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Abstract 

BUILDING 3D SHAPE PRIMITIVE BASED OBJECT MODELS FROM RANGE IMAGES 

 

Vamsikrishna Gopikrishna, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Manfred Huber 

Most pattern recognition approaches to object identification work in the image 

domain. However this is ignoring potential information that can be provided by depth 

information. Using range images, we can build a set of geometric depth features. These 

depth features can be used to identify basic three-dimensional shape primitives.  

There have been many studies regarding object identification in humans that 

postulate that at least at a primary level object recognition works by breaking down 

objects into its component parts. To build a similar Recognition-by-component (RBC) 

system we need a system to identify these shape primitives. 

We build a depth feature learner by extending a sparse autoencoder neural 

network into a model similar to a convolutional neural network to learn supersized 

features that can be matched to patches extracted from depth images. This allows us to 

convert a collection of patches from a depth image of an object into converted into the 

space defined by the best fit on each of these supersized features. We also train a 

backpropagation network to identify shape primitives from patches from known shape 

primitives that have been converted into this feature space. 



v 

Table of Contents 

Acknowledgements ........................................................................................................ iii 

Abstract ......................................................................................................................... iv 

List of Illustrations ........................................................................................................ viii 

CHAPTER 1 INTRODUCTION ....................................................................................... 1 

1.1 Approach and Contributions ................................................................................. 3 

1.2 Outline ................................................................................................................. 4 

CHAPTER 2 BACKGROUND ......................................................................................... 6 

2.1 Recognition-by-Components ................................................................................ 6 

2.2 Identifying Geons from Images ............................................................................. 7 

2.3 The Sparse Autoencoder ....................................................................................10 

2.3.1 Basic Autoencoder Structure ........................................................................10 

2.3.2 Adding Sparsity ............................................................................................13 

2.3.3 Choosing the Sparsity Penalty Term.............................................................14 

2.3.4 Incorporate Penalty into the Cost Function. ..................................................16 

CHAPTER 3 SHAPE PRIMITIVE RECOGNITION FRAMEWORK .................................18 

CHAPTER 4 LEARNING IMAGE PATCH FEATURES ..................................................21 

4.1 Changing the Transfer Function ..........................................................................21 

4.1.1 Logistic Function ..........................................................................................22 

4.1.2 Gompertz Function .......................................................................................23 

4.2 Convolutional Smoothmax Sparse Autoencoder ..................................................25 

4.2.1 Differentiable Max Operation ........................................................................26 

4.2.2 Convolutional Smoothmax Network Architecture ..........................................27 

4.2.3 Relation to Convolutional Neural Network .....................................................31 

4.2.4 Selective Sparsity Enforcement ....................................................................32 



vi 

CHAPTER 5 PATCH CLASSIFICATION AND SHAPE PRIMITIVE 

SEGMENTATION .........................................................................................................33 

5.1 The Classifier Network ........................................................................................33 

5.1.1 Hidden Layer Size Selection ........................................................................34 

5.1.2 Network Architecture ....................................................................................34 

5.1.3 Choosing the Error Function .........................................................................36 

5.2 Handling Ambiguous Classifier Output ................................................................37 

5.2.1 Limited Kernel Smoothing ............................................................................38 

Gaussian Kernel ...............................................................................................38 

5.3 Shape Primitive Segmentation ............................................................................39 

CHAPTER 6 EXPERIMENTAL SETUP AND OBESERVATIONS ..................................41 

6.1 Data Preparation .................................................................................................41 

6.1.1 Object Information ........................................................................................41 

6.1.2 Camera Information .....................................................................................42 

6.1.3 Image Acquisition .........................................................................................42 

6.1.4 Patch Extraction ...........................................................................................44 

6.1.5 Simulated Range Images .............................................................................46 

6.2 Platform Information ............................................................................................46 

6.2.1 The minFunc Function..................................................................................47 

6.3 Feature Learning – Convolutional Smoothmax Sparse Autoencoder....................47 

6.3.1 Training Data ...............................................................................................47 

6.3.2 Features Learned .........................................................................................48 

6.3.3 Reconstruction Capability .............................................................................49 

6.3.4 Feature-Space Converter .............................................................................50 

6.4 Patch Classification and Primitive Segmentation. ................................................50 



vii 

6.4.1 Training Data ...............................................................................................50 

6.4.2 Shape Primitive Patch Identification and Segmentation ................................51 

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ....................................................55 

7.1 Conclusions ........................................................................................................55 

7.2 Future Work ........................................................................................................56 

REFERENCES .............................................................................................................57 

Biographical Information ................................................................................................60 

 
  



viii 

List of Illustrations 

Figure 2-1 The Cylinder Geon and its Neighbors. Credit: Beiderman [7]. ........................ 6 

Figure 2-2 Identifying Geons by Simulated Charge Density. Credit: Wu and Levine [12] . 8 

Figure 2-3 Basic Autoencoder Architechture ..................................................................11 

Figure 2-4 KL Divergence for 휌 = 0.2 ............................................................................15 

Figure 2-5 Comparing KL Divergence and Log Penalty .................................................16 

Figure 3-1 Shape Primitive Recognition Framework ......................................................19 

Figure 4-1 Comparison between Logistic and Gompertz Sigmoid Function ....................24 

Figure 4-2 Modifying Shapes of Gompertz and Logistic Functions .................................25 

Figure 4-3 Convolutional Autoencoder architechture......................................................29 

Figure 5-1 Patch classification network ..........................................................................35 

Figure 5-2 Gaussian Kernel with σ = 3 ..........................................................................39 

Figure 6-1 Image acquisition setup ................................................................................43 

Figure 6-2 3D Range Image of Cone .............................................................................43 

Figure 6-3 Comparison of random (left) and Halton sequence (right) sampling ..............45 

Figure 6-4 Quasi–Random sampling of windows from Range image. .............................45 

Figure 6-5 Simulated range image of a cone. ................................................................46 

Figure 6-6 3D Depth Features Learned .........................................................................48 

Figure 6-7 Reconstruction Weights for Image Patches ..................................................48 

Figure 6-8 Original Patch (Left) versus Reconstructed Patch (Right) ..............................49 

Figure 6-9 Reconstruction error for Convolutional Smoothmax Sparse Autoencoder ......49 

Figure 6-10 Change in Classifier Cost Over Duration of Training ...................................51 

Figure 6-11 Classifier Output for Single Shape Primitive Object Images ........................52 

Figure 6-12 Confusion Matrix for Patch Classification (Without Smoothing) ...................52 

Figure 6-13 Classification of Single Shape Primitive Object Images (With Smoothing) ...53 



ix 

Figure 6-14 Confusion Matrix for Patch Classification (With Smoothing) ........................53 

Figure 6-15 Classifier Output on Multi-Primitive Object ..................................................54 

  



 

1 

CHAPTER 1  

INTRODUCTION 

Vision is a fundamental sense for humans and also of high importance for 

computer systems operating in the physical world, such as robots, autonomous vehicles, 

or recognition components for decision support systems. While there has been significant 

progress in the development of real-time vision systems [1][2][3], the capabilities of such 

systems still lack significantly behind the ones of humans, in particular in terms of 

recognition of the semantics and function of objects. To make progress in this, there has 

been considerable interest in building computer vision systems that have learning 

capabilities and that function similar to the human visual process. Recently, deep learning 

techniques have been applied to build more competent object recognition systems 

[4][5][6] that recognize objects from the bottom up by learning feature representations at 

various resolutions. While these systems have been successful as a basis for training 

classifiers for object recognition and a number of other tasks, their higher level 

representations are generally not easy to interpret and do not generally correspond well 

to elements in human object recognition theories. One such theory, is the work by 

Biederman on recognition-by-components [7]. This work theorizes that at a primary 

access level i.e. on initial viewing, image recognition occurs as a function of decomposing 

a complex object into a collection of base objects. These objects can then be combined 

to form the main object. Recognizing objects from such base objects offers a number of 

potential benefits in terms of vision and recognition in the context of robotics as it 

provides the ability to associate attributes to object components (rather than only to 

complete objects), thus allowing the recognition of attributes prior to the identification of 

the object. This can be useful to allow for fast decisions as well as for improved real-time 

focus of attention models. There is clear evidence of such a component of functional 
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attributes (i.e. a measure of the capacity to do a certain action with or on an object) in 

human object recognition. If we know what we intend to do with it we can form a 

rudimentary shape of the object before we even look for it. Similarly given an unfamiliar 

object we use its shape primitives to infer attributes and determine potential actions that 

can be performed. These capabilities have been demonstrated in psychology 

experiments that have shown that humans are able to pre-shape their hand to a correct 

grasp for the object even before they have recognized the object [7]. An interpretation of 

this in the recognition-by-components framework would be that grasp characteristics can 

be inferred based on the object primitives and thus prior to the recognition of the entire 

object. 

