Community Development Block Grant (CDBG) Funding and other Area Community Development Targeting Approaches As Public Policy to Reduce Poverty and Improve Social Mobility, Social Integration and Cultural Assimilation of Minority Population:

Examining Specific Dallas/Fort Worth Low-Income Minority Targeted Areas Receiving CDBG Funding and Other Development Incentives to Improve Economic, Employment and Homeownership Inequality for Low-Income Minorities in Segregated Communities?

by
John V. Dawson, RA, AICP, LEED AP
PhD Candidate

Dissertation Draft to present to the Faculty of the Graduate School of The University of Texas at Arlington School of Urban Planning and Public Policy in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
University of Texas at Arlington
Arlington, Texas

Ard Anjomani, PhD
Dissertation Chair
Committee Members
Richard Cole, PhD and Rod Hissong, PhD

Table of Contents

Acknowledgements 8
Abstract 9
List of Illustrations 10
List of Tables 14
Chapter

1. INTRODUCTION
1.1 Background 20
1.2 Research Questions and Problem Statement 27
1.3 Purpose 32
2. LITERATURE REVIEW
2.1 Background and History 45
2.2 Income and Education 47
2.3 Education and Employment 54
2.4 Income and Homeownership 58
2.5 Homeownership and Employment 63
2.6 Acculturation and Assimilation 64
2.7 Social Stratification 65
3. METHODS AND TECHNIQUES
3.1 Data Sources and Data Analysis Technique 68
3.2 Zip Code Tabulation Area (ZCTA) 72
3.3. Block Group 73
3.4 Selected Block Group by Race 75
3.5 Eliminated Block Groups by Race 92

4. RESULTS AND CONCLUSION

4.1 Introduction of Results and Description

4.2 Descriptive Statistics 2000 and 2010 Summary Results

4.2.1. Hypothesis Testing: Employment 94
4.2.2. Hypothesis Testing: Homeownership 98
4.2.3. Hypothesis Testing: Income at or below Poverty 101
4.2.4. Hypothesis Testing: Education Attainment 104
4.3 Detailed Descriptive Statistics Multiple Regression (2000/2010) Results
4.3.1. Change in Total Male Employment Multiple Regression with High School Diploma113
4.3.2. Change in Total Males Employment Multiple Regression with
Bachelor's Degree 115
4.3.3. Change in Total Male Homeownership Multiple Regression With High School Diploma 116
4.3.4. Change in Total Male Homeownership Multiple Regression With Bachelor's Degree 117
4.3.5. Change in Total Male Income at or below Poverty Level Multiple
Regression with High School Diploma 119
4.3.6. Change in Total Male Income at or below Poverty Level Multiple
Regression with Bachelor's Degree 120
4.3.7. Change in Total Male Educational Attainment with High School
Diploma 121
4.3.8. Change in Total Male Educational Attainment with Bachelor's Degree 122
4.3.9. Change in Total Female Employment Multiple Regression with High School Diploma 124
4.3.10. Change in Total Female Employment Multiple Regression with Bachelor's Degree 125
4.3.11. Change in Total Female Homeownership Multiple Regression With High School Diploma 127
4.3.12. Change in Total Female Homeownership Multiple Regression With Bachelor's Degree 128
4.3.13. Change in Total Female Income at or below Poverty with High School Diploma 130
4.3.14. Change in Total Female Income at or below Poverty with Bachelor's Degree 131
4.3.15. Change in Total Female Educational Attainment with High School Diploma 132
4.3.16. Change in Total Female Educational Attainment with Bachelor's Degree 134
4.3.17. Change Regression Summary 135
4.4 T Test of Male and Female Black, Hispanic and Asian Employment Compared To White Male and Female Results
4.4.1. 20002010 Paired Sample T Test White Male in Block Groups with Grant 136
4.4.2. 20002010 One Sample T Test Black Male in Block
Groups with Grant 137
4.4.3. 20002010 One Sample T Test Hispanic Male in Block Groups with Grant 138
4.4.4. 20002010 One Sample T Test Asian Male in Block Groups with Grant 139
4.4.5. 2000 One Way NOVA Male Black/Hispanic/Asian with Grant 139
4.4.6. 2010 One Way NOVA Male Black/Hispanic/Asian with Grant 140
4.4.7. 20002010 Paired Sample T Test White Female in Block Groups with Grant 140
4.4.8. 20002010 One Sample T Test Black Female in Block Groups with Grant 141
4.4.9. 20002010 One Sample T Test Hispanic Female in Block Groups with Grant 142
4.4.10. 20002010 One Sample T Test Asian Female in Block Groups with Grant 143
4.4.11. 2000 One Way NOVA Female Black/Hispanic/Asian With Grant 143
4.4.12. 2010 One Way NOVA Female Black/Hispanic/Asian With Grant 144
4.4.13. 20002010 Paired Sample T Test White Male in Block Groups without Grant 145
4.4.14. 20002010 One Sample T Test Black Male in Block Groups without Grant 145
4.4.15. 20002010 One Sample T Test Hispanic Male in Block Groups without Grant 146
4.4.16. 20002010 One Sample T Test Asian Male in Block Groups without Grant 147
4.4.17. 2000 One Way NOVA Male Black/Hispanic/Asian without
Grant
4.4.18. 2010 One Way NOVA Male Black/Hispanic/Asian without Grant 148
4.4.19. 20002010 Paired Sample T Test White Female in Block
Groups without Grant
4.4.20. 20002010 One Sample T Test Black Female in Block Groups without Grant 150
4.4.21. 20002010 One Sample T Test Hispanic Female in Block Groups without Grant 151
4.4.22. 20002010 One Sample T Test Asian Female in Block Groups without Grant 151
4.4.23. 2000 One Way NOVA Female Black/Hispanic/Asian Without Grant 152
4.4.24. 2010 One Way NOVA Female Black/Hispanic/Asian Without Grant 152
4.5. Conclusion and Policy Implication
4.5.1 Findings for Research Question 1 153
4.5.2 Findings for Research Question 2 160
4.5.3 Findings for Research Question 3 166
4.5.4 Findings for Research Question 4 173
4.5.5 Findings for Research Question 5 181
4.5.6 Findings for Research Question 6 182
4.5.7 Findings for Research Question 7 184
4.5.8 Findings for Research Question 8 186
4.5.9 Policy Implication 186
APPENDIX
A. Zip Code Tabulation Area (ZCTA) Fort Worth/Dallas 191
B. Block Groups Fort Worth and Dallas Targeted Areas Receiving CDBG Grant 203
C. Block Groups Fort Worth and Dallas Target Areas Not Receiving CDBG Grant 206
D. Block Groups Fort Worth and Dallas by Minority Percentage 210
E. Dissertation Data Variables 224
F. Population Demographics 232
G. Income Demographics 240
H. ZCTA, Census Tracts and Block Group Relationship 243
I. Targeted Areas 246
J. Supporting Statistics 259
Bibliography 466
Biographical Statement 486

AKNOWLEDGMENTS

I recognize many individuals who have given me the support, instilled in me confidence to persevere on this long journey, and to fully celebrate my accomplishment after a long and demanding journey to achieve this advance degree.

I recognize my Dissertation Chair and mentor, Dr. Ard Anjomani whose help and mentorship was immeasurable. I also want to thank my Dissertation Committee, Dr. Richard Cole and Dr. Rod Hissong, whose guidance and encouragement will forever be appreciated. Their guidance throughout my educational adventure was engaging and enlightening. I want to thank my parents; Alvin (Al) and Louise (Lou), whose support and encouragement for education while growing up inspired me and motivated me during many of those long nights of classes after a full day at work. I want to thank Warren Glimpse, ProximityOne who helped with the census data extraction program and process.

I want to thank my children, Travis and Traci and my wonderful grandchildren, Rachel, Sarah and Dawson. They never lost faith in me on this extended journey through the many years of their youthful lives, and whose love and support means so very much to me.

Most of all, I want to thank my loving wife, Dianne. Without her love, support and encouragement, I am not sure I could have completed this ten-year journey. I can never thank her enough for the sacrifices she made and the times she gave me the encouragement to continue even when I didn't think I could. I also will forever cherish her calming approach when my computer would lose the narrative or statistical analysis I had just previously accomplished after hours of diligent devotion. I will forever be grateful and appreciative of her steadfast support, and greatly enriched by her kind encouragement during adversity and numerous rewrites.

Abstract

This research is an expansion of previous research to study and provide empirical evidence on the influence that Community Block Grant (CDBG) funding has on the improvement of social mobility for low-income minority population in primarily concentrated and segregated low income minority neighborhoods. The study examines and evaluates changes in select elements based on Census 2000 and Census 2010 data for specific Block Groups within a Zip Code Tabulation Area (ZCTA). The study evaluates targeted areas within the Fort Worth-Dallas areas and examines the change of four (4) important key social economic elements to social mobility for low-income minorities for the ten (10) year period between 2000 and 2010. Those elements are: 1) Employment/Unemployment, 2) Income levels, 3) homeownership and 4) Education attainment. The minorities studied are Blacks or African Americans, Hispanics or Latinos and Asians since they comprise the majority of the minority populations in the targeted areas. Whites that are located in the targeted areas and considered low income will be used as the baseline for quantifying the changes and measurements in the socio economic conditions for the comparison of the two Block Group categories in relation to the other low-income minority groups. The research will also evaluate the difference between males and females of the same ethnicity within the selected targeted neighborhoods.

LIST OF ILLUSTRATIONS

Figure

1.1. Regions and States 36
1.2. Percentage Change in Population by State and Decade 38
1.3. Percentage Change in Population by State and County 38
1.4. Change in Population by County: 2000 to 2010 39
2.2.1. Median Monthly Earnings by Experience and Education: 2014 48
2.2.2. Median Monthly Earnings by Experience and Education: 2008 49
2.2.3. Selected Percentile of Usual Weekly Earnings of Fulltime Wage and Salary Age 16 and Older: 2014 50
2.2.4. Percent Change from 2004 to 2014 in the Number of Men and Women 25 years and over Who Have Completed Selected Levels of Education 51
2.2.5. Selected Percentile of Usual Weekly Earnings Men and Women 25 years and over Who Have Completed Selected Levels of Education 52
2.2.6. College Continuation Rate by Family Income Quartile for Dependents 18 to 24 years Old: 1970 to 2012 53
2.2.7. Percentage of Private Industry Workers with Access to Retirement Benefits for Selected Wage Groups: 2014 54
2.3.1. Population Age 25 and Over by Educational Attainment: 1940 to 2014 56
2.3.2. Percent of Population25 years old and Over with a High School Diploma: 1947 to 2014 56
2.3.3. Bachelor's Degree Population Age 25 years old and Older by Educational Attainment: 1940 to 2014 57
2.3.4. Wage Ration between the $90^{\text {th }}$ and $10^{\text {th }}$ Wage Percentile by Industry Segment: 2014 58
2.4.1. Percentage of First Time Homebuyers: 1950 to 2009 60
2.7.1. High School Graduate College Continuation Rate by Family Income Quartile for 18 to 24 years old: 1970-2012 66
2.7.2. Bachelor's Degree Attainment by Age 24 for Dependent Family Members by Family Income Quartile: 1970 to 2013 66
2.7.3 Average Net Price of Attendance by Family Income Quartile for Dependent Full-time Students: 1990 to 2012 67
2.7.4. Average Net Price as a Percent of Average Family Income by Income Quartile: 1990 to 2012 67
3.2.1. Comparison of Zip Codes and Zip Code Tabulation Area (ZCTA) for an Area 72
3.2.2. Differences between Zip Codes and Zip Code Tabulation Area (ZCTA) for an Area 73
3.3.1. Example of the Relationship of Block Groups to Zip Codes 74
3.3.2. Example of the Relationship of Block Groups to Zip Codes 75
3.4.1. Poverty Rates for Dallas-Fort Worth: 1990 76
3.4.2. Poverty Rates for Dallas-Fort Worth: 2005 to 2009 77
3.4.3. City of Fort Worth CDBG Eligible Areas City-wide 78
3.4.4. City of Fort Worth CDBG Eligible Areas by Race: White Alone 78
3.4.5. City of Fort Worth CDBG Eligible Areas by Race: Black or African American Alone 79
3.4.6. City of Fort Worth CDBG Eligible Areas by Race: Hispanic or Latino Alone 79
3.4.7. City of Fort Worth Block Groups with More Than 50 percent Low Income Concentration 80
3.4.8. City of Fort Worth Neighborhood Empowerment Zones 81
3.4.9. City of Dallas CDBG Eligible Areas by Census Tract and Block Group 82
3.4.10. City of Dallas Percentage of Black Population: 2000 82
3.4.11. City of Dallas Percentage of Hispanic Population: 2000 83
3.4.12. City of Dallas Minority Population Greater than 51 percent by Census Tract: 200083
3.4.13. City of Dallas Areas of Concentrated Poverty: 2009 to 2013 84
3.4.14. City of Dallas Areas of Neighborhood Investment Program Targeted Areas 85
F.1. Change in Population by County 232
F.2. Percent White Alone by County: 2000 232
F.3. Percent White Alone by County: 2010 233
F.4. Percent Black or African American Alone by County: 2000 233
F.5. Percent Black or African American Alone by County: 2010 234
F.6. Percent Hispanic or Latino Alone by County: 2000 234
F.7. Percent Hispanic or Latino Alone by County: 2010 235
F.8. Percent Asian Alone by County: 2000 235
F.9. Percent Asian Alone by County: 2010 236
F.10. Percentage Change in White Alone Population: 2000 to 2010 236
F.11. Percentage Change in Black or African American Alone Population: 2000 to 2010 237
F.12. Percentage Change in Hispanic or Latino Alone Population: 2000 to 2010 237
F.13. Percentage Change in Asian Alone Population: 2000 to 2010 238
F.14. Percentage of People 25 years and over Who Have Completed College 2000 238
F.15. Percentage of People 25 years and over Who Have Completed College (BS) 2010 239
H.1. Example of Zip Codes and Zip Code Tabulation Area (ZCTA) for an Area 243
H.2. Example of Zip Codes and Zip Code Tabulation Area (ZCTA) for an Area 243
H.3. Example of Zip Codes and Zip Code Tabulation Area (ZCTA) for an Area 244
H.4. Example of Zip Codes and Zip Code Tabulation Area (ZCTA) for Unassigned Areas 244
H.5. Example of the Relationship of Block Groups to Census Tracts 245
H.6. Example of the Relationship of Block Groups to Census Tracts 245
I.1. Ridglea/Como Empowerment Zone 246
I.2. Wedgwood Square Empowerment Zone 247
I.3. Berry University Empowerment Zone 247
I.4. Trinity Park Empowerment Zone 248
I.5. Northside Empowerment Zone 248
I.6. $28^{\text {th }}$ Street Empowerment Zone 249
I.7. Magnolia Empowerment Zone 249
I.8. Hemphill/Berry Empowerment Zone 250
I.9. Rolling Hills Empowerment Zone 250
I.10. Evans and Rosedale Empowerment Zone 251
I.11. Riverside Empowerment Zone 251
I.12. Six Points Empowerment Zone 252
I.13. Woodhaven Empowerment Zone 252
I.14. Oakland Corners Empowerment Zone 253
I.15. Polytechnic/Wesleyan Empowerment Zone 253
I.16. Berryhill/Mason Heights Empowerment Zone 254
I.17. Stop Six Empowerment Zone 254
I.18. Lake Arlington Empowerment Zone 255
I.19. Historic Handley Neighborhood Empowerment Zone 255
I.20. West Dallas Neighborhood Investment Program Targeted Area 256
I.21. South Dallas/Ideal and Rochester Park Neighborhood Investment Program Targeted Area 256
I.22. South Dallas/Fair Park Neighborhood Investment Program Targeted Area 257
I.23. North Oak Cliff/Marsalis Ave. Neighborhood Investment Program Targeted Area 257
I.24. Lancaster Corridor Neighborhood Investment Program Targeted Area 258

LIST OF TABLES

Table

1.4.1. Summary of Change in Population 2000 to 2010 40
2.4.1. Selected Demographic Characteristics of First Time Homebuyers by Race Ethnicity: 1989 to 2003 59
2.4.2. Homeownership by Race and Ethnicity of Homeowner: 1996 to 2010 62
2.4.3. Homeowner Rate for the United States and Texas: 2000, 2007, and 2010 62
4.2.1. Census 2000 and 2010 Paired Sample Total Male Employment in Block Groups With Grant 95
4.2.2. Census 2000 and 2010 Paired Sample Total Male Employment in Block Groups Without Grant 95
4.2.3. Census 2000 and 2010 Paired Sample Total Female Employment in Block Groups With Grant 96
4.2.4. Census 2000 and 2010 Paired Sample Total Female Employment in Block Groups Without Grant 97
4.2.5. Census 2000 and 2010 Paired Sample Total Homeownership in Block Groups With Grant 98
4.2.6. Census 2000 and 2010 Paired Sample Total Homeownership in Block Groups Without Grant 99
4.2.7. Census 2000 One Sample T Test Homeownership in Block Groups without Grant Compared to With Grant 100
4.2.8. Census 2010 One Sample T Test Homeownership in Block Groups without Grant Compared to With Grant 100
4.2.9. Census 2000 and 2010 Paired Sample Total Male Income at or Below Poverty Level in Block Groups with Grant 101
4.2.10. Census 2000 and 2010 Paired Sample Total Male Income at or Below Poverty Level in Block Groups without Grant 102
4.2.11. Census 2000 and 2010 Paired Sample Total Female Income at or Below Poverty Level in Block Groups with Grant 103
4.2.12. Census 2000 and 2010 Paired Sample Total Female Income at or Below Poverty Level in Block Groups without Grant 103
4.2.13. Census 2000 and 2010 Paired Sample Total Male Education Attainment in Block Groups with Grant 106
4.2.14. Census 2000 and 2010 Paired Sample Total Male Education Attainment in Block Groups without Grant 107
4.2.15. Census 2000 and 2010 Paired Sample Total Female Education Attainment in Block Groups without Grant 109
4.2.16. Census 2000 and 2010 Paired Sample Total Female Education Attainment in Block Groups without Grant 110
4.3.1. Change in Total Male Employment Multiple Regression with High School Diploma 113
4.3.2. Change in Total Male Employment Multiple Regression with Bachelor's Degree 115
4.3.3. Change in Total Male Homeownership Multiple Regression with High School Diploma 116
4.3.4. Change in Total Male Homeownership Multiple Regression with Bachelor's Degree 117
4.3.5. Change in Total Male Income at or below Poverty Level Multiple Regression With High School Diploma 119
4.3.6. Change in Total Male Income at or below Poverty Level Multiple Regression With Bachelor's Degree 120
4.3.7. Change in Total Male Education Attainment Multiple Regression High School Diploma 121
4.3.8. Change in Total Male Education Attainment Multiple Regression Bachelor's Degree 122
4.3.9. Change in Total Female Employment Multiple Regression with High School Diploma 124
4.3.10. Change in Total Female Employment Multiple Regression with Bachelor's Degree 125
4.3.11. Change in Total Female Homeownership Multiple Regression with High School Diploma 127
4.3.12. Change in Total Female Homeownership Multiple Regression with Bachelor's Degree 128
4.3.13. Change in Total Female Income at or below the Poverty Level with High School Diploma 130
4.3.14. Change in Total Female Income at or below the Poverty Level with Bachelor's Degree 131
4.3.15. Change in Total Female Education Attainment High School 132
4.3.16. Change in Total Female Education Attainment Bachelor's Degree 134
4.3.17. Change Regression Summary 135
4.4.1. 20002010 Paired Sample T Test White Male in Block Group with Grant 136
4.4.2. 20002010 One Sample T Test Black Male in Block Group with Grant 137
4.4.3. 20002010 One Sample T Test Hispanic Male in Block Group with Grant 138
4.4.4. 20002010 One Sample T Test Asian Male in Block Group with Grant 139
4.4.5. 2000 One Way NOVA Black/Hispanic/Asian Male in Block Group with Grant 139
4.4.6. 2010 One Way NOVA Black/Hispanic/Asian Male in Block Group with Grant 140
4.4.7. 20002010 Paired Sample T Test White Female in Block Group with Grant 140
4.4.8. 20002010 One Sample T Test Black Female in Block Group with Grant 141
4.4.9. 20002010 One Sample T Test Hispanic Female in Block Group with Grant 142
4.4.10. 20002010 One Sample T Test Asian Female in Block Group with Grant 143
4.4.11. 2000 One Way NOVA Black/Hispanic/Asian Female in Block Group with Grant 143
4.4.12. 2010 One Way NOVA Black/Hispanic/Asian Female in Block Group with Grant 144
4.4.13. 20002010 Paired Sample T Test White Male in Block Group without Grant 145
4.4.14. 20002010 One Sample T Test Black Male in Block Group without Grant 145
4.4.15. 20002010 One Sample T Test Hispanic Male in Block Group without Grant 146
4.4.16. 20002010 One Sample T Test Asian Male in Block Group without Grant 147
4.4.17. 2000 One Way NOVA Black/Hispanic/Asian Male in Block Group without Grant 148
4.4.18. 2010 One Way NOVA Black/Hispanic/Asian Male in Block Group without Grant 148
4.4.19. 20002010 Paired Sample T Test White Female in Block Group without Grant 149
4.4.20. 20002010 One Sample T Test Black Female in Block Group without Grant 150
4.4.21. 20002010 One Sample T Test Hispanic Female in Block Group without Grant 151
4.4.22. 20002010 One Sample T Test Asian Female in Block Group without Grant 151
4.4.23. 2000 One Way NOVA Black/Hispanic/Asian Female in Block Group without Grant 152
4.4.24. 2010 One Way NOVA Black/Hispanic/Asian Male in Block Group without Grant 152
4.5.1. Mean Employment/Unemployment for Males and Females by Race, (With Grant/ Without Grant) Fort Worth 2000 153
4.5.2. Mean Employment/Unemployment for Males and Females by Race, (With Grant/ Without Grant) Dallas 2000 154
4.5.3. Mean Employment/Unemployment for Males and Females by Race, (With Grant/ Without Grant) Fort Worth 2010 154
4.5.4. Mean Employment/Unemployment for Males and Females by Race, (With Grant/ Without Grant) Dallas 2010 154
4.5.5. Mean Difference Employment/Unemployment for Males and Females by Race, With /Without Grant) Fort Worth 2000/2010 155
4.5.6. Mean Difference Employment/Unemployment for Males and Females by Race, With /Without Grant) Dallas 2000/2010 155
4.5.7. Census 20002010 Mean Employment Compared to White Males 156
4.5.8. Census 20002010 Mean Employment Compared to White Females 156
4.5.9. Census 20002010 Mean Employment Difference of Minorities by Fort Worth and Dallas Compared to White Population 159
4.5.10. Census 2000 and 2010 Paired Sample Homeownership in Block Groups with Grant 161
4.5.11. Census 2000 and 2010 Paired Sample Homeownership in Block Groups without Grant 161
4.5.12. Census 20002010 Mean Homeownership Difference of Minorities by Fort Worth and Dallas Compared to White Population 165
4.5.13. Mean Income for Males and Females by Race, with/without Grant Fort Worth 2000 167
4.5.14. Mean Income for Males and Females by Race, with/without Grant Dallas 2000 167
4.5.15. Mean Income for Males and Females by Race, with/without Grant Fort Worth 2010 168
4.5.16. Mean Income for Males and Females by Race, with/without Grant Dallas 2010 168
4.5.17. Census 20002010 Paired Sample Male and Female Income at or less than Poverty in Block Groups with Grant 169
4.5.18. Census 20002010 Paired Sample Male and Female Income at or less than Poverty in Block Groups without Grant 170
4.5.19. Census 20002010 Mean Income at or Less Poverty Level Difference of Minorities By Fort Worth and Dallas Compared to White Population 172
4.5.20. Census 20002010 Paired Sample Male Education Attainment in Block Groups With Grant 174
4.5.21. Census 20002010 Paired Sample Female Education Attainment in Block Groups With Grant 174
4.5.22. Census 20002010 Paired Sample Male Education Attainment in Block Groups Without Grant 174
4.5.23. Census 20002010 Paired Sample Female Education Attainment in Block Groups Without Grant 175
4.5.24. Mean Education for Males and Females by Race, with/without Grant Fort Worth, 2000 175
4.5.25. Mean Education for Males and Females by Race, with/without Grant Dallas 2000 176
4.5.26. Mean Education for Males and Females by Race, with/without Grant Fort Worth, 2010 176
4.5.27. Mean Education for Males and Females by Race, with/without Grant Dallas 2010 177
4.5.28. Mean Difference Education for Males and Females by Race, with/without Grant Fort Worth, 20002010 177
4.5.29. Mean Difference Education for Males and Females by Race, with/without Grant Dallas 20002010 178
4.5.30. Census 20002010 Mean Educational Attainment Difference of Minorities By Fort Worth and Dallas Compared to White Population 181
4.5.31. Research Results Expectations 190
G.1. Percentage of income Total for the United States by Year 240
G.2. Percentage of income Total for the United States by Year: White Alone 240
G.3. Percentage of income Total for the United States by Year: Black 241
G.4. Percentage of income Total for the United States by Year: Hispanic 241
G.5. Percentage of income Total for the United States by Year: Asian 242

CHAPTER 1

Introduction

1.1 Background

Consistent with discussions resonating with the public during the current presidential elections of 2016, the major issue regarding the apparent erosion of the American middle-class and the continuing stifling of economic growth the nation has experienced since the conclusion of World War II, the racial segregation and social stratification of minority populations, especially the African American (Black) community collectively, and now many other minorities such as Hispanics, Asians, American Native Indians, and many other racial groups. Based on earlier initiatives of public policy to remove the old structural barriers of economic improvement and subsequently social class advancement, policy such as the "Civil Rights Act" of 1964 were intended to begin the slow and incremental advancement of minority population, most of them immigrants, but as in the case of African Americans, were brought into America to meet a particular labor class requirement. There has been considerable progress made to improve the economic and social migration of minorities, but according to recent research, even though there has been decline of social stratification and economic barriers modestly over the past decades, there still remains a higher level of economic and social opportunities for some other minority races such as Hispanic-to-white and Asian-to-white than for African Americans and American Indians. (Turner and Wolman, 2005). As so aptly stated by Jane Jacobs in her pivotal book (1961), The Death and Life of Great American Cities, "...A successful city neighborhood is a place that keeps sufficiently abreast of its problems so it is not destroyed by them" (p.112).

A number of contemporary non-scholarly literary works such as Andrew Haker's, Two Nations: Black and White, Separate, Hostile, Unequal (1992), J. Anthony Lukas, Common Ground (1985), Elijah Anderson, Streetwise: Race, Class, and Change in an Urban Community 1990) and Murrays, Losing Ground: American Social Policy 1950-1980 (1984), or more empirical studies (Myrdal, 1944; Jenson, 1969) have argued that the results of this separate but equal opportunity to achieve the "American Dream" (Messner and Rosenfeld, 1997). may be the result of good intentioned but poorly executed American policies in education, employment and wealth accumulation, primarily through the primary method of homeownership, endorsed and supported through liberal tax policies allowing for home interest to be used to reduce the federal tax burden. Having said this, some informed and scholarly advocates state that any attempt to initiate public policy to benefit the poor struggling low-income minority is a deliberate
manipulation of the exercising of privileged political power under the pretense of eliminating barriers to migrate from low-income to middle-class and the social privileges inherent to the social mobility (Lukes, 1974). Paramount to the intent of any policy initiative is the objective to remove social, economic and wealth accumulation barriers and to enact policies that promote increased income, improved employment opportunities, increased educational attainment and advance homeownership opportunities to all and especially the low-income minorities.

Ever since the early 1960's, various presidential campaigns, both major political parties and their respective Congressional delegates have advocated, promoted and professed the need and urgency of implementing such social policies and programs. Just recently, as the nation celebrated the $50^{\text {th }}$ anniversary of President Lyndon B. Johnson's "Great Society" initiative of 1964, the debate was elevated again to the public conscientious to evaluate the success or failure of the policy and programs that made up the initiative. In his book, Philosophical Critiques of Policy Analysis: Linblom, Habermas, and The Great Society, Lance deHaven-Smith argues effectively the appropriate evaluation of any public policy is to examine its ability to "...eliminate entirely a particular public problem..." (pg 17) with the many challenges of any president or political party to get everything it wants in the execution such policy. He goes further to state:
"In the conception of society underlying the Great Society, the cultural
System is viewed as being composed of self-interested individuals whose Motives and norms depend partly on their opportunities and partly on the culture transmitted to them by their parents and peers" (pg. 20).

Similar to this reflection of self-interest, parental and peer influence is what Messner and Rosenfeld argue as the ethos of the "American Dream". They successfully argue that the current level of economic and social inequality experienced by the growing barriers to the lowincome minority population through the concentration of wealth and the lack of wealth accumulation in the form of not just income, but home mortgages, real estate holdings, business and bank accounts reflects the "...mismatch between culture and social structure-a betrayal of the American Dream."(pg. 9). Supporting this critical position was Daniel Moynihan's Toward A National Urban Policy (1970) which reflected the urgency to address that the "...sense of general community is eroding" and "specific community is emerging" (pg.5) and that the basic unit of urban structure and government that could exhibit the local power and control for
"...education, welfare and housing..." (pg. 14) is the local city government. From his influence in both the Johnson and Nixon Administrations, one of the key elements that evolved was the Community Development Block Grant (CDBG) funding program which evolved from the its predecessor, the Urban Renewal program beginning with the Housing Act of 1949 and officially ending in 1973 when it was replaced by then President Nixon in 1974. The CDBG program has been a foundational piece of Congressional policy that has continued and boasted about its success to raise the opportunities for targeted areas through various place-based and peoplebased programs.

This proposed research effort is to examine and evaluate the effectiveness of the Community Development Block Grant (CDBG) funding program as an instrument of public policy to eliminate or reduce some of the structural barriers that either causes or significantly influences the social inequality and stratification of the low-income minority population. There is considerable research that proposes that social assimilation has a direct effect on successful social mobility by adopting and embracing the social norms of the majority population through desiring higher income, home ownership and educational attainment allowing and supporting upward mobility by migrating from basic subsistence low-income employment, little or no accumulation of wealth by sources other than income that is a majority disconnect between the lower class and middle class, and educational attainment which extends beyond K-12 public education to some level of higher education that will result in higher income by successfully graduating through a accepted program such as through an Associate's Degree from a Community College or a Bachelor's Degree from an institution of higher education that will enable advancement to higher employment opportunities, higher income and non-labor occupation.

The effectiveness of CDBG funding regarding social mobility for the low-income minority segment of society is predicated on the strength of place-based policy and the removal of the structural barriers inhibiting the migration of a large population of mainly minority people from low-income employment, living in poverty concentrated neighborhoods, with little to no advance education to be competitive to improve their annual gross income, build non-income wealth and free themselves from manufacturing or low-paying service employment into a labor employment with better compensation and more aligned with changing employment demands. The segregation of the low-income minority population into segregated areas of affordable housing and the promotion of concentration of poverty through low-income, transient occupants with
limited education to move from the lower social strata to a higher level was first proposed by the theory of Robert E. Park and Ernest W. Burgess $(1925,1967)$ related to "...contact, competition, accommodation, and assimilation" (Par 1950, pg 150). As the primarily white middle class migrated out of the city central housing areas into the suburbs of the late 1940's and 1950's, the backfill of the housing areas within the city nearest neighborhoods was by lower-income minority population to locate closer to employment opportunities, not having to rely on personal transportation but having access to public transportation and the finances to rent older housing inventory. The precept of the Park and Burgess theory is the expansion concept of urban growth, with each concentric zone creating "disorganization" and "reorganization" through "succession" which "shifts and sorts and relocates individuals and groups by residence and occupation." (ibid, pg. 54).

There is a considerable amount of scholarly research since the Park and Burgess, (Hirschman and Snipp; Massey and Denton; Wilson; Rainwater; Pettigrew) and non-scholarly research (Hacker, 1992) continuing to support the same inequality issues, inherent social problems, and national, state and local economic cost of inequality of an opportunity for social upward mobility through residential segregation, structural barriers such as homeownership as the increasing unequal distribution of and accumulation of wealth as a major contributor, and the persistent concentration of poverty in neighborhoods and communities expanding the great divide between the rich and poor of the United States. There is strong supporting research that the issue is not as much that some individuals and families earn less than others as much as they don't have a gradual or incremental increase in income over a period of time (Rainwater) to change the conditions to bolster their social upward mobility. According to Rainwater, it is more of the marginal access of the poor to training and productive institutions (pg. 197). The effectiveness of public policy is determined by its success. The concept of place-based policies and their effectiveness only offers a partial explanation and therefore the level CDBG funding as proposed by previous research cannot accurately explain effectiveness of this widely-used federally funded program. The CDBG program is an example of a placed-base policy that has been a major program promoted by various Presidents', their respective administrations', and their respective political parties. Managed by the Housing and Urban Development (HUD) and executed through the respective local municipality, it remains one of the most protected and sustainable federal programs to implement anti-poverty, affordable housing and elimination of community blight required to address immediate health and safety for the community. The CDBG program is intended to address low-income minority and concentrated areas of poverty
areas who disproportionately shoulder health and safety challenges and concerns normally as a result of their political and economic marginalization in the decision making process of the community. The CDBG programs are extensively allocated to assist the minority population (African-American, Hispanic, Asian) which are normally confined to greater segregation in older inner city neighborhoods with a high level of poverty concentration, low-income employment, transient or rental property for housing, dilapidated or non-maintained housing and the least educational attainment. There is considerable evidence through research that assimilation may be a contributing factor for the segregation and concentration of minority populations within a given area exhibiting high level of poverty. (Gordon, 1964)

The level of assimilation of the underprivileged, low-income minority groups into the cultural beliefs of the majority is a significant factor that enhances the CDBG program effectiveness by improving the quality-of-life (QOL) for the targeted group of citizens within the smaller community of a metropolitan census area. Quality-of-Life is the protection and preservation of a safe and secure neighborhood with the elimination of vacant, dilapidated and otherwise visual sings of a blighted area or breakdown of social control. The CDBG program is a mainstay of the federal governments' initiatives to improve the living conditions of the disadvantaged minority segments of society. The original research published in The State of the American Dream: Race and Ethic Socioeconomic Inequality in the United States, 1970-90 by Charles Hirschman and C. Matthew Snipp (1999) examined the changes to various racial groups across the nation in order to evaluate the rigidity of social stratification in the United States and the equal opportunities that every American had to compete for the distribution of wealth of the nation through a fair and open process. The research also examined the issue of assimilation has on the stratification and the level of opportunity through the minority groups adoption and embracement of the elements collectively embraced by the majority white population such as employment compensation, homeownership and educational attainment. A recent HUD report titled "The Impact of CDBG Spending on Urban Neighborhoods" (2002) is also another significant piece of research to advocate for and strongly support the place-based public policy as a solution to the concentration of poverty and the improvement of low-income minority population through the economic benefits of the CDBG program, but may be somewhat bias since the CDBG program is managed by HUD.

In 2007-2008, the United States was experienced one of the largest financial down-turns than it has ever has since the Great Depression of 1930. Starting with the housing bubble and
cascading across the financial market, many individuals and intuitions lost much of the value or equity in investments. Although most if not all of the low-income minority population were not directly affected by the market free-fall primarily due to the fact they were not highly invested in the market, the same individuals and institutions that were affected because of the investment market downturn in-turn are instrumental in creating jobs and supply the markets with the products and services to satisfy the market demand which provides the employment for the lowincome minority segment. The low-income minorities do make up the majority of the labor pool for many of those products and services, or are directly affected by those that do make up the middle income or technical trades that were affected so indirectly would be affected. That is something that neither Hirschman or Snipp could have accounted for nor anticipated in their study of Public Use Microdata Sample (PUMS) used in their research of the 1970, 1980, and 1990 decennial census. Theoretically, if the specific study areas receiving the CDBG assistance should either be affected equally or less than the surrounding areas, then the annual income drop (or increase) will be less affected by the recession than the general population of the surrounding areas. This research must then find the smallest statistical area within the target areas that would or could be affected by either receiving or not receiving CDBG funds for comparison. Additionally, the research by Schneider and Ingram (1997 and 2005) support the importance that neighborhood connectivity has on social construction. Their examination and analysis of the Sandtown-Winchester case study supported the previous research of McDougall,(1993) in the importance of the connections between organizations, policy and funding initiatives in reversing the trend in similar communities in the concentration of poverty, low educational and employment attainment, high rates of crime population decline and the deterioration of adequate (and sanitary) housing conditions and inventory (McDougall, 1993). The organization previously referred to is the development of a social order and cohesiveness of the respective community. The policy is the social construct for the local governmental institution to recognize and improve living conditions and assist the neighborhood in transcending from a concentration of poverty, low annual income, low educational attainment and further denigrations of social control that according to other criminological research, (Bursik, Jr and Grasmick, 1993; Gottfredson and Hirschi, 1990; Bartol and Bartol, 1986; Currie, 1985; Cloward and Ohlin, 1960) which emphasize the increased crime or other social deviance as a result of social anomie and "strain" theory. Strain of the opportunity and access to such structural foundations such as homeownership, annual income, and educational attainment
remains problematic post World War II and the continuing segregation of minority population from the middle class white population.

Segregation and isolation of communities based on socio-economic and ethnicity was a result of the large migration of low-income minorities into the vacated central city core as the primarily white middle class moved out into the suburbs. The CDBG program was the answer to the local city challenges in garnishing the necessary funding to improve the conditions of the low-income minority and through their assimilation into mainstream social beliefs institute the same majority social and cultural drive to acquire homeownership, consistently advance annual income and attain higher education to ensure equity and social mobility. Capitalizing on the original research of Merton $(1938 ; 1957)$ regarding relative perception of deprivation rather than the measure of economic well-being (Lafree, 1998, pg. 65). The importance of financial catalysts cannot be understated. Research has supported the importance of financial stimulus to the social and economic improvements to communities (Perry, 1987).
> "As I have emphasized before, some major parts of the physical or social underpinnings for business development are usually lacking in the forgotten community or in the poor condition, unattractive either to established companies or to new entrepreneurs".

Perry, 1987, pg 127

The CDBG program and the designation of the selected targeted community neighborhoods receiving the special financial and other incentives should then realize an improvement in social and economic conditions, whether higher levels of homeownership, improving annual income and/or the higher educational attainment from the areas immediately surrounding them. Unlike the previous research, this research will focus on areas within a similar metropolitan area which should demonstrate the impact of the CDBG funding and other incentives in improving the conditions to low-income minority concentrated areas of poverty. The economic conditions within the metropolitan area will be similar. The opportunities for homeownership through housing market availability of both supply and demand of adequate housing should be similar across the study areas and the adjacent areas. This will also be the fact for income and educational attainment opportunities when narrowing the research areas to conditions within the Census Tract, and Block Group level of a ZIP Code Tabulation Areas
(ZCTAs), which should account for the larger area of home supply and demand; industrial, retail and service employment; and educational attainment due to the public and private schooling and higher education availability.

1.2 Statement of Problem or Issue and Its significance

Fifty years ago this year, in his first State of the Union address in 1964, President Lyndon B. Johnson identified poverty as a national problem that needed addressing.
"This budget, and this year's legislative program, are designed to help each and every American citizen fulfill his basic hopes-his hopes for a fair chance to make good; his hopes for fair play from the law; his hopes for a full-time job on full-time pay; his hopes for a decent home for his family in a decent community; his hopes for a good school for his children with good teachers; and his hopes for security when faced with sickness or unemployment or old age. Unfortunately, many Americans live on the outskirts of hope-some because of their poverty, and some because of their color, and all too many because of both. Our task is to help replace their despair with opportunity." LBJ 1964, LBJ Presidential Library, Austin TX.

The CDBG program was first introduced by President Richard Nixon, but actually enacted by President Gerald Ford in 1974 (Maharaj, U.S. Mayor Articles, 1999, www.Ibjlibrary.org/press/civil-rights-tax-cuts-and-the-war-on-poverty) through the Housing and Community Development Act of 1974 (Malanga, City Journal, www.city-journal.org/html/block-grants-forever-13286.html. This monumental piece of Legislation was a national effort to address the growing poverty concern on a national scale and priority. As reemphasized by Senator Marco Rubio (R-FI) in his recent bid for the Republican Presidential nomination (Michael McAuliff, Huffington Post, Jan 8, 2014), the issue of poverty for many still remain 50 years after the landmark State of the Union address by President Johnson and 40 years after the CDBG program was enacted. The Senator argued that Washington has been focusing on poverty's consequences instead of the causes. The research of Schneider and Ingram advocate that the success of a policy is predicated on the clear definition of the problem, targeting of the particular group to be helped, and the policy should be specific to address the problem (pg. 118). Again recently echoed by Senator Rubio "...Our anti-poverty programs should be replaced with a revenue-neutral flex fund..." (Jackie

Kucinich, The Washington Post, January 8, 2014) and concentrate the anti-poverty program under one single Federal agency. The Community Development Block Grant (CDBG) program has been managed by the Office of the United States Department of Housing and Urban Development. Any study funded by the department, even if not intentional may exhibit some bias. Unlike the Community Reinvestment Act which focused on the banking and finance side of the poverty and unfair housing discrimination which resulted in concentration of low-income minorities, the CDBG program was a direct funding mechanism managed by the federal government through local municipal governments to provide direct assistance to remove the barriers to equality and support social mobility.

The CDBG program was an evolution and consolidation of previously "eight categorical programs" (HUD, Office of Block Grant Assistance, 2014). The purpose of the CDBG program is to provide the following:

Decent housing:

A suitable living environment; and

Expanded economic opportunities.
The CDBG has undergone revisions since its inception, and the governing guidance was drastically revised from 1995 to 2006 which covers the timeframe of this research examination. I will briefly summarize the excerpts of the changes that directly pertain to this research:

January 5, 1995 (Effective February 6, 1995). This rule established the guidelines for evaluating and selecting economic development projects including microenterprise activities and Neighborhood Revitalization Strategies;

November 21, 2000 (Effective December 21, 2000). This rule made changes to permit homeownership activities, to the extent authorized by statute, to be funded in connection with new construction;

December 23, 2005 (Effective January 12, 2004). This rule implemented a statutory amendment regarding limitations on the use of CDBG funds for activities involving job relocation.

The primary categories of the CDBG program are presented in the twenty-one chapters of the guidance as identified above by the HUD Office of Block Grant Assistance. I will summarize the specific points of the guidance for the general chapters relating to the research. Chapter 1 of the guidance explains the consolidation of the eight categorical programs: 1.) Open Space; 2.) Urban Renewal; 3.) Neighborhood Development Programs; 4.) Historic Preservation; 5.) Model Cities supplemental; 6.) Public Facilities; 7.) Neighborhood Facilities; and 8.) Water and Sewer. Chapter 3 explains the national objectives to benefit low-and moderate income (LMI) persons and to aid in the prevention or elimination of slums and blight. This chapter also covers the threshold of a minimum of 70% of any CDBG funding should benefit the LMI. Chapter 4 covers housing rehabilitation or reconstruction to eliminate blight and code violations. Chapter 5 explains acquisition and non-residential improvements. Chapter 6 covers the elements of public facility improvements such as infrastructure and community homes. Chapter 7 involves employment training and education programs. One can argue that employment training is specifically related to employment, but education programs can be either job specific or to provide for a community based on-site GED program, child care while attending school, or many other such educational tertiary support to assist the low- and moderate income (LMI) individual.

Prior published research such as The State of the American Dream: Race and Ethic Socioeconomic Inequality in the United States, 1970-90 by Charles Hirschman and C. Matthew Snipp (1999), the HUD report titled "The Impact of CDBG Spending on Urban Neighborhoods" (2002), Deserving and Entitled, Social Constructions and Public Policy by Anne Schneider and Helen Ingram (2005), American Apartheid, Segregation and the Making of the Underclass by Douglas Massey and Nancy Denton (1993) and Ethnic Minorities: Politics and the Family in Suburbia by Harlan Hahn (1973) continue to examine the segregation and concentration of poverty in low-income minority populations and neighborhoods through the desire to associate with others who possess similar attributes (Hahn, pg 189). Minorities have endured the influence that social barriers create for low income minority population which continues to concentrate poverty, stratify ethnicity and create the permanent "underclass" (Massey and Denton, 1993). The above research examined the migration of the large population advancement of minorities and the influence that CDBG funding has to eliminate some of those barriers respectively. Based on this research and further readings, there is growing body of evidence and research that advocates that not all communities nor racial ethnicities benefit equally from social policy efforts such as CDBG program funding. Some factors affecting these
policy efforts and their influence in eliminating social barriers is the ethnic minority assimilation into the American culture of independence, social mobility and self-determination.

Many scholars (Massey and Denton; William J. Wilson; Gilbert; Kerbo) propose that social stratification and the presentence of inequality is a structural condition resulting from the persistent attitude of either the majority race which continues the stratification through the intentional manipulation of structural elements such housing, employment opportunities, educational attainment and other elements that result in the isolation of poverty, low educational opportunities and attainment and occupational advancement. As identified in previous research (Jencks et al., 1979) as much as 50 percent of the variance in occupational status is explained by family background. The previous scholarly effort of Max Weber emphasized the in modern industrialized societies, it is not only employment that provides economic subsistence, it also provides personal identity. This self-identity is instrumental in the preservation of the social controls and crime prevention that results in the prevention or control of an increasing spiral of disorder and decline in poverty concentrated neighborhoods (Messner and Rosenfeld, 1997; Sampson and Laub1993; Cloward and Olin 1960) primarily as a result of the misplaced element of masculinity and learned behavior (Messerschmidt, 1993). Some scholars (Steven Lukes, $1974,1977)$ propose that much of the social controls that maintains the concentration of poverty and barriers to social mobility of the minority segment of the population is intentional and any effort to change the natural order is principally the exercise in subliminal social and individual aspiration control through exhibiting social reform while maintaining social and political power control, Lukes "third" dimension. Although arguable, I conclude that that examination is for another body of research and out of the parameters of this research effort. Another focus of research follows Lukes in the argument of "shared value" (Lukes, 1977, pg 64) regarding the integration of social cultures. His assessment of "...collective effervescences can serve to integrate and strengthen subordinate social groups...(pg. 65) is similar to the emphasis of monetary and occupational success on individual identity (Messner and Rosenfeld. Social assimilation reflects the adoption of the "...priority given to monetary rewards has particular ramifications for the cultural valuation placed on roles performed in noneconomic contexts" (pg.8).

For this body of research, this research effort will rely on the work of in Emily Greenman and Yu Xie "Is Assimilation Theory Dead? The Effect of Assimilation on Adolescent Well-Being" (2006), Yetty Shobo "African Immigrants: Patterns of Assimilation- Past Research and New Findings" ()
and Yu Xie and Emily Greenman "Segmented Assimilation Theory: A Reformulation and Empirical Test" (2005) as a basis to analyze the effect that CDBG funding levels have on the assimilation of low-income minority communities within a specific metropolitan statistical area. As so succinctly stated by Massey and Denton (2003) that supports the precepts of assimilation, "...a person's success depends on personal traits such as motivation, intelligence, and especially, education" (pg. 148). The growing body of research on assimilation supports that social segregation; language barriers and educational attainment affect assimilation. My research will be to examine particular targeted areas within a similar social, cultural, and economic metropolitan statistical area to eliminate the potential influence on other factors that may have affected previous studies. In doing so, since the targeted areas designated by the local municipalities constitute various concentrations of minority populations, the difference in economic and social improvements may be ethnically based more so than economically stimulus such as the level and consistency of CDBG funding.

This research therefore aims to address the following questions:
Do targeted areas receiving CDBG funding experience more employment levels than the immediate surrounding neighborhood areas not receiving CDBG funds?

Do targeted areas receiving CDBG funding experience more change in homeownership attainment than the immediate surrounding areas not receiving CDBG funds?

Do targeted areas receiving CDBG funding experience more change in household income than the immediate surrounding neighborhood areas not receiving CDBG funds?

Do targeted areas receiving CDBG funding experience more change in educational attainment than the immediate surrounding areas not receiving CDBG funds?

Do targeted areas receiving CDBG funding experience more change in the concentration of poverty than the immediate surrounding areas not receiving CDBG funds?

Do targeted areas receiving CDBG funding experience more economic resilience and recovery than the immediate surrounding areas not receiving CDBG funds after an economic recession?

Is there a difference in the socio-economic changes in the targeted areas based on a language other than English than the immediate surrounding areas not receiving CDBG funds?

Is there a difference in the socio-economic changes in the targeted areas receiving CDBG funding based on ethnicity?

Do targeted areas receiving CDBG funding experience an increase, stability or faster economic recovery than the immediate surrounding areas not receiving CDBG funds?

1.3 Purpose of the Research

The examination of the success of the CDBG program on removing the structural economic and social barriers can be evaluated through the level of the grants, the duration of grant funding and if the grant programs are either place-based or people-based. This type of analysis is important and should be considered as a follow-on research effort after this research effort, but for now, this effort will focus on the aggregate of CDBG funding and its successfulness as determined by a quantitative examination and analysis. Although there has been many studies and to narrow the focus to an achievable degree of focus, this effort will use the prior published research of The State of the American Dream: Race and Ethic Socioeconomic Inequality in the United States, 1970-90 by Charles Hirschman and C. Matthew Snipp (1999), and the HUD report titled "The Impact of CDBG Spending on Urban Neighborhoods" (2002), prepared for the U.S. Department of Housing and Urban Development, Office of Development and Research.

In the scholarly article by Hirschman and Snipp, their research focused on issues of "social justice" and "rigidity of stratification" (pg.91) and the concept of assimilation of Black, American Indians, Japanese, Chinese, Filipinos, and Hispanics, nationwide from men aged twenty-five to sixty four in the labor force for census 1970, 1980, and 1990. Their study examined a variety of ethnic differences to include, net effect of age, immigration status, residence, schooling, and occupational attainment. The occupational attainment directly reflected on income and wealth accumulation. Their study was to examine the success in eliminating the inequality since the inaction of the Civil Rights of 1974 (abcnews.go.com/Archives/video/jan-1964-Ibjs-state-union9272400). Although the research of Hirschman and Snipp did not focus specifically on the CDBG funding program, it did focus on the reducing or eliminating of inequalities as a result of the black-white differences in education, income and other measures of economic well-being. Their study covered the years of 1970, 1980, and 1990. Their research included the influence that the social equality policies and related programs had on the traditionally low income minority segments of the population. As determined by their study, immigrants from Europe, American Indians, African Americans, and other non-white immigrants from Asia and Latin

America did not fare well. Their conclusion was that racial discrimination and social segregation were major contributors or barriers to the advancement of African Americans in American Society as based on their results and the results of their referenced research (Ducan, 1969; Featherman and Hauser, 1976; Farley and Allen, 1987; Massey and Denton, 1993). Their study also determines that Hispanics and Asians warrant separate consideration since they experienced enormous and explosive population growth. In particular, in concert with recent research on assimilation of immigrants, the additional barrier of language and cultural traditions add yet another level of concern to the continuation of poverty among the minority population. The examination of this assimilation for Hispanic (Latino) and Asian population will be addressed.

The Housing and Urban Development (HUD) report as required by the 1992 United States Congressional Government Performance and Results Act (GPRA) required each Federal Agency and Administration Office to examine their respective programs against their mission to evaluate the effectiveness and accountability of their respective programs by measuring results of their programs. Not surprising, the report tested many performance measures for HUD's "...flagship urban improvement program—the community Development Block Grant Program (CDBG). The CDBG program allocates Federal funding to State, cities, and urban counties according to a formula based on population, poverty, age of the housing stock and other needs factors. It is essential that an understanding of the program recognizes that the CDBG program differs from earlier categorical models of federal government funding support for urban redevelopment because it relegates the block of funds provided to be spent at a local level with only broad guidelines established by Congress. Similar programs are provided for airports through the Airports Improvement Program (AIP) overseen by the Federal Aviation Administration as an example which provides broad criteria and reporting requirements to account for the distribution of funds managed at the local level. The HUD report requested that the study included the following evaluation criterial:

Develop a methodology for determining "substantial" investment of CDBG funds;
Identify specific neighborhoods with substantial investments of CDBG resources between 1995 and 2000;

Develop a methodology to track changes in neighborhood characteristics over a similar time period as the investment; and

Report on progress made in these neighborhoods
Their overall results found that larger CDBG investments are directly linked to significant improvements in neighborhood quality in the 17 cities studied for this report. They also found that two significant indicators shown significant promise to the success of the CDBG programone reflecting residential mortgage lending activity and the other reflecting business and employment opportunities.

This research will examine and present the results by using similar age groups used in the Hirschman and Snipp study, that by excluding females in their analysis and only focusing on males, they neglected a major component in determining the influence that social policy programs have on the low-income populace. Many of the current families that are experiencing a gradual incremental degradation or the elimination of economic and social barriers is headed by a woman. The male is no longer the sole income earner, and as a result they must also face the barriers related to educational attainment, increasing income, occupational advancement (related to increase income) and homeownership to accumulate the foundation of wealth. One criteria used in the HUD study was spending per poor resident as a measure of CDBG investment. They also excluded neighborhoods receiving less than $\$ 86,737$ average level of annual CDBG funding. Many neighborhoods can benefit from any CDBG funding even if less than the $\$ 86,737$ threshold. One of their findings was:
"Neighborhoods with substantial levels of CDBG investment will show Improvements in such dimensions as household incomes, employment, business activity, homeownership and housing investment." (pg. 1)

My point of departure with both of the previous studies regarding the improvement of social mobility, the erosion of social class barriers and the impact of CDBG program contributing to those improvements is they used national locations and data collection from across the nation and that they eliminated a major segment of the working and employed/unemployed segment of the work force -women. Also significantly absent in their results is they may have excluded the major elements of employment and income related to employment; urban economics theories of location and proximity (Arthur O'Sullivan, 2007; Mills and Hamilton, 1989; John McDonald, 1997; McDonald and McMillen, 2007; Bogart, 1998). The research of Hirschman and Snipp relied upon the data collected from the Public Use Microdata Sample (PUMS) files of the
decennial censuses of 1970,1980, 1nd 1990. They further explained that this data permitted them to examine trends in the "socioeconomic achievements of seven racial and ethnic minorities" (pg. 95). They acknowledged the benefits and liabilities to using the census PUMA large samples on a national scale. Based on the census information, PUMAs were first made available in the 2005 American Community Survey (ACS) and consist of non-overlapping areas that partition each state into areas containing approximately 100,000 residents. PUMAs were developed to be the most detailed geographic area available in the Public Use Microdata Samples (PUMS). As can be noted, the scale of 100,000 residents are a large grouping, and although appropriate for the focus of the Hirschman and Snipp analysis of the aggregate social and economic improvements for minorities, when assessing the potential impact of public policy targeted initiatives such as CDBG funding program lacks the level of refined granularization. The HUD report uses selected seventeen (17) cities, according to their admission selected "...to ensure the widest possible range of data availability, cover all regions, ensure differences across cities in metropolitan area job growth (a proxy for overall economic health) and include larger cities with some variation in CDBG investments across census tracts within cities (pg. 12).

Previous research of Berliant and Konishi (1994) demonstrate the differences in economic sites can be reinforced by investment decisions which would emphasize market opportunities for both housing and employment. According to city economic theorist, (Mills and Hamilton, 1989; McDonald, 1997; Bogart, 1998; McDonald and McMillen, 2007; O'Sullivan, 2007) the growth of the employment core is based on many variables, but not all variable are equal. The importance of amenities and disamenities cannot be understated. In research by Evans and Barovick, (1994) an educated labor pool, low construction costs, and access to consumer markets rate higher than low crime rates and corporate /business taxes.

Based on the U. S. Census, the following four separate regions (Figure 1.1) will be used in the examination of the HUD report. This designation is helpful since in this specific research analysis, the focus will be in the South Region and only in the State of Texas. Unlike the previous research identified, which was focusing only on 17 cities nationwide or nationally as in the Hirschman and Snipp research.

Before examining the specific Fort Worth/Dallas targeted areas, a more national review and examination of demographic changes is warranted. The emphasis is to review the national trends in regional changes both in population, but also the race or ethnicity change as a result of
migration. The impact to the Fort Worth and Dallas areas of the population increase (or decrease) contributes to the data statistical analysis accuracy and policy assessment. In general, the increase in population nationally has favored Texas since 1980, with a consistent average of 10 to 24.9 percent increase. Of that population increase, the Fort Worth and Dallas areas have reflected a 50 percent or more population growth rate. Much of the population increase has been in the minority population primarily of African Americans (Black), Hispanic or Latinos, and Asians. The numeric increase nationally and the perspective of the Fort Worth and Dallas relationship to the national trends will be presented subsequently to provide the groundwork for the research examination of change in areas receiving or not receiving economic and social assistance to improve social mobility for the minority population in the relocation and migration trend. Unlike the previous cited research which examined the social conditions nationally at selected locations, this research focuses on a narrow area that shares similar economic, social and governmental resources and conditions.

Source: U.S. Census Bureau, 2010 Census.

Figure 1.1: National Census Regions and State Courtesy of the U. S. Census

Figure 1.2 identifies the change in the population from 1980 to 1990; 1990 to 2000; and 2000 to 2010 as derived from the U.S Census. The change from 1990 to 2000 shows the major changes from California to the western States of Nevada, Arizona, Colorado and Wyoming. The largest change in the south is from Florida to Georgia from 1990 to 2000. The State that remained relatively constant with the population increase is the State of Texas. The study conducted by Hirschman and Snipp used the Public Use Microdata Sample (PUMS) which is an effective file from the decennial census, but it is a national database and does not take into count the specific economic conditions for a more focused area. The HUD report based its research data using 17 cities for analysis. Those 17 cities included the cities of Providence, RI; Indianapolis, IN; Boston, MA; Cleveland, OH; and Oakland, CA. These cities were selected because of the availability of data found in the NNIP datasets. The other cities selected for the HUD report were Fort Lauderdale, FL; Columbus, OH; Houston, TX; and Portland, OR since they would have high quality data because they were test sites for the American Community Survey. The remaining cities included in the HUD research were Washington, DC; Los Angeles, CA; Birmingham, AL; Milwaukee, MO; Denver, CO; Long Beach, CA; Tulsa, OK; and Charlotte, NC. Even though Fort Lauderdale was initially dropped from the sample before the selection process, the problems were resolved and it was eventually included in the analysis. The reason this information is important that with a growth (or positive change) in population can affect the opportunities for employment, homeownership and income. The increase in population can relate to more competition for limited employment availability, less homeownership due to housing inventory shortages, and lower income because of the basic economic law of supply-versus-demand. As can be extrapolated, the change in population can and will directly affect the results of the Hirschman and Snipp study and the HUD report on the influence of CDBG funding. To summarize the HUD report, Indianapolis (Illinois), Cleveland, and Columbus (Ohio) had 0.0 to 9.9 percentage growth statewide, and where Oakland, Los Angeles (California) and Denver (Colorado) ranged from 25 percent or more in 1980-1990 and 10.0 to 24.9 percent 1990-2000 for California statewide; and 10.0 to 24.9 percentage in 1980 to 1990 and 25 percent or more for Colorado in 1990-2000 statewide. This change population statewide will alter the population change in the specific cities since the cities selected were the principle economic hubs for the states. Texas remained in the 10.0 to 24.9 percentage in 19801990, 1990-2000, and 2000-2010. The next step would be to see the distribution of population per region and based on ethnicity. Not all population growth nationally is equally distributed.

Figure 1.2: Percentage Change in Population by State and Decade Decennial Census Courtesy of the U.S. Census

Figure 1.3 refines the percentage change by counties summarized in Figure 1.2 and Tarrant and Dallas counties show an increase percentage by 50.0 percent or more.

Figure 1.3: Percentage Change in Population by State and County 2000 to 2010 Courtesy of the U.S. Census

Similarly, from Figure 1.3, Figure 1.4 below is the change of population by counties from 2000 to 2010. The emphasis of this research is to focus on the State of Texas, counties of Tarrant and

Dallas, and the cities of Fort Worth and Dallas specifically. The census data shows that two counties (Tarrant and Dallas) show that the change in population by county for 2000-2010 is 40,000 or more. This demonstrates a very robust and dynamic constant, but incremental growth rate for the two counties and cities to be studied. This will differ from both the Hirschman and Snipp study and the HUD report. This difference potentially will recognize that the findings of the two research efforts will not necessarily be an accurate determination as to the successfulness of the CDBG program overall, and particularly on the variables of employment, homeownership, income and educational attainment. With population growth comes the combined challenge of sustaining the living conditions through maintaining the infrastructure strained by unprecedented growth while ensuring the opportunities for the entire area to benefit form the increasing labor pool, economic stimulus, and market expansion through diversity.

It is said that all boats rise equally with the tide, but that experience and research has proven that in some cases that statement is not entirely true. In Robert Rothman's book, Inequality and Stratification: Race, Class and Gender, (1999) and Rhonda Levine's book, Social Class and Stratification (1998), both present strong support for the principles espoused by the early work of Kingsley Davis and Wilbert Moore entitled Some Principles of Stratification.(1953) The plight of the low-income minority is maintained through the fundamental continuation of the distribution of inequality of opportunity and resources.

Figure 1.4: Change in Population by County 2000 to 2010 Courtesy of the U. S. Census

The following table presents the data derived from the census information on change in population and was used in the HUD report with the addition of Fort Worth and Dallas data added.

