAN is given in Algorithm 4, Algorithm 5 and Algorithm 6.

3.3.2 Dense region extraction

Our contribution in this article is in analysis of the hurricane data to find

the regions of high storm activity. We used DBSCAN algorithm which uses the

parameter MinDst for finding the neighborhood and hence the density of the data

points. Since the hurricane data set which has been used in this paper has spatial

as well as non-spatial attributes, first we find the neighborhood considering only the

spatial neighborhood, then we considered a non-spatial attribute (wind speed) also.

3.3.2.1 Spatial Clustering

For the spatial clustering we considered the latitude and the longitude values of

the data points. We considered the Haversine formula for computing the distance

between the two data points represented by their latitude and longitude values, i.e.,

Pi = (φi, λi), where φi is the latitude and λi is the longitude of the data point Pi. If
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Algorithm 5 expandCluster

expandCluster(P,NeighborPts, C,MinDst,MinPts)

add P to cluster C

for all each point P ′ in NeighborPts do

if P’ is not visited then

mark P ′ as visited

NeighborPts′ = regionQuery(P ′,MinDst)

if sizeof(NeighborPts′) >= MinPts then

NeighborPts = NeighborPts joined with NeighborPts′

end if

end if

if P ′ is not yet member of any cluster then

add P ′ to cluster C

end if

end for

we have two points P1 = (φ1, λ1) and P2 = (φ2, λ2), the Haversine formula is given

as:

a = sin(∆/2) + cos(φ1)× cos(φ2)× sin2(∆λ/2)

c = 2× arctan 2(
√
a,
√

(1− a))

d = R× c

Algorithm 6 regionQuery

regionQuery(P,MinDst)

return all points within P ′s MinDst − neighborhood (includingP )
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where ∆(φ) = φ2 − φ1 and ∆(λ) = λ2 − λ1, R = 6371Km is the radius of the Earth,

and d is the Haversine distance. Since the spatial co-ordinates in geographical data

sets are reported in terms of the latitude and longitude, it will be natural to adopt

some distance measure that computes the circular distance between two points lying

on a spherical object (earth).

3.3.2.2 Spatial and non spatial clustering

We extend the DBSCAN algorithm to handle the non spatial attributes also

for clustering. Our approach to this analysis is inspired by [4], where authors ex-

tended the DBSCAN algorithm to incorporate non-spatial attributes. Let there be

a data set D = {d1, d2, . . . , dn}, where di = (xi, yi, ai, bi). Let (xi, yi) be the spa-

tial attributes and (ai, bi) the non spatial attributes. According to [4], we can

consider the spatial as well as the non spatial distances to find out the respective

neighborhoods. More formally, let us consider the distance between two data points

d1 = (x1, y1, a1, b1) and d2 = (x2, y2, a2, b2). Now if we denote the non-spatial dis-

tance as dists between d1 and d2, then dists(d1, d2) =
√

(x1 − x2)2 + (y1 − y2)2. Sim-

ilarly, we can find the non-spatial distance between the same data points d1 and

d2 as distns(d1, d2) =
√

(a1 − a2)2 + (b1 − b2)2. Here we assume that the Euclidean

distance is meaningful between the data points in spatial as well as non spatial do-

main. Let us define two user specified spatial and non-spatial threshold as εs and

εns, respectively. Now we can define two neighborhoods of a point dk, which are

the spatial neighborhood and the non-spatial neighborhood. The spatial neighbor-

hood is Nεs(k) = {dj ∈ D|dists(dk, dj) ≤ εs}, and the non-spatial neighborhood is

Nεns(k) = {dj ∈ D|dists(dk, dj) ≤ εns}. Finally the composite neighborhood will in-

clude the data points common in Nεs(k) and Nεns(k) which is N(k) = Nεs(k)∩Nεns(k).

Effectively, the neighborhood N(k) consists of the data points around dk, which are
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closer to it with respect to spatial as well as non-spatial distance, given the respective

thresholds εs and εns.

For the non-spatial attribute we have used wind speed in our analysis, because

wind speed is an important attribute of hurricanes. Further, only the wind speed

data is available in the data set for all the records.

3.3.2.3 Spatio-temporal clustering

Since the hurricane data is naturally spatio-temporal data, we need to consider

the time also in the analysis. In the current work we have considered time also as

a non-spatial attribute. We use the time in the following formulation. Let the user

specified temporal threshold be εt. Here the data point di = (φi, λi, ti), where φi is

the latitude, λi is the longitude, and ti is the time. dists is the Haversine distance,

where as the distns is simply the Manhattan distance, viz., distns(di, dj) = |ti − tj|.

In the hurricane data set, hurricanes have been sampled at 6 hours inter-

vals, so a trajectory of a particular hurricane of length l is represented as Tri =

{(φi1, λi1, 1), (φi2, λi2, 2)

. . . (φil, λil, l)}. In this work we have considered the relative time framework, where

instead of using the absolute time in the hurricane tracks, we consider the relative

time from the start of a particular track. This framework is more important in the

current analysis because our aim is to analyze this data from the hurricane’s move-

ment patterns point of view. Since the hurricanes are of different length, we have

normalized the time component by the length of the hurricane trajectory. Which is:

Trni =

{(
φi1, λi1,

0

l − 1

)
,

(
φi2, λi2,

1

l − 1

)
. . . (φil, λil, 1)

}
Because of this normalization the time component of the trajectory will vary

from (0−1.0). Please note that the lower value of ti close to 0.00 will signify that the

trajectory data point is in its initial stage, where as the higher values close to 1.00
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Figure 3.2: DBSCAN spatial clusters: MinPts = 10, MinDst = 35

would signify that the particular data point lies towards the end of the hurricane.

Similarly the values of ti close to 0.5 will signify the middle data points in the trajec-

tory. If we use the spatial and this temporal information together in the DBSCAN

for finding the clusters then we will obtain spatio-temporal clusters.

3.4 Experiments and Analysis

We have done the implementation and analysis using MATLAB on the hurricane

data set described at the end of Section 1.

3.4.1 Analyzing spatial attributes

Figure 3.2 shows the result of the DBSCAN algorithm applied on the 50 years

storm data. For this experiment the parameter values were MinDst = 35 and

MinPts = 10. We obtained 15 clusters of different sizes across the region. This

choice of the parameters MinDst and MinPts is based on the experimentation. We

tried to get the values of these parameters on the basis of the suggestions in [13], but
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we got just one single cluster as the output. Therefore, we ran the DBSCAN algo-

rithm for different combinations of MinDst and MinPts and picked the above value

for the case where we got well separated and compact clusters.

In order to analyze the results depicted in Figure 3.2 we will utilize Table 3.1,

which summarizes certain properties of the 15 clusters. The big cluster in the center

(Magenta stars) shows the most dominant region of the storms. Numerical values

corresponding to this cluster, which has cluster id 4, can be obtained from Ta-

ble 3.1. This cluster with cluster id 4 is ranked first with respect to the number

of trajectories(Stormrank (#traject.)) as well as the number of data points belonging

to it viz., (Stormrank (#data points) ). The number of different storm trajectories

that pass through this cluster is 185 and it has total of 1673 storm data points (

Table 3.1). We conclude that this region is the most prominent region in terms of

hurricane storm activity. The next dominant region corresponds to the cluster with

cluster id 3 (green stars), which has the second rank in terms of the number of storm

trajectories (viz., 80) (Table 3.1) that passed through it and the number of storm

data points (viz., 471) in it. On the other side, we have some smaller size clusters

that are lowest in the ranks. Clusters with id 10 and 14 rank as the last two in terms

of the number of storms that pass through them, where as the storms with id 12 and

13 rank as the lowest two in terms of the ranking on the basis of the storms data

points that belong to them. We have some medium class storm clusters also. This

kind of analysis will identify spatially the regions that are susceptible to storms, and

at the same time we can identify relative susceptibility among them.

Figure 3.3, Figure 3.2 and Figure 3.4 show the results of the spatial clustering

using DBSCAN for different combination of parameters MinPts and MinDst. Fig-

ure 3.3 has values for MinPts = 8 and MinDst = 30. Since the value for MinPts

is 8 which is a smaller value we got 32 compact and small clusters. This result has
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Figure 3.3: DBSCAN spatial clusters: MinPts = 8, MinDst = 30
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Figure 3.4: DBSCAN spatial and wind clusters: MinPts = 12, MinDst = 35

been obtained because of MinDst parameter also, which is 30 and is the smallest

value in the results reported in this work. In Figure 3.2 we picked a larger value of

MinPts = 10 and MinDst = 35, which resulted in comparatively smaller number of

clusters which is, 14 and these clusters are comparatively bigger compared to those

in Figure 3.3.