Building a system that can recognize objects as a collection of shape primitives 

thus promises a number of benefits for recognition and robot vision applications. In 

particular, if we can take objects with known functional attributes and decompose them 

into component parts then it could be possible to learn a mapping between them.  This 

mapping can be used to generate potential functional attributes of unknown objects even 

before the object is recognized (and even if the object cannot be recognized) or to 

generate potential shapes of objects based on their functional attributes. To do this, 

however, we first need a method recognize objects as collections of 3D parts. While 

people have built computer vision systems around the recognition-by-components theory, 

they have generally not taken advantage of learning abilities in the low level recognition 

system but rather used strongly model-based techniques for the component recognition 

[9][10][11][12][13][14]. This, however, has a number of disadvantages as it can result in 

incomplete sets of shape primitives and potentially difficult recognition in the context of 

noisy data. To address this and to be able to operate on more general and modifiable 

sets of shape primitives, this dissertation introduces an approach that uses learning 
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techniques to recognize shape primitives from 3D range images for use in a recognition-

by-components framework. 

 

1.1 Approach and Contributions 

We propose a system to learn to recognize shape primitives from range images. 

These range images represent a 3D view as a collection of numerical depth values. To 

address the overall complexity and make the approach flexible, we extract patches of 

depth information from 3D images of known shape primitives using random sampling. 

These depth patches can now be used to train a feature learner that translates the depth 

patches into a feature representation that maintains the important aspects of the data 

while facilitating subsequent patch-level recognition. In addition to facilitating patch-level 

recognition, the features we learn can also be used as a more powerful representation to 

reconstruct any depth images patches. Applying certain constraints during the training of 

the feature learner will allow us to learn highly descriptive depth gradient features that, 

besides providing good recognition performance, also promise some benefits in terms of 

dealing with occlusion and object extension (although we will not investigate this in depth 

in this dissertation). Once we have patches extracted from known shape primitives 

converted into the space represented by these features, we train a multi-layer perceptron 

network to classify any point in this feature space to a classification label signifying which 

shape primitive the depth patch originally came from.  

Now, when we are given a range image of an unknown object, all we need to do 

is sample patches at various locations on the image and convert them to the feature 

space. We then run them through the classifier to find out which primitive the patches 

belong to. Complete shape primitives are then formed by grouping together the patch 

locations to find the location of the primitive and to segment it from the rest of the object. 
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Any ambiguity in the classifier results can be addressed by using a kernel based 

smoother to boost or push down classifier results based on the results of its neighbors. 

The main contributions of this dissertation are two-fold. First it provides a new 

framework for the shape primitive recognition for use in the recognition-by-components 

framework. This framework, as opposed to previous work uses machine learning in the 

form of an unsupervised autoencoder-based feature learner and a supervised recognition 

network to allow more flexible shape primitives to be used and to have them recognized 

in individual image patches rather than as a whole using surface models. The main 

benefit of this is that occlusions and partial visibility of primitives is easier to handle and 

that the primitive set could eventually be learned rather than engineered beforehand. A 

second contribution of this dissertation is the introduction of the new Convolutional 

Smoothmax Autoencoder network for feature learning. This network applies convolutional 

principles to the learned feature representation for single image patches by learning 

super-sized features that are larger than the range patch they are representing. As 

opposed to existing Convolutional Autoencoders (CAE [15]) which convolve the learned 

features with neighboring image regions, the Convolutional Smoothmax Autoencoder 

introduced here convolves the image patch over the larger feature, allowing it to be 

applied to a single patch (rather than an image neighborhood). Also, using this, fewer 

features are needed and the learned representation offers the promise to allow additional 

capabilities in terms of occlusion handling and object completion by predicting object 

aspects beyond the patch itself. 

 

1.2 Outline 

The rest of the dissertation is structured as follows. In Chapter 2 we will cover 

some pertinent background information. We will look at one type of shape primitives 
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thought to be key to object recognition called Geons. We will look at some approaches 

taken to recognize geons from images and also other methods of using Geometric 

shapes and 3D images to try to perform object recognition. We will also describe a 

method of learning descriptive features to represent image patches called the sparse 

autoencoder. 

In Chapters 3, 4 and 5 we will describe our method of learning to find and 

recognize shape primitives. We will describe modifications made to the sparse 

autoencoder to try to use it with depth information. We will be discussing the 

Convolutional Smoothmax sparse autoencoder, a modified version of the sparse 

autoencoder that we ended up creating. We also describe the patch classifier network 

and some of the changes made to the standard classifier network application in order to 

form shape primitives for later object recognition. 

Chapter 6 will cover the experimental setup and results. We discuss the setup 

used to obtain and work with the range images. We discuss the required preprocessing 

steps and how exactly the patches were sampled and why. We will also discuss the types 

of features that were learned by our Convolutional Smoothmax sparse autoencoder. We 

will then discuss how the classifier functions on images of shape primitives and see the 

effect kernel smoothing has on the results. Finally we will observe the behavior of the 

system on images containing more than one primitive. Finally Chapter 6 will conclude the 

dissertation and discuss potential future work. 
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CHAPTER 2  

BACKGROUND 

2.1 Recognition-by-Components 

The recognition by components theory put forward by Irving Biederman [7] as a 

model for human object recognition holds that at the primary recognition level, object 

recognition is done by breaking down the image into components. He puts forward that 

the objects are segmented at the areas of intersecting concavity of edges. Using that 

information and what he calls non-accidental properties of image edges (symmetry, 

collinearity etc), he approximates these segmented regions into one of a set of image 

primitives he calls geometric ions or Geons. These primitive components are simple, 

typically symmetrical volumes lacking sharp concavities (blocks, cylinders, spheres etc.). 

He represents these geons as generalized cones with variations in various attributes 

differentiating between the various geons. Figure 2-1 shows the space of some of the 

geons proposed by Biederman [7]. 

 
 Figure 2-1 The Cylinder Geon and its Neighbors. Credit: Beiderman [7]. 
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Any 3D object can now be represented as a combination of the component 

geons. While this approach will have difficulties differentiating between many a natural 

object (apple vs. orange), for the primary object recognition, this method is adequate. Our 

approach also tries to learn to identify similar primitives without sharp concavities from 

range images. However, as it uses learning to identify the primitives, it is not fixed to the 

particular parametric representation. 

 

2.2 Identifying Geons from Images 

There have been many approaches to extracting geons from 2D and 3D images. 

In the approach put forward by Biederman, Hummel, Gerhadstein and Cooper [10], a 

neural network takes line drawings of images and returns the geons. Based on temporal 

correlation of the activated units, the system identifies parts, binds them together based 

on their attributes and their relation to one another and then binds them temporarily to 

activate a Geon recognition node through dynamic binding.  

In the approach described by Jacot-Descombes and Pun [11], they try to infer the 

most likely 3D primitive from their 2D orthogonal projections. They achieve this by 

calculating 

푃(푆|푀) = 	
푃(푀|푆) ∗ 	푃(푆)

푃(푀)  

Here S is a 3D shape and M is a 2D measure. P(S) is evenly distributed over all 

possible shapes. P(M|S) can be calculated based on known information about the 3D 

shapes and P(M) is calculated by 

푃(푀) = 푃(푀|푆 ) ∗ 	푃(푆 ) 

There are also approaches that work with 3D range images. One approach by 

Kenong Wu and Martin Levine [12] involves converting objects in range data into 
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triangular meshes. Each of these triangles in the mesh has a simulated charge which is 

then allowed to propagate. The areas with low charge density (deep concavities) are then 

traced and used to segment the objects. The points in the objects are then fit to a 

parameterized 3D model of a Geon to obtain the geons. This process is illustrated in 

Figure 2-2. We generate a triangular mesh from range data (a), simulate the propagation 

of charge density (b), segment at the concavities (c) and identify geons by fitting them to 

models (d).  