	Region	Change in pop. (000)	\% Change	\% Change White	\% Change Black	\% Change Hispanic	\% Change Asian
Boston, MA	NE	20 to 39	0 to 9	<0	<0	0 to 19.9	0 to 9.9
Cleveland, OH	NW	10 to 19	(9) to 0	<0	0 to 9.9	50 to 99.9	25 to 49.9
Oakland, CA	W	40+	0 to 9	25 to 49.9	0 to 9.9	50 to 99.9	25 to 49.9
Indianapolis, IN	MW	40+	50+	10 to 24.9	10 to 24.9	0 to 19.9	200+
Providence, RI	NE	20 to 39	0 to 9.9	25 to 49.9	25 to 49.9	25 to 49.9	25 to 49.9
Birmingham, AL	S	40+	25 to 49.9	50 to 99.9	10 to 24.9	50 to 99.9	25 to 49.9
Charlotte, NC	S	40+	50+	50 to 99.9	25 to 49.9	25 to 49.9	200+
Columbus, OH	MW	40+	50+	50 to 99.9	25 to 49.9	50 to 99.9	200+
Denver, CO	w	40+	50+	50 to 99.9	25 to 49.9	25 to 49.9	200+
Fort Lauderdale, FL	S	40+	25 to 49.9	50 to 99.9	25 to 49.9	25 to 49.9	25 to 49.9
Houston, TX	S	40+	50+	0	25 to 49.9	50 to 99.9	200+
Long Beach, CA	w	40+	0 to 9.9	0	(10) to 0.1	50 to 99.9	25 to 49.9
Los Angeles, CA	w	40+	0 to 9.9	<0	0 to 9.9	50 to 99.9	25 to 49.9
Milwaukee, WI	MW	20 to 39	25 to 49.9	<0	10 to 24.9	50 to 99.9	50 to 99.9
Portland, OR	w	20 to 39	10 to 24.9	<0	10 to 24.9	50 to 99.9	50 to 99.9
Tulsa, OK	S	40+	25 to 49.9	<0	25 to 49.9	50 to 99.9	200+
Washington, DC	NE	40+	10 to 24.9	10 to 24.9	25 to 49.9	25 to 49.9	50 to 99.9
Fort Worth, TX	S	40+	50+	<0	25 to 49.9	25 to 49.9	100 to 199
Dallas, TX	S	40+	50+	<0	10 to 24.9	0 to 19.9	100 to 199

Table 1.4.1 Summary of Change in Population 2000 to 2010 Courtesy of the U. S. Census

The data used in the HUD report was collected over a wide swath of the nation and will not reflect the specific conditions in a more targeted area. The labor pool, employment opportunities, and income is all subject to location variance.

The population distribution is also not equal across the state. As can be seen, Houston experienced differences than did Fort Worth and Dallas. The number of total people distribution within the counties of Tarrant and Dallas are predominately in the cities of Fort Worth and Dallas. Based on economic theorist, (Mills and Hamilton, 1989; McDonald, 1997; Bogart, 1998; McDonald and McMillen, 2007; O'Sullivan, 2007) this concentration of change in population around the major cities would be aligned with the monocentric model of spatial growth (McDonald, 1997) and clustering of employment opportunity, income and housing (Chapin and Weiss, 1962; Mills and Hamilton, 1989; Bogart, 1998).

According to the U.S. Census, starting in 1997, the Office of Management and Budget (OMB) required federal agencies to use a minimum of five race categories: White, Black or African American, American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander. For respondents unable to identify with any of these five race categories, OMB approved the Census to add a sixth category of "some other race".

The data collection relied on the self-reporting of race or ethnicity. As an example, in accordance with OMB guidance, the definition of "White" for respondents who reported entries such as Caucasian or White; European entries such as Irish, German, and Polish; Middle Eastern entries, such as Arab, Lebanese, and Palestinian; and North African entries such as Algerian, Moroccan, and Egyptian. "Black or African American" is for respondents who reported entries such as "Black", "African American" or "Negro". It includes respondents who reported entries such as African American; Sub-Saharan African entries such as Kenyan and Nigerian; and Afro-Caribbean entries such as Haitian and Jamaican. The same was used for all the other ethnicities and can be found in the census survey reporting guidance. This research does not intend to distinguish separate national origins which may contribute to social and cultural differences.

Much of the previous research has focused on the conditions of Black or African American conditions. The work of William J. Wilson $(1980,1992,1996)$ emphasizes the deplorable treatment of Blacks by the rigid stratification of the American society and that it is the social and economic stratification that supports the smoothly working and stable systems of the United States of America, and by association the State of Texas and Fort Worth and Dallas. The research of Theodore J. Davis (1991) demonstrates the strong relationship between the class of the parents and the subsequent class integration of the child (son) that includes career, education and even marriage that sustains the barrier to social mobilization. This will become significant in the examination and discussion of employment. As clearly articulated in Melvin R. Levin's (1982), Ending Unemployment: Alternatives for Public Policy, "...overt discriminatory barriers that relegated many blacks to rigidly defined, low paying jobs..." (pg. 159).

The previous research of Mary and Robert Jackman (1983), provides the data analysis that reinforces the dynamics of social distances and segregation. As the population changes and with the population increase in specific areas, members within the same class demonstrate a preference to stay within an area or community consisting of a population of similar class. This
results in segregation of neighborhoods and concentration of races (ethnicity) since most classes are evolved from social networking and social capital to solidify solidarity of culture. This same effect can be transferred to school segregation, marriage patterns (and divorce patterns), and work patterns. This is supported by the concentration of minority neighborhoods.

Generally, it is expected that the Block Groups that receive CDBG funding will achieve a reduction or elimination of social mobility barriers such as the three (3) indicators already identified above; annual income, home ownership and educational attainment. Additionally, this research is intended to address the assimilation debate and the arguments that assimilation is a major component to the success of many public policy programs such as CDBG funding that focuses on targeted areas of low-income minority concentration which predominantly exhibits a concentration of poverty through a place based policy. By selecting the specific target areas identified, the concentration of homogeneity of ethnicity is better related to the theory of association of similar attributes and social bonds (Hahn, 1973). If the proponents of the assimilation arguments are substantiated, then African American areas of concentrated population would exhibit a significant increase in the three (3) social indicators above with far greater success than either the Hispanic or Asian populations primary due to the cultural differences that include language and adoption of the social goals of the majority population in the surrounding areas. Also included in the potential analyses will be ethnic identification and the elements of indigenous society having the strength and stability of the family as the primary source of customs and values if differing from the local main stream customs of culture, such as continuing improvement in average income through professional advancement, increase in homeownership as a means to acquire and pass-on wealth accumulation to off-springs through equity and inheritance, and the attainment of additional education beyond the public school basic k-12 minimum baseline.

This research effort will differ from the original research of Hirschman and Snipp (1999), since this research will not only examine the measurement of changes between ethnicities within the target areas but also the positive influence that the level of CDBG funding has had in the socioeconomic changes and social mobility barriers within the specific target areas of low-income minority population. Specifically it will focus on three (3) significant social mobility barriers for low-income minorities; income, homeownership, and educational attainment whereas the original research of Hirschman and Snipp (1999) also included birthplace/length of U. S. residence, place of residence (state or region), weeks worked last year, and hours worked last
week. The Hirschman and Snipp (1999), research also included three (3) decennial census records (1970, 1980, and 1990). Although by examining the changes between the specific census data years, the socioeconomic changes should be similar across ethnicities within the same study area.

The Hirschman and Snipp (1999) research identified that some ethnic groups had shown an increase in earnings during the census periods whereas some segments had not shown an increase and some even shown a decrease.
"There was little net change in the earnings hierarchy. However, the pattern is more mixed than for occupational status. In constant dollars, white earnings were stagnant from 1970 to 1990. Blacks, on the other hand, enjoyed modest gains in each decade since 1970. The same is true for Japanese workers. Other groups experienced modest gains in one decade and decline in another. This instability might be the result of compositional differences due to immigration, changing racial self-identification (in the case of American Indians), or reporting errors in the earning data."

$$
\text { Hirschman and Snipp (1999), pg } 99
$$

This research will be comparing the change relative to CDBG funding for each area, and the relationship of the influence that CDBG funding level have on eliminating those identified social mobility barriers and improving the socioeconomic condition for low-income minorities can be determined to examine the effectiveness that CDBG funding may have on the conditions of the low-income minority population which may further explain the differences in the ethnical changes as reported by Hirschman and Snipp (1999). It will also eliminate the potential of the "changing racial self-identification" by excluding American Indians, grouping AfricanAmerican/Blacks into one group (to include African immigrants, Haitian, Bahamian), grouping all Hispanics and Latinos into one category (Mexicans, Cubans, Puerto Ricans, South Americans), and Asians into another single category (Japanese, Chinese, Vietnamese, Koreans). The variance of social norms, community engagement, and other specific ethnic social norms will not be a consideration of this research and grouping will be more valid variable for study. Caucasian (white) will be based on the census self-reporting information.

This research additionally will address other issues as identified in the Hirschman and Snipp (1999) research.
"They do not take into account ethnic differences in education, place of residence, or other attributes that may affect socioeconomic attainment entirely apart from any consideration of ethnic relations. For example, some ethnic groups may have higher earnings because they are more heavily concentrated in higher paying urban labor markets, not because they receive different rewards for their work."

CHAPTER 2

Literature Review

2.1 Background and History

This research effort will exam the effectiveness of Community Development Block Grant (CDBG) funding as a method of public policy for removing the structural barriers to low-income minority upward mobility and a re-examination of the original research of Hirschman and Snipp (1999) that measured the socioeconomic changes between various concentration of ethnic groups. The differences between the initial research of Hirschman and Snipp and this research is that this research will examine the areas receiving CDBG funding as identified by the local municipality within a similar socio-economic statistical area in order to remove the variances identified by previous researchers to factors that could affect the research outcome (Hirschman and Snipp, 1999). It will also include the female population which was absent in the Hirschman and Snipp study to determine the social and economic improvement to the minority population.

This research study will evaluate and analyze the effectiveness of the Federally funded Community Development Block Grant (CDBG) program regarding three (3) primary indicators of social mobility barriers; change (increase) in median income, change (increase) in home ownership and change (higher level) in educational attainment. This research will address the long standing debate on assimilation by ethnicity as one of the many factors that may be attributed to the consistency of high concentration of poverty by certain ethnic groups regardless of public policy initiatives or structural corrective measures, mainly due to language barriers and differing cultural norms that prevent certain ethnic groups from improving their situations through integration and assimilation of similar goals and achievements of the general population. If the African-American concentrated areas demonstrate a better improvement than other minority concentrated areas (Hispanic and Asian) within the same Metropolitan Statistical Area (MSA) of Dallas and Fort Worth respectively, then the support to the argument advocating stronger programs to eliminate the language barrier and the traditional ethnic social norms would be warranted to improve the effectiveness of CDBG programs.

Since the early study of city development, the importance of economics and city growth was tied together. The early research of Homer Hoyt (1939) determined that the economic base of a city was tied to sales or exchanges of goods and services to advance the economic health of the city. The early work of Perroux (1955) substantiated that city economic and physical growth
was not balanced equally across the city, but was concentrated at certain points within the city boundaries. The early work of Christaller (1933) and the concept of Central Place, subsequently modified by Lösch (1939) soli rich" and "city poor" sectors of a developing city. The Concentric Zone Model of Park and Burgess (1925) laid the ground work for the explanation of the clustering of the various segments of the city of the $20^{\text {th }}$ Century and resulted in the Sector Model Hoyt (1939) and subsequently Harris and Ullman (1945) Multiple Nuclei Model which laid the ground work for the great white migration after World War II and the beginning of the long-running concentration of minority residency and concentration of poverty that has been the issue of considerable research and debate (Wilson, 1978, 2009; Massey and Denton, 1993 ;Schneider and Ingram, 2005).

The primary scholarly literature review will be The State of the American Dream: Race and Ethic Socioeconomic Inequality in the United States, 1970-90 by Charles Hirschman and C. Matthew Snipp (1999), the HUD report titled "The Impact of CDBG Spending on Urban Neighborhoods" (2002), Deserving and Entitled, Social Constructions and Public Policy by Anne Schneider and Helen Ingram (2005), American Apartheid, Segregation and the Making of the Underclass by Douglas Massey and Nancy Denton (1993) and Ethnic Minorities: Politics and the Family in Suburbia by Harlan Hahn (1973). Additional research regarding crime and deviant behavior will be based on scholarly research conducted and presented by renown criminologist and social scientist published work such as Masculinities and Crime: Critique and Reconceptualization of Theory by James Messerschmidt (1993), Crime and the American Dream by Messner and Rosenfeld (1997), A General Theory of Crime by Gottfredson and Hirschi, Criminal Behavior: A Psychosocial Approach by Bartol and Bartol, Confronting Crime and American Challenge: Why There Is So Much Crime In America \& What We Can Do About It by Currie (1985) and Delinquency and Opportunity: A Theory of Delinquent Gangs by Cloward and Ohlin (1960) theorize the strong influence on minority males to achieve the American Dream of wealth through many avenues, to include through other than legitimate means. This is further supported by the research of Neighborhoods and Crime: The Dimensions of Effective Community Control by Bursik and Grasmick (1993) and Crime in the Making: Pathways and Turning Points Through Life by Sampson and Laub (1995). The research of Massey and Denton (1993) and William Julius Wilson (2009) also support the influence especially on the black male to overcome the poverty and adapt to "the code of the street" and the "code of shady dealings" (Wilson, 2009, pg 134). Research provides much data on the disproportionate allegations and conviction of acts of crime to low-income minorities (La Free, 1998). Attributing
this disproportionate concentration especially attributed to young males, and mainly African American males would strongly support the previous referenced body of literature and be additionally supportive of the role that social stratification and inequality contributes to the concentration of low-income minorities and barriers to social mobility (Gilbert 2008; Beeghley, 2005; Kerbo, 2003; Marger, 2002).

Although the previous research identified above was instrumental in developing the scope and strategy for this research effort, it included differing data groups from a wide-statistical area of the country and focused on immigration, normally from individuals that were not originally from the United States and had other contributing factors such as language barriers and the lack of family support and other social capital issues that could contribute to the social mobility barriers. The specific study areas of this proposal are established areas of the city and although they include a large percentage of low-income minorities, they have also been targeted by the city to receive special financial incentives such as Community Development Block Grant funding, Enterprise Zoning and other similar instruments of public policy to improve the conditions and opportunities for the residence. The majority of the residence To measure the effectiveness of the CDBG funding benefits as described in the above HUD report, it is essential to examine similar geographically and socio-economic areas to their surrounding areas in order to potentially reduce the influence of outside variables such as the economic conditions of the area. As an example, if a new manufacturing or assembly plant is moved into the MSA and the labor pool allows low-income minority population to obtain employment that pays higher wages due to labor demand conditions, then the higher annual income reported would be a contributing factor. The above cited HUD report spans multiple locations nationally which may not account for other socio-economic conditions that would affect the outcome of the study on the effectiveness of grant funding. The research specific areas are more congruent with local economic conditions, level of occupation and employment availability, cost-of-living levels and other similar conditions, so should a major factor such as a manufacturing or assembly plant move into or out of the area, the potential is to affect all areas within the community equally.

2.2 Income and Education

There is a considerable body of research that supports the influence that the neighborhood matters in early development and the adherence to social institutions such as church, school and other institutions. (Bursik and Grasmick, 1993; Bartol and Bartol 1986; Cloward and Ohlin, 1960). The research of Mayer and Jencks (1989) argued that the influence growing up in a
poor neighborhood would affect "collective socialization", "peer-group influence" and "institutional conformance". In their article Assessing "Neighborhood Effects": Social Processes and New Directions in Research,(2002) Sampson, Morenoff, and Gannon-Rowley argue that the influence of the neighborhood influence is beyond the concentration of poverty, but also affects delinquency, violence, depression, and high-risk behavior which affects successful acclimation into the importance of education. As demonstrated in Figures 2.2.1 for 2014 and 2.2.2 for 2008 below, the importance and relationship of education to income is significant.

Figure 2.2.1: Median Monthly Earnings by Experience and Education 2014
Courtesy of the U.S. Bureau of Labor Statistics

Figure 2.2.2: Median Monthly Earnings by Experience and Education 2008
Courtesy of the U.S. Census
The U.S. Bureau of Statistics (2015) released in its May report A Look At Pay At The Top, The Bottom, And In Between that the issue of pay inequality has been a major concern of the public, government officials, and most importantly, policymakers for some time. The importance of the differences in the highest earners as compared to the lowest earners continues its upward climb, which is eroding the growth of the middle class and reinforcing the statements made by Karl Marx in his writings $(1844,1845)$. To quote Marx, "...The worker becomes poorer the richer is his production.....The worker becomes a commodity that is all the cheaper the more commodities he creates" (Pg.7). This challenge to increase income to the lower-income segment of the population to through their own hard work, and by increasing income, move from the low-income wage earner to the middle class and create a better opportunity for their children (Rothman, 1999; Beeghley, 2005; Levine, 1998; Marger, 2002). This challenge is not just a concern of the policymakers, but is increasing in research efforts and public concern through advocates of racial and social equality. William Julius Wilson (2009), More Than Just Race: Being Black and Poor in the Inner City. Wilson points out that the condition of poor African American's is compounded by the combination of global competition, advancing technology,
and the elimination of mass production and manufacturing in the United State which is demanding an ever increasing level of education and training to meet the labor demands.

The U. S. Bureau of Statistics identifies that during the timeframe of 1979 to 2014, women's real median weekly earnings increased by 30 percent over this period from $\$ 553$ per week in 1979 to $\$ 719$ per week in 2014 (Figure 2.2.3). It goes further to state that in contrast, men's median weekly earnings changed little during the same time frame. According to the U.S. Census, Figure 2.2.4, there shouldn't be any surprise since women have demonstrated the propensity to seize the opportunity to realize that the key to open the door to success is through education in an information driven society, and that as technology advances so does the demand for a more educated workforce.

Source: U.S. Bureau of Labor Statistics.
Figure 2.2.3: Selected Percentiles of Usual Weekly Earnings of Full-Time Wage and Salary Workers Age 16 and Older, in 2014 Dollars, 1979-2014
Courtesy of the U. S. Bureau of Labor Statistics

Figure 2.2.4: Percent Change from 2004 to 2014 in the Number Of Men and Women 25 and Over Who Have Completed Selected Levels of Education Courtesy of the U. S. Census

The distribution of the increase in the median weekly wage has not only been unequal across gender, but also across race. Figure 2.2 .5 shows the greatest increase was in Asian males with White males slightly behind them in median weekly income. The least median weekly wage increase was in Hispanic females, slightly below that of Hispanic males. Asian females did better than the total of African Americans, both men and women, and African American women were slightly behind Hispanic males in an increase.

Figure 2.2.5: Selected Percentiles of Usual Weekly Earnings Of Men and Women 25 and Over
Who Have Completed Selected Levels of Education
Courtesy of the U. S. Bureau of Labor Statistics
Again, it shouldn't be a tremendous surprise that one of the major reasons for this great unequitable distribution of the income increase and its relationship to advanced education is the cost as a percentage of family income for advance education (Figure 2.2.6.). In her book, The Missing Middle: Working Families and the Future of American Social Policy (2000), Theda Skocpol examines the challenges of policy on supporting and enhancing the American Dream. That the improved social conditions for the children of low-income minorities can be improved through greater income, less job insecurity and wealth accumulation which is not the present
condition of the parents (Hauser et al, 1975; Grusky and Hauser, 1984; Slomczynski and Krauze, 1987). She examined the condition of the middle class workers that expect to arrive at retirement with a fixed benefit annuity and some accumulation of wealth, if not in the stock market but through savings and equity in homeownership. As she further explains, the majority of low-income workers cannot gain any advantage in wealth accumulation in the stock market because they don't have any income to invest, and the fixed annuities (pensions) have been eroded by the reorganization of companies, the demise of major manufacturing companies, and the new global economic conditions (Mandel and Gutner, 1999; Freeman, 1994). Figure 2.2.7

Figure 2.2.6: College Continuation Rate by Family Income Quartile For Dependent 18-24 years old: 1970 to 2012
Courtesy of the Pell Institute and PennAhead

Figure 2.2.7: Percentage of Private Industry Workers With Access to Retirement Benefits for Selected Wage Groups: 2014
Courtesy of the U. S. Bureau of Labor Statistics
This same challenge to improve the conditions of the less fortunate low-income working class as they strive to migrate from poverty level or just above poverty level income to middle class is not lost to some of the most prominent social voices such as Wilson, (2009,); Messner and Rosenfeld (1997); and Combes et al (2008).

2.3 Education and Employment

Wage determination and potential of employment are influenced by both spatial location and race concentration (Combes et al, 2008). Employment/Unemployment is also directly related to level of educational attainment. (Figure 2.2.1.) Although the research of Messner and Rosenfeld (1997) argued that even though the educational attainment nationally increased between 1960 and 1993, the additional long term research data from the U. S. Bureau of Labor supports additional body of research that attributes employment to education (Buder, 1990; Rothman, 1999; Marger, 2002).

William Julius Wilson (2009) argued that employment opportunities for African Americans were not the same as they are for White workers even with the same education or experience levels.

His argument is supported by other reseachers (Rothman, 1999; Beeghley, 2005; Marger, 2002). Beeghley states that the mean duration of unemployment is borne by the "blue collar" workforce, and the brunt of the unemployment was experienced by "handlers", "laborers", and "service" workers which are unporpotionately filled by low-income minoroties with minimum education (African Americans and Hispanics). (Pg. 221-223). He also translates the importance of one's occupation to self-esteem. Max Webber (1920) emphazied that in a modern indusrtialized society, that jobs are not only an economic driver and means of support, but also affects self-esteem and how the person is identified in society as a whole (ibid, Pg 224). Eric Wright (1997), supports the position that "material welfare" of one group affects another group through deprivation of another. Figure 2.3 .2 shows the change in education attainment since 1940 to 2014. Although the figure shows an ever increasing level of education attainment, it is not equally distributed to minorities. Wilson argues that African Americans have been overly represented in the lack of advance education, but many other minorities also have experienced this unequalled represenation. Included in this socially structured barrier is the element of cultural difference. Megan Rosenfeld (1998) argued the cultural and gender differences between male and female roles and expected education attainment and employment occupation (Figure 2.3.3.). This separation of roles by gender expectations, combined with the influence of spatial concentration of poverty, and opportunty to move from one social class to another, results in a multiplying effect on the individuals' opportunties. Niles Hansen (1970) argued the special challenges in the southern Unites States regarding gender expectations and minorities social barriers.

Figure 2.3.1: Population Age 25 and Over by Educational Attainment: 1940 to 2014 Courtesy of the U. S. Census

Figure 5: Percent of Population 25 Years and older, and 25 to 29 Years old, with High School Diploma or higher by Sex: 1947-2014

Figure 2.3.2: Percent of Population 25 Years Old and Older, and 25 to 29 Years Old, With High School Diploma or Higher by Sex: 1947 to 2014
Courtesy of the U. S. Census

Not surprising, but somewhat sobering is the level of educational attainment of a Bachelor's degree by level of social status. The wealthy or affluent, upper middle class occupy an unequal access to the advance degree following high school in the publc school system. As represented in Figure 2.3.4, minority poulations constituting the lower percentile have far less opportunity and attainment levels.

Figure 2.3.3: Bachelor's Degree Population Age 25 and Over by Educational Attainment: 1940 to 2014 Courtesy of the U. S. Census

The wage difference between the highest income level of industry (Information) as compared to the lowest income level (Accommodations and Food Service) is a ratio over three. (Figure 2.3.4). In the U. S. Department of Housing and Urban Development, Office of Policy Development and Research, Saving and Creating Good Jobs: A Study of Industrial Retention and Expansion Programs (1999), the loss of manufacturing employment has been increasing as a outgrowth of global economics as manufacturing is being outsourced to foreign countries with lower wages.

Figure 2.3.4: Wage Ratio Between the $90^{\text {th }}$ and $10^{\text {th }}$ Wage Percentiles By Industry Sector: 2014 Courtesy of the U. S. Bureaus of Labor Statistics

According to the report, manufacturing employment nationally peaked in 1979 at 21,040,000. By 1995, the manufacturing employment nationally had dropped to $18,400,000$. The report further stated that people of color were more closely associated with the manufacturing employment and lower education and skill levels were required for most entry-level manufacturing positions. The result is that as the manufacturing employment declines, lower educated and skilled potential employees must take positions in less economically beneficial employment which means, low paying jobs. If the level of low paying employment is unequally populated by minorities, it is a result of their lack of education and skill sets applicable for the new information economy.

2.4 Income and Homeownership

In a U. S. Department of Housing and Urban Development (HUD) report (2005), the gap between white homeownership in 2004 at 76 percent while African American and Hispanic
homeownership has remained below 50 percent and Asian homeownership rate was just above 60 percent. In a Congressional; Budget Office (CBO) report (2009) even though the homeownership rates had shown a steady increase to just under 68 percent total for all households, the report further stated that the majority of homeowners were paying more than 30 percent of their income for housing. According to the CBO report, in spite of the historically high homeownership rates, there remained a large gap between races. In 2008, the homeownership rate for whites was 72 percent while the homeownership for Hispanics was 49 percent and for African Americans, 47 percent. Figure 2.4.1 gives an overview of first time home buyers from 1991 to 2003.

Characteristic	First Time Homebuyers			
	White	Black	Hispanic	Other
Age of Head				
25 or younger	13%	6%	11%	9%
25 to 34	56%	42%	44%	44%
35 to 44	20%	34%	30%	33%
45 or older	10%	18%	15%	15%
Household Type				
Married, No Children	27%	14%	18%	23%
Married with Children	31%	31%	52%	46%
Single Parent with Children	8%	23%	11%	8%
Single Person	21%	18%	9%	10%
Other	13%	14%	9%	14%
Income Category				
Low	37%	50%	52%	37%
Moderate	28%	25%	23%	27%
High	35%	25%	25%	36%

Note: Low-, moderate-, and high-income defined as income less than 80 percent of the area median income (AMI), 80 to 119.9 percent of AMI , and 120 percent of AMI or higher, respectively.

Source: Tabulations of 1991-2003 American Housing Survey.

[^0]As President Bush stated in his 2002 address (White House Archives, Dec 21, 2008), homeownership was a key to upward mobility for low-and middle-income Americans, so did President Clinton in 1995 (White House Archives, May 1995). The desire for homeownership is deeply rooted in the American Dream. President Herbert Hoover called the owner-occupied home "a more wholesome, healthful, and happy atmosphere in which to raise children" (White House, Nov 23, 1931). President Lyndon B. Johnson declared at his 1964 State of the Union Address that "owning a home can increase responsibility and stake out a person's place in his community..." (LBJ Presidential Library, 1964).

Figure 2.4.1: Percentage of First Time Homebuyers:1950 to 2009
Courtesy of the U. S. Census and HUD Office of Policy Development and Research

The U. S Census in its 2011 release of the 2010 Census brief, Housing Characteristics: 2010, homeownership was at its second highest record, behind only 2000. The brief goes further to state that the housing inventory was greatest in the South and West, which is supported by the population growth rates also recorded by the Census in both those geographic areas.

According to the same report, the inventory of housing for the State of Texas increased 22.3 percent from 2000 to 2010. Not all races were equally afforded the opportunity to benefit from the increase in the increase in housing inventory. In the U. S Census report (2005), Homeownership Gaps Among Low-Income and Minority Borrowers and Neighborhoods, "...Key demographic characteristics are age, household type, and educational level. There is relatively low homeownership rates among blacks and Hispanics have more single-parent families than whites which also contribute to the observed homeownership gaps" (Pg vii). The report also identifies "....Asians, on the other hand, have household characteristics that are associated with higher homeownership rates" (Pg. vii). This research did support this trend, but the focus on concentrated areas of low-income minority population excluded the further research into this demographic condition. The census report goes further to identify that income for Asians is equal to or higher than whites which also relates to the greater tendency of Asians to be a married couple household and have equal education or higher educational attainment levels. The language challenges or barriers to both Hispanics and Asians could be attributed to the relatively higher rates of immigration status and strong cultural identity to those specific races. Figure 2.4 .3 shows the breakout by year, race and ethnicity nationally. Figure 2.4 .4 shows the information for the United States and Texas specifically.

Homeownership Rates by Race and Ethnicity of Householder															
	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
U.S. total	$\begin{aligned} & 65.4 \\ & \% \end{aligned}$	$\begin{aligned} & 65.7 \\ & \% \end{aligned}$	$\begin{aligned} & 66.3 \\ & \% \end{aligned}$	$\begin{aligned} & 66.8 \\ & \% \end{aligned}$	$\begin{aligned} & 67.4 \\ & \% \end{aligned}$	$\begin{aligned} & 67.8 \\ & \% \end{aligned}$	$\begin{aligned} & 67.9 \\ & \% \end{aligned}$	$\begin{aligned} & 68.3 \\ & \% \end{aligned}$	$\begin{aligned} & 69.0 \\ & \% \end{aligned}$	$\begin{aligned} & 68.9 \\ & \% \end{aligned}$	$\begin{aligned} & 68.8 \\ & \% \end{aligned}$	$\begin{aligned} & 68.1 \\ & \% \end{aligned}$	$\begin{aligned} & 67.8 \\ & \% \end{aligned}$	$\begin{aligned} & 67.4 \\ & \% \end{aligned}$	$\begin{aligned} & 66.9 \\ & \% \end{aligned}$
White, total	69.1	69.3	70.0	70.5	71.1	71.6	71.8	72.1	72.8	72.7	72.6	72.0	71.7	71.4	71
White, nonHispanic	71.7	72.0	72.6	73.2	73.8	74.3	74.5	75.4	76.0	75.8	75.8	75.2	75	74.8	74.4
Black, total	44.1	44.8	45.6	46.3	47.2	47.4	47.3	48.1	49.1	48.2	47.9	47.2	47.4	46.2	45.4
Other race	51.0	52.5	53.0	53.7	53.5	54.2	54.7	56.0	58.6	59.2	59.9	59.2	58.5	57.8	57
America n Indian.	51.6	51.7	54.3	56.1	56.2	55.4	54.6	54.3	55.6	58.2	58.2	56.9	56.5	56.2	52.3

Table 2.4.2: Homeownership by Race and Ethnicity of Homeowner: 1996 to 2010
Courtesy of the U. S. Census and HUD Office of Policy Development and Research

	Homeownership rate (\%)		
State	2000	2007	2010
U.S. total	67.4%	68.1%	66.9%

Texas	63.8	66.0	65.3

Table 2.4.3: Homeownership Rate for the United States And Texas: 2000, 2007 and 2010
Courtesy of the U. S. Census and HUD Office of Policy
Development and Research

The literature reviewed identities that the homeownership gap between the white population and minorities (African American, Hispanic, and Asians) is primarily due to the differences in income, wealth, marital status, and age of the household. The demographics of age, family characteristics, income, and wealth accumulation for low-income minorities and their ability to be homeowners is well documented in empirical studies. (Beeghley, 2005; Luker, 1996; Dash, 1989; Marsiglio, 1993; Rubin, 1994). Most recent reports from the U. S. Census support that
the total racial gap of homeownership between whites and minorities is 25 percentage points, mainly caused by the above demographic characteristics and the ability of minorities to accumulate wealth to fund down payments, cover closing costs, and pay down other outstanding debt.

2.5 Homeownership and Employment

There is considerable empirical research relating to homeownership employment (Mandara and Murray, 2000; Alston and Williams, 1982; Amato, 1986; Amato and Kieth, 1991). As addressed by Daniel Monynihan (1970) in his pivotal work on the conditions affecting the African American family, the family ties of the African American with low-income, high unemployment rates, high divorce rates and Merton's (1938) concept of "strain" and "anomie", the African America families would endure constant poverty. According to Merton, when the culture for success and social mobility opportunities are impeded by legal means, the result is erosion or complete degradation of social institutions and their stabilizing effects. The advantages for income and wealth accumulation of a two income family are well documented.

The level of African American divorce rates have increased from a 1960 rate of only 78 per 1,000 (.078\%) for African American families, to 358 per 1,000 (. 358%) in 1990. It was 12.5 percent for African American males and 13.1 percent for African American females for 2009. For Hispanics it was 12.7 percent for males and 12.8 percent for females. For Asians, the rate was 2.6 percent for males and 3.8 percent for females. Although the rate for divorce for whites is higher than all minorities, the level of education and income were other important factors and reflect the significance of those characteristics to family stability.

As documented, the family stability and importance of the married family unit supports the adjustment and self-esteem of young people (Mandara and Murray, 2000). Much research has focused on the economic deprivation of the single-parent home (McLeod et al., 1994; A.N Wilson, 1979; Long 1986; Partridge and Kotler, 1987). Over fifty percent of African American female-headed families live below the poverty line. In the Mandara and Murray study, the effects on income on the self-esteem of African American children were evaluated and that income did relate to self-esteem and social status. The impact that social and cultural assimilation occurs for those minorities which have a stable core family unit, that has a regular income, and has parents that have achieved a level of educational attainment, all the conditions that lead to greater social mobility.

2.6 Acculturation and Assimilation

The natural process of acculturation and assimilation for immigrants is well documented (Portes and Rumbaut,1996, 2001; Xie and Greenman, 2005). Acculturation impact ranges from family stability, academic performance, and the advancement of social capital. It can mean the complete adoption of the current social constructs and institutions of the new community of which one has just immigrated into. On the other hand, non-assimilation can also be the rigid dogmatic adherence to the old culture and social constructs, resisting the assimilation into the new environment and community. Much has been studied regarding the generational tensions that result from the adoption of the new social norms of the younger segment of an immigrant family, and the strong resistance of adoption by the older parents, grand-parents or other extended family. As identified by Messner and Rosenfeld (1997), Crime and deviant behavior is not simply a function of alienation, "..it is a consequence of the assimilation of black Americans to mainstream cultural patterns..." (Pg. 81). The young unemployed blacks although they view the materialistic desire to acquire material possessions to demonstrate their achieving wealth, social norms, social institutions and peer pressure without the positive influence from other blacks that have achieved professional and educational success as role models deem that their plight is hopeless in a legal pursuit, so they turn to illegal or deviant behavior to achieve visible economic success. Assimilation is adopting the social constructs which would be marriage, a stable family, strong work ethic, and strong conformance with the social norms and institutions.

Acculturalization is a long-term process. As argued by empirical research, "cultural assimilation" and "cultural integration" are not the entire complex issue. Milton Gordon (1964) argued that is more than the influence of social science literature, but consists of adopted cultural norms and behavior patterns of the new community. Gordon made a point to separate the outward adoption of social adaptation (clothing, language, outward expressions) from the more important and basic beliefs and ideals. Herbert Gans (1999) defined the process as "...the newcomers adoption of the culture, that is the behavior patterns..." (Pg. 162). Much has been researched and the mounting empirical evidence supports that there may be "segmented assimilation" where only part of the new culture is adopted and the old original cultural remains intact with its social capital networks. This argument is plausible to explain the concentration of housing and businesses around a particular geographic area that supports solidarity. This supports the concentration of poverty based on race and ethnicity. This is the foundation of social
stratification through the social intuitions such as schools, churches and social organizations that either reinforces the status quo of separate but equal or separate and not equal.

2.7 Social Stratification

Samuel Bowles and Herbert Gintis (2002) counter the argument that success is achieved through the American ethos of "hard work", or "willingness to take risks", but explore the concept of inheritance, connections knowing the right people or being "white". As presented in the previous parts of the literature review, the playing field for success is not equal. The distribution of income is not qual. It is primarily distributed in the favor of the white majority. The income distribution is predominately weighted for the white population, and the challenges and barriers for minorities to achieve social mobility is difficult or impossible. Research by Blau and Duncan (1967) found a weak connection between the relationship between the professional and related income of parents and their children. Beker and Tomes (1986) research supported the original relationship as determined by Blau and Duncan. The majority of research does support that education and employment opportunities are the compass of more success in an individual's trajectory for a higher income, less fear of unemployment, and the acquisition and accumulation of wealth. The importance as previously addressed in this research is the opportunity for higher educational achievement and the wealth accumulation it provides. See Appendix G.

Based on the distribution of percentile it is obvious that the highest income in the fourth percentile is Asian alone with $\$ 143,000$ in 2010. Next highest is white alone at $\$ 117,151$. The lowest is Hispanic at $\$ 78,157$ in 2010 and Black at $\$ 78,740$. When compared to the education completion rates below in Figures 2.7.1 thorough 2.7.4, educational attainment at the bottom levels of income create a major obstacle in overcoming barriers of income and wealth accumulation to have social mobility to move from the lower class to middle class.

Figure 2.7.1: High School Graduates College Continuation Rate by Family
Income Quartile for 18 to 24 years olds: 1970 to 2012
Courtesy of the Pell Institute and PennAhead

Figure 2.7.2: Bachelor's Degree Attainment by Age 24 for Dependent Family
Members by Family Income Quartile: 1970 to 2013
Courtesy of the Pell Institute and PennAhead

Figure 2.7.3: Average Net Price of Attendance by Family Income Quartile
For Dependent Full-Time Students: 1990 to 2012
Courtesy of the Pell Institute and PennAhead

Figure 2.7.4: Average Net Price as a Percent of Average Family Income
By Income Quartile: 1990 to 2012
Courtesy of the Pell Institute and PennAhead

CHAPTER 3

Methods and Techniques

3.1 Data Sources and Analysis

Data for the research was collected from many sources within the United States Census Bureau. Primarily the data was collected from the Census 2000 Summary File One, Census 2010 Summary File 1, and the American Community Survey for the years covering 2000 and 2010. A brief summary of the files from the U.S. Census Technical Documentation is as follows:

Summary File 1; 2000 Census of Population and Housing: Summary File 1 (SF1) contains the 100-percent data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino, household relationship, and group quarters. Housing items include occupancy status, vacancy status, and tenure (owner occupied or renter occupied). (U.S. Census Bureau, Census 2007)

Summary File 1; 2010 Census of Population and Housing: Summary File 1 (SF1) contains the 100-percent data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino, household relationship, and group quarters. Housing items include occupancy status, vacancy status, and tenure (owner occupied or renter occupied). (U.S. Census Bureau, Census 2012)

The American Community Survey (ACS), Information Guide is less than 100-percent data. The ACS is a nationwide survey that collects and produces information on demographic, social, economic, and housing characteristics about our nation's population every year. Every year, the U. S. Census Bureau contacts over 3.5 million households across the country to participate in the ACS. (U.S. Census Bureau)

Since the U. S. Census also includes various other racial groups such as American Indians, Alaska Native tribes, Asian, Native Hawaiians, and other Pacific Islanders, the scope of this research will be limited. In their original study, The State of the American Dream: Race and Ethic Socioeconomic Inequality in the United States, 1970-90 by Charles Hirschman and C. Matthew Snipp (1999), they concentrated on a narrow segment of the Black or African American population, males in age group from 24 to 64, and their study was on a national level. The focus of this study is to examine the same age group of 24 to 64 , but also include the population segment consisting of 16 years old to 64 since many of the population begin their employment
at 16 years old. This research will also include the separate collection and analysis of data for males and females, since also as an evolving environmental condition, males and females are entering the employment environment equally to strive to achieve the American Dream of social mobility and economic success. The HUD report titled "The Impact of CDBG Spending on Urban Neighborhoods" (2002), prepared for the U.S. Department of Housing and Urban Development, Office of Development and Research includes the research of a wide swath of the population on a nationwide scale, but does not focus on racial or geographic specifics.

Some racial population segments have been excluded from this research. Based on the information previously provided in this document, the emphasis will be on the largest racial populations of White alone, Black or African American, Hispanic or Latino, and Asian since they constitute the majority of the change in population in the Dallas-Fort Worth area as represented in Chapter 1, Figures 1.2 through 1.17. As a result of the research gathering process, the discovery that the Asian population although is growing, does not currently have a majority population in any of the Dallas-Fort Worth targeted areas.

The computer software used in the data collection and statistical analysis will be the Demographic Economic Data Extraction (DEDE) by ProximityOne and Statistical Package for the Social Sciences (SPSS) 23 by the International Business Machine (IBM). The DEDE software extracts demographic and economic data from various datasets embedded in the U. S. Census databases to include SF1 files, SF3 files and the ACS files. The DEDE software can extract data down to the block group level. The advantage to using the DEDE program over the census TIGER program is the ability of the user to be able to setup custom data extraction that can be re-used and modified by the user. The DEDE also makes use of Application Programming Interface (API) operations that enable downloading data directly from the U.S. Census servers. The SPSS program will be used to perform the statistical analysis for mean and regression analysis.

Since the available research data to be used in this research will be the data collected over multiple decennial census reporting in terms of spatial unit collection and evaluation, limited to the census Block Group level as the smallest size, the research contain some inherent reliability challenges dependent on the accuracy of the individual reporting in the census data, the fluctuation of the concentration of a particular ethnicity over time within the target area, and will disregard the actual level of CDBG funding by calendar or fiscal year, but analyze the changes
based on the total aggregate CDBG funding over the census reporting and collection period of 2000, 2010. This research effort is specifically intended to examine whether;

Block Groups receiving CDBG funding:
Experience positive change (increase) in the median employment levels of the male/female population (age group 16-64) than the immediate neighboring Block Groups within the Zip Code Tabulation Area (ZCTA).

Experience positive change (increase) in the level of homeownership for the male/female population (age group 24-64) than the immediate neighboring Block Groups within the Zip Code Tabulation Area (ZCTA).

Experience positive change (higher level) in educational attainment of the male/female population (age group 24-64) than the immediate neighboring Block Groups within the Zip code Tabulation Area (ZCTA).

Experience change (lower) concentration of poverty by income level of the male/female population (age group 24-64) than the immediate neighboring Block Groups within the Zip code Tabulation Area (ZCTA).

Effectiveness of the socio-economic changes in the Block Group in the targeted area receiving CDBG funding may be a factor in the elimination of the three (3) social mobility barriers.

Using the most recent decennial census reporting periods for 2000 and 2010 which will cover the period through the great recession beginning in 2007 and analyze the significant influence that the level of CDBG funding has had on the target areas to improve social mobility for the low-income minorities by majority ethnicity as compared to other surrounding areas not receiving CDBG assistance, the successfulness and effectiveness of the CDBG program as a policy to eliminate social mobility barriers and eliminate social inequality will be determined. If there are variations between socioeconomic changes among the congruent target areas by ethnicity, then an argument can be poised for the level of integration or assimilation as the reason for the differences. The targeted areas are similar in the labor market demands and wages as a result of cost-of-living indexes and should better reflect the significance that CDBG funding has on social mobility barriers.

Although the previous research identified above was instrumental in developing the scope and strategy for this research effort, it included differing data groups from a wide-statistical area of the country and focused on immigration, normally from individuals that were not originally from the United States and had other contributing factors such as language barriers and the lack of family support and other social capital issues that could contribute to the social mobility barriers. The specific study areas of this proposal are established areas of the city and although they include a large percentage of low-income minorities, they have also been targeted by the city to receive special financial incentives such as Community Development Block Grant funding, Enterprise Zoning and other similar instruments of public policy to improve the conditions and opportunities for the residence. In order to appropriately measure the effectiveness of the CDBG funding benefits as described in the above HUD report, it is essential to examine similar geographically and socio-economic areas to their surrounding areas in order to potentially reduce the influence of outside variables such as the economic conditions of the area. As an example, if a new manufacturing or assembly plant is moved into the MSA and the labor pool allows low-income minority population to obtain employment that pays higher wages due to labor demand conditions, then the higher annual income reported would be a contributing factor. The above cited HUD report spans multiple locations nationally which may not account for other socio-economic conditions that would affect the outcome of the study on the effectiveness of grant funding. The research specific areas are more congruent with local economic conditions, level of occupation and employment availability, cost-of-living levels and other similar conditions, so should a major factor such as a manufacturing or assembly plant move into or out of the area, the potential is to affect all areas within the community equally.

The CDBG program and the designation of the selected targeted community neighborhoods receiving the special financial and other incentives should then realize an improvement in social and economic conditions, whether higher levels of homeownership, improving annual income and/or the higher educational attainment from the areas immediately surrounding them. Unlike the previous research, this research will focus on areas within a similar metropolitan area which should demonstrate the impact of the CDBG funding and other incentives in improving the conditions to low-income minority concentrated areas of poverty. The economic conditions within the metropolitan area will be similar. The opportunities for homeownership through housing market availability of both supply and demand of adequate housing should be similar across the study areas and the adjacent areas. This will also be the fact for income and educational attainment opportunities when narrowing the research areas to conditions within the

Census Tract, and Block Group level of a ZIP Code Tabulation Areas (ZCTAs), which should account for the larger area of home supply and demand; industrial, retail and service employment; and educational attainment due to the public and private schooling and higher education availability.

3.2 Zip Code Tabulation Areas (ZCTA)

ZCTAs are generalized area representations of the United States Postal Zip Codes developed by the U. S. Census Bureau for tabulating statistical data. According to the U. S. Census Bureau, these areas are distinct from statistical areas and as such they are not as stable over time and are computer generated and delineated using addresses rather than formally delineated census criteria and generation. Figure 3.2.1 demonstrates the relationship of a zip code to a ZCTA for an area and Figure 3.2.2 demonstrates the relationship of the zip code and the ZCTA for a neighborhood. The ZCTA can cross counties and the boundaries can change over time. This is essential to evaluate the changes to the residents within the ZCTA.

Figure 3.2.1: Comparison of Zip Codes and ZCTA for an Area
Courtesy of U. S. Census Bureau

Figure 3.2.2: Differences between Zip Codes and ZCTA for a Neighborhood
Courtesy of U. S. Census Bureau
ZCTA will follow census block boundaries and one single ZCTA code will be assigned to each block if possible, but since the ZCTA can change with time, it better reflects the dynamic nature of a community or neighborhood. Research by Berry (1976) and Smith (1981) argued the cost of housing for Blacks and Hispanics, proposing that the housing in those areas of minority concentration resulted in lower housing costs. Lower housing costs could be the result of the degradation of adequate or good housing, or the result of low-income minority segregation and concentration driving housing values down. By using the ZCTA as a determinant of this research framing and area of concentration, a more homogeneous grouping based on race, income and educational differences can be realized.

3.3. Block Group

Block groups, a subdivision of the census tract, are the smallest geographic area (unit) for which the U. S. Census can provide a rich repository of demographic-economic information. As stated by the U. S. Census; "...Block Groups (BGs) are statistical divisions of census tracts, are generally defined to contain between 600 and 3,000 people, and are used to present data and
control block numbering". A BG usually covers a contiguous area, which can account for a grouping of a neighborhood population of similar demographics and economic conditions. The presence of economic and environmental conditions around a Block group or series of Block Groups within a census tract can render a wealth of data that is specific and isolated to that geographic area. The basis of previous research in socioeconomic challenges to social mobility referred to the work of Pierre Bourdieu (1986) on class reproduction and access to social capital. Previous research of $\operatorname{Kohn}(1969,1976$, and 1977) emphasized class differences and the influence of parental and peer influence on social mobility. Figures 3.3.1 and 3.3.2 demonstrate the relationship of Block Groups to Census Tracts and zip codes.

Figure 3.3.1. Example of the Relationship of Block Groups to Zip Codes Courtesy of ProximityOne

Figure 3.3.2. Relationship of Block Groups to Zip Code Courtesy of ProximityOne

3.4. Selected Targeted Areas and Block Groups

The areas to be included in this research study were evaluated and selected based on the designation by the respective cities on areas that were targeted areas for economic and social improvements to include Community Development Block Grant (CDBG) funding and other incentive programs. Data collected from the U. S. Census and prepared by the Council of Government (Figures 3.4.1 and 3.4.2) show the changes in the Dallas-Fort Worth area related to poverty rates. The analysis will overlay the ZCTAs for the above targeted areas for Fort Worth and Dallas to isolate the smaller targeted area boundaries within the larger ZCTAs. This will aggregate and identify the actual number of Block Groups allowing the analysis of the differences of selected socio-economic and demographic data for each Block group: those in the targeted improvement zones and those adjacent to but outside the targeted areas. Based on an examination, there ranges from six to fifteen (15) Block Group Levels within a ZCTA. Assuming an average of 10.5 rounded down to 10 , then roughly 24 targeted areas should equate to approximately 240 Block Groups for statistical analysis. This should provide enough statically significant sample mean for an unbiased estimate of the population of targeted areas
receiving CDBG funding and evaluating the influence the program and the associated funding has on the targeted areas, ensuring an acceptable confidence interval. The Block Groups in the ZCTA not receiving CDBG funds should show less growth in homeownership, annual income, and educational attainment than the Block Groups receiving the CDBG funds. Where the targeted areas span over more than one ZCTA then both ZCTA's and the Block Groups will be statically recorded and analyzed as two separate ZCTA's and the data will be used in the single targeted area as one. As explained previously, the ZCTA creates a harmonious area with similar opportunities and challenges within a metropolitan area which should negate the differences in homeownership, annual income and educational attainment that may be influenced by different geographic conditions as pointed out in the Charles Hirschman and C. Matthew Snipp (1999) research.

Figure 3.4.1: Poverty Rates for Dallas-Fort Worth: 1990
Courtesy of the North Central Texas Council of Governments

Figure 3.4.2: Poverty Rates for Dallas-Fort Worth: 2005-2009 Courtesy of the North Central Texas Council of Governments

The City of Fort Worth identified specific areas within the city to be targeted for CDBG funding.
(Figure 3.4.3). The City of Fort Worth expanded its targeting to also designate areas for CDBG assistance by race. (Figures 3.4.4, 3.4.5, and 3.4.6).

Figure 3.4.3: City of Fort Worth CDBG Eligible Areas Courtesy of the City of Fort Worth

Figure 3.4.4: City of Fort Worth CDBG Eligible Areas by Race: White Alone Courtesy of the City of Fort Worth

Figure 3.4.5: City of Fort Worth CDBG Eligible Areas by Race: Black or African American Courtesy of the City of Fort Worth

Figure 3.4.6: City of Fort Worth CDBG Eligible Areas by Race: Hispanic Courtesy of the City of Fort Worth

Figure 3.4.7: City of Fort Worth Block Groups With More than 50 \% Low Income Concentration Courtesy of the City of Fort Worth

The results of this analysis and targeting of low-income areas resulted in the following targeted areas by the City of Fort Worth leadership (Mayor and Council) in cooperation with the City Planning staff identified the following areas for special consideration and funding incentives to improve the living and working conditions of the specific residents. Methodology for this research will be by simple mean and a regression analysis of data collected from various sources primarily from the United States Census Bureau and related demographic data obtained through the decennial census data from 2000 and 2010 census for the nineteen (19) specific targeted "empowerment areas" in Fort Worth, Texas. Respectively the targeted areas are as follows:

Fort Worth:

Ridglea/Como	Wedgwood Square	Berry/University	Trinity Park
Northside	$28^{\text {th }}$ Street/Meacham	Magnolia	Hemphill/Berry
Rolling Hills	Evans \& Rosedale	Riverside	Six Points
Woodhaven	Oakland Corners	Polytechnic/Wesleyan	
Berryhill/Mason Heights \quad Stop Six	Lake Arlington	Handley	

Figure 3.4.8: City of Fort Worth Neighborhood Empowerment Zones
Courtesy of the City of Fort Worth
Similarly, the City of Dallas also identified specific areas within the city to be targeted for CDBG funding. (Figure 3.4.14). The City of Fort Worth expanded its targeting to also designate areas
for CDBG assistance by poverty income level and race. (Figures 3.4.9, 3.4.10, 3.4.11 and 3.4.12).

Figure 3.4.9: City of Dallas CDBG Eligible Areas by Census Tract and Block Group Courtesy of the City of Dallas

Figure 3.4.10: City of Dallas Percentage of Black
Population: 2000
Courtesy of the City of Dallas

Figure 3.4.11: City of Dallas Percentage of Hispanic Population 2000
Courtesy of the City of Dallas

Figure 3.4.12: City of Dallas Minority Population Greater Than 51 Percent by Census Tract 2000
Courtesy of the City of Dallas

Figure 3.4.13: City of Dallas Areas of Concentrated Poverty 2009 to 2013 Courtesy of the City of Dallas

The results of this analysis and targeting of low-income areas resulted in the following targeted areas by the City of Dallas leadership (Mayor and Council) in cooperation with the City Planning staff identified the following areas for special consideration and funding incentives to improve the living and working conditions of the specific residents. Methodology for this research will be by simple mean and a regression analysis of data collected from various sources primarily from the United States Census Bureau and related demographic data obtained through the decennial census data from 2000 and 2010 census for the five (5) specific targeted "neighborhood investment program targeted areas" in Dallas, Texas. Respectively the targeted areas are as follows:

Dallas:

West Dallas Area: East of Hampton Road, North of Singleton Boulevard and South of Canada drive

South Dallas: Ideal and Rochester Park Neighborhoods
South Dallas: Jubilee, Owenwood, Dolphin Heights, and Frazier Courts Neighborhoods
Lancaster/Kiest Corridor: Lancaster Road generally between Illinois Avenue and Simpson Stuart Road

North Oak Cliff-Marsalis: East of Marsalis Parkway, south of Colorado Boulevard, and west/north of Interstate 35E

Figure 3.4.14: City of Dallas Areas of Neighborhood Investment Program Targeted Areas Courtesy of the City of Dallas

As previously stated, the various levels of data collection will be from ZIP Code Tabulation Areas (ZCTAs), Census Tract, and Block Group level data. The research will use the U. S.

Census (2000 and 2010) Summary files identified and the ACS for collecting the census data on the target areas.

The analysis will overlay the ZCTAs for the above targeted areas for Fort Worth and Dallas to isolate the smaller targeted area boundaries within the larger ZCTAs. This will aggregate and identify the actual number of Block Groups allowing the analysis of the differences of selected socio-economic and demographic data for each Block group: those in the targeted improvement zones and those adjacent to but outside the targeted areas. Since some of the Block Groups in 2010 were added to the Block Groups in 2000, Block groups found in both SF1s will be used to compare the changes experienced by Block Groups within the ZCTA. The Block Groups in the ZCTA not receiving CDBG funds should show less growth in homeownership, annual income, and educational attainment than the Block Groups receiving the CDBG funds, so only by comparing similar Block groups can this be evaluated.

Where the targeted areas span over more than one ZCTA then both ZCTA's and the Block Groups will be statically recorded and analyzed as two separate ZCTA's and the data will be used in the single targeted area as one. As explained previously, the ZCTA creates a harmonious area with similar opportunities and challenges within a metropolitan area which should negate the differences in homeownership, annual income and educational attainment that may be influenced by different geographic conditions as pointed out in the Charles Hirschman and C. Matthew Snipp (1999) research.

It is acknowledged that this research is based on a specific targeted area in North Texas (Dallas/Fort Worth) and excludes the surrounding communities that may also provide significant influence such as housing supply and demand; economic employment opportunities in areas known for higher salaries for low-skilled labor; and a preponderance of reasonably affordable educational opportunities either through the public education system; private education; and community college or university level education with specific outreach programs for low-income minority population.

Housing supply and demand of the area his adequate and has ranked above the national average after the national economic downturn. Although some specific areas within the surrounding communities have smaller housing stock, the overall Dallas/Fort Worth area is sufficient for social mobility and possesses many of the housing barriers in other locations. The predominance of large manufacturing corporations such as Lockeed -Martin, General Motors;

Bell Helicopter, Texas Instruments, and others, employment with higher salaries is possible. Taking this into account, equal opportunity for high-wage manufacturing and assembly is present. Both Dallas and Fort Worth encompass large independent school districts, community colleges and institutions of higher education both private and public with numerous outreach programs to assist and encourage education for low-income minority families and their children.

All derived values will be computed using unrounded data. For readability, whole numbers will be expressed in the nearest hundred or thousand, and percentages are to be rounded to tenths. All tables of the selected data and comparisons will be using whole numbers and data will be rounded up.

Through a standard regression analysis process similarly used in the research of Hirschman and Snipp, this research effort will differ from their national analysis to a more socioeconomic homogenous area of the metropolitan statistical area of Dallas and Fort Worth. The use of basic regression analysis, simple linear regression to establish the relationship between the level of CDBG funding spent at the particular targeted study areas and the change to social mobility and socio-economic inequality focusing on annual income, homeownership, and educational attainment by ethnicity of the Block Group level and the change of the poverty level concentration of the Block Groups within the targeted improvement areas and the other Block Groups within the ZCTA. The reason for using the ZCTA as the larger aggregate is that CDBG as a policy is to remove inequality and social barriers by encouraging employment opportunities, improving homeownership and therefore related home property values, and encouraging ethnic diversity to encourage higher educational attainment through substantial peer influence to improve employment opportunities and income.

The Statistical Package for the Social Sciences (SPSS) version 23 will be used to analyze data for this study. Descriptive statistics will be employed for the demographics of the low-income minority population in the targeted areas and the surrounding Block Groups within the associated ZCTA. To test the hypothesis of employment and homeownership and income and homeownership, a direct logistic regression will be used. The mean of the change within the nineteen targeted areas for Fort Worth and five targeted areas for Dallas will be used to identify the differences within the twenty-four (24) targeted areas to account for the geographic location differences that reflect economic changes within the cities. The mean will be the control variable and the analysis of the delta of change from each target area will be analyzed to
determine the strength of the argument on the barriers to integration and assimilation due to language challenges.

The majority of African-American targeted areas should perform better in increased income, home ownership and education attainment in the targeted areas and the Hispanic and Asians should exhibit less increase in the same variable. Since there are no Block Groups that have a majority of Asians, this racial segment will be excluded from the data analysis. Also, since some areas within a city area or MSA has surges of economic and demographic changes, the change as a constant will evaluate the change within individual target area from the mean of all targeted areas. Each Block Group within the corresponding ZCTA will be analyzed based on change of the three (3) variables of income (per capita income), homeownership and education attainment. This should remove the influence of the changes in areas based on natural ebb and growth tendencies within a city or MSA based on new businesses, housing starts, new transportation and circulation corridors construction impacts, etc. A significance level of $\alpha=0.05$ will be chosen as the criterion for decision on rejecting the null hypotheses. The data analysis should account for the proposed integration and assimilation argument based on native language basis and each targeted area will be categorized based on population majority of minority representation.

From the U. S. Census Bureau, the following is provided regarding the level of information available for this research within the targeted areas.

The Census Bureau reports data for a wide variety of geographic types. Counties are divided into census tracts. A census tract is a small, relatively permanent statistical subdivision of a county delineated by a local committee of census data users for the purpose of presenting data. Census tract boundaries normally follow visible features, but may follow governmental unit boundaries and other non-visible features in some instances. Designed to be relatively homogeneous units with respect to population characteristics, economic status, and living conditions at the time of establishment, census tracts average about 4,000 inhabitants and are much too broad for the comparison. Census tracts are divided into block groups. A block group is the smallest geographic unit for which the Census Bureau tabulates sample data. A block group is identified by its state, county, census tract and block group number. Block groups are made up of blocks, which are the smallest geographic units for which the Census Bureau tabulates 100-percent data.

All of the census maps and charts in the research will be based on either Summary File 1 (SF1) or Summary File 3 (SF3) census data. Summary File 1 present 100-percent population and housing figures for the total surveyed population, supplemented by the ACS. These files contain information from the short form census questionnaire, including age, sex, households, household relationship, housing units, and tenure. Summary File 3 presents in-depth population and housing data, collected on a sample basis from the Census long form questionnaire, including social, economic, and housing characteristic information, as well as the topics from the short form 100-percent data. SF 1 gives exact numbers even for very small groups and areas, whereas SF 3 gives estimates for small groups and areas, such as block groups, that are less exact than SF1 figures. The SF1 census data will be used in this research for all of the categories for which it is available. For more detailed population and housing categories, SF3 data will be used. For more information on the U. S. Census, please see the Census Bureau website, www.census.gov. For a description of many of the terms used on the census maps in the atlas, please refer to the Census Terminology section.

Following the lines of research of Hirschman and Snipp, this research effort will employ the decennial census of the target areas for 2000, and 2010, and examine the benefit of the impact of CDBG funding based by ethnicity. This data should enable the examination of the trends in socioeconomic improvements of the three (3) minorities (African-American, Hispanic/Latinos, and Asians) primarily located in the segregated target areas, and compare the influence of CDBG funding against the improvement of Caucasian (White) population within the same target areas and the surrounding communities. By examining this variable, the results should support the theory regarding the influence of assimilation and social mobility. The variable changes in the minority population (annual income, homeownership, education attainment) should be more aligned with the changes within the Caucasian (White) surrounding communities in the targeted areas than would be realized in the surrounding areas.

The sampling used in this research effort will be restricted to men and women between the ages of sixteen to sixty-four working at the time of the appropriate census. This reflects the major age segment that has been demonstrated to be the concentration and disproportionate segment of African Americans and Hispanics that have the propensity to commit crimes or engage in illegal activities during social development which would negatively affect social mobility through legitimate means (Gottfredson and Hirschi, 1990; Cloward and Ohlin, 1960; Bartol and Bartol,1986; Bursik and Grasmick, 1993; Currie, 1985; Sampson and Laub, 1993).

The research of Hirschman and Snipp also studied men only, but their range was twenty-five to sixty-four working at the time of the census. The rationale for starting with age twenty-five by Hirschman and Snipp was that based on that age, most would be completed with basic education and beginning their working careers. I expanded the age to sixteen to take into account basic education attainment of high school, but also included the potential for additional education immediately after high school to include trade school and an associates from a community college. The community college has introduced considerably opportunities through federal grants and has focused their target segment on "serving the underserved" minorities identified in my case study research of African Americans, Latino, and Asian. The exclusion of women from the original by Hirschman and Snipp was intentional, but since the work environment has changed since that study, and as Thomas Friedman (2005) the old economic model of manufacturing has changed and the new informational economy has resulted in a larger female workforce. Age sixty-four rationale is similar to Hirschman and Snipp in that most individuals are either retired or close to retirement and assimilation and social mobility is not as important factor. To reduce the variables to emphasize the influence of CDBG funding and the removal of social mobility barriers, assimilation is a critical element. Assimilation of males is more significant due to for most families; the male is the higher wage earner and is the primary head-of-the-household. Scholarly research conducted by James Messerschmidt (1993), Messner and Rosenfeld (1997) and Cloward and Ohlin (1960) theorize the strong influence on minority males to achieve the American Dream of wealth through many avenues, to include through other than legitimate means. This is further supported by the research of Bursik and Grasmick (1993) and Sampson and Laub (1995). The research of Massey and Denton (1993) and William Julius Wilson (2009) also support the influence especially on the black male to overcome the poverty and adapt to "the code of the street" and the "code of shady dealings" (Wilson, 2009, pg 134.)

My approach in this research has been the empirical study drawing on data from the U. S. Census Bureau from the specific study areas. I have used various variables by race to determine the significance to recognized outcomes to remove the barriers to social mobility by minorities. The concentration of low-income minorities living in the two study areas at or below the poverty level should be reduced based on CDBG funding. The larger the level of CDBG funding in the area targeted for CDBG programs and projects, the greater the reduction in the number of households at or below poverty. This poverty level reduction is based on the
increase in family income and the attainment of education. The income and educational attainment strongly influences family stability and homeownership.

The previous research of Hirschman and Snipps identified context measures of neighborhood poverty rates and school context of either high or low, depending on socioeconomic status. Since both research case study targeted areas are comprised of low-income minority groups (African-American, Hispanics and Asians), the socioeconomic and public school SES are similar in both areas. Since the lack of Asian majority in Block Groups within the selected targeted areas, the only degree of assimilation or acculturation would be in the Hispanic or Latino Block Groups due to the language and other cultural conditions. I will compare the change to White population.