In Figure 3.4 we increase the value of MinPts to 12 while retaining the value

of MinDst as 35. This resulted in 6 clusters. Three of these clusters are bigger while

the other three are smaller. This is the result of the higher value of MinDst which

imposes stronger density constraint (number of neighboring data points in MinDst
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Table 3.1: Storm clustering analysis, on Spatial clustering , MinPts = 10, MinDst =
35

Storm ID Stormrank

(#traject.)
Stormrank

(#data
points)

#traject.
(Clusteri)

#DataPts.
(Clusteri)

Color(Symb.)

1 6 4 53 361 Red (star)
2 3 3 68 371 Blue (star)
3 2 2 80 471 Green (star)
4 1 1 185 1673 Magenta (star)
5 7 7 37 76 Cyan (star)
6 5 5 58 244 Cyan (square)
7 10 9 16 24 Red (square)
8 4 6 60 144 Blue (square)
9 9 11 18 20 Green (square)
10 14 10 9 22 Magenta (square)
11 8 8 27 40 Black (star)
12 13 14 12 15 Red (circle)
13 11 15 14 15 Blue (circle)
14 15 12 9 20 Green (circle)
15 12 13 14 17 Yellow (circle)

neighborhood) for a data point to be considered dense and hence included in the

cluster.

3.4.2 Qualitative analysis of clusters

In this work we have extended DBSCAN algorithm to find out the dense regions

in hurricane point data while considering the non-spatial attributes along with the

natural spatial attribute. The two non-spatial attributes considered in this work are

wind speed and time. We varied the wind speed threshold MinDstWspeed from 20−100

(interval of 10), and the temporal threshold εt from 0.2 − 1.0 in the interval of 0.1.

Since we got a range of clustering results when we changed these parameters, we
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Table 3.2: Storm Clustering analysis, Impact of Non spatial attribute MinPts = 10,
MinDst = 35

MinDstWspeed Mean(Std(Cluster i)) (#clusters)

20 13.5669 5
30 16.222 6
40 22.4366 9
50 23.2284 9
60 25.458 12
70 25.9649 14
80 26.3079 14
90 27.6229 15
100 27.6691 15

needed a quality measure for the results of clustering. We used the quality measure

proposed in [5]. This measure is given below:

numclus∑
i=1

(
1

2Ci

∑
x∈Ci

∑
y∈Ci

dist(x, y)2

)
+

1

2|N |
∑
w∈N

∑
z∈N

dist(w, z)2 (3.2)

where, numclus is the number of clusters, N is the set of noise points and Ci is the

ith cluster. This quality measure computes the sum of the square error (SSE), which

means the smaller this value, the better will be the clustering result.

3.4.2.1 Analyzing combination of spatial and non-spatial attributes

We did some additional analysis that would give us more concrete information

in terms of the nature of the storms. The data set includes the attribute value wind

speed, which is available for all the data points, and is one of the key characteristics

of hurricanes. We used this as a non-spatial attribute and redefined the distance

parameter in the DBSCAN algorithm to combine spatial and non spatial values.

This approach is inspired by the work in article [4]. Now the clusters that we get

are the spatial regions that are prone to similar kind of storms in terms of the wind

speed. In the redefinition of the MinPts, we need to consider the neighbors as the
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Figure 3.5: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 20
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Figure 3.6: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 30

data points which are closer to the particular data point with respect to the spatial

distance as well as similar in wind speed values.

As expected when we constrained the neighborhood criteria by incorporating

non-spatial attribute, viz., wind speed the number of clusters as well as the size of

the clusters was reduced. This trend can be seen from Figure 3.5 to Figure 3.13. This

is because now the clusters represent the regions that were influenced by the same

nature of storms. When we relaxed the similarity in the wind speed to be 100 the

result degenerated to the case of totally spatial clustering, as the wind speed similarity
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Figure 3.7: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 40
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Figure 3.8: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 50

had no impact. But as we reduced the value of wind speed similarity to lower values

which are 70 (Figure 3.10), 50 (Figure 3.8) and 30 (Figure 3.6), respectively, we got

smaller number of clusters and they got more compact. In order to reflect that extent

of compactness we have a column in Table 3.2 Mean(Std(Cluster i)), viz., the mean

of the standard deviation of the wind speed in the individual clusters for the particular

choice of the wind speed similarity threshold. The standard deviation goes down as
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Figure 3.9: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 60
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Figure 3.10: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 70

we reduce the value of wind similarity. This measure gives an intuitive measure of

the compactness and the homogeneous nature of the clusters.

Now using the measure in Equation 4.2, since it has the notion of distance, we

used two distances separately. First we used the spatial distance using the latitude

and longitude of the data points, and second the difference in wind speed of two data

points. We got the following performance in Table 3.3. The results shows that as we

reduce the MinDstWspeed value from 100 to 20 the clustering result improved in terms
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Figure 3.11: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 80
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Figure 3.12: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 90

of QWspeed as well as Qspatial. This result is obvious as the reduction in the threshold

value MinDstWspeed forces more compact and homogeneous clusters.

Table 3.4 shows the spatio temporal clustering result. Here we have done the

clustering using the normalized time parameter along with the spatial attributes. We

reduced the temporal threshold εt from 1.0 (Figure 3.20) to 0.2 (Figure 3.14) and

found the performance of the clustering results to improve in terms of the quality
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Figure 3.13: DBSCAN spatial and wind clusters: MinPts = 10, MinDst = 35,
MinDstWspeed = 100
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Figure 3.14: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 0.2
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Figure 3.15: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 0.3
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Figure 3.16: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 0.4

Table 3.3: Qualitative measure of clustering results

MinDstWspeed(mph) QWspeed(mph) Qspatial(km)
20 4.92E+04 3.35E+04
30 1.49E+05 8.62E+04
40 1.15E+06 2.56E+05
50 1.43E+06 2.96E+05
60 1.83E+06 3.46E+05
70 2.20E+06 4.11E+05
80 2.41E+06 4.73E+05
90 2.53E+06 5.18E+05
100 2.55E+06 5.18E+05

Table 3.4: Qualitative measure of clustering results

εt Qεt Qspatial

0.2 1.81E+00 1.13E+04
0.3 2.23E+01 9.30E+04
0.4 1.23E+02 3.04E+05
0.5 1.54E+02 3.54E+05
0.6 1.79E+02 4.11E+05
0.7 1.96E+02 5.05E+05
0.8 2.02E+02 5.18E+05
0.9 2.03E+02 5.19E+05
1.0 2.03E+06 5.19E+05
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Figure 3.17: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 0.5
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Figure 3.18: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 0.6

Qεt and Qspatial. These two parameters denote the quality measure in terms of the

temporal and spatial homogeneity of the clusters.

Note that although the lower values of the quality measure in Equation 4.2

signify better clustering result, these best performance results may not be what the

end user wants. This is because the clustering concept is very subjective.
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Figure 3.19: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 0.7
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Figure 3.20: DBSCAN spatio-temporal clusters: k = 10, MinDst = 35, εt = 1.0

3.4.3 Analyzing storm starting and landing information

One more analysis that we have done on the storm data is about the landing and

the starting information for the storms. Here we first considered only the starting

three data points corresponding to the first three time stamps, for all the storm

trajectories. The DBSCAN algorithm was run on this data set. The resulting clusters

give the regions from where the storms are most likely to start. Figure 3.21 shows

the potential regions from where the storms may originate.

Similarly we did the analysis on the last three data point of the storm trajec-

tories. The result in Figure 3.22 shows the potential regions, where the storms may

end. Interestingly while comparing our findings to the ground truth in Figure 3.23,

we see that our result captures most of the activity reported.

Our motivation for doing the separate analysis for the landing and starting

trajectory portion is based on the fact that when we consider all of the data points

for the clustering using DBSCAN, these (landing and starting) information related

with the storm activity may be lost as noise.
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Figure 3.21: Storm starting clusters

 108
o
W   90

o
W   72

o
W   54

o
W   36

o
W 

   9
o
N 

  18
o
N 

  27
o
N 

  36
o
N 

  45
o
N 

 

 

Longitude

L
a

ti
tu

d
e

Cluster−1

Cluster−2

Cluster−3

Cluster−4

Cluster−5

Cluster−6

Cluster−7

Cluster−8

Cluster−9

Figure 3.22: Storm Landing clusters

3.4.4 Analyzing storms for 10 year’s duration

Here we discuss the results of clustering analysis on the hurricane data in the

interval of 10 days. Since we have 50 years data so we split the data set in the

interval of 10 years each and performed the clustering analysis. This is motivated by

that we will get an idea about the trends in the storm over a fixed period of time.