 

 
Figure 2-2 Identifying Geons by Simulated Charge Density. Credit: Wu and Levine [12] 

 

While most work in 3D images uses surface models of the objects (or object 

primitives) to match them to the complete point cloud (or a segmented part of the point 

cloud), there here are a small number of approaches that use local range features on 3D 

images to identify local object components without performing a complete surface match. 

For example Shotton et al, [14] describe a method to quickly and accurately predict body 

joint positions from 3D range images. They use hand designed depth offset features 

which calculate difference in depth between a pixel location and another one within a 

given offset. This gives us a weak classifier that can be used to estimate whether a 

particular pixel location in the 3D image corresponds to a particular part of the body. A 

large number of such classifiers in a decision tree forest can then be used to find body 

part locations in the depth image. They find the mode of the body part locations to 

estimate the joint locations. This approach is dependent on knowing the arrangement of 
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the various parts of the object (we know what the expected location of left arm is with 

respect to right arm) and is build to deal with only one type of complex object (the human 

body). While this works well for the body part identification, it relies on hand designed 

shape primitives and is custom designed for situations where the content of the image 

consists largely of a person and thus where the existence of the features (and their 

numbers) is largely known beforehand. To adjust this to the context of shape primitive 

recognition, more generic depth features would be required which would be difficult to 

hand design. 

As discussed, the approaches to identify shape primitives can be divided 

coarsely in two types, ones that use a generalized parameter model and match its 

surface to the depth information, and ones which use local surface features to try to infer 

shape primitive identities from local parts and then combine them into the overall Shape 

primitive region. While most past work in the context of recognition-by-component theory, 

in particular on range image data, has used the former approach, this has significant 

disadvantages in terms of flexibility and complexity. In particular, this approach requires 

recognition of the entire shape primitive as one and thus poses difficulties in the context 

of occlusions and partial visibility, as well as posing high complexity in the context of 

higher resolution images, Moreover, these approaches generally rely on hand-designed 

parametric surface models and do not provide an efficient way to use learning to adapt to 

other shape primitives. The second type of technique, of which [14] is an example 

overcomes some of these limitations by attempting recognition at a local, image region 

level. While this results in a weaker individual recognition, it overcomes limitations of 

partial occlusion and partial visibility and, by grouping the results can strengthen the final 

recognition of the shape primitive. To take advantage of this, the approach proposed in 

this dissertation falls into this group and uses local image patch features to perform local 
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recognition on randomly sampled image patches and then group them to segment out 

shape primitives from the depth image. To be able to do this in the general context of 

recognition-by-component (rather than the special purpose skeleton identification in [14]), 

however, it is important that the technique used for this is able to use an effective shape 

primitive set that can cover general objects in the environment and can form highly 

effective and efficient features that lead to high quality recognition. To address this, the 

approach presented here uses machine learning techniques to form the patch classifiers 

and introduces a novel autoencoder learning framework that permits learning of relatively 

location-invariant, highly effective features that can be extracted from individually 

sampled image patches for high-quality classification results. 

 

2.3 The Sparse Autoencoder 

To identify shape primitives from depth image patches it would help if we know 

which features can best be used to represent them. To do this we can use unsupervised 

learning to learn features from 3D range images of known shape primitives. Dr. Andrew 

Ng [16] describes a sparse autoencoder network to learn descriptive features from 

natural images. Since 3D range data is a 2D array of depth values this approach can 

serve as a basis for feature learning. 

 

2.3.1 Basic Autoencoder Structure 

An autoencoder neural network is a feed forward neural network where the target 

output is the same as the input. The autoencoder in effect is trying to learn an 

approximation of the identity function. If the number of nodes in the hidden layer is 

smaller than the number of nodes in the input or output layer then the first part of the 

network learns a compressed representation of the pixel data. The remaining part of the 
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network can be used to reconstruct the data. The main goal in the context of using this 

network architecture and training paradigm in the context of the recognition task 

addressed in this dissertation is to interpret the activation of the hidden layer units as a 

new, potentially better feature representation for the image patch used as the input to the 

network. Error! Reference source not found. shows the basic network layout for the 

base autoencoder network.  

 
Figure 2-3 Basic Autoencoder Architechture 

The number of nodes in the hidden layer determines the number of features we 

are trying to learn from the image. The weights of the hidden layer form the 

representation of the features. We can learn the network using backpropagation learning 

with batch processing. To do this we need define a cost function. The most frequently 

used cost function is. 

퐽(푊, 푏) = 	
1
푚

1
2 푎( ) − 푎( ) +

휆
2 푊( ) 

Here 푎( ) is the set of randomly sampled input patches from normalized range 

images with both an object with a single shape primitive and the background. Each patch 
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could have been taken from an area of the range image that featured just the object, just 

the background or a combination of the two.	푎( ) is the output of the final layer of the 

network. Learning is usually started from randomly initialized weights and bias values. 푠  

represents the number of nodes in that layer. 푊( ) represents the weight of the 

connection between node 푖 in the 푙th layer and node 푗 in the (푙 + 1)th layer. The first term 

in this cost function represents the cost in terms of the reconstruction error. The second 

term is a weight decay term to prevent overfitting.  

We first perform a feed-forward pass to find the activations for all the layers. For 

each layer the output can be calculated as 

푧( ) = 푊( ) ∗ 푎( ) + 	 푏( ) 

푎( ) = 푓 푧( )  

In the equation above, 푓(푥) represents the transfer function, usually the logistic 

function. 푊( ) represents the weights and 푏( ) the bias weights of the 푙th layer. 

Since we are trying to learn an autoencoder, the final output 푎  needs to be equal 

to 푎 . We now need to propagate the error back through the layers. To do this we need to 

calculate an 'error term' 훿  which represents how much each node in the layer was 

responsible for the error in the final output. 

For the output layer 

훿( ) = 푎( ) − 푎( ) ⋅ 푓′ 푧( )  

For the hidden layer 

훿( ) = 푊( ) ∗ 훿( ) ⋅ 푓′ 푧( )  

In the equation above, 푓 (푥) represents the derivative of the transfer function. 

The dot operator represents the piecewise multiplication operation. We can now find the 
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partial derivatives of the cost function with respect to both the weights and the bias 

weights. 

∇ ( )	퐽(푊,푏) =
휕

휕푊( ) 퐽(푊,푏) = 훿( ) ∗ 푎( )  

∇ ( )	퐽(푊, 푏) =
휕

휕푏( ) 퐽(푊,푏) = 훿( ) 

The weight update per iteration is given by 

푊( ) ∶=푊( ) − 훼
1
푚 ∇ ( )	퐽(푊, 푏) + 휆	푊( )  

푏( ) ∶= 푏( ) − 훼
1
푚 ∇ ( )	퐽(푊, 푏)  

This process is repeated over multiple iterations. The learning rate 훼 can be 

dynamically adjusted by converting the above equations into functions that calculate both 

퐽(휃) and ∇ 	퐽(휃) where 휃 is the vector form of both the weights and the bias weights. This 

will allow us to do gradient descent using a dynamically adjusted learning rate by using 

an optimization algorithm (L-BFGS). We just find 휃 that minimizes 퐽(휃) along the gradient 

∇ 	퐽(휃). 

Once the learning process is done, the neural network has learned an 

approximation of the identity function. The first two layers together present a function that 

can convert the given window from depth data to a space represented by a few features. 

The actual features can be obtained by visualizing the weights 푊( ). 

 

2.3.2 Adding Sparsity 

While the autoencoder network will learn a feature representation, the 

representation is mainly focused on minimizing reconstruction error and not on its 

discriminative powers, which are more important for future use of the feature space. To 
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learn features that will be useful to us we impose a sparsity constraint. A sparsity 

constraint adds a penalty to the cost function if the activation is above a certain threshold. 

This will cause backpropagation learning to learn weights such that activations are as low 

as possible (assuming we pick a low sparsity parameter). This ensures that each feature 

is used as sparingly as possible to represent the data and allow us to learn features that 

best represent and discriminate within the given data. 

Consider the activations of the hidden layer. The average activation of the 푗th 

node can be calculated as 

휌 =
1
푚 푎( ) 

We want this to be approximately equal to a given low value. This value is the 

sparsity parameter 휌. Giving a small value (e.g. 0.05) for this will keep the hidden layer 

activations close to zero. 

To achieve this we add a penalty term to the optimization value that penalizes 휌  

being significantly different from 휌. There are many choices for a penalty term.  