Control Variables

Race (Ethnicity) White; African-American; Hispanic/Latino; Asian

Categories as determined and used in the 2000 and 2010 Census Briefs:
White: Refers to a person having origins in any of the original peoples of Europe, the Middle East, or North Africa. The "White" racial category includes people who marked as such on the census survey checkbox. This category includes respondents who reported entries such as Caucasian or White; European entries, such as Irish, German, and Polish; Middle Eastern entries, such as Arab, Lebanese, and Palestinian; and North African entries, such as Algerian, Moroccan, and Egyptian.

Black or African American: Refers to a person having origins in any of the Black racial groups of Africa. The "Black" racial category includes people who marked as such on the census survey checkbox. This category includes respondents who entered either African American or Negro; Sub-Saharan African such as Keyan and Nigerian; and Afro-Caribbean such as Haitian and Jamaican.

Hispanic or Latino: Refers to a person having origins in any of the Cuban, Mexican, Puerto Rico, South or Central American, or origin regardless of race.

Asian: Refers to a person having origins in any of the original peoples of the far East, Southeast Asia, or the Indian subcontinent such as Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.

Gender (Sex): Male/Female as self-reported and does not delineate between trans-sexual or trans-gender respondents.

Age Group: 16 - 19; 20-24; 25-29; 30-34; 35-39; 40-44; 45-49; 50-54; 55-59; 60-61; 62-64.
Employment/Unemployment: Employment is based on the response for the census survey checkbox and is based on self-reporting of status at the time of the survey.

Annual Income: Less than \$2,499; \$2,500-\$4,999; \$5,000-\$7,499; \$7,500-\$9,999; \$10,000\$12,499; \$12,500-\$14,999; \$15,000-\$17,499; \$17,500-\$19,999; \$20,000-\$22,499; \$22,500\$24,999; \$25,000-\$29,999; \$30,000-\$34,999; \$35,000-\$39,999; \$40,000-\$44,999; \$45,000\$49,999; \$50,000-\$54,999; \$55,000-\$64,499; \$65,000-\$74,999; \$75,000-\$99,999; \$100,000 or more.

Homeownership: Owner Occupied/Rental Occupied

Average education attainment: No schooling; $12^{\text {th }}$ grade, no diploma; high school graduate (or equivalent); some college ,less than 1 year; some college, 1 or more years no degree; Associates; Bachelor's degree; Master's degree; Professional degree; Doctoral degree

3.5. Non-Selected Areas and Block Groups

As previously stated, Block Groups that were added to the selected Zip Code Tabulation Areas (ZCTAs) located in the targeted areas that were present in the 2010 Census but not in the 2000 Census, were eliminated from consideration in the research analysis. Although the data was collected and included in the research spreadsheet, the information was not included in the analysis. Since the intent of this research is to determine the influence of Community Development Block Grant (CDBG) funding in improving the various economic and social conditions of the low-income minority areas, in comparing Block Groups within the ZCTA which did and did not receive CDBG funds, by excluding the Block groups not found in both 2000 and 2010 Census would be more accurate assessment of the influence of the targeted funding.

Other minority populations such as Native American Indians, Alaska native tribesmen, and other less significant in percentage of total population were excluded not due to their insignificance for study, but due to the limited scope of this research and the small numbers they were excluded. Asians were originally part of the research study group, but when the ZCTA. Census Tract and Block Group was collected, the data collected was not used since the

Block Groups were analyzed based on the majority population. If a Block Group was almost equal in population distribution, then that Block Group was also excluded. The purpose of the study is to demonstrate the influence of CDBG funding has on social mobility critical elements, and the significance of parental and peer influences in a concentrated area would be better explored in a racial majority Block Group context.

CHAPTER 4

Results and Conclusion

4.1. Introduction of Results and Descriptions

The findings for this research were collected from many sources within the United States Census Bureau. Primarily the data was collected from the Census 2000 Summary File One, Census 2010 Summary File 1, and the American Community Survey (ACS). The finding will be presented in summary findings first, then in more detail. The Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in Fort Worth will be presented first followed by those in Dallas.

The findings of this research differ from the previous research referenced earlier in this document. The findings resulting from this research have mixed results in the improvements to various Block groups and their related residents by race or ethnicity. I will address each hypothesis and related statistical analysis specifically and then focus on the employment relationship differences between the races and ethnicities of the Block Groups (BG's) within a Zip Code Tabulation Area (ZCTA) receiving Community Development Block Grant (CDBG) funding and those BG's not receiving CDBG funds.

4.2. Descriptive Statistics 2000 and 2010 Summary Results

Hypothesis Testing:
H_{0} : There is no difference or less than a 10 percent change between the employment and unemployment levels for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 ten years from 2000 and 2010 based on census data.
H_{1} : There is a difference or at least 10 percent or more change between the employment and unemployment levels for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 years from 2000 and 2010 based on census data.

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	2010 Total Males Employed	407.85	206	246.787	17.193
	2000 Total Male Employed	152.91	208	230.756	16.078

Paired Samples Correlations

Table 4.2.1 Census 20002010 Paired Samples Total Male Employment in BG's with Grant

	Paired Samples Statistics			
	Pair 1	2010 Total Males Employed		

Table 4.2.2 Census 20002010 Paired Samples Total Male Employment in BG's without Grant

The paired-samples t test determines whether or not two data points are significantly different from each other. A paired-samples t test was calculated to compare the mean employment rate for males in census 2000 and 2010 for Block Groups within a Zip Code Tabulation Area (ZCTA) receiving Community Development Block Grant (CDBG) funds and those that don't.

From Table 4.2.1, the mean employment for males in BG's receiving CDBG for census 2000 was 152.91 ($s d=230.756$), and the mean employment for males in BG's receiving CDBG for census 2010 was 407.85 ($s d=246.767$). A significant increase from census 2000 to 2010 was found; mean 254.947, ($t,(206)=11.287, \mathrm{P}<.005)$. From Table 4.2.2., the mean employment for males in BG's not receiving CDBG for census 2000 was 210.82 ($s d=213.653$), and the mean employment for males in BG's not receiving CDBG for census 2010 was 379.815 ($s d=$ 246.795). A significant increase from census 2000 to 2010 was found; mean 156.291, ($t,(433)=$ $12.046, \mathrm{P}<.005$). With a significance level of $<.005$, we must reject the null hypothesis for employment of males and acknowledge the alternative hypothesis that there is a difference.

Table 4.2.3 Census 20002010 Paired Samples Total Female Employment in BG's with Grant

Table 4.2.4 Census 20002010 Paired Samples Total Female Employment in BG's without Grant
From Table 4.2.3, the mean employment for females in BG's receiving CDBG for census 2000 was 119.64 ($s d=196.678$), and the mean employment for females in BG's receiving CDBG for census 2010 was 320.85 ($s d=243.057$). A significant increase from census 2000 to 2010 was found; mean 231.214, $(t,(206)=9.815, \mathrm{P}<.005)$. From Table 4.2.4., the mean employment for females in BG's not receiving CDBG for census 2000 was 74.81 ($s d=71.886$), and the mean employment for females in BG's not receiving CDBG for census 2010 was 102.550 (sd= 79.246). A significant increase from census 2000 to 2010 was found; mean 27.741, ($t,(433)=$ $5.864, \mathrm{P}<.005$). With a significance level of $<.005$, we must reject the null hypothesis for employment of females and acknowledge the alternative hypothesis that there is a difference.

Based on the evidence, the t value in the employment of males in BG's receiving CDBG funds was 11.287 and in BG's not receiving CDBG funds was 12.046. The t value in the employment of females in BG's receiving CDBG funds was 9.815 and in BG's not receiving CDBG funds was 5.864. The t value in the employment of males was lesser in BG's receiving CDBG funds than in BG's not receiving CDBG funds. For employment of females, it was reversed resulting in the employment of females in BG's receiving CDBG funds higher than in BG's not receiving CDBG funds.

Hypothesis Testing:
H_{0} : There is no difference or less than a 10 percent change between the homeownership levels for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 ten years from 2000 and 2010 based on census data.
H_{1} : There is a difference or at least 10 percent or more change between the homeownership levels for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 years from 2000 and 2010 based on census data.

Paired Samples Statistics					
Pair 1	Owner Occupied 10				
	Mean	N	Std. Deviation	Std. Error Mean	
	Owner Occupied 00	310.18	206	252.133	17.567
Pair 2	Renter Occupied 10	113.90	206	165.755	11.549
	Renter Occupied 00	176.09	206	184.575	12.860
		113.06	206	263.681	18.372

Table 4.2.5. Census 20002010 Paired Samples Total Homeownership in BG's with Grant

Paired Samples Statistics					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Owner Occupied 10	262.37	433	174.974	8.409
	Owner Occupied 00	167.87	433	159.164	7.649
Pair 2	Renter Occupied 10	183.75	433	187.479	9.010
	Renter Occupied 00	122.10	433	173.534	8.340

Table 4.2.6. Census 20002010 Paired Samples Total Homeownership in BG's without Grant

From Table 4.2.5., the mean homeownership in BG's receiving CDBG for census 2000 was 113.90 ($s d=165.755$), and the mean homeownership in BG's receiving CDBG for census 2010 was 310.18 ($s d=252.133$). A significant increase from census 2000 to 2010 was found; mean 196.285, $(t,(206)=10.176, \mathrm{P}<.005)$. From Table 4.2.6., the mean homeownership in BG's not receiving CDBG for census 2000 was 167.87 ($s d=159.164$), and the mean homeownership in BG's not receiving CDBG for census 2010 was 262.37 ($s d=174.974$). A significant increase from census 2000 to 2010 was found; mean 54.506, ($t,(433)=8.727, \mathrm{P}<.005$). With a significance level of $<.005$, we must reject the null hypothesis for homeownership in BG's receiving CDBG funding and acknowledge the alternative hypothesis that there is a significant difference.

Based on the evidence, the t value in the homeownership in BG's receiving CDBG funds was 10.176 and in BG's not receiving CDBG funds was 8.727. The t value in the homeownership was greater in BG's receiving CDBG funds than in BG's not receiving CDBG funds. It is
noticeable that this corresponds with renter occupation and the renter occupation in BG's receiving CDBG funds is less than the BG's not receiving CDBG funds.
The next analysis will be the comparison of the mean of homeownership in BGs receiving CDBG funds as compared to those that do not receive CDBG funds.

One-Sample Test

	Test Value $=187.87$					
	t	df	Sig. (2-tailed)	Mean Difference	95\% Confidence Interval of the Difference	
					Lower	Upper
Owner Occupied 00	-3.780	255	. 000	-39.318	-59.80	-18.83

Table 4.2.7. Census 2000 One Sample T Test Homeownership without Grant compared to with Grant

Table 4.2.8 Census 2010 One Sample T Test Homeownership without Grant compared to with Grant

A single-sample t test compared the homeownership mean for 2000 and 2010 for the BG's receiving CDBG and those that were not receiving CDBG funds. From Table 4.2.7, a significant difference was found; mean 128.550, $(t(255)=-3.780, p<.05$ for census 2000 and from Table
4.2.8, mean $310.18(t(205)=2.722, p<.05$ for census 2010. The sample homeownership mean of 128.55 ($s d=166.43$) for 2000 was significantly less than the homeownership population mean of $310.18(s d=252.133)$ for 2010.

Hypothesis Testing:
H_{0} : There is no difference or less than a 10 percent change between the income at or below the respective census year poverty level for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 ten years from 2000 and 2010 based on census data.
H_{1} : There is a difference or at least 10 percent or more change between the income at or below the respective census year poverty level level for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 years from 2000 and 2010 based on census data.

Table 4.2.9 Census 20002010 Paired Samples Total Male Income at or less than Poverty Level in BG's with Grant

Table 4.2.10 Census 20002010 Paired Samples Total Male Income at or less than Poverty Level in BG's without Grant
From Table 4.2.9., the mean income level at or below the poverty level for the respective census year for males in BG's receiving CDBG funds for census 2000 was 45.09 ($s d=66.285$), and the mean income level at or below the poverty level for the respective census year for males in BG's receiving CDBG for census 2010 was 86.91 ($s d=71.275$). A significant increase from census 2000 to 2010 was found; mean 41.620, $(t,(206)=6.641, \mathrm{P}<.005)$. From 4.2.10, the mean income level at or below the poverty level for the respective census year for males in BG's not receiving CDBG for census 2000 was 58.32 ($s d=55.647$), and the mean income levels at or below the poverty level for the respective census year for males in BG's not receiving CDBG for census 2010 was 85.640 ($s d=72.944$). A significant increase from census 2000 to 2010 was found; mean 27.319, $(t,(433)=6.787, \mathrm{P}<.005)$. With a significance level of <.005, we must reject the null hypothesis for income levels at or below the poverty level for the respective census year for males in BG's receiving CDBG funding and acknowledge the alternative hypothesis that there is a difference.

Paired Samples Statistics					
	Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	2010 Total Female Income < poverty	106.94	206	78.397	5.462
	2000 Total Female Income < poverty	56.79	206	77.307	5.386

Table 4.2.11 Census 20002010 Paired Samples Total Female Income at or less than Poverty Level in BG's with Grant

Paired Samples Test

Table 4.2.12 Census 20002010 Paired Samples Total Female Income at or less than Poverty Level in BG's without Grant

From table 4.2.11., the mean income level at or below the poverty level for the respective census year for females in BG's receiving CDBG funds for census 2000 was 56.79 (sd= 77.307), and the mean income level at or below the poverty level for the respective census year for females in BG's receiving CDBG for census 2010 was 106.940 ($s d=78.397$). A significant increase from census 2000 to 2010 was found; mean 50.150, ($t,(206)=6.561, \mathrm{P}<.005$). From Table 4.2.12., the mean income level at or below the poverty level for the respective census year for females in BG's not receiving CDBG for census 2000 was 74.81 ($s d=71.886$), and the mean income levels at or below the poverty level for the respective census year for females in BG's not receiving CDBG for census 2010 was 102.55 ($s d=79.246$). A significant increase from census 2000 to 2010 was found; mean 27.741, ($t,(433)=5.864, \mathrm{P}<.005$). With a significance level of <.005, we must reject the null hypothesis for income levels at or below the poverty level for the respective census year for females in BG's receiving CDBG funding and acknowledge the alternative hypothesis that there is a significant difference.

Based on the evidence, the t value in the mean income level at or below the poverty level for the respective census year of males in BG's receiving CDBG funds was 6.641 and in BG's not receiving CDBG funds was 6.787. The t value in the mean income level at or below the poverty level for the respective census year of females in BG's receiving CDBG funds was 6.561 and in BG's not receiving CDBG funds was 5.864. The t value in the mean income level at or below the poverty level for the respective census year for males was slightly less in BG's receiving CDBG funds than in BG's not receiving CDBG funds. For mean income level at or below the poverty level for the respective census year for females, it was similar resulting in the mean income level at or below the poverty level for the respective census year for females in BG's receiving CDBG funds slightly higher than in BG's not receiving CDBG funds. The trend should have been reversed.

Hypothesis Testing:
H_{0} : There is no difference or less than a 10 percent change between the education attainment level for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 ten years from 2000 and 2010 based on census data.
H_{1} : There is a difference or at least 10 percent or more change between the education attainment level for Block Groups (BGs) within a Zip Code Tabulation Area (ZCTA) in the Fort Worth/Dallas area receiving Community Development Block Grant (CDBG) funding and those BGs within the ZCTA not receiving CDBG funding for the last 10 years from 2000 and 2010 based on census data.

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Male No schooling completed 10	10.16	206	21.808	1.519
	Male No schooling completed 00	6.97	206	14.489	1.010
Pair 2	Male High School Graduate (Equivalency) 10	90.93	206	66.018	4.600
	Male High School Graduate (Equivalency) 00	44.30	206	57.251	3.989
Pair 3	Male Associates 10	20.50	206	25.856	1.801
	Male Associates 00	7.19	206	17.425	1.214
Pair 4	Male Bachelor's Degree 10	58.38	206	82.102	5.720
	Male Bachelor's Degree 00	22.80	206	63.213	4.404

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Male No schooling completed 10 \& Male № schooling completed 00	206	. 202	. 004
Pair 2	Male High School Graduate (Equivalency) 10 \& Male High School Graduate (Equivalency) 00	206	. 045	. 521
Pair 3	Male Associates 10 \& Male Associates 00	206	. 188	. 007
Pair 4	Male Bachelor's Degree 10 \& Male Bachelor's Degree 00	206	. 304	. 000

Paired Smmpes Test									
		Paried Difterences					1	df	Sig. (2tailed)
		Mean	Sti. Devition	Stid Eromean	95\% Conifence literal oftre Difterence				
					Lower	Upeer			
Pair	Mae Noschooling completed 10- Male No schooling conpleted 00	3.194	23.622	1.646	. 051	6439	1.941	205	. 054
	Male High School Graduate (Equivalency) 10 - Male High School Graduate (Equivalency) 00	46.636	85417	5.951	34.02	58.30	7.836	205	. 00
	Male Asocides 10 - Mae Assocides 00	13.316	28.328	1.974	9.424	17.207	6.47	205	. 00
	Male Bacheolis' Degeee 10-Male Bacrenor's Deyjee OO	35.587	87.50	6.065	23.630	47.545	5.868	205	. 00

Table 4.2.13 Census 20002010 Paired Samples Total Male Education Attainment in BG's with Grant

		Mean	N	Std. Deviation	Std. Error Mean
Pair1	Male No schooling completed 10	9.96	433	18.511	890
	Male No schooling completed 00	9.53	433	16.206	. 779
Pair 2	Male High School Graduate (Equivalency) 10	100.48	433	80.935	3.889
	Male High School Graduate (Equivalency) 00	60.07	433	57.389	2.758
Pair3	Male Associates 10	16.39	433	23.266	1.118
	Male Associates 00	9.75	433	16.639	. 800
Pair 4	Male Bachelor's Degree 10	45.32	433	63.690	3.061
	Male Bachelor's Degree 00	28.84	433	55.331	2.659

		N	Correlation	Sig.
Pair 1	Male No schooling completed 10 \& Male No	433	. 157	. 001
Pair 2	Male High School Graduate (Equivalency) 10	433	. 179	. 000
	\& Male High School Graduate (Equivalency)			
	00			
Pair 3	Male Associates 10 \& Male Associates 00	433	. 113	. 019
Pair 4	Male Bachelor's Degree 10 \& Male Bachelor's	3	6	000
	Degree 00			

Paired Samples Test

Table 4.2.14 Census 20002010 Paired Samples Total Male Education Attainment in BG's without Grant

From Table 4.2.13, the mean education attainment level for the respective census year for males in BG's receiving CDBG funds for census 2000 is as follows; no school was 6.97 (sd = 14.489), High school was 44.30 ($s d=57.251$), Associates degree was 7.19 ($s d=17.425$), and Bachelor's degree was 22.80 ($s d=63.213$), and the mean education attainment for the respective census year for males in BG's receiving CDBG for census 2010 is as follows: no school was 10.16 ($s d=21.808$), High school was 90.93 ($s d=66.018$), Associates degree was 20.50 ($s d=25.856$), and Bachelor's degree was 58.38 ($s d=82.102$). A significant increase from census 2000 to 2010 was found for High School mean 46.636, ($t,(206)=7.836, \mathrm{P}<.005$); Associates degree mean 13.316, $(t,(206)=6.747, \mathrm{P}<.005)$; and Bachelor's degree mean $35.587,(t,(206)=5.868, \mathrm{P}<.005)$.

From Table 4.2.14., the mean education attainment level for the respective census year for males in BG's not receiving CDBG funds for census 2000 is as follows; no school was 9.53 (sd $=16.2016$), High school was 60.07 ($s d=57.389$), Associates degree was 9.75 ($s d=16.639$), and Bachelor's degree was 28.84 ($s d=55.331$), and the mean education attainment for the respective census year for males in BG's not receiving CDBG for census 2010 is as follows: no school was 9.96 ($s d=18.511$), High school was 100.48 ($s d=80.935$), Associates degree was 16.390 ($s d=23.266$), and Bachelor's degree was 45.32 ($s d=63.690$). A significant increase from census 2000 to 2010 was found for High School; mean 40.406, ($t,(433)=9.296, \mathrm{P}<.005$); Associates degree mean 6.642, $(t,(433)=5.113, \mathrm{P}<.005)$; and Bachelor's degree mean 16.483, $(t,(433)=4.556, \mathrm{P}<.005)$. With a significance level of $<.005$, we must reject the null hypothesis
for education attainment for the selected level and acknowledge the alternative hypothesis that there is a significant difference.

Only the no school significance level is at or above $\mathrm{P}<.005$; BG's P with grant mean 3.194 , sig. $=.054$ and BG's P without grant mean 0.427 , sig. $=.694$.

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1 Pair 2	Female No schooling completed 10	9.61	206	19.349	1.348
	Female No schooling completed 00	6.54	206	12.278	. 855
	Female High School Graduate (Equivalency) 10	104.44	206	76.937	5.360
	Female High School Graduate (Equivalency) 00	54.39	206	73.940	5.152
Pair 3	Female Associates 10	23.64	206	31.348	2.184
	Female Associates 00	7.34	206	17.717	1.234
Pair 4	Female Bachelor's Degree 10	62.08	206	82.285	5.733
	Female Bachelor's Degree 00	23.66	206	68.229	4.754

		N	Correlation	Sig.
Pair 1	Female No schooling completed 10 \& Female No schooling completed 00	206	. 130	. 062
Pair 2	Female High School Graduate (Equivalency)			
	10 \& Female High School Graduate	206	. 137	. 050
	(Equivalency) 00			
Pair 3	Female Associates 10 \& Female Associates	206	217	. 002
	00			
Pair 4	Female Bachelor's Degree 10 \& Female	206		0
	Bachelor's Degree 00			

Paired Samples Test

		Paiceditierences					1	dif	Sig. (2:ideled)	
		Hean	Stid. Devidion	Stid. Eromenan	95\% Conidence inerala ofte Diftence					
		Lower			Uperer					
Pair	Femad No schooling conpleted 10. Fende No schooling conpleted OO		3.068	21.523	1.50	. 111	6.024	20.46	205	. 42
Pair2	Femad High Schol Gaxudat Equivalery) 10 . Fenmae High Schoo Garoulat Eavialency) OO	50.44	99.143	6.908	36.25	63.663	7.245	205	. 00	
	Fenale Asscides 10-Fenale Assocites 0	16.291	32483	2264	11.88	20.75	7.196	205	. 00	
Pair4	Fende Baxider's Deveree 10. Fenma Bacreno's Devee OO	38.27	90.39	6226	26.015	50.80	6.104	205	. 00	

Table 4.2.15 Census 20002010 Paired Samples Total Female Education Attainment in BG's with Grant

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Female No schooling completed 10	9.84	433	16.268	. 782
	Female No schooling completed 00	8.07	433	13.938	. 670
Pair 2	Female High School Graduate (Equivalency) 10	112.36	433	88.762	4.266
	Female High School Graduate (Equivalency) 00	75.96	433	71.659	3.444
Pair 3	Female Associates 10	20.21	433	28.003	1.346
	Female Associates 00	11.28	433	17.494	. 841
Pair 4	Female Bachelor's Degree 10	52.36	433	68.205	3.278
	Female Bachelor's Degree 00	32.45	433	63.615	3.057

		N	Correlation	Sig.
Pair 1	Female No schooling completed 10 \& Female No schooling completed 00	433	263	. 000
Pair 2	Female High School Graduate (Equivalency) 10 \& Female High School Graduate (Equivalency) 00	433	. 259	. 000
Pair 3	Female Associates 10 \& Female Associates 00	433	. 090	. 062
Pair 4	Female Bachelor's Degree 10 \& Female Bachelor's Degree 00	433	. 274	. 000

Table 4.2.16 Census 20002010 Paired Samples Total Female Education Attainment in BG's without Grant

From Table 4.2.15, the mean education attainment level for the respective census year for females in BG's receiving CDBG funds for census 2000 is as follows; no school was 6.54 ($s d=$ 12.278), High school was 54.39 ($s d=73.940$), Associates degree was 7.34 ($s d=17.717$), and Bachelor's degree was 23.66 ($s d=68.229$), and the mean education attainment for the respective census year for females in BG's receiving CDBG for census 2010 is as follows: no school was 9.61 ($s d=19.349$), High school was 104.44 ($s d=76.937$), Associates degree was 23.64 ($s d=31.348$), and Bachelor's degree was 62.08 ($s d=82.285$). A significant increase from census 2000 to 2010 for BG's with grant was found for High School mean 50.044, (t,(206) $=7.245, \mathrm{P}<.005)$; Associates degree mean 16.292, ($t,(206)=7.196, \mathrm{P}<.005$); and Bachelor's degree mean 38.427, $(t,(206)=6.104, \mathrm{P}<.005)$.

From Table 4.2.16, the mean education attainment level for the respective census year for females in BG's not receiving CDBG funds for census 2000 is as follows; no school was 8.07 ($s d=13.938$), High school was 75.96 ($s d=71.659$), Associates degree was 11.28 ($s d=$ 17.494), and Bachelor's degree was 32.45 ($s d=63.615$), and the mean education attainment for the respective census year for females in BG's not receiving CDBG for census 2010 is as follows: no school was 9.84 ($s d=16.268$), High school was 112.36 ($s d=88.762$), Associates degree was 20.21 ($s d=28.003$), and Bachelor's degree was 52.36 ($s d=68.205$). A significant increase from census 2000 to 2010 for BG's without grants was found for High School mean 36.397, (t,(433) = 7.682, $\mathrm{P}<.005$); Associates degree mean 8.938, ($t,(433)=5.875, \mathrm{P}<.005)$; and Bachelor's degree mean 19.917, $(t,(433)=5.215, \mathrm{P}<.005)$. With a significance level of <.005, we must reject the null hypothesis for education attainment for the selected level and acknowledge the alternative hypothesis that there is a significant difference.

Only the no school significance level is at or above $\mathrm{P}<.005$; BG 's P with grant mean 3.068 , sig. $=.042$ and BG's P without grant mean 1.771, sig $=.046$).

4.3. Multiple Linear Regression Statistics 20002010 Summary Results

The next analysis was to perform regression analysis on both male and female population within the Block Groups (BG's) within the Zip Code Tabulation Areas (ZCTA) for BG's receiving and not receiving Community Development Block Grant (CDBG) funding. The analysis formulas are as follows:

Male and Female Employment Census 2000 and 2010 in BG's within ZCTA receiving and not receiving CDBG funds based on the change in education attainment:

$$
\left.\begin{array}{rl}
\Delta \mathrm{Empl}_{\text {male 00/10 }}= & f\left(\mathrm{CDBG}_{0 / 1}+\text { Location }_{0 / 1}+\Delta \text { homeownership }_{00 / 10}+\Delta \text { income } \leq\right. \text { poverty } \\
00 / 10 & + \\
\left.\Delta \text { High School education attainment }_{00 / 10}\right) \\
\Delta \text { Empl }_{\text {male 00/10 }}=f\left(\mathrm{CDBG}_{0 / 1}+\text { Location }_{0 / 1}+\Delta \text { homeownership }_{00 / 10}+\Delta \text { income } \leq \text { poverty }_{00 / 10}+\right. \\
\Delta \text { Bachelor's } \text { Degree education attainment } \\
00 / 10
\end{array}\right)
$$

Δ Bachelor's Degree education attainment ${ }_{00 / 10}$)

```
\(\Delta\) ncome \(_{\text {male 00/10 }}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta\) Empl \(_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) High School education attainment \({ }_{00 / 10}\) )
\(\Delta\) nncome \(_{\text {male 00/10 }}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta \mathrm{Empl}_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) Bachelor's Degree education attainment \({ }_{00 / 10}\) )
\(\Delta\) Education \(\left.^{(H S}\right)_{\text {male 00/10 }}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta\) Empl \(_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) income \(\leq\) poverty \(_{00 / 10}\) )
\(\Delta\) Education \(\left.^{(\mathrm{BS}}\right)_{\text {male } 00 / 10}=f\left(\mathrm{CDBG}_{0 / 1}+\right.\) Location \(_{0 / 1}+\Delta \mathrm{Empl}_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) income poverty \(_{00 / 10}\) )
\(\Delta\) Empl \(_{\text {female } 00 / 10}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta\) homeownership \(_{00 / 10}+\Delta\) income \(\leq\) poverty \(_{00 / 10}+\)
    \(\Delta\) High School education attainment \({ }_{00 / 10}\) )
\(\Delta\) Empl \(_{\text {female } 00 / 10}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta\) homeownership \(_{00 / 10}+\Delta\) income \(\leq\) poverty \(_{00 / 10}+\)
    \(\Delta\) Bachelor's Degree education attainment \({ }_{00 / 10}\) )
\(\Delta\) Homeownership \(_{\text {female } 00 / 10}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta\) Empl \(_{00 / 10}+\Delta\) income poverty poo/10 +
    \(\Delta\) High School education attainment \({ }_{00 / 10}\) )
\(\Delta\) Homeownership \(_{\text {female } 00 / 10}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta\) Empl \(_{00 / 10}+\Delta\) income \(\leq\) poverty \(_{00 / 10}+\)
    \(\Delta\) Bachelor's Degree education attainment \({ }_{00 / 10}\) )
\(\Delta\) nncome \(_{\text {female 00/10 }}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta \mathrm{Empl}_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) High School education attainment \({ }_{00 / 10}\) )
\(\Delta\) nncome \(_{\text {female } 00 / 10}=f\left(\right.\) CDBG \(_{0 / 1}+\) Location \(_{0 / 1}+\Delta \mathrm{Empl}_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) Bachelor's Degree education attainment \({ }_{00 / 10}\) )
\(\Delta\) Education \(\left.^{(H S}\right)_{\text {female 00/10 }}=f\left(\mathrm{CDBG}_{0 / 1}+\right.\) Location \(_{0 / 1}+\Delta \mathrm{Empl}_{00 / 10}+\Delta\) Homeownership \(_{00 / 10}+\)
    \(\Delta\) income \(\leq\) poverty \(\left._{00 / 10}\right)\)
\(\Delta\) Education \((\mathrm{BS})_{\text {female 00/10 }}=f\left(\mathrm{CDBG}_{0 / 1}+\right.\) Location \(_{0 / 1}+\Delta \mathrm{Empl}_{00 / 10}+\Delta\) Homeownership \({ }_{00 / 10}+\)
    \(\Delta\) income spoverty \(\mathrm{y}_{0 / 10}\) )
```

Numerous regressions were performed, but based on the change in education attainment for both males and females from the 2000 and 2010 census data. Based on the literature review, the most significant influence to change in employment, homeownership, and income at or below the poverty level is education. Primarily, the individuals that successfully attain a high school diploma are able to achieve employment and higher income over the poverty threshold when compared to individuals without a basic high school or equivalent attainment. Also based on the literature review, individuals that achieve a bachelor's degree are statistically more likely
to be employed, own their own home, and have a greater income than individuals with only a high school diploma. The Block Groups (BGs) receiving Community Development Block Group (CDBG) funds were assigned with a dummy variable of one (1) and those not receiving CDBG funds were assigned a zero (0). A dummy variable was also used for the location with Fort Worth BG's being assigned a one (1) and Dallas BGs being assigned a zero (0). The results of the regressions are presented in detail and then will be summarized for ease of review. Other related regression calculations can be found in the appendix.

a. Predictors: (Constant), Male High School Graduate (Equivalency) Diff., Dummy Variable

B City. Housing Homeownership Diff., Male Income \< poverty Diff., Dummy Variable A CDBG

a. Dependent Variable: Male Employment Diff
b. Predictors: (Constant), Male High School Graduate (Equivalency) Diff., Dummy Variable B City, Housing Homeownership Diff., Male Income \< poverty Diff., Dummy Variable A CDBG

Model		nstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	65.521	15.277		4.289	. 000
	Dummy Variable A CDBG	52.993	9.640	228	5.498	. 000
	Dummy Variable B City	-23.280	19.553	-. 042	-1.191	234
	Housing Homeownership Diff.	.613	. 051	. 482	12.142	. 000
	Male Income \&it, poverty Diff.	. 085	. 129	. 026	. 659	. 510
	Male High School Graduate (Equivalency) Diff.	023	123	007	185	853

a. Dependent Variable: Male Employment Diff.

Table 4.3.1 Change in Total Male Employment Multiple Regression with High School Diploma

From Table 4.3.1., a multiple linear regression was calculated predicting the change in total male employment based on male education attainment of "high school diploma", homeownership, and total male income at or below the poverty from 2000 to 2010 census year. A significant regression was found $(F(5,545)=72.756, P<.005)$, with an R^{2} of .400 . The predicted employment is equal to $65.521+.52 .993$ (CDBG) -23.280 (Location) +.613 (Homeownership) +.085 (Income) +.023 (High School Diploma).

Based on the premise that a regression equation is a model explaining variations in a dependent variable, the following applies. The least squares method of estimation is the method used. R^{2} predicts the fit of the model and the Adjusted R^{2} indicates the variation in the dependent variable that can be attributed to the other five variables. R^{2} is .400 and Adjusted R^{2} is .395 . Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that 39.5% of the variation in male employment can be attributed to the other five variables. The hypothesis that male employment is related to homeownership, income, and educational attainment is positive, so a relationship does exist. The coefficient table shows that CDBG is positive (52.993) and significant (.000). Location is a negative relationship (-23.280) and not significant (.234). Homeownership is a positive relationship (.613) and significant (.000). Income and educational attainment are both positive, but not significant (. 510 and .853) respectively.

a. Predictors: (Constant), Male Bachelor's Degree Diff., Dummy Variable B City, Housing Homeownership Diff., Male Income \&It; poverty Diff., Dummy Variable A CDBG

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16206726.613	5	3241345.323	72.992	. $000{ }^{\text {b }}$
	Residual	24201683.137	545	44406.758		
	Total	40408409.750	550			

a. Dependent Variable: Male Employment Diff.
b. Predictors: (Constant), Male Bachelor's Degree Diff., Dummy Variable B City. Housing Homeownership Diff., Male Income
\<, poverty Diff., Dummy Variable A CDBG

a. Dependent Variable: Male Employment Diff.

Table 4.3.2 Change in Total Male Employment Multiple Regression with Bachelor's Degree
From Table 4.3.2, a multiple linear regression was calculated predicting the change in total male employment based on male education attainment of "Bachelor's Degree", homeownership, and total male income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=72.992, P<.005)$, with an R^{2} of .401 . The predicted employment is equal to $65.807+54.272(C D B G)-22.710$ (Location) +.617 (Homeownership) + . 117 (Income) - 130 (Bachelor's Degree).

Unlike the previous model with educational attainment of a high school diploma, a Bachelor's degree is different. R^{2} is .401 and Adjusted R^{2} is .396 . Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that 39.6% of the variation in male employment can be attributed to the other five variables. The hypothesis that male employment is related to homeownership, income, and educational attainment is positive, so a relationship does exist. The coefficient table shows that CDBG is positive (54.272) and significant (.000). Location is a negative relationship (-22.710) and not significant (.244). Homeownership is a positive relationship (.617) and significant (.000). Income was positive
(.117), but not significant (.323). Educational attainment was negative (-.130), but not significant (.389).

Model Summary					
Model					
1	R	R Square	Adjusted R Square	Std. Error of the	
Estimate					

a. Predictors: (Constant), Male High School Graduate (Equivalency) Diff., Dummy Variable B City, Male Employment Diff., Male Income \<, poverty Diff., Dummy Variable A CDBG

a. Dependent Variable: Housing Homeownership Diff.
b. Predictors: (Constant), Male High School Graduate (Equivalency) Diff., Dummy Variable B City, Male Employment Diff.,

Male Income \⁢ poverty Diff., Dummy Variable A CDBG

Table 4.3.3 Change in Total Male Homeownership Multiple Regression with High School Diploma

From Table 4.3.3., a multiple linear regression was calculated predicting change in total male homeownership based on male education attainment of "High school", employment and total male income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=89.120, P<.005)$, with an R^{2} of .450 . The predicted homeownership is equal to $-25.618+58.344$ (CDBG) +21.310 (Location) +.347 (Employment) - . 185 (Income) + . 164 (High School).
R^{2} is .450 and Adjusted R^{2} is .445 . Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that 44.5% of the variation in male homeownership can be attributed to the other five variables. The hypothesis that male homeownership is related to employment and educational attainment is positive, so a relationship does exist. Income is a negative relationship. The coefficient table shows that CDBG is positive (58.344) and significant (.000). Location is positive (21.310) but not significant (.148). Employment is a positive relationship (.347) and significant (.000). Income is a negative relationship (-.185), but not significant (.057). Educational attainment is positive (.164), but not significant (.076).

a. Predictors: (Constant), Male Bachelor's Degree Diff., Male Employment Diff., Dummy

Variable B City, Male Income \< poverty Diff., Dummy Variable A CDBG

a. Dependent Variable: Housing Homeownership Diff.
b. Predictors: (Constant), Male Bachelor's Degree Diff., Male Employment Diff., Dummy Variable B City, Male Income \⁢
poverty Diff., Dummy Variable A CDBG

Coefficients ${ }^{\text {a }}$					
Model	Unstandardiz B	efficients Std. Error	Standardized Coefficients Beta	t	Sig.
1 (Constant)	-20.658	11.365		-1.818	. 070
Dummy Variable A CDBG	56.983	7.114	. 312	8.010	. 000
Dummy Variable B City	17.141	14.648	. 039	1.170	. 242
Male Employment Diff.	. 350	. 029	. 445	12.246	. 000
Male Income \&it: poverty Diff.	-. 142	. 089	-. 054	-1.596	. 111
Male Bachelor's Degree Diff.	. 204	. 113	. 081	1.798	. 073

[^1]From Table 4.3.4., a multiple linear regression was calculated predicting the change in total male homeownership based on male education attainment of "Bachelor's Degree", Employment and total male income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=89.145, P<.005)$, with an R^{2} of .450 . The predicted homeownership is equal to $-20.658+56.983(C D B G)+17.141$ (Location) +.350 (Employment) - . 142 (Income) + . 204 (Bachelor's Degree).
R^{2} is .450 and Adjusted R^{2} is .445 . Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that 44.5% of the variation in male homeownership can be attributed to the other five variables. The hypothesis that male homeownership is related to employment and educational attainment is positive, so a relationship does exist. Income is a negative relationship. The coefficient table shows that CDBG is positive (56.983) and significant (.000). Location is positive (17.141) but not significant (.242). Employment is a positive relationship (.350) and significant (.000). Income is a negative relationship (-.142), but not significant (.111). Educational attainment is positive (.204), but not significant (.073).

> a. Predictors: (Constant), Male High School Graduate (Equivalency) Diff., Dummy Variable
> B City, Male Employment Diff., Dummy Variable A CDBG, Housing Homeownership Diff.

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	979599.630	5	195919.926	40.292	. $000{ }^{\circ}$
	Residual	2850041.381	545	4862.461		
	Total	3629640.991	550			

a. Dependent Variable: Male Income \& lt; poverty Diff.
b. Predictors: (Constant), Male High School Graduate (Equivalency) Diff., Dummy Variable B City, Male Employment Diff.,

Dummy Variable A CDBG, Housing Homeownership Diff.

a. Dependent Variable: Male Income \⁢ poverty Diff.

Table 4.3.5 Change in Total Male Income at or below Poverty Level Multiple Regression with High School Diploma

From Table 4.3.5., a multiple linear regression was calculated predicting the change in total male income at or below the poverty level based on male education attainment of "High School", employment and homeownership from 2000 to 2010 census year. A significant regression was found $(F(5,545)=40.292, P<.005)$, with an R^{2} of .270 . The predicted income change is equal to $-14.740+11.732(C D B G)+26.088$ (Location) +.009 (Employment) -.036 (Homeownership) +. 423 (High School).
R^{2} is .270 and Adjusted R^{2} is .263 . Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that 26.3% of the variation in male income at or below poverty level can be attributed to the other five variables. The hypothesis that male income change is related to employment and educational attainment is positive, so a relationship does exist. Homeownership is a negative relationship. The coefficient table shows that CDBG is positive (11.732) and significant (.000). Location is positive (26.088) and significant (.000). Employment is a positive relationship (.009) but not significant (.510). Homeownership is a negative relationship (-.036), but not significant (.057). Educational attainment is positive (.423) and significant (.000).

a. Predictors: (Constant), Male Bachelor's Degree Diff., Male Employment Diff., Dummy

Variable B City, Dummy Variable A CDBG, Housing Homeownership Diff.

a. Dependent Variable: Male Income \⁢ poverty Diff.
b. Predictors: (Constant), Male Bachelor's Degree Diff., Male Employment Diff., Dummy Variable B City, Dummy Variable A

CDBG. Housing Homeownership Diff.

Coefficients ${ }^{3}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	-3.089	5.471		-. 561	. 575
	Dummy Variable A CDBG	13.309	3.566	. 191	3.733	. 000
	Dummy Variable B City	20.839	6.984	. 125	2.984	. 003
	Male Employment Diff.	. 015	. 015	. 051	. 990	. 323
	Housing Homeownership Diff.	-. 033	. 021	-. 086	-1.596	. 111
	Male Bachelor's Degree Diff.	267	. 053	. 209	5.004	000

a. Dependent Variable: Male Income \&itt; poverty Diff.

Table 4.3.6 Change in Total Male Income at or below Poverty Level Multiple Regression with Bachelor's Degree

From Table 4.3.6., a multiple linear regression was calculated predicting the change in total male income at or below the poverty level based on male education attainment of "Bachelor's Degree", employment and homeownership from 2000 to 2010 census year. A significant regression was found $(F(5,545)=16.219, P<.005)$, with an R^{2} of .130 . The predicted income change is equal to $-3.089+13.309$ (CDBG) +20.839 (Location) +.015 (Employment) - 033 (Homeownership) + . 267 (Bachelor's Degree).
R^{2} is .130 and Adjusted R^{2} is .122 . Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that only 12.2% of the variation in male income at or below poverty level can be attributed to the other five variables. The hypothesis that male income change is related to employment and educational attainment is positive, so a relationship does exist. Homeownership is a negative relationship. The coefficient table shows that CDBG is positive (13.309) and significant (.000). Location is positive (20.839) and not significant (.003). Employment is a positive relationship (.015) but not significant (.323).

Homeownership is a negative relationship (-.033), but not significant (.111). Educational attainment is positive (.267) and significant (.000).

a. Predictors: (Constant), Male Income \⁢ poverty Diff., Housing Homeownership Diff.,
Dummy Variable B City, Dummy Variable A CDBG, Male Employment Diff.

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	895032.442	5	179006.488	33.252	. $000{ }^{\text {b }}$
	Residual	2933888.389	545	5383.281		
	Total	3828920.831	550			

a. Dependent Variable: Male High School Graduate (Equivalency) Diff.
b. Predictors: (Constant), Male Income \&itt; poverty Diff., Housing Homeownership Diff., Dummy Variable B City, Dummy
Variable A CDBG, Male Employment Diff.

Table 4.3.7 Change in Total Male Education Attainment High School

From Table 4.3.7., a multiple linear regression was calculated predicting the change in total male education attainment based on employment, homeownership and total male income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=33.252, P<.005)$, with an R^{2} of .234. The predicted education attainment is equal to $27.706+3.788(C D B G)-16.618$ (Location) +.003 (Employment) +.035 (Homeownership) + .468 (Income).
R^{2} is . 234 and Adjusted R^{2} is .227. Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that only 22.7% of the variation in male educational attainment can be attributed to the other five variables. The hypothesis that male educational attainment change is related to employment, homeownership and income at or below the poverty levels is positive, so a relationship does exist. The coefficient table shows that CDBG is positive (3.788) but not significant (.272). Location is negative (-16.618) but not significant (.014). Employment is a positive relationship (.003) but not significant (.853). Homeownership is also positive relationship (.035), but not significant (.076). Income at or below poverty levels is positive (.468) and significant (.000).

a. Predictors: (Constant), Male Income \⁢ poverty Diff., Housing Homeownership Diff.,

Dummy Variable B City, Dummy Variable A CDBG, Male Employment Diff.

a. Dependent Variable: Male Bachelor's Degree Diff.
b. Predictors: (Constant), Male Income \&It; poverty Diff., Housing Homeownership Diff., Dummy Variable B City, Dummy

Variable A CDBG, Male Employment Diff.

a. Dependent Variable: Male Bachelor's Degree Diff.

Table 4.3.8 Change in Total Male Education Attainment Bachelor's Degree

From Table 4.3.8., a multiple linear regression was calculated predicting the change in total male education attainment based on employment, homeownership, and total male income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=16.024, P<.005)$, with an R^{2} of .128. The predicted education attainment is equal to $-1.997+9.709$ (CDBG) +7.064 (Location) -.010 (Employment) +.029 (Homeownership) + . 165 (Income).
R^{2} is .128 and Adjusted R^{2} is .120. Since the higher the R^{2} the better the fit of the model, this relationship is not a strong fit. Adjusted R^{2} indicates that only 12.0% of the variation in male educational attainment can be attributed to the other five variables. The hypothesis that male educational attainment change is related to employment is negative, but homeownership and income at or below the poverty level is positive, so a relationship does exist. The coefficient table shows that CDBG is positive (9.709) but barely significant (.001). Location is positive (16.618) but not significant (.014). Employment is a positive relationship (.003) but not significant (.853). Homeownership is also positive relationship (.035), but not significant (.076). Income at or below poverty levels is positive (.468) and significant (.000).

a. Predictors: (Constant), Female High School Graduate (Equivalency) Diff., Dummy

Variable B City, Housing Homeownership Diff., Dummy Variable A CDBG, Female Income
\& lt; poverty Diff.

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15932209.172	5	3188441.834	123.381	. $000{ }^{\text {b }}$
	Residual	14075186.984	545	25826.031		
	Total	30007396.156	550			

a. Dependent Variable: Female Employment Diff.
b. Predictors: (Constant), Female High School Graduate (Equivalency) Diff., Dummy Variable B City. Housing Homeownership Diff., Dummy Variable A CDBG, Female Income \<, poverty Diff.

a. Dependent Variable: Female Employment Diff.

Table 4.3.9 Change in Total Female Employment Multiple Regression with High School Diploma
From Table 4.3.9., a multiple linear regression was calculated predicting the change in total female employment based on female education attainment of "high school diploma", homeownership, and total female income at or below the poverty from 2000 to 2010 census year. A significant regression was found $(F(5,545)=123.381, P<.005)$, with an R^{2} of .531 . The predicted employment is equal to $33.147+36.687$ (CDBG) -32.434 (Location) +.683 (Homeownership) - . 030 (Income) + . 065 (High School Diploma).
R^{2} is .531 and Adjusted R^{2} is .527 . Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 52.7% of the variation in female employment can be attributed to the other five variables. The hypothesis that female employment change is related to homeownership and educational attainment is positive, but income at or below the poverty level is negative so a relationship does exist. The coefficient table shows that CDBG is positive (36.687) but significant (.000). Location is negative (-16.618) but not significant (.028). Homeownership is a positive relationship (.683) and
significant (.000). Income at or below the poverty level is a negative relationship (-.030), but not significant (.701). Educational attainment is positive (.065) but not significant (.479).

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.729^{3}$. 531	. 527	160.712

a. Predictors: (Constant), Female Bachelor's Degree Diff., Dummy Variable B City, Housing

Homeownership Diff., Female Income \&itt; poverty Diff., Dummy Variable A CDBG

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15930886.713	5	3186177.343	123.359	. $000{ }^{\text {b }}$
	Residual	14076509.443	545	25828.458		
	Total	30007396.156	550			

a. Dependent Variable: Female Employment Diff.
b. Predictors: (Constant), Female Bachelor's Degree Diff., Dummy Variable B City. Housing Homeownership Diff., Female

Income \⁢ poverty Diff., Dummy Variable A CDBG

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	34.461	11.346		3.037	. 003
	Dummy Variable A CDBG	38.017	7.290	. 180	5.215	. 000
	Dummy Variable B City	-32.766	14.719	-. 068	-2.226	. 026
	Housing Homeownership Diff.	. 685	. 039	. 624	17.703	. 000
	Female Income \& It; poverty Diff.	. 018	. 071	. 008	.256	. 798
	Female Bachelor's Degree Diff.	-. 079	. 118	-. 022	-. 670	503

a. Dependent Variable: Female Employment Diff.

Table 4.3.10 Change in Total Female Employment Multiple Regression with Bachelor's Degree
From Table 4.3.10., a multiple linear regression was calculated predicting the change in total female employment based on female education attainment of "Bachelor's Degree", homeownership, and total female income at or below the poverty from 2000 to 2010 census year. A significant regression was found $(F(5,545)=123.359, P<.005)$, with an R^{2} of .531 .

The predicted employment is equal to $34.461+38.017$ (CDBG) -32.766 (Location) +.683 (Homeownership) - . 018 (Income) - . 079 (Bachelor's Degree).
R^{2} is .531 and Adjusted R^{2} is .527 . Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 52.7% of the variation in female educational attainment can be attributed to the other five variables. The hypothesis that female employment change is related to homeownership and income is positive, but educational attainment is negative, so a relationship does exist. The coefficient table shows that CDBG is positive (38.017) and significant (.000). Location is negative (-32.766) but not significant (.026). Homeownership is a positive relationship (.685) and significant (.000). Income at or below the poverty level is a positive relationship (.018), but not significant (.798). Educational attainment is a negative relationship (-.079) but also not significant (.503).

a. Predictors: (Constant), Female High School Graduate (Equivalency) Diff., Dummy

Variable B City, Female Employment Diff., Dummy Variable A CDBG, Female Income \⁢
poverty Diff.

a. Dependent Variable: Housing Homeownership Diff.
b. Predictors: (Constant), Female High School Graduate (Equivalency) Diff., Dummy Variable B City. Female Employment

Diff., Dummy Variable A CDBG, Female Income \&ilt; poverty Diff.

a. Dependent Variable: Housing Homeownership Diff.

Table 4.3.11 Change in Total Female Homeownership Multiple Regression with High School Diploma
From Table 4.3.11., a multiple linear regression was calculated predicting change in total female homeownership based on female education attainment of "High school", employment and total female income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=137.331, P<.005)$, with an R^{2} of .558 . The predicted homeownership is equal to $-15.450+39.930(C D B G)+22.552$ (Location) +.535 (Employment) +.139 (Income) - 040 (High School).
R^{2} is .558 and Adjusted R^{2} is .553 . Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 55.3% of the variation in female homeownership can be attributed to the other five variables. The hypothesis that female homeownership change is related to employment and income is positive, but educational attainment is negative, so a relationship does exist. The coefficient table shows that CDBG is positive (39.930) and significant (.000). Location is positive (22.552) but not significant (.085). Employment is a positive relationship (.535) and significant (.000). Income at or below the poverty level is a positive relationship (.139), but not significant (.046). Educational attainment is a negative relationship (-.040) but also not significant (.623).

Model Summary				
Model				
	R	R Square	Adjusted R Square	Estror of the
1	$.749^{2}$.560		Estimate

a. Predictors: (Constant), Female Bachelor's Degree Diff., Dummy Variable B City. Female

Employment Diff., Female Income \<, poverty Diff., Dummy Variable A CDBG

a. Dependent Variable: Housing Homeownership Diff.
b. Predictors: (Constant), Female Bachelor's Degree Diff., Dummy Variable B City. Female Employment Diff., Female Income
\<, poverty Diff., Dummy Variable A CDBG

a. Dependent Variable: Housing Homeownership Diff.

Table 4.3.12 Change in Total Female Homeownership Multiple Regression with Bachelor's Degree
From Table 4.3.12., a multiple linear regression was calculated predicting change in total female homeownership based on female education attainment of "Bachelor's Degree", employment and total female income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=138.872, P<.005)$, with an R^{2} of .560 . The predicted homeownership is equal to $-16.372+37.698$ (CDBG) +21.750 (Location) +.533 (Employment) +.076 (Income) +198 (Bachelor's Degree).
R^{2} is .560 and Adjusted R^{2} is .556. Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 55.6% of the variation in female homeownership can be attributed to the other five variables. The hypothesis that female homeownership change is related to employment, income and educational attainment is positive, so a relationship does exist. The coefficient table shows that CDBG is positive (37.698) and significant (.000). Location is positive (21.750) but not significant (.095). Employment is a positive relationship (.533) and significant (.000). Income at or below the poverty level is a positive relationship (.076), but not significant (.226). Educational attainment is a positive relationship (.198) but also not significant (.057).

a. Predictors: (Constant), Female High School Graduate (Equivalency) Diff., Dummy

Variable B City. Female Employment Diff., Dummy Variable A CDBG, Housing
Homeownership Diff.

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2297175.372	5	459435.074	60.621	. $000{ }^{\text {b }}$
	Residual	4130473.335	545	7578.850		
	Total	6427848.708	550			

a. Dependent Variable: Female Income \⁢ poverty Diff.
b. Predictors: (Constant), Female High School Graduate (Equivalency) Diff., Dummy Variable B City, Female Employment

Diff., Dummy Variable A CDBG, Housing Homeownership Diff.

a. Dependent Variable: Female Income \⁢ poverty Diff.

Table 4.3.13 Change in Total Female Income at or below Poverty Level Multiple Regression with High School Diploma

Table 4.3.13., a multiple linear regression was calculated predicting the change in total female income at or below the poverty level based on female education attainment of "High School", employment and homeownership from 2000 to 2010 census year. A significant regression was found $(F(5,545)=60.621, P<.005)$, with an R^{2} of .357 . The predicted income change is equal to $-14.498+2.854$ (CDBG) +17.201 (Location) -.009 (Employment) +.052 (Homeownership) + . 643 (High School diploma).
R^{2} is .357 and Adjusted R^{2} is .351 . Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 35.1% of the variation in female income at or below the poverty level can be attributed to the other five variables. The hypothesis that female income change is related to employment is negative, but homeownership and educational attainment is positive, so a relationship does exist. The coefficient table shows that CDBG is positive (2.854) and not significant (.481). Location is also positive (17.201) but not significant (.032). Employment is a negative relationship (-.009) and not significant (.701). Homeownership is a positive relationship (.052) and not significant (.046). Educational attainment is a positive relationship (.643) and significant (.000).

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	$.447^{\circ}$.200		97.1333

a. Predictors: (Constant), Female Bachelor's Degree Diff., Dummy Variable B City, Female

Employment Diff., Dummy Variable A CDBG, Housing Homeownership Diff.

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1285640.168	5	257128.034	27.253	. $000{ }^{\text {b }}$
	Residual	5142008.540	545	9434.878		
	Total	6427648.708	550			

a. Dependent Variable: Female Income \⁢ poverty Diff.
b. Predictors: (Constant), Female Bachelor's Degree Diff., Dummy Variable B City. Female Employment Diff., Dummy Variable

A CDBG, Housing Homeownership Diff.

a. Dependent Variable: Female Income alt; poverty Diff.

Table 4.3.14 Change in Total Female Income at or below Poverty Level Multiple Regression with Bachelor's Degree

From Table 4.3.14., a multiple linear regression was calculated predicting the change in total female income at or below the poverty level based on female education attainment of "Bachelor's Degree", employment and homeownership from 2000 to 2010 census year. A significant regression was found $(F(5,545)=27.253, P<.005)$, with an R^{2} of .200. The predicted income change is equal to $-4.208+7.455(C D B G)+8.220$ (Location) +.007 (Employment) +.035 (Homeownership) +614 (Bachelor's Degree) .
R^{2} is .200 and Adjusted R^{2} is .193 . Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 19.3% of the variation in
female income at or below the poverty level can be attributed to the other five variables. The hypothesis that female income change is related to employment, homeownership and educational attainment is supported with a positive, so a relationship does exist. The coefficient table shows that CDBG is positive (7.455) and not significant (.098). Location is also positive (8.220) but not significant (.358). Employment is a positive relationship (.007) and not significant (.798). Homeownership is a positive relationship (.035) and not significant (.226). Educational attainment is a positive relationship (.614) and significant (.000).

Model Summary							
Model				Std. Error of the			
	R	R Square	Adjusted R Square	Estimate			
1	$.596^{\mathrm{a}}$.355					

> a. Predictors: (Constant), Female Income \< poverty Diff., Dummy Variable B City. Female
> Employment Diff., Dummy Variable A CDBG, Housing Homeownership Diff.

a. Dependent Variable: Female High School Graduate (Equivalency) Diff.
b. Predictors: (Constant), Female Income \< poverty Diff., Dummy Variable B City, Female Employment Diff., Dummy

Variable A CDBG, Housing Homeownership Diff.

a. Dependent Variable: Female High School Graduate (Equivalency) Diff.

Table 4.3.15 Change in Total Female Education Attainment High School

From Table 4.3.15., a multiple linear regression was calculated predicting the change in total female education attainment based on employment, homeownership and total female income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=60.116, P<.005)$, with an R^{2} of .355 . The predicted education attainment is equal to $18406+10.891(C D B G)+-12.054$ (Location) +.014 (Employment) -.011 (Homeownership) +.477 (Income).
R^{2} is .355 and Adjusted R^{2} is .350. Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 35.0% of the variation in female education attainment of a high school diploma can be attributed to the other five variables. The hypothesis that female education attainment change is related to employment and income with a positive relationship, whereas homeownership is a negative relationship, so a relationship does exist. The coefficient table shows that CDBG is positive (10.891) and not significant (.002). Location is negative relationship (-12.054) but also not significant (.081). Employment is a positive relationship (.014) and not significant (.479). Homeownership is a negative relationship (-.011) and not significant (.623). Educational attainment is a positive relationship (.477) and significant (.000).

a. Predictors: (Constant), Female Income \< poverty Diff., Dummy Variable B City. Female Employment Diff., Dummy Variable A CDBG, Housing Homeownership Diff.

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	524050.811	5	104810.162	30.589	. $000{ }^{\text {b }}$
	Residual	1867383.969	545	3426.393		
	Total	2391434.780	550			

a. Dependent Variable: Female Bachelor's Degree Diff.
b. Predictors: (Constant), Female Income \⁢ poverty Diff., Dummy Variable B City, Female Employment Diff., Dummy

Variable A CDBG, Housing Homeownership Diff.

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients\qquad Beta	t	Sig.
		B	Std. Error			
1	(Constant)	1.459	4.167		. 350	. 726
	Dummy Variable A CDBG	7.848	2.700	. 139	2.907	. 004
	Dummy Variable B City	5.786	5.380	. 043	1.072	. 284
	Female Employment Diff.	-. 010	. 016	-. 037	-. 670	. 503
	Housing Homeownership Diff.	. 034	. 018	. 109	1.911	. 057
	Female Income \⁢ poverty Diff.	223	. 024	366	9.297	. 000

a. Dependent Variable: Female Bachelor's Degree Diff.

Table 4.3.16 Change in Total Female Education Attainment Bachelor's Degree

From Table 4.3.16., a multiple linear regression was calculated predicting the change in total female education attainment based on employment, homeownership and total female income at or below the poverty level from 2000 to 2010 census year. A significant regression was found $(F(5,545)=30.589, P<.005)$, with an R^{2} of .219. The predicted education attainment is equal to $1.459+7.848(C D B G)+5.766$ (Location) -.010 (Employment) +.034 (Homeownership) +.223 (Income).
R^{2} is .219 and Adjusted R^{2} is .212. Since the higher the R^{2} the better the fit of the model, this relationship is not a really strong fit. Adjusted R^{2} indicates that only 21.2% of the variation in female education attainment of a Bachelor's degree can be attributed to the other five variables. The hypothesis that female education attainment change is related to employment is a negative relationship, homeownership and income with a positive relationship, so a relationship does exist. The coefficient table shows that CDBG is positive (7.848) and not significant (.004). Location is also a positive relationship (5.766) but also not significant (.284). Employment is a negative relationship (-.010) and not significant (.503). Homeownership is a positive relationship (.034) and not significant (.057). Educational attainment is a positive relationship (.223) and significant (.000).

	R^{2}	Adj. R^{2}	Coeff. F	ANOVA Sig	Constant (B)	Constant (t)	Sig	CDBG (B)	CDBG (t)	Sig	Location (B)	Location (t)	Sig	Empl (B)	Empl (t)	Sig	Homeowner (B)	Homeowner (t)	Sig	Income (B)	Income (t)	Sig	Educatio $n(B)$	Educatio $\mathrm{n}(\mathrm{t})$	Sig
Empl ${ }_{\text {main } 13}$	0.400	0.395	72.756	0.000	65.521	4.289	0.000	52.993	5.498	0.000	-23.280	- 1.191	0.234				0.613	12.142	0.000	0.085	0.659	0.510	0.023	0.185	0.853
Emplmans	0.401	0.396	72.992	0.000	65.807	4.422	0.000	54.272	5.584	0.000	-22.710	-1.167	0.244				0.617	12.246	0.000	0.117	0.99	0.323	0.130	0.862	0.369
$\mathrm{Hm}_{\text {main }} 18$	0.450	0.445	89.120	0.000	-25.618	-2.203	0.028	58.344	8.315	0.000	21.310	1.450	0.148	0.347	12.142	0.000				-0.185	-1.910	0.057	0.164	1.779	0.076
$\mathrm{Hm} \mathrm{O}_{\text {mat } 5}$	0.450	0.445	89.145	0.000	-20.658	-1.818	0.07	56.983	8.01	0.000	17.141	1.170	0.242	0.350	12.246	0.000				-0.142	-1.596	0.111	0.204	1.798	0.073
Income $_{\text {midis }}$	0.270	0.263	40.292	0.000	-14.740	-2.892	0.004	11.732	3.625	0.000	26.088	4.091	0.000	0.009	0.659	0.510	-0.036	-1.910	0.057				0.423	11.603	0.000
Income mabs	0.130	0.122	16.219	0.000	-3.069	-0.561	0.575	13.309	3.733	0.000	20.839	2.984	0.003	0.015	0.990	0.323	-0.033	-1.596	0.111				0.267	5.004	0.000
$\mathrm{Edu}_{\text {mala } 15}$	0.234	0.227	33.252	0.000	27.706	5.255	0.000	3.788	1.100	0.272	-16.618	-2.453	0.014	0.003	0.185	0.853	0.035	1.779	0.076	0.468	11.603	0.000			
Edumans	0.128	0.120	16.024	0.000	-1.997	-0.464	0.643	9.709	3.459	0.001	7.064	1.278	0.202	-0.010	-0.862	0.389	0.029	1.798	0.073	0.165	5.004	0.000			
Emplamanis	0.531	0.527	123.381	0.000	33.147	2.888	0.004	36.687	5.018	0.000	-32.434	-2.200	0.028				0.683	17.710	0.000	0.030	-0.385	0.701	0.065	0.708	0.479
Empl ${ }_{\text {maxa }}$ as	0.531	0.527	123.359	0.000	34.461	3.037	0.003	38.017	5.215	0.000	-32.766	-2.226	0.026				0.655	17.703	0.000	0.018	0.256	0.798	0.079	0.670	0.503
$\mathrm{HmO}_{\text {mamis }}$	0.558	0.553	137.331	0.000	-15.450	-1.513	0.131	39.930	6.244	0.000	22.552	1.725	0.085	0.535	17.710	0.000				0.139	2.000	0.046	-0.040	0.491	0.623
$\mathrm{HmO}_{\text {Hemis }} \mathrm{s}$	0.560	0.556	138.872	0.000	-16.372	-1.626	0.105	37.698	5.9	0	21.750	1.672	0.095	0.533	17.703	0.000				0.076	1.211	0.226	0.198		0.057
Income $_{\text {framior }}$	0.357	0.351	60.621	0.000	-14.498	-2.326	0.02	2.854	0.705	0.481	17.201	2.153	0.032	-0.009	-0.305	0.701	0.052	2.000	0.046						
Income $_{\text {mamus }}$	0.200	0.193	27.253	0.000	4.206	-0.608	0.543	7.455	1.656	0.098	8.220	0.921	0.358	0.007	0.256	0.798	0.035	1.211	0.226						
	0.355	0.350	60.116	0.000	18.408	3.45	0.001	10.891	3.151	0.002	-12.054	-1.75	0.081	0.014	0.708	0.479	-0.011	-0.491	0.623	0.477	15.526	0.000			
	0.219	0.212	30.509	0.000	1.459	0.35	0.726	7.848	2.907	0.004	5.766	1.072	0.284	-0.010	-0.670	0.503	0.034	1.911	0.057	0.223	9.297	0.000			

Table 4.3.17 Change Regression Summary

In summary, the above table encapsulates the empirical evidence that Block Groups (BGs) receiving CDBG funds have mixed results. For males, BGs with CDBG show increased positive change in employment levels with both high school diploma and bachelor's degree. The total change of educational attainment difference is 9.709 for BGs receiving CDBG funds increasing attainment of a Bachelor's degree as compared to only 3.788 for high school completion. This relates to the other variables directly. Employment change for males is a total of 54.272 for BG's receiving CDBG funds with a Bachelor's degree and 52.993 for employment change of a high school diploma. Also for males, homeownership with BGs receiving CDBG for high school completion was 58.344 and only 56.983 for Bachelor's degree. Income change for BG's receiving CDBG funds for Bachelor's degree was 13.309 and only 11.732 for BGs receiving CDBG funds for high school completion.