This analysis could also highlight an interesting fact about the hurricane tracking

technology. It means that if we find an increasing number of hurricane regions or

activity then it may be a result of more advanced hurricane tracking technology. The

results of this analysis can be seen in Figure 3.24 to Figure 3.28.
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Figure 3.23: Storm activity ground truth

Since there is no general trend that can be seen from the above results so we can

not say anything about the trends in hurricane activity over these 50 years, when we

consider 10 years hurricane data. For the same reason we can not conclude anything

about the technical advancement in hurricane tracking from this analysis.

3.4.5 Grid based clustering algorithm

We incorporate a grid based clustering algorithm for comparing the results ob-

tained using DBSCAN algorithm. We use a grid based algorithm is called CLIQUE [14].

CLIQUE stands for CLustring In QUEst. CLIQUE is efficient in finding clusters in

high dimensional space, where clusters may exist in some subspace of the original

dimensional space. It is based on apriori principal. CLIQUE has two important pa-

rameters which are τ and grid size. τ is the density threshold where as grid size is

the parameter that determines the number of bins in each dimensions of the data.

The clusters in CLIQUE are the maximal connected dense grid cells.
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Figure 3.24: DBSCAN on Hurricane data for year 1950 to 1960 MinPts = 10,
MinDst = 35
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Figure 3.25: DBSCAN on Hurricane data for year 1961 to 1970 MinPts = 10,
MinDst = 35
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Figure 3.26: DBSCAN on Hurricane data for year 1971 to 1980 MinPts = 10,
MinDst = 35
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Figure 3.27: DBSCAN on Hurricane data for year 1981 to 1990 MinPts = 10,
MinDst = 35

We present the results of spatial clustering using CLIQUE clustering algorithm.

Figure 3.29 to Figure 3.36 represents the results. The problem with CLIQUE has been

that in cases like Figure 3.29 to Figure 3.32 when we fix τ = 0.1 and change the grid

size from 30 ∗ 30 to 60 ∗ 60 there remains one big dominating cluster and the other

clusters are very small and hence insignificant. In Figure 3.33 we increased the grid

size to 70 ∗ 70, again we can see a very large cluster in the middle and a very large

number of small clusters. In Figure 3.34 we increase the density threshold parameter
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Figure 3.28: DBSCAN on Hurricane data for year 1990 to 2000 MinPts = 10,
MinDst = 35
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Figure 3.29: CLIQUE τ = 0.1, grid size = 30 ∗ 30
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Figure 3.30: CLIQUE τ = 0.1, grid size = 40 ∗ 40
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Figure 3.31: CLIQUE τ = 0.1, grid size = 50 ∗ 50
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Figure 3.32: CLIQUE τ = 0.1, grid size = 60 ∗ 60

τ to 0.2 and grid size as 40 ∗ 40, but again we have the same scenario, there is one

huge dominating cluster and the rest of the clusters are very small and insignificant.

When we increase the grid size to 70∗70 we get the result as given in Figure 3.35.

Note that the results for the other grid size between 50 ∗ 50 to 70 ∗ 70 show the same

trend. The result in Figure 3.35 are the result of very small size grid cells, with

comparatively higher density threshold. There is an interesting result with CLIQUE

as shown in Figure 3.36. This is the result corresponding to the value of τ = 0.5 and

grid size = 30 ∗ 30. This result highlights another weak aspect of CLIQUE algorithm
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Figure 3.33: CLIQUE τ = 0.1, grid size = 70 ∗ 70
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Figure 3.34: CLIQUE τ = 0.2, grid size = 40 ∗ 40

which has the tendency of producing the axis parallel clusters. CLIQUE produces

axis parallel clusters because it is grid based clustering algorithm.

We present the clustering result of CLIQUE considering the spatial as well as

non-spatial attribute which is wind speed in this case. Figure 3.37 and Figure 3.38.

The real challenge in our experiments for CLIQUE was in finding the clusters with

spatial and non spatial attributes (wind and time). This can be easily seen in results

from Figure 3.37 and Figure 3.38. In Figure 3.37 when we choose τ = 0.1, grid

size as 30 ∗ 30 and MinDstWspeed = 30 we get many small sized and overlapping

clusters. In Figure 3.38 when we simply change the grid size from 30 ∗ 30 to 40 ∗ 40
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Figure 3.35: CLIQUE τ = 0.2, grid size = 70 ∗ 70
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Figure 3.36: CLIQUE τ = 0.5, grid size = 30 ∗ 30

we get few very small clusters. This result is not as consistent as that with DBSCAN.

This is because of the nature of CLIQUE, unlike DBSCAN we can not control the

dimension specific neighborhood. In DBSCAN we pick the spatial neighborhood and

the non-spatial neighborhood, the final neighborhood is the intersection of this spatial

and non-spatial neighborhood. In case of CLIQUE we have a single parameter that

determines the number of sub-divisions in each dimension. Because of this nature we

can not control the size of the neighborhood in each data dimension independently of

other dimensions. The performance of CLIQUE in doing spatio-temporal clustering

was also not good for the aforementioned reason. One of the result of CLIQUE on
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Figure 3.37: CLIQUE τ = 0.1, grid size = 30 ∗ 30, MinDstWspeed = 30

spatio-temporal clustering is give in Figure 3.39, here we used τ = 0.1, grid size

30 ∗ 30 and εt = 0.1. Here we see just a single small cluster. Interestingly this is

the only cluster that we could obtain after trying different combination of clustering

parameters for CLIQUE.

In order to provide the comparative performance of point based analysis using

DBSCAN and CLIQUE algorithm we provide the quantitative results in Table 3.5

and Table 3.6 respectively. Since the nature of two algorithms is different so we could

not set the same value of parameters for them. We can see from these results that in

terms of SSE, DBSCAN has resulted in better value for most of the cases. Similar

trend can be seen for the value of measure Mean(std), where we compute the mean of

the standard deviation of the different cluster members. In terms of Penalty which is

dependent on the number of noise points CLIQUE is slightly better than DBSCAN.
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Figure 3.38: CLIQUE τ = 0.1, grid size = 40 ∗ 40, MinDstWspeed = 40
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Figure 3.39: CLIQUE τ = 0.1, grid size = 30 ∗ 30, εt = 0.1

Table 3.5: Qualitative measure of clustering results DBSCAN

MinPts MinDst SSE Penalty Mean(std)
8 35 1.05E+06 3.61E+10 1.75E+07
10 25 4.03E+03 4.29E+10 2.78E+04
10 30 1.54E+05 4.46E+10 7.82E+06
10 35 5.19E+05 3.96E+10 2.70E+07
10 40 1.85E+06 3.12E+10 2.08E+09
10 45 2.12E+06 2.68E+10 3.48E+09
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Figure 3.40: CLIQUE Storm starting locations
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Figure 3.41: CLIQUE Storm landing locations

Table 3.6: Qualitative measure of clustering results CLIQUE

τ grid size SSE Penalty Mean(std)
0.1 30 2.49E+06 1.15E+10 5.39E+10
0.1 40 2.44E+06 1.95E+10 7.58E+09
0.1 50 2.37E+06 2.91E+10 2.21E+09
0.1 60 2.23E+06 4.18E+10 5.74E+08
0.1 70 1.34E+06 5.44E+10 3.87E+07
0.4 40 3.05E+05 6.84E+10 7.53E+06
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Figure 3.40 and Figure 3.41 show the storm starting and storm landing loca-

tions. The storm starting locations as predicted in Figure 3.40 are not precise, clusters

are rather scattered. Similarly for the clusters showing the landing locations of the

storm, there are large number of very loose clusters.

3.5 Summary

In this chapter we analyzed hurricane storm trajectory data to find areas of

extreme hurricane density, as well as areas where hurricanes originate and land. We

took a different approach to trajectory analysis by focusing on points along the trajec-

tory, rather than line segments as in previous work. We used the DBSCAN algorithm

for the clustering analysis. Initially the clusters are obtained on the basis of only the

spatial attributes. After that, we looked at the influence of the non-spatial attributes,

in particular wind speed, on the clusters obtained. We also propose a spatio tem-

poral DBSCAN algorithm where the normalized relative time information with the

point data has been considered as another non-spatial attribute for DBSCAN. We

post processed the clustering results to obtain the storm starting, storm landing and

storm tracking information. Our work differs from other work because of the focus on

trajectory points, which results in identifying high-activity regions, as well as regions

at start and end of storms. In an attempt to analyze the trends in storms activity

over the years, we did our analysis on hurricane data by considering 10 years of data

at a time (1950 − 1960, 1961 − 1970, 1971 − 1980, 1981 − 1990, 1991 − 2000). This

analysis did not show any significant trend in storm activity for fifty years of that

we analyzed. In order to highlight our approach we compare our DBSCAN based

point analysis with CLIQUE based point analysis. Experiments have shown that the

DBSCAN based analysis results in better results. Further unlike CLIQUE, DBSCAN
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based analysis is more flexible because of which we could find results for all the range

of parameter values.
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CHAPTER 4

A Direction Based Framework for Trajectory Data Analysis (Drafted from [2])

4.1 Introduction

Trajectory data is an example of spatio temporal data where the spatial lo-

cation as well as the time order associated with each data point is very important.