 

2.3.3 Choosing the Sparsity Penalty Term 

While there are many choices for penalty terms, many of them do not lend 

themselves to efficient incorporation into the distributed backpropagation algorithm. One 

potential commonly used sparsity term is the log penalty. It does not use the given low 

value but calculates the penalty based on how high the activation is. The penalty is given 

by 

log	(1 + 휌 ) 

One other option is the Kullback-Leibler (KL) divergence. The KL divergence 

calculates the difference between two probability distributions. To be able to use the KL 
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divergence as a sparsity penalty we model the activations as two Bernoulli random 

variables with mean 휌  and 휌. The KL divergence penalty to be added is then given by 

퐾퐿 휌||휌 = 휌 log
휌
휌 + (1 − 휌) log

1 − 휌
1 − 휌  

Here 푠  is the number of nodes in the layer for which penalty is being added. This 

value is 0 when the values are equal and monotonically increases as the difference 

between them increases, becoming infinity when 휌  reaches either zero or one (the upper 

and lower asymptotes of the transfer function). 

 
Figure 2-4 KL Divergence for 휌 = 0.2 

 

Assuming we have the expected activation to be suitably low, the KL divergence 

function is better as a penalty term as it increases to infinity as the activation becomes 1 

meaning that the network will avoid high activations, and with it saturation problems as 

much as possible. 
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Figure 2-5 Comparing KL Divergence and Log Penalty 

 

2.3.4 Incorporate Penalty into the Cost Function. 

To include sparsity in the autoencoder network, the overall cost function is 

modified to include this penalty term. 

퐽 (푊,푏) = 퐽(푊, 푏) + 훽 퐾퐿 휌||휌  

Here 퐽(푊, 푏) is the previously defined cost function and 훽 controls the weight of 

the sparsity penalty term. Note that 휌  indirectly depends on W and b. 

To incorporate the KL-divergence term in the derivative calculation we only need 

to make a small change to the error term of the hidden layer 

훿( ) = 푊( ) ∗ 훿( ) + 훽 −
휌
휌 +

1 − 휌
1 − 휌 ⋅ 푓′ 푧( )  
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Notice that learning the autoencoder using batch processing will save us some 

time since we can calculate all the average activations just once instead of having to do 

and extra feed forward pass for the sake of calculating the average activation. 

This basic autoencoder approach serves as the basis and motivation behind the 

feature learner that we introduce in this dissertation. However, this base autoencoder 

design has some limitations in the context of individual depth image patches that we will 

address in the Convolutional Smoothmax Autoencoder design introduced in this work. 
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CHAPTER 3  

SHAPE PRIMITIVE RECOGNITION FRAMEWORK 

As discussed in section 2.1, Biederman's Recognition-by-components theory [7] 

stipulates that the preferred form of Human object recognition is to decompose the object 

into component geometric shape primitives. To perform this decomposition in an efficient 

manner for real-time applications, it is essential that the underlying recognition 

architecture can detect, identify, and separate the shape primitives in an image. In this 

dissertation we present a framework to perform these tasks on 3D depth-images in a 

bottom-up fashion using a learning framework. Here, rather than starting by decomposing 

the object(s) in the image and then fitting pre-defined Geon models to them, the system 

uses a compositional approach where the shape primitives in the image are built up from 

local, recognized image patches. Since no parametric surface models for geons are 

used, the proposed framework allows for the definition of arbitrary shape primitives to be 

used where recognition of local image regions is learned using unsupervised feature 

learning and supervised classification. The shape primitive are finally formed from the 

image patches using filtering and region-based segmentation. Figure 3-1 shows an 

overview of the overall framework. 
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Figure 3-1 Shape Primitive Recognition Framework 

 

To efficiently perform recognition, image patches are here sampled randomly 

from the image using a quasi-random number generator. This sampling approach allows 

us to control the time spent when identifying shape primitives initially and would allow 

approaches where initial coarse sampling is augmented with more detailed sampling in 

regions with important shape primitives using a focus of attention mechanism. The 

sampled patches are then processed through a newly developed convolutional 

smoothmax autoencoder network, resulting in an efficient feature vector for patch 

recognition. Using this, patch recognition is performed using a classifier network which 

provides a probabilistic classification of each patch in terms of the base set of shape 

primitives. Using this initial, local recognition, a distance kernel-based filtering or 

smoothing method is applied to smooth the recognition result before region-based 

segmentation and grouping combines identified patches into shape primitives that could 

then be used for object recognition. 
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The core of this recognition architecture is the feature extraction and the patch 

classification components. For the former it is essential that it can extract features from 

single, isolated patches that are maximally relevant for the recognition of the used shape 

primitive set. To achieve this, the work presented here introduces a novel convolutional 

smoothmax neural network that allows the learning of super-sized features for added 

position invariance using an autoencoder training regimen. In this approach, random, 

unlabeled image patches are used to train a small feature set prior to shape primitive 

identification. Chapter 4 discusses the design and training of this network in detail and 

section 6.3 shows feature learning results on 3D depth-images. Image path classification 

is learned using a multi-layer classifier network using a set of labeled shape primitive 

prototype images as discussed in Chapter 5. The training of this component defines the 

used set of shape primitives. 
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CHAPTER 4  

LEARNING IMAGE PATCH FEATURES 

To identify the underlying shape primitive from small depth-image patches, it is 

important that classification is performed on a discriminative feature space that captures 

the important aspects of the surface patches while allowing sufficient tolerance to local 

noise. To learn such a feature set, the proposed approach uses an unsupervised learning 

framework. 

The basic auto encoder discussed in section 2.3 can be used to attempt to learn 

features from depth image patches. However there are some limitations to this approach 

in the context of 3D depth images as this method was developed to work with 2D natural 

image data. To adapt and evaluate the base approach modifications were applied here to 

improve its performance. In particular, a different transfer function was used to try to 

make it easier to achieve sparsity. To further improve performance and allow for a 

smaller, more powerful feature set, the autoencoder network architecture was finally 

modified to the convolutional smoothmax autoencoder network to better handle offsets in 

the features so that it can be able to represent our features more accurately.  

 

4.1 Changing the Transfer Function 

In a neural network, the transfer function converts the net sum of the product 

between the weights and the input into an output value, usually in a given range. The 

most commonly used transfer functions are sigmoid functions. They are used because 

they are real valued and differentiable and they also have horizontal asymptotes as their 

input tends to infinity. This means that for any real input the sigmoid function will have a 

real output that is within a defined range. 
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In the context of a sparse autoencoder using KL-divergence as a sparsity 

measure, the goal of sparsity is to limit the activation of hidden units to follow a Bernoulli 

distribution with a particular, small likelihood of a high activation value. In the context of 

sigmoid functions this implies a high likelihood of the lower asymptote and a small 

likelihood in the upper asymptote. To achieve trainability of the network in the context of 

this sparsity measure it is thus important that the training algorithm can maintain the 

activation within the trainable region for a small fraction of the inputs while allowing it to 

move onto the lower asymptote for the other examples. The former here facilitates the 

trainability of discriminative features while the latter enables the achievement of sparsity. 

 

4.1.1 Logistic Function 

The most commonly used sigmoid function is the logistic function. For any real 

input from −∞ to ∞ the function will output a value between 0 and 1. The logistic function 

is defined as 

푓 (푥) =
1

1 + 푒 ⋅  

In this transfer function we can use 훼 to control the slope of the sigmoid curve. 푒 

represents the Euler’s number. The derivative of this function is given by 

푓 (푥) = 훼 ⋅ 푓 (푥) ⋅ 1− 푓 (푥)  

In most cases this is the transfer function used in a neural network. If we want 

our network output to be able to reach zero (the lower asymptote) easier in order to make 

achieving KL-divergence sparsity simpler, it would be a simple matter to increase the 

slope of the transfer function to allow it to do so. However this will also decrease the 

sensitivity of our network to learn features for the remaining cases as doing this will also 

cause the output to have values that are not zero or one for a smaller range of values 
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and thus lead to an increased risk of saturation of the units and a resulting loss of 

gradient information, reducing the usefulness of the node. To address this and thus to 

obtain a better combination of sparsity and learning performance, we need to use another 

transfer function that will allow us better control over its shape. 