For females, BGs with CDBG show increased positive change in employment levels with both high school diploma and bachelor's degree. The total change of educational attainment difference for BGs receiving CDBG funds increasing attainment of a high school diploma is 10.891 and 7.848 for Bachelor's degree. This relates to the other variables directly.

Employment change for females is a total of 38.017 for BG's receiving CDBG funds with a Bachelor's degree and 36.687 for employment change of a high school diploma. Also for females, homeownership with BGs receiving CDBG for high school completion was 39.930 and
only 37.698 for Bachelor's degree. Income change for BG's receiving CDBG funds for Bachelor's degree was 7.445 and only 2.854 for BGs receiving CDBG funds for high school completion.

4.4 Descriptive Statistics Comparison of Minorities Employment Change Compared to White for Census 2000 and 2010 and Block Groups Receiving CDBG funds and those Block Groups Not Receiving CDBG Funds

The primary goal of the targeting of specific areas for CDBG funds is to improve the living conditions for low-income minority population. One of the best predictors for improvement areas is employment opportunities. Since the areas of this research were in ZCTA that included a combination of whites, African Americans, Hispanics, and Asians, one method of exploration is to evaluate and determine the comparison of the various minority populations against the change in the white population within the same areas receiving CDBG funds. Using a pairedsample examination of the white population change, a one-sample statistical examination was then employed to examine the change of each minority, by gender (sex) and race (ethnicity) against that change in the white population. The following are the results:

Table 4.4120002010 Paired-Sample T Test of White Males in BG's with Grant

From Table 4.4.1., a paired-samples t test was calculated to compare the mean employment change for white males from census 2000 and 2010. The mean for 2000 was 72.00 ($s d=$ 152.504), and the mean for 2010 was 207.36 ($s d=170.403$). A significant increase from 2000 to 2010 was found mean 135.369, $(t(206)=9.211, p<.05$.

One-Sample Statistics								

Table 4.4.2 20002010 One-Sample T Test Black Males in BG's with Grant as compared to White

From Table 4.4.2., a single-sample t test compared the employment mean of Black males to the employment population mean change value of 135.369 for white males. A significant difference was found $(t(255)=-18.62, p<.05$ for census 2000 and $(t(205)=-14.041, p<.05$ for census 2010. The sample employed mean of 46.21 for $2000(s d=76.589)$ and the sample mean of 60.96 for 2010 ($s d=60.96$) was significantly less than the employed white male population mean of 135.369.

One-Sample Statistics				
	N	Mean	Std. Deviation	Std. Error Mean
2000 Total Male (Hispanic) population in labor force (employed) $\quad 16+$	256	50.32	94.106	5.882
2010 Total Male (Hispanic) population in labor force (employed) 15-64	206	128.69	125.332	8.732

One-Sample Test

Table 4.4.3 20002010 One-Sample T Test Hispanic Males in BG’s with Grant as compared to White

From Table 4.4.3., a single-sample t test compared the employment mean of Hispanic males to the employment population mean change value of 135.369 for white males. A significant difference was found $(t(255)=-14.460, p<.05$ for census 2000 and $(t(205)=-.764, p<.05$ for census 2010. The sample employed mean of 50.32 for 2000 ($s d=94.106$) and the sample mean of 128.69 for 2010 ($s d=125.332$) was significantly less than the employed white male population mean of 135.369 .

| | One-Sample Statistics | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | | |

Table 4.4.4 20002010 One-Sample T Test Asian Males in BG's with Grant as compared to White
From Table 4.4.4., a single-sample t test compared the employment mean of Asian males to the employment population mean change value of 135.369 for white males. A significant difference was found $(t(255)=-203.848, p<.05$ for census 2000 and $(t(205)=-70.432, p<.05$ for census 2010. The sample employed mean of 3.01 for 2000 ($s d=10.389$) and the sample mean of 10.83 for $2010(s d=25.378)$ was significantly less than the employed white male population mean of 135.369 .

Table 4.4.5 2000 One-way NOVA Black/Hispanic/Asian Males in BG's with Grant compared to White

ANOVA						
		Sum of Squares	df	Mean Square	F	Sig.
2010 Total Male (African American) population in labor force (employed) $\quad 15-64$	Between Groups Within Groups Total	853439.550 332426.139 1185865.689	164 41 205	$\begin{aligned} & 5203.900 \\ & 8107.955 \end{aligned}$. 642	. 972
2010 Total Male (Hispanic) population in labor $\text { force (employed) } \quad 15-64$	Between Groups Within Groups Total	3023369.316 196796.417 3220165.733	164 41 205	18435.179 4799.913	3.841	. 000
2010 Total Male (Asian) population in labor force (employed) 15-64	Between Groups Within Groups Total	$\begin{array}{r} 122720.055 \\ 9304.333 \\ 132024.388 \\ \hline \end{array}$	164 41 205	$\begin{aligned} & 748.293 \\ & 226.935 \end{aligned}$	3.297	. 000

Table 4.4.6 2010 One-way NOVA Black/Hispanic/Asian Males in BG's with Grant as compared to White

Table 4.4.7 20002010 Paired-Sample T test of White Females in BG's with Grant funds

From Table 4.4.7., a paired-samples t test was calculated to compare the mean employment change for white females from census 2000 and 2010. The mean for 2000 was 52.25 (sd=
122.270), and the mean for 2010 was 168.34 ($s d=173.638$). A significant increase from 2000 to 2010 was found mean $116.092(t(206)=8.856, p<.05$.

Table 4.4.8 20002010 One-Sample T Test Black Females in BG's with Grant as compared to White

Table 4.4.8., a single-sample t test compared the employment mean of Black females to the employment population mean change value of 116.092 for white females. A significant difference was found $(t(255)=-8.958, p<.05$ for census 2000 and $(t(205)=-7.204, p<.05$ for census 2010. The sample employed mean of 59.33 for $2000(s d=101.385)$ and the sample mean of 71.98 for 2010 ($s d=87.886$) was significantly less than the employed white female population mean of 116.092 , and $t 8.856$ for white females compared to negative t values above.

Table 4.4.9 20002010 One-Sample T Test Hispanic Females in BG's with Grant as compared to White

Table 4.4.9., a single-sample t test compared the employment mean of Hispanic females to the employment population mean change value of 116.092 for white females. A significant difference was found $(t(255)=-31.299, p<.05$ for census 2000 and $(t(205)=-9.699, p<.05$ for census 2010. The sample employed mean of 26.20 for $2000(s d=45.951)$ and the sample mean of 70.67 for 2010 ($s d=67.2152$) was significantly less than the employed white female population mean of 116.092 , and $t 8.856$ for white females compared to negative t values above.

One-Sample Test

	Test Value $=116.092$					
		df	Sig. (2-tailed)	Mean Difference	95\% Confidence Interval of the Difference	
	t				Lower	Upper
2000 Total Female (Asian) population in labor force (employed) $\quad 16+$	-213.116	255	. 000	-113.780	-114.83	-112.73
2010 Total Female (Asian) population in labor force (employed) 15-64	-64.481	205	. 000	-105.747	-108.98	-102.51

Table 4.4.10 20002010 One-Sample T Test Asian Females in BG's with Grant as compared to White

Table 4.4.10., a single-sample t test compared the employment mean of Asian females to the employment population mean change value of 116.092 for white females. A significant difference was found $(t(255)=-213.116, p<.05$ for census 2000 and $(t(205)=-64.481, p<.05$ for census 2010. The sample employed mean of 2.31 for $2000(s d=8.542)$ and the sample mean of 10.34 for 2010 ($s d=23.538$) was significantly less than the employed white female population mean of 116.092 , and and $t 8.856$ for white females compared to negative t values above.

ANOVA						
		Sum of Squares	df	Mean Souare	F	Sig.
2000 Total Female (African American) population in labor force (employed) $16+$	Between Groups Within Groups Total	1513169.435 1107965.002 2621134.438	92 163 255	16447.494 6797.331	2.420	. 000
2000 Total Female (Hispanic) population in labor $\text { force (employed) } \quad 16+$	Between Groups Within Groups Total	515561.530 22857.908 538419.438	92 163 255	5603.930 140.233	39.962	. 000
2000 Total Female (Asian) population in labor force (employed) 16+	Between Groups Within Groups Total	$\begin{array}{r} 18547.108 \\ 59.892 \\ \\ 18607.000 \\ \hline \end{array}$	92 163 255	201.599 $.367$	548.666	. 000

Table 4.4.11 2000 One-way NOVA Black/Hispanic/Asian Females in BG's with Grant as compared to White Female

ANOVA						
		Sum of Squares	df	Mean Square	F	Sig.
2010 Total Female (African American)	Between Groups	1317721.489	156	8446.933	1.558	. 037
population in labor force (employed) $\quad 15-64$	Within Groups	265698.433	49	5422.417		
	Total	1583419.922	205			
2010 Total Female (Hispanic) population in labor force (employed) $\quad 15-64$	Between Groups	806816.237	156	5171.899	2.123	. 001
	Within Groups	119349.317	49	2435.700		
	Total	926165.553	205			
2010 Total Female (Asian) population in labor	Between Groups	109180.446	156	699.875	7.797	. 000
force (employed) 15-64	Within Groups	4398.083	49	89.757		
	Total	113578.529	205			

Table 4.4.12 2010 One-way NOVA Black/Hispanic/Asian Females in BG's with Grant as compared to White Female

As an alternate methodology to examine the potential positive influence of the targeting of specific areas for CDBG funds as it improves the living conditions for low-income minority population is to perform the same paired statistical analysis on the BGs within a ZCTA not receiving CDBG funds. Again, I will be examining the various minority populations against the change in the white population within the same areas not receiving CDBG funds. Using a paired-sample examination of the white population change, a one-sample statistical examination was then employed to examine the change of each minority, by gender (sex) and race (ethnicity) against that change in the white population. The following are the results:

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	2010 Total Male (White) population in labor force (employed) 15-64 2000 Total Male (White) population in labor force (employed) 16+	$\begin{aligned} & 186.76 \\ & 102.30 \end{aligned}$	$\begin{gathered} 433 \\ 433 \end{gathered}$	$\begin{aligned} & 154.814 \\ & 131.809 \end{aligned}$	7.440 6.334

Paired Smples Test

Table 4.4.13 20002010 Paired-Sample T Test of White Males in BG's without Grant funds
From Table 4.4.13., a paired-samples t test was calculated to compare the mean employment change for white males from census 2000 and 2010in BGs without grant. The mean for 2000 was 102.30 ($s d=131.089$), and the mean for 2010 was 186.76 ($s d=154.814$). A significant increase from 2000 to 2010 was found mean $84.460,(t(433)=9.598, p<.05$.

One-Sample Statistics						

One-Sample Test

	Test Value $=84.460$					
	t	df	Sig. (2-tailed)	Mean Difference	95\% Confidence Interval of the Difference	
					Lower	Upper
2000 Total Male (African American) population in labor force (employed) $\quad 16+$	-13.517	432	. 000	-43.328	-49.63	-37.03
2010 Total Male (African American) population in labor force (employed) $\quad 15.64$	-9.851	432	. 000	-32.857	-39.41	-26.30

Table 4.4.1420002010 One-Sample T Test Black Males in BG's without Grant as compared to White

From Table 4.4.14., a single-sample t test compared the employment mean of Black males to the employment population mean change value of $84.460,(t(433)=9.598$ for white males in BGs without grant. A significant difference was found $(t(432)=-13.517, p<.05$ for census 2000 and $(t(432)=-9.851, p<.05$ for census 2010. The sample employed mean of 41.13 for 2000 ($s d=66.703$) and the sample mean of 51.60 for 2010 ($s d=69.402$) was significantly less than the employed white male population mean of 84.460, $(t(433)=9.598$.

	N	Mean	Std. Deviation	Std. Error Mean
2000 Total Male (Hispanic) population in labor force (employed) 16+	433	62.89	99.370	4.775
2010 Total Male (Hispanic) population in labor force (employed) 15-64	433	133.19	140.767	6.765

One-Sample Test

Table 4.4.15 20002010 One-Sample T Test Hispanic Males in BG's without Grant as compared to White

From Table 4.4.15., a single-sample t test compared the employment mean of Hispanic males to the employment population mean change value of $84.460,(t(433)=9.598$ for white males. A significant difference was found $(t(432)=-4.517, p<.05$ for census 2000 and $(t(432)=7.204, p$ $<.05$ for census 2010. The sample employed mean of 62.89 for $2000(s d=99.370)$ was significantly less than the employed white male population mean of $84.460,(t(433)=9.598$.and the sample mean of 133.19 for $2010(s d=140.767)$ was significantly larger than the employed white male population mean of $84.460,(t(433)=9.598$.

Table 4.4.16 20002010 One-Sample T Test Asian Males in BG's without Grant as compared to White

From Table 4.4.16., a single-sample t test compared the employment mean of Asian males to the employment population mean change value of $84.460,(t(433)=9.598$ for white males. A significant difference was found $(t(432)=-95.975, p<.05$ for census 2000 and $(t(432)=-$ $67.866, p<.05$ for census 2010. The sample employed mean of 4.49 for 2000 ($s d=17.339$) and the sample mean of 8.25 for $2010(s d=23.368)$ was significantly less than the employed white male population mean of $84.460,(t(433)=9.598$.

ANOVA

		Sum of Squares	df	Mean Souare	F	Sig.
2000 Total Male (Afican American) population in labor focce (employed) $\quad 16+$	Between Groups Within Groups Total	1178452.001 743655.496 1922107.497	196 236 432	$\begin{aligned} & 6012.510 \\ & 3151.083 \end{aligned}$	1.908	. 000
2000 Total Male (Hispanic) population in Iabor force (employed) 16+	Between Groups Within Groups Total	3348457.914 917263.984 4265721.898	196 236 432	17083.969 3886.712	4.395	. 000
2000 Total Male (Asian) population in labor force (employed) 16+	Between Groups Within Groups Total	115224.537 14647.667 129872.203	196 236 432	$\begin{gathered} 587.880 \\ 62.066 \end{gathered}$	9.472	. 000

Table 4.4172000 One-way NOVA Black/Hispanic/Asian Males in BG's without Grant as compared to White

ANOVA					
	Sum of Squares	df	Mean Souare	F	Sig.
2010 Total Male (African American) population in Between Groups labor focce employed) $\quad 15.64 \quad$ Within Groups Total	1359074.368 721725.309 2080799.677	254 178 432	5350.686 4054.637	1.320	. 024
2010 Total Male (Hisparic) population in labor Between Groups focce (employed) 15.64 Within Groups Total	6485874.897 2074410.808 8560285.704	254 178 432	25534.941 11653.993	2.191	. 000
2010 Total Male Assian) population in labor focce Between Groups (employed) $15.64 \quad$ Within Groups Total	157384.426 78514.133 225698.559	254 178 432	619.624 441.091	1.405	. 008

Table 4.4.18 2010 One-way NOVA Black/Hispanic/Asian Males in BG's without Grant as compared to White

Paired Samples Test

Table 4.4.19 20002010 Paired-Sample T test of White Females in BG's without Grant

From Table 4.4.19., a paired-samples t test was calculated to compare the mean employment change for white females from census 2000 and 2010. The mean for 2000 was 79.67 (sd= 112.273), and the mean for 2010 was 139.69 ($s d=140.066$). A significant increase from 2000 to 2010 was found mean 60.018, $(t(433)=7.539), p<.05$.

One.Sample Test

Table 4.4.20 20002010 One-Sample T Test Black Females in BG’s without Grant as compared to White

A single-sample t test compared the employment mean of Black females to the employment population mean change value of $60.018,(t(433)=7.539)$ for white females in BGs not receiving grant. A significant difference was found $(t(432)=-1.907, p<.05$ for census 2000 and $(t(432)=1.386, p<.05$ for census 2010. The sample employed mean of 51.89 for 2000 ($s d=$ 88.660) was significantly less than the employed white female population mean of 60.018 , $(t(433)=7.539)$ and the sample mean of 66.31 for $2010(s d=94.523)$ was significantly greater than the employed white female population mean of 60.018, $(t(433)=7.539)$.

One-Sample Test

Table 4.4.21 20002010 One-Sample T Test Hispanic Females in BG’s without Grant as compared to White

From Table 4.4.21., a single-sample t test compared the employment mean of Hispanic females to the employment population mean change value of $60.018(t(433)=7.539)$ for white females in BGs not receiving grant. A significant difference was found $(t(432)=-12.635, p<.05$ for census 2000 and $(t(432)=92.837, p<.05$ for census 2010. The sample employed mean of 31.85 for 2000 ($s d=46.387$) was significantly less than the employed white female population mean of 60.018, $(t(433)=7.539)$ and the sample mean of 71.16 for $2010(s d=81.707)$ was significantly greater than the employed white female population mean of $60.018,(t(433)=$ 7.539).

Table 4.4.22 20002010 One-Sample T Test Asian Females in BG’s without Grant as compared to White

For Table 4.4.22., a single-sample t test compared the employment mean of Asian females to the employment population mean change value of 60.018 , $(t(433)=7.539)$ for white females BGs not receiving grant. A significant difference was found $(t(432)=-83.596, p<.05$ for census 2000 and $(t(432)=-59.081, p<.05$ for census 2010. The sample employed mean of 3.60 for $2000(s d=14.044)$ and the sample mean of 7.07 for $2010(s d=18.649)$ was significantly less than the employed white female population mean of $60.018,(t(433)=7.539)$.

ANOVA						
		Sum of Squares	df	Mean Souare	F	Sig.
2000 Total Female (African American) population in labor force (employed) 16+	Between Groups Within Groups Total	1741724.255 1654082.858 3395807.113	174 258 432	10009.910 6411.174	1.561	. 001
2000 Total Female (Hispanic) population in labor $\text { force (employed) } \quad 16+$	Between Groups Within Groups Total	783469.985 146086.556 929556.540	174 258 432	4502.701 566.227	7.952	. 000
2000 Total Female (Asian) population in labor $\text { force (employed) } \quad 16+$	Between Groups Within Groups Total	64692.145 20511.933 85204.079	174 258 432	$\begin{gathered} 371.794 \\ 79.504 \end{gathered}$	4.676	. 000

Table 4.4.23 2000 One-way NOVA Black/Hispanic/Asian Females in BG's without Grant as compared to White Female

ANOVA						
		Sum of Squares	df	Mean Souare	F	Sig.
2010 Total Female (African American) population in labor force (employed) $\quad 15-64$	Between Groups Within Groups Total	2129127.186 1730638.098 385965.284	238 194 432	8945.913 8920.815	1.003	494
2010 Total Female (Hispanic) population in labor force (employed) $\quad 15-64$	Between Groups Within Groups Total	2339808.518 544222.803 2884031.321	238 194 432	9831.128 2805.272	3.505	. 000
2010 Total Female (Asian) population in labor force (employed) $\quad 15-64$	Between Groups Within Groups Total	131374.338 18863.583 150237.921	238 194 432	$\begin{aligned} & 551.993 \\ & 97.235 \end{aligned}$	5.677	. 000

Table 4.4.24 2010 One-way NOVA Black/Hispanic/Asian Females in BG's without Grant as compared to White Female

4.5 Conclusion and Policy Implication Summary

4.5.1. Findings for Research Question 1:

Do targeted areas receiving Community Development Block Grant (CDBG) funding experience more change in employment levels than the immediate surrounding neighborhoods areas not receiving CDBG funding?

The level of employment based on the respective census periods reviewed and evaluated for the respective census years of 2000 and 2010 were different for the targeted areas. From the paired samples, the employment mean for males for census 2000 and census 2010 in targeted areas in Block Groups (BG's) receiving CDBG funds was 254.947 ($s d=324.180$) and t of 11.287. For the areas not receiving CDBG funds the employment mean for males was 116.963 $(s d=249.115)$ and t of 9.770. The employment mean for females in targeted areas in Block Groups (BG’s) receiving CDBG funds was 201.214 ($s d=294.248$) and t of 9.815 . For the areas not receiving CDBG funds the employment mean for females was 168.991 ($s d=291.919$) and t of 12.046. The data can be seen in Tables 4.5.1, 4.5.2, 4.5.3, 4.5.4, 4.5.5 and 4.5.6 below.

20086EN 20036-N		2006GF	20086\%		20066 FN	20066-N		20086 FW ${ }^{\text {P }}$	2 2006COW BF		$20086 W^{\prime}$	20086F\%		20036FW	20006 FW	
WWMeara WMMean		WFMean	WFlman		BhMex	B4Mex		Mean	Nean		HM Vem	HW Mean		HFMeen	HFMexan	
Emplump Emplump		Emp/unemp	Emplnemp		Emp/henp	Emp/luemp		Emp/Unemp	Emplunemp		Empuluemp	Empluremp		Emplunemp	Emplunemp	
WGrant W/OGam		W/Garat	W/OGant		W/Gart	W/OGant		W/Gratt	W/GGant		W/Gait	WloGant		W/Gant	W/OGant	
761.45	22.285	15.44	56,7	230.65	5029	40.51	1965	5022	40.61	19.96	70.35	422	20.13	710.35	42.2	20.13
31.1 .51	11515	38059	21210	17.5	221.95	10.53	51.19	38833	250.11	$8: 2$	368.80	11738	1223	315.5	1184	9.1
	28875	${ }^{213} 1$	18.18	855	12895	8.0.06	4.88	18024	111.67	6.57	256	181.13	7.65	115.58	25.33	32.25
1.4.4 6.5	188	9.8	4.48	43	2029	13.11		2038	11.15	898	18.25	13.3	192	13	817	4.27

Table 4.5.1: Mean Employment/Unemployment for Males and Females by Race, With and Without Grant Fort Worth: 2000

200086 A 2008GOA	2000860 20006GOA	2000860 A	20008GOA		20008GABE	$2000860 A B F$		20086 CO	2000600		20008GDA	2000660 ${ }^{\text {a }}$	
WM Mean WM Mean	WFMean WFMean	BMMean	BMMean		Mean	Mean		HMM Meen	HM Meann		HFMeado	HFMedn	
Emp/Uemp Emp/Uemp	Imp/Unemp Emp/Unemp	Emp/Unemp	Emp/Unerrp		Emp/Unemp	Emp/Unemp		Emp/Unemp	Emp/Unemp		Emp/Unemp	Emp/Unemp	
W/Gant W/OGant	W/Grant W/OGrant	W/Giant	W/O Grant		W/Gratt	W/0Grant		W/Grant	W/OGrant		W/Grant	W/OGrant	
40.5	40.5	542.48	. 565.01	4253	54248	565.01	42.53	567.88	1715.83	. 174.95	577.88	.175.83	. 147.95
253	255.5	23265	266.52	2387	309.88	388.49	18.86	320.75	418.61	97.86	27.13	299.22	550,9
239	161.5	94.87	121.28	28.41	108.65	. 14.81	.36,16	176	2818.83	10588	8488	.106.33	214.5
27.5	94	22.99	21.9	0.18	32.74	221.51	11.23	12.5	24.78	1228	15.25	.12.61	284

Table 4.5.2: Mean Employment/Unemployment for Males and Females by Race, With and Without Grant Dallas: 2000

20106GFV	20106GFW		201086FW	20106GFW		201086FW	201006FW		201086 FW BF 201066FW BF			20108GFW	201066FW		20106GFW	201066FW	
WMMean	WMM Mean		WFMean	WFMean		BMMean	BMMean		Mean	Mean		HM Mean	HM Mean		HFMean	HFMean	
Emp/Uemp	Emp/Uemp		Emp/Unemp Emp/Unemp														
W/Grant	W/OGrant		W/ Grant	W/O Grant		W/ Grant	W/O Grant		W/Grant	W/OGrant		W/Grant	W/OGrant		W/Grant	W/OGrant	
745.05	.507.07	237.98	745.05	.501.07	237.98	347.12	257.36	89.76	347.12	257,36	89.76	344.47	366,43	. 1.96	34.47	346,43	1.96
372.67	.280,07	92.6	408.14	.299.85	108.29	240.54	288.18	32.36	309.79	252	55.79	34.27	292.5	48.71	288.8	.254,64	32.16
293.62	2232.93	60.69	281.67	204.22	77.45	14.5 .29	.98.45	46.84	161.42	. 158.91	2.51	24.67	226.36	16.31	93.07	.135.86	4278
98	.58.15	39.88	126.43	.9544	3104	10.75	. 110	9.25	149.08	98,18	50.8	99.53	81.91	1788	193.73	120.07	73.66

Table 4.5.3: Mean Employment/Unemployment for Males and Females by Race, With and Without Grant Fort Worth: 2010

2010860A 2010860A	20108GDA 201086DA	2010860A	201086DA		201086 DAP BF	$2010860 A B F$		2010860	2010860A		2010860A	201086D	
WM Mean WMM Mean	WFMean WFMean	BMMean	BMMean		Mean	Mean		HMMean	HMMean		HFMeat	HFMeatn	
Emp/Uemp Emp/Vemp	Emp/Unemp Emp/Unemp	Emp/Unemp	Emp/Unemp										
W/Grant W/0Grant	W/ Grant W/0Grant	W/Gratt	W/OGrant		W/Grant	W/OGrant		W/Grant	W/OGrant		W/Grant	W/OGrant	
40.5	40.5	379.28	288.48	90.8	379.28	288.48	90.8	642.5	818	24.5	64.5	8.6	24.5
253	255.5	250.5	2249.34	1.16	269.78	2887	1732	398.25	423.5	30.25	327.5	366.1	39.6
239	161.5	14.44	.123.07	21.37	148.72	-161,95	13.23	315.63	320.35	4.72	191.25	178.4	1285
27.5	94	106.67	122,55	20.88	121.06	. 125.66	4.6	100.13	. 140.05	29.92	1366.25	1888	52.45

Table 4.5.4: Mean Employment/Unemployment for Males and Females by Race, With and Without Grant
Dallas: 2010

2006B6W 201086FW		2008GFW	201086FW		200086FW	201066FW		20006FFW BF 2	20108GFW BF		2008GFW	201086FW		200086FW	201006FW	
WM Mean WM Mean		WFMean	WFMean		BMMean	BMMean		Mean	Mean		HMM Mean	HM Mean		HFM Mean	HFMean	
Emp/Uemp Emp/Vemp		EmpiUnemp	Emp/Unemp		Emp/Unemp	Emp/Unemp										
W/OGrant W/OGrant		W/OGrant	W/OGrant													
318.79 $\quad .507 .07$	11.72	58.79	5007.07	11.12	430.67	257,36	173.31	430.67	.267.36	17331	492.2	346.43	14.77	492.2	346.43	14.571
246.7 .280.07	33,37	212.09	299.85	277.76	180.56	208.18	27,62	250.11	.262	1.89	273.8	.292.5	18.7	273.8	.224,64	19.16
182 232.93	.50,93	158.18	20422	46.04	85,66	.98,45	13,39	117.67	. 168.91	4.24	181.33	.226.36	45.03	181.33	.135.86	45.47
$6.55 \quad 58.15$	51.6	54.48	. 95.44	89.98	13.17	. 110	.9688	11.39	.88,18	86.79	13.33	88.91	6838	13.35	. 120.07	06.74

Table 4.5.5: Mean Employment/Unemployment Difference for Males and Females by Race, Without Grant Fort Worth: 2000 and 2010

2000860A 2010060A	2000860 A 2010860A	200860A	201086DA		$2000860 A B F$	20108GOABF		2000860A	2010860 A		200860A	2010860	
WMMean WM Mean	WF Mean WFMean	BMMean	BMMean		Mean	Mean		HM Mean	HNM Mean		HFM Mean	HFMean	
Emp/Uemp Emp/Uemp	Emp/Unemp Emp/Unemp	Emp/Unemip	Emp/Unemp		Emp/Unemp	:mp/Unemp		Emp/Unemp	Emp/Unemp		Emp/Unemp	Emp/Unemp	
W/OGrant W/OGrant	W/OGrant W/OGrant	W/OGrant	W/OGrant										
40.5	40.5	585.01	288.48	288.53	588.01	288.48	288.53	715.83	818	9783	715.83	. 618	9788
253	255.5	256.52	.249,34	1.18	328.49	2887.1	4.399	418.61	423.5	489	299.22	367.1	.6988
239	161.5	121.28	.123.07	. 1.79	14.81	. 161.95	.17.14	281.83	320.35	38.52	106,33	178.4	. 12.07
27.5	94	21.9	.127.55	10565	21.51	. 12.666	. 10415	24.78	. 140.05	115.27	12.61	1188.7	176.09

Table 4.5.6: Mean Employment/Unemployment Difference for Males and Females by Race, Without Grant
Dallas: 2000 and 2010

The multiple regressions performed support the hypothesis. According to the empirical data in Table 4.3.17, employment change (increase) for both males and females was more significant (positive) in Block Groups (BGs) receiving CDBG funds than BG's within the same ZCTAs that did not receive CDBG funds. Employment for males in BGs receiving CDBG funds was greater for individuals that had a bachelor's degree in comparison to just a high school diploma. As included in the referenced table, males with a bachelor's degree employment level changed by 54.272 and for those males with a high school diploma, the change was 52.993. For females, the change was less, but still supported the difference in the two BGs. Females employment changed by 38.017 for those females with a bachelor's degree and 36.687 for those females
with a high school diploma. Although the empirical evidence supports the hypothesis, a more definitive analysis is required to determine the employment change by race and ethnicity.

The research unveiled a more definitive difference in the various races or ethnicities. The research found that the employment mean for White Males in BG's receiving CDBG funds was 135.369 ($s d=210.924$) and t of 9.211 . For the BG areas not receiving CDBG funds the employment mean for males was $84.460(s d=183.112)$ and t of 9.598 . The employment mean for White Females in targeted areas in Block Groups (BG's) receiving CDBG funds was 116.092 $(s d=188.156)$ and t of 8.856. For the areas not receiving CDBG funds the employment mean for White Females was 60.018 ($s d=165.654$) and t of 7.539. The comparison to the other minorities can be seen in Tables 4.5.7 and 4.5.8 below. The results are that all minorities did worst in the overall change to employment levels as compared to the white population.

					White	Black	Hispanic	Asian
	White	Black	Hispanic	Asian	Males	Males	Males	Males
	Males	Males	Males	Males	BG's	BG's	BG's	BG's
	BG's with	BG's with	BG's with	BG's with	without	without	without	without
Employment	CDBG							
2000	72.00	-18.626	-14.460	-203.848	102.30	-13.517	-4.517	-95.975
2010	207.36	-14.041	-0.764	-70.432	186.76	-9.851	7.204	-67.866

Table 4.5.7 Census 2000 and 2010 Mean Employment of Males compared to White Males

					White	Black	Hispanic	Asian
	White	Black	Hispanic	Asian	Females	Females	Females	FEmales
	Females	Females	Females	Females	BG's	BG's	BG's	BG's
	BG's with	BG's with	BG's with	BG's with	without	without	without	without
	CDBG							
2000	52.25	-8.958	-31.299	-213.116	79.67	-1.907	-12.635	-83.596
2010	168.34	-7.204	-9.699	-64.481	139.69	1.386	2.837	-59.081

Table 4.5.8 Census 2000 and 2010 Mean Employment of Females compared to White Females

Specifically, all males benefitted from the CDBG funds between census 2000 and 2010. White Males demonstrated a greater improvement in employment levels in BG's receiving CDBG than they did in BG's not receiving CDBG funding. Black Males show a greater employment mean, but were less improved in the BG's receiving CDBG funds than BG's not receiving CDBG
funding. Hispanic Males did a greater improvement than any minority, but they actually show greater improvement in BG's not receiving CDBG funds and in BG's not receiving CDBG funds, they fared better than White Males (7.204). White Females demonstrated a greater improvement in employment levels in BG's receiving CDBG than they did in BG's not receiving CDBG funding. Black Females show a greater employment mean, but were still less improved in the BG's receiving CDBG funds than White Females in BG's receiving CDNG funding. The surprising result is that both Black Females (1.386) and Hispanic Females (2.837) did better than White Females in BG's not receiving CDBG funds. This creates a mixed result from the previous studies professing the unilateral improvement of all genders (sex) and races (ethnicity).

This difference may be the result of various dynamics during this period. The great recession of 2008 created turmoil in the employment and housing environments. The jobs lost due to economic adjustment or contraction may have affected particular industries more so than others. The industries or specific work and skill sets necessary for the economic rebound or recovery may be different based on education and training. As seen in the analysis of employment, Hispanic Males did better than other minorities both in BG's receiving CDBG funds but they did more pronouncedly better in BG's not receiving CDBG funds. Asian Males did better in the BG's receiving CDBG but still fell below the improvements as compared to White Males. For females, both Black and Hispanic Females did better in employment in the BG's not receiving CDBG funds which may be a result of taking advantage of training and education opportunities, or by taking employment at less than minimum wage. More research into the detail will be required. Overall, Whites still did better in the BG's receiving CDBG than other ethnicities.

According to national statistics, 65.1% of White Males and 66.3% of White Females (alone, nonHispanic or Latino) were married in 2009. This is compared to 11.3\% Black Males and 9.9\% Black Females; 16.4\% Hispanic Males and 15.7\% Hispanic Females; and 5.0\% Asian Males and 5.7% Asian Females for the same 2009 snapshot in time. The Divorce rates were as follows: 69.9% White Males and 68.2% White Females; 12.5% Black Males and 13.1% Black Females; 12.7\% Hispanic Males and 12.8\% Hispanic Females; and 2.6\% Asian males and 3.8\% Asian Females. If you combined this information with the data found in Figure 2.5.4., you can see that there were 80.3% Males married and employed; 68.9% Females married and employed; 73.3\% Males divorced and employed; 72.7\% Females divorced and employed. This
reflects the trend in the findings regarding the increase in Black and Hispanic Females increasing employment for BG's receiving CDBG funding similar to White Females, but also actually shows a more pronounced employment increase in BG's not receiving CDBG funds which would cast doubt on the effectiveness of CDBG funded programs that encourage, promote and/or provide career training to females in the BG's receiving CDBG funds. The change is based on the family stability and the increase of single parents, especially women in the workforce.

Since the initial statistical analysis results demonstrated a difference for employment, a further examination was warranted to compare the Fort Worth targeted areas from the Dallas targeted areas. For the areas in Fort Worth, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 0.266 and BGs without CDBG funds was -0.056 . Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 2.864 and BGs without CDBG funds was 8.833. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was 0.100 and BGs without CDBG funds was -0.065 . Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was 10.500 and BGs without CDBG funds was 1.984. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 0.647 and BGs without CDBG funds was 0.411. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 1.559 and BGs without CDBG funds was 1.685. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was -0.453 and BGs without CDBG funds was -0.553 . Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was 1.020 and BGs without CDBG funds was 1.495. For the areas in Dallas, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was -0.041 and BGs without CDBG funds was 0.414 . Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 3.541 and BGs without CDBG funds was 29.800. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was 0.100 and BGs without CDBG funds was -0.065. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was -0.553 and BGs without CDBG funds was 0.252 . Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 0.423 and BGs without CDBG funds was 0.798 . Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 1.485 and BGs without CDBG funds was 1.989. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was -1.200 and BGs without CDBG funds was -0.183 . Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was 2.600 and BGs without CDBG funds was 21.000. There is strong evidence that targeting areas for low-income minorities does provide improved
employment opportunities to minorities. Asians were excluded from this analysis since they make up a very small percentage of the overall population in the ZCTA studied. The t value results for employment data of the difference (change) between 2000 and 2010 for whites as compared to minorities is presented in Table 4.5 .9 below.

Employment	Employment
Mean Diff	Mean Diff
2000	2010

Fort Worth Targeted Areas

Black Male with Grant	0.266	2.864
Black Male w/o Grant	-0.056	8.833
Black Female with Grant	0.100	10.500
Black Female w/o Grant	-0.065	1.984
Hispanic Male with Grant	0.647	1.559
Hispanic Male w/o Grant	0.411	1.685
Hispanic Female with Grant	-0.453	1.020
Hispanic Female w/o Grant	-0.553	1.495

Dallas Targeted Areas

Black Male with Grant	-0.041	3.541
Black Male w/o Grant	0.414	29.800
Black Female with Grant	-0.553	3.071
Black Female w/o Grant	0.252	4.222
Hispanic Male with Grant	0.423	1.485
Hispanic Male w/o Grant	0.798	1.989
Hispanic Female with Grant	-1.200	2.600
Hispanic Female w/o Grant	-0.183	21.000

Table 4.5.9 Census 2000 and 2010 Mean Employment Differences of Minorities By Fort Worth and Dallas compared to Whites

This is not to say the policy is faulty, but it does create the cause for reflection on what types of programs, whether people-based or place-based, should be reconsidered, revamped or eliminated and replaced with a new program. The level of differences between whites compared to the minorities shows the impact of the recession and subsequent recovery was increased in minorities residing in ZCTA BGs receiving CDBG funds. The differences between Fort Worth and Dallas may be a result of the funding level, the type of programs and other factors. This difference requires further study.

The multiple regressions analysis (Table 4.3.17) for employment resulted in an increase (positive) change for males and females in BGs receiving CDBG funds for both high School diploma and Bachelor's degree as compared to BGs not receiving CDBG funds. The regression
results were 52.993 for males with HS and 54.272 for males with BS, and 36.687 for females with HS and 38.017 for females with BS.

4.5.2. Findings for Research Question 2:

Do targeted areas receiving Community Development Block Grant (CDBG) funding experience more change in homeownership levels than the immediate surrounding neighborhood areas not receiving CDBG funding?

The level of homeownership based on the respective census periods reviewed and evaluated for the respective census years of 2000 and 2010 were different for the targeted areas. From the paired samples, the homeownership mean for census 2000 and census 2010 in targeted Block Groups (BG's) receiving CDBG funds was 196.286 ($s d=276.862$) and t of 10.178. For the areas not receiving CDBG funds the homeownership mean males was 94.506 ($s d=$ 225.335) and t of 8.727. The data can be seen in Tables 4.5.10 and 4.5.11 below.

Paired Samples Statistics					
Pair 1	Owner Occupied 10	Mean	N	Std. Deviation	Std. Error Mean
	Owner Occupied 00	310.18	206	252.133	17.567
Pair 2	Renter Occupied 10	113.90	206	165.755	11.548
	Renter Occupied 00	176.09	206	184.575	12.860
		113.06	206	263.681	18.372

Paired Samples Correlations				
		N	Correlation	Sig.
Pair 1	Owner Occupied 10 \& Owner Occupied 00	208	.172	.013
Pair 2	Renter Occupied 10 \& Renter Occupied 00	208	.094	.179

Table 4.5.10 Census Paired Sample Homeownership in Block Groups with Grant

Paired Samples Statistics					
Pair 1	Owner Occupied 10	Mean	N	Std. Deviation	Std. Error Mean
	Owner Occupied 00	262.37	433	174.974	8.409
	Renter Occupied 10	167.87	433	159.164	7.649
	Renter Occupied 00 2	183.75	433	187.479	9.010
		122.10	433	173.534	8.340

Table 4.5.11 Census Paired Sample Homeownership Block Groups without Grant

From the paired sample statistics, the homeownership mean for census 2000 in targeted Block Groups (BG's) receiving CDBG funds was 113.90 ($s d=165.755$) and the renter occupied mean was 113.06 ($s d=263.681$). The homeownership mean for census 2010 in targeted Block Groups (BG's) receiving CDBG funds was 310.18 ($s d=252.133$) and the renter occupied mean was 113.90 ($s d=165.755$). For the BG's not receiving CDBG funds the homeownership mean for 2000 was 167.87 ($s d=159.164$) and the renter mean for census 2000 was 122.10 ($s d=$ 173.534) The homeownership mean for census 2010 for Block Groups (BG's) not receiving

CDBG funds was 262.37 ($s d=174.974$) and the renter mean for census 2010 for the BG's not receiving CDBG funds 183.75 ($s d=187.479$).

The multiple regressions performed support the hypothesis. According to the empirical data in Table 4.3.17, homeownership change (increase) for both males and females was more significant (positive) in Block Groups (BGs) receiving CDBG funds than BG's within the same ZCTAs that did not receive CDBG funds. Homeownership for males in BGs receiving CDBG funds was greater for individuals that had a high school diploma in comparison to a bachelor's degree. As included in the referenced table (4.3.17), males with a high school diploma homeownership changed by 58.344 and for those with a bachelor's degree, homeownership level changed by 56.983 . For females, the overall change was less, but still supported the difference in the two BGs. Females homeownership changed by 39.930 for those females with a high school diploma and 37.698 for those females with a bachelor's degree. Although the empirical evidence supports the hypothesis, a more definitive analysis is required to determine the employment change by race and ethnicity.

As identified in the regression analysis and subsequent t Test, the results are presented in table 4.5.12 below. The element of homeownership is directly related to the BG's receiving CDBG funds when compared to those BG's not receiving CDBG funds, but not equally distributed across the minority spectrum. The great recession and the subsequent homeownership entry requirements with the necessary minimum down payment, financing availability, or even housing stock availability may be a cause for the pronounced change (increase) in homeownership for BG's receiving CDBG funding as compared to BG's not receiving CDBG funds. Homeownership also would include property taxes and continuing or at least routine maintenance funding which is not required for renter responsibilities. The other aspect is that due to the change in employment by Black and Hispanic Females in the BG's not receiving CDBG funds, the housing would be greater in the BG's not receiving funds but if the employment opportunities are at a lower wage than can be sufficient for homeownership, then the results make sense. It could also be that homeownership financing in the targeted BG's might off-set the employment differences. More research would need to be conducted on this variable.

The areas studied reflect the national trend but not the state trend of a homeownership decreased. According to the census, the national level of homeownership has decreased from 67.4% in 2000 to 66.9% in 2010. The State of Texas homeownership as actually increased from 63.8% in 2000 and 65.3% in 2010. The areas in this research tracked the national trend. If one were to review the Table 2.4.2 presents that Whites nationally were 71.1% in 2000 and 71% in 2010. Blacks were 47.2% in 2000 and 45.4% in 2010; Hispanics were 46.3% in 2000 and 47.5% in 2010; and Asian's were 52.8% in 2000 and 58.9% in 2010. Reviewing Table 2.4.1 identified that nationally; most first time home buyers were in the 25 to 34 years of age and were primarily married.

As previously identified, according to the national statistics, 65.1% of White Males and 66.3% of White Females (alone, non-Hispanic or Latino) were married in 2009. This is compared to 11.3\% Black Males and 9.9\% Black Females; 16.4\% Hispanic Males and 15.7\% Hispanic Females; and 5.0\% Asian Males and 5.7\% Asian Females for the same 2009 snapshot in time. The Divorce rates were as follows: 69.9\% White Males and 68.2\% White Females; 12.5\% Black Males and 13.1\% Black Females; 12.7\% Hispanic Males and 12.8\% Hispanic Females; and 2.6% Asian males and 3.8% Asian Females. If you combined this information with other data, you can see that there were 80.3% Males married and employed; 68.9\% Females married and employed; 73.3\% Males divorced and employed; 72.7\% Females divorced and employed. This reflects the trend in the findings regarding the increase in Black and Hispanic Females increasing in employment for BG's receiving CDBG funding similar to White Females, but also actually showing a more pronounced employment increase in BG's not receiving CDBG funds which would affect the ability for homeownership.

Since the initial statistical analysis results demonstrated a difference for homeownership, a further examination was warranted to compare the Fort Worth targeted areas from the Dallas targeted areas. For the areas in Fort Worth, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 2.934 and BGs without CDBG funds was 3.772. Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 5.807 and BGs without CDBG funds was 7.042. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was 2.934 and BGs without CDBG funds was 3.772. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was 5.807 and BGs without CDBG funds was 7.042. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 2.793 and BGs without CDBG funds was
3.464. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 4.077 and BGs without CDBG funds was 3.525. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was 2.793 and BGs without CDBG funds was 3.464. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was 4.077 and BGs without CDBG funds was 3.525. For the areas in Dallas, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 26.000 and BGs without CDBG funds was 4.875. Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 1.889 and BGs without CDBG funds was 105.000. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was 26.000 and BGs without CDBG funds was 4.875. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was 1.889 and BGs without CDBG funds was 105.000. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 3.286 and BGs without CDBG funds was 4.358. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 3.250 and BGs without CDBG funds was 3.096 . Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was 3.286 and BGs without CDBG funds was 4.358. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was 3.250 and BGs without CDBG funds was 3.096. There is strong evidence that targeting areas for low-income minorities does provide improved homeownership opportunities to Black minorities but not Hispanic minorities. Again, Asians were excluded from this analysis since they make up a very small percentage of the overall population in the ZCTA studied. The t value results for homeownership data of the difference (change) between 2000 and 2010 for whites as compared to minorities is presented in Table 4.5.12 below.

Homeownership Mean Diff 2000	Homeownership Mean Diff 2010

Fort Worth Targeted Areas

Black Male with Grant	2.934	5.807
Black Male w/o Grant	3.772	7.042
Black Female with Grant	2.934	5.807
Black Female w/o Grant	3.772	7.042
Hispanic Male with Grant	2.793	4.077
Hispanic Male w/o Grant	3.464	3.525
Hispanic Female with Grant	2.793	4.077
Hispanic Female w/o Grant	3.464	3.525

Dallas Targeted Areas

Black Male with Grant	26.000	1.889
Black Male w/o Grant	4.875	105.000
Black Female with Grant	26.000	1.889
Black Female w/o Grant	4.875	105.000
Hispanic Male with Grant	3.286	3.250
Hispanic Male w/o Grant	4.358	3.096
Hispanic Female with Grant	3.286	3.250
Hispanic Female w/o Grant	4.358	3.096

Table 4.5.12 Census 2000 and 2010 Mean Homeownership Differences of Minorities By Fort Worth and Dallas compared to Whites

Much of homeownership is tied to a family situation, whether married or divorced, and if children are involved. Based on the evidence, the divorce rate of Black Males in 2010 in BGs without CDBG funds may be higher than in BGs with CDBG funding. Hispanic marriage rates are relatively similar both in 2000 and 2010. This information requires future study, but may be informative in program development for first time home buyers, and especially single head of household family units. The empirical evidence appears to point to the increase in homeownership for those that complete high school over those with a college degree. Mobility challenges or the types of employment may be a contributing factor. Individuals that only have a high school diploma may use the relocation (mobility) limitation may emphasize the necessity for homeownership. Additionally, some literature supports that high school graduates may marry earlier than those with a college degree, and begin a family at an earlier age than college graduates. Also, the CDBG programs that focus on homeownership programs should be furthered studied.

4.5.3. Findings for Research Question 3:

Do targeted areas receiving Community Development Block Grant (CDBG) funding experience more change in income levels at or below the poverty level than the immediate surrounding neighborhood areas not receiving CDBG funding?

The level of income at or below the respective poverty level based on the respective census periods reviewed and evaluated for the respective census years of 2000 and 2010 were different for the targeted areas. The data was determined from tables 4.5.13, 4.5.14, and 4.5.15, and 4.5.16 below. From the paired samples, the income mean for males for census 2000 and census 2010 in targeted Block Groups (BG's) receiving CDBG funds was 41.820 (sd $=90.382$) and t of 6.641. For the areas not receiving CDBG funds for males, the income mean was 27.319 ($s d=83.754$) and t of 6.787 . From the paired samples, the income mean for females for census 2000 and census 2010 in targeted Block Groups (BG's) receiving CDBG funds was $50.150(s d=109.714)$ and t of 6.561 . For the areas not receiving CDBG funds for females, the income mean was 27.741 ($s d=98.436$) and t of 5.864. The statistic paired samples are in table 4.5.17 and 4.5.18 below.

From the above statistical analysis, even though the numbers changed, the mean for both males and females did not change much; Males income mean for BG's receiving CDBG funds 41.820 ($s d=90.382$) and $t=6.6 .41$ and Females $50.150(s d=109.714)$ and $t=6.561$ and for Males income mean for BG's not receiving CDBG funds 27.319 ($s d=83.754$) and $t=6.787$ and Females 27.741 ($s d=98.436$) and $t=5.864$.

20006GFW	20086FW		200086FW	20008GFW		20006GW	20086FW					20008GFW	20006GFW		200086FW	2008GFN	
			WFMean	WF Mean					20006GFW BF	F 20006GFW BF		HMM Mean	HM Mean		HFMean	HFMean	
	Income W/0		InomeW/	IncomeW/0					Mean Income	Mean Income		IncomeW/	Income W/O		Income W/	Income W/0	
W/Grant	Grant		Grant	Grant		Grant:	Grant		W/Grant	W/OGrant		Grant	Grant		Grant	Grant	
15.3	. 11.39	381	23.15	.17.33	588	21.48	13.06	8.4	32.33	. 18.83	13.5	16.75	21.8	. 5.05	18.67	. 16.93	1.74
12.56	-10.67	189	17.22	8.21	9.01	12.71	.9.67	3.4	20.1	.13.33	6.77	13.08	. 12.4	0.88	17.33	. 16.8	0.53
9.96	-11.39	. 143	14.44	-11.67	2π	18.9	-7,4	11.45	24.38	. 13.17	11.21	26.25	. 19	1.25	19.33	. 99.2	0.13
9.7	7.12	258	11.15	. 10.3	0.85	11.76	8.22	354	16.38	. 9.89	6.49	14.5	. 13.27	123	20.08	. 16.87	321
1237	. 12.3	007	29.3	. 14.73	14.57	27.51	12	1557	31.67	. 23.72	1.95	31.42	. 35.07	3.65	31.75	24.47	128
11.93	8.82	3.11	19.22	. 9.52	9.7	16.29	6.67	9.62	24.86	. 10.78	14.08	28	28.6	0.6	11.25	. 16.13	4.88
17.93	- 10.21	7.72	19.04	. 11.61	7.43	21.51	. 9.94	11.63	28.81	. 12.44	16.37	40.75	.25.27	15.48	25.5	. 12.73	12.77
13.85	8.33	5.52	16.85	7.82	9.03	20.1	.9.17	10.93	30.67	9.56	21.11	26.67	. 16.67	10	8.75	.11.8	3.05
19.89	. 17.73	2.16	21.44	. 14.55	6.89	25.9	. 12.67	13.23	24.86	.10.56	14.3	29.58	.27.6	1.88	10.92	11.8	. 088
14.59	8.64	5.95	16.52	7.76	8.88	18.24	8.06	10.18	10.95	.6.78	4.17	2233	8.07	14.26	6.33	4	2333
35.07	-20.48	14.59	29.78	221	878	36	. 15.22	20.78	37.48	13.78	23.7	41.08	27.87	13.21	8.17	. 0.87	21
32.67	21.24	11.43	37.07	19.91	17.16	26.24	. 13.89	1235	17.52	8.61	8.91	27.08	.9.4	17.68	7.25	5	225
29.07	${ }^{16.58}$	12.49	21.48	. 14.52	6.96	20.48	5.39	15.09	10.24	3.06	7.18	14.33	. 15.27	0.44	5.5	2.273	277
22.7	. 13.88	88.8	16.26	. 11.45	4.81	13.38	4.33	9.05	6.67	2.83	3.84	5.92	7.71	4.35	3.83	0	3.85
16.07	. 10.27	5.8	12.07	7.52	4.55	7.48	22.28	5.2	7.1	. 3.56	3.54	9.42	3.73	5.69	0	0.8	48
17.07	. 11.64	5.43	12.4	7.15	5.29	6	3.22	278	3.14	-1.94	1.2	233	3.27	0.4	1.08	-0.67	0.41
23.3	. 11.73	11.57	9.22	.5.55	3.67	8.24	3.72	4.52	5.48	0.33	5.15	4.33	3.13	1.2	0	0.8	4.8
16.74	.7.58	9.16	3.37	5	1.63	4.24	1.33	291	1.76	1.06	0.7	1.33	-0.73	0.6	0	0.47	2.47
22.81	. 9.79	13.02	6.22	3.85	237	4.29	. 1.33	296	2.71	3	0.28	1.67	1.4	0.27	0.92	0	0.92
32.89	. 17.55	15.34	285	3.06	4.21	4.52	3.61	0.91	1.67	.2.56	288	2.67	.0.93	1.44	0.83	0	0.83

Table 4.5.13. Mean Income for Males and Females by Race, With and Without Grant Fort Worth: 2000

Table 4.5.14: Mean Income for Males and Females by Race, With and Without Grant Dallas: 2000

Table 4. 5.15 Mean Income for Males and Females by Race, With and Without Grant Fort Worth: 2010

Table 4.5.16 Mean Income for Males and Females by Race, With and Without Grant Dallas: 2010

Table 4.5.17 Census 20002010 Paired Sample Male and Female Income at or Below Poverty in BG's with Grant

	Paired Samples Statistics				
Pair 1	2010 Total Male Income < poverty	Mean	N	Std. Deviation	Std. Error Mean
	2000 Total Male Income < poverty	85.64	433	72.944	

Table 4.5.18 Census 20002010 Paired Sample Male and Female Income at or below Poverty in BG's without Grant
The multiple regressions performed support the hypothesis. According to the empirical data in Table 4.3.17, income change (decrease) for both males and females was more significant (positive) in Block Groups (BGs) receiving CDBG funds than BG's within the same ZCTAs that did not receive CDBG funds. Income change levels for males in BGs receiving CDBG funds were greater for individuals that had a bachelor's degree as compared to those with a high school diploma. As included in the referenced table, males with a bachelor's degree income level changed by 13.309 and for those with a high school diploma degree changed by 11.732. For females, the overall change was less than males, but still supported the difference in the two BGs. Females' income changed by 7.455 for those females with a bachelor's degree and 2.845 for those females with a high school diploma. Although the empirical evidence supports the hypothesis, a more definitive analysis is required to determine the employment change by race and ethnicity.

This result reflects the employment finding. White Females had a greater change in income levels in BG's receiving CDBG funds than any ethnicity (race) and Black and Hispanic Females income was greater in BG's not receiving CDBG funds. The lessor would have been a strong
indicator that even as the population was being employed, the poverty level (and potentially) the concentration would be less. The key factor is that females in the BG's receiving CDBG funds greater than males in the same BG's, but that for both genders (sex), they were very comparable in the BG's not receiving CDBG funds which reflect the employment finding.

Based on the findings of this research, the change in mean income at or below for males reflects an increase in the mean of males at or below poverty for males in BG's receiving CDBG funds (41.820) as compared to BG's not receiving CDBG funds (27.319). This reflects the modest gain of employment as identified in the section regarding employment. The most informative is for Females, with the income mean at or below poverty for females in BG's receiving CDBG funds (50.150) and for BG's not receiving CDBG funds (27.741) which is very close to the male mean. That would also indicate the employment increase for females in BG's not receiving CDBG funding to be with lower wages.

Since the initial statistical analysis results demonstrated a difference for income change in at poverty or less income, a further examination was warranted to compare the Fort Worth targeted areas from the Dallas targeted areas as found in Table 4.5.19 below. For the areas in Fort Worth, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 2.011 and BGs without CDBG funds was 2.336. Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 2.310 and BGs without CDBG funds was 2.551. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was -2.373 and BGs without CDBG funds was 1.913. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was - 2.689 and BGs without CDBG funds was 2.359. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 2.022 and BGs without CDBG funds was 2.176. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 2.176 and BGs without CDBG funds was 2.501. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was - 2.371 and BGs without CDBG funds was 2.086. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was -2.650 and BGs without CDBG funds was 2.324 . For the areas in Dallas, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 1.628 and BGs without CDBG funds was 2.320. Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 2.108 and BGs without CDBG funds was 2.540. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was - 1.999 and BGs without CDBG funds was 1.996. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was - 2.411 and BGs
without CDBG funds was 2.150. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 1.975 and BGs without CDBG funds was 2.293. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 2.354 and BGs without CDBG funds was 2.381. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was - 1.554 and BGs without CDBG funds was 2.001. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was -2.727 and BGs without CDBG funds was 2.289. There is strong evidence that targeting areas for low-income minorities does provide improved change in the number of families in lower income levels either at or below the poverty level for the census period. Black Males and Hispanic Males in Fort Worth and also in Dallas were very similar when compared to White Males, but Black Females and Hispanic Females remained better in BGs with CDBG funds than White Females. Again, Asians were excluded from this analysis since they make up a very small percentage of the overall population in the ZCTA studied. The t value results for income at or below the poverty level for the respective census year data of the difference (change) between 2000 and 2010 for whites as compared to minorities is presented in Table 4.5.19 below.

Low Income Mean Diff 2000	Low Income Mean Diff 2010

Fort Worth Targeted Areas

Black Male with Grant	2.011	2.310
Black Male w/o Grant	2.336	2.551
Black Female with Grant	-2.373	-2.689
Black Female w/o Grant	1.913	2.359
Hispanic Male with Grant	2.022	2.176
Hispanic Male w/o Grant	2.230	2.501
Hispanic Female with Grant	-2.371	-2.650
Hispanic Female w/o Grant	2.086	2.324

Dallas Targeted Areas

Black Male with Grant	1.628	2.108
Black Male w/o Grant	2.320	2.540
Black Female with Grant	-1.999	-2.411
Black Female w/o Grant	1.996	2.150
Hispanic Male with Grant	1.975	2.354
Hispanic Male w/o Grant	2.293	2.381
Hispanic Female with Grant	-1.554	-2.727
Hispanic Female w/o Grant	2.001	2.289

Table 4.5.19 Census 2000 and 2010 Mean Income at or Below Poverty Differences of Minorities By Fort Worth and Dallas compared to Whites

Additional research will be required to further refine the findings by race and potentially age groups. If the population is increasing in age, then the greater the population in the income level at or below poverty would indicate a policy not achieving its intended results.

4.5.4. Findings for Research Question 4:

Do targeted areas receiving Community Development Block Grant (CDBG) funding experience more change in educational attainment levels than the immediate surrounding neighborhood areas not receiving CDBG funding?

The level of education attainment based on the respective census periods reviewed and evaluated for the respective census years of 2000 and 2010 were different for the targeted areas. From the paired samples, the educational attainment for males for census 2000 and census 2010 in targeted Block Groups (BG's) receiving CDBG funds for High School was 46.636 ($s d=85.417$) and t of 7.836; for Bachelor's degree was $35.587(s d=87.050)$ and t of 5.868. For the areas not receiving CDBG funds for males, the education attainment mean for High School completion was 40.406 ($s d=90.448$) and t of 9.296 ; for Bachelor's degree was 16.483 ($s d=75.273$) and t of 4.556 . From the paired samples, the education attainment mean for females for census 2000 and census 2010 in targeted Block Groups (BG's) receiving CDBG funds was 50.044 ($s d=99.143$) and t of 7.245 . For the areas not receiving CDBG funds for females, the education attainment mean for High School completion was 36.397 ($s d=98.595$) and t of 7.682; Bachelor's degree was $19.917(s d=79.482)$ and t of 5.214. Statistic paired samples are in table 4.5.20, 4.5.21, 4.5.22 and 4.5.23 below.

Table 4.5.20 Census 20002010 Paired Sample Male Education Attainment in Block Groups with Grants

Paired samplec Tect									
		Pared Difureces					t	d	$8 / 2 .(2$-aled)
		Mey	Staid Deiation	Sto. Esorl/ean	9S\% Conforce inteva of the D"erence				
					Louer	Ugoes			
$\text { Far } 1$	Femsie No achooing completed 10 - Ferrac No sthooling compeied 00	3.058	21.523	1.500	. 111	6.024	2.046	205	. 042
Par 2	Femse High school Orsuast (Equisency) in- Femsit Hof School Orsuast (Equisiency) 00	50.044	99.143	6.508	36.425	63.653	7245	205	. 050
Par 3	Femse Aewocates 10-Femat Aerocites 00	16.291	32.493	2.85	11.828	20.758	7.1\%	205	. 000
Far 4	Femse Buxtor's Deyee 10-Femat Bucherors Deyme 00	38.427	90.369	6256	26.015	50.340	6.104	205	. 050

Table 4.5.21 Census 20002010 Female Education Attainment Block Groups with Grants

Table 4.5.22 Census 20002010 Male Education Attainment in Block Groups without Grants

Palrod Smpinc Tact

Pairod sampiectict								
	Pared Difeerces					t	d	
				S\%M Contorct itte	DHerect			
	Ney	Str Deiaton	Sto. Emorlikesn	Lour	Uyeg			
Par 1 Fense Noxcrooling conpleted 10-Fersia:No rthoing corpeted 00	1.771	18.425	885	031	3.512	2000	432	. 146
 	33.387	985995	4738	27.085	45710	7888	432	. 000
	8.938	31.588	1521	5.89	11.928	5875	432	.000
Far 4 Ftense Buthers Deyes 10-Femst Bxheldts Deymex 00	19.917	79.482	3880	12.009	27.24	5214	43	. 000

Table 4.5.23 Census 20002010 Female Education Attainment in Block Groups without Grants

The data can be seen in Tables 4.5.24, 4.5.25, 4.5.26, 4.5.27, 4.5.28 and 4.5.29 below.