Some examples of spatio temporal data are tracking data in applications like global

positioning system (GPS), hurricane and storm tracking data, and animal movement

data. The analysis for GPS trajectories is valuable in knowing and managing the traf-

fic pattern of vehicles. Monitoring and analyzing hurricane/storm trajectories can be

useful for predicting weather conditions, whereas animal trajectory analysis is used

in examining wild animal behavior and movement. A number of attempts have been

made in this domain to analyze these kinds of data sets [5, 6, 9, 15,20,21].

The directional aspect of trajectory analysis is very important in various appli-

cations [15], for example in map matching [22] and in direction based query process-

ing [21]. This kind of analysis will be very useful in analyzing weather data (hurricane

tracks), public transport data (GPS) and animal movement data. To the best of our

knowledge this directional analysis has not been done previously in spatio temporal

data.

The first stage of the proposed framework deals with trajectory smoothing, which

is important in analyzing trajectories that exhibit non-smooth characteristics. Tra-

jectory smoothing (simplification) has been addressed in [15–17]. Non-smoothness is

marked by frequent sharp directional changes. The trajectories in animal movement

data exhibits this non-smooth property. In the smoothing step we approximate the
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original trajectories by eliminating these sharp angular turns to focus on directional

characteristics of the trajectory.

In the next stage we do directional segmentation of the trajectories. We im-

pose directional consistency on the trajectories (sub trajectories) by allowing them

to deviate initially by a maximum of 45, and eventually by a maximum of 90. If any

trajectory shows a deviation more than 90, we split it into sub-trajectories such that

the directional consistency is maintained. We consider 16 directional ranges shown

in Fig. 4.1 and Fig. 4.2. Each sub-trajectory is assigned to one of these 16 classes.

Analysis of trajectory data after segmentation has been a well studied domain in

spatio temporal data, for example [5, 6, 9, 20].

The filtration stage removes outlier sub-trajectories from the directional cate-

gories to focus on important directional ranges. We considered two approaches for

this task. The first approach uses the minimum bounding rectangle (MBR), whereas

the second one uses a novel convex hull (CH) based approach (Fig. 4.3 and Fig. 4.4).

The MBR based approach results in big spaces around a trajectory; hence it is a

very vague approximation of the trajectory. The CH based approach approximates

the trajectories to a much closer extent. We finally use a modified DBSCAN [13]

algorithm to identify the inherent clusters, which capture the significant directional

patterns in the data sets. We used animal movement data [23] that consists of move-

ment of Elk in 1993 and comprises 33 trajectories and 20065 data points.

The first stage of the proposed framework deals with the task of trajectory

smoothing, which is important in analyzing trajectories that exhibit non-smooth

characteristics. Trajectory smoothing (simplification) has been addressed in [15–17].

Non-smoothness is marked by frequent sharp directional changes. The trajectories

in animal movement data exhibits this non-smooth property. In the smoothing step
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Figure 4.1: Small angles (45)

we approximate the original trajectories by eliminating these sharp angular turns to

focus on directional characteristics of the trajectory.

In the next stage we do directional segmentation of the trajectories. For this

task, we characterize the trajectories and sub-trajectories on the basis of their direc-

tions. We want the trajectories (sub-trajectories) to be directionally consistent. Here

we impose the directional consistency on the trajectories (sub trajectories) by allow-

ing them to deviate initially by a maximum of 45, and eventually by a maximum of

90. If any trajectory shows a deviation more than 90, we split it into sub-trajectories

such that the directional consistency is maintained. To accomplish directional con-

sistency for sub-trajectories, we consider 16 directional ranges shown in Fig. 4.1 and

Fig. 4.2. Each sub-trajectory is assigned to one of these 16 classes. Analysis of tra-

jectory data after segmentation has been a well studied domain in spatio temporal

data, for example [9], [5], [6] and [20].

The filtration stage removes outlier sub-trajectories from the respective direc-

tional categories to focus on important directional ranges. We considered two ap-

proaches for this task. The first approach uses the minimum bounding rectangle

(MBR), whereas the second one uses a novel convex hull (CH) based approach. Ex-

amples of MBR and CH applied to direction class 4 for hurricane data set can be
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Figure 4.3: MBR Example

seen in Fig. 4.3 and Fig. 4.4 respectively. We can see that the MBR based approach

results in big spaces around a trajectory when approximated by its MBR, and hence

it may be a very vague approximation of the trajectory. This fact motivated us to use

the CH based approach as it approximates the trajectories to a much greater extent.

We finally use a modified DBSCAN [13] algorithm to identify the inherent

clusters, which are interesting patterns as they capture the significant directional

patterns in respective data sets.

We used two real data sets: hurricane data [19] and animal movement data [23].

The hurricane (Atlantic region) data set is for 50 years from 1950 to 1999. It has

six attributes: latitude, longitude, time, wind speed, pressure, and status. The data

is sampled in 6 hours interval, it has 15319 data points and 496 trajectories. The
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Figure 4.4: CH Example

animal movement data [23] consists of movement of Elk in 1993 and comprises 33

trajectories and 20065 data points.

The rest of the article is organized as follows: Section 4.2 provides related work,

Section 5.2 describes the proposed framework, Section 4.4 presents the experiments

and results, and Section 4.5 concludes the article.

4.2 Related Work

The article [5] proposes a partition-and-group framework for clustering trajec-

tory data. Using the concept of minimum descriptive length (MDL) the original

trajectories are segmented. These segments are called trajectory partitions, which

are then clustered using a modified version of DBSCAN algorithm, which clusters the

line segments. Finally the clusters are represented by representative trajectories.

In [6], a clustering algorithm is given for the trajectory data that uses a combi-

nation of techniques from data mining, computational geometry and string processing.

Trajectories are preprocessed followed by segmentation and classification. The next

phase finds the frequent occurring sub-strings; these are called motifs, and then maps

the sub-trajectories corresponding to the motifs to some feature space. The next stage
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performs density based clustering and the final stage does the post processing of the

clusters.

In [9], the trajectory clustering technique of [5] has been extended for trajec-

tory classification. Two levels of clustering, namely region-based and trajectory based

clustering, are done. Clustering is used to find the discriminative features for classi-

fication. The first level of clustering is region level, which identifies the higher level,

region based features of the trajectories. The second level identifies the lower level

movement based features. These two clustering levels collaboratively identify the

high-quality features for the classification.

Trajectory smoothing has been addressed in [15–17]. In [15] authors propose a

trajectory smoothing method that preserves the direction information. The aforemen-

tioned works are similar to the present work on the basis of trajectory segmentation

followed by the clustering of the trajectory segments. However, our contribution is on

the directional consistency, so our trajectory segmentation method is purely direction

based. The other contributions are trajectory simplification and convex hull based

outlier removal concepts.

4.3 Proposed framework

Figure 4.5 shows a directional pattern scenario. These kinds of directional

pattern mining are the motivation behind the work in this chapter. In this figure we

can clearly see three dominant directional regions. These regions are characterized

by Dir1, Dir2 and Dir3.

Before we describe the proposed framework, we define a trajectory and its

major defining characteristics. Let us consider, a trajectory data set D comprising of

n trajectories viz., D = (Tr1, T r2, . . . , T rn).
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Figure 4.5: Directional pattern

Trajectory Definition: A trajectory Trj of size s is a sequence of points

[p1, p2, . . . , ps], where p1 is it’s initial point and ps is the final point. An ith point pi

in Trj is associated with spatial co-ordinates (xi, yi) and the associated time ti. For

example, in Figure 5.1 a, Tr = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11] is a trajectory of

size s = 11.

Trajectory Segments (Lk): A trajectory Trj consists of line segments Lk =

pkpk+1 which are formed by joining the kth and (k + 1)th consecutive points in it,

where k ∈ [1, . . . , s− 1].

Angular Attribute (θ): This is a very important attribute of a trajectory for

directional analysis, which considers the angles between its Lk and Lk+1 consecutive

line segments. This involves three successive points: pk, pk+1 and pk+2.

θ = min(6 (pkpk+1, pk+1pk+2), 360− 6 (pkpk+1, pk+1pk+2)) (4.1)
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Figure 4.6: Self intersecting Trajectories

where, angle between the two line segments pkpk+1 and pk+1pk+2 is 6 (pkpk+1,

pk+1pk+2). Angle is measured in anti-clockwise rotation from pkpk+1 to pk+1pk+2. We

consider the smaller of the angles between the two line segments so that 0 ≤ θ ≤

180. A large value of θ represents a small change in direction whereas a small value

represents a sharp change. 6 is the symbol for absolute value of an angle.