 

4.1.2 Gompertz Function 

The Gompertz function [17][18] (named after Benjamin Gompertz) is also a 

sigmoid function. The difference is that the function reaches the upper asymptote much 

more gradually than the lower asymptote as compared to the logistic function which 

reaches both the asymptotes at the same rate. The function is defined by 

푓 (푥) = 훼 ⋅ 푒( ⋅ ( ⋅ )) 

The derivative of this function is given by 

푓 (푥) = 	훼 ⋅ 훽 ⋅ 훾 ⋅ 푒( ⋅ ( ⋅ )) ⋅ 푒( ⋅ ) 

Here 훼 is the upper asymptote. Both 훽 and 훾 have to be lower than zero and 

control the shape of the function. The displacement of the curve along the x-axis is given 

by 훽 and the growth rate is given by 훾. 푒 again represents Euler’s number. Figure 4-1 

shows both logistic and Gompertz transfer functions. 
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Figure 4-1 Comparison between Logistic and Gompertz Sigmoid Function 

 

As we can see, the Gompertz function has different growth rates towards the two 

asymptotes and is thus able to reach zero quicker than the logistic function while 

maintaining the same rate towards one. This will make the neural network achieve 

sparsity much more easily without losing too much sensitivity in the learning region. 

Another advantage of this transfer function is the greater control we have over the shape 

of the curve and thus its behavior in terms of learning sensitivity and sparsity facilitation. 

Figure 4-2 illustrates this through a set of example parameter settings. 
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Figure 4-2 Modifying Shapes of Gompertz and Logistic Functions 

 

As we can see we have greater control over the shape (and in particular the 

relative growth rates - and thus gradients) of the Gompertz curve as compared to the 

Logistic curve. By modifying the values of 훽 and 훾 we have thus greater control over the 

learning behavior of the neural network. 

 

4.2 Convolutional Smoothmax Sparse Autoencoder 

The method to train an autoencoder to learn features is to feed it large set of 

image patches from the training images. The problem is that the same features may exist 

with different offsets in different image patches. In a standard autoencoder network this 

would result in the same feature being learned many times with different minor variations 

or, if the number of features we are trying to learn is small compared to possible 

variations, the features learned would be too vague to be of any use. One method that 

has been used to address this and produce some position-invariance of the learned 

features is the use of convolutional autoencoders (CAEs) with pooling layers [15]. In 

these, identical weights are applied not only to one patch but to an entire neighborhood of 
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shifted patches with a pooling layer identifying the patch that matches the learned feature 

and using this for reconstruction. While this has been shown to lead good results, it is not 

directly applicable to randomly sampled image patches as proposed in this framework. 

To address this limitation, the approach presented here inverts the convolution 

component and introduces a smoothmax operator in the network. The approach here 

make the features we are trying to learn much larger than the image patches that we use 

to learn them. For each feature we move the image window over overlapping areas in the 

feature to find the best match. So for each super-sized feature we take the section that 

best matches the image window that we provided. This will allow the autoencoder to 

compensate for offsets of the feature in the image window by simply moving around the 

image window over the feature till it finds the best possible fit.  

To identify the best fit for the image window and the feature subsection we need 

to use a max operation. However we cannot use backpropagation learning if we include a 

max operation. This means we need a differentiable function that has approximately the 

same effect as a max operation and can be integrated into the network. 

 

4.2.1 Differentiable Max Operation 

The smooth maximum function can be used to provide a differentiable 

approximation of the max operation. The smooth maximum is defined as 

푠푚푎푥 (푥 ,푥 ,⋯ ,푥 ) = 	
[푥 푒 , 푥 푒 ,⋯ , 푥 푒 ]

∑ 푒  

This returns a vector with all the values pushed close to zero and max value 

pushed close to its original value. The behavior of this is the same as the softMax 

operation but with us keeping track of both the max value and the location of the max 

values. The 훼 value is used to increase the scale of the soft maximum function. This is 
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because the functions accuracy of the approximation is dependent on the scale.  This 

function becomes a more accurate approximation of the max operation the higher the 

value of 훼 becomes. For values of x that are between 0 and 1 (as most neural network 

outputs are) it is best to have 훼 around 100 or higher to prevent errors. As the output of 

the smoothmax function is a vector, the derivative of smooth maximum with respect to a 

single input when the indices match is given by 

휕
휕푥 푠푚푎푥 (푥 ) = 훼푥 퐸(1 − 퐸) + 퐸 

where 

퐸 =
푒

푒 + 푒 +⋯+ 푒 	 

and the derivative when the indices do not match is given by 

휕
휕푥 푠푚푎푥 (푥 ) = −	훼푥 푥  

We can combine the two to give us the gradient that the error has to be 

backpropagated through. 

∇ (푥 ) 	= 	
휕
휕푥 푠푚푎푥 (푥 )	 

Theoretically we can make the behavior of the smooth maximum very close to 

the hard maximum by making 훼 very large. However this will cause issues with both the 

implementations of the exponential function and the size of the derivatives. 

 

4.2.2 Convolutional Smoothmax Network Architecture 

The supersized features are used to form the weights of the network. Each 

feature is broken down into overlapping sub-features. This will result in nodes that are 

sharing the weights. The output from the hidden layer is fed into smooth max operators. 
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There is one smooth max operator for every group of sub-features belonging to a single 

feature. Similar overlapping weights are used in the reconstruction layer to retrieve the 

patch. Effectively, the operation of this network corresponds to convolving the smaller 

image patch over the larger feature and extracting the best match (with location) as its 

feature description. This approach thus achieves location invariance within the feature for 

a single image patch, irrespective of its surrounding and can thus be applied in the 

context of our randomly sampled patches. Other potential benefits of this architecture – 

although not further investigated in this work – are that the learning of super-sized 

features, if learned spatially consistently, could permit the automatic extension of image 

regions to infer occluded or hidden feature components, thus potentially providing an 

efficient means of object completion in noisy or partially occluded situations directly at the 

path level. Moreover, it introduces the possibility for including spatial consistency into the 

learning process, opening up a number of other regularization and training possibilities 

without requiring processing at the full image scale (see future work in section 7.2 for 

more discussion). 

Figure 4-3 shows the proposed autoencoder network architecture with the 

convolutional hidden layer and the central smoothmax layer. 
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Figure 4-3 Convolutional Autoencoder architechture 

 

The number of nodes in the hidden layer is here a function of the number of 

features we want to learn and the number of sub-features that each of these features 

contain. Within this we need be aware of the fact that weights are shared between nodes 

covering overlapping areas of the super feature which has to be considered when training 

the features and interpreting the learned features.  

As in the case of the standard autoencoder network, when using 

backpropagation for learning the weights we first take a set of random initial weights and 

do a feed forward pass. 

푧( ) = 푊( ) ∗ 푎( ) + 	 푏( ) 

푎( ) = 푓 푧( )  

푎( ) = 푠푚푎푥 푎( )  
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푧( ) = 푊( ) ∗ 푎( ) + 	 푏( ) 

푎( ) = 푓 푧( )  

In the equations above, 푓(푥) represents the transfer function, 푊( ) represents the 

weights and 푏( ) the bias weights of the 푙th layer. Here 푊( )  and 푊( ) are filled with 

weights that are shared with overlapping regions, i.e. the same weight is used for more 

than one node. After passing through the hidden layer, the values are sent through the 

smoothmax operator which pushes down the non max values and leaves the max value 

mostly untouched. It is important to note that this is done in groups. That is there is one 

smoothmax operation per large feature that takes as output the previous layer values that 

correspond to sub-features from that large feature. The weights in the reconstruction 

layer are also shared between nodes as seen in the hidden layer. We now have to 

backpropagate the reconstruction error through the layers. For the reconstruction layer 

this is given by 

훿( ) = 푎( ) − 푎( ) ⋅ 푓′ 푧( )  

We now backpropagate the error through the smoothmax operator’s derivative 

and then through the hidden layer. Again we have one smoothmax derivative operator for 

every large feature and it takes as input the values that correspond to its subfeatures. 

훿( ) = ∇ (훿( )) 

훿( ) = 훿( ) + 훽 −
휌
휌 +

1− 휌
1− 휌 ⋅ 푓′ 푧( )  

Note that the error term for the hidden layer also includes the sparsity error 

parameter. Once we have these error terms we can calculate the gradient of the cost 

gradient for each of the weights. 

∇ ( )	퐽(푊,푏) =
휕

휕푊( ) 퐽(푊,푏) = 훿( ) ∗ 푎( )  
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∇ ( )	퐽(푊, 푏) =
휕

휕푏( ) 퐽(푊,푏) = 훿( ) 

Since these are shared weights for the subfeatures to find the gradient of the 

cost function with respect to the superfeatures, we simply add the gradients for the 

shared weights. The actual cost function remains the same as before. 