20086FW	$20086 F^{\prime}$		$20086 F W$	200866W		200065 N	20006FW		20006FFW BF 20	2008GFWBF		20086FW	200066 F		20006FV	20086FW	
WMMean	WMMean		WFMean	WFMean		BMMean	BMMeen		Mean	Meen		HWMeen	HM Mean		HFNean	HFMean	
Evuction	Eduction		Evuction	Esuction		Esucation/	Eduction		Eduction W/	Eduation		Eduction W/	Eduction		Eduction	Education	
WGGratt	W/OGrat		W/Gratt	W/OGrant		Gart	W/OGrant		Gant	W/OGratit		Grant	W/OGrant		W/Grant	W/OGrant	
3.00	4.5	188	441	409	0.3	8.6		1.1	7.19	8.67	0.52	30.08	21.4	868	27.17	22313	444
14.56	688	171	11:04	688	42	19.1	16.06	315	2288	14885	813	26.85	5447	272.4	16.08	11.173	4.5
8228	45.3	3763	10.59	50.03	4856	11152	683.3	43.19	17519	. 2239	4.8	11.92	8.7	03.365	68833	5969	8.66
24.0	.15.5	8.55	34.5	20.15	14.37	19.5	115.5	4.07	36.48	17\%4	18.54	11.5	11147	0.15	17.25	8.6	8.65
68.56	42.4	26.312	78.85	4.73	32.12	599\%	14.5	35.26	60.33	2288	30.4	15.9	4.8	1212	17.42	111,3	6.19
25.4	10.12	1532	2233	111.88	11.4.5	16.1	628	988	19.57	8.5	11.07	56.6	5.27	0.4	3.5	8.73	523
88.3	6489	24.98	94.6	13	21.26	2788	.1544	11.92	38.19	.17.78	20.41	9.4	1.173	7.68	388	3.35	0.5
28.5	281.12	7.81	22.04	223,9	565	8.86	1.67	51.19	976	8.838	3397	0	227	211	1.17	3.2	203
13.78	1484	088	5988	388	2.4	44,3	1.135	3.1	248	1.156	0.92	1.08	0	108	1.25	2.83	032
7.56	3.91	3.65	$?$. 236	2.88	0.81	1.44	411	1.46	0	1.45	1.5	0	1.5	0	2.8	18

Table 4.5.24 Mean Education for Males and Females by Race, With and Without Grant Fort Worth: 2000

200860 A 2000860 A	2008800 A	200080 A	$2003860 A$	2008608		200086 ABF 2	$2000860 A B F$		2008680 A	200860A		200660A	200860 A	
WMMean WMMean	WFMenn	WFMean	BMMeas	BMMean		Mean	Nean		HWMeen	HMMean		HFM Mean	HFMean	
Education Education	Education	Euluction	EsucationW/	Eluation		Eduction W/	Eduction		EductionW/	Evication		Evucation	Etucation	
WGGant W/OGrant	W/Grant	WOGGant	Grant	W/OGrant		Grant	W/OGrant		Grant	W/OGrant		W/Gant	W/OGrant	
0		5	13.57	819	4.8	1088	8.22	251	40.5	4,06	2.28	24.12	31.4	7.88
12.5		0	20.61	19885	076	28.3	28.27	0×3	2225	2288	1.64	19.38	12.4	$6{ }_{6}$
23.5		45	68.4	80.9	. 288	899,4	9800	988	53.25	5239	288	51.5	50,72	0.78
16		0	11.09	14,4	295	21.52	2507	$\sqrt{45}$	11.13	8.6	4.6	11.25	19.4	3.31
4.5		18	19.87	22751	1764	31.65	40.34	885	2288	16.35	6.55	16.13	183.3	22
4.5		12.5	4.7	7,19	248	6.85	10.4	3.4	6.5	212	3.18	1	267	267
131		82.5	6.57	1288	7.131	1.98	15,49	81	4.25	9.11	288	1.62	4.2	3.4
21		4.5	291	2.45	0.46	6.26	628	M ${ }^{\text {I }}$	1.25	1	0.25	1.38	2.26	188
12		14.5	0.87	. 2.66	0.21	0.4	2.57	0.17	1.75	2.5	415	238	2.33	205
0		14.5	1.4	0.6	0.4	0.2	2.46	. 2.24	1.13	0.88	0.3	0	0	0

Table 4.5.25 Mean Education for Males and Females by Race, With and Without Grant Dallas: 2000

201006FW	20106GF		200069FW	20066FW		201086FW	201066FW		201086FW BF 2	201036CN BF		200066FV	201086FW		20106GFW	201066FW	
WM Mean	WM Meen		WFMean	WFMean		BMMean	BMMean		Mean	Mean		HMMean	HM Mean		HFMean	HFWean	
Eduation	Eduation		Evuation	education		Education W\|	edication		Eduction W)	eviuction		Education W/	Evucation		Eduction	Evucation	
W/Grant	W/OGrant		W/Grant	W/OGrant		Grant	W/OGrant		Grant	W/OGratt		Grant	W/OGrat		W/Grant	W/OGrant	
281	3.07	0.26	267	3.98	1.29	5.15	2	3.75	10.17	3.45	672	2667	19	1.8	14.2	16.71	251
381	3.37	04.	5.38	481	1.57	19.4	427	271	15,33	14.73	0.6	13.4	11.17	168	9.2	9.36	Q. 116
84.38	. 5988	2.55	116.19	. 14.67	4.52	126.04	4	324	137.11	188.18	9.53	88.13	9293	58	88.13	10.14	4801
26.9	16.4	10.86	4048	26.22	1426	2225	.	15.25	20.42	35.45	603	94	14.49	538	1507	.15.71	244
15.48	41.56	27.9	17.67	57	20.67	60.08	48.73	11.15	53.11	56.73	302	18.93	33.29	438	23.4	38.14	4146
2.29	19.97	452	25.29	19.15	6.4	19.17	14.464	4.53	2246	14.36	8.1	15.53	11143	45	16.6	829	7.31
111.1 .6	98	18.82	111.5	98.85	20.72	29.75	13.73	16.02	34.2	38.18	397	5.6	19,94	4,4.	1387	10.79	3.08
4224	31	11.24	37.1	1331	14.01	15.71	1	8.11	1421	9.94	4.5	0.47	8.71	24	0.8	1.5	01
9.95	21.93	. 198	981	841	14	3	0.82	218	1.42	1.88	14	0	12.18	18	233	0.39	14
4.86	4.11	0.75	883	5.7	268	1.78	0	17.9	1.17	0.73	0.4	0	0	0	0	0	0

Table 4.5.26 Mean Difference Education for Males and Females by Race, With/Without Grant Fort Worth: 2010

2010860A 2010660A	2010660A 2010860A	2000680A	2010660A		200060ABP 20	2010860ABF		2010660 A	2901060 A		20.108024	$20.10602 A$	
WWMean WMMean	WFNean WFMean	BMNean	BMMean		Nean	Mean		HMMean	HWMeen		HFNMean	HFMean	
Eduaction Education	Eduation Education	EducationW/	Efuction		EucationW/	Evication		EductionW/	Eduation		Evication	Evaction	
WGrant W/OGrant	W/Gant W/OGrant	Grant	W/OGrant		Gant	W/OGrant		Grant	W/OGrant		W/Gart	W/OGrant	
0	5	17.9	10.45	3.06	5.39	. 213	3.364	4588	332	1288	18.13	22.55	.1/2
125	0	11.61	6.12	488	11	1259	1.59	13.25	1.1.25	$?$	8.25	8.65	18
2.5	45	88.4	.111.29	228	1085	. 131.95	20.5	85.5	. 11.5	14	6213	8255	20.4
16	0	1.12	. 11.8	46	1567	2247	88	3.15	5.3	15	111.13	8.55	258
4.5	18	330.6	38.22	8.16	45	52.78	818	13.15	23.8	10.5	31.63	22.05	11.58
4.5	125	1.67	1097	33	16	18.48	24	13.65	10,15	3.48	1.62	8.8	118
131	82.5	8	13.52	562	15.11	24.97	988	11.5	8.7	28	11.5	10.4.5	1.55
27	4.5	4.2	5.8	158	5.5	10.55	545	1.5	2.5		0	24	24
12	14.5	0.58	0.88	4.3	0.55	2.48	0.08	0.87	0	0.87	0	.1.1	4.1
0	14.5	0.4	1.4	4.88	1.11	N.52	0.59	1	0	1	0	0	0

Table 4.5.27 Mean Education for Males and Females by Race, With and Without Grant Dallas: 2010

|
 WWNen WMMean
 Exuation Ebuation W\|
 WGart Gart | 2OOOCFN 200OCONVIF
 WFMen Nean
 Endation\|| EncationW|
 Gaint Gamt | | |
 BM Menn Men
 Evaralion\|| Ebuation||
 Garat Gart | | |
 Nean Nean
 Educaion\|| Exacion W|
 Grant Garat | | | 2MOBOWN 200GOFHM
 HMNenn Mean
 Eacation\|| Euradion||
 Garat Gatall | | | 2mabew hf miober Hf | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Nem | Nent | | | | |
| | | | | | Euration\|| | Exuction W\| | | | | |
| | | | | | Gratit | Garat | | | | |
| 380.281 | 18 | 441 | 261 | | | | 1.4 | 40. | 418 | | | | 281 | 1.19 | 1017 | 128 | M, 0 O | 468 | 341 | 12.11 | 142 | 122) |
| 14.58 | 10.15 | 11.4.4 | 38 | | | | 56 | (19\%1 | 404 | | | | 191 | 288 | 1313 | 13.1 | 2088 | 134 | 1344 | 16.8 | 4 | 48 |
| 2029 4.48 | 1,5 | | ${ }^{1 / 614}$ | | | | 46 | 111512 | 16.4 | | | | 142 | 17.14 | 13171 | 122 | 11.19 | 2613 | 421 | 403 | 8:13 | 188 |
| 240106 | 28 | 4.26 | 448 | S 3_{6} | 189 | 1215 | 28 | ${ }^{124} 4$ | 294 | 108 | 11.5 | 4 | | 11.6 | 1407 | |
| | 19 | 1708 | 9176 | 18 | 9976 | nex | 212 | M, 3 | W211 | 12 | 159 | 1885 | SII | 17.14 | 24 | 34 |
| | | $23 / 3$ | 26 | 1.85 | 181 | 1417 | N10 | 198 | 246 | 201 | 16 | 148 | 1.128 | 315 | 166 | 1314 |
| 483 14192 | 2123 | 928 | 11519 | 2381 | 2188 | 4815 | 18 | 1214 | 4.41 | | 94. | 86 | | 188 | 1488 | 100 |
| 20381424 | 1313 | 20M | 31/11 | 84 | 68 | | 48 | 918 | 421 | 415 | 1 | 41 | 411 | 1.17 | 4 | |
| 13.88 | | 5 | 88 | 315 | 413 | 1 | | 24 | 14.4 | | 1.6 | 1 | | 1.15 | 243 | (10) |
| | | 1 | 143 | (1) | 181 | 1.81 | 18 | 14 | 4.14 | | 15 | 0 | | 0 | 0 | 1 |

Table 4.5.28 Mean Difference Education for Males and Females by Race, With Grant Fort Worth: 2000 and 2010

Table 4.5.29 Mean Education for Males and Females by Race, With Grant Dallas: 2000 and 2010

This particular research of the education attainment will be isolated to only High School completion and Bachelor' degree attainment for this result. This should indicate the change in major education attainment achievement that would influence employment and potentially income. The statistical results for Males for BG's receiving CDBG funds is mean 46.636 and 35.587 respectively. The statistical result for Females in BG's are receiving CDBG funds is 50.044 and 38.427. The statistical results for Males for BG's not receiving CDBG funds is mean 40.406 and 16.483 respectively. The statistical result for Females in BG's are not receiving CDBG funds is 36.397 and 19.917 respectively. These results demonstrate that Males and Females in BG's receiving CDBG funds resulted in higher completion of both High school and Bachelor's degree. The greater completion rates for Females in BG's receiving CDBG funds for both high school completion and a Bachelor's degree reflects positively to the employment mean. Again, pointing out that the reduction in the mean of income mean at or below the poverty level should require additional research.

The multiple regressions performed support the hypothesis. According to the empirical data in Table 4.3.17, educational attainment change (increase) for both males and females was more
significant (positive) in Block Groups (BGs) receiving CDBG funds than BG's within the same ZCTAs that did not receive CDBG funds. Educational achievement for males in BGs receiving CDBG funds was greater for individuals that had a bachelor's degree as compared to those with a high school diploma. As included in the referenced table, males with a bachelor's degree changed by 9.709 and for those with a high school diploma changed by 3.788 . For females, the overall change was less, but still supported the difference in the two BGs. For females, the change was reversed and considerably larger for high school completion than a college degree. Females' education attainment for high school completion changed by 10.891 and 7.455 for those females with a bachelor's degree. Although the empirical evidence supports the hypothesis, a more definitive analysis is required to determine the employment change by race and ethnicity.

The results of the analysis for this research effort was educational attainment mean for Males in BG's receiving CDBG funding with High School diploma was 46.636 and for Bachelor's degree was 35.587 . The same mean for Males in BG's not receiving CDBG funding with High School diploma was 40.406 and for Bachelor's s degree was 16.483. The same analysis for Females in BG's receiving CDBG funding with High School diploma was 50.044 and for Bachelor's degree was 38.427. The same mean for Females in BG's not receiving CDBG funding with High School diploma was 36.397 and for Bachelor's s degree was 19.917. This presents strong evidence that BG's receiving CDBG funding are very influential in educational attainment.

Since the initial statistical analysis results demonstrated a difference for educational attainment, a further examination was warranted to compare the Fort Worth targeted areas from the Dallas targeted areas. This only examined the High School completion and college resulting in a Bachelor's degree or less. For the areas in Fort Worth, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 2.262 and BGs without CDBG funds was 1.306. Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 2.238 and BGs without CDBG funds was 1.462. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was 2.444 and BGs without CDBG funds was 1.371. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was 2.241 and BGs without CDBG funds was 2.120. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 1.327 and BGs without CDBG funds was - 3.795. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 1.384 and BGs without CDBG funds was 1.82. Hispanic Females in Block Groups (BGs)
receiving CDBG funds in 2000 was 1.214 and BGs without CDBG funds was .0534. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was 1.681 and BGs without CDBG funds was 1.272. For the areas in Dallas, Black Males in Block Groups (BGs) receiving CDBG funds in 2000 was 1.305 and BGs without CDBG funds was 1.226. Black Males in Block Groups (BGs) receiving CDBG funds in 2010 was 1.443 and BGs without CDBG funds was 1.446. Black Females in Block Groups (BGs) receiving CDBG funds in 2000 was 1.570 and BGs without CDBG funds was 1.549. Black Females in Block Groups (BGs) receiving CDBG funds in 2010 was 1.800 and BGs without CDBG funds was 1.228. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2000 was 1.437 and BGs without CDBG funds was .555. Hispanic Males in Block Groups (BGs) receiving CDBG funds in 2010 was 1.284 and BGs without CDBG funds was 1.318. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2000 was 1.119 and BGs without CDBG funds was .473. Hispanic Females in Block Groups (BGs) receiving CDBG funds in 2010 was 1.710 and BGs without CDBG funds was 2.747. There is strong evidence that targeting areas for low-income minorities does provide improved change in educational attainment but not equally across ethnicity or targeted areas for the census period. Black Males in in both Fort Worth and also in Dallas show improvement, but less between 2000 as compared to 2010. Black Females improved slightly in BGs receiving CDBG funds but Black Females in Dallas show an increase in attainment in BGs not receiving CDBG funds. Hispanic Males in BGs in Fort Worth were very similar in BGs, but actually worse in BGs not receiving CDBG funds. Black Males in Dallas were worse in both BG, and Black Females were worse in BGs receiving CDBG than those BGs than were not receiving CDBG funds. Hispanic Males educational attainment improved in BGs receiving CDBG funds, while Hispanic Females did worse and both BGs were very similar in 2010. Again, Asians were excluded from this analysis since they make up a very small percentage of the overall population in the ZCTA studied. The t value results for income at or below the poverty level for the respective census year data of the difference (change) between 2000 and 2010 for whites as compared to minorities is presented in Table 4.5 .30 below.

Educational	Educational
Attainment	Attainment
Mean Diff	Mean Diff
HS-BS 2000	HS-BS 2010

Fort Worth Targeted Areas

Black Male with Grant	2.262	2.238
Black Male w/o Grant	1.306	1.462
Black Female with Grant	2.444	2.241
Black Female w/o Grant	1.371	2.120
Hispanic Male with Grant	1.327	1.384
Hispanic Male w/o Grant	-3.795	1.482
Hispanic Female with Grant	1.214	1.681
Hispanic Female w/o Grant	0.534	1.272

Dallas Targeted Areas

Black Male with Grant	1.305	1.443
Black Male w/o Grant	1.226	1.446
Black Female with Grant	1.570	1.800
Black Female w/o Grant	1.549	1.288
Hispanic Male with Grant	1.437	1.284
Hispanic Male w/o Grant	0.555	1.318
Hispanic Female with Grant	1.119	1.710
Hispanic Female w/o Grant	0.473	1.746

Table 4.5.30 Census 2000 and 2010 Mean Educational Attainment Differences of Minorities By Fort Worth and Dallas compared to Whites

4.5.5. Findings for Research Question 5:

Do targeted areas receiving Community Development Block Grant (CDBG) funding experience more change in the concentration of poverty than the immediate surrounding neighborhood areas not receiving CDBG funding?

This research question will require additional research to better determine the accuracy, but based on the information collected by this research, the level of poverty concentration has decreased in the BG's receiving CDBG funds more than the BG's not receiving CDBG funds. The mean of employment previously presented shows the change in employment as a greater increase in BG's receiving CDBG funds than those BG's not receiving CDBG funds in most households where the households consist of a married or co-habitation relationship of males and females. As previously stated, the employment mean for males and females in BG's receiving and not receiving CDBG funds is mixed. The evidence supports that employment
relieves or at least lessens poverty and the concentration of poverty. In the contribution of Eveline M. Burns, "Where Welfare Falls Short (1965), the level of employment is one public policy that eliminates or reduces poverty. According to the article, "...elimination of poverty is a matter of creating more jobs and equipping people to fill them." (Frieden and Morris, pg. 287). This can be argued as a result of underemployment or the continuing erosion of income based on inflation, but as a base level argument, employment results in income and reduces poverty. The important issue to consider is that Black and Hispanic Females experienced greater employment in BG's that are not receiving CDBG funds than White Females (see 4.5.1 above).

The multiple regression analysis found in Table 4.3.17 resulted in strong empirical evidence that the BGs receiving CDBG funds show an increase in employment levels, homeownership and income as compared to BGs not receiving CDBG funds. The differences between the BGs within the ZCTA with high school completion exhibit larger increase homeownership than those with a Bachelor's degree, but that relationship may be attributed to the degree of newlyweds getting married right out of high school and the goal to purchase a home and start an immediate family. The level of change of employment, income at or below poverty and educational attainment provides strong evidence that the concentration of poverty is positively changed in BGs receiving CDBG funds as compared to BGs not receiving CDBG funds.

If the family unit is headed by a female, then the level of concentration of poverty will be less in BG's not receiving CDBG funds, but for male and female family units, the males had greater employment levels in BG's receiving CDBG funds. This is echoed in the Burns article by emphasizing the full-employment of families headed by women may suffer from underemployment or service oriented jobs with minimum wage and tip supplementation to wages.
4.5.6. Findings for Research Question 6:

Is there a difference in the socio-economic changes in the targeted areas receiving Community Development Block Grant (CDBG) funding based on a language other than English than the immediate surrounding neighborhood areas not receiving CDBG funding?

The argument of assimilation and integration of minorities into the mainstream socio-economic environment known as "the American Dream", is a significant effect on minorities employment,
income and education attainment as articulated by the assimilation proponents. The challenges that Hispanic and Asian males and females encounter related to employment, income, homeownership and education attainment is fundamentally tied to language and cultural norms. According to Saegert, Thompson, and Warren (2001), in the pivotal Social Capital and Poor Communities "...Cultural constructions have a profound materiality because it defines they define claims that affect the resources available (or not available)... and they jeopardize the ability of poor neighborhoods to gain support from more affluent communities". (pg 51). These barriers range from employment opportunities to access to educational opportunities. The barrier of language is much greater if the native language is not English. Based on that premise, Hispanic and Asian Males and Females would have less employment change from census 2000 and 2010. Based on the collected data and statistical analysis, that is not the result. Both Hispanic and Asian Males had greater employment mean as compared to Black Males, and Hispanic Males had greater employment mean in BG's not receiving CDBG funds. Hispanic and Asian Females had greater employment mean in BG's not receiving CDBG funds and even greater employment mean than Black Females as compared to White Females. This would cause some doubt on the challenges of culture and language as advocated by assimilation research.

The preponderance of statistical evidence does support the theory that CDBG funds significantly improves the socio-economic changes of low income residents, but that language barriers that are normally associated with Hispanic and Asian individuals is not as significant a barrier as other researchers have proposed. The difference in change of employment as compared to change in employment by white residents in the same ZCTA shows that Hispanic Males in BGs receiving CDBG funds show an increase in Hispanic employment as compared to Black Males. This same finding is supported by Hispanic Females better in BGs receiving CDBG funds demonstrate an improvement in employment which would cast doubt on barriers as a result of language. This is different for homeownership findings. Hispanic Males and Females show an increase of difference in homeownership than the change in white residents within the same ZCTA. This may be associated with language, but most likely as result of the downturn in the economic health of the nation and the challenge of accumulating the necessary down payment for purchasing a home or other less obvious challenge. Most significant is the change in the concentration of poverty by the number of low income minority residents and their
change in the concentration of income at or below the poverty level. Both Hispanic Males and females show a more significant change in income as compared to whites.

4.5.7. Findings for Research Question 7:

Is there a difference in the socio-economic changes in the targeted areas receiving Community Development Block Grant (CDBG) funding based on race (ethnicity) than the immediate surrounding neighborhood areas not receiving CDBG funding?

Similar to the difference of social mobility barriers as addressed above, there remains a difference in the sharing of the advantages and benefits resulting from CDBG funds. The empirical evidence shows that both White males and females received more benefits (or rewards) through increase in the change in employment as compared to the minority population in the same researched areas. The difference is for Black and Hispanic Females which resulted in higher employment in BG's not receiving CDBG funds. Based on the data, minorities have not gained the increased income levels at or above the poverty levels that were realized by the white population. Additional research on the individual change in income level for Black, Hispanics, and Asians by income range (bracket) would be required to determine the threshold for income level change. Based on the empirical results of employment, the minority population may see an increase in employment, but at a lower wage.

In the T-Test and multiple regression analysis, the empirical evidence supports the theory that low income white residents benefit more from the CDBG programs than low-income minorities. The comparison of change has mixed results.

Black males in BGs receiving CDBG show a greater (larger) difference in employment as compared to white males in the same ZCTA receiving CDBG, but the difference is still larger in BGs not receiving CDBG funds. Black females in BGs receiving CDBG funds in Fort Worth and Dallas had less employment opportunities, but Black females in Fort Worth were worse off in BGs receiving CDBG than without, yet in Dallas Black females in BGs receiving CDBG funds were only slightly better off. Hispanic males and females were better off in employment change in BGs receiving CDBG in both Fort Worth and Dallas with the largest negative change occurring in Hispanic females in Dallas showing the greatest degree of differences as compared
to white females. This could be attributed to a language barrier, education, or the types of employment available such as retail, manufacturing or domestic services.

Homeownership was also had mixed results. Black males and females show a pronounced change as compared to whites in both Fort Worth and Dallas for homeownership. Hispanic males and females show a negative change in homeownership as compared to whites in Fort Worth, Hispanic females show negative progress in BGs receiving CDBG funds as compared to BGs not receiving CDBG funds. Some explanation might be that family structure was different or that the recession affected the elasticity of Hispanic female skill set employment and income levels more significantly.

Change in income also had mixed results. Black males and females show a pronounced change as compared to whites in both Fort Worth and Dallas for change in income. Black females saw their change in income by decreasing the number of families slipping into poverty for both Fort Worth and Dallas as compared to white residents. Hispanic males show a negative change in income at or below poverty as compared to whites in Fort Worth and Dallas, but Hispanic females show negative change in BGs receiving CDBG funds as compared to BGs not receiving CDBG funds which would indicate that the employment they were capturing was connected with better income opportunities. Some explanation might be that family structure was different or that the recession affected the elasticity of Hispanic female skill set employment and income levels more significantly.

Change in educational attainment also had mixed results. Black males and females show a pronounced change as compared to whites in both Fort Worth and Dallas for change in educational attainment. Black males in Fort Worth show that the increase of differences was higher (increased) in Fort Worth and Dallas. This might be an indication that many more Black males entered the workforce instead of achieving high school diploma or Bachelor's degree. Black females also saw a saw a change in educational attainment, but the in Fort Worth was larger than in Dallas. Hispanic males show a change in education attainment, but the negative change in Fort Worth in BGs not receiving CDBG funds was greater. This change might be affected by the increase in males entering the workforce to compensate for the loss in employment. Hispanic females show negative change in BGs receiving CDBG funds as compared to BGs not receiving CDBG funds which would indicate that they also were electing
employment and income over education to endure the recession. Another explanation might be that family structure was different or that the recession affected the elasticity of Hispanic female skill set employment and income levels more significantly.

4.5.8. Findings for Research Question 8:

Do targeted areas receiving Community Development Block Grant (CDBG) funding experience more change in the resilience in economic downturns or recessions than the immediate surrounding neighborhood areas not receiving CDBG funding?

The evidence demonstrates that the minority population in Black Groups receiving CDBG funds did better in recovery in employment and income, but not educational attainment. There is a strong argument that homeownership has changed for many potential homeowners and that the desire to own a home to accumulate wealth is no longer a viable goal or objective in a mobile work environment. It is also possible that the current homeownership loan policies are more restrictive post-recession. This is beyond the scope of this research and requires further study.

All minorities (Black and Hispanic) had a decrease in employment post-recession, with Black Females in BGs receiving CDBG funds in Fort Worth and Black Males and Hispanic Females encountering the largest challenges in BG's in Dallas not receiving CDBG funds. This reflects the significance that targeting areas with federal assistance and programs can realize in concrete benefits.

Black Males and Females in Fort Worth show a slight decrease in homeownership, but in Dallas they show a strong positive trend in BGs receiving CDBG funding as compared to BGs not receiving CDBG funds. This is a compared to their White counterparts. This may also reflect the change in family stability and a result of positive employment opportunities.

The reduction of educational attainment for Hispanic Males and Females was more severe in BG's not receiving CDBG funds when compared to Whites. In BG's in Fort Worth, the most significant was Hispanic Males in BG's not receiving CDBG funds.

4.5.9 Policy Implication

Community Development Block Grant program is a major component of the Federal, State, and local governments efforts to reduce or eliminate social mobility barriers for the low-income
minority population. Since its conception, the program has played a major component for leveling the "social" field of participation in access to the social equalizers of employment, homeownership, and income based on public education opportunity. According to the current research, "...Education is always the first step for those who have moved from poverty and disadvantaged in the lower class to stability and opportunity in the middle class" (Saegert, Thompson, Warren, pg. 82).

The result of this research was to determine the strength of previous research that CDBG funds in targeted neighborhoods reduces the obstacles to low-income minorities for social mobility and increases their mobility opportunities through the selected elements of employment, homeownership, income and education attainment. The previous research of The State of the American Dream: Race and Ethic Socioeconomic Inequality in the United States, 1970-90 by Charles Hirschman and C. Matthew Snipp (1999) and the HUD report titled "The Impact of CDBG Spending on Urban Neighborhoods" (2002) stated that the public policy to correct inequality is effective and that the CDBG is one such policy respectively. This research does not completely support that empirical finding.

The conditions for minorities have improved since 2000 when compared to 2010 census data. Employment has improved for minorities, but the positive change I still not to the level of white population. Although male's employment has improved, minority female employment has improved at a much more pronounced rate. Black and Hispanic Females had more improved employment in the BG's not receiving CDBG funds than those that did receive CDBG funding which contradicts the HUD report. This phenomenon requires additional research to determine the types of projects and programs being funded by CDBG funds.

Homeownership, which early in the civil rights movement was a foundation to wealth development and accumulation for minorities has exhibited some reexamination. As this research demonstrates, homeownership may not be the current path to accumulated wealth for many minorities. The data indicates that the change in homeownership is slight between either the BG's receiving or not receiving CDBG funds, and the regression analysis shows less relationship between homeownership and gender. The paired sample mean for homeownership for BG's receiving CDBG was 196.286 and for the BG's not receiving CDBG was 94.506 which would indicate a large change in an increase in ownership, but on careful
review the change in mean was from 113.90 in 2000 to 310.18 in 2010 for the BG's receiving CDBG and 167.87 in 2000 to 262.37 in 2010 for the BG's not receiving CDBG funds. The more informative was that the renter occupied number in the sample paired mean was 63.029 for BG's receiving CDBG funds and only 61.644 in BG's not receiving CDBG funds. It may be a reflection of the necessity to be mobile to relocate as required for advanced employment and income.

The concept that some researchers have introduced is the very tangible assets such as homeownership that once allowed the entry into employment with the expectation of income advancement through longevity based on the industrial age economy is morphing into a more transit and very dynamic electronic and temporary state. The path to accumulate wealth is to regularly change employment and location, acquiring new skills along the way. This concept may cause the traditional CDBG program to change with the morphing economy. If this is true, then the homeownership path to wealth accumulation will have to reflect the new path and the rhetoric of politicians and pundits will have redirect their focus for minority wealth building opportunities. Much more detailed research will need to be conducted on this variable.

The income at or below poverty mean change for both male and female of 41.820 for males and 50.150 for females in the BG's receiving CDBG funds as compared to the more modest change of 27.319 for males and 27.741 for females for the BG's not receiving CDBG funds indicates the relationship of the increased employment was not as equalizing has the policy intent had anticipated across ethnicity or gender. For males in BG's receiving CDBG funds, all employment means increased, but not equally. Hispanic males benefited second to White males. This indicates that White males and to a lesser degree, Hispanic Males were employed in jobs with an increase in wages. For males in BG's not receiving CDBG funds, the increase in employment for both White and Hispanic Males and less mean change indicates that the employment increase was for lower wage jobs than for the BG's receiving CDBG funds. For females in BG's receiving CDBG funds, all employment means increased, but not equally. Black females benefited second to White females. This indicates that White males and to a lesser degree, Hispanic females were employed in jobs with only a slight increase in wages. For females in BG's not receiving CDBG funds, the increase in employment for both Black and Hispanic Females and the mean change indicates that most of the employment gain was in low wage positions, but may have also included higher wages to keep close in mean to males in the
same BG. In essence, males income levels increased in BG's receiving CDBG funds than did females, and the employment increase in females in BG's not receiving CDBG funding was at modest wages. More research is needed.

Again, just focusing on High School and Bachelor's degree attainment, the mean for males in BG's receiving CDBG funds was 46.636 for High School and 35.587 for Bachelor's degree attainment. For females, the mean was 50.044 for High school and 38.427 for Bachelor's degree. The mean in education attainment for BG's not receiving CDBG funds was males at 40.406 for High School and 16.483 for Bachelor's degree attainment. For females, the mean was 36.397 for High school and 19.917 for Bachelor's degree. Both male and female benefited for CDBG funding. Partly this may be the result of integration of educated population to exhibit peer influence, or may be the result of specific CDBG programs to encourage and support education. The employment increase for females in the BG's not receiving CDBG funds is counter intuitive to the increase in in education for the BG's receiving CDBG over those that are not receiving CDBG funds. More research is required to determine the education attainment by race (ethnicity) and the income change.

	```Expectations of change from 2000 to 2010```	Research Results
Employment (Male) w/Grant	Increase greater than BG w/o Grant	Yes
Employment (Male) w/o Grant	Increase less than BG w Grant	Yes
Employment (Female) w/Grant	Increase greater than BG w/o Grant	Yes
Employment (Female) w/o Grant	Increase less than BG w Grant	Yes
Homeownership (Male) w/Grant	Increase greater than BG w/o Grant	No
Homeownership (Male) w/oGrant	Increase less than BG w Grant	No
Homeownership (Female) w/Grant	Increase greater than BG w/o Grant	No
Homeownership (Female) w/o Grant	Increase less than BG w Grant	No
Income at < Poverty (Male) w/Grant	Decrease greater than BG w/o Grant	No
Income at < Poverty (Male) w/o Grant	Decrease less than BG w Grant	No
Income at < Poverty (Female) w/Grant	Decrease greater than BG w/o Grant	Yes
Income at < Poverty (Female) w/o Grant	Decrease less than BG w Grant	Yes
Educational Attainment HS (Male) w/Grant	Increase greater than BG w/o Grant	No
Educational Attainment BS (Male) w/Grant	Increase greater than BG w/o Grant	Yes
Educational Attainment HS (Male) w/o Grant	Increase less than BG w Grant	No
Educational Attainment BS (Male) w/o Grant	Increase less than BG w Grant	Yes
Educational Attainment HS (Female) w/Grant	Increase greater than BG w/o Grant	Yes
Educational Attainment BS (Female) w/Grant	Increase greater than BG w/o Grant	Yes
Educational Attainment HS (Female) w/o Grant	Increase less than BG w Grant	Yes
Educational Attainment BS (Female) w/o Grant	Increase less than BG w Grant	Yes

Table 4.5.31 Research Expectation Summary

## APPENDIX A

Zip Code Tabulation Area

2000	2010
Fort Worth	
76102	76102
484391017001	484391017001
	484391232001
	484391232002
	484391233001
76103	76103
484391014013	484391014013
484391014014	484391014014
484391014015	484391014015
484391014021	484391014021
484391014022	484391014022
484391014023	484391014023
484391014032	484391014032
484391014033	484391014033
484391015001	484391015001
484391015002	484391015002
484391015003	484391015003
484391015004	484391015004
484391015005	484391015005
484391015002	484391015002
484391015003	484391015003
484391015004	484391015004
484391015005	484391015005
76104	76104
484391038001	484391038001
484391038002	484391038002
484391045021	484391045021
484391045051	484391045051
484391045053	484391045053
	484391231001
	484391231002
	484391231003
	484391234001
	484391234002
	484391234003
	484391235001
	484391235002
	484391235003

## 76105

484391035001484391035001
484391035002
484391035003
484391035004
484391036011
484391036012
484391036013
484391037011
484391037012
484391037013
484391037021
484391037022
484391046013
484391046041
484391046042
484391062011
484391062021
76106
484391002011
484391002012
484391002013
484391002021
484391002022
484391002023
484391003001
484391003002
484391003004
484391005011
484391005012
484391005013
484391005014
484391005015
484391005022
484391005023
484391005024
484391005026
484391050011
484391050012
484391050013
484391050014
76107
484391020001
484391021001
484391021002
484391035002
484391035003
484391035004
484391036011
484391036012
484391036013
484391037011
484391037012
484391037013
484391037021
484391037022
484391046013
484391046013
484391046042
484391062011
484391062021

484391002011
484391002012
484391002013
484391002021
484391002022
484391002023
484391003001
484391003002
484391003004
484391005011
484391005012
484391005013
484391005014
484391005015
484391005022
484391005023
484391005024
484391005026
484391050011
484391050012
484391050013
484391050014

484391020001
484391021002
484391021001

484391021003
484391021004 484391021005 484391022011 484391022014 484391022021 484391022022 484391022023 484391025001 484391025002 484391025003 484391025004 484391027002 484391027003 484391027004 484391230001

## 76108

483671404073 484391006013 484391107011 484391107012 484391107013 484391107014 484391107015 484391107016 484391107031 484391107032 484391107033 484391107041 484391107042 484391107043

484391021002
484391021003
484391021004
484391021005
484391022011
484391022014
484391022021
484391022022
484391022023
484391025001
484391025002
484391025003
484391025004
484391027002
484391027003
484391027004
484391230001

483671404073
484391006013
484391107011
484391107012
484391107013
484391107014
484391107015
484391107016
484391107031
484391107032
484391107033
484391107041
484391107042
484391107043
484391108051
484391108052
484391108053
484391108054
484391108061
484391108062
484391108063
484391108064
484391108071
484391108073
484391108074
484391142071
484391142072
484391142073

## 76109

484391042011
484391042012
484391042021
484391042022
484391042023
484391042024
484391043001
484391043002
484391043004
484391054031
484391054032
484391054033
484391054034
484391054041
484391054042
484391054043
484391054051
484391054052

## 76110

484391028001 484391028002 484391041001 484391041002 484391041003 484391041004 484391043003 484391043005 484391043006 484391044001 484391044002 484391044003 484391044004 484391044005 484391045022 484391045031 484391045032 484391045052

484391042011
484391042012
484391042021
484391042022
484391042023
484391042024
484391043001
484391043002
484391043004
484391054031
484391054032
484391054033
484391054034
484391054035
484391054041
484391054042
484391054043
484391054051
484391054052

484391028001
484391028002
484391041001
484391041002
484391041003
484391041004
484391043003
484391043005
484391043006
484391044001
484391044002
484391044003
484391044004
484391044005
484391045022
484391045031
484391045032
484391045052
484391047011
484391047012
484391047014
484391048031
484391048032
484391048033
484391048034
484391048035
484391048042

## 76111

484391001011 484391001012 484391001013 484391001014 484391001015 484391001021 484391001022 484391001023 484391001024 484391012012 484391012021 484391012022 484391012023 484391017002 484391049001 484391049002 484391103022

## 76112

484391012011 484391013011 484391013012 484391013013 484391013014 484391013021 484391013022 484391013023 484391014011 484391014012 484391014031 484391014034 484391036021 484391036022 484391065021 484391065022 484391065023 484391065031 484391065032 484391065033 484391065034 484391065121 484391065122 484391065123 484391065131 484391065132 484391065151 484391065152 484391065161 484391065162

484391001011
484391001012
484391001013
484391001014
484391001015
484391001021
484391001022
484391001023
484391001024
484391012012
484391012021
484391012022
484391012023
484391017002
484391049001
484391049002
484391103022

484391012011
484391013011
484391013012
484391013013
484391013014
484391013021
484391013022
484391013023
484391014011
484391014012
484391014031
484391014034
484391036021
484391036022
484391065021
484391065022
484391065023
484391065031
484391065032
484391065033
484391065034
484391065121
484391065122
484391065123
484391065131
484391065132
484391065151
484391065152
484391065161
484391065162

## 76114

484391005021484391005021
484391005025484391005025
484391006021
484391006022
484391007001
484391007002
484391007003
484391007004
484391007005
484391022012
484391022013
484391104021
484391104022
484391104023
484391104024
484391104025
484391105001
484391105002
484391105003
484391105004
484391105005
484391105006
484391105007
76115
484391045041
484391045042
484391048021
484391048022
484391048023
484391048024
484391058002
484391058004

76118
484391065101
484391065102
484391065103
484391133011
484391133012
484391133013
484391133014
484391133021
484391133022
76119
484391046011
484391046012
484391046021
484391045041
484391045042
484391048021
484391048022
484391048023
484391048024
484391058002
484391058004

484391065101
484391065102
484391065103
484391133011
484391133012
484391133013
484391133014
484391133021
484391133022

484391046011
484391046012
484391046021

484391046022
484391046023
484391046024
484391046031
484391046032
484391046033
484391046051
484391046052
484391046053
484391045054
484391061011
484391061012
484391061021
484391061022
484391062012
484391062013
484391062014
484391062022
484391062023
484391063002
484391064001
484391064002

76132
484391055051
484391055052
484391055053
484391055071
484391055081
484391055082

76137
484391102031
484391102032
484391139161
484391139162

484391046022
484391046023
484391046024
484391046031
484391046032
484391046033
484391046051
484391046052
484391046053
484391045054
484391061011
484391061012
484391061021
484391061022
484391062012
484391062013
484391062014
484391062022
484391062023
484391063002
484391064001
484391064002
484391111031
484391111032
484391111041

484391055051
484391055052
484391055053
484391055054
484391055071
484391055072
484391055073
484391055081
484391055082
484391055131
484391055132
484391055141
484391055142
484391055143
484391109031

484391050061
484391050071
484391050072
484391102031
484391102032
484391102033

484391102034
484391139161
484391139162
484391139163
484391139171
484391139172
484391139173
484391139174
484391139181
484391139182
484391139183
484391139191
484391139192
484391139193
484391139194
484391139195
484391139196
484391139201
484391139202
484391139231
484391139232
484391139241
484391139242
484391139251
484391139252

## Dallas

75203
481130020001
481130020002
481130020003
481130020004
481130020005
481130041001
481130041002
481130048001
481130048002
481130048003
481130048004
481130049001
481130049002
481130055001
481130055002
481130086032
481130089001
481130089002
75215
481130034001
481130034002
481130020001
481130020002
481130020003
481130020004
481130020005
481130041001
481130041002
481130048001
481130048002
481130048003
481130048004
481130049001
481130049002
481130055001
481130055002
481130086032
481130089001
481130089002

481130034001
481130034002

481130037001
481130037002
481130037003
481130037004
481130038001
481130038002
481130038003
481130039012
481130039021
481130039022
481130040001
481130040002
481130115003
481130115004
75216
481130049001
481130049003
481130049004
481130054001
481130054002
481130054003
481130054004
481130055003
481130055004
481130056001
481130056002
481130056004
481130057001
481130057002
481130057003
481130057004
481130059011
481130059012
481130059013
481130059014
481130059015
481130059016
481130059021
481130059022
481130086031
481130086041
481130086042
481130087011
481130087012
481130087013
481130087014
481130087031
481130087032
481130087041

481130037001
481130037002
481130037003
481130037004
481130038001
481130038002
481130038003
481130039012
481130039021
481130039022
481130040001
481130040002
481130115003
481130115004

481130049001
481130049003
481130049004
481130054001
481130054002
481130054003
481130054004
481130055003
481130055004
481130056001
481130056002
481130056004
481130057001
481130057002
481130057003
481130057004
481130059011
481130059012
481130059013
481130059014
481130059015
481130059016
481130059021
481130059022
481130086031
481130086041
481130086042
481130087011
481130087012
481130087013
481130087014
481130087031
481130087032
481130087041

481130087042
481130087042
481130087043
481130088011
481130088012
481130088013
481130088021
481130088022
481130088023
481130088024
481130088025
481130088026
75223
481130012022
481130012023
481130012031
481130012032
481130012041
481130012042
481130024002
481130024003
481130025001
481130025002
481130025003

## 75227

481130084001
481130084002
481130084003
481130084004
481130084005
481130084006
481130084007
481130085001
481130085002
481130085003
481130085004
481130090001
481130090002
481130090003
481130090004
481130090005
481130091011
481130091012
481130091013
481130091014
481130120001
481130120002
481130120003
481130121001
481130087043
481130088011
481130088012
481130088013
481130088021
481130088022
481130088023
481130088024
481130088025
481130088026

481130012022
481130012023
481130012031
481130012032
481130012041
481130012042
481130024002
481130024003
481130025001
481130025002
481130025003

481130084001
481130084002
481130084003
481130084004
481130084005
481130084006
481130084007
481130085001
481130085002
481130085003
481130085004
481130090001
481130090002
481130090003
481130090004
481130090005
481130091011
481130091012
481130091013
481130091014
481130120001
481130120002
481130120003
481130121001

481130122061
481130122061
481130122062
481130122063
481130122071
481130122072
481130122073
481130122062
481130122063
481130122071
481130122072
481130122073

## 75228

481130122041
481130122042
481130122043
481130122044
481130122045
481130122081
481130122091
481130122092
481130122101
481130122102
481130122111
481130122112
481130122113
481130123011
481130123012
481130123013
481130123021
481130123022
481130123023
481130124001
481130124002
481130124003
481130124004
481130124005
481130124006
481130125001
481130125002
481130125003
481130125005
481130126011
481130126012
481130127011
481130127012
481130127013
481130127014
481130127021
481130127022
75241
481130087015
481130087051
481130087052
481130122041
481130122042
481130122043
481130122044
481130122045
481130122081
481130122091
481130122092
481130122101
481130122102
481130122111
481130122112
481130122113
481130123011
481130123012
481130123013
481130123021
481130123022
481130123023
481130124001
481130124002
481130124003
481130124004
481130124005
481130124006
481130125001
481130125002
481130125003
481130125005
481130126011
481130126012
481130127011
481130127012
481130127013
481130127014
481130127021
481130127022

481130087015
481130087051
481130087052

481130112001
481130112002
481130112003
481130113001
481130113002
481130113003
481130114011
481130114012
481130114013
481130167011
481130167012
481130167013
481130167014
481130167031
481130167033

481130112001
481130112002
481130112003
481130113001
481130113002
481130113003
481130114011
481130114012
481130114013
481130167011
481130167012
481130167013
481130167014
481130167031
481130167033

## APPENDIX B

## Block Groups

With CDBG Grants

2000	2010
Fort Worth (White Only)	Fort Worth (White Only)
484391005022	484391020001
484391028001	484391028001
484391028002	484391028002
484391041004	484391041004
484391043005	484391043005
484391012012	484391012011
484391012021	484391013011
484391012022	484391013012
484391012023	484391013013
484391012011	484391013022
484391013011	484391014011
484391013012	484391014012
484391013013	484391065151
484391013021	484391065101
484391013022	484391064002
484391014012	484391055051
484391014034	484391055052
484391065033	484391055053
484391065121	484391055071
484391065123	484391055081
484391065101	484391055082
484391055051	
484391055052	
484391055053	
48391055071	
484391055081	4855082


484391065132	484391065032
484391065151	484391065033
484391065152	484391065121
484391065161	484391065122
484391065162	484391065131
484391046012	484391065132
484391046021	484391065152
484391062012	484391065161
484391062013	484391065162
484391062022	484391046012
484391062023	484391062012
	484391062013
	484391062022
	484391062023
Fort Worth (Hispanic Only)	Fort Worth (Hispanic Only)
484391002011	484391014013
484391002013	484391014023
484391002021	484391002023
484391002023	484391005023
484391005012	484391045022
484391005013	484391045031
484391005023	484391045032
484391020001	484391013021
484391045022	484391014034
484391045031	484391045041
484391045032	484391046022
484391045041	484391046023
	484391046024
	484391046031
	484391046033
Dallas (White Only)	
Dallas (Black Only)	Dallas (Black Only
481130020003	481130027011
481130027011	481130027012
481130027012	481130027013
481130027013	481130027014
481130027014	481130027022
481130027022	481130101012
481130101011	481130039012
481130101012	481130039022
481130101013	481130087013
481130039012	481130087014
481130039021	481130088011
481130039022	481130088012
481130115004	481130088021
481130087013	481130088022
481130087014	481130113001
481130088011	481130113002

Fort Worth (Hispanic Only)
484391002011
484391002013
484391002021
484391002023
484391005012
484391005013
484391005023
484391020001
484391045022
484391045031
484391045032
484391045041

Dallas (White Only)
Dallas (Black Only)
481130020003
481130027011
481130027012

481130027014
481130027022
481130101011
481130101012
481130101013
481130039012
481130039021
481130039022
481130115004
481130087013
481130088011

481130088012
481130088021
481130088022
481130113001
481130113002
481130113003
481130114011
Dallas (Hispanic Only)
481130020002
481130020004
481130101021
481130101022
481130101023
481130115003
481130025002
481130025003

481130113003
481130114011

Dallas (Hispanic Only)
481130020002
481130020004
481130101021
481130101022
481130101023
481130115003
481130025002
481130025003

## APPENDIX C

## Block Groups

## Without CDBG Grants

```
2000
Fort Worth (White Only)
484391014014
4 8 4 3 9 1 0 1 4 0 1 5
4 8 4 3 9 1 0 1 5 0 0 1
4 8 4 3 9 1 0 1 5 0 0 2 ~
4 8 4 3 9 1 0 1 5 0 0 4
484391021001
4 8 4 3 9 1 0 2 1 0 0 2
4 8 4 3 9 1 0 2 1 0 0 3 ~
4 8 4 3 9 1 0 2 1 0 0 4 ~
4 8 4 3 9 1 0 2 1 0 0 5 ~
4 8 4 3 9 1 0 2 2 0 1 1
484391022021
484391022022
484391022023
484391027002
484391027003
4 8 4 3 9 1 0 2 7 0 0 4
484391230001
484391043006
484391044002
484391044003
484391001011
484391001021
4 8 4 3 9 1 0 0 1 0 2 2
4 8 4 3 9 1 0 0 1 0 2 3
484391049001
484391049002
484391103022
484391065021
484391065022
484391048021
4 8 4 3 9 1 1 0 9 0 3 1
Fort Worth (Black Only)
484391014032
4 8 4 3 9 1 0 3 6 0 1 1
4 8 4 3 9 1 0 3 6 0 1 2
4 8 4 3 9 1 0 3 6 0 1 3
4 8 4 3 9 1 0 3 7 0 2 1
4 8 4 3 9 1 0 4 6 0 1 3
484391025001
```


## 2010

Fort Worth (White Only)
484391014014
484391014015
484391015001
484391021001
484391021003
484391021004
484391021005
484391022011
484391022014
484391022021
484391022022
484391022023
484391025001
484391027003
484391027004
484391041003
484391043006
484391044005
484391001021
484391065021
484391065022
484391133012
484391133013
484391133014
484391133021
484391133022
484391109031

Fort Worth (Black Only)
484391036011
484391036012
484391025002
484391025003
484391025004
484391027002
484391046052

484391025002	484391046053
484391025003	484391061012
484391025004	484391062014
484391065031	484391063002
484391046051	
484391046052	
484391046053	
484391045054	
484391061012	
484391062014	
Fort Worth (Hispanic Only)	Fort Worth (Hispanic Only)
484391015005	484391014022
484391035002	484391015005
484391035004	484391035001
484391037011	484391036013
484391002012	484391037011
484391002022	484391037013
484391003001	484391037021
484391003002	484391046013
484391003004	484391003002
484391005015	484391005015
484391005024	484391005024
484391005026	484391050012
484391050014	484391050014
484391041002	484391046051
484391044004	
Dallas (White Only)	Dallas (White Only
	481130012022
Dallas (Black Only)	481130012031
481130041001	Dallas (Black Only
481130041002	481130041001
481130049002	481130049002
481130055001	481130055001
481130055002	481130055002
481130089001	481130089001
481130089002	481130089002
481130027013	481130105001
481130105014	481130034001
481130105002	481130034002
481130034001	481130037001
481130034002	481130037002
481130037001	481130037003
481130037002	481130037004
481130037003	481130038001
4800380001	481130038002


481130038003	481130049003
481130040001	481130054001
481130040002	481130057001
481130049001	481130057003
481130049003	481130057004
481130049004	481130059011
481130054002	481130059012
481130054003	481130059013
481130055003	481130059014
481130055004	481130059015
481130057001	481130059021
481130057004	481130059022
481130059011	481130086031
481130059012	481130086041
481130059013	481130086042
481130059014	481130087011
481130059015	481130087012
481130059016	481130087031
481130059021	481130087032
481130059022	481130087041
481130086031	481130087042
481130086041	481130087043
481130086042	481130088013
481130087011	481130088023
481130087012	481130088024
481130087031	481130088025
481130087032	481130088026
481130087041	481130087015
481130087042	481130087051
481130087043	481130087052
481130088013	481130112001
481130088023	481130112002
481130088024	481130112003
481130088025	481130114012
481130088026	481130114013
481130012023	481130167011
481130087015	481130167012
481130087051	481130167013
481130087052	481130167014
481130112001	
481130112002	
481130112003	
481130114012	
481130114013	
481130167011	
481130167012	
481130167013	
481130167014	
Dallas (Hispanic Only)	Dallas (Hispanic Only)
481130020001	481130020005

481130020005
481130048001
481130048002
481130048003
481130048004
481130086032
481130043002
481130106011
481130106012
481130106013
481130106021
481130106022
481130012032
481130012041
481130012042
481130024002
481130024003

481130048001
481130048002
481130048003
481130048004
481130086032
481130043002
481130106011
481130106012
481130106013
481130106022
481130054004
481130056001
481130056002
481130056004
481130012032
481130012041
481130012042
481130024002
481130024003

## APPENDIX D

## Dissertation Data Variables

2000 Census with Grant			2000 Census without Grant	
		\%		
76102			76102	
	484391017001	AA		
76103			76103	
	484391014013	W/AA	484391014014	W
	484391014023	W/H	484391014015	W
	484391014033	W/AA	484391014021	W/AA
			484391014022	W/Hisp
			484391014032	AA
			484391015001	W
			484391015002	W
			484391015003	W/Hisp
			484391015004	W
			484391015005	Hisp
76104			76104	
	484391038001	AA	484391045053	
	484391038002	AA		
	484391045021	AA/Hisp		
	484391045051	AA		
76105			76105	
	484391046041	AA	484391035001	AA/Hisp
	484391046042	AA/Hisp	484391035002	Hisp
	484391062011	AA	484391035003	W/Hisp
	484391062021	AA	484391035004	Hisp
			484391036011	AA
			484391036012	AA
			484391036013	AA
			484391037011	Hisp
			484391037012	W/AA/Hisp
			484391037013	AA/Hisp
			484391037021	AA
			484391037022	AA/Hisp
			484391046013	AA


76106			76106		
	484391002011	Hisp		484391002012	Hisp
	484391002013	Hisp		484391002022	Hisp
	484391002021	Hisp		484391003001	Hisp
	484391002023	Hisp		484391003002	Hisp
	484391005011	W/Hisp		484391003004	Hisp
	484391005012	Hisp		484391005014	W/Hisp
	484391005013	Hisp		484391005015	Hisp
	484391005022	W		484391005024	Hisp
	484391005023	Hisp		484391005026	Hisp
	484391050011	W/Hisp		484391050012	W/Hisp
	484391050013	W/Hisp		484391050014	Hisp
76107			76107		
	484391020001	Hisp		484391021001	W
				484391021002	W
				484391021003	W
				484391021004	W
				484391021005	W
				484391022011	W
				484391022014	W
				484391022021	W
				484391022022	W
				484391022023	W
				484391025001	AA
				484391025002	AA
				484391025003	AA
				484391025004	AA
				484391027002	W
				484391027003	W
				484391027004	W
				484391230001	W
76110			76110		
	484391028001	W		484391041001	W/Hisp
	484391028002	W		484391041002	Hisp
	484391041004	W		484391041003	W/Hisp
	484391043005	W		484391043003	W/Hisp
	484391045022	Hisp		484391043006	W
	484391045031	Hisp		484391044001	W/Hisp
	484391045032	Hisp		484391044002	W
	484391045052	AA		484391044003	W
				484391044004	Hisp

76111

484391001011	W
484391001012	W/Hisp

484391001013 W/Hisp
484391001014 W/Hisp
484391001015 W/Hisp
484391001021 W
484391001022 W
484391001023 W
484391001024 W/Hisp
484391017002 AA
484391049001 W
484391049002 W
484391103022 W

76112
484391065021 W
484391065022 W
484391065023 W/AA
484391065031 AA
484391065034 W/AA

76115			76115		
	484391045041	Hisp		484391048021	W
	484391045042	W/Hisp		484391048022	W/Hisp
				484391048023	W/Hisp
				484391048024	W/Hisp
				484391058002	W/Hisp
				484391058004	W/Hisp
76118			76118		
	484391065101	W		484391133012	W
				484391133013	W
				484391133014	W
				484391133021	W
				484391133022	W
76119			76119		
	484391046011	AA/Hisp		484391046051	AA
	484391046012	AA		484391046052	AA
	484391046021	AA		484391046053	AA
	484391046022	W/Hisp		484391045054	AA
	484391046023	AA/Hisp		484391061011	W/AA
	484391046024	AA/Hisp		484391061012	AA
	484391046031	Hisp		484391061021	W/AA
	484391046032	W/Hisp		484391061022	W/AA
	484391046033	W/Hisp		484391062014	AA
	484391062012	AA		484391063002	AA
	484391062013	AA			
	484391062022	AA			
	484391062023	AA			
	484391064001	W			
	484391064002	W			
76132			76132		
	484391055051	W		484391109031	W
	484391055052	W			
	484391055053	W			
	484391055071	W			
	484391055081	W			
	484391055082	W			
75203			75203		
	481130020002	Hisp		481130020001	Hisp


	481130020003	AA	481130020005	Hisp
	481130020004	Hisp	481130041001	AA
			481130041002	AA
			481130048001	Hisp
			481130048002	Hisp
			481130048003	Hisp
			481130048004	Hisp
			481130049002	AA
			481130055001	AA
			481130055002	AA
			481130086032	Hisp
				481130089001

75216

481130087013	AA
481130087014	AA
481130088011	AA
481130088012	AA
481130088021	AA
481130088022	AA

75216

481130049001	AA
481130049003	AA
481130049004	AA
481130054001	AA/Hisp
481130054002	AA
481130054003	AA
481130054004	AA/Hisp
481130055003	AA
481130055004	AA
481130056001	Hisp
481130056002	AA/Hisp
481130056004	AA/Hisp
481130057001	AA

481130057002 AA/Hisp
481130057003 AA/Hisp 481130057004 AA 481130059011 AA 481130059012 AA 481130059013 AA 481130059014 AA 481130059015 AA 481130059016 AA 481130059021 AA 481130059022 AA 481130086031 AA 481130086041 AA 481130086042 AA 481130087011 AA 481130087012 AA 481130087031 AA 481130087032 AA 481130087041 AA 481130087042 AA 481130087043 AA 481130088013 AA 481130088023 AA 481130088024 AA 481130088025 AA 481130088026 AA


76104			76104		
	484391038001	AA		484391045053	AA/Hisp
	484391038002	AA			
	484391045021	W/Hisp			
	484391045051	AA			
76105			76105		
	484391046041	W/AA/Hisp		484391035001	Hisp
	484391046042	AA		484391035002	W/Hisp
	484391062011	AA		484391035003	W/Hisp
	484391062021	AA		484391035004	W/Hisp
				484391036011	AA
				484391036012	AA
				484391036013	Hisp
				484391037011	Hisp
				484391037012	W/Hisp
				484391037013	Hisp
				484391037021	Hisp
				484391037022	AA/Hisp
				484391046013	Hisp
76106			76106		
	484391002011	W/Hisp		484391002012	W/Hisp
	484391002013	W/Hisp		484391002022	W/Hisp
	484391002021	W/Hisp		484391003001	W/hisp
	484391002023	Hisp		484391003002	Hisp
	484391005011	W/Hisp		484391003004	W/hisp
	484391005012	W/Hisp		484391005014	W/Hisp
	484391005013	W/Hisp		484391005015	Hisp
	484391005022	W/Hisp		484391005024	Hisp
	484391005023	Hisp		484391005026	W/Hisp
	484391050011	W/Hisp		484391050012	Hisp
	484391050013	W/Hisp		484391050014	Hisp
76107			76107		
	484391020001	W		484391021001	W
				484391021002	W/Hisp
				484391021003	W
				484391021004	W
				484391021005	W
				484391022011	W
				484391022014	W



484391013013	W
484391013014	W/Hisp
484391013021	Hisp
484391013022	W
484391013023	AA
484391014011	W
484391014012	W
484391014031	W/AA/Hisp
484391014034	Hisp
484391036021	AA
484391036022	AA
484391065032	AA
484391065033	AA
484391065121	AA
484391065122	AA
484391065123	W/AA
484391065131	AA
484391065132	AA
484391065151	W
484391065152	AA
484391065161	AA
484391065162	AA

76115
$484391045041 \quad$ Hisp
$484391045042 \quad$ W/Hisp

76118
484391065101 W

76119
484391046011
484391046012
484391046021
484391046022
AA/Hisp
AA
AA/Hisp
Hisp

## 76115

484391048021	W/Hisp
484391048022	W/Hisp
484391048023	W/Hisp
484391048024	W/Hisp
484391058002	W/Hisp
484391058004	W/Hisp

76118

484391133012	$W$
484391133013	$W$
484391133014	$W$
484391133021	$W$
484391133022	$W$

## 76119

484391046051	Hisp
484391046052	AA
484391046053	AA
484391045054	W/AA/Hisp


484391046023	Hisp
484391046024	Hisp
484391046031	Hisp
484391046032	W/Hisp
484391046033	Hisp
484391062012	AA
484391062013	AA
484391062022	AA
484391062023	AA
484391064001	W/Hisp
484391064002	W

76132 |  |  |  |
| :--- | :--- | :--- |
|  | 484391055051 | $W$ |
|  | 484391055052 | $W$ |
|  | 484391055053 | $W$ |
|  | 484391055071 | $W$ |
|  | 484391055081 | $W$ |
|  | 484391055082 | $W$ |

75203 |  |  |  |
| :--- | :--- | :--- |
|  | 481130020002 | Hisp |
| 481130020003 | Hisp |  |
| 481130020004 | Hisp |  |

75210

481130027011	AA
481130027012	AA
481130027013	AA
481130027014	AA
481130027022	AA

484391061011
484391061012
484391061021
484391061022
484391062014 484391063002

## 76132

484391109031 W

75203

481130020001	W/Hisp
481130020005	Hisp
481130041001	AA
481130041002	AA/Hisp

481130048001 Hisp
481130048002 Hisp 481130048003 Hisp 481130048004 Hisp 481130049002 AA 481130055001 AA 481130055002 AA 481130086032 Hisp 481130089001 AA 481130089002 AA

## 75210

481130027013 AA 481130027014 AA

75212

481130101011	AA/Hisp
481130101012	AA
481130101013	AA/Hisp
481130101021	Hisp
481130101022	Hisp
481130101023	Hisp

75215

481130039012	AA
481130039021	AA/Hisp
481130039022	AA
481130115003	W/Hisp
481130115004	AA/Hisp

75216

481130087013	AA
481130087014	AA
481130088011	AA
481130088012	AA
481130088021	AA
481130088022	AA

75212

481130043002	Hisp
481130105001	AA
481130105002	AA/Hisp
481130106011	Hisp
481130106012	Hisp
481130106013	Hisp
481130106021	W/Hisp
481130106022	Hisp

75215

481130034001	AA
481130034002	AA
481130037001	AA
481130037002	AA
481130037003	AA
481130037004	AA
481130038001	AA
481130038002	AA
481130038003	AA
481130040001	AA
481130040002	AA

75216

481130049001	AA
481130049003	AA
481130049004	AA/Hisp
481130054001	AA
481130054002	AA/Hisp
481130054003	AA/Hisp
481130054004	Hisp
481130055003	AA/Hisp
481130055004	AA/Hisp
481130056001	Hisp
481130056002	Hisp
481130056004	Hisp
481130057001	AA
481130057002	AA/Hisp
481130057003	AA
481130057004	AA
481130059011	AA
481130059012	AA
481130059013	AA


481130059014	AA
481130059015	AA
481130059016	AA/Hisp
481130059021	AA
481130059022	AA
481130086031	AA
481130086041	AA
481130086042	AA
481130087011	AA
481130087012	AA
481130087031	AA
481130087032	AA
481130087041	AA
481130087042	AA
481130087043	AA
481130088013	AA
481130088023	AA
481130088024	AA
481130088025	AA
481130088026	AA

75223

481130025001	AA/Hisp
481130025002	Hisp
481130025003	Hisp

75241
75241

481130113001	AA
481130113002	AA
481130113003	AA
481130114011	AA

75223

481130012022	W
481130012023	W
481130012031	W
481130012032	Hisp
481130012041	Hisp
481130012042	Hisp
481130024002	Hisp
481130024003	Hisp


481130087015	AA
481130087051	AA
481130087052	AA
481130112001	AA
481130112002	AA
481130112003	AA
481130114012	AA
481130114013	AA
481130167011	AA
481130167012	AA
481130167013	AA