The proposed framework consists of the following stages:

1. trajectory smoothing

2. trajectory segmentation and categorization

3. convex hull based sub-trajectory filtration

4. clustering
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4.3.1 Trajectory Smoothing

Unlike hurricane trajectories [19], animal movement trajectories [23] tend to

be very haphazard and are non-uniformly sampled. For meaningful trajectory data

analysis, trajectory smoothing becomes imperative. Although, the smoothing of tra-

jectories has been studied in [15–17], self-intersecting trajectories (see Fig. 5.1) are

not explicitly addressed.

Trajectory Smoothness (sm (Tr)): Smoothness of a trajectory determines

its directional consistency over its whole length. In this work as a smoothness mea-

sure, we consider the mean (smµ (Tr)) as well as the standard deviation (smsd (Tr))

of the angular attributes of a trajectory. If Θ is the vector of the angular attributes of

a trajectory Tr, then : smµ(Tr) = mean(Θ) , smsd(Tr) = sd(Θ). A large smµ(Tr)

and a small smsd(Tr) would indicate a smooth trajectory, whereas small values for

smµ(Tr) indicate a very jagged trajectory. The simplified (approximated) trajectory

should have better smoothness to highlight its main directional properties. If an ini-

tial trajectory is Tr, then the goal of the smoothing process is to simplify it to a

trajectory Trs such that smµ(Tr) ≤ smµ(Trs) and smsd(Tr) ≥ smsd(Trs).

To address the unevenly sampled trajectories, we segment a bigger trajectory

into sub-trajectories at a point where, the time difference between the successive

sampled points is larger than a given threshold (30 minutes for animal data).

Fig. 5.1 shows how we deal with the self-intersecting trajectories as part of the

smoothing process. The segment p10p11 intersects the segment p8p9 because the angle

between the segment p9p10 and p10p11 is very small. As mentioned earlier, small angles

indicate sharp turns leading to non-smooth trajectories. Self-intersecting trajectories

are the results of extreme cases of small angles. Therefore, as is given in the Fig. 5.1,

using small angle threshold ε, if an intermediate angle is less than this threshold, we

filter it out by discarding the intermediate point (p10 in this case). This will result
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Algorithm 7 The Directional Segmentation Algorithm

DIRSEGMENT (T )

S(T ) = NULL

for all traj in data-set T do

trajDirb = computeBasicDirection(traj)

trajDirg = computeGeneralDirection(trajDirb)

DirectSegtraj = directionalSegment(trajDirg)

S(T ) = S(T ) ∪DirectSegtraj

end for

in the formation of the new segment p9p11. If the resulting angle is still less than ε,

further smoothing is applied.

4.3.2 Trajectory Segmentation

In this step of the proposed framework, trajectories are segmented into sub-

trajectories belonging to one of the 16 directions depicted in Fig. 4.1 and Fig. 4.2.

Eight of these directions (Fig. 4.1), are 45 apart covering the whole 360 angular space,

whereas the remaining ones (Fig. 4.2) are 90 apart. This choice of the smaller angle

directional segment viz., 45 and a larger overlapping directional segments viz., 90 was

made so that a trajectory that moves along a boundary between 45 regions of the

two regions, say 45, does not keep being segmented into very short segments, in this

case some in region 1 and some in region 2. Rather, a longer sub-trajectory in region

b would be created.

Algorithms 7-10, describe the concepts used for segmentation of the main

trajectory into the corresponding directional sub-trajectories.
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Algorithm 8 The basic 8 direction Segmentation Algorithm

computeBasicDirection(t)

dirbasic = NULL

for all ls in t do

θi = slopexAxis(ls)

di = θi
45

+ 1

dirbasic.append(di)

end for

return(dirbasic)

Algorithm 9 The general direction Segmentation Algorithm

computeGeneralDirection(t)

gendir = NULL

tempdir = NULL

breakPoint = NULL

label = NULL

Scan t from left to right

breakPoint = findAndStoreBreakPoints(t)

labelGeneral = findGeneralLabels(t)

gendir = segment(breakPoint, labelGeneral)

return(gendir)

Algorithm 10 The Directional Segmentation Algorithm

directionalSegment(t)

directSeg = segment(t, differentSymbols)

return(directSeg)
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Figure 4.7: Basic directional encoding of Hurricane Love 1950
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Figure 4.8: Basic to General direction encoding of Hurricane Love 1950

Initially (Algorithm 8) we examine the slope of the line segments forming

the trajectory, and label the line segments according to their slope. Since the basic

angle for segmentation is in this work is 45, the total number of labels is 360/45 = 8.

Therefore the label for a particular line segment will be the quotient when the angle of
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the slope is divided by 45. The example in Fig. 4.7 corresponds to Hurricane Love in

1950. Using the basic directional encoding algorithm, the trajectory is now labeled as

(556667881111123) (Fig. 4.7). This output becomes an input for the next algorithm

Algorithm 9 which does the general directional encoding.

Algorithm 9 scans the basic directional code of the trajectory from left to

right and looks for a break point (please see Fig.4.8). The break point is the position

along the basic directional encoding where, the direction changes by 2 or more labels.

Along with the break point a Label list is also stored, this list will hold the basic

angular transitions so that it may be accordingly encoded in the general directional

code. For example in Fig. 4.8, break points create 4 sub-trajectories 55666, 788,

111112 and 3, the last is discarded as too short. Corresponding Labeli lists have

the entries (5, 6), (7, 8) and (1, 2), respectively. These transitions correspond to the

general angle code of f , h and b respectively (Fig. 4.2, Fig. 4.8). The break point will

act as a marker for the Algorithm 10, while segmenting the original trajectory into

its directional sub-trajectory. Here the output will be (fffffhhhbbbbbb). The final

algorithm Algorithm 10 does the segmentation returning the three sub-trajectories

which are (fffff), (hhh) and (bbbbbb).

4.3.3 Convex Hull based trajectory filtering to remove outliers

We use convex hull (CH) to approximate each trajectory, then apply a filtering

step to the convex hulls.

Definition: Convex Hull : The convex hull of a set of points Q, denoted as CH(Q),

is the smallest convex polygon P for which each point in Q is either on the boundary

of P or in its interior [24]. For example in Fig. 4.9, Q = {P1, P2, P3, P4, P5, P6, P7, P8}.

In this example, the convex hull is the polygon P = {P1, P2, P3, P4, P5}, because all

the points in this figure either lie on or are inside P .
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Figure 4.9: Convex Hull

After the approximation of sub-trajectories by their respective convex hulls, we

identify the sub-trajectories whose convex hull do not intersect with any other sub-

trajectory. We use geometrical algorithm to find out the intersecting convex hulls.

These sub-trajectories with non intersecting convex hull are considered as outlier and

are removed from the later stages of analysis.

4.3.4 Clustering

After removing the outlier sub-trajectories using the CH based technique, we do

the clustering of the remaining sub-trajectories to obtain the final directional patterns

Algorithm 11. We use a modified version of DBSCAN [13], which is a density based

clustering algorithm. This is very similar to the one used in [5], except for the fact

that here we have the sub-trajectories as the basic data to be clustered in stead of

line segments. We omit the details of DBSCAN due to space limitations, see [5, 13]

for the details.

For the DBSCAN algorithm we need a distance measure to find the similarity

between the sub-trajectories. Fig. 4.10 shows how we computed the distance between

the two sub-trajectories. There are two possibilities, Fig. 4.10(a) where the two

sub-trajectories have the same length, and Fig. 4.10(b) where the length of the two

sub-trajectories is not the same. For the first case we simply consider the average
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Figure 4.10: Distance between two sub-trajectories

of the distance between the sequential points in the sub-trajectories. In the second

case we consider only the average of the distance between the first points and the

last points in the sub-trajectories. In Fig. 4.10(a) for example the distance will be

D(Tr1, T r2) = (d(a, e) + d(b, f) + d(c, g) + d(d, h)) /4. In Fig. 4.10(b) the distance

will be D(Tr3, T r4) = (d(i,m) + d(l, n)) /2. In this atricle the distance d(x, y) is the

Haversine formula as used in [1] for hurricane data, whereas the Euclidean distance

for animal data.