퐽(푊,푏) = 	
1
푚

1
2 푎( ) − 푎( ) +

휆
2 푊( ) + 	훽 퐾퐿 휌||휌  

Again training the network can be achieved by simply finding the weights that 

minimize the cost function by descending along the gradient with respect to its weights. 

 

4.2.3 Relation to Convolutional Neural Network 

As indicated previously the network discussed above has some similarity with 

convolutional neural networks. However, there are some critical differences. While in a 

convolutional neural network we would convolute the weights over overlapping regions of 

the input vector, we convolute the image patch over various regions of the feature in this 

network. As a result, the standard convolutional network cannot be applied to an isolated 

image patch but has to be applied to an image neighborhood. 

Also in convolutional neural networks, there often exists a max pooling layer that 

combines the various overlapping regions that gives us the best fit but frequently ignores 

the best fit location. The smooth max operator that we use however not only calculates 

the max value but also preserves the location where the best fit was present in the 

superfeature. Overall, this allows us to work with fewer (albeit larger) features and thus 

learn better features by applying sparsity. 
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4.2.4 Selective Sparsity Enforcement 

In the above network we had sparsity applied to all nodes in the hidden layer. 

However we can choose to ignore sparsity for nodes belonging to subfeatures from one 

superfeature. This will allow that super feature to attempt to learn a generic feature that 

can be used in the reconstruction of any image patch. This can be useful, for example, to 

address shared background information and also any information that is common to all 

the patches. We continue to enforce sparsity for the subfeatures from the other 

superfeatures. The net effect of this will be to learn a generic superfeature and a set of 

sparse superfeatures that encode depth gradient information that can be applied to 

reconstruct any given patch. The cost function is now modified as follows 

퐽(푊,푏) = 	
1
푚

1
2 푎( ) − 푎( ) +

휆
2 푊( ) + 	훽 퐾퐿 휌||휌  

Here k is the number of nodes that belong to the overlapping windows from the 

first superfeature. We do not calculate the sparsity penalty for those nodes and only do 

so for the remaining nodes in that layer. The backpropagation code is also modified in a 

similar fashion to ignore the sparsity calculation for the nodes belonging to the first 

superfeature. 
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CHAPTER 5  

PATCH CLASSIFICATION AND SHAPE PRIMITIVE SEGMENTATION 

The autoencoder discussed in the previous chapter can convert an image patch 

into a sparse feature space vector. Now if we have range images of known objects then 

we can extract patches from these images by sampling them at various locations in the 

image. These patches are then converted into the space represented by our sparse 

features. Once this is done we now have a data set containing images patches 

represented as vectors in the feature space. We also know which object, and with this 

which shape primitive each patch came from and can label this data set to provide a 

training set for a patch classifier. Using this information we can now consider the patch-

level shape primitive classification problem as a supervised learning problem. 

 

5.1 The Classifier Network 

To solve this supervised learning problem, we build a multilayer perceptron 

network. The training data is the range image patches converted into the feature space. 

The training labels are n+1 length vectors where n is the number of classes (shape 

primitives) the classifier needs to handle. The additional label is used for pure 

background patches. Each vector has 1 for the correct class and 0 for the other classes. 

The size of this label vector determines the number of nodes in the output layer. The 

number of nodes in the input layer is determined by the number of superfeatures that we 

decided to use previously. Now we just need to determine the number of nodes in the 

hidden layers. 
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5.1.1 Hidden Layer Size Selection 

Selecting the number of hidden layers and the number of nodes in the hidden 

layer is not a trivial problem. However there are no reliable methods to determine how 

many nodes/layers we need. It varies depending on the complexity of the problem. Too 

few nodes and we will not be able to model the function that we want. Too many 

variables and we run the risk of overfitting our network to the given dataset. 

For many problems, including most classification problems, one hidden layer 

should prove adequate for the network. Additional layers can give more representational 

power but run the risk of overfitting. As for the number of nodes in these hidden layers it 

is usually smaller than the number of input nodes but larger than the number of input 

nodes. One potential approximation of this number is given by Masters [19] as (푁 ∗ 푁 ) 

where Ni and No are number of nodes in the input and output layers respectively. In 

practice the number of nodes in a hidden layer is usually determined by the process of 

trial and error. One potential upperbound is given by dividing the number of training 

samples by the sum of Ni and No. This gives us the number degrees of freedom that the 

hidden layers have available to fit before running the risk of overfitting [20]. 

 

5.1.2 Network Architecture 

The network architecture of the classification network used here is a standard 

feedforward neural network. Each of the nodes is again a weighted sum of the inputs (or 

outputs of nodes from previous layer) to which a sigmoid transfer function is applied. 



 

35 

 
 

Figure 5-1 Patch classification network 

The method of training this network is standard error backpropagation using the 

set of known patch labels. We then backpropagate the error through the layers to 

calculate how much each of the weights affect the final classification error. Based on this 

classification error, we update the weights. This process is repeated a fixed number of 

iterations or until the weights do not change any more. As before, this problem can be 

converted into an optimization problem by writing the cost (error) function as a function of 

the weights of the network and calculating the derivative of this function with respect to 

the weights of the network. Now all we have to do is find the set of weights that minimize 

this value. 

Since we use sigmoid transfer functions, the network outputs a value that is 

between 0 and 1. When doing the actual classification, we discretize the values to 0s and 

1s to get the actual labels. Discretization can be as simple as setting the max of the 

vector to 1 and everything else to zero. 
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5.1.3 Choosing the Error Function 

The most commonly used error function is the mean squared error. Infact our 

feature learner used a version of this called the half mean squared error (or quadratic 

error). 

푒푟푟 =
1
푚

1
2 푎( ) − 푡  

Here t is the expected output and a(o) is what the output layer of the network 

gives us. While this error function can also be used for our classifier there is another error 

function that takes advantage of a unique property of classifier networks. In classifier 

networks the expected output t is always a vector composed of 0s and 1s. This allows us 

to use a different error function called the cross-entropy error. The cross entropy error is 

given by 

푒푟푟 = −
1
푚 푡 ⋅ ln 푎( ) + (1 − 푡) ⋅ ln 1− 푎( )  

The advantage of this error function in the case of a classifier network is that the 

value of the error function is high if the network output is close to the opposite of the 

target value i.e. if the network is completely incorrect in the classification. This error drops 

close to zero as the network output gets close to the correct output. 

To use this error in backpropagation we need to be able to calculate the 

derivative of the error with respect to the network output. Thus the error term for the 

output layer becomes 

훿( ) =
푡 − 푎( )

푎( ) ⋅ (1 − 푎( )) ⋅ 푓′ 푧( )  

The error terms for the other layers are unchanged. Making this change will allow 

us to compensate for an inherent limitation of networks with sigmoid transfer functions. If 

we use half MSE as our error function then the derivative of cost with respect to weights 
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is proportional to the derivative of the transfer function. This means that learning is going 

to be very slow for extremely incorrect values as the slope of the sigmoid function is very 

low at its asymptotes. However if we use cross entropy error as our error function then 

the derivative of cost with respect to weights reduces directly to the difference between 

expected and actual network output. This prevents any slowdown of learning. 

 

5.2 Handling Ambiguous Classifier Output 

Though the choice of our error function reduces its likelihood, there is a 

possibility that some patches may end up producing ambiguous outputs. This may be 

due to the depth gradient being too similar between two patches from different shape 

primitives, which can have areas with very similar depth information. The patches 

sampled from such locations will be difficult to classify, leading to ambiguities and 

classification outliers in the middle of objects if a simple maximum classification rule is 

applied to the classifier network output. To address this we can take advantage of the 

fact that geons in the image have a special extent beyond the individual, small image 

patch and thus patches that are very close to each other in the image have a higher 

likelihood to be from the same shape primitive. Since, when we sampled the patches we 

know the locations from which we sampled them, we can use the classification results of 

the neighboring patches to boost or suppress the classification result of a particular patch 

on the basis of its neighbors. 