```
481130167014
481130167031
481130167033
```

AA
W/AA/Hisp
W/Hisp

## APPENDIX E

## Dissertation Data Variables

## Race 2000

Measurement Level: Nominal
Missing Values
Value Label

1. White \%
2. Black \%
3. Hispanic \%
4. Asian \%

Total Population 2000
Measurement Level: Nominal
Missing Values
Value Label

1. $20-24$
2. $25-29$
3. $30-34$
4. $35-39$
5. $40-44$
6. $45-49$
7. $50-54$
8. $55-59$
9. $60-61$
10. 62 - 64

## Total Male Population 2000

Measurement Level: Nominal
Missing Values
Value Label

1. $20-24$
2. $25-29$
3. $30-34$
4. $35-39$
5. $40-44$
6. $45-49$
7. $50-54$
8. 55-59
9. $60-61$
10. $62-64$

Total Female Population 2000
Measurement Level: Nominal
Missing Values
Value Label

1. $20-24$
2. $25-29$
3. $30-34$
4. $35-39$
5. $40-44$
6. $45-49$
7. $50-54$
8. 55-59
9. $60-61$
10. 62 - 64

Total Housing Units 2000
Measurement Level: Nominal
Missing Values
Value Label

1. Occupied
2. Owner Occupied
3. Rental Occupied

## Total Population 16+ 2000

Measurement Level: Nominal Missing Values
Value Label

1. White 16+
2. White Male $16+$
3. White Male 16+ in labor force
4. White Male 16+ in labor force employed
5. White Male 16+ in labor force unemployed
6. White Female 16+
7. White Female 16+ in labor force
8. White Female 16+ in labor force employed
9. White Female 16+ in labor force unemployed
10. African American 16+
11. African American Male 16+
12. African American Male 16+ in labor force
13. African American Male 16+ in labor force employed
14. African American Male 16+ in labor force unemployed
15. African American Female 16+
16. African American Female 16+ in labor force
17. African American Female 16+ in labor force employed
18. African American Female 16+ in labor force unemployed
19. Hispanic 16+
20. Hispanic Male 16+
21. Hispanic Male 16+ in labor force
22. Hispanic Male 16+ in labor force employed
23. Hispanic Male 16+ in labor force unemployed
24. Hispanic Female 16+
25. Hispanic Female 16+ in labor force
26. Hispanic Female 16+ in labor force employed
27. Hispanic Female 16+ in labor force unemployed
28. Asian 16+
29. Asian Male 16+
30. Asian Male 16+ in labor force
31. Asian Male 16+ in labor force employed
32. Asian Male 16+ in labor force unemployed
33. Asian Female 16+
34. Asian Female 16+ in labor force
35. Asian Female 16+ in labor force employed
36. Asian Female 16+ in labor force unemployed
Income 2000 Total Family Income
Measurement Level: Ordinal
Value Label
1 Less than $\$ 10,000$

Income 2000 Total Male Income
Measurement Level: Ordinal
Value Label
1 Less than \$2,499
2 \$2,500 to \$4,999
$3 \quad \$ 5,000$ to $\$ 7,499$
$4 \quad \$ 7,500$ to $\$ 9,999$
$5 \quad \$ 10,000$ to $\$ 12,499$
$6 \quad \$ 12,500$ to $\$ 14,999$
$7 \quad \$ 15,000$ to $\$ 17,499$
$8 \quad \$ 17,500$ to $\$ 19,999$
$9 \quad \$ 20,000$ to $\$ 22,499$
$10 \quad \$ 22,500$ to $\$ 24,999$
$11 \quad \$ 25,000$ to $\$ 29,999$
12 \$30,000 to \$34,999
13 \$35,000 to \$39,999
14 \$40,000 to \$49,999
15 \$50,000 to \$54,999
16 \$55,000 to \$64,499
$17 \quad \$ 65,000$ to $\$ 74,999$
18 \$75,000 to \$99,999
19 \$100,000 or more
Income 2000 Total Female Income
Measurement Level: Ordinal