Algorithm 11 The Directional Clustering Algorithm

DIRECTCLUST (T )

DIRSEGMENT (T )

Tr = outlierF ilter(T )

for all Trajclass in dataset Tr do

Clustclass = DBSCAN(Trajclass)

end for
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Table 4.1: Effect of Smoothing on Elk data set

Trajectories smµ(Tr) smsd(Tr)

Original Animal Data 75.93 55.72

Smoothed Animal Data 87.96 51.08

4.4 Experiments and Results

The framework has been implemented in MATLAB. We use two real data sets

as described in Section 4.1. In this work we did not simplify the hurricane trajectories

as they already exhibit smooth behavior. The result of applying smoothing on animal

movement trajectories can be seen in Table 4.1. The impact of smoothing is evident as

smµ has been improved (is higher) and, the value of smsd is lower after the application

of smoothing, compared to that of the original trajectories. These results are the

aggregate values considering all the trajectories together.

For the DBSCAN algorithm, on hurricane data we use Minline = 5, whereas

for animal data it is 8 (minimum number of sub-trajectories in the neighborhood of

a trajectory for density consideration). Mindst (neighborhood radius) has been com-

puted as per the suggestions in [5]. On applying the present framework on hurricane

data, we found that out of the 16 directions (Fig.4.1 and Fig.4.2), clusters exists only

in 6 directions, which are (1, 9, 10, 11, 12, 13) (Fig. 4.15 – 4.26). This is an important

result highlighting the fact that the hurricanes are mostly effective in the above men-

tioned 6 directions only. The remaining direction sub-trajectories were found to be

all outliers at the outlier elimination stage of the proposed framework.

To find the significance of the our framework, we compare the clustering results

on original hurricane trajectory data (before filtration and direction classification)

Fig. 4.11, with clustering results obtained using our framework, Fig. 4.12. It is evident

that the clusters in Fig. 4.11 are not very distict and are mostly overlapping. On the

other hand the clusters in Fig. 4.12 are more distinct. Moreover, in Fig. 4.11 we see a
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Figure 4.11: Trajectory clustering without filtering
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Figure 4.12: Hurricane Data combined sub-trajectory clustering
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Figure 4.14: Trajectory clustering using the framework

big blue color cluster that spans a larger region, which only shows a region with high

storm activity, whereas; in the same region in Fig. 4.12, we see many more compact

clusters which carry an important information which is direction. Similarly we can

see from Fig 4.14 and Fig. 4.13 that, the result obtained by the proposed framework

Fig. 4.14 results is more number of distinct clusters as compared to the Fig. 4.13

(without applying the framework).

Fig. 4.15 – Fig. 4.26 provide the visualization of the final patterns obtained by

the proposed framework on the 50 years hurricane data in the 6 significant directions.

Here we have shown the comparative performance of the two outlier filtration mech-

anisms, which are the CH (proposed) and the MBR. Clearly we can see that the

patterns (which are the directional clusters here in this work) are more prominent

and compact using the CH based filtering technique.

Similarly we can see the same comparison on animal data from Fig 4.27 –

Fig 4.42.
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Figure 4.15: Convex Hull DBSCAN, Direction 1
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Figure 4.16: MBR DBSCAN, Direction 1
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Figure 4.17: Convex Hull DBSCAN, Direction 9
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Figure 4.18: MBR DBSCAN, Direction 9
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Figure 4.19: Convex Hull DBSCAN, Direction 10
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Figure 4.20: MBR DBSCAN, Direction 10

69



 100
o
W   75

o
W   50

o
W   25

o
W    0

o
  

  12
o
N 

  24
o
N 

  36
o
N 

  48
o
N 

  60
o
N 

Longitude

L
a
ti
tu

d
e

Direction11, Convex Hull DBSCAN

Figure 4.21: Convex Hull DBSCAN, Direction 11

 100
o
W   75

o
W   50

o
W   25

o
W    0

o
  

  12
o
N 

  24
o
N 

  36
o
N 

  48
o
N 

  60
o
N 

Longitude

L
a
ti
tu

d
e

Direction 11, MBR DBSCAN

Figure 4.22: MBR DBSCAN, Direction 11
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Figure 4.23: Convex Hull DBSCAN, Direction 12
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Figure 4.24: MBR DBSCAN, Direction 12
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Figure 4.25: Convex Hull DBSCAN, Direction 13
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Figure 4.26: MBR DBSCAN, Direction 13
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We did the qualitative analysis of the obtained results as given in the next sub

section.

4.4.1 Qualitative analysis of clusters:

We used the quality measure proposed in [5]. This measure is given below:

numclus∑
i=1

(
1

2Ci

∑
x∈Ci

∑
y∈Ci

dist(x, y)2

)
+

1

2|N |
∑
w∈N

∑
z∈N

dist(w, z)2 (4.2)

where, numclus is the number of clusters, N is the set of noise sub-trajectories and Ci

is the ith cluster. This quality measure computes the sum of the square error (SSE),

which means the smaller this value, the better will be the clustering result.

In order to show the effectiveness of the proposed CH based filtration method

over the MBR based method we present the results in Fig. 4.43 and Fig. 4.44 using

the evaluation method given in Equation 4.2. In Fig. 4.43, it can be seen that CH

based filtration process resulted in lower values of Qmeasure compared to its MBR

counterpart. Similar trend can be seen for animal data also from Fig. 4.44. It implies

that our framework produces better results for all the directions in terms ofQMeasure

for both the data sets.

4.5 Summary

In this chapter we proposed a novel framework for the directional analysis of

trajectory data. We proposed a new trajectory smoothing approach as well as a novel

CH based filtration method using convex hulls of sub-trajectories. A novel technique

for identifying the directional orientation of the trajectory data was proposed. Clus-

tering is then applied to determine interesting directional clusters of trajectories. We

demonstrate our approach on two data sets: hurricane tracks and animal trajectories.

the results show that our clustering is good using standard cluster evaluation metric.
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Figure 4.27: Animal data : Relative performance Direction 1
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Figure 4.28: Animal data : Relative performance Direction 2
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Figure 4.29: Animal data : Relative performance Direction 3
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Figure 4.30: Animal data : Relative performance Direction 4
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Figure 4.31: Animal data : Relative performance Direction 5
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Figure 4.32: Animal data : Relative performance Direction 6
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Figure 4.33: Animal data : Relative performance Direction 7
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Figure 4.34: Animal data : Relative performance Direction 8

3.75 3.76 3.77 3.78 3.79 3.8

x 10
5

5.01

5.0105

5.011

5.0115

5.012

5.0125

5.013

5.0135

5.014

5.0145

x 10
6

(a) Convex Hull DBSCAN, Direction 9
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Figure 4.35: Animal data : Relative performance Direction 9
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Figure 4.36: Animal data : Relative performance Direction 10
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Figure 4.37: Animal data : Relative performance Direction 11
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Figure 4.38: Animal data : Relative performance Direction 12
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(b) MBR DBSCAN, Direction 13

Figure 4.39: Animal data : Relative performance Direction 13
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Figure 4.40: Animal data : Relative performance Direction 14
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(a) Convex Hull DBSCAN, Direction 15
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Figure 4.41: Animal data : Relative performance Direction 15
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(b) MBR DBSCAN, Direction 16

Figure 4.42: Animal data : Relative performance Direction 16
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CHAPTER 5

Trajectory Smoothing and Simplification

5.1 Introduction

Trajectory smoothing is an important task in trajectory data analysis. A more

general task, known as trajectory simplification [15–17], focuses on reducing the num-

ber of points in a trajectory; on the other hand trajectory smoothing focuses on the

directional consistency of a trajectory. It is usually performed as a preprocessing task

in most of the trajectory analysis. Usually, the non-smooth behavior of a trajectory

can be caused by the presence of some noise in the data set, whereas in other cases it

could be the characteristics of the trajectory itself. Therefore trajectory smoothing

becomes imperative before any further analysis. As an example, in analyzing the

global directional pattern of a trajectory, the original trajectory may have some local

haphazard movements which is not relevant for the global analysis.

Trajectory simplification has been addressed in [15–17]. In these works on

trajectory simplification, the authors did not address the non-smooth behavior of a

trajectory caused by local sharp angular movements.

In this chapter we propose two novel trajectory smoothing methods. Proposed

trajectory smoothing methods are relevant to the directional pattern analysis. The

proposed smoothing algorithms are based on the internal angles of a trajectory. We

identify that the non-smooth characteristics of a trajectory is mainly caused by the

presence of some very small internal angles. These small angles are also responsible

for a trajectory’s self intersection. To the best of our knowledge this approach to

smoothing a trajectory is novel and effective.
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5.2 Preliminaries

Before we describe the proposed methods, we define a trajectory and its major

defining characteristics. Let us consider, a trajectory data set D comprising of n

trajectories viz., D = (Tr1, T r2, . . . , T rn).