When applying this distance-based label smoothing operation we need to make 

sure that the original classification result is not lost. We also need to determine exactly 

how much influence the neighbors can have on a particular patch. 
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5.2.1 Limited Kernel Smoothing 

Kernel smoothing [21][22] is a method used to estimate a function based on 

noisy observations. It fits all the observations to a smooth line or surface. The 

smoothness is determined by the kernel function which is a function of the distance 

between any two points on the line or surface. Since range images are 2D arrays of 

depth values, we can assume that classifier results exist in a 2D image plane defined by 

the x, y coordinates of the range image. The result of an ambiguous patch is now 

changed based on the classifier results in its proximity. The amount of influence exerted 

by the neighbors is determined by the classifier function. We add a smoothing rate to 

make sure that the values do not change drastically. The kth iteration of the kernel 

smoother can be written as 

퐶 ,
( ) ← 휏 ∗ 퐶 ,

( ) + (1− 휏) ∗ 	
∑ 퐾(푋 ,푌 ,푋 ,푌 ), ∗ 퐶 ,

( )	
∑ 퐾(푋 ,푌 ,푋 ,푌 ),

 

퐶 ,
( )  is the output of the classifier for the patch from location at Xl,Yl after the kth 

iteration of smoothing. The smoothing rate is τ and regulates the tradeoff between the 

direct classifier output and the influence of the classifications in the proximity of the 

locations. K is a kernel function that determines how much influence a point’s neighbors 

have on it based on their distance. This smoothing is repeated until the changes drop 

between a certain threshold and thus the value converges. It will push up or down the 

results of the classifier on the basis of the classifier results of its neighbors, making 

classifications in regions more consistent and addressing outliers. 

 

Gaussian Kernel 

The most popular kernel utilized for smoothing is the Gaussian kernel. We are 

using the 2 dimensional version of this kernel since it captures well the underlying 
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assumption of the likelihood of close locations belonging to the same shape primitive. 

This kernel is given by 

퐾(푋 ,푌 ,푋 ,푌 ) =
1

2휋휎 푒
‖ , ‖

 

Here the parameter σ is the standard deviation of the Gaussian that is centered 

at your current point. The higher the value, the more influence a patch’s neighbors have 

on it. The influence is maximum for the patch by itself and drops off the farther the 

neighbor is to the patch 

 
Figure 5-2 Gaussian Kernel with σ = 3 

The Gaussian kernel will ensure that patch’s current value will play a significant 

part on its new value and the nearby neighbors will influence the new value more than 

distant ones. 

5.3 Shape Primitive Segmentation 

Once the label smoothing has been performed, we can segment shape primitives 

by grouping together neighboring patches that have the same class label. Using region 

growing approaches over the graph of sampled image patches. In this graph, patches are 

linked to all patches where the direct link is closer than any indirect link going through any 
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other patch. Two neighboring patches are grouped in the same shape primitive in this 

graph if they have the same label. Otherwise they are associated to separate primitives. 

Alternatively to this, a more complex segmentation approach could be taken or a 

second, stacked autoencoder network could be trained to identify the shape primitive 

based in label space based on its overall shape 
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CHAPTER 6  

EXPERIMENTAL SETUP AND OBESERVATIONS 

To test and evaluate the performance of these networks and methodologies a 

number of experiments were performed. Data was obtained from a time of flight IR 

camera. For testing purposes we also generated data from synthetic range images. In 

both cases, these images are then processed by having patches extracted at quasi-

random locations. This provides a more efficient sampling set as compared to pseudo-

random sampling as it preserves the characteristics of the patch distribution but prevents 

bias problems due to clustering. The patches were then used to learn the features using 

the proposed Convolutional Smoothmax autoencoder. The first half of this autoencoder is 

subsequently used to convert any given patch into the feature space. These feature 

space patches are then used to train a patch classifier which learns to map a patch to a 

primitive id. The resulting feature learner and patch-level classifier can then be applied to 

test data to evaluate its performance. 

To apply the learned system to a given range image, we again sample patches 

from it. These patches are converted into the feature space and then passed through the 

classifier network. We then use the Gaussian kernel smoother to adjust ambiguous 

values and then discretize the values into the class labels. Now we just have to group 

together patches with the same label to find the location and the extent of the primitive 

with that label. 

6.1 Data Preparation 

6.1.1 Object Information 

The objects used for our experiments were Styrofoam objects in the shape of 

simple 3D geometric shapes like spheres and cones, representing the shape primitives 

we are interested in. To prevent any issues with IR absorption or reflection that would 
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interfere with the used sensor, they were painted with a matte finish acrylic paint. This 

prevented absorption of the IR information while reducing excessive reflection, thus 

avoiding saturation on the sensor and ensuring that we obtain valid range data on the 

entire objects. 

 

6.1.2 Camera Information 

The data required for our method is range image data of 3D objects. To obtain 

this we used the SR4000 TOF camera [23] from MESA imaging (now owned by 

Heptagon).  

A time of flight camera measures the time taken by light to travel to the object 

and back and calculates the distance from that. The camera modulates its illumination 

LEDs, and the sensor captures the phase of the return signal. These analog signals are 

converted into a 14bit digital value. This camera returns a 176x144 pixel depth map 

where each value corresponds to the distance between that pixel in the camera’s imaging 

sensor and the corresponding region in the environment. 

 

6.1.3 Image Acquisition 

To obtain the images we first isolate the object from any potential sources of 

reflection. The image is either suspended away from any reflective surfaces or we cover 

the resting surface with dark matte finish material. The edges of the range image we 

obtained are trimmed to get rid of unnecessary background information and information 

about the resting platform. 
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Figure 6-1 Image acquisition setup 

 

Once we obtained the range images, they were trimmed and adjusted. To 

prepare the training data for the classifier the boundaries of the shape primitive were 

manually marked out and object regions labeled with the corresponding shape primitive’s 

ID. 

 

 
Figure 6-2 3D Range Image of Cone 
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6.1.4 Patch Extraction 

From this range image we sampled depth image patches. The patches were of 

size 10x10 pixels. The sampling locations were determined using two different methods 

depending on the purpose of the data. For training purposes, the patches were sampled 

over the entire image by moving the sampling location iteratively by a small vertical offset 

and then a horizontal offset after each sampling to get overlapping windows that covered 

the entire image. For test data we could try to sample from random locations on the 

image. However this could result in some sections of the image getting sampled more 

densely than other areas, thus requiring a larger set to obtain an unbiased distribution. 

Moreover, when attempting the identification of shape primitives for object recognition, 

pseudo-random sampling could result in us being unable to reconstruct the shape 

primitive because of missing data in some region that was by chance not sampled. 

Instead of using a pseudo-random number generator to get the sampling locations we 

use a quasi-random number generator using the Halton Sequence [24]. 

The 2 dimensional Halton Sequence generates values by repeatedly subdividing 

the interval [0 1] by two coprimes [25]. These generate values that are deterministic but 

low-discrepancy. They appear to be random for our purposes. However unlike the 

random sampling they will sample patch locations over the entire image. In the image 

below we can see the comparison of pseudo-random and Halton sequence sampling. 

The dots represent the centers of the sampling windows. 
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Figure 6-3 Comparison of random (left) and Halton sequence (right) sampling 

 

As we can see, while the Halton set values still look random they are spread out 

more evenly over the image which is what we want. When we sample from the image we 

sample a bit more densely resulting in overlapping windows. This combined with the 

convolutional nature of our autoencoder should ensure that the shape primitive is 

recognized. 

 
Figure 6-4 Quasi–Random sampling of windows from Range image. 
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6.1.5 Simulated Range Images 

To better test the feature learner and classifier we also build a set of simulated 

range image patches. These are simple 3D objects whose properties are more easily 

controlled. Points are sampled again from these images using the same methods as in 

the previous section. 

 
Figure 6-5 Simulated range image of a cone. 

 

6.2 Platform Information 

Range image acquisition and patch sampling was done on a Intel Core i3-2328M 

machine with 2GB RAM running Windows 7 enterprise. The code was run on a 32 bit 

version of MATLAB due to limitations in the camera API. The code for the convolutional 

autoencoder and the patch classifier was run on three machines. The first was an Intel 

Core i7-Q820 machine with 8GB RAM running Window 7 Professional. The second was 

an Intel Core i5-4690S machine with 16 GB RAM running Ubuntu 14.04. The third was an 

Intel Core i7-4790K with 32GB RAM machine running Ubuntu 14.04.  

All the code was written in MATLAB which allowed us to take advantage of 

Matrix operations to easily code and debug feed forward and backpropagation learning of 

both neural networks. 
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6.2.1 The minFunc Function 

Both the code for the convolutional sparse autoencoder and the patch classifier 

use the minFunc function [26] by Mark Schmidt. minFunc is a MATLAB function for 

unconstrained optimization of differentiable real-valued multivariate functions using line-

search methods. It is similar to MATLAB’s own optimization function however is 

converges faster and has a more robust line search method. 