```
Value Label
 Less than $2,499
2 $2,500 to $4,999
3 $5,000 to $7,499
4 $7,500 to $9,999
5 $10,000 to $12,499
6 $12,500 to $14,999
7 $15,000 to $17,499
8 $17,500 to $19,999
9 $20,000 to $22,499
10 $22,500 to $24,999
11 $25,000 to $29,999
12 $30,000 to $34,999
13 $35,000 to $39,999
14 $40,000 to $49,999
15 $50,000 to $54,999
16 $55,000 to $64,499
17 $65,000 to $74,999
18 $75,000 to $99,999
19 $100,000 or more
```


## Highest Degree Male 2000

Measurement Level: Ordinal
Value Label

1. Male No schooling completed
2. Male $12^{\text {th }}$ grade, no diploma
3. Male High School Graduate
4. Male Some College, less than 1 year
5. Male Some College, 1 or more years, No Degree
6. Male Associates Degree
7. Male Bachelor's Degree
8. Male Master's Degree
9. Male Professional Degree
10. Male Doctorate's Degree

## Highest Degree Female 2000

Measurement Level: Ordinal
Value Label

1. Female No schooling completed
2. Female $12^{\text {th }}$ grade, no diploma
3. Female High School Graduate
4. Female Some College, less than 1 year
5. Female Some College, 1 or more years, No Degree
6. Female Associates Degree
7. Female Bachelor's Degree
8. Female Master's Degree
9. Female Professional Degree
10. Female Doctorate's Degree

## Race 2010

Measurement Level: Nominal
Missing Values
Value Label
5. White \%
6. Black \%
7. Hispanic \%
8. Asian \%

Total Population 2010
Measurement Level: Nominal
Missing Values
Value Label
11. $20-24$
12. $25-29$
13. $30-34$
14. $35-39$
15. 40 - 44
16. $45-49$
17. $50-54$
18. $55-59$
19. $60-61$
20. 62-64

## Total Male Population 2010

Measurement Level: Nominal
Missing Values
Value Label

1. 20-24
2. $25-29$
3. $30-34$
4. $35-39$
5. $40-44$
6. $45-49$
7. $50-54$
8. $55-59$
9. $60-61$
10. 62-64

Total Female Population 2010
Measurement Level: Nominal
Missing Values
Value Label

1. $20-24$
2. $25-29$
3. $30-34$
4. $35-39$
5. $40-44$
6. $45-49$
7. $50-54$
8. 55-59
9. $60-61$
10. $62-64$

## Total Housing Units 2010

Measurement Level: Nominal
Missing Values
Value Label
4. Occupied
5. Owner Occupied
6. Rental Occupied

Total Population 16+ 2010
Measurement Level: Nominal
Missing Values
Value Label
37. White 16+
38. White Male 16+
39. White Male 16+ in labor force
40. White Male 16+ in labor force employed
41. White Male 16+ in labor force unemployed
42. White Female 16+
43. White Female 16+ in labor force
44. White Female 16+ in labor force employed
45. White Female 16+ in labor force unemployed
46. African American 16+
47. African American Male 16+
48. African American Male 16+ in labor force
49. African American Male 16+ in labor force employed
50. African American Male 16+ in labor force unemployed
51. African American Female 16+
52. African American Female 16+ in labor force
53. African American Female 16+ in labor force employed
54. African American Female 16+ in labor force unemployed
55. Hispanic 16+
56. Hispanic Male 16+
57. Hispanic Male 16+ in labor force
58. Hispanic Male 16+ in labor force employed
59. Hispanic Male 16+ in labor force unemployed
60. Hispanic Female 16+
61. Hispanic Female 16+ in labor force
62. Hispanic Female 16+ in labor force employed
63. Hispanic Female 16+ in labor force unemployed
64. Asian 16+
65. Asian Male 16+
66. Asian Male 16+ in labor force
67. Asian Male 16+ in labor force employed
68. Asian Male 16+ in labor force unemployed
69. Asian Female 16+
70. Asian Female 16+ in labor force
71. Asian Female 16+ in labor force employed
72. Asian Female 16+ in labor force unemployed
Income 2010 Total Family Income
Measurement Level: Ordinal
Value Label
14 Less than \$10,000
$15 \quad \$ 10,000$ to $\$ 14,999$
$16 \quad \$ 15,000$ to $\$ 19,999$
$17 \quad \$ 20,000$ to $\$ 24,999$
18 \$25,000 to \$29,999
$19 \quad \$ 30,000$ to $\$ 34,999$
20 \$35,000 to \$39,999
$21 \quad \$ 40,000$ to $\$ 44,999$
22 \$45,000 to \$49,000
23 \$50,000 to \$59,000
$24 \quad \$ 60,000$ to $\$ 74,999$
$25 \quad \$ 75,000$ to $\$ 99,999$
26 \$100,000 to \$124,999

## Income 2010 Total Male Income

Measurement Level: Ordinal
Value Label
20 Less than \$2,499
$21 \quad \$ 2,500$ to $\$ 4,999$
22 \$5,000 to \$7,499
23 \$7,500 to \$9,999
$24 \quad \$ 10,000$ to $\$ 12,499$
25 \$12,500 to \$14,999
26 \$15,000 to \$17,499
$27 \quad \$ 17,500$ to $\$ 19,999$
28 \$20,000 to \$22,499
$29 \quad \$ 22,500$ to $\$ 24,999$
30 \$25,000 to \$29,999
$31 \quad \$ 30,000$ to $\$ 34,999$
32 \$35,000 to \$39,999
$33 \quad \$ 40,000$ to $\$ 49,999$
$34 \quad \$ 50,000$ to $\$ 54,999$
$35 \quad \$ 55,000$ to $\$ 64,499$
$36 \quad \$ 65,000$ to $\$ 74,999$
$37 \quad \$ 75,000$ to \$99,999
38 \$100,000 or more

## Income 2010 Total Female Income

Measurement Level: Ordinal
Value Label
20 Less than \$2,499
$21 \quad \$ 2,500$ to $\$ 4,999$
22 \$5,000 to \$7,499
23 \$7,500 to \$9,999
$24 \quad \$ 10,000$ to $\$ 12,499$
$25 \quad \$ 12,500$ to $\$ 14,999$
$26 \quad \$ 15,000$ to $\$ 17,499$
$27 \quad \$ 17,500$ to $\$ 19,999$
28 \$20,000 to \$22,499
$29 \quad \$ 22,500$ to \$24,999
$30 \quad \$ 25,000$ to \$29,999
$31 \quad \$ 30,000$ to $\$ 34,999$
32 \$35,000 to \$39,999
33 \$40,000 to \$49,999
$34 \quad \$ 50,000$ to $\$ 54,999$
$35 \quad \$ 55,000$ to $\$ 64,499$
$36 \quad \$ 65,000$ to $\$ 74,999$
$37 \quad \$ 75,000$ to \$99,999
$38 \$ 100,000$ or more

## Highest Degree Male 2010

Measurement Level: Ordinal
Value Label

1. Male No schooling completed
2. Male $12^{\text {th }}$ grade, no diploma
3. Male High School Graduate
4. Male Some College, less than 1 year
5. Male Some College, 1 or more years, No Degree
6. Male Associates Degree
7. Male Bachelor's Degree
8. Male Master's Degree
9. Male Professional Degree
10. Male Doctorate's Degree

Highest Degree Female 2010
Measurement Level: Ordinal
Value Label

1. Female No schooling completed
2. Female $12^{\text {th }}$ grade, no diploma
3. Female High School Graduate
4. Female Some College, less than 1 year
5. Female Some College, 1 or more years, No Degree
6. Female Associates Degree
7. Female Bachelor's Degree
8. Female Master's Degree
9. Female Professional Degree
10. Female Doctorate's Degree

## APPENDIX F

## Population Demographics



Figure F1: Change in Population by County Courtesy of the U. S. Census


Figure F.2: Percent White Alone or in Combination by County: 2000
Courtesy of the U. S. Census


Figure F.3: Percentage Non-Hispanic and Hispanic White Alone Or in Combination Population by County: 2010
Courtesy of the U. S. Census


Figure F.4: Percent Black or African American Alone or in Combination by County: 2000 Courtesy of the U. S. Census


Figure F.5: Percentage Black or African American Alone Or in Combination Population by County: 2010 Courtesy of the U. S. Census


Figure F.6: Percent Hispanic Alone or in Combination by County: 2000
Courtesy of the U. S. Census


Figure F.7: Percentage Hispanic or Hispanic White Alone Or in Combination Population by County: 2010
Courtesy of the U. S. Census


[^2]

Figure F.9: Percentage Asian Alone Or in Combination Population by County: 2010 Courtesy of the U. S. Census


Figure F.10: Percentage Change in Non-Hispanic and Hispanic White Alone or in Combination Population by
County: 2000 to 2010
Courtesy of the U. S. Census


Figure F.11: Percentage Change in Black or African American Alone or in Combination Population by County: 2000 to 2010
Courtesy of the U. S. Census


Figure F.12: Percentage Change in Hispanic or Latino Alone or in Combination Population by
County: 2000 to 2010
Courtesy of the U.S. Census


Figure F.13: Percentage Change in Asian Alone or in Combination Population by County: 2000 to 2010
Courtesy of the U. S. Census


Figure F.14: Percentage Change in Asian Alone or in Combination Population by County: 2000 to 2010
Courtesy of the U. S. Census


Figure F.15: Percentage Change in Asian Alone or in Combination Population by County: 2000 to 2010
Courtesy of the U. S. Census

## APPENDIX G

Income Demographics

Current Dollars						
Year	Number (thous.)	Upper limit of each fifth (dollars)				Lower limit of top 5 percent (dollars)
		Lowest	Second	Third	Fourth	
2014	81,730	29,100	52,697	82,032	129,006	230,030
2013 (39)	82,316	28,840	52,041	80,040	126,343	225,533
2013 (38)	81,217	28,894	50,520	78,000	121,059	217,032
2012	80,944	27,794	49,788	76,538	119,001	210,000
2011	80,529	27,218	48,502	75,000	115,866	205,200
2010 (37)	79,559	26,520	48,000	74,000	113,440	200,200
2009 (36)	78,867	26,934	47,914	73,338	112,540	200,000
2008	78,874	27,800	49,325	75,000	113,205	200,000
2007	77,908	27,864	49,510	75,000	112,638	197,216
2006	78,454	27,000	47,000	71,200	109,150	191,060
2005	77,418	25,616	45,021	68,304	103,100	184,500
2004 (35)	76,866	24,772	43,400	65,818	100,000+	173,640
2003	76,232	24,117	42,057	65,000	98,200	170,082
2002	75,616	24,000	41,440	63,000	94,469	164,323
2001	74,340	24,000	41,127	62,500	94,150	164,104
2000 (30)	73,778	24,000	40,840	61,325	91,374	160,120

Table G.1: Percentile of Income Total from the United States by Year Courtesy of the U. S. Census


Table G.2: Percentile of Income Total from the United States by Year, White Alone Courtesy of the U. S. Census

Black Alone						
Year	Number (thous.)	Upper limit of each fifth (dollars)				Lower limit of $\operatorname{top} 5$ percent (dollars)
		Lowest	Second	Third	Fourth	
2014	9,909	17,592	33,548	54.479	90.926	167.615
2013 (39)	9,850	17,552	33,400	53,531	88,107	159.283
2013 (38)	9.923	17,040	32,680	52,500	89,570	156.667
2012	9,823	16,200	31,197	51,000	84,104	145,000
2011	9.656	16,000	31,000	51.935	84,004	149.000
2010 (37)	9,571	15,350	30,000	48,557	78,740	139.703
2009 (36)	9,367	16,114	30,000	48,757	80,000	140.130
2006	9,399	16,320	31,221	50,000	80,242	139.357
2007	9,259	16,000	31,000	50,015	81,546	136.824
2006	9,274	15,500	30,000	48,077	77,662	136.416
2005	9,051	14,616	27,200	45,000	73,000	128,090
2004 (35)	8,906	14,066	27,488	44,141	70,153	122.040
2003	8,914	14,000	26,300	43,050	69,624	117.236
2002	8,932	14,300	26,702	41.848	68,408	117.050
Black						
Year	Number (thous.)	Upper limit of each fifth (dollars)				Lower limit of top 5 percent (dollars)
		Lowest	Second	Third	Fourth	
2001	8,847	14,256	26,350	42,400	67,523	110.977
2000 (30)	8,731	14,800	26,400	41.730	65.169	112.450

Table G.3: Percentile of Income Total from the United States by Year, African American Black Alone
Courtesy of the U. S. Census

Current Dollars						
Year	Number   (thous.)	Upper limit of each fifth (dollars)				Lower limit of top 5 percent (dollars)
		Lowest	Second	Third	Fourth	
2014	12,464	20,000	35,025	55,000	89,000	155,941
2013 (39)	12,412	19,010	32,836	51,790	88,649	171,135
2013 (38)	12,119	20,000	34,000	52,000	85,000	147,800
2012	11,961	18,558	32,000	50,000	81,000	146,600
2011	11,589	18,944	32,000	49,500	80,000	147,000
2010 (37)	11,284	17,916	30,790	49,576	78.157	140.220
2009 (36)	10,422	18,000	31,500	49,401	78.350	140,400
2008	10,503	18,687	32.250	50,000	79,500	142,000
2007	10,397	19,524	32,001	50,000	76,404	133,500
2006	10,155	19,000	32,000	48,000	75,526	135,000
2005	9,868	18,002	30,160	45,730	70,990	125,500
2004 (35)	9,521	17,213	28,557	43,500	68,102	121,733
2003	9,274	16,500	28,000	42,000	65.912	117,540
2002	9,094	16,481	27,600	41,600	65,288	115,034
2001	8,516	16,000	28,000	41,600	65,040	113,374
2000 (30)	8,017	16,120	28,000	41,900	63,700	110,732

Table G.4: Percentile of Income Total from the United States by Year, Hispanic Alone
Courtesy of the U. S. Census

Asian Alone						
Year	Number (thous.)	Upper limit of each fifth (dolars)				Lower limit of top 5 percent (dollars)
		Lowest	Second	Third	Fourth	
2014	4,499	35,000	65,848	102,441	157,339	272.887
2013 (39)	4,378	37,111	68,180	100,214	160,500	285,012
2013 (38)	4,360	34,699	62,000	95,000	150,000	255,000
2012	4,122	35,006	62,030	98,000	150,000	260,034
2011	4,153	32,200	59,000	89,986	135,132	243,278
2010 (37)	3,879	32,500	60,000	93,100	143,400	232.064
2009 (36)	3,592	31,500	59,427	93,600	143,516	248,000
2008	3,494	32,130	58,000	91,200	140,500	230,000
2007	3,302	35,000	61,019	94,000	139,102	225,400
2006	3,346	32,662	60,000	90,759	138,200	240,178
2005	3,208	30,000	56,138	85,013	128,389	230,150
2004 (35)	3,142	31,261	52,205	80,000	120,030	205,616
2003	3,064	28,000	50,427	75,140	115,000	182.600
2002	2,845	29,092	50,050	74,850	111,000	199.854

Table G.5: Percentile of Income Total from the United States by Year, Asian Alone Courtesy of the U. S. Census

## APPENDIX H

## ZCTA and Block Group Relationship



Figure H.1: Example of Zip Codes and ZCTA for an Area
Courtesy of U. S. Census Bureau


Figure H.2: Example of Zip Codes and ZCTA for an Area Courtesy of U. S. Census Bureau


Figure H.3: Example of Zip Codes and ZCTA for an Area
Courtesy of U. S. Census Bureau


Figure H.4: Example of Zip Codes and ZCTA for Unassigned Areas Courtesy of U. S. Census Bureau


Figure H.5: Examples of the Relationship of Block Groups to Census Tracts Courtesy of PromixityOne


FigureH.6: Relationship of Census Tract to Block Groups Courtesy of U. S Census Bureau and City of Mesa AZ

## APPENDIX I

Targeted Areas for Fort Worth and Dallas


Figure I.1: Ridglea/Como Empowerment Zone Courtesy of the City of Fort Worth


Figure I.2: Wedgwood Square Empowerment Zone Courtesy of the City of Fort Worth


Figure I.3: Berry University Empowerment Zone Courtesy of the City of Fort Worth


Figure I.4: Trinity Park Empowerment Zone
Courtesy of the City of Fort Worth


Figurel.5: Northside Empowerment Zone Courtesy of the City of Fort Worth


Figure I.6: $28^{\text {th }}$ Street Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.7: Magnolia Empowerment Zone Courtesy of the City of Fort Worth


Figure I.8: Hemphill/Berry Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.9: Rolling Hills Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.10: Evans and Rosedale Empowerment Zone Courtesy of the City of Fort Worth


Figure I.11: Riverside Empowerment Zone Courtesy of the City of Fort Worth


Figure I.12: Six Points Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.13: Woodhaven Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.14: Oakland Corners Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.15: Polytechnic/Wesleyan Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.16: Berryhill/Mason Heights Empowerment Zone Courtesy of the City of Fort Worth


Figure I.17: Stop Six Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.18: Lake Arlington Empowerment Zone
Courtesy of the City of Fort Worth


Figure I.19: Historic Handley Empowerment Zone Courtesy of the City of Fort Worth


Figure I.20: West Dallas Neighborhood Investment Program Targeted Area
Courtesy of the City of Dallas


Figure I.21: South Dallas/Ideal and Rochester Park
Neighborhood Investment Program Targeted Area
Courtesy of the City of Dallas


Figure I.22: South Dallas/Fair Park
Neighborhood Investment Program Targeted Area
Courtesy of the City of Dallas


Figure I.23: North Oak Cliff/Marsalis Ave.
Neighborhood Investment Program Targeted Area
Courtesy of the City of Dallas


Figure I.24: Lancaster Corridor
Neighborhood Investment Program Targeted Area
Courtesy of the City of Dallas

## APPENDIX J

## Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	27	27	3787	751.44	819.853
Total Male (White) population 16+	27	18	1823	361.85	388.878
Total Male (White) population in labor force (employed) 16+	27	18	1430	265.30	317.070
Total Male (White) population in labor force (unemployed) 16+	27	0	31	7.44	9.296
Valid N (listwise)	27				

2000BGFW White Male (mean employed/unemployed with Grant)
Descriptive Statistics


2000BGFW White Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	21	0	1814	570.29	420.663
Total Male (Black) population 16+	21	0	672	231.95	159.478
Total Male (Black) population in labor force (employed) 16+	21	0	474	128.95	110.832
Total Male (Black) population in labor force (unemployed) 16+	21	0	88	20.29	23.057
Valid $N$ (listwise)	21				

2000BGFW Black Male (mean employed/unemployed with Grant)

Descriptive Statistics
Total (Black) population 16+
Total Female (Black) population 16+
Total Female (Black) population in labor force

2000BGFW Black Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	12	428	1173	701.33	225.111
Total Male (Hispanic) population 16+	12	211	705	385.83	144.085
Total Male (Hispanic) population in labor force (employed) 16+	12	117	491	256.00	122.766
Total Male (Hispanic) population in labor force (unemployed) 16+	12	0	45	18.25	12.955
Valid N (listwise)	12				

## 2000BGFW Hispanic Male (mean employed/unemployed with Grant)



2000BGFW Hispanic Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	23	37	1456	542.48	305.404
Total Male (Black) population 16+	23	13	542	232.65	115.944
Total Male (Black) population in labor force (employed) 16+	23	7	254	94.87	64.629
Total Male (Black) population in labor force (unemployed) 16+	23	0	106	22.09	24.582
Valid N (listwise)	23				

2000BGDA Black Male (mean employed/unemployed with Grant)
Descriptive Statistics

Descriptive Statistics
Total (Black) population 16+
Total Female (Black) population 16+
Total Female (Black) population in labor force

## 2000BGDA Black Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	8	253	914	567.88	194.670
Total Male (Hispanic) population 16+	8	168	500	320.75	110.314
Total Male (Hispanic) population in labor force (employed) 16+	8	73	294	176.00	67.118
Total Male (Hispanic) population in labor force (unemployed) 16+	8	4	29	12.50	8.036
Valid N (listwise)	8				

2000BGDA Hispanic Male (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	8	253	914	567.88	194.670
Total Female (Hispanic) population 16+	8	85	414	247.13	96.408
Total Female (Hispanic) population in labor force (employed) 16+	8	18	136	84.88	35.126
Total Female (Hispanic) population in labor force (unemployed) 16+	8	0	31	15.25	11.720
Valid N (listwise)	8				

## 2000BGDA Hispanic Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	33	186	822	518.79	153.488
Total Male (White) population 16+	33	102	424	246.70	79.236
Total Male (White) population in labor force (employed) 16+	33	55	362	182.00	71.321
Total Male (White) population in labor force (unemployed) 16+	33	0	39	6.55	10.536
Valid N (listwise)	33				

2000BGFW White Male (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	33	186	822	518.79	153.488
Total Female (White) population 16+	33	84	414	272.09	80.169
Total Female (White) population in labor force					
(employed) 16+	33	30	313	158.18	63.364
Total Female (White) population in labor force					
(unemployed) 16+	33	0	49	5.48	9.431
Valid N (listwise)	33				

2000BGFW White Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	18	0	967	430.67	219.248
Total Male (Black) population 16+	18	0	400	180.56	93.030
Total Male (Black) population in labor force (employed) 16+	18	0	205	85.06	45.619
Total Male (Black) population in labor force (unemployed) 16+	18	0	46	13.17	13.879
Valid N (listwise)	18				

2000BGFW Black Male (mean employed/unemployed without Grant)


2000BGFW Black Female (mean employed/unemployed without Grant)

Descriptive Statistics

2000BGFW Hispanic Male (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	15	148	1064	492.20	226.805
Total Female (Hispanic) population 16+	15	75	520	218.40	118.262
Total Female (Hispanic) population in labor force (employed) 16+	15	16	180	85.33	47.318
Total Female (Hispanic) population in labor force (unemployed) 16+	15	0	37	8.73	11.234
Valid N (listwise)	15				

## 2000BGFW Hispanic Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	2	272	529	400.50	181.726
Total Male (White) population 16+	2	218	288	253.00	49.497
Total Male (White) population in labor force (employed) 16+	2	163	315	239.00	107.480
Total Male (White) population in labor force (unemployed) 16+	2	0	55	27.50	38.891
Valid N (listwise)	2				

## 2000BGDA White Male (mean employed/unemployed without Grant)

Descriptive Statistics

2000BGDA White Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	67	62	1651	585.01	252.711
Total Male (Black) population 16+	67	25	653	256.52	110.305
Total Male (Black) population in labor force (employed) 16+	67	0	341	121.28	65.839
Total Male (Black) population in labor force (unemployed) 16+	67	0	77	21.90	16.532
Valid N (listwise)	67				

2000BGDA Black Male (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	67	62	1651	585.01	252.711
Total Female (Black) population 16+	67	37	998	328.49	149.451
Total Female (Black) population in labor force (employed) 16+	67	15	555	144.81	85.049
Total Female (Black) population in labor force (unemployed) 16+	67	0	75	21.51	17.814
Valid N (listwise)	67				

2000BGDA Black Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	18	22	1833	715.83	474.822
Total Male (Hispanic) population 16+	18	11	1141	418.61	288.650
Total Male (Hispanic) population in labor force (employed) 16+	18	6	666	281.83	189.077
Total Male (Hispanic) population in labor force (unemployed) 16+	18	0	84	24.78	25.211
Valid N (listwise)	18				

2000BGDA Hispanic Male (mean employed/unemployed without Grant)

	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	18	22	1833	715.83	474.822
Total Female (Hispanic) population 16+	18	11	956	297.22	215.479
Total Female (Hispanic) population in labor force (employed) 16+	18	0	415	106.33	93.763
Total Female (Hispanic) population in labor force (unemployed) 16+	18	0	46	12.61	12.636
Valid N (listwise)	18				

## 2000BGDA Hispanic Female (mean employed/unemployed without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Male (White)		
	population in labor		
force (employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1593926.194	1	1593926.194	81.964	. $000{ }^{\text {b }}$
	Residual	486169.213	25	19446.769		
	Total	2080095.407	26			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (White) population in labor force (employed)
$16+$

a. Dependent Variable: Owner Occupied

2000BGFW White Male (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	R Square	Adjusted R Square	Estimate		
1	$.877^{\mathrm{a}}$	.769				

a. Predictors: (Constant), Total Female (White) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1598914.641	1	1598914.641	83.072	. $000{ }^{\text {b }}$
	Residual	481180.767	25	19247.231		
	Total	2080095.407	26			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (White) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2000BGFW White Female (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Male (Black)		
population in labor			
force (employed)			
$16+^{\mathrm{b}}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed)

16+

a. Dependent Variable: Owner Occupied

## 2000BGFW Black Male (linear regression employed/homeownership with Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	$R$	$R$ Square	Adjusted R Square	Estimate	
1	$.056^{\mathrm{a}}$	.003		-.049	

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	219.444	39.356		5.576	. 000
Total Female (Black) population in labor force (employed) 16+	. 038	. 158	. 056	. 244	. 810

a. Dependent Variable: Owner Occupied

## 2000BGFW Black Female (linear regression employed/homeownership with Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Hispanic) population 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	28086.567	1	28086.567	19.581	. $001^{\text {b }}$
	Residual	14343.683	10	1434.368		
	Total	42430.250	11			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	54.439	32.474		1.676	. 125
Total Male (Hispanic) population 16+	. 351	. 079	. 814	4.425	. 001

a. Dependent Variable: Owner Occupied

## 2000BGFW Hispanic Male (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female		
(Hispanic) population			
in labor force			
(employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	R	R Square	Adjusted R Square	Estimate	
1	$.615^{\mathrm{a}}$	.378			

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16052.647	1	16052.647	6.086	. $033^{\text {b }}$
	Residual	26377.603	10	2637.760		
	Total	42430.250	11			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	71.933	50.007		1.438	. 181
Total Female (Hispanic) population in labor force (employed) 16+	1.002	. 406	. 615	2.467	. 033

a. Dependent Variable: Owner Occupied

## 2000BGFW Hispanic Female (linear regression employed/homeownership with Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	36463.088	1	36463.088	7.958	. $008^{\text {b }}$
	Residual	142044.972	31	4582.096		
	Total	178508.061	32			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

2000BGFW White Male (linear regression employed/homeownership without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Female (White) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	35802.649	1	35802.649	7.777	. $009{ }^{\text {b }}$
	Residual	142705.411	31	4603.400		
	Total	178508.061	32			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (White) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	128.255	32.187		3.985	. 000
Total Female (White) population in labor force (employed) 16+	. 528	. 189	. 448	2.789	. 009

a. Dependent Variable: Owner Occupied

## 2000BGFW White Female (linear regression employed/homeownership without Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	$R$	R Square	Adjusted R Square	Estimate	
1	$.818^{\mathrm{a}}$	.669		50.894	

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

ANOVA $^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	83714.992	1	83714.992	32.319	. $000{ }^{\text {b }}$
	Residual	41443.953	16	2590.247		
	Total	125158.944	17			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	45.218	25.953		1.742	. 101
	Total Male (Black) population in labor force (employed) 16+	1.538	. 271	. 818	5.685	. 000

a. Dependent Variable: Owner Occupied

## 2000BGFW Black Male (linear regression employed/homeownership without Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	$R$ Square	Adjusted R Square	Estimate		
1	$.621^{\mathrm{a}}$	.385		69.347		

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	48215.645	1	48215.645	10.026	. $006{ }^{\text {b }}$
	Residual	76943.300	16	4808.956		
	Total	125158.944	17			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	75.536	35.706		2.115	. 050
	Total Female (Black) population in labor force (employed) 16+	. 854	. 270	. 621	3.166	. 006

a. Dependent Variable: Owner Occupied

## 2000BGFW Black Female (linear regression employed/homeownership without Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.716^{\text {a }}$	. 513	476	38.312

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	20114.566	1	20114.566	13.704	. $003{ }^{\text {b }}$
	Residual	19081.034	13	1467.772		
	Total	39195.600	14			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

2000BGFW Hispanic Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Female				
(Hispanic) population					
in labor force					
(employed)					
$16+{ }^{\text {b }}$				$\quad .$	
:---	:---				

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2789.608	1	2789.608	. 996	$.336{ }^{\text {b }}$
	Residual	36405.992	13	2800.461		
	Total	39195.600	14			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	140.143	28.936		4.843	. 000
Total Female (Hispanic) population in labor force (employed) 16+	. 298	. 299	. 267	. 998	. 336

a. Dependent Variable: Owner Occupied

2000BGFW Hispanic Female (linear regression employed/homeownership without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	R Square	Adjusted R Square	Estimate		
1	$.679^{\mathrm{a}}$	.461		436		

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	89466.892	1	89466.892	17.983	. $000{ }^{\text {b }}$
	Residual	104477.021	21	4975.096		
	Total	193943.913	22			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

2000BGDA Black Male (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	R Square	Adjusted R Square	Estimate		
1	$.787^{\mathrm{a}}$	.619				

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	120108.677	1	120108.677	34.161	. $000{ }^{\text {b }}$
	Residual	73835.236	21	3515.964		
	Total	193943.913	22			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

2000BGDA Black Female (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	R Square	Adjusted R Square	Estimate		
1	$.162^{\mathrm{a}}$	.026		-.136		

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1919.958	1	1919.958	. 162	. $701^{\text {b }}$
	Residual	70908.042	6	11818.007		
	Total	72828.000	7			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2000BGDA Hispanic Male (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Female				
(Hispanic) population					
in labor force					
(employed)					
$16+{ }^{\text {b }}$				$\quad .$	
:---	:---				

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	22872.049	1	22872.049	2.747	. $149^{\text {b }}$
	Residual	49955.951	6	8325.992		
	Total	72828.000	7			

[^3]| Coefficients ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unstandardized Coefficients |  | Standardized <br> Coefficients | t | Sig. |
| Model | B | Std. Error | Beta |  |  |
| 1 (Constant) | -11.119 | 89.360 |  | -. 124 | . 905 |
| Total Female (Hispanic) population in labor force (employed) 16+ | 1.627 | . 982 | . 560 | 1.657 | . 149 |

a. Dependent Variable: Owner Occupied

2000BGDA Hispanic Female (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	496920.901	1	496920.901	118.118	. $000{ }^{\text {b }}$
	Residual	273454.711	65	4206.996		
	Total	770375.612	66			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
(Constant)	21.441	16.706		1.283	. 204
Total Male (Black) population in labor force (employed) 16+	1.318	. 121	. 803	10.868	. 000

a. Dependent Variable: Owner Occupied

2000BGDA Black Male (linear regression employed/homeownership without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	$R$	R Square	Adjusted R Square	Estimate	
1	$.718^{\mathrm{a}}$	.516		.509	

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

Model		Sum of Squares	df	Mean Square	F
1	Regression	397563.123		1	397563.123

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	49.140	18.372		2.675	. 009
	Total Female (Black) population in labor force (employed) 16+	. 913	. 110	. 718	8.326	. 000

a. Dependent Variable: Owner Occupied

2000BGDA Black Female (linear regression employed/homeownership without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	$R$ Square	Adjusted R Square	Estimate		
1	$.229^{\mathrm{a}}$	.053		-.007		

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2000BGDA Hispanic Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Female				
(Hispanic) population					
in labor force					
(employed)					
$16+{ }^{\text {b }}$				$\quad .$	
:---	:---				

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	141721.412	1	141721.412	27.187	. $000{ }^{\text {b }}$
	Residual	83405.532	16	5212.846		
	Total	225126.944	17			

[^4]| Coefficients ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unstandardized Coefficients |  | Standardized <br> Coefficients | t | Sig. |
| Model | B | Std. Error | Beta |  |  |
| 1 (Constant) | 25.399 | 26.153 |  | . 971 | . 346 |
| Total Female (Hispanic) population in labor force (employed) 16+ | . 974 | . 187 | . 793 | 5.214 | . 000 |

a. Dependent Variable: Owner Occupied

## 2000BGDA Hispanic Female (linear regression employed/homeownership without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	27	0	69	15.30	17.011
Male Income \$2,500-\$4,999	27	0	63	12.56	16.908
Male Income \$5,000-\$7,499	27	0	43	9.96	12.538
Male Income \$7,500-\$9,999	27	0	41	9.70	11.509
Male Income \$10,000-\$12,499	27	0	54	12.37	14.337
Male Income \$12,500-\$14,999	27	0	67	11.93	16.309
Male Income \$15,000-\$17,499	27	0	48	17.93	14.377
Male Income \$17,500-\$19,999	27	0	47	13.85	12.733
Male Income \$05,000-\$22,499	27	0	66	19.89	16.479
Male Income \$22,500-\$24,999	27	0	95	14.59	19.991
Male Income \$25,000-\$29,999	27	3	197	35.07	40.220
Male Income \$30,000-\$34,999	27	0	127	32.67	31.686
Male Income \$35,000-\$39,999	27	0	125	29.07	35.332
Male Income \$40,000-\$44,999	27	0	127	22.70	26.240
Male Income \$45,000-\$49,999	27	0	80	16.07	20.731
Male Income \$50,000-\$54,999	27	0	114	17.07	25.648
Male Income \$55,000-\$64,499	27	0	122	23.30	34.117
Male Income \$65,000-\$74,999	27	0	129	16.74	30.388
Male Income \$75,000-\$99,999	27	0	205	22.81	48.306
Male Income \$100,000 or more	27	0	504	32.89	96.282
Valid N (listwise)	27				

## 2000BGFW White Male (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	27	0	131	23.15	27.315
Female Income \$2,500-\$4,999	27	0	75	17.22	19.774
Female Income \$5,000-\$7,499	27	0	81	14.44	18.116
Female Income \$7,500-\$9,999	27	0	56	11.15	14.223
Female Income \$10,000-\$12,499	27	0	134	29.30	34.583
Female Income \$12,500-\$14,999	27	0	85	19.22	18.143
Female Income \$15,000-\$17,499	27	0	102	19.04	23.199
Female Income \$17,500-\$19,999	27	0	108	16.85	21.366
Female Income \$05,000-\$22,499	27	0	117	21.44	24.706
Female Income \$22,500-\$24,999	27	0	64	16.52	16.379
Female Income \$25,000-\$29,999	27	0	125	29.78	37.490
Female Income \$30,000-\$34,999	27	0	183	37.07	41.686
Female Income \$35,000-\$39,999	27	0	134	21.48	36.786
Female Income \$40,000-\$44,999	27	0	131	16.26	26.753
Female Income \$45,000-\$49,999	27	0	79	12.07	20.121
Female Income \$50,000-\$54,999	27	0	60	12.44	18.715
Female Income \$55,000-\$64,499	27	0	46	9.22	12.867
Female Income \$65,000-\$74,999	27	0	31	3.37	7.632
Female Income \$75,000-\$99,999	27	0	54	6.22	13.446
Female Income \$100,000 or more	27	0	44	2.85	8.817
Valid N (listwise)	27				

## 2000BGFW White Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	21	0	125	21.48	27.964
Male Income \$2,500-\$4,999	21	0	39	12.71	12.566
Male Income \$5,000-\$7,499	21	0	60	18.90	17.658
Male Income \$7,500-\$9,999	21	0	45	11.76	12.227
Male Income \$10,000-\$12,499	21	0	99	27.57	31.179
Male Income \$12,500-\$14,999	21	0	56	16.29	17.211
Male Income \$15,000-\$17,499	21	0	95	21.57	23.477
Male Income \$17,500-\$19,999	21	0	138	20.10	29.828
Male Income \$05,000-\$22,499	21	0	105	25.90	28.768
Male Income \$22,500-\$24,999	21	0	59	18.24	17.615
Male Income \$25,000-\$29,999	21	0	186	36.00	43.010
Male Income \$30,000-\$34,999	21	0	108	26.24	30.227
Male Income \$35,000-\$39,999	21	0	64	20.48	20.673
Male Income \$40,000-\$44,999	21	0	48	13.38	17.571
Male Income \$45,000-\$49,999	21	0	22	7.48	7.763
Male Income \$50,000-\$54,999	21	0	36	6.00	10.354
Male Income \$55,000-\$64,499	21	0	26	8.24	8.619
Male Income \$65,000-\$74,999	21	0	35	4.24	10.089
Male Income \$75,000-\$99,999	21	0	23	4.29	6.879
Male Income \$100,000 or more	21	0	49	4.52	11.570
Valid N (listwise)	21				

2000BGFW Black Male (mean income with Grant)

Descriptive Statistics


2000BGFW Black Female (mean income with Grant)

Descriptive Statistics

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

2000BGFW Hispanic Male (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	12	7	42	18.67	9.661
Female Income \$2,500-\$4,999	12	0	42	17.33	12.339
Female Income \$5,000-\$7,499	12	0	41	19.33	12.025
Female Income \$7,500-\$9,999	12	0	53	20.08	16.395
Female Income \$10,000-\$12,499	12	10	65	31.75	15.184
Female Income \$12,500-\$14,999	12	0	24	11.25	9.087
Female Income \$15,000-\$17,499	12	0	64	25.50	20.752
Female Income \$17,500-\$19,999	12	0	38	8.75	11.748
Female Income \$05,000-\$22,499	12	0	38	10.92	11.188
Female Income \$22,500-\$24,999	12	0	23	6.33	8.359
Female Income \$25,000-\$29,999	12	0	20	8.17	7.930
Female Income \$30,000-\$34,999	12	0	23	7.25	7.852
Female Income \$35,000-\$39,999	12	0	28	5.50	7.949
Female Income \$40,000-\$44,999	12	0	17	3.83	5.686
Female Income \$45,000-\$49,999	12	0	0	. 00	. 000
Female Income \$50,000-\$54,999	12	0	13	1.08	3.753
Female Income \$55,000-\$64,499	12	0	0	. 00	. 000
Female Income \$65,000-\$74,999	12	0	0	. 00	. 000
Female Income \$75,000-\$99,999	12	0	6	. 92	2.151
Female Income \$100,000 or more	12	0	10	. 83	2.887
Valid N (listwise)	12				

2000BGFW Hispanic Female (mean income with Grant)

Descriptive Statistics

|  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

2000BGDA Black Male (mean income with Grant)

Descriptive Statistics

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

2000BGDA Black Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	8	0	43	16.38	14.793
Male Income \$2,500-\$4,999	8	0	25	14.00	7.819
Male Income \$5,000-\$7,499	8	7	35	19.50	10.379
Male Income \$7,500-\$9,999	8	0	49	14.50	16.062
Male Income \$10,000-\$12,499	8	5	121	35.13	36.938
Male Income \$12,500-\$14,999	8	4	80	25.38	23.970
Male Income \$15,000-\$17,499	8	22	71	39.50	15.693
Male Income \$17,500-\$19,999	8	7	33	19.00	7.964
Male Income \$05,000-\$22,499	8	0	47	21.75	16.628
Male Income \$22,500-\$24,999	8	6	54	15.25	16.255
Male Income \$25,000-\$29,999	8	0	38	18.88	11.716
Male Income \$30,000-\$34,999	8	0	32	12.38	10.446
Male Income \$35,000-\$39,999	8	0	39	10.62	13.005
Male Income \$40,000-\$44,999	8	0	28	5.75	9.867
Male Income \$45,000-\$49,999	8	0	6	. 75	2.121
Male Income \$50,000-\$54,999	8	0	10	3.25	3.882
Male Income \$55,000-\$64,499	8	0	11	3.13	4.612
Male Income \$65,000-\$74,999	8	0	9	1.13	3.182
Male Income \$75,000-\$99,999	8	0	11	2.75	5.092
Male Income \$100,000 or more	8	0	6	. 75	2.121
Valid N (listwise)	8				

2000BGDA Hispanic Male (mean income with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	8	0	87	28.88	27.189
Female Income \$2,500-\$4,999	8	0	31	13.63	12.177
Female Income \$5,000-\$7,499	8	3	1017	140.50	354.309
Female Income \$7,500-\$9,999	8	0	42	16.38	14.745
Female Income \$10,000-\$12,499	8	0	66	22.50	21.153
Female Income \$12,500-\$14,999	8	0	36	14.50	10.770
Female Income \$15,000-\$17,499	8	12	165	42.63	50.937
Female Income \$17,500-\$19,999	8	6	81	24.50	23.622
Female Income \$05,000-\$22,499	8	0	34	10.50	11.711
Female Income \$22,500-\$24,999	8	0	15	3.75	5.726
Female Income \$25,000-\$29,999	8	0	21	9.13	7.160
Female Income \$30,000-\$34,999	8	0	25	7.38	8.434
Female Income \$35,000-\$39,999	8	0	12	2.00	4.276
Female Income \$40,000-\$44,999	8	0	0	. 00	. 000
Female Income \$45,000-\$49,999	8	0	9	1.13	3.182
Female Income \$50,000-\$54,999	8	0	0	. 00	. 000
Female Income \$55,000-\$64,499	8	0	0	. 00	. 000
Female Income \$65,000-\$74,999	8	0	0	. 00	. 000
Female Income \$75,000-\$99,999	8	0	5	. 63	1.768
Female Income \$100,000 or more Valid N (listwise)	8 8	0	5	. 63	1.768

## 2000BGDA Hispanic Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	33	0	45	11.39	10.216
Male Income \$2,500-\$4,999	33	0	50	10.67	11.829
Male Income \$5,000-\$7,499	33	0	62	11.39	13.160
Male Income \$7,500-\$9,999	33	0	35	7.12	10.917
Male Income \$10,000-\$12,499	33	0	48	12.30	13.515
Male Income \$12,500-\$14,999	33	0	38	8.82	9.071
Male Income \$15,000-\$17,499	33	0	30	10.21	9.746
Male Income \$17,500-\$19,999	33	0	38	8.33	9.333
Male Income \$05,000-\$22,499	33	0	46	17.73	12.940
Male Income \$22,500-\$24,999	33	0	41	8.64	10.940
Male Income \$25,000-\$29,999	33	0	46	20.48	14.116
Male Income \$30,000-\$34,999	33	5	48	21.24	11.877
Male Income \$35,000-\$39,999	33	0	57	16.58	14.431
Male Income \$40,000-\$44,999	33	0	52	13.88	12.157
Male Income \$45,000-\$49,999	33	0	46	10.27	11.888
Male Income \$50,000-\$54,999	33	0	33	11.64	10.344
Male Income \$55,000-\$64,499	33	0	34	11.73	10.214
Male Income \$65,000-\$74,999	33	0	42	7.58	10.299
Male Income \$75,000-\$99,999	33	0	48	9.79	12.857
Male Income \$100,000 or more	33	0	82	17.55	22.051
Valid N (listwise)	33				

2000BGFW White Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	33	0	47	17.33	14.168
Female Income \$2,500-\$4,999	33	0	21	8.21	5.464
Female Income \$5,000-\$7,499	33	0	38	11.67	9.564
Female Income \$7,500-\$9,999	33	0	34	10.30	8.928
Female Income \$10,000-\$12,499	33	0	50	14.73	11.057
Female Income \$12,500-\$14,999	33	0	35	9.52	9.331
Female Income \$15,000-\$17,499	33	0	52	11.61	13.131
Female Income \$17,500-\$19,999	33	0	33	7.82	7.418
Female Income \$05,000-\$22,499	33	0	34	14.55	7.714
Female Income \$22,500-\$24,999	33	0	45	7.64	8.926
Female Income \$25,000-\$29,999	33	0	49	21.00	12.799
Female Income \$30,000-\$34,999	33	5	57	19.91	13.051
Female Income \$35,000-\$39,999	33	0	49	14.52	12.081
Female Income \$40,000-\$44,999	33	0	36	11.45	11.771
Female Income \$45,000-\$49,999	33	0	29	7.52	7.538
Female Income \$50,000-\$54,999	33	0	32	7.15	8.333
Female Income \$55,000-\$64,499	33	0	35	5.55	7.492
Female Income \$65,000-\$74,999	33	0	20	5.00	5.836
Female Income \$75,000-\$99,999	33	0	18	3.85	5.185
Female Income \$100,000 or more	33	0	19	3.06	4.603
Valid N (listwise)	33				

2000BGFW White Female (mean income without Grant)

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	18	0	33	13.06	10.178
Male Income \$2,500-\$4,999	18	0	39	9.67	10.307
Male Income \$5,000-\$7,499	18	0	30	7.44	8.515
Male Income \$7,500-\$9,999	18	0	22	8.22	7.313
Male Income \$10,000-\$12,499	18	0	73	12.00	16.670
Male Income \$12,500-\$14,999	18	0	22	6.67	7.639
Male Income \$15,000-\$17,499	18	0	28	9.94	9.692
Male Income \$17,500-\$19,999	18	0	58	9.17	13.857
Male Income \$05,000-\$22,499	18	0	35	12.67	11.371
Male Income \$22,500-\$24,999	18	0	31	8.06	10.315
Male Income \$25,000-\$29,999	18	0	46	15.22	12.105
Male Income \$30,000-\$34,999	18	0	33	13.89	10.493
Male Income \$35,000-\$39,999	18	0	19	5.39	5.782
Male Income \$40,000-\$44,999	18	0	26	4.33	6.677
Male Income \$45,000-\$49,999	18	0	11	2.28	3.938
Male Income \$50,000-\$54,999	18	0	19	3.22	5.451
Male Income \$55,000-\$64,499	18	0	24	3.72	6.551
Male Income \$65,000-\$74,999	18	0	8	1.33	2.679
Male Income \$75,000-\$99,999	18	0	7	1.33	2.612
Male Income \$100,000 or more	18	0	31	3.61	7.531
Valid N (listwise)	18				

2000BGFW Black Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	18	0	62	18.83	16.238
Female Income \$2,500-\$4,999	18	0	37	13.33	13.342
Female Income \$5,000-\$7,499	18	0	43	13.17	12.958
Female Income \$7,500-\$9,999	18	0	23	9.89	7.210
Female Income \$10,000-\$12,499	18	6	58	23.72	14.478
Female Income \$12,500-\$14,999	18	0	25	10.78	7.952
Female Income \$15,000-\$17,499	18	0	30	12.44	8.998
Female Income \$17,500-\$19,999	18	0	40	9.56	9.420
Female Income \$05,000-\$22,499	18	0	26	10.56	7.868
Female Income \$22,500-\$24,999	18	0	22	6.78	6.477
Female Income \$25,000-\$29,999	18	0	51	13.78	12.735
Female Income \$30,000-\$34,999	18	0	24	8.61	7.586
Female Income \$35,000-\$39,999	18	0	28	3.06	6.734
Female Income \$40,000-\$44,999	18	0	11	2.83	3.944
Female Income \$45,000-\$49,999	18	0	24	3.56	6.492
Female Income \$50,000-\$54,999	18	0	12	1.94	3.523
Female Income \$55,000-\$64,499	18	0	3	. 33	. 970
Female Income \$65,000-\$74,999	18	0	6	1.06	2.071
Female Income \$75,000-\$99,999	18	0	18	3.00	5.423
Female Income \$100,000 or more	18	0	25	2.56	6.090
Valid N (listwise)	18				

2000BGFW Black Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	15	0	48	21.80	11.953
Male Income \$2,500-\$4,999	15	0	33	12.40	10.218
Male Income \$5,000-\$7,499	15	0	43	19.00	13.649
Male Income \$7,500-\$9,999	15	0	35	13.27	10.593
Male Income \$10,000-\$12,499	15	0	84	35.07	23.912
Male Income \$12,500-\$14,999	15	0	86	28.60	25.351
Male Income \$15,000-\$17,499	15	10	59	25.27	14.180
Male Income \$17,500-\$19,999	15	0	50	16.67	14.044
Male Income \$05,000-\$22,499	15	0	76	27.60	21.761
Male Income \$22,500-\$24,999	15	0	23	8.07	8.311
Male Income \$25,000-\$29,999	15	0	60	27.87	16.852
Male Income \$30,000-\$34,999	15	0	27	9.40	8.708
Male Income \$35,000-\$39,999	15	0	52	15.27	15.962
Male Income \$40,000-\$44,999	15	0	26	7.27	6.829
Male Income \$45,000-\$49,999	15	0	13	3.73	4.415
Male Income \$50,000-\$54,999	15	0	12	3.27	4.877
Male Income \$55,000-\$64,499	15	0	18	3.13	6.243
Male Income \$65,000-\$74,999	15	0	11	. 73	2.840
Male Income \$75,000-\$99,999	15	0	14	1.40	3.924
Male Income \$100,000 or more	15	0	14	. 93	3.615
Valid N (listwise)	15				

2000BGFW Hispanic Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	15	0	47	16.93	12.378
Female Income \$2,500-\$4,999	15	0	40	16.80	12.043
Female Income \$5,000-\$7,499	15	5	43	19.20	11.226
Female Income \$7,500-\$9,999	15	0	50	16.87	15.743
Female Income \$10,000-\$12,499	15	3	59	24.47	17.594
Female Income \$12,500-\$14,999	15	0	47	16.13	15.775
Female Income \$15,000-\$17,499	15	0	37	12.73	12.062
Female Income \$17,500-\$19,999	15	0	32	11.80	11.245
Female Income \$05,000-\$22,499	15	0	32	11.80	9.398
Female Income \$22,500-\$24,999	15	0	17	4.00	6.047
Female Income \$25,000-\$29,999	15	0	28	10.87	9.219
Female Income \$30,000-\$34,999	15	0	16	5.00	4.899
Female Income \$35,000-\$39,999	15	0	17	2.73	5.391
Female Income \$40,000-\$44,999	15	0	0	. 00	. 000
Female Income \$45,000-\$49,999	15	0	12	. 80	3.098
Female Income \$50,000-\$54,999	15	0	7	. 67	1.915
Female Income \$55,000-\$64,499	15	0	12	. 80	3.098
Female Income \$65,000-\$74,999	15	0	7	. 47	1.807
Female Income \$75,000-\$99,999	15	0	0	. 00	. 000
Female Income \$100,000 or more	15	0	0	. 00	. 000
Valid N (listwise)	15				

2000BGFW Hispanic Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	67	0	106	17.13	18.896
Male Income \$2,500-\$4,999	67	0	67	10.37	12.941
Male Income \$5,000-\$7,499	67	0	36	9.03	9.456
Male Income \$7,500-\$9,999	67	0	33	9.28	8.656
Male Income \$10,000-\$12,499	67	0	44	13.45	11.377
Male Income \$12,500-\$14,999	67	0	32	9.79	8.828
Male Income \$15,000-\$17,499	67	0	41	12.31	9.834
Male Income \$17,500-\$19,999	67	0	37	13.73	10.188
Male Income \$05,000-\$22,499	67	0	53	14.19	13.061
Male Income \$22,500-\$24,999	67	0	34	9.60	8.851
Male Income \$25,000-\$29,999	67	0	73	19.34	16.902
Male Income \$30,000-\$34,999	66	0	54	11.26	11.820
Male Income \$35,000-\$39,999	66	0	40	9.86	11.217
Male Income \$40,000-\$44,999	67	0	130	8.69	17.623
Male Income \$45,000-\$49,999	67	0	25	4.07	6.023
Male Income \$50,000-\$54,999	67	0	28	3.37	6.694
Male Income \$55,000-\$64,499	67	0	23	3.85	5.837
Male Income \$65,000-\$74,999	67	0	23	1.79	4.731
Male Income \$75,000-\$99,999	67	0	19	1.39	3.770
Male Income \$100,000 or more	67	0	21	1.57	4.367
Valid N (listwise)	66				

2000BGDA Black Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	67	0	55	21.12	13.712
Female Income \$2,500-\$4,999	67	0	40	16.63	10.601
Female Income \$5,000-\$7,499	67	0	44	13.67	11.209
Female Income \$7,500-\$9,999	67	0	41	11.21	9.888
Female Income \$10,000-\$12,499	67	0	73	19.75	15.893
Female Income \$12,500-\$14,999	67	0	52	13.01	12.826
Female Income \$15,000-\$17,499	67	0	73	16.69	15.595
Female Income \$17,500-\$19,999	67	0	53	11.28	9.928
Female Income \$05,000-\$22,499	67	0	86	16.52	15.228
Female Income \$22,500-\$24,999	67	0	49	11.96	11.215
Female Income \$25,000-\$29,999	67	0	107	21.37	20.236
Female Income \$30,000-\$34,999	67	0	44	10.04	10.096
Female Income \$35,000-\$39,999	67	0	35	7.06	7.979
Female Income \$40,000-\$44,999	67	0	21	3.73	6.092
Female Income \$45,000-\$49,999	67	0	19	2.48	4.204
Female Income \$50,000-\$54,999	67	0	19	2.40	4.321
Female Income \$55,000-\$64,499	67	0	17	1.54	3.240
Female Income \$65,000-\$74,999	67	0	19	1.22	3.563
Female Income \$75,000-\$99,999	67	0	13	1.10	2.950
Female Income \$100,000 or more	67	0	11	2.10	3.568
Valid N (listwise)	67				

## 2000BGDA Black Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	18	0	64	19.72	19.423
Male Income \$2,500-\$4,999	18	0	56	20.00	13.430
Male Income \$5,000-\$7,499	18	0	82	23.94	23.315
Male Income \$7,500-\$9,999	18	0	82	25.94	21.515
Male Income \$10,000-\$12,499	18	4	134	45.56	34.004
Male Income \$12,500-\$14,999	18	0	118	38.89	36.835
Male Income \$15,000-\$17,499	18	0	122	39.61	36.238
Male Income \$17,500-\$19,999	18	0	96	24.67	27.005
Male Income \$05,000-\$22,499	18	0	86	30.17	21.718
Male Income \$22,500-\$24,999	18	0	54	18.06	15.664
Male Income \$25,000-\$29,999	18	0	72	32.17	22.126
Male Income \$30,000-\$34,999	18	0	30	12.67	9.356
Male Income \$35,000-\$39,999	18	0	59	14.11	15.710
Male Income \$40,000-\$44,999	18	0	26	6.06	8.292
Male Income \$45,000-\$49,999	18	0	10	2.39	3.680
Male Income \$50,000-\$54,999	18	0	18	3.44	5.772
Male Income \$55,000-\$64,499	18	0	24	2.44	6.308
Male Income \$65,000-\$74,999	18	0	19	1.94	5.162
Male Income \$75,000-\$99,999	18	0	8	1.94	2.980
Male Income \$100,000 or more	18	0	22	2.33	5.541
Valid N (listwise)	18				

2000BGDA Hispanic Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	18	0	75	23.11	18.107
Female Income \$2,500-\$4,999	18	0	39	13.61	12.505
Female Income \$5,000-\$7,499	18	0	48	16.28	17.077
Female Income \$7,500-\$9,999	18	0	48	13.78	13.269
Female Income \$10,000-\$12,499	18	0	86	29.17	24.933
Female Income \$12,500-\$14,999	18	0	95	13.83	22.871
Female Income \$15,000-\$17,499	18	0	57	20.00	15.669
Female Income \$17,500-\$19,999	18	0	64	9.28	16.330
Female Income \$05,000-\$22,499	18	0	42	8.72	10.731
Female Income \$22,500-\$24,999	18	0	24	4.44	6.913
Female Income \$25,000-\$29,999	18	0	26	6.83	8.375
Female Income \$30,000-\$34,999	18	0	48	7.00	13.097
Female Income \$35,000-\$39,999	18	0	30	2.89	7.235
Female Income \$40,000-\$44,999	18	0	16	3.39	5.489
Female Income \$45,000-\$49,999	18	0	13	1.83	3.915
Female Income \$50,000-\$54,999	18	0	8	. 83	2.121
Female Income \$55,000-\$64,499	18	0	6	. 33	1.414
Female Income \$65,000-\$74,999	18	0	5	. 44	1.338
Female Income \$75,000-\$99,999	18	0	5	. 28	1.179
Female Income \$100,000 or more	18	0	10	1.06	2.711
Valid N (listwise)	18				

2000BGDA Hispanic Female (mean income without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male No schooling completed, Male High School Graduate (Equivalency), Male 12th grade, no diploma, Male Some College, less than 1 year, Male Some College, 1 or more years, No degree,   Male Associates,   Male Master's   Degree, Male   Professional Degree,   Male Bachelor's   Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (White) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the
Estimate				

a. Predictors: (Constant), Male Doctorate's Degree, Male No schooling completed, Male High School Graduate (Equivalency), Male 12th grade, no diploma, Male Some College, less than 1 year, Male Some College, 1 or more years, No degree, Male Associates, Male Master's Degree, Male Professional Degree, Male Bachelor's Degree

Model		ANOVA			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	2578174.570	10	257817.457	115.577	$.000^{\text {b }}$
Residual	35691.060	16	2230.691		
Total	2613865.630	26			

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male No schooling completed, Male High School Graduate (Equivalency), Male 12th grade, no diploma, Male Some College, less than 1 year, Male Some College, 1 or more years, No degree, Male

Associates, Male Master's Degree, Male Professional Degree, Male Bachelor's Degree

Coefficients ${ }^{\text {a }}$

Model		nstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
$1{ }_{1}$	(Constant)	-8.688	24.424		-. 356	. 727
	Male No schooling completed	. 888	1.740	. 018	. 511	.617
	Male 12th grade, no diploma	2.141	1.042	. 078	2.055	. 057
	Male High School Graduate (Equivalency)	. 446	. 339	. 067	1.317	. 206
	Male Some College, less than 1 year	. 275	. 970	. 021	. 284	. 780
	Male Some College, 1 or more years, No degree	. 800	. 597	. 158	1.340	. 199
	Male Associates	-. 263	. 772	-. 029	-. 341	. 737
	Male Bachelor's Degree	1.070	. 451	. 432	2.373	. 031
	Male Master's Degree	1.760	. 536	. 341	3.286	. 005
	Male Professional Degree	1.386	1.019	. 185	1.361	. 192
	Male Doctorate's Degree	-2.206	2.249	-. 129	-. 981	. 341

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's   Degree, Female 12th   grade, no diploma,   Female No schooling   completed, Female   High School   Graduate   (Equivalency),   Female Some   College, less than 1   year, Female   Associates, Female   Some College, 1 or   more years, No   degree, Female   Master's Degree,   Female Professional   Degree, Female   Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (White) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the   Estimate
1	. $996{ }^{\text {a }}$	. 992	. 986	30.351

a. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma, Female No schooling completed, Female High School Graduate (Equivalency), Female Some College, less than 1 year, Female Associates, Female Some College, 1 or more years, No degree, Female Master's Degree, Female Professional Degree, Female Bachelor's Degree

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma, Female No schooling completed,

Female High School Graduate (Equivalency), Female Some College, less than 1 year, Female Associates, Female Some College, 1 or more years, No degree, Female Master's Degree, Female Professional Degree, Female Bachelor's Degree

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
		B	Std. Error			
1	(Constant)	-39.795	14.706		-2.706	. 016
	Female No schooling completed	. 438	1.084	. 011	. 404	. 692
	Female 12th grade, no diploma	1.273	. 567	. 063	2.247	. 039
	Female High School Graduate (Equivalency)	. 677	. 167	. 195	4.047	. 001
	Female Some College, less than 1 year	1.372	. 371	. 194	3.703	. 002
	Female Some College, 1 or more years, No degree	. 028	. 273	. 009	. 103	. 919
	Female Associates	1.712	. 670	. 196	2.555	. 021
	Female Bachelor's Degree	. 663	. 217	. 388	3.062	. 007
	Female Master's Degree	. 288	. 497	. 050	. 579	. 571
	Female Professional Degree	-. 848	1.658	-. 054	-. 512	. 616
	Female Doctorate's Degree	4.040	3.410	. 103	1.185	. 253


Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male Some College, 1 or more years, No degree,   Male No schooling completed, Male 12th grade, no diploma, Male Master's Degree, Male Associates, Male Professional Degree, Male Bachelor's Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency) ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the
Estimate				
1	$.985^{\mathrm{a}}$	.971		26.722

a. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male No schooling completed, Male 12th grade, no diploma, Male Master's Degree, Male Associates, Male Professional Degree, Male Bachelor's Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency)

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	238532.477	10	23853.248	33.406	. $000{ }^{\text {b }}$
	Residual	7140.475	10	714.048		
	Total	245672.952	20			

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male No schooling completed, Male 12th grade, no diploma, Male Master's Degree, Male Associates, Male Professional Degree, Male Bachelor's

Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency)

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	-22.710	30.381		-. 748	. 472
Male No schooling completed	-2.673	. 613	-. 369	-4.361	. 001
Male 12th grade, no diploma	1.349	. 995	. 162	1.356	. 205
Male High School Graduate (Equivalency)	1.206	. 381	. 915	3.162	. 010
Male Some College, less than 1 year	.657	1.327	. 119	. 495	. 631
Male Some College, 1 or more years, No degree	. 176	. 634	. 090	. 278	. 787
Male Associates	. 727	. 734	. 127	. 990	. 345
Male Bachelor's Degree	-. 705	. 422	-. 278	-1.671	. 126
Male Master's Degree	-. 886	1.744	-. 097	-. 508	. 622
Male Professional Degree	. 920	1.820	. 073	. 506	. 624
Male Doctorate's Degree	. 190	4.489	. 004	. 042	. 967

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

## 2000BGFW Black Male (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's Degree, Female   Professional Degree,   Female 12th grade, no diploma, Female   No schooling completed, Female Associates, Female Master's Degree, Female High School Graduate (Equivalency),   Female Bachelor's   Degree, Female   Some College, less than 1 year, Female Some College, 1 or more years, No degree $^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	R	R Square	Adjusted R Square	Estimate	
1	$.986^{\mathrm{a}}$	.972		41.810	

a. Predictors: (Constant), Female Doctorate's Degree, Female Professional Degree, Female 12th grade, no diploma, Female No schooling completed, Female Associates, Female
Master's Degree, Female High School Graduate (Equivalency), Female Bachelor's Degree,
Female Some College, less than 1 year, Female Some College, 1 or more years, No degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	609359.327	10	60935.933	34.859	. $000{ }^{\text {b }}$
	Residual	17480.482	10	1748.048		
	Total	626839.810	20			

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female Professional Degree, Female 12th grade, no diploma, Female No schooling completed, Female Associates, Female Master's Degree, Female High School Graduate (Equivalency), Female Bachelor's Degree, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	6.270	22.661		. 277	. 788
Female No schooling completed	-1.713	. 805	-. 134	-2.127	. 059
Female 12th grade, no diploma	. 741	. 803	. 069	. 923	. 378
Female High School Graduate (Equivalency)	. 907	. 234	. 585	3.875	. 003
Female Some College, less than 1 year	-. 133	. 735	-. 021	-. 182	. 860
Female Some College, 1 or more years, No degree	. 347	. 457	. 147	. 758	. 466
Female Associates	-. 531	. 597	-. 066	-. 890	. 394
Female Bachelor's Degree	1.357	. 523	. 340	2.594	. 027
Female Master's Degree	. 066	. 964	. 006	. 069	. 947
Female Professional Degree	-. 463	2.053	-. 013	-. 226	. 826
Female Doctorate's Degree	-8.464	4.613	-. 155	-1.835	. 096

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

## 2000BGFW Black Female (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, 1 or more years, No degree, Male Professional Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Bachelor's Degree, Male No schooling completed, Male Associates ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

## Model Summary

				Std. Error of the   Estimate
Model	R	R Square	Adjusted R Square	E
1	$.892^{\mathrm{a}}$	.795	-.126	130.271

a. Predictors: (Constant), Male Doctorate's Degree, Male 12th grade, no diploma, Male

Some College, 1 or more years, No degree, Male Professional Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Bachelor's Degree, Male

No schooling completed, Male Associates

ANOVA $^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	131844.922	9	14649.436	. 863	. $643{ }^{\text {b }}$
	Residual	33941.078	2	16970.539		
	Total	165786.000	11			

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, 1 or more years, No degree, Male Professional Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Bachelor's Degree, Male No schooling completed, Male Associates

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	92.754	155.339		. 597	.611
Male No schooling completed	1.985	5.946	. 281	. 334	. 770
Male 12th grade, no diploma	1.490	4.784	. 208	. 311	. 785
Male High School Graduate (Equivalency)	-. 994	3.142	-. 238	-. 316	. 782
Male Some College, less than 1 year	8.216	5.837	. 852	1.408	. 295
Male Some College, 1 or more years, No degree	6.089	5.510	.667	1.105	. 384
Male Associates	5.677	16.137	. 319	. 352	. 759
Male Bachelor's Degree	-7.672	8.202	-. 618	-. 935	. 448
Male Professional Degree	9.424	18.040	. 195	. 522	. 654
Male Doctorate's Degree	-17.672	23.388	-. 519	-. 756	. 529

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

2000BGFW Hispanic Male (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Professional   Degree, Female   Associates, Female   No schooling   completed, Female   Some College, less   than 1 year, Female   Bachelor's Degree,   Female 12th grade,   no diploma, Female   High School   Graduate   (Equivalency),   Female Some   College, 1 or more   years, No degree,   Female Master's   Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Female Professional Degree, Female Associates, Female No
schooling completed, Female Some College, less than 1 year, Female Bachelor's Degree,
Female 12th grade, no diploma, Female High School Graduate (Equivalency), Female Some
College, 1 or more years, No degree, Female Master's Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15886.583	9	1765.176	34.498	. $028^{\text {b }}$
	Residual	102.334	2	51.167		
	Total	15988.917	11			

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Female Professional Degree, Female Associates, Female No schooling completed, Female Some

College, less than 1 year, Female Bachelor's Degree, Female 12th grade, no diploma, Female High School Graduate
(Equivalency), Female Some College, 1 or more years, No degree, Female Master's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	7.737	11.175		. 692	. 560
Female No schooling completed	1.708	. 186	. 804	9.197	. 012
Female 12th grade, no diploma	2.380	. 223	. 769	10.698	. 009
Female High School Graduate (Equivalency)	. 640	. 149	. 444	4.312	. 050
Female Some College, less than 1 year	-. 951	. 307	-. 386	-3.097	. 090
Female Some College, 1 or more years, No degree	. 276	. 348	. 122	. 792	. 511
Female Associates	-4.197	1.015	-. 572	-4.136	. 054
Female Bachelor's Degree	-. 483	. 544	-. 074	-. 889	. 468
Female Master's Degree	6.611	2.366	. 472	2.794	. 108
Female Professional Degree	1.454	1.054	. 114	1.380	. 302

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

## 2000BGFW Hispanic Female (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male High   School Graduate (Equivalency), Male   Professional Degree,   Male Some College, less than 1 year, Male 12th grade, no diploma, Male No schooling completed, Male Bachelor's Degree, Male Some College, 1 or more years, No degree, Male Associates, Male Master's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the   Estimate
Model	R	R Square	Adjusted R Square	23.042
1	$.965^{\mathrm{a}}$	.931		.873

a. Predictors: (Constant), Male Doctorate's Degree, Male High School Graduate
(Equivalency), Male Professional Degree, Male Some College, less than 1 year, Male 12th
grade, no diploma, Male No schooling completed, Male Bachelor's Degree, Male Some
College, 1 or more years, No degree, Male Associates, Male Master's Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	85519.137	10	8551.914	16.107	. $000{ }^{\text {b }}$
	Residual	6371.472	12	530.956		
	Total	91890.609	22			

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male High School Graduate (Equivalency), Male Professional Degree, Male Some College, less than 1 year, Male 12th grade, no diploma, Male No schooling completed, Male Bachelor's Degree, Male Some College, 1 or more years, No degree, Male Associates, Male Master's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	12.809	12.215		1.049	. 315
Male No schooling completed	-. 900	. 507	-. 235	-1.773	. 102
Male 12th grade, no diploma	. 602	. 396	. 155	1.521	. 154
Male High School Graduate (Equivalency)	. 345	. 213	. 201	1.622	. 131
Male Some College, less than 1 year	1.268	. 709	. 196	1.787	. 099
Male Some College, 1 or more years, No degree	1.574	. 444	.441	3.542	. 004
Male Associates	1.065	1.349	. 098	. 790	. 445
Male Bachelor's Degree	2.100	. 780	. 310	2.693	. 020
Male Master's Degree	-. 260	1.809	-. 019	-. 144	. 888
Male Professional Degree	-. 078	3.436	-. 003	-. 023	. 982
Male Doctorate's Degree	-2.687	1.844	-. 138	-1.457	.171

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's Degree, Female 12th grade, no diploma,   Female Master's Degree, Female No schooling completed,   Female Some   College, less than 1   year, Female Some   College, 1 or more   years, No degree,   Female Associates,   Female Professional   Degree, Female High   School Graduate   (Equivalency),   Female Bachelor's   Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma,

Female Master's Degree, Female No schooling completed, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree, Female Associates, Female

Professional Degree, Female High School Graduate (Equivalency), Female Bachelor's
Degree

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma, Female Master's Degree, Female No schooling completed, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree, Female

Associates, Female Professional Degree, Female High School Graduate (Equivalency), Female Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	1.404	15.480		. 091	. 929
Female No schooling completed	-. 006	. 721	-. 001	-. 008	. 994
Female 12th grade, no diploma	-. 126	. 426	-. 033	-. 295	. 773
Female High School Graduate (Equivalency)	. 432	. 204	. 326	2.117	. 056
Female Some College, less than 1 year	1.178	. 578	. 271	2.037	. 064
Female Some College, 1 or more years, No degree	. 814	. 435	. 237	1.873	. 086
Female Associates	. 924	. 754	. 166	1.225	. 244
Female Bachelor's Degree	2.260	1.562	. 311	1.447	. 174
Female Master's Degree	-. 705	. 967	-. 141	-. 729	.480
Female Professional Degree	5.047	4.910	. 142	1.028	. 324
Female Doctorate's Degree	-6.273	8.388	-. 090	-. 748	.469

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

## 2000BGDA Black Female (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male Some College, less than 1 year, Male   Professional Degree,   Male High School   Graduate   (Equivalency), Male   No schooling   completed, Male   Associates, Male   Master's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. Tolerance $=.000$ limit reached

Model Summary					
Model	R			Std. Error of the	
1	$1.000^{\mathrm{a}}$	R Square	Adjusted R Square	Estimate	

a. Predictors: (Constant), Male Doctorate's Degree, Male Some College, less than 1 year,

Male Professional Degree, Male High School Graduate (Equivalency), Male No schooling
completed, Male Associates, Male Master's Degree

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed)

16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Some College, less than 1 year, Male Professional Degree, Male High School Graduate (Equivalency), Male No schooling completed, Male Associates, Male Master's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardize	efficients	Standardized   Coefficients		
Model	B	Std. Error	Beta	t	Sig.
1 (Constant)	68.077	. 000		.	
Male No schooling completed	1.248	. 000	. 402		
Male High School Graduate (Equivalency)	1.131	. 000	. 683	.	.
Male Some College, less than 1 year	1.627	. 000	. 247	.	.
Male Associates	3.453	. 000	. 441	.	
Male Master's Degree	-16.328	. 000	-. 620	.	.
Male Professional Degree	-12.518	. 000	-. 604	.	.
Male Doctorate's Degree	-2.986	. 000	-. 142		

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors in the Model: (Constant), Male Doctorate's Degree, Male Some College, less than 1 year, Male Professional Degree, Male High School Graduate (Equivalency), Male No schooling completed, Male Associates, Male Master's Degree
2000BGDA Hispanic Male (linear regression employment/education with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Female Professional		
	Degree, Female 12th		
grade, no diploma,			
	Female Some		
College, less than 1			
year, Female No			
schooling completed,			
Female Associates,			
	Female Bachelor's		
Degree, Female			
Some College, 1 or			
more years, No			
degree ${ }^{\text {b }}$			

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed)
16+
b. Tolerance $=.000$ limit reached .

Model Summary

				Sary
Model	R	R Square	Adjusted R Square	Estimate of the
1	$1.000^{\mathrm{a}}$	1.000		

a. Predictors: (Constant), Female Professional Degree, Female 12th grade, no diploma,

Female Some College, less than 1 year, Female No schooling completed, Female
Associates, Female Bachelor's Degree, Female Some College, 1 or more years, No degree

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8636.875	7	1233.839		b
	Residual	. 000	0	.		
	Total	8636.875	7			

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed)

16+
b. Predictors: (Constant), Female Professional Degree, Female 12th grade, no diploma, Female Some College, less than 1 year, Female No schooling completed, Female Associates, Female Bachelor's Degree, Female Some College, 1 or more years, No degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients		Sig.
Model	B	Std. Error	Beta	t	
1 (Constant)	114.333	. 000		.	
Female No schooling completed	. 446	. 000	. 256	.	
Female 12th grade, no diploma	. 820	. 000	. 392		
Female Some College, less than 1 year	$-4.144$	. 000	-. 935		
Female Some College, 1 or more years, No degree	-1.530	. 000	-. 652	.	
Female Associates	-10.043	. 000	-. 809	.	
Female Bachelor's Degree	1.401	. 000	. 366	.	
Female Professional Degree	6.131	. 000	. 780		

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

Excluded Variables ${ }^{\text {a }}$

Model		Beta In	t	Sig.	Partial Correlation	Collinearity Statistics	
		Tolerance					
1	Female High School Graduate (Equivalency)		${ }^{\text {b }}$				. 000
	Female Master's Degree	b				. 000	

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors in the Model: (Constant), Female Professional Degree, Female 12th grade, no diploma, Female Some College, less than 1 year, Female No schooling completed, Female Associates, Female Bachelor's Degree, Female Some College, 1 or more years, No degree
2000BGDA Hispanic Female (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, less than 1 year, Male No schooling completed, Male Associates, Male Master's Degree, Male Some College, 1 or more years, No degree, Male   Professional Degree,   Male High School   Graduate   (Equivalency), Male   Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (White) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the   Model
R	R Square	Adjusted R Square	Estimate	
1	$.925^{\mathrm{a}}$	.855		32.705

a. Predictors: (Constant), Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, less than 1 year, Male No schooling completed, Male Associates, Male Master's Degree, Male Some College, 1 or more years, No degree, Male Professional Degree, Male High School Graduate (Equivalency), Male Bachelor's Degree

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, less than 1 year, Male No schooling completed, Male Associates, Male Master's Degree, Male Some College, 1 or more years, No degree, Male

Professional Degree, Male High School Graduate (Equivalency), Male Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	-19.897	24.187		-. 823	. 420
Male No schooling completed	-. 514	. 699	-. 069	-. 735	. 470
Male 12th grade, no diploma	. 781	. 676	. 101	1.157	. 260
Male High School Graduate (Equivalency)	1.228	. 236	. 652	5.203	. 000
Male Some College, less than 1 year	. 894	. 710	. 139	1.259	. 221
Male Some College, 1 or more years, No degree	. 054	. 353	. 016	. 152	. 880
Male Associates	1.028	. 815	. 130	1.262	. 220
Male Bachelor's Degree	1.142	. 281	. 645	4.057	. 001
Male Master's Degree	. 761	. 602	. 186	1.264	. 219
Male Professional Degree	1.547	. 501	. 357	3.087	. 005
Male Doctorate's Degree	1.287	1.355	. 089	. 950	. 352

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's Degree, Female High   School Graduate (Equivalency),   Female 12th grade, no diploma, Female   Professional Degree,   Female Some   College, 1 or more   years, No degree,   Female Associates,   Female Master's   Degree, Female   Some College, less   than 1 year, Female   No schooling   completed, Female   Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (White) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Female Doctorate's Degree, Female High School Graduate
(Equivalency), Female 12th grade, no diploma, Female Professional Degree, Female Some College, 1 or more years, No degree, Female Associates, Female Master's Degree, Female

Some College, less than 1 year, Female No schooling completed, Female Bachelor's
Degree

Model		ANOVA			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	95554.594	10	9555.459	6.385	$.000^{\text {b }}$
Residual	32924.315	22	1496.560		
Total	128478.909	32			

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female High School Graduate (Equivalency), Female 12th grade, no diploma, Female Professional Degree, Female Some College, 1 or more years, No degree, Female Associates, Female

Master's Degree, Female Some College, less than 1 year, Female No schooling completed, Female Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	15.229	27.116		. 562	. 580
Female No schooling completed	-1.070	1.247	-. 143	-. 858	. 400
Female 12th grade, no diploma	1.371	1.273	. 188	1.077	. 293
Female High School Graduate (Equivalency)	. 436	. 309	. 221	1.413	. 172
Female Some College, less than 1 year	. 383	. 681	. 081	. 563	. 579
Female Some College, 1 or more years, No degree	. 427	. 342	. 160	1.249	. 225
Female Associates	1.834	. 749	. 311	2.447	. 023
Female Bachelor's Degree	. 708	. 219	. 550	3.235	. 004
Female Master's Degree	. 152	. 547	. 040	. 278	. 784
Female Professional Degree	1.019	1.604	. 088	. 635	. 532
Female Doctorate's Degree	1.736	2.005	. 113	. 866	. 396

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+

## 2000BGFW White Female (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male No schooling completed, Male Associates, Male High School Graduate (Equivalency), Male 12th grade, no diploma, Male Some College, less than 1 year, Male Master's Degree, Male Professional Degree, Male Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the   Estimate
1	$.982^{\text {a }}$	. 964	. 914	13.414

a. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male No schooling completed, Male Associates, Male High School Graduate (Equivalency), Male 12th grade, no diploma, Male Some College, less than 1 year, Male Master's Degree, Male Professional Degree, Male Bachelor's Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	34119.305	10	3411.931	18.961	. $000{ }^{\text {b }}$
	Residual	1259.639	7	179.948		
	Total	35378.944	17			

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male No schooling completed, Male Associates, Male High School Graduate (Equivalency), Male 12th grade, no diploma, Male Some College, less than 1 year, Male Master's Degree, Male Professional Degree, Male Bachelor's Degree

Coefficients ${ }^{\text {a }}$

Model		nstandardized Coefficients		Standardized   Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	44.149	14.340		3.079	. 018
	Male No schooling completed	. 386	. 526	. 096	. 735	. 486
	Male 12th grade, no diploma	-. 031	. 404	-. 010	-. 077	. 941
	Male High School Graduate (Equivalency)	. 060	. 277	. 043	. 218	. 834
	Male Some College, less than 1 year	. 255	. 589	. 076	. 433	. 678
	Male Some College, 1 or more years, No degree	. 752	. 540	. 341	1.392	. 206
	Male Associates	. 378	. 659	. 071	. 574	. 584
	Male Bachelor's Degree	1.369	. 844	. 604	1.621	. 149
	Male Master's Degree	-4.657	2.296	-. 606	-2.028	. 082
	Male Professional Degree	-1.298	4.192	-. 098	-. 310	. 766
	Male Doctorate's Degree	-3.784	2.067	-. 232	-1.831	. 110

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Professional Degree, Female No schooling completed, Female High School Graduate (Equivalency), Female 12th grade, no diploma, Female Bachelor's Degree, Female Associates, Female Master's Degree, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the   Estimate
Model	R	R Square	Adjusted R Square	2
1	$.974^{\mathrm{a}}$	.948	.890	20.640

a. Predictors: (Constant), Female Professional Degree, Female No schooling completed, Female High School Graduate (Equivalency), Female 12th grade, no diploma, Female Bachelor's Degree, Female Associates, Female Master's Degree, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Professional Degree, Female No schooling completed, Female High School Graduate (Equivalency), Female 12th grade, no diploma, Female Bachelor's Degree, Female Associates, Female Master's Degree,

Female Some College, less than 1 year, Female Some College, 1 or more years, No degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	-19.964	18.824		-1.061	. 320
Female No schooling completed	1.798	. 893	. 224	2.014	. 079
Female 12th grade, no diploma	1.155	. 558	. 216	2.071	. 072
Female High School Graduate (Equivalency)	1.140	. 220	. 679	5.175	. 001
Female Some College, less than 1 year	. 134	. 590	. 035	. 227	. 826
Female Some College, 1 or more years, No degree	-1.406	. 746	-. 655	-1.885	. 096
Female Associates	3.557	. 955	. 692	3.726	. 006
Female Bachelor's Degree	-. 231	. 421	-. 068	-. 548	. 599
Female Master's Degree	-. 125	. 836	-. 022	-. 150	. 885
Female Professional Degree	11.216	3.065	. 576	3.660	. 006

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

## 2000BGFW Black Female (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Professional Degree, Male 12th grade, no diploma, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Associates, Male Bachelor's Degree, Male High School Graduate (Equivalency), Male Some College, less than 1 year, Male Master's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
1	R Square	Adjusted R Square	Estimate		
1	$.894^{\mathrm{a}}$	.798		55.147	

a. Predictors: (Constant), Male Professional Degree, Male 12th grade, no diploma, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Associates, Male Bachelor's Degree, Male High School Graduate (Equivalency), Male Some College, less than 1 year, Male Master's Degree

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Male Professional Degree, Male 12th grade, no diploma, Male No schooling completed, Male Some

College, 1 or more years, No degree, Male Associates, Male Bachelor's Degree, Male High School Graduate (Equivalency),
Male Some College, less than 1 year, Male Master's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	-125.552	88.697		$-1.416$	. 216
Male No schooling completed	1.486	1.213	.437	1.225	. 275
Male 12th grade, no diploma	. 182	1.924	. 042	. 094	. 928
Male High School Graduate (Equivalency)	2.957	1.927	. 687	1.534	. 186
Male Some College, less than 1 year	4.551	3.902	. 485	1.166	. 296
Male Some College, 1 or more years, No degree	1.395	2.062	. 217	. 677	. 529
Male Associates	-. 367	5.198	-. 021	-. 071	. 946
Male Bachelor's Degree	8.246	5.418	. 546	1.522	. 189
Male Master's Degree	-. 756	9.312	-. 038	-. 081	. 938
Male Professional Degree	3.135	6.863	. 160	.457	. 667

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

## 2000BGFW Hispanic Male (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's   Degree, Female   Professional Degree,   Female Master's   Degree, Female   Some College, 1 or   more years, No   degree, Female High   School Graduate   (Equivalency),   Female Some   College, less than 1   year, Female No   schooling completed,   Female 12th grade,   no diploma, Female   Bachelor's Degree,   Female Associates ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Female Doctorate's Degree, Female Professional Degree, Female Master's Degree, Female Some College, 1 or more years, No degree, Female High School Graduate (Equivalency), Female Some College, less than 1 year, Female No schooling completed, Female 12th grade, no diploma, Female Bachelor's Degree, Female Associates

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	26318.533	10	2631.853	2.094	. $248^{\text {b }}$
	Residual	5026.800	4	1256.700		
	Total	31345.333	14			

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female Professional Degree, Female Master's Degree, Female Some College, 1 or more years, No degree, Female High School Graduate (Equivalency), Female Some College, less than 1 year,

Female No schooling completed, Female 12th grade, no diploma, Female Bachelor's Degree, Female Associates

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	-90.562	64.056		-1.414	. 230
Female No schooling completed	1.148	. 939	. 473	1.222	. 289
Female 12th grade, no diploma	. 568	1.910	. 129	. 298	. 781
Female High School Graduate (Equivalency)	. 829	. 825	. 353	1.005	. 372
Female Some College, less than 1 year	-. 409	2.248	-. 083	-. 182	. 865
Female Some College, 1 or more years, No degree	. 494	1.266	. 137	. 390	. 716
Female Associates	4.727	4.506	. 704	1.049	. 353
Female Bachelor's Degree	8.946	4.740	. 772	1.887	. 132
Female Master's Degree	4.087	2.071	. 609	1.974	. 120
Female Professional Degree	9.884	6.679	. 538	1.480	. 213
Female Doctorate's Degree	-2.860	6.337	-. 187	-. 451	. 675

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

2000BGFW Hispanic Female (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male Master's Degree, Male Some College, less than 1 year, Male 12th grade, no diploma, Male Associates, Male No schooling completed, Male Some College, 1 or more years, No degree, Male   Bachelor's Degree,   Male Professional   Degree, Male High   School Graduate   (Equivalency) ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the   Estimate
1	$.887^{\text {a }}$	. 786	. 748	33.038

a. Predictors: (Constant), Male Doctorate's Degree, Male Master's Degree, Male Some College, less than 1 year, Male 12th grade, no diploma, Male Associates, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Bachelor's Degree, Male Professional Degree, Male High School Graduate (Equivalency)

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Master's Degree, Male Some College, less than 1 year, Male 12th grade, no diploma, Male Associates, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Bachelor's Degree, Male Professional Degree, Male High School Graduate (Equivalency)

Coefficients ${ }^{\text {a }}$					
	nstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	13.218	10.651		1.241	. 220
Male No schooling completed	-. 277	. 402	-. 048	-. 689	. 494
Male 12th grade, no diploma	-. 027	. 339	-. 006	-. 079	. 937
Male High School Graduate (Equivalency)	. 804	. 138	. 508	5.835	. 000
Male Some College, less than 1 year	. 942	. 457	. 169	2.061	. 044
Male Some College, 1 or more years, No degree	. 907	. 249	.310	3.648	. 001
Male Associates	-. 209	. 513	-. 028	-. 407	. 686
Male Bachelor's Degree	. 836	. 354	. 190	2.361	. 022
Male Master's Degree	. 276	1.005	. 022	. 274	. 785
Male Professional Degree	-. 947	2.490	-. 031	-. 380	. 705
Male Doctorate's Degree	-2.412	2.513	-. 074	-. 960	.341

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's Degree, Female   Some College, less than 1 year, Female Professional Degree,   Female Master's   Degree, Female No schooling completed, Female 12th grade, no diploma, Female Associates, Female Some College, 1 or more years, No degree, Female   Bachelor's Degree,   Female High School   Graduate   (Equivalency) ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Female Doctorate's Degree, Female Some College, less than 1
year, Female Professional Degree, Female Master's Degree, Female No schooling completed, Female 12th grade, no diploma, Female Associates, Female Some College, 1 or more years, No degree, Female Bachelor's Degree, Female High School Graduate (Equivalency)

Model		SNOVA ${ }^{\text {a }}$			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	420195.747	10	42019.575	41.133	$.000^{\text {b }}$
Residual	57206.731	56	1021.549		
Total	477402.478	66			

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female Some College, less than 1 year, Female Professional Degree,

Female Master's Degree, Female No schooling completed, Female 12th grade, no diploma, Female Associates, Female
Some College, 1 or more years, No degree, Female Bachelor's Degree, Female High School Graduate (Equivalency)

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	7.263	10.238		. 709	. 481
Female No schooling completed	-. 397	. 497	-. 042	-. 799	. 428
Female 12th grade, no diploma	. 410	. 272	. 094	1.510	. 137
Female High School Graduate (Equivalency)	. 603	. 141	. 376	4.283	. 000
Female Some College, less than 1 year	1.330	. 271	. 309	4.914	. 000
Female Some College, 1 or more years, No degree	. 292	. 210	. 124	1.393	. 169
Female Associates	. 896	. 431	. 111	2.082	. 042
Female Bachelor's Degree	. 963	. 417	. 197	2.312	. 024
Female Master's Degree	. 036	. 542	. 005	. 067	. 947
Female Professional Degree	. 867	2.244	. 019	. 386	. 701
Female Doctorate's Degree	-1.399	1.653	-. 042	-. 847	. 401

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

## 2000BGDA Black Female (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's   Degree, Male   Bachelor's Degree,   Male No schooling   completed, Male   Master's Degree,   Male Some College,   less than 1 year,   Male Professional   Degree, Male   Associates, Male   High School   Graduate   (Equivalency), Male   Some College, 1 or   more years, No   degree, Male 12th   grade, no diploma ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Male Doctorate's Degree, Male Bachelor's Degree, Male No
schooling completed, Male Master's Degree, Male Some College, less than 1 year, Male Professional Degree, Male Associates, Male High School Graduate (Equivalency), Male

Some College, 1 or more years, No degree, Male 12th grade, no diploma

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	576524.967	10	57652.497	12.923	. $001^{\text {b }}$
	Residual	31227.533	7	4461.076		
	Total	607752.500	17			

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Bachelor's Degree, Male No schooling completed, Male Master's Degree, Male Some College, less than 1 year, Male Professional Degree, Male Associates, Male High School Graduate
(Equivalency), Male Some College, 1 or more years, No degree, Male 12th grade, no diploma

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	50.974	45.180		1.128	. 296
Male No schooling completed	3.729	. 807	. 740	4.618	. 002
Male 12th grade, no diploma	-. 035	2.070	-. 004	-. 017	. 987
Male High School Graduate (Equivalency)	. 868	. 831	. 180	1.044	. 331
Male Some College, less than 1 year	1.055	3.447	. 038	. 306	. 768
Male Some College, 1 or more years, No degree	-2.219	2.315	-. 162	-. 958	. 370
Male Associates	7.714	6.409	. 165	1.204	. 268
Male Bachelor's Degree	. 448	2.624	. 023	. 171	. 869
Male Master's Degree	$-3.432$	12.260	-. 050	-. 280	. 788
Male Professional Degree	23.078	7.970	. 472	2.896	. 023
Male Doctorate's Degree	-28.264	9.240	-. 363	-3.059	. 018

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

Variables Entered/Removed			
Model	Variables Entered	Variables Removed	Method
1	Female Professional		
	Degree, Female High		
School Graduate			
	(Equivalency),		
	Female Associates,		
	Female Master's		
	Degree, Female 12th		
grade, no diploma,			
	Female Some		
College, less than 1			
year, Female			
	Bachelor's Degree,		
Female No schooling			
completed, Female			
Some College, 1 or			
more years, No			
degree ${ }^{\text {b }}$			

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	$.954^{\mathrm{a}}$	.910		40.990

a. Predictors: (Constant), Female Professional Degree, Female High School Graduate (Equivalency), Female Associates, Female Master's Degree, Female 12th grade, no diploma, Female Some College, less than 1 year, Female Bachelor's Degree, Female No schooling completed, Female Some College, 1 or more years, No degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	136014.719	9	15112.747	8.995	. $003{ }^{\text {b }}$
	Residual	13441.281	8	1680.160		
	Total	149456.000	17			

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Female Professional Degree, Female High School Graduate (Equivalency), Female Associates,

Female Master's Degree, Female 12th grade, no diploma, Female Some College, less than 1 year, Female Bachelor's
Degree, Female No schooling completed, Female Some College, 1 or more years, No degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	-3.394	30.728		-. 110	. 915
Female No schooling completed	. 936	. 838	. 303	1.116	. 297
Female 12th grade, no diploma	. 726	1.135	. 089	. 639	. 541
Female High School Graduate (Equivalency)	1.430	. 446	. 709	3.208	. 012
Female Some College, less than 1 year	-2.495	2.259	-. 227	-1.105	. 301
Female Some College, 1 or more years, No degree	-. 393	1.565	-. 089	-. 251	. 808
Female Associates	1.128	2.001	. 082	. 564	. 588
Female Bachelor's Degree	2.901	2.057	. 220	1.411	. 196
Female Master's Degree	3.174	3.523	. 117	. 901	. 394
Female Professional Degree	6.150	8.194	. 093	. 751	.474

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

## 2000BGDA Hispanic Female (linear regression employment/education without Grant)

 

2000BGFW White Male (mean education with Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	27	0	27	4.41	6.344
Female 12th grade, no diploma	27	0	56	11.04	12.883
Female High School Graduate (Equivalency)	27	24	340	109.59	74.676
Female Some College, less than 1 year	27	0	142	34.52	36.658
Female Some College, 1 or more years, No degree	27	4	321	76.85	78.419
Female Associates	27	0	109	23.33	29.671
Female Bachelor's Degree	27	0	595	94.26	151.325
Female Master's Degree	27	0	199	29.04	44.811
Female Professional Degree	27	0	68	5.96	16.454
Female Doctorate's Degree	27	0	27	2.00	6.593
Valid N (listwise)	27				

## 2000BGFW White Female (mean education with Grant)

Descriptive Statistics