Trajectory Definition: A trajectory Trj of size s is a sequence of points

[p1, p2, . . . , ps], where p1 is it’s initial point and ps is the final point. An ith point pi

in Trj is associated with spatial co-ordinates (xi, yi) and the associated time ti. For

example, in Figure 5.1 a, Tr = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11] is a trajectory of

size s = 11. We define the size of a trajectory as the number of points that represent

it.

Trajectory Segments (Lk): A trajectory Trj consists of line segments Lk =

pkpk+1 which are formed by joining the kth and (k + 1)th consecutive points in it,

where k ∈ [1, . . . , s− 1].

Angular Attribute (θ): This is an important attribute of a trajectory for

directional analysis, which considers the angles between its Lk and Lk+1 consecutive

line segments. This involves three successive points: pk, pk+1 and pk+2.

θ = min(6 (pkpk+1, pk+1pk+2), 360− 6 (pkpk+1, pk+1pk+2)) (5.1)

where, angle between the two line segments pkpk+1 and pk+1pk+2 is 6 (pkpk+1,

pk+1pk+2). Angle is measured in anti-clockwise rotation from pkpk+1 to pk+1pk+2. We

consider the smaller of the angles between the two line segments so that 0 ≤ θ ≤

180. A large value of θ represents a small change in direction whereas a small value

represents a sharp change. 6 is the symbol for absolute value of an angle.
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5.3 Trajectory Smoothing

Unlike hurricane trajectories [19], animal movement trajectories [23] tend to

be very haphazard and are non-uniformly sampled. For meaningful trajectory data

analysis, trajectory smoothing becomes imperative. Although, the smoothing of tra-

jectories has been studied in [15–17], non-smooth trajectories (see Fig. 5.1) are not

explicitly addressed.

5.3.1 Trajectory smoothness measure(sm (Tr)):

Smoothness of a trajectory determines its directional consistency over its whole

length. In this work as a smoothness measure, we consider the mean (smµ (Tr)) as

well as the standard deviation (smsd (Tr)) of the angular attributes of a trajectory.

If Θ is the vector of the angular attributes of a trajectory Tr, then : smµ(Tr) =

mean(Θ) , smsd(Tr) = sd(Θ). The smooth trajectory should have better smoothness

to highlight its main directional properties. If an initial trajectory is Tr, then the goal

of the smoothing process is to simplify it to a trajectory Trs such that smµ(Tr) ≤

smµ(Trs) and smsd(Tr) ≥ smsd(Trs).

A large smµ(Tr) and a small smsd(Tr) would indicate a smooth trajectory,

whereas small values for smµ(Tr) indicate a very jagged trajectory.

We propose two algorithms for smoothing : 3-points smoothing and 5-points

smoothing algorithms respectively. These algorithms are based on number of consec-

utive trajectory points that we consider for smoothing process.

5.3.2 3 - points trajectory smoothing : 3PtSpTraj

Fig. 5.1 shows the application of 3PtSpTraj. Here we consider 3 successive

trajectory points at a time, for analyzing the smoothness of a trajectory. These

three points will form an angle around the middle point. We can see from Fig. 5.1
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Figure 5.1: Trajectory simplification

that, the angle between the segment p9p10 and p10p11 is very small due to which the

segment p10p11 intersects the segment p8p9. The small angles indicate sharp turns

leading to non-smooth trajectories. This method needs an input parameter εθ, which

is the smallest angle threshold. Therefore, if an intermediate angle is less than this

threshold, (Fig. 5.1), we filter it out by discarding the intermediate point (p10 in

Fig. 5.1). This will result in the formation of the new segment p9p11. If the resulting

angle is still less than ε, further smoothing is applied.

Algorithm 12 shows the formal steps of the trajectory smoothing method.

In this algorithm first we compute the internal angles between the trajectory seg-

ments. This computation is done by the method ComputeInternalAngles. This

method takes the input trajectory T as an input and returns a vector of angles as

the output. We continue to smooth the input trajectory by dropping the smallest
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Algorithm 12 : 3PtSpTraj(T, εθ) /* 3-Points trajectory smoothing */

trajAngles = ComputeInternalAngles(T )

minAngle = min(trajAngles)

while minAngle < εθ do

T = Remove(T,minAngle)

trajAngles = ComputeInternalAngles(T )

minAngle = min(trajAngles)

end while

return(T )

Algorithm 13 : 5PtSpTraj(T, εθ) : /* 5-points trajectory simplification */

trajAngles = ComputeInternalAngles(T )

minAngle = min(trajAngles)

while minAngle < εθ do

Ts = SubTrajectory(T, 5)

for all Ti in Ts do

T ′i = CaseSimplify(Ti)

Ti ← T ′i

end for

trajAngles = ComputeInternalAngles(T )

minAngle = min(trajAngles)

end while

return(T )

angle minAngle as long as this angle is less than threshold angle εθ. The method

Remove(T,minAngle) removes the angle minAngle by removing the corresponding

point from the trajectory T .
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Figure 5.2: Case 1 - 4 for step simplification

5.3.3 5 - points trajectory smoothing : 5PtSpTraj

We propose another algorithm called 5 - points smoothing (Algorithm 13-

14). We consider a window of size w = 5 trajectory points, hence corresponding to 3

angles. This approach is more advanced compared to the previous algorithm. In order

to explain the algorithm we use the 8 cases explained in Figure 5.2 and Figure 5.3. In

this algorithm we use SubTrajectory(T, 5), to return sub-trajectories using a window

of size 5. These sub-trajectories are in turn examined for smoothness using the 8

cases as described in Figure 5.2 and Figure 5.3. These 8 cases are based on each of

the 3 angles being either ≤ εθ or > εtheta, resulting in 23 = 8 cases. These individual

cases are addressed by CaseSimplify(T ) (Algorithm 14). We can see from these

figures that each case of non-smooth behavior in sub-trajectory can be addressed

in corresponding way. In Figure 5.2 Case 1, since all the three internal angles are

85



Algorithm 14 : CaseSimplify(T ) /* Case specific simplification */

caseInput = Find3θCase(Ti)

switch caseInput do

case 1 :

DoNothing()

case 2 :

Ti ← DropPoint(Ti, p2)

case 3 :

Ti ← DropPoint(Ti, p3)

case 4 :

Ti ← DropPoint(Ti, p4)

case 5 :

Ti ← DropPoint(Ti, p2, p3)

case 6 :

Ti ← DropPoint(Ti, p2, p4)

case 7 :

Ti ← DropPoint(Ti, p3, p4)

case 8 :

Ti ← DropPoint(Ti, p2, p3, p4)

end switch

return(Ti)

larger than the threshold εθ, we return the original sub-trajectory because it is already

smooth. In Figure 5.2 Case 2, angle θ1 is less than εθ, therefore we drop the point p2

from the sub-trajectory. This will result in the smoothed trajectory as (p1, p3, p4, p5).

Similarly in Figure 5.2 Case 3, we drop the trajectory point p3 because the angle
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Figure 5.3: Case 5 - 8 for step simplification

θ2 < εθ, the resultant trajectory is (p1, p2, p4, p5). In Figure 5.2 Case 4, θ3 < εθ so we

drop point p4 so the resulting trajectory is (p1, p2, p3, p5). Figure 5.3 Case 5, shows

that the two internal angles which are θ1 and θ2, are less than εθ, here we discard

points p2 and p3 which results in trajectory (p1, p4, p5). Similarly in Figure 5.3 Case 6,

θ1 and θ3 are less than εθ, in this case we drop the trajectory points p2 and p4 resulting

in the final trajectory (p1, p3, p5). In Figure 5.3 Case 7, θ2 and θ3 are less than εθ,

therefore we drop the points p3 and p4 resulting in the final trajectory as (p1, p2, p5).

In the final case Figure 5.3 Case 8, we have θ1, θ2 and θ3 less than εθ, therefore we

drop the points p2, p3 and p4 resulting in the trajectory as (p1, p5).

CaseSimplify method identifies different non-smooth cases and smooths those

cases accordingly as mentioned above. It uses the method DropPoint(Ti, pj) to drop

the point pj from a sub-trajectory Ti, if the angle at pj is less than εθ. The same
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method DropPoint(Ti, pj, pk, pl) can be used to drop multiple points from the input

sub-trajectory Ti. These multiple points are dropped to remove non-smoothness from

the trajectory.

5.4 Experiments and Results

In this chapter we use the animal data [23] to show the effectiveness of our

approach. This animal data contains movement data of elk, deer and cattle. We use

the year 1993 data for elk, deer and cattle.

To address the unevenly sampled trajectories, we segment a bigger trajectory

into sub-trajectories at a point where the time difference between the successive sam-

pled points is larger than a given threshold (45 minutes for elk and deer movement

data and 120 minutes for cattle data). The choice of different values of time threshold

was picked on the basis of the nature of the data. The samples in elk and deer are in

the interval of approximately 30 minutes, whereas in case of cattle it is approximately

90 minutes.