To use this function all we have to do is convert our neural network learning 

problem into an optimization problem. Since we calculate the cost function of the network 

as a function of its weights and error backpropagation can be used to calculate the 

gradient of the cost with respect to its weights, we can use minFunc to find the weights to 

minimize the cost function. This allows us to ignore the learning rate as the learning rate 

is now dynamically adjusted by the minFunc during the course of its optimization. 

 

6.3 Feature Learning – Convolutional Smoothmax Sparse Autoencoder 

6.3.1 Training Data 

The training of the autoencoder is an unsupervised learning problem. The 

autoencoder network is effectively trying to learn an identity function. That means that the 

same data acts as both input and expected output. The data we use is patches extracted 

from range images of shape primitives. Since the range images are 14 bit numeric values 

they are normalized so that the values are between 0 and 1. 

As discussed in section 6.2.1, the network is trained by using the minFunc 

function to find the weights W and the bias values b that minimizes the cost function 

J(W,b) as described in section 4.2.2. 
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6.3.2 Features Learned 

The features learned are 3D depth features. They are shown in figure 6-6. 

 
Figure 6-6 3D Depth Features Learned 

As can be seen, since the first feature does not have a term in the sparsity 

constraint, it has learned a generic spheroid superfeature. Some part of this superfeature 

exists in all image patches. The other super features all have learned sparse depth 

gradient features. Any patch from our input space can be represented by a combination 

of one window of each superfeature. To do this we need to have the reconstruction 

weights. The reconstruction weights can be used to convert any point in the feature 

space back into a range image patch. These reconstruction weights are shown in figure 

6-7. 

 
Figure 6-7 Reconstruction Weights for Image Patches 
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6.3.3 Reconstruction Capability 

Figure 6-8 shows some of the patch reconstructions achieved by the 

autoencoder network. 

 
Figure 6-8 Original Patch (Left) versus Reconstructed Patch (Right) 

No matter how long we train it will not be possible to achieve perfect 

reconstructions but as can be seen, the system is able to recreate the depth information 

of the given patches to a high degree of precision. Figure 6-9 shows us how the 

reconstruction error drops as training progresses. 

 
Figure 6-9 Reconstruction error for Convolutional Smoothmax Sparse Autoencoder 
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6.3.4 Feature-Space Converter 

After we have finished training the autoencoder we can simply split the network 

and use the encoder part to form the feature-space converter. The output of the 

smoothmax operator is the representation of the image patch in feature-space. This 

feature-space representation is what is used in the patch classifier discussed in the next 

section. 

 

6.4 Patch Classification and Primitive Segmentation. 

6.4.1 Training Data 

Patch classification is a supervised learning problem. To do this we need both 

the patterns and the labels. The patterns are simply patches from range images of known 

shape primitives that have been converted into the feature space. Since we know from 

which range images we are extracting these patches from, it is a simple matter to 

generate the required classification label. The label vector is a n+1 length vector where it 

is 1 for one class and 0 elsewhere. Here n is the number of shape primitives. The 

additional value is used to handle background patches. 

An important consideration is what to do if the patch we have sampled has both 

object and background information. We could turn the label into a probability value. 

However that would convert our classification problem into a regression problem and 

make it impossible to use the cross entropy error. Instead we use a thresholding 

approach. If the percentage of the shape primitive information in a patch is lower than a 

certain value (for example, 10%), then that patch is considered to be a background patch. 

Otherwise it is considered to be from the shape primitive. 
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Again the network is trained using the minFunc function described in 6.2.1 to find 

the weights that minimize the cost function J(W,b). The change in the cost value over the 

duration of the training is given in Figure 6-10 

 
Figure 6-10 Change in Classifier Cost Over Duration of Training 

 

6.4.2 Shape Primitive Patch Identification and Segmentation 

Given a range image we sample windows using quasi-random sampling and 

convert them to the feature-space. Then we run them through the classifier to get the 

class labels. Figure 6-11 shows us the results of this operation on range images 

containing a single shape primitive each. The first column contains the 2D 

representations of the range images from which these patches were sampled from. Note 

that for the purpose of this experiment the windows were sampled rather densely 

resulting in the other columns looking rather solid. The second column shows the 

locations in the range image that the system identified as background. The third, fourth 

and fifth column contain the windows that were identified as each of the shape primitive. 
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As can be seen from the figure, quite a few patch locations had ambiguous 

results (indicated by shades of grey in the classification columns). If we had discretized 

the values (converted them into class labels) here then the resulting confusion matrix (for 

all three images combined) would look as seen in Figure 6-12.  

 
Figure 6-11 Classifier Output for Single Shape Primitive Object Images 

 
Figure 6-12 Confusion Matrix for Patch Classification (Without Smoothing) 
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To prevent this from happening we apply limited kernel smoothing to the 

classifier results. This results in the classification result seen in Figure 6-13 and the 

confusion matrix seen in Figure 6-14. 

 
Figure 6-13 Classification of Single Shape Primitive Object Images (With Smoothing) 

 
Figure 6-14 Confusion Matrix for Patch Classification (With Smoothing) 
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We can now group together all the patches belonging to the same primitive by 

graph search around the neighbors. As long as the neighbor does not belong to a 

different primitive we can group them together. 

This approach also works on objects containing more than one primitive. The 

image is processed the same way. Once the patches belonging to the same primitives 

are grouped together we can segment them to obtain our primitive location. A sample 

image is provided in Figure 6-15. The first row contains a 2D representation of the range 

image. The second row contains the raw classifier output and the last row is the output 

after smoothing.  

 
Figure 6-15 Classifier Output on Multi-Primitive Object 

 

This figure illustrates that the system is able to separate the shape primitives at a 

patch level and group them into appropriate shapes. The remaining misclassification 

outliers can easily be removed in a post-processing step considering their shape.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Giving computer vision systems capabilities similar to human object recognition 

is important in particular in the context of robotic and real-world applications. To do this in 

a human-like fashion, the work presented in this dissertation follows the recognition-by-

components framework and develops a system to recognize shape primitives from depth 

images. The proposed framework uses an approach where recognition is performed at 

the patch level first and patches are then grouped into shape primitives. This provides the 

promise to allow handling partial visibility and limited occlusion during the recognition 

process. Moreover, the approach presents here avoids hand-crafted surface models for 

the shape primitives by utilizing autoencoder and classifier learning methods to 

automatically form representational features for local object patches and build 

appropriate classifiers to predict the identity of the primitive the patch was taken from. For 

this, we developed a system to learn recognition for Geon like shape primitives from 

Range Images. To do this efficiently we introduce a modification of the sparse 

autoencoder in the form of the Convolutional Smoothmax sparse autoencoder which 

provides location-invariant, highly expressive features that can be applied to individual 

image patches. This network is better able to handle features having offsets in the image 

patches. These depth contrast features then form an efficient highly discriminative 

representation for patches from range images which lends itself well for local 

classification. To achieve patch-level recognition, we developed a patch classifier which 

can identify objects based on range image patches. To address any ambiguities in its 

results and reduce outliers, we use Gaussian smoothing to ensure limited spatial 



 

56 

consistency of the classifications and facilitate segmentation. With this, the approach 

presented in this dissertation was able to handle objects composed of multiple primitives. 

 

7.2 Future Work 

There are some potential extensions to this work that may be considered. We 

could add position based regularization to the sparse autoencoder. This would push the 

autoencoder to learn spatially consistent superfeatures and may allow us to learn even 

larger superfeatures, which could permit the explicit handling of hidden feature 

information in regions with occlusion.  We could also explore tweaking the structure of the 

network to try and add orientation invariance. 

Right now the information of where the patch fits the feature is implicitly included 

in the input to the patch classifier but not explicitly given to it. It may be worth exploring if 

the network can be modified to directly get this information as a number and make use of 

it. It could potentially make the patch classifier network smaller and thus faster to train. 

One potential use for this method of building 3D models as a collection of parts is 

to evaluate and predict affordances of unknown objects. Given an object with known 

affordances we can break it down into its parts and learn a mapping from the parts to the 

affordances. Now, when given an unknown object, we can attempt to predict its 

affordances, and thus some of its functional attributes, from the shape primitives it is 

constructed from and from their configuration.  
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