We present the results of the trajectory simplification on the three data sets (elk,

deer and cattle) for original trajectories and simplified trajectories (using two methods

as mentioned above) using the smµ and smsd smoothness measures. Table 5.1 to

Table 5.11 show the results of trajectory smoothing. Each table shows the values of

smµ and smsd for original trajectories, trajectory simplified by using 3-points and

the 5-points smoothing. We present the results using different angular thresholds

which are 5, 10, 15 and 30 degrees. From all these results we can see that the

trajectory simplification has resulted in better values of the smoothness measure.

Surprisingly, the trajectory smoothing method using 5-points smoothing has only

performed marginally better than that with the 3-points smoothing. This behavior

88



Table 5.1: Elk trajectory data simplification εθ = 5

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

94.59 55.00 99.08 52.16 99.17 52.13
89.68 55.47 95.02 51.45 95.17 51.46
85.56 55.92 93.79 52.88 93.92 51.91
89.41 58.50 97.71 56.07 97.84 56.04
83.68 56.50 89.37 53.73 89.92 54.03
91.31 54.95 97.51 52.49 97.62 51.51
97.50 56.85 102.45 50.79 102.60 50.83
90.56 56.69 98.41 54.00 98.52 54.05
87.28 52.80 92.02 50.25 92.42 49.89
86.23 56.74 91.02 55.02 91.44 54.25

Table 5.2: Elk trajectory data simplification εθ = 10

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

94.59 55.00 99.17 51.85 99.25 51.82
89.68 55.47 96.54 51.08 96.69 50.09
85.56 55.92 93.71 50.96 93.84 50.99
91.31 54.95 98.97 50.85 99.42 50.09
97.50 56.85 104.60 48.58 104.74 47.64
90.56 56.69 104.16 48.81 104.28 48.85
89.99 56.24 97.92 51.16 98.08 49.25
87.28 52.80 95.11 48.72 95.51 48.35
94.96 53.53 101.67 49.81 101.74 49.82
86.23 56.74 92.41 52.12 92.80 52.20

is due to the fact that the 3-points smoothing method already removes most of the

non-smooth characteristics of a trajectory.

5.5 Summary

In this chapter we propose two novel algorithms for the trajectory smoothing

problem. These algorithms consider the internal angles of the trajectories for their

non-smooth characteristics. We show the effectiveness of these algorithms using the
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Table 5.3: Elk trajectory data simplification εθ = 15

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

89.68 55.47 100.93 48.53 101.12 48.47
83.68 56.50 96.42 48.84 96.99 48.07
97.50 56.85 108.07 48.61 108.31 48.68
86.70 53.37 99.58 47.01 99.93 46.32
85.58 54.57 97.67 48.44 97.85 47.63
90.56 56.69 106.04 47.87 106.33 46.02
87.28 52.80 95.30 47.41 95.70 47.03
94.96 53.53 105.77 46.55 105.82 45.64
86.62 54.72 96.90 48.94 97.28 47.99
88.30 59.80 106.84 50.87 107.37 50.37

Table 5.4: Elk trajectory data simplification εθ = 30

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

90.95 54.75 106.33 45.10 106.77 43.36
84.97 53.41 107.63 45.34 109.80 42.34
83.68 56.50 102.83 44.84 104.95 44.29
91.31 54.95 112.06 42.13 112.64 41.85
86.70 53.37 106.65 42.94 106.92 42.14
85.58 54.57 109.41 42.26 110.52 41.38
89.99 56.24 110.57 42.65 111.12 42.48
87.28 52.80 104.88 40.87 104.98 40.64
86.62 54.72 107.70 44.43 108.17 44.31
85.13 57.73 108.12 43.10 108.41 42.91

Table 5.5: Deer trajectory data simplification εθ = 5

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

86.56 56.46 93.93 52.74 94.03 51.81
65.01 53.27 69.67 50.64 70.37 50.15
71.64 55.97 75.89 54.20 75.89 54.20

Table 5.6: Deer trajectory data simplification εθ = 10

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

86.56 56.46 97.82 49.87 98.00 48.99
65.01 53.27 75.01 49.08 75.06 49.30
77.78 56.12 86.85 51.51 87.12 50.57
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Table 5.7: Deer trajectory data simplification εθ = 30

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

91.89 56.54 116.89 31.58 117.24 31.58
65.01 53.27 100.82 38.03 102.74 38.11
84.56 53.61 105.20 44.00 105.66 44.25

Table 5.8: Cattle trajectory data simplification εθ = 5

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

75.25 50.72 81.99 49.49 82.06 48.52
76.75 53.05 82.02 47.97 82.27 47.07
77.99 51.56 82.54 49.21 82.69 48.76
82.84 52.66 85.56 51.61 85.78 51.73
83.10 55.65 86.97 54.66 87.66 54.66
74.12 57.19 82.24 52.50 82.85 50.61
81.96 56.90 90.77 52.97 91.05 52.08
78.43 54.69 82.11 51.21 82.77 50.71

Table 5.9: Cattle trajectory data simplification εθ = 10

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

82.25 58.06 91.33 54.37 91.46 53.58
84.62 57.62 93.31 53.40 93.64 52.54
84.73 55.06 92.42 51.81 92.68 51.84
75.25 50.72 85.52 48.51 85.60 47.55
82.84 52.66 88.65 50.72 88.87 50.84
74.12 57.19 84.59 52.82 85.20 51.93
74.34 55.57 84.84 51.62 85.79 51.61
81.59 58.54 95.28 53.25 95.49 53.31

Table 5.10: Cattle trajectory data simplification εθ = 15

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

79.11 52.06 93.79 46.69 94.56 45.81
82.25 58.06 95.08 49.81 95.20 49.03
81.60 60.35 100.30 51.82 100.37 50.86
75.25 50.72 86.40 44.70 87.43 44.13
76.75 53.05 86.13 43.41 86.52 43.21
74.12 57.19 88.46 51.16 89.07 50.28
74.34 55.57 84.77 48.64 85.72 48.63
82.65 54.12 91.10 50.25 91.70 50.23
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Table 5.11: Cattle trajectory data simplification εθ = 30

OrigTraj
(smµ)

OrigTraj
(smsd)

3PtSpTraj
(smµ)

3PtSpTraj
(smsd)

5PtSpTraj
(smµ)

5PtSpTraj
(smsd)

79.11 52.06 101.58 43.03 102.80 42.40
78.87 50.22 84.35 39.64 85.12 38.71
79.05 53.35 103.16 42.39 103.28 42.31
75.25 50.72 93.30 44.93 97.08 44.93
74.34 55.57 104.48 45.29 105.92 45.04
82.65 54.12 99.10 43.83 100.12 43.40
79.04 57.07 87.45 43.49 88.01 43.64
81.96 56.90 100.58 47.01 100.64 46.77

smoothness performance measure on animal movement data. The results show the

effectiveness of the proposed algorithms.
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CHAPTER 6

Conclusion

This dissertation is focused on three aspects of spatio-temporal data analysis:

point based clustering for hot-spot detection; directional analysis of trajectory; and

smoothing of trajectories.

In the point based clustering for hot-spot detection, we analyzed hurricane

storm trajectory data to find areas of extreme hurricane density, as well as areas

where hurricanes originate and land. We took a different approach to trajectory

analysis by focusing on points along the trajectory, rather than line segments as in

previous work. We used the DBSCAN algorithm for the clustering analysis. Initially

the clusters are obtained on the basis of only the spatial attributes. After that, we

looked at the influence of the non-spatial attributes, in particular wind speed, on

the clusters obtained. We also propose a spatio temporal DBSCAN algorithm where

the normalized relative time information with the point data has been considered as

another non-spatial attribute for DBSCAN. We post processed the clustering results

to obtain the storm starting, storm landing and storm tracking information. Our

work differs from other work because of the focus on trajectory points, which results

in identifying high-activity regions, as well as regions at start and end of storms.

In the directional analysis of trajectory, we proposed a novel framework for

the directional analysis of trajectory data. We proposed a novel CH based filtra-

tion method using convex hulls of sub-trajectories. A novel technique for identifying

the directional orientation of the trajectory data was proposed. Clustering is then

applied to determine interesting directional clusters of trajectories. We demonstrate
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our approach on two data sets: hurricane tracks and animal trajectories. the results

show that our clustering is good using standard cluster evaluation metric.

Finally, in the work on smoothing of trajectories, we propose two novel trajec-

tory smoothing methods which are based on the internal angles of trajectories. These

two methods are called 3-points smoothing and 5-points smoothing. The effectiveness

of these methods have been established on three real-life datasets.
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