2000BGFW Black Male (mean education with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	21	0	62	7.19	13.837
Female 12th grade, no diploma	21	0	57	22.86	16.426
Female High School Graduate (Equivalency)	21	24	446	137.19	114.199
Female Some College, less than 1 year	21	0	115	36.48	27.985
Female Some College, 1 or more years, No degree	21	4	259	60.33	74.805
Female Associates	21	0	90	19.57	22.013
Female Bachelor's Degree	21	0	154	38.19	44.372
Female Master's Degree	21	0	50	9.76	14.930
Female Professional Degree	21	0	19	2.48	5.036
Female Doctorate's Degree	21	0	12	1.43	3.249
Valid $N$ (listwise)	21				

2000BGFW Black Female (mean education with Grant)

	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	12	6	53	30.08	17.386
Male 12th grade, no diploma	12	0	55	26.83	17.140
Male High School Graduate (Equivalency)	12	20	112	71.92	29.346
Male Some College, less than 1 year	12	0	34	11.50	12.731
Male Some College, 1 or more years, No degree	12	0	42	15.92	13.440
Male Associates	12	0	23	5.67	6.893
Male Bachelor's Degree	12	0	29	9.42	9.895
Male Master's Degree	12	0	0	. 00	. 000
Male Professional Degree	12	0	7	1.08	2.539
Male Doctorate's Degree	12	0	11	1.50	3.606
Valid N (listwise)	12				

2000BGFW Hispanic Male (mean education with Grant)

Descriptive Statistics

 

2000BGFW Hispanic Female (mean education with Grant)

	Descriptive Statistics				
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	23	0	54	13.57	16.911
Male 12th grade, no diploma	23	0	58	20.61	16.634
Male High School Graduate (Equivalency)	23	7	148	68.04	37.624
Male Some College, less than 1 year	23		0	34	11.09

2000BGDA Black Male (mean education with Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	23	0	59	10.83	15.159
Female 12th grade, no diploma	23	0	72	28.30	19.027
Female High School Graduate (Equivalency)	23	0	199	89.43	54.997
Female Some College, less than 1 year	23	0	63	21.52	16.790
Female Some College, 1 or more years, No degree	23	0	72	31.65	21.210
Female Associates	23	0	57	6.96	13.141
Female Bachelor's Degree	23	0	39	7.39	10.035
Female Master's Degree	23	0	61	6.26	14.580
Female Professional Degree	23	0	8	. 74	2.050
Female Doctorate's Degree	23	0	5	. 22	1.043
Valid N (listwise)	23				

2000BGDA Black Female (mean education with Grant)

	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	8	7	74	40.50	21.600
Male 12th grade, no diploma	8	0	76	22.25	23.457
Male High School Graduate (Equivalency)	8	6	134	55.25	40.517
Male Some College, less than 1 year	8	0	28	11.13	10.204
Male Some College, 1 or more years, No degree	8	0	48	22.88	19.752
Male Associates	8	0	23	6.50	8.569
Male Bachelor's Degree	8	0	17	4.25	5.922
Male Master's Degree	8	0	7	1.25	2.550
Male Professional Degree	8	0	7	1.75	3.240
Male Doctorate's Degree	8	0	9	1.13	3.182
Valid $N$ (listwise)	8				

2000BGDA Hispanic Male (mean education with Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	8	6	61	24.12	20.202
Female 12th grade, no diploma	8	0	46	19.38	16.801
Female High School Graduate (Equivalency)	8	7	135	51.50	43.775
Female Some College, less than 1 year	8	0	24	11.25	7.924
Female Some College, 1 or more years, No degree	8	0	41	16.13	14.971
Female Associates	8	0	8	1.00	2.828
Female Bachelor's Degree	8	0	22	7.62	9.164
Female Master's Degree	8	0	11	1.38	3.889
Female Professional Degree	8	0	11	2.38	4.470
Female Doctorate's Degree	8	0	0	. 00	. 000
Valid N (listwise)	8				

2000BGDA Hispanic Female (mean education with Grant)

 

## 2000BGFW White Male (mean education without Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	33	0	33	4.09	8.442
Female 12th grade, no diploma	33	0	37	6.82	8.687
Female High School Graduate (Equivalency)	33	0	163	60.03	32.122
Female Some College, less than 1 year	33	0	59	20.15	13.459
Female Some College, 1 or more years, No degree	33	7	117	44.73	23.756
Female Associates	33	0	43	11.88	10.749
Female Bachelor's Degree	33	0	161	73.00	49.295
Female Master's Degree	33	0	67	23.39	16.741
Female Professional Degree	33	0	22	3.82	5.503
Female Doctorate's Degree	33	0	13	2.36	4.137
Valid N (listwise)	33				

2000BGFW White Female (mean education without Grant)

	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	18	0	45	9.72	11.349
Male 12th grade, no diploma	18	0	43	16.06	15.160
Male High School Graduate (Equivalency)	18	18	141	68.33	32.538
Male Some College, less than 1 year	18	0	47	15.50	13.514
Male Some College, 1 or more years, No					
degree	18	0	79	24.50	20.646
Male Associates	18	0	34	6.28	8.553
Male Bachelor's Degree	18	0	65	15.94	20.145
Male Master's Degree	18	0	25	1.67	5.941
Male Professional Degree	18	0	12	1.33	3.447
Male Doctorate's Degree	18	0	10	. 94	2.796
Valid N (listwise)	18				

2000BGFW Black Male (mean education without Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	18	0	22	6.67	7.776
Female 12th grade, no diploma	18	0	40	14.83	11.683
Female High School Graduate (Equivalency)	18	49	183	92.39	37.114
Female Some College, less than 1 year	18	0	63	17.94	16.318
Female Some College, 1 or more years, No degree	18	0	131	29.89	29.049
Female Associates	18	0	53	8.50	12.133
Female Bachelor's Degree	18	0	67	17.78	18.297
Female Master's Degree	18	0	38	6.39	10.939
Female Professional Degree	18	0	11	1.56	3.203
Female Doctorate's Degree	18	0	0	. 00	. 000
Valid N (listwise)	18				

2000BGFW Black Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male 12th grade, no diploma	15	0	64	21.40	17.029
Male High School Graduate (Equivalency)	15	26	85	54.47	17.067
Male Some College, less than 1 year	15	0	25	8.27	7.815
Male Some College, 1 or more years, No degree	15	0	38	11.47	11.420
Male Associates	15	0	13	3.80	4.296
Male Bachelor's Degree	15	0	16	5.27	4.862
Male Master's Degree	15	0	10	1.73	3.693
Male Professional Degree	15	0	10	2.27	3.751
Male Doctorate's Degree	15	0	0	. 00	. 000
Valid N (listwise)	15				

## 2000BGFW Hispanic Male (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	15	0	62	23.13	19.515
Female 12th grade, no diploma	15	0	36	11.73	10.754
Female High School Graduate (Equivalency)	15	23	92	59.67	20.138
Female Some College, less than 1 year	15	0	29	8.60	9.598
Female Some College, 1 or more years, No degree	15	0	41	11.33	13.108
Female Associates	15	0	26	8.73	7.045
Female Bachelor's Degree	15	0	11	3.33	4.082
Female Master's Degree	15	0	26	3.20	7.053
Female Professional Degree	15	0	9	. 93	2.576
Female Doctorate's Degree	15	0	12	. 80	3.098
Valid N (listwise)	15				

2000BGFW Hispanic Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	2	0	0	. 00	. 000
Male 12th grade, no diploma	2	0	25	12.50	17.678
Male High School Graduate (Equivalency)	2	10	37	23.50	19.092
Male Some College, less than 1 year	2	8	24	16.00	11.314
Male Some College, 1 or more years, No degree	2	17	78	47.50	43.134
Male Associates	2	0	9	4.50	6.364
Male Bachelor's Degree	2	109	153	131.00	31.113
Male Master's Degree	2	11	43	27.00	22.627
Male Professional Degree	2	0	24	12.00	16.971
Male Doctorate's Degree	2	0	0	. 00	. 000
Valid N (listwise)	2				

## 2000BGDA White Male (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	2	0	10	5.00	7.071
Female 12th grade, no diploma	2	0	0	. 00	. 000
Female High School Graduate (Equivalency)	2	33	57	45.00	16.971
Female Some College, less than 1 year	2	0	0	. 00	. 000
Female Some College, 1 or more years, No degree	2	18	18	18.00	. 000
Female Associates	2	0	25	12.50	17.678
Female Bachelor's Degree	2	41	124	82.50	58.690
Female Master's Degree	2	12	69	40.50	40.305
Female Professional Degree	2	9	20	14.50	7.778
Female Doctorate's Degree	2	14	15	14.50	. 707
Valid N (listwise)	2				

2000BGDA White Female (mean education without Grant)

 

2000BGDA Black Male (mean education without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	67	0	43	8.22	8.968
Female 12th grade, no diploma	67	0	117	28.27	19.478
Female High School Graduate (Equivalency)	67	14	388	99.01	53.032
Female Some College, less than 1 year	67	0	103	25.07	19.777
Female Some College, 1 or more years, No degree	67	0	225	40.34	36.251
Female Associates	67	0	44	10.40	10.567
Female Bachelor's Degree	67	0	91	15.49	17.399
Female Master's Degree	67	0	59	6.28	11.375
Female Professional Degree	67	0	10	. 57	1.909
Female Doctorate's Degree	67	0	19	. 46	2.525
Valid N (listwise)	67				

2000BGDA Black Female (mean education without Grant)

	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	18	0	137	43.06	37.507
Male 12th grade, no diploma	18	0	71	23.89	20.688
Male High School Graduate (Equivalency)	18	12	179	52.39	39.294
Male Some College, less than 1 year	18	0	19	6.67	6.886
Male Some College, 1 or more years, No					
degree	18	0	47	16.33	13.844
Male Associates	18	0	11	2.72	4.056
Male Bachelor's Degree	18	0	35	7.11	9.821
Male Master's Degree	18	0	11	1.00	2.744
Male Professional Degree	18	0	11	2.50	3.869
Male Doctorate's Degree	18	0	8	. 83	2.431
Valid N (listwise)	18				

2000BGDA Hispanic Male (mean education without Grant)

Descriptive Statistics


2000BGDA Hispanic Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	21	211	2790	745.05	692.305
Total Male (White) population 16+	21	134	1115	372.67	277.807
Total Male (White) population in labor force (employed) 16+	21	110	785	293.62	197.095
Total Male (White) population in labor force (unemployed) 16+	21	0	330	98.00	95.825
Valid N (listwise)	21				

## 2010BGFW White Male (mean employed/unemployed with Grant)



## 2010BGFW White Female (mean employed/unemployed with Grant)



## 2010BGFW Black Male (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	24	102	1189	347.12	239.668
Total Female (Black) population 16+	24	154	530	309.79	101.053
Total Female (Black) population in labor force (employed) 16+	24	48	401	161.42	85.150
Total Female (Black) population in labor force (unemployed) 16+	24	0	351	149.08	95.992
Valid N (listwise)	24				

## 2010BGFW Black Female (mean employed/unemployed with Grant)



## 2010BGFW Hispanic Male (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	15	87	619	344.47	161.414
Total Female (Hispanic) population 16+	15	92	592	286.80	118.696
Total Female (Hispanic) population in labor					
force (employed) 16+	15	0	219	93.07	60.953
Total Female (Hispanic) population in labor					
force (unemployed) 16+	15	90	373	193.73	89.059
Valid N (listwise)	15				

## 2010BGFW Hispanic Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	18	52	1038	379.28	287.344
Total Male (Black) population 16+	18	82	478	250.50	119.996
Total Male (Black) population in labor force (employed) 16+	18	9	300	144.44	92.521
Total Male (Black) population in labor force (unemployed) 16+	18	0	242	106.67	62.941
Valid N (listwise)	18				

## 2010BGDA Black Male (mean employed/unemployed with Grant)



## 2010BGDA Black Female (mean employed/unemployed with Grant)



## 2010BGDA Hispanic Male (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	8	236	1272	642.50	331.232
Total Female (Hispanic) population 16+	8	115	579	327.50	149.778
Total Female (Hispanic) population in labor force (employed) 16+	8	73	381	191.25	105.090
Total Female (Hispanic) population in labor force (unemployed) 16+	8	1	198	136.25	65.262
Valid N (listwise)	8				

## 2010BGDA Hispanic Female (mean employed/unemployed with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	27	0	1164	507.07	276.355
Total Male (White) population 16+	27	19	564	280.07	122.756
Total Male (White) population in labor force (employed) 16+	27	0	368	232.93	92.262
Total Male (White) population in labor force (unemployed) 16+	27	0	200	58.15	62.455
Valid N (listwise)	27				

## 2010BGFW White Male (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	27	0	1164	507.07	276.355
Total Female (White) population 16+	27	23	600	299.85	133.784
Total Female (White) population in labor force (employed) 16+	27	0	433	204.22	99.851
Total Female (White) population in labor force (unemployed) 16+	27	2	246	95.44	64.730
Valid N (listwise)	27				

2010BGFW White Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	11	0	605	257.36	159.191
Total Male (Black) population 16+	11	2	512	208.18	129.571
Total Male (Black) population in labor force (employed) 16+	11	0	244	98.45	63.377
Total Male (Black) population in labor force (unemployed) 16+	11	0	268	110.00	83.830
Valid N (listwise)	11				

## 2010BGFW Black Male (mean employed/unemployed without Grant)



## 2010BGFW Black Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	15	87	619	344.47	161.414
Total Male (Hispanic) population 16+	15	111	702	341.27	135.197
Total Male (Hispanic) population in labor force (employed) 16+	15	63	400	242.67	120.415
Total Male (Hispanic) population in labor force (unemployed) 16+	15	0	302	99.53	89.240
Valid N (listwise)	15				

2010BGFW Hispanic Male (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	15	87	619	344.47	161.414
Total Female (Hispanic) population 16+	15	92	592	286.80	118.696
Total Female (Hispanic) population in labor force (employed) 16+	15	0	219	93.07	60.953
Total Female (Hispanic) population in labor force (unemployed) 16+	15	90	373	193.73	89.059
Valid N (listwise)	15				

## 2010BGFW Hispanic Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (White) population 16+	2	272	529	400.50	181.726
Total Male (White) population 16+	2	218	288	253.00	49.497
Total Male (White) population in labor force (employed) 16+	2	163	315	239.00	107.480
Total Male (White) population in labor force (unemployed) 16+	2	0	55	27.50	38.891
Valid N (listwise)	2				

## 2010BGDA White Male (mean employed/unemployed without Grant)



Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	58	46	1000	288.48	186.403
Total Male (Black) population 16+	58	83	688	249.34	120.114
Total Male (Black) population in labor force (employed) 16+	58	0	358	123.07	79.787
Total Male (Black) population in labor force (unemployed) 16+	58	0	388	127.55	85.398
Valid N (listwise)	58				

## 2010BGDA Black Male (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Black) population 16+	58	46	1000	288.48	186.403
Total Female (Black) population 16+	58	72	1125	287.10	181.875
Total Female (Black) population in labor force (employed) 16+	58	12	642	161.95	119.581
Total Female (Black) population in labor force (unemployed) 16+	58	0	483	125.66	104.554
Valid N (listwise)	58				

## 2010BGDA Black Female (mean employed/unemployed without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Total (Hispanic) population 16+	20	82	2786	618.00	642.278
Total Male (Hispanic) population 16+	20	131	1452	423.50	297.547
Total Male (Hispanic) population in labor force (employed) 16+	20	67	975	320.35	256.939
Total Male (Hispanic) population in labor force (unemployed) 16+	20	0	477	140.05	132.365
Valid $N$ (listwise)	20				

2010BGDA Hispanic Male (mean employed/unemployed without Grant)


2010BGDA Hispanic Female (mean employed/unemployed without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3810399.526	1	3810399.526	59.787	. $000{ }^{\text {b }}$
	Residual	1210928.284	19	63733.068		
	Total	5021327.810	20			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2010BGFW White Male (linear regression employed/homeownership with Grant)


a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary						
Model	R			Std. Error of the		
1	R Square	Adjusted R Square	Estimate			
1	$.941^{\mathrm{a}}$	.886		173.884		

a. Predictors: (Constant), Total Female (White) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4446850.871	1	4446850.871	147.073	. $000{ }^{\text {b }}$
	Residual	574476.939	19	30235.628		
	Total	5021327.810	20			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (White) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	-51.165	60.496		-. 846	.408
Total Female (White) population in labor force (employed) 16+	2.029	. 167	. 941	12.127	. 000

a. Dependent Variable: Owner Occupied

2010BGFW White Female (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	188.534	42.366		4.450	. 000
Total Male (Black) population in labor force (employed) 16+	. 193	. 248	. 164	. 779	. 444

a. Dependent Variable: Owner Occupied

## 2010BGFW Black Male (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female (Black)		
population in labor			
force (employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary

				Std. Error of the   Estimate
Model	R	R Square	Adjusted R Square	(
1	$.361^{\mathrm{a}}$	.130	.091	102.949

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	34892.593	1	34892.593	3.292	. $083{ }^{\text {b }}$
	Residual	233169.032	22	10598.592		
	Total	268061.625	23			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2010BGFW Black Female (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Male (Hispanic)		
	population in labor		
force (employed)			
	$16+{ }^{\text {b }}$		Enter

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

Model		ANOVA ${ }^{\text {a }}$			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	27319.746	1	27319.746	15.218	$.002^{\mathrm{b}}$
Residual	23338.654	13	1795.281		
Total	50658.400	14			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$

Model		nstandardized Coefficients		Standardized   Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	122.176	25.308		4.828	. 000
	Total Male (Hispanic) population in labor force (employed) 16+	. 367	. 094	. 734	3.901	. 002

a. Dependent Variable: Owner Occupied

## 2010BGFW Hispanic Male (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female   (Hispanic) population   in labor force   (employed)   $16+{ }^{\text {b }}$	.	

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	$R$	R Square	Adjusted R Square	Estimate	
1	$.650^{\mathrm{a}}$	.422		478	

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	21383.319	1	21383.319	9.496	. $009^{\text {b }}$
	Residual	29275.081	13	2251.929		
	Total	50658.400	14			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

2010BGFW Hispanic Female (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	67703.750	1	67703.750	15.201	. $001^{\text {b }}$
	Residual	71260.750	16	4453.797		
	Total	138964.500	17			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

2010BGDA Black Male (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	71186.928	1	71186.928	16.805	. $001^{\text {b }}$
	Residual	67777.572	16	4236.098		
	Total	138964.500	17			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	130.753	29.664		4.408	. 000
Total Female (Black) population in labor force (employed) 16+	. 700	. 171	. 716	4.099	. 001

a. Dependent Variable: Owner Occupied

2010BGDA Black Female (linear regression employed/homeownership with Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.410^{\text {a }}$	. 168	. 029	118.871

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	17111.989	1	17111.989	1.211	. $313^{\text {b }}$
	Residual	84781.511	6	14130.252		
	Total	101893.500	7			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Owner Occupied

2010BGDA Hispanic Male (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Female				
(Hispanic) population					
in labor force					
(employed)					
$16+{ }^{\text {b }}$				$\quad .$	
:---	:---				

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	. $816^{\text {a }}$	. 665	.609	75.396

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)
$16+$

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	67786.237	1	67786.237	11.925	. $014^{\text {b }}$
	Residual	34107.263	6	5684.544		
	Total	101893.500	7			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	2.164	58.310		. 037	. 972
Total Female (Hispanic) population in labor force (employed) 16+	. 936	. 271	. 816	3.453	. 014

a. Dependent Variable: Owner Occupied

## 2010BGDA Hispanic Female (linear regression employed/homeownership with Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Male (White)				
population in labor					
force (employed)					
$16+{ }^{\text {b }}$				$\quad .$	Enter
:---	:---				

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	150527.695	1	150527.695	22.175	. $000{ }^{\text {b }}$
	Residual	169704.305	25	6788.172		
	Total	320232.000	26			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$

Model	nstandardized Coefficients		Standardized   Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	118.572	43.766		2.709	. 012
Total Male (White) population in labor force (employed) 16+	. 825	. 175	. 686	4.709	. 000

a. Dependent Variable: Owner Occupied

## 2010BGFW White Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female (White)		
	population in labor		
force (employed)			
	$16+{ }^{\text {b }}$		Enter

[^5]b. All requested variables entered.

Model Summary

				Std. Error of the   Model
R	R Square	Adjusted R Square	Estimate	
1	$.750^{\mathrm{a}}$	.563		74.823

a. Predictors: (Constant), Total Female (White) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	180271.570	1	180271.570	32.200	. $000{ }^{\text {b }}$
	Residual	139960.430	25	5598.417		
	Total	320232.000	26			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (White) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2010BGFW White Female (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Male (Black)		
population in labor			
force (employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	54281.138	1	54281.138	9.730	. $012^{\text {b }}$
	Residual	50207.044	9	5578.560		
	Total	104488.182	10			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	118.820	43.051		2.760	. 022
Total Male (Black) population in labor force (employed) 16+	1.162	. 373	. 721	3.119	. 012

a. Dependent Variable: Owner Occupied

## 2010BGFW Black Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female (Black)		
population in labor			
force (employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
	R Square	Adjusted R Square	Estimate		
1	$.627^{\mathrm{a}}$	.393		83.942	

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	41071.245	1	41071.245	5.829	. $039^{\text {b }}$
	Residual	63416.937	9	7046.326		
	Total	104488.182	10			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed)
$16+$

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	136.601	47.370		2.884	. 018
Total Female (Black) population in labor force (employed) 16+	. 608	. 252	. 627	2.414	. 039

a. Dependent Variable: Owner Occupied

## 2010BGFW Black Female (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Male (Hispanic)		
population in labor			
force (employed)		.	Enter
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)
$16+$

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	13694.897	1	13694.897	3.257	. $096{ }^{\text {b }}$
	Residual	50457.103	12	4204.759		
	Total	64152.000	13			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	169.942	33.177		5.122	. 000
Total Male (Hispanic) population in labor force (employed) 16+	. 226	. 125	. 462	1.805	. 096

a. Dependent Variable: Owner Occupied

2010BGFW Hispanic Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female   (Hispanic) population   in labor force   (employed)   $16+{ }^{\text {b }}$		

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.311^{\text {a }}$	. 097	. 022	69.488

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)
$16+$

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6208.798	1	6208.798	1.286	. $279{ }^{\text {b }}$
	Residual	57943.202	12	4828.600		
	Total	64152.000	13			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied

## 2010BGFW Hispanic Female (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Male (White)				
	population in labor				
force (employed)					
$16+{ }^{\text {b }}$				$\quad .$	
:---	:---	:---			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (White) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Owner Occupied

## 2010BGDA White Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female (White)		
population in labor			
force (employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Female (White) population in labor force (employed)
$16+$

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (White) population in labor force (employed)

16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients		Sig.
Model	B	Std. Error	Beta	t	
(Constant)	125.467	. 000			
Total Female (White) population in labor force (employed) 16+	1.133	. 000	1.000		

a. Dependent Variable: Owner Occupied

2010BGDA White Female (linear regression employed/homeownership without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

a. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Black) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	69.031	24.107		2.864	. 006
Total Male (Black) population in labor force (employed) 16+	1.056	. 165	. 650	6.406	. 000

a. Dependent Variable: Owner Occupied

## 2010BGDA Black Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Total Female (Black)		
population in labor			
force (employed)			
$16+{ }^{\text {b }}$			

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
1	R Square	Adjusted R Square	Estimate		
1	$.629^{\mathrm{a}}$	.396		101.546	

a. Predictors: (Constant), Total Female (Black) population in labor force (employed)
$16+$

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	378550.567	1	378550.567	36.711	. $000{ }^{\text {b }}$
	Residual	577453.157	56	10311.664		
	Total	956003.724	57			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Black) population in labor force (employed)
$16+$

a. Dependent Variable: Owner Occupied

2010BGDA Black Female (linear regression employed/homeownership without Grant)

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the   Estimate
1	. $385^{\text {a }}$	. 148	. 101	158.289

a. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)
$16+$

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	78301.819	1	78301.819	3.125	. $094^{\text {b }}$
	Residual	450999.131	18	25055.507		
	Total	529300.950	19			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Male (Hispanic) population in labor force (employed)

16+

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	129.511	57.469		2.254	. 037
Total Male (Hispanic) population in labor force (employed) 16+	. 250	. 141	. 385	1.768	. 094

a. Dependent Variable: Owner Occupied

## 2010BGDA Hispanic Male (linear regression employed/homeownership without Grant)

Variables Entered/Removed $^{\text {a }}$					
Model	Variables Entered	Variables Removed	Method		
1	Total Female				
(Hispanic) population					
in labor force					
(employed)					
$16+{ }^{\text {b }}$				$\quad .$	
:---	:---				

a. Dependent Variable: Owner Occupied
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
1	R Square	Adjusted R Square	Estimate		
1	$.854^{\mathrm{a}}$	.730		89.163	

a. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed)

16+

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	386199.366	1	386199.366	48.578	. $000{ }^{\text {b }}$
	Residual	143101.584	18	7950.088		
	Total	529300.950	19			

a. Dependent Variable: Owner Occupied
b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
(Constant)	80.120	27.246		2.941	. 009
Total Female (Hispanic) population in labor force (employed) 16+	. 726	. 104	. 854	6.970	. 000

a. Dependent Variable: Owner Occupied

2010BGDA Hispanic Female (linear regression employed/homeownership without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	21	0	164	26.10	38.109
Male Income \$2,500-\$4,999	21	0	46	9.43	12.225
Male Income \$5,000-\$7,499	21	0	56	8.14	14.516
Male Income \$7,500-\$9,999	21	0	39	7.62	10.576
Male Income \$10,000-\$12,499	21	0	71	9.71	17.644
Male Income \$12,500-\$14,999	21	0	59	13.43	17.057
Male Income \$15,000-\$17,499	21	0	155	14.29	35.374
Male Income \$17,500-\$19,999	21	0	21	6.24	8.485
Male Income \$05,000-\$22,499	21	0	46	16.14	16.356
Male Income \$22,500-\$24,999	21	0	29	5.86	8.696
Male Income \$25,000-\$29,999	21	0	124	35.81	32.137
Male Income \$30,000-\$34,999	21	0	91	24.29	25.732
Male Income \$35,000-\$39,999	21	0	46	14.48	16.525
Male Income \$40,000-\$44,999	21	0	94	26.33	24.878
Male Income \$45,000-\$49,999	21	0	137	17.67	30.325
Male Income \$50,000-\$54,999	21	0	125	26.43	30.659
Male Income \$55,000-\$64,499	21	0	92	35.05	31.930
Male Income \$65,000-\$74,999	21	0	103	23.14	28.650
Male Income \$75,000-\$99,999	21	0	142	39.62	41.103
Male Income \$100,000 or more	21	0	214	45.52	51.980
Valid N (listwise)	21				

2010BGFW White Male (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	21	0	64	18.81	20.634
Female Income \$2,500-\$4,999	21	0	69	14.95	19.523
Female Income \$5,000-\$7,499	21	0	74	11.33	20.531
Female Income \$7,500-\$9,999	21	0	79	13.48	23.147
Female Income \$10,000-\$12,499	21	0	78	21.43	22.511
Female Income \$12,500-\$14,999	21	0	49	13.48	17.885
Female Income \$15,000-\$17,499	21	0	74	18.38	21.910
Female Income \$17,500-\$19,999	21	0	53	12.00	16.177
Female Income \$05,000-\$22,499	21	0	98	22.14	30.717
Female Income \$22,500-\$24,999	21	0	39	12.90	15.620
Female Income \$25,000-\$29,999	21	0	178	28.38	42.150
Female Income \$30,000-\$34,999	21	0	133	40.38	33.150
Female Income \$35,000-\$39,999	21	0	177	23.95	38.391
Female Income \$40,000-\$44,999	21	0	182	29.14	46.777
Female Income \$45,000-\$49,999	21	0	158	26.24	37.968
Female Income \$50,000-\$54,999	21	0	103	22.33	29.872
Female Income \$55,000-\$64,499	21	0	57	20.10	17.925
Female Income \$65,000-\$74,999	21	0	92	19.19	21.979
Female Income \$75,000-\$99,999	21	0	84	21.86	23.504
Female Income \$100,000 or more	21	0	91	14.95	22.697
Valid N (listwise)	21				

2010BGFW White Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	24	0	235	22.79	47.176
Male Income \$2,500-\$4,999	24	0	89	12.50	21.669
Male Income \$5,000-\$7,499	24	0	48	10.46	15.709
Male Income \$7,500-\$9,999	24	0	54	12.75	16.222
Male Income \$10,000-\$12,499	24	0	88	21.38	25.651
Male Income \$12,500-\$14,999	24	0	92	17.50	28.062
Male Income \$15,000-\$17,499	24	0	83	17.04	24.927
Male Income \$17,500-\$19,999	24	0	70	13.08	19.525
Male Income \$05,000-\$22,499	24	0	147	27.50	31.360
Male Income \$22,500-\$24,999	24	0	42	10.21	12.968
Male Income \$25,000-\$29,999	24	0	121	15.92	28.598
Male Income \$30,000-\$34,999	24	0	193	24.79	40.953
Male Income \$35,000-\$39,999	24	0	74	21.58	21.605
Male Income \$40,000-\$44,999	24	0	88	20.58	24.673
Male Income \$45,000-\$49,999	24	0	74	11.54	18.932
Male Income \$50,000-\$54,999	24	0	48	11.63	14.747
Male Income \$55,000-\$64,499	24	0	137	17.71	31.549
Male Income \$65,000-\$74,999	24	0	35	6.42	9.798
Male Income \$75,000-\$99,999	24	0	40	6.46	12.843
Male Income \$100,000 or more	24	0	74	10.71	21.614
Valid N (listwise)	24				

2010BGFW Black Male (mean income with Grant)

Descriptive Statistics


2010BGFW Black Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	15	0	76	16.67	22.051
Male Income \$2,500-\$4,999	15	0	51	12.07	14.733
Male Income \$5,000-\$7,499	15	0	41	5.27	11.202
Male Income \$7,500-\$9,999	15	0	57	23.47	18.845
Male Income \$10,000-\$12,499	15	0	58	23.27	19.451
Male Income \$12,500-\$14,999	15	0	70	13.40	19.881
Male Income \$15,000-\$17,499	15	0	70	20.07	21.110
Male Income \$17,500-\$19,999	15	0	91	31.67	26.397
Male Income \$05,000-\$22,499	15	0	130	33.67	30.831
Male Income \$22,500-\$24,999	15	0	48	17.67	17.903
Male Income \$25,000-\$29,999	15	0	96	39.07	30.577
Male Income \$30,000-\$34,999	15	0	121	25.53	32.562
Male Income \$35,000-\$39,999	15	0	66	12.80	16.806
Male Income \$40,000-\$44,999	15	0	75	19.33	21.178
Male Income \$45,000-\$49,999	15	0	60	10.73	19.459
Male Income \$50,000-\$54,999	15	0	12	1.53	4.051
Male Income \$55,000-\$64,499	15	0	42	13.27	14.582
Male Income \$65,000-\$74,999	15	0	88	10.80	22.562
Male Income \$75,000-\$99,999	15	0	36	7.07	12.876
Male Income \$100,000 or more	15	0	33	4.73	9.430
Valid $N$ (listwise)	15				

2010BGFW Hispanic Male (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	15	0	75	23.73	25.152
Female Income \$2,500-\$4,999	15	0	32	10.00	8.133
Female Income \$5,000-\$7,499	15	0	65	16.80	21.405
Female Income \$7,500-\$9,999	15	0	74	19.60	22.177
Female Income \$10,000-\$12,499	15	0	59	12.27	16.211
Female Income \$12,500-\$14,999	15	0	62	20.07	18.668
Female Income \$15,000-\$17,499	15	0	78	30.40	27.305
Female Income \$17,500-\$19,999	15	0	42	9.53	15.537
Female Income \$05,000-\$22,499	15	0	33	4.67	8.780
Female Income \$22,500-\$24,999	15	0	27	6.47	8.560
Female Income \$25,000-\$29,999	15	0	49	16.53	16.903
Female Income \$30,000-\$34,999	15	0	45	13.27	14.597
Female Income \$35,000-\$39,999	15	0	53	13.33	17.536
Female Income \$40,000-\$44,999	15	0	40	4.93	11.554
Female Income \$45,000-\$49,999	15	0	8	. 93	2.492
Female Income \$50,000-\$54,999	15	0	55	4.27	14.225
Female Income \$55,000-\$64,499	15	0	12	. 80	3.098
Female Income \$65,000-\$74,999	15	0	10	1.87	3.889
Female Income \$75,000-\$99,999	15	0	0	. 00	. 000
Female Income \$100,000 or more	15	0	0	. 00	. 000
Valid N (listwise)	15				

2010BGFW Hispanic Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	18	0	67	17.72	22.489
Male Income \$2,500-\$4,999	18	0	50	9.89	18.208
Male Income \$5,000-\$7,499	18	0	45	11.61	13.276
Male Income \$7,500-\$9,999	18	0	48	5.67	12.357
Male Income \$10,000-\$12,499	18	0	59	10.11	16.153
Male Income \$12,500-\$14,999	18	0	53	10.72	16.641
Male Income \$15,000-\$17,499	18	0	69	18.44	21.821
Male Income \$17,500-\$19,999	18	0	55	12.39	16.557
Male Income \$05,000-\$22,499	18	0	76	14.39	22.765
Male Income \$22,500-\$24,999	18	0	27	5.94	9.484
Male Income \$25,000-\$29,999	18	0	37	11.56	14.893
Male Income \$30,000-\$34,999	18	0	100	20.89	30.372
Male Income \$35,000-\$39,999	18	0	52	11.61	16.825
Male Income \$40,000-\$44,999	18	0	26	5.61	8.211
Male Income \$45,000-\$49,999	18	0	32	2.94	8.003
Male Income \$50,000-\$54,999	18	0	26	3.33	7.252
Male Income \$55,000-\$64,499	18	0	25	2.28	6.807
Male Income \$65,000-\$74,999	18	0	20	1.89	5.593
Male Income \$75,000-\$99,999	18	0	34	3.50	8.946
Male Income \$100,000 or more	18	0	33	4.78	9.409
Valid N (listwise)	18				

2010BGDA Black Male (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	18	0	89	24.78	28.937
Female Income \$2,500-\$4,999	18	0	83	12.89	21.420
Female Income \$5,000-\$7,499	18	0	29	10.67	11.045
Female Income \$7,500-\$9,999	18	0	28	5.44	8.645
Female Income \$10,000-\$12,499	18	0	56	10.33	17.944
Female Income \$12,500-\$14,999	18	0	69	11.72	17.960
Female Income \$15,000-\$17,499	18	0	56	21.72	18.711
Female Income \$17,500-\$19,999	18	0	30	8.67	12.180
Female Income \$05,000-\$22,499	18	0	53	7.06	13.748
Female Income \$22,500-\$24,999	18	0	21	1.17	4.950
Female Income \$25,000-\$29,999	18	0	47	12.61	17.212
Female Income \$30,000-\$34,999	18	0	59	15.11	20.422
Female Income \$35,000-\$39,999	18	0	33	3.00	8.971
Female Income \$40,000-\$44,999	18	0	27	3.72	8.086
Female Income \$45,000-\$49,999	18	0	18	2.39	5.669
Female Income \$50,000-\$54,999	18	0	22	3.17	6.492
Female Income \$55,000-\$64,499	18	0	25	3.00	6.624
Female Income \$65,000-\$74,999	18	0	18	1.61	4.840
Female Income \$75,000-\$99,999	18	0	11	. 61	2.593
Female Income \$100,000 or more	18	0	38	3.17	9.775
Valid N (listwise)	18				

2010BGDA Black Female (mean income with Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	8	0	41	14.75	16.369
Male Income \$2,500-\$4,999	8	0	50	15.13	18.512
Male Income \$5,000-\$7,499	8	0	92	29.38	31.550
Male Income \$7,500-\$9,999	8	0	68	13.63	24.023
Male Income \$10,000-\$12,499	8	0	36	15.50	16.852
Male Income \$12,500-\$14,999	8	0	106	24.00	36.629
Male Income \$15,000-\$17,499	8	0	70	37.38	32.967
Male Income \$17,500-\$19,999	8	0	78	24.88	29.469
Male Income \$05,000-\$22,499	8	0	76	44.75	27.907
Male Income \$22,500-\$24,999	8	0	57	24.63	26.597
Male Income \$25,000-\$29,999	8	11	89	38.75	26.108
Male Income \$30,000-\$34,999	8	0	74	37.00	21.428
Male Income \$35,000-\$39,999	8	0	65	24.00	22.142
Male Income \$40,000-\$44,999	8	0	26	6.25	11.585
Male Income \$45,000-\$49,999	8	0	13	1.63	4.596
Male Income \$50,000-\$54,999	8	0	26	8.13	11.643
Male Income \$55,000-\$64,499	8	0	10	1.25	3.536
Male Income \$65,000-\$74,999	8	0	0	. 00	. 000
Male Income \$75,000-\$99,999	8	0	34	7.38	13.866
Male Income \$100,000 or more	8	0	21	3.75	7.649
Valid N (listwise)	8				

2010BGDA Hispanic Male (mean income with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	8	0	73	20.00	29.272
Female Income \$2,500-\$4,999	8	0	51	19.75	23.771
Female Income \$5,000-\$7,499	8	6	27	14.75	6.585
Female Income \$7,500-\$9,999	8	0	103	23.13	38.140
Female Income \$10,000-\$12,499	8	0	114	22.75	38.104
Female Income \$12,500-\$14,999	8	0	48	12.63	18.585
Female Income \$15,000-\$17,499	8	0	56	14.13	19.628
Female Income \$17,500-\$19,999	8	0	30	10.50	12.672
Female Income \$05,000-\$22,499	8	0	37	12.38	15.973
Female Income \$22,500-\$24,999	8	0	27	4.25	9.513
Female Income \$25,000-\$29,999	8	0	47	19.88	16.048
Female Income \$30,000-\$34,999	8	0	50	10.00	19.272
Female Income \$35,000-\$39,999	8	0	21	4.75	8.860
Female Income \$40,000-\$44,999	8	0	14	4.25	6.089
Female Income \$45,000-\$49,999	8	0	0	. 00	. 000
Female Income \$50,000-\$54,999	8	0	0	. 00	. 000
Female Income \$55,000-\$64,499	8	0	15	1.88	5.303
Female Income \$65,000-\$74,999	8	0	0	. 00	. 000
Female Income \$75,000-\$99,999	8	0	0	. 00	. 000
Female Income \$100,000 or more	8	0	0	. 00	. 000
Valid N (listwise)	8				

## 2010BGDA Hispanic Female (mean income with Grant)

Descriptive Statistics

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

2010BGFW White Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	27	0	38	14.11	12.389
Female Income \$2,500-\$4,999	27	0	69	10.96	18.091
Female Income \$5,000-\$7,499	27	0	94	10.89	19.600
Female Income \$7,500-\$9,999	27	0	48	10.11	13.452
Female Income \$10,000-\$12,499	27	0	75	23.44	23.822
Female Income \$12,500-\$14,999	27	0	43	7.56	12.122
Female Income \$15,000-\$17,499	27	0	53	5.15	11.505
Female Income \$17,500-\$19,999	27	0	53	5.63	12.267
Female Income \$05,000-\$22,499	27	0	68	12.56	17.120
Female Income \$22,500-\$24,999	27	0	23	2.22	5.380
Female Income \$25,000-\$29,999	27	0	86	24.19	25.542
Female Income \$30,000-\$34,999	27	0	50	15.07	11.038
Female Income \$35,000-\$39,999	27	0	43	13.30	12.300
Female Income \$40,000-\$44,999	27	0	85	17.59	20.116
Female Income \$45,000-\$49,999	27	0	51	12.22	17.068
Female Income \$50,000-\$54,999	27	0	44	9.85	12.187
Female Income \$55,000-\$64,499	27	0	38	12.00	12.716
Female Income \$65,000-\$74,999	27	0	72	12.04	18.875
Female Income \$75,000-\$99,999	27	0	53	12.70	15.043
Female Income \$100,000 or more	27	0	63	14.22	18.596
Valid N (listwise)	27				

2010BGFW White Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	11	0	81	17.55	26.909
Male Income \$2,500-\$4,999	11	0	64	9.18	19.094
Male Income \$5,000-\$7,499	11	0	34	12.18	9.724
Male Income \$7,500-\$9,999	11	0	81	11.45	24.118
Male Income \$10,000-\$12,499	11	0	58	15.27	21.289
Male Income \$12,500-\$14,999	11	0	47	5.18	14.190
Male Income \$15,000-\$17,499	11	0	57	15.64	23.513
Male Income \$17,500-\$19,999	11	0	99	22.18	29.735
Male Income \$05,000-\$22,499	11	0	74	21.36	25.362
Male Income \$22,500-\$24,999	11	0	84	13.36	26.624
Male Income \$25,000-\$29,999	11	0	69	15.00	20.425
Male Income \$30,000-\$34,999	11	0	39	10.27	14.813
Male Income \$35,000-\$39,999	11	0	38	11.45	14.706
Male Income \$40,000-\$44,999	11	0	38	13.09	14.223
Male Income \$45,000-\$49,999	11	0	48	11.18	16.259
Male Income \$50,000-\$54,999	11	0	51	9.09	16.434
Male Income \$55,000-\$64,499	11	0	57	15.36	21.851
Male Income \$65,000-\$74,999	11	0	29	3.91	9.322
Male Income \$75,000-\$99,999	11	0	20	4.55	7.942
Male Income \$100,000 or more	11	0	30	2.73	9.045
Valid N (listwise)	11				

2010BGFW Black Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	11	0	78	19.09	23.356
Female Income \$2,500-\$4,999	11	0	38	12.91	12.194
Female Income \$5,000-\$7,499	11	0	101	19.64	29.760
Female Income \$7,500-\$9,999	11	0	53	19.55	17.683
Female Income \$10,000-\$12,499	11	0	45	11.18	14.211
Female Income \$12,500-\$14,999	11	0	62	19.00	19.627
Female Income \$15,000-\$17,499	11	0	76	20.55	23.308
Female Income \$17,500-\$19,999	11	0	35	7.09	10.319
Female Income \$05,000-\$22,499	11	0	50	13.64	17.534
Female Income \$22,500-\$24,999	11	0	28	6.82	10.815
Female Income \$25,000-\$29,999	11	0	111	33.45	32.892
Female Income \$30,000-\$34,999	11	0	48	17.73	17.071
Female Income \$35,000-\$39,999	11	0	25	3.36	8.028
Female Income \$40,000-\$44,999	11	0	65	15.55	24.925
Female Income \$45,000-\$49,999	11	0	51	11.91	17.592
Female Income \$50,000-\$54,999	11	0	41	7.27	13.054
Female Income \$55,000-\$64,499	11	0	35	10.09	14.286
Female Income \$65,000-\$74,999	11	0	11	2.00	4.450
Female Income \$75,000-\$99,999	11	0	30	4.73	9.188
Female Income \$100,000 or more	11	0	11	1.91	4.253
Valid N (listwise)	11				

2010BGFW Black Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	14	0	66	30.50	22.318
Male Income \$2,500-\$4,999	14	0	40	7.43	13.398
Male Income \$5,000-\$7,499	14	0	69	13.79	24.366
Male Income \$7,500-\$9,999	14	0	51	18.71	20.379
Male Income \$10,000-\$12,499	14	0	71	13.64	19.790
Male Income \$12,500-\$14,999	14	0	93	20.93	26.146
Male Income \$15,000-\$17,499	14	0	83	38.07	27.855
Male Income \$17,500-\$19,999	14	0	39	18.43	14.569
Male Income \$05,000-\$22,499	14	0	145	32.36	45.241
Male Income \$22,500-\$24,999	14	0	65	15.57	20.709
Male Income \$25,000-\$29,999	14	0	139	38.71	42.934
Male Income \$30,000-\$34,999	14	0	92	37.21	28.307
Male Income \$35,000-\$39,999	14	0	58	16.50	20.553
Male Income \$40,000-\$44,999	14	0	73	13.21	19.776
Male Income \$45,000-\$49,999	14	0	62	14.57	20.217
Male Income \$50,000-\$54,999	14	0	32	7.64	10.382
Male Income \$55,000-\$64,499	14	0	71	13.57	21.209
Male Income \$65,000-\$74,999	14	0	12	1.43	3.715
Male Income \$75,000-\$99,999	14	0	35	3.43	9.725
Male Income \$100,000 or more	14	0	20	4.14	7.347
Valid N (listwise)	14				

2010BGFW Hispanic Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	14	0	147	24.64	41.389
Female Income \$2,500-\$4,999	14	0	45	17.93	15.930
Female Income \$5,000-\$7,499	14	0	39	15.79	15.065
Female Income \$7,500-\$9,999	14	0	69	10.50	19.918
Female Income \$10,000-\$12,499	14	0	49	14.14	17.637
Female Income \$12,500-\$14,999	14	0	52	17.29	17.800
Female Income \$15,000-\$17,499	14	0	75	17.50	23.101
Female Income \$17,500-\$19,999	14	0	35	6.79	10.312
Female Income \$05,000-\$22,499	14	0	30	10.57	9.967
Female Income \$22,500-\$24,999	14	0	36	6.07	12.257
Female Income \$25,000-\$29,999	14	0	60	23.50	21.277
Female Income \$30,000-\$34,999	14	0	43	11.93	13.112
Female Income \$35,000-\$39,999	14	0	49	4.79	13.157
Female Income \$40,000-\$44,999	14	0	70	19.21	23.009
Female Income \$45,000-\$49,999	14	0	44	4.71	12.737
Female Income \$50,000-\$54,999	14	0	18	1.93	5.210
Female Income \$55,000-\$64,499	14	0	42	7.29	14.435
Female Income \$65,000-\$74,999	14	0	54	4.57	14.474
Female Income \$75,000-\$99,999	14	0	18	3.71	6.366
Female Income \$100,000 or more	14	0	7	. 50	1.871
Valid N (listwise)	14				

2010BGFW Hispanic Female (mean income without Grant)

Descriptive Statistics

|  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

2010BGDA White Male (mean income without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	2	0	33	16.50	23.335
Female Income \$2,500-\$4,999	2	0	14	7.00	9.899
Female Income \$5,000-\$7,499	2	0	47	23.50	33.234
Female Income \$7,500-\$9,999	2	0	0	. 00	. 000
Female Income \$10,000-\$12,499	2	0	14	7.00	9.899
Female Income \$12,500-\$14,999	2	0	0	. 00	. 000
Female Income \$15,000-\$17,499	2	0	6	3.00	4.243
Female Income \$17,500-\$19,999	2	0	0	. 00	. 000
Female Income \$05,000-\$22,499	2	0	0	. 00	. 000
Female Income \$22,500-\$24,999	2	0	23	11.50	16.263
Female Income \$25,000-\$29,999	2	0	0	. 00	. 000
Female Income \$30,000-\$34,999	2	7	10	8.50	2.121
Female Income \$35,000-\$39,999	2	0	62	31.00	43.841
Female Income \$40,000-\$44,999	2	8	15	11.50	4.950
Female Income \$45,000-\$49,999	2	0	0	. 00	. 000
Female Income \$50,000-\$54,999	2	0	7	3.50	4.950
Female Income \$55,000-\$64,499	2	7	33	20.00	18.385
Female Income \$65,000-\$74,999	2	0	25	12.50	17.678
Female Income \$75,000-\$99,999	2	23	28	25.50	3.536
Female Income \$100,000 or more	2	19	68	43.50	34.648
Valid N (listwise)	2				

## 2010BGDA White Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	58	0	106	19.98	22.653
Male Income \$2,500-\$4,999	58	0	92	9.33	17.323
Male Income \$5,000-\$7,499	58	0	71	8.28	13.298
Male Income \$7,500-\$9,999	58	0	62	7.97	14.011
Male Income \$10,000-\$12,499	58	0	47	12.72	13.880
Male Income \$12,500-\$14,999	58	0	91	11.17	19.223
Male Income \$15,000-\$17,499	58	0	75	12.60	19.349
Male Income \$17,500-\$19,999	58	0	87	11.40	16.445
Male Income \$05,000-\$22,499	58	0	69	15.57	18.425
Male Income \$22,500-\$24,999	58	0	35	4.74	8.491
Male Income \$25,000-\$29,999	58	0	84	19.57	23.965
Male Income \$30,000-\$34,999	58	0	138	15.41	21.944
Male Income \$35,000-\$39,999	58	0	77	14.31	20.666
Male Income \$40,000-\$44,999	58	0	82	9.64	17.395
Male Income \$45,000-\$49,999	58	0	42	5.09	11.024
Male Income \$50,000-\$54,999	58	0	54	6.00	11.541
Male Income \$55,000-\$64,499	58	0	52	4.24	10.199
Male Income \$65,000-\$74,999	58	0	72	6.17	14.250
Male Income \$75,000-\$99,999	58	0	66	3.86	10.973
Male Income \$100,000 or more	58	0	77	4.55	13.760
Valid N (listwise)	58				

2010BGDA Black Male (mean income without Grant)

Descriptive Statistics


## 2010BGDA Black Female (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Male Income less than \$1-2,499	20	0	75	17.20	19.322
Male Income \$2,500-\$4,999	20	0	57	14.65	18.540
Male Income \$5,000-\$7,499	20	0	50	9.60	13.786
Male Income \$7,500-\$9,999	20	0	72	13.10	19.598
Male Income \$10,000-\$12,499	20	0	222	40.90	54.079
Male Income \$12,500-\$14,999	20	0	127	31.40	37.949
Male Income \$15,000-\$17,499	20	0	115	34.75	31.028
Male Income \$17,500-\$19,999	20	0	102	32.85	30.567
Male Income \$05,000-\$22,499	20	0	168	43.30	46.751
Male Income \$22,500-\$24,999	20	0	56	14.15	16.878
Male Income \$25,000-\$29,999	20	0	139	31.25	31.116
Male Income \$30,000-\$34,999	20	0	168	31.50	39.644
Male Income \$35,000-\$39,999	20	0	67	19.10	25.815
Male Income \$40,000-\$44,999	20	0	56	8.75	15.437
Male Income \$45,000-\$49,999	20	0	44	8.00	14.499
Male Income \$50,000-\$54,999	20	0	40	8.00	12.456
Male Income \$55,000-\$64,499	20	0	65	7.30	15.499
Male Income \$65,000-\$74,999	20	0	20	3.05	6.428
Male Income \$75,000-\$99,999	20	0	29	1.45	6.485
Male Income \$100,000 or more	20	0	9	. 90	2.770
Valid N (listwise)	20				

2010BGDA Hispanic Male (mean income without Grant)

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Female Income less than \$1-2,499	20	0	52	14.30	17.251
Female Income \$2,500-\$4,999	20	0	39	11.90	15.376
Female Income \$5,000-\$7,499	20	0	85	16.15	20.056
Female Income \$7,500-\$9,999	20	0	60	10.50	14.894
Female Income \$10,000-\$12,499	20	0	39	11.65	14.125
Female Income \$12,500-\$14,999	20	0	62	16.65	18.554
Female Income \$15,000-\$17,499	20	0	75	21.25	22.052
Female Income \$17,500-\$19,999	20	0	69	11.45	17.111
Female Income \$05,000-\$22,499	20	0	51	10.45	17.689
Female Income \$22,500-\$24,999	20	0	47	7.70	13.417
Female Income \$25,000-\$29,999	20	0	37	6.90	10.809
Female Income \$30,000-\$34,999	20	0	52	10.80	12.878
Female Income \$35,000-\$39,999	20	0	50	8.15	14.727
Female Income \$40,000-\$44,999	20	0	27	5.80	9.807
Female Income \$45,000-\$49,999	20	0	28	5.90	9.744
Female Income \$50,000-\$54,999	20	0	10	. 50	2.236
Female Income \$55,000-\$64,499	20	0	14	. 95	3.268
Female Income \$65,000-\$74,999	20	0	19	1.85	5.696
Female Income \$75,000-\$99,999	20	0	41	6.05	13.149
Female Income \$100,000 or more	20	0	30	2.60	8.107
Valid N (listwise)	20				

2010BGDA Hispanic Female (mean income without Grant)

Variables Entered/Removed			
Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's		
	Degree, Male No		
	schooling completed,		
Male 12th grade, no			
diploma, Male			
	Associates, Male		
	Professional Degree,		
Male Some College,			
	less than 1 year,		
	Male High School		
	Graduate		
(Equivalency), Male			
Bachelor's Degree,			
Male Master's			
Degree, Male Some			
College, 1 or more			
years, No degree ${ }^{\text {b }}$			

a. Dependent Variable: Total Male (White) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
1	R Square	Adjusted R Square	Estimate		
1	$.959^{\mathrm{a}}$	.920		78.595	

a. Predictors: (Constant), Male Doctorate's Degree, Male No schooling completed, Male 12th grade, no diploma, Male Associates, Male Professional Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Bachelor's Degree, Male

Master's Degree, Male Some College, 1 or more years, No degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	715155.948	10	71515.595	11.578	. $000{ }^{\text {b }}$
	Residual	61771.005	10	6177.100		
	Total	776926.952	20			

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male No schooling completed, Male 12th grade, no diploma, Male

Associates, Male Professional Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male
Bachelor's Degree, Male Master's Degree, Male Some College, 1 or more years, No degree

Coefficients ${ }^{\text {a }}$					
	nstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	28.893	49.816		. 580	. 575
Male No schooling completed	-. 855	2.449	-. 034	-. 349	. 734
Male 12th grade, no diploma	. 766	3.596	. 031	. 213	. 836
Male High School Graduate (Equivalency)	. 118	. 444	. 039	. 266	. 795
Male Some College, less than 1 year	-. 098	. 534	-. 023	-. 183	. 859
Male Some College, 1 or more years, No degree	1.318	. 830	. 435	1.588	. 143
Male Associates	1.567	. 815	. 245	1.922	. 083
Male Bachelor's Degree	. 910	. 471	. 379	1.933	. 082
Male Master's Degree	. 224	1.083	. 049	. 207	. 840
Male Professional Degree	-. 142	1.973	-. 013	-. 072	. 944
Male Doctorate's Degree	1.990	5.595	. 079	. 356	. 729

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's		
	Degree, Female No		
	schooling completed,		
	Female Master's		
	Degree, Female 12th		
grade, no diploma,			
	Female Professional		
Degree, Female			
Some College, 1 or			
more years, No			
	degree, Female		
Associates, Female			
Bachelor's Degree,			
Female Some			
College, less than 1			
year, Female High			
School Graduate			

a. Dependent Variable: Total Female (White) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the   Estimate
Model	R	R Square	Adjusted R Square	(
1	$.933^{\mathrm{a}}$	.870	.739	118.721

a. Predictors: (Constant), Female Doctorate's Degree, Female No schooling completed, Female Master's Degree, Female 12th grade, no diploma, Female Professional Degree,

Female Some College, 1 or more years, No degree, Female Associates, Female Bachelor's
Degree, Female Some College, less than 1 year, Female High School Graduate
(Equivalency)

Model		ANOVA			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	939587.404	10	93958.740	6.666	$.003^{\text {b }}$
Residual	140947.263	10	14094.726		
Total	1080534.667	20			

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female No schooling completed, Female Master's Degree, Female

12th grade, no diploma, Female Professional Degree, Female Some College, 1 or more years, No degree, Female
Associates, Female Bachelor's Degree, Female Some College, less than 1 year, Female High School Graduate (Equivalency)

Coefficients ${ }^{\text {a }}$					
Model	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	16.717	50.769		. 329	. 749
Female No schooling completed	2.674	6.112	. 062	. 438	. 671
Female 12th grade, no diploma	1.218	3.893	. 050	. 313	. 761
Female High School Graduate (Equivalency)	. 553	. 765	. 254	. 723	. 487
Female Some College, less than 1 year	1.059	1.607	. 183	. 659	. 525
Female Some College, 1 or more years, No degree	. 089	. 900	. 024	. 099	. 923
Female Associates	-. 516	1.871	-. 070	-. 276	. 788
Female Bachelor's Degree	1.453	. 527	. 692	2.758	. 020
Female Master's Degree	-. 385	1.248	-. 053	-. 309	. 764
Female Professional Degree	-. 531	2.794	-. 039	-. 190	. 853
Female Doctorate's Degree	-. 091	2.447	-. 005	-. 037	. 971

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+

2010BGFW White Female (linear regression employment/education with Grant)

Variables Entered/Removed			
Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's		
	Degree, Male Some		
College, 1 or more			
	years, No degree,		
	Male Professional		
	Degree, Male No		
	Schooling completed,		
Male Master's			
Degree, Male 12th			
grade, no diploma,			
	Male High School		
Graduate			
(Equivalency), Male			
Associates, Male			
Some College, less			
than 1 year, Male			

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male Professional Degree, Male No schooling completed, Male Master's Degree, Male 12th grade, no diploma, Male High School Graduate (Equivalency), Male

Associates, Male Some College, less than 1 year, Male Bachelor's Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	167224.756	10	16722.476	8.624	. $000{ }^{\text {b }}$
	Residual	25208.202	13	1939.092		
	Total	192432.958	23			

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male Professional Degree, Male No schooling completed, Male Master's Degree, Male 12th grade, no diploma, Male High School Graduate
(Equivalency), Male Associates, Male Some College, less than 1 year, Male Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	31.787	22.926		1.387	. 189
Male No schooling completed	-. 343	1.407	-. 031	-. 244	. 811
Male 12th grade, no diploma	-. 935	. 353	-. 313	-2.650	. 020
Male High School Graduate (Equivalency)	. 255	. 240	. 179	1.062	. 307
Male Some College, less than 1 year	. 867	. 823	. 230	1.054	. 311
Male Some College, 1 or more years, No degree	. 786	. 253	. 463	3.103	. 008
Male Associates	. 655	. 856	. 178	. 765	. 458
Male Bachelor's Degree	. 281	. 725	. 114	. 388	. 704
Male Master's Degree	. 722	1.176	. 178	. 614	. 550
Male Professional Degree	1.281	1.395	. 122	. 918	. 375
Male Doctorate's Degree	-. 854	2.913	-. 082	-. 293	774

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

## 2010BGFW Black Male (linear regression employment/education with Grant)

Variables Entered/Removed ${ }^{\text {a }}$

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's   Degree, Female   Some College, 1 or more years, No degree, Female   Professional Degree,   Female Master's   Degree, Female High   School Graduate   (Equivalency),   Female No schooling   completed, Female   Some College, less   than 1 year, Female   Associates, Female   12th grade, no diploma, Female   Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	$.848^{\mathrm{a}}$	.719		60.026

a. Predictors: (Constant), Female Doctorate's Degree, Female Some College, 1 or more years, No degree, Female Professional Degree, Female Master's Degree, Female High School Graduate (Equivalency), Female No schooling completed, Female Some College, less than 1 year, Female Associates, Female 12th grade, no diploma, Female Bachelor's

Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	119921.144	10	11992.114	3.328	. $023{ }^{\text {b }}$
	Residual	46840.690	13	3603.130		
	Total	166761.833	23			

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female Some College, 1 or more years, No degree, Female

Professional Degree, Female Master's Degree, Female High School Graduate (Equivalency), Female No schooling completed, Female Some College, less than 1 year, Female Associates, Female 12th grade, no diploma, Female Bachelor's Degree

Coefficients ${ }^{\text {a }}$

Model	nstandardized Coefficients		Standardized   Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	48.875	37.395		1.307	. 214
Female No schooling completed	-. 400	. 990	-. 076	-. 404	. 693
Female 12th grade, no diploma	. 124	1.207	. 024	. 103	. 920
Female High School Graduate (Equivalency)	. 166	. 227	. 129	. 734	.476
Female Some College, less than 1 year	1.036	. 798	. 252	1.298	. 217
Female Some College, 1 or more years, No degree	. 451	. 515	. 205	. 876	. 397
Female Associates	. 579	. 569	. 220	1.018	. 327
Female Bachelor's Degree	. 303	. 782	. 120	. 387	. 705
Female Master's Degree	1.326	1.135	. 342	1.168	. 264
Female Professional Degree	-2.641	3.571	-. 122	-. 740	. 473
Female Doctorate's Degree	-1.175	3.445	-. 079	-. 341	. 739

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Male Master's Degree, Male High   School Graduate (Equivalency), Male   No schooling completed, Male 12th grade, no diploma, Male Bachelor's Degree, Male Some College, less than 1 year, Male Some College, 1 or more years, No degree, Male Associates ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
1	R Square	Adjusted R Square	Estimate		
1	$.842^{\mathrm{a}}$	.709		.321	

a. Predictors: (Constant), Male Master's Degree, Male High School Graduate (Equivalency),

Male No schooling completed, Male 12th grade, no diploma, Male Bachelor's Degree, Male
Some College, less than 1 year, Male Some College, 1 or more years, No degree, Male
Associates

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Male Master's Degree, Male High School Graduate (Equivalency), Male No schooling completed,

Male 12th grade, no diploma, Male Bachelor's Degree, Male Some College, less than 1 year, Male Some College, 1 or more years, No degree, Male Associates

Model	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
	B	Std. Error			
1 (Constant)	170.106	103.983		1.636	. 153
Male No schooling completed	. 191	1.403	. 033	. 136	. 896
Male 12th grade, no diploma	-. 876	2.013	-. 136	-. 435	. 679
Male High School Graduate (Equivalency)	1.120	. 642	. 465	1.745	. 132
Male Some College, less than 1 year	-1.372	2.220	-. 180	-. 618	. 559
Male Some College, 1 or more years, No degree	3.301	2.165	. 660	1.524	. 178
Male Associates	-1.268	2.053	-. 326	-. 618	. 559
Male Bachelor's Degree	-4.418	4.075	-. 284	-1.084	. 320
Male Master's Degree	-46.911	41.586	-. 704	-1.128	. 302

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

## 2010BGFW Hispanic Male (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Professional   Degree, Female No schooling completed,   Female Bachelor's   Degree, Female   Associates, Female   High School   Graduate   (Equivalency),   Female Some   College, less than 1   year, Female 12th   grade, no diploma,   Female Master's   Degree, Female   Some College, 1 or   more years, No   degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the
Estimate				

a. Predictors: (Constant), Female Professional Degree, Female No schooling completed, Female Bachelor's Degree, Female Associates, Female High School Graduate (Equivalency), Female Some College, less than 1 year, Female 12th grade, no diploma,

Female Master's Degree, Female Some College, 1 or more years, No degree

Model		ANOVA			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	42642.086		9	4738.010	2.528
Residual	9370.848		5	1874.170	
Total	52012.933		14		

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed)

16+
b. Predictors: (Constant), Female Professional Degree, Female No schooling completed, Female Bachelor's Degree, Female Associates, Female High School Graduate (Equivalency), Female Some College, less than 1 year, Female 12th grade, no diploma, Female Master's Degree, Female Some College, 1 or more years, No degree

Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

## 2010BGFW Hispanic Female (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male Professional Degree, Male Master's Degree, Male Bachelor's Degree, Male 12th grade, no diploma, Male High School Graduate (Equivalency), Male Some College, less than 1 year, Male Associates, Male No schooling completed ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the   Estimate
1	. $878{ }^{\text {a }}$	. 771	. 444	68.972

a. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male Professional Degree, Male Master's Degree, Male Bachelor's Degree, Male 12th grade, no diploma, Male High School Graduate (Equivalency), Male Some College, less than 1 year, Male Associates, Male No schooling completed

a. Dependent Variable: Total Male (Black) population in labor force (employed)

16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Some College, 1 or more years, No degree, Male Professional Degree, Male Master's Degree, Male Bachelor's Degree, Male 12th grade, no diploma, Male High School Graduate
(Equivalency), Male Some College, less than 1 year, Male Associates, Male No schooling completed

Coefficients ${ }^{\text {a }}$

Model	nstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1 (Constant)	33.488	39.211		. 854	. 421
Male No schooling completed	1.200	2.514	. 167	. 477	. 648
Male 12th grade, no diploma	. 900	1.649	. 148	. 546	. 602
Male High School Graduate (Equivalency)	1.059	. 437	. 606	2.425	. 046
Male Some College, less than 1 year	4.535	2.811	. 420	1.613	. 151
Male Some College, 1 or more years, No degree	-. 128	. 759	-. 047	-. 168	. 871
Male Associates	-1.454	2.709	-. 169	-. 537	. 608
Male Bachelor's Degree	-4.659	2.136	-. 550	-2.181	. 066
Male Master's Degree	4.805	2.322	. 468	2.070	. 077
Male Professional Degree	4.589	8.972	. 117	. 511	. 625
Male Doctorate's Degree	-16.290	17.646	-. 332	-. 923	. 387

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

2010BGDA Black Male (linear regression employment/education with Grant)

Variables Entered/Removed ${ }^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's Degree, Female 12th grade, no diploma,   Female High School Graduate (Equivalency),   Female Associates,   Female Some   College, 1 or more years, No degree, Female Some College, less than 1 year, Female No schooling completed, Female Master's Degree, Female Professional Degree, Female Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	$.726^{\mathrm{a}}$	.527		99.154

a. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma,

Female High School Graduate (Equivalency), Female Associates, Female Some College, 1 or more years, No degree, Female Some College, less than 1 year, Female No schooling completed, Female Master's Degree, Female Professional Degree, Female Bachelor's Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	76528.853	10	7652.885	. 778	. $653{ }^{\text {b }}$
	Residual	68820.758	7	9831.537		
	Total	145349.611	17			

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma, Female High School Graduate (Equivalency), Female Associates, Female Some College, 1 or more years, No degree, Female Some College, less than 1 year, Female No schooling completed, Female Master's Degree, Female Professional Degree, Female Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	229.379	74.983		3.059	. 018
Female No schooling completed	2.196	2.812	. 293	. 781	. 461
Female 12th grade, no diploma	-2.395	2.605	-. 296	-. 919	. 389
Female High School Graduate (Equivalency)	. 186	. 516	. 143	. 360	. 729
Female Some College, less than 1 year	-. 539	1.839	-. 107	-. 293	. 778
Female Some College, 1 or more years, No degree	-1.348	. 957	-. 463	-1.408	. 202
Female Associates	-4.341	2.360	-1.108	-1.840	. 108
Female Bachelor's Degree	2.899	3.243	. 726	. 894	. 401
Female Master's Degree	2.287	3.791	. 237	. 603	. 565
Female Professional Degree	3.242	29.514	. 083	. 110	. 916
Female Doctorate's Degree	-5.372	9.324	-. 274	-. 576	. 583

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

2010BGDA Black Female (linear regression employment/education with Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's		
	Degree, Male No		
schooling completed,			
Male High School			
Graduate			
(Equivalency), Male			
Professional Degree,			
Male Bachelor's			
Degree, Male Some			
College, less than 1			
year, Male		.	Enter
Associates ${ }^{\text {b }}$			

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. Tolerance $=.000$ limit reached.

Model Summary					
Model				Std. Error of the	
1	$R$	R Square	Adjusted R Square	Estimate	
$1.000^{\mathrm{a}}$	1.000				

a. Predictors: (Constant), Male Doctorate's Degree, Male No schooling completed, Male High School Graduate (Equivalency), Male Professional Degree, Male Bachelor's Degree,

Male Some College, less than 1 year, Male Associates

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed)

16+
b. Predictors: (Constant), Male Doctorate's Degree, Male No schooling completed, Male High School Graduate (Equivalency), Male Professional Degree, Male Bachelor's Degree, Male Some College, less than 1 year, Male Associates

Coefficients ${ }^{\text {a }}$					
	Unstandardize	efficients	Standardized   Coefficients		
Model	B	Std. Error	Beta	t	Sig.
1 (Constant)	133.394	. 000		.	
Male No schooling completed	. 958	. 000	.660		
Male High School Graduate (Equivalency)	-. 021	. 000	-. 014	.	.
Male Some College, less than 1 year	10.629	. 000	. 632	.	.
Male Associates	2.407	. 000	. 461	.	
Male Bachelor's Degree	2.592	. 000	. 421	.	.
Male Professional Degree	20.606	. 000	. 577	.	.
Male Doctorate's Degree	19.562	. 000	.625		

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

Excluded Variables ${ }^{\text {a }}$					
Model	Beta In	t	Sig.	Partial Correlation	Collinearity Statistics   Tolerance
Male 12th grade, no diploma   Male Some College, 1 or more years, No degree   Male Master's Degree	b   b   b				$\begin{aligned} & .000 \\ & .000 \\ & .000 \\ & \hline \end{aligned}$

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors in the Model: (Constant), Male Doctorate's Degree, Male No schooling completed, Male High School Graduate (Equivalency), Male Professional Degree, Male Bachelor's Degree, Male Some College, less than 1 year, Male Associates

## 2010BGDA Hispanic Male (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Bachelor's Degree, Female No schooling completed, Female Some College, 1 or more years, No degree, Female 12th grade, no diploma, Female Associates, Female High School Graduate (Equivalency),   Female Some College, less than 1 year ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed)
16+
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	R Square	Adjusted R Square	Estimate		
$1.000^{\mathrm{a}}$	1.000					

a. Predictors: (Constant), Female Bachelor's Degree, Female No schooling completed,

Female Some College, 1 or more years, No degree, Female 12th grade, no diploma, Female
Associates, Female High School Graduate (Equivalency), Female Some College, less than
1 year

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Female Bachelor's Degree, Female No schooling completed, Female Some College, 1 or more years, No degree, Female 12th grade, no diploma, Female Associates, Female High School Graduate (Equivalency), Female

Some College, less than 1 year
Coefficients ${ }^{\text {a }}$

Model		nstandardized Coefficients		Standardized   Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	83.975	. 000			
	Female No schooling completed	1.594	. 000	. 211		
	Female 12th grade, no diploma	-8.534	. 000	-. 712		
	Female High School Graduate (Equivalency)	2.247	. 000	1.265		
	Female Some College, less than 1 year	2.355	. 000	. 315		
	Female Some College, 1 or more years, No degree	1.043	. 000	. 209		
	Female Associates	-3.092	. 000	-. 634		
	Female Bachelor's Degree	-2.297	. 000	-. 311		

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

## 2010BGDA Hispanic Female (linear regression employment/education with Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Associates, Male Some College, 1 or more years, No degree, Male   Bachelor's Degree,   Male No schooling completed, Male Master's Degree, Male Professional Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (White) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Male Doctorate's Degree, Male 12th grade, no diploma, Male

Some College, less than 1 year, Male High School Graduate (Equivalency), Male
Associates, Male Some College, 1 or more years, No degree, Male Bachelor's Degree, Male
No schooling completed, Male Master's Degree, Male Professional Degree

Model		ANOVA			
1	Sum of Squares	df	Mean Square	F	Sig.
Regression	157820.464		10	15782.046	3.977
Residual	63499.388	16	3968.712		$.007^{\text {b }}$
Total	221319.852				
	26				

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male 12th grade, no diploma, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Associates, Male Some College, 1 or more years, No degree, Male Bachelor's

Degree, Male No schooling completed, Male Master's Degree, Male Professional Degree

Coefficients ${ }^{\text {a }}$					
	nstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
(Constant)	39.462	56.978		. 693	. 498
Male No schooling completed	-2.563	2.444	-. 211	-1.048	. 310
Male 12th grade, no diploma	1.973	3.060	. 127	. 645	. 528
Male High School Graduate (Equivalency)	1.065	. 338	. 657	3.147	. 006
Male Some College, less than 1 year	1.369	1.091	. 253	1.255	. 227
Male Some College, 1 or more years, No degree	. 526	. 663	. 166	. 794	.439
Male Associates	-. 726	. 975	-. 130	-. 745	.467
Male Bachelor's Degree	. 522	. 285	. 376	1.833	. 085
Male Master's Degree	. 883	. 695	. 267	1.271	. 222
Male Professional Degree	1.470	. 897	. 408	1.638	. 121
Male Doctorate's Degree	-2.387	2.065	-. 183	-1.156	. 265

a. Dependent Variable: Total Male (White) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's   Degree, Female   Associates, Female   12th grade, no   diploma, Female   Professional Degree,   Female No schooling   completed, Female   Some College, 1 or   more years, No   degree, Female   Some College, less   than 1 year, Female   High School   Graduate   (Equivalency),   Female Master's   Degree, Female   Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (White) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the
Model	R	R Square	Adjusted R Square	Estimate
1	$.871^{\mathrm{a}}$	.758		62.601

a. Predictors: (Constant), Female Doctorate's Degree, Female Associates, Female 12th grade, no diploma, Female Professional Degree, Female No schooling completed, Female Some College, 1 or more years, No degree, Female Some College, less than 1 year,

Female High School Graduate (Equivalency), Female Master's Degree, Female Bachelor's
Degree

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	196523.788	10	19652.379	5.015	. $002{ }^{\text {b }}$
	Residual	62702.879	16	3918.930		
	Total	259226.667	26			

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female Associates, Female 12th grade, no diploma, Female

Professional Degree, Female No schooling completed, Female Some College, 1 or more years, No degree, Female Some
College, less than 1 year, Female High School Graduate (Equivalency), Female Master's Degree, Female Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	-42.635	46.348		-. 920	. 371
Female No schooling completed	-1.108	1.390	-. 106	-. 797	.437
Female 12th grade, no diploma	1.011	2.029	. 076	. 498	.625
Female High School Graduate (Equivalency)	1.140	. 269	.701	4.242	. 001
Female Some College, less than 1 year	1.327	. 626	. 309	2.120	. 050
Female Some College, 1 or more years, No degree	. 059	. 413	. 025	. 144	. 887
Female Associates	1.283	. 811	. 224	1.583	. 133
Female Bachelor's Degree	. 497	. 301	. 329	1.652	. 118
Female Master's Degree	2.037	. 764	. 524	2.666	. 017
Female Professional Degree	. 465	1.127	. 064	.413	.685
Female Doctorate's Degree	-. 310	1.114	-. 037	-. 278	. 784

a. Dependent Variable: Total Female (White) population in labor force (employed) 16+

2010BGFW White Female (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Professional Degree, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Master's Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Bachelor's Degree, Male Associates, Male 12th grade, no diploma ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary						
Model				Std. Error of the		
1	$R$	R Square	Adjusted R Square	Estimate		
1	$.985^{\mathrm{a}}$	.970		.702		

a. Predictors: (Constant), Male Professional Degree, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Master's Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male Bachelor's Degree, Male

Associates, Male 12th grade, no diploma

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	38969.258	9	4329.918	3.616	. $388{ }^{\text {b }}$
	Residual	1197.469	1	1197.469		
	Total	40166.727	10			

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Professional Degree, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Master's Degree, Male Some College, less than 1 year, Male High School Graduate (Equivalency), Male

Bachelor's Degree, Male Associates, Male 12th grade, no diploma

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	-6.082	42.112		-. 144	. 909
Male No schooling completed	1.697	2.846	. 178	. 596	. 658
Male 12th grade, no diploma	-. 827	2.737	-. 211	-. 302	. 813
Male High School Graduate (Equivalency)	. 912	. 515	. 744	1.772	. 327
Male Some College, less than 1 year	. 127	3.175	. 014	. 040	. 974
Male Some College, 1 or more years, No degree	. 572	. 552	. 376	1.036	. 489
Male Associates	-1.148	2.016	-. 377	-. 569	. 670
Male Bachelor's Degree	1.294	2.062	. 343	. 627	. 643
Male Master's Degree	-. 453	2.529	-. 089	-. 179	. 887
Male Professional Degree	-4.271	17.589	-. 183	-. 243	. 848

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's   Degree, Female   Some College, less than 1 year, Female Some College, 1 or more years, No degree, Female No schooling completed,   Female Bachelor's   Degree, Female 12th   grade, no diploma,   Female Master's   Degree, Female   Professional Degree,   Female High School   Graduate   (Equivalency),		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

a. Predictors: (Constant), Female Doctorate's Degree, Female Some College, less than 1
year, Female Some College, 1 or more years, No degree, Female No schooling completed,
Female Bachelor's Degree, Female 12th grade, no diploma, Female Master's Degree,
Female Professional Degree, Female High School Graduate (Equivalency), Female
Associates

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree, Female No schooling completed, Female Bachelor's Degree, Female 12th grade, no diploma, Female

Master's Degree, Female Professional Degree, Female High School Graduate (Equivalency), Female Associates

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	1040.393	. 000			
Female No schooling completed	-43.022	. 000	-2.446	.	
Female 12th grade, no diploma	20.236	. 000	4.359	.	
Female High School Graduate (Equivalency)	$-5.121$	. 000	-3.166	.	
Female Some College, less than 1 year	-6.838	. 000	-1.989	.	
Female Some College, 1 or more years, No degree	-2.850	. 000	-. 973	.	
Female Associates	1.969	. 000	. 358	.	
Female Bachelor's Degree	2.769	. 000	. 838	.	
Female Master's Degree	4.366	. 000	. 425	.	
Female Professional Degree	-92.532	. 000	-3.553	.	
Female Doctorate's Degree	30.042	. 000	.688		

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

2010BGFW Black Female (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Male Professional Degree, Male High School Graduate (Equivalency), Male Master's Degree, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Associates, Male Some College, less than 1 year, Male 12th grade, no diploma, Male Bachelor's Degree ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary							
				Std. Error of the			
Model	R	R Square	Adjusted R Square	Estimate			
1	$.888^{\mathrm{a}}$	.788		.311			

a. Predictors: (Constant), Male Professional Degree, Male High School Graduate
(Equivalency), Male Master's Degree, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Associates, Male Some College, less than 1 year, Male
12th grade, no diploma, Male Bachelor's Degree

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Male Professional Degree, Male High School Graduate (Equivalency), Male Master's Degree, Male No schooling completed, Male Some College, 1 or more years, No degree, Male Associates, Male Some College, less than 1 year, Male 12th grade, no diploma, Male Bachelor's Degree

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients	t	Sig.
Model	B	Std. Error	Beta		
1 (Constant)	167.307	86.339		1.938	. 125
Male No schooling completed	1.449	1.855	. 237	. 781	. 478
Male 12th grade, no diploma	5.824	6.362	. 467	. 915	.412
Male High School Graduate (Equivalency)	. 196	. 898	. 085	. 218	. 838
Male Some College, less than 1 year	-2.968	3.724	-. 290	-. 797	.470
Male Some College, 1 or more years, No degree	. 987	2.597	. 209	. 380	. 723
Male Associates	-3.102	2.866	-. 375	-1.082	.340
Male Bachelor's Degree	-2.976	4.166	-. 713	-. 714	. 515
Male Master's Degree	. 862	2.153	. 113	. 400	. 709
Male Professional Degree	32.406	27.280	1.083	1.188	. 301

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

## 2010BGFW Hispanic Male (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Professional   Degree, Female   Some College, 1 or more years, No degree, Female   Master's Degree,   Female Associates,   Female Bachelor's   Degree, Female High   School Graduate   (Equivalency),   Female No schooling   completed, Female   12th grade, no   diploma, Female   Some College, less   than 1 year ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
1	$R$	$R$ Square	Adjusted R Square	Estimate	
1	$.941^{\mathrm{a}}$	.886		54.336	

a. Predictors: (Constant), Female Professional Degree, Female Some College, 1 or more years, No degree, Female Master's Degree, Female Associates, Female Bachelor's Degree, Female High School Graduate (Equivalency), Female No schooling completed, Female 12th grade, no diploma, Female Some College, less than 1 year

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	91333.146	9	10148.127	3.437	$.123^{\text {b }}$
	Residual	11809.782	4	2952.446		
	Total	103142.929	13			

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Female Professional Degree, Female Some College, 1 or more years, No degree, Female Master's Degree, Female Associates, Female Bachelor's Degree, Female High School Graduate (Equivalency), Female No schooling completed, Female 12th grade, no diploma, Female Some College, less than 1 year

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	5.040	42.014		. 120	. 910
Female No schooling completed	2.267	1.277	.409	1.775	. 150
Female 12th grade, no diploma	1.545	1.948	. 187	. 793	. 472
Female High School Graduate (Equivalency)	-. 304	. 304	-. 240	-. 999	. 374
Female Some College, less than 1 year	1.020	1.111	. 228	. 918	.410
Female Some College, 1 or more years, No degree	1.881	. 581	. 787	3.235	. 032
Female Associates	3.128	1.546	. 409	2.024	. 113
Female Bachelor's Degree	-2.421	. 888	-. 589	-2.727	. 053
Female Master's Degree	5.261	5.095	. 228	1.033	. 360
Female Professional Degree	-3.955	5.222	-. 154	-. 757	. 491

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

Variables Entered/Removed			
Model	Variables Entered	Variables Removed	Method
1	Male Doctorate's		
	Degree, Male Some		
College, less than 1			
year, Male No			
	schooling completed,		
Male Professional			
	Degree, Male 12th		
grade, no diploma,			
	Male Bachelor's		
	Degree, Male		
	Master's Degree,		
Male High School			
Graduate			
(Equivalency), Male			
Some College, 1 or			
more years, No			

a. Dependent Variable: Total Male (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model	R			Std. Error of the	
1	R Square	Adjusted R Square	Estimate		
1	$.862^{\mathrm{a}}$	.742		.687	

a. Predictors: (Constant), Male Doctorate's Degree, Male Some College, less than 1 year, Male No schooling completed, Male Professional Degree, Male 12th grade, no diploma, Male Bachelor's Degree, Male Master's Degree, Male High School Graduate (Equivalency), Male Some College, 1 or more years, No degree, Male Associates

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Male Doctorate's Degree, Male Some College, less than 1 year, Male No schooling completed, Male Professional Degree, Male 12th grade, no diploma, Male Bachelor's Degree, Male Master's Degree, Male High School

Graduate (Equivalency), Male Some College, 1 or more years, No degree, Male Associates

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	$-5.474$	13.642		-. 401	. 690
Male No schooling completed	-. 669	. 356	-. 160	-1.883	. 066
Male 12th grade, no diploma	1.041	. 673	. 124	1.546	. 129
Male High School Graduate (Equivalency)	. 630	. 103	. 529	6.100	. 000
Male Some College, less than 1 year	-. 131	.435	-. 025	-. 301	. 764
Male Some College, 1 or more years, No degree	1.532	. 271	. 516	5.658	. 000
Male Associates	. 663	. 447	. 139	1.481	. 145
Male Bachelor's Degree	. 219	. 363	. 051	. 604	. 549
Male Master's Degree	-1.112	. 606	-. 158	-1.834	. 073
Male Professional Degree	. 492	1.826	. 022	. 270	. 789
Male Doctorate's Degree	-2.053	1.361	-. 144	-1.508	. 138

a. Dependent Variable: Total Male (Black) population in labor force (employed) 16+

## 2010BGDA Black Male (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Doctorate's Degree, Female 12th grade, no diploma, Female Professional Degree, Female No schooling completed, Female Associates, Female Master's Degree, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree, Female   Bachelor's Degree, Female High School Graduate (Equivalency) ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Black) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary					
Model				Std. Error of the	
	R	R Square	Adjusted R Square	Estimate	
1	$.946^{\mathrm{a}}$	.895			

a. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma,

Female Professional Degree, Female No schooling completed, Female Associates, Female Master's Degree, Female Some College, less than 1 year, Female Some College, 1 or more years, No degree, Female Bachelor's Degree, Female High School Graduate (Equivalency)

ANOVA ${ }^{\text {a }}$

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	729583.322	10	72958.332	40.109	. $000{ }^{\text {b }}$
	Residual	85493.523	47	1819.011		
	Total	815076.845	57			

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+
b. Predictors: (Constant), Female Doctorate's Degree, Female 12th grade, no diploma, Female Professional Degree, Female

No schooling completed, Female Associates, Female Master's Degree, Female Some College, less than 1 year, Female
Some College, 1 or more years, No degree, Female Bachelor's Degree, Female High School Graduate (Equivalency)

Coefficients ${ }^{\text {a }}$					
	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
Model	B	Std. Error			
1 (Constant)	4.532	11.070		. 409	. 684
Female No schooling completed	-. 395	. 376	-. 054	-1.049	. 299
Female 12th grade, no diploma	. 964	. 370	. 153	2.607	. 012
Female High School Graduate (Equivalency)	. 542	. 088	.437	6.173	. 000
Female Some College, less than 1 year	. 743	. 320	.130	2.325	. 024
Female Some College, 1 or more years, No degree	. 393	. 154	. 155	2.555	. 014
Female Associates	. 540	. 340	. 093	1.587	. 119
Female Bachelor's Degree	. 921	. 214	. 294	4.308	. 000
Female Master's Degree	. 521	. 338	. 091	1.543	. 130
Female Professional Degree	-. 946	2.331	-. 022	-. 406	. 687
Female Doctorate's Degree	2.469	2.670	. 047	. 925	. 360

a. Dependent Variable: Total Female (Black) population in labor force (employed) 16+

## 2010BGDA Black Female (linear regression employment/education without Grant)

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
	Male Master's		
	Degree, Male High		
School Graduate			
(Equivalency), Male			
Associates, Male			
$12 t h ~ g r a d e, ~ n o ~$			
	diploma, Male No   schooling completed,   Male Bachelor's   Degree, Male Some   College, 1 or more   years, No degree,   Male Some College,   less than 1 year		Enter

a. Dependent Variable: Total Male (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary

				Std. Error of the   Estimate
Model	R	R Square	Adjusted R Square	(
1	$.846^{\mathrm{a}}$	.715		180.204

a. Predictors: (Constant), Male Master's Degree, Male High School Graduate (Equivalency),

Male Associates, Male 12th grade, no diploma, Male No schooling completed, Male
Bachelor's Degree, Male Some College, 1 or more years, No degree, Male Some College,
less than 1 year

ANOVA ${ }^{\text {a }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	897124.961	8	112140.620	3.453	. $030^{\text {b }}$
	Residual	357207.589	11	32473.417		
	Total	1254332.550	19			

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Male Master's Degree, Male High School Graduate (Equivalency), Male Associates, Male 12th grade, no diploma, Male No schooling completed, Male Bachelor's Degree, Male Some College, 1 or more years, No degree, Male Some College, less than 1 year

Model	Unstandardized Coefficients		Standardized   Coefficients   Beta	t	Sig.
	B	Std. Error			
1 (Constant)	78.464	78.739		. 997	. 340
Male No schooling completed	5.374	1.455	. 711	3.693	. 004
Male 12th grade, no diploma	2.364	2.402	. 187	. 984	. 346
Male High School Graduate (Equivalency)	. 314	. 885	. 081	. 355	. 729
Male Some College, less than 1 year	. 971	6.251	. 034	. 155	. 879
Male Some College, 1 or more years, No degree	1.227	2.713	. 098	. 452	. 660
Male Associates	-1.838	2.239	-. 177	-. 821	. 429
Male Bachelor's Degree	. 666	5.003	. 028	. 133	. 896
Male Master's Degree	-2.838	7.095	-. 076	-. 400	. 697

a. Dependent Variable: Total Male (Hispanic) population in labor force (employed) 16+

## 2010BGDA Hispanic Male (linear regression employment/education without Grant)

Model	Variables Entered	Variables Removed	Method
1	Female Professional Degree, Female Master's Degree, Female 12th grade, no diploma, Female Bachelor's Degree, Female Some College, 1 or more years, No degree, Female Associates, Female Some College, less than 1 year, Female No schooling completed, Female High School Graduate (Equivalency) ${ }^{\text {b }}$		Enter

a. Dependent Variable: Total Female (Hispanic) population in labor force
(employed) 16+
b. All requested variables entered.

Model Summary							
Model							

a. Predictors: (Constant), Female Professional Degree, Female Master's Degree, Female 12th grade, no diploma, Female Bachelor's Degree, Female Some College, 1 or more years, No degree, Female Associates, Female Some College, less than 1 year, Female No schooling completed, Female High School Graduate (Equivalency)

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	573242.088	9	63693.565	3.969	. $021^{\text {b }}$
	Residual	160474.712	10	16047.471		
	Total	733716.800	19			

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+
b. Predictors: (Constant), Female Professional Degree, Female Master's Degree, Female 12th grade, no diploma, Female Bachelor's Degree, Female Some College, 1 or more years, No degree, Female Associates, Female Some College, less than 1 year, Female No schooling completed, Female High School Graduate (Equivalency)

Coefficients ${ }^{\text {a }}$					
	Unstandardize	efficients	Standardized   Coefficients		
Model	B	Std. Error	Beta	t	Sig.
1 (Constant)	65.389	60.137		1.087	. 302
Female No schooling completed	. 758	1.531	. 102	. 495	. 631
Female 12th grade, no diploma	1.760	2.440	. 136	. 721	. 487
Female High School Graduate (Equivalency)	. 513	. 741	. 201	. 692	. 505
Female Some College, less than 1 year	4.412	3.924	. 264	1.125	. 287
Female Some College, 1 or more years, No degree	-1.679	1.509	-. 179	-1.113	. 292
Female Associates	7.798	3.981	. 539	1.959	. 079
Female Bachelor's Degree	-1.139	2.119	-. 092	-. 538	. 603
Female Master's Degree	-7.699	4.381	-. 333	-1.757	. 109
Female Professional Degree	-2.441	6.377	-. 061	-. 383	. 710

a. Dependent Variable: Total Female (Hispanic) population in labor force (employed) 16+

## 2010BGDA Hispanic Female (linear regression employment/education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	21	0	27	2.81	7.756
Male 12th grade, no diploma	21	0	31	3.81	7.973
Male High School Graduate (Equivalency)	21	0	186	84.38	65.389
Male Some College, less than 1 year	21	0	206	26.90	46.116
Male Some College, 1 or more years, No degree	21	0	255	75.48	65.060
Male Associates	21	0	88	24.29	30.783
Male Bachelor's Degree	21	11	255	111.62	82.151
Male Master's Degree	21	0	150	42.24	43.509
Male Professional Degree	21	0	77	9.95	18.247
Male Doctorate's Degree	21	0	26	4.86	7.825
Valid N (listwise)	21				

2010BGFW White Male (mean education with Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	21	0	17	2.67	5.351
Female 12th grade, no diploma	21	0	29	5.38	9.620
Female High School Graduate (Equivalency)	21	12	446	116.19	106.803
Female Some College, less than 1 year	21	0	174	40.48	40.202
Female Some College, 1 or more years, No degree	21	0	198	77.67	62.054
Female Associates	21	0	118	25.29	31.721
Female Bachelor's Degree	21	0	415	117.57	110.653
Female Master's Degree	21	0	95	37.71	31.886
Female Professional Degree	21	0	60	9.81	16.987
Female Doctorate's Degree	21	0	54	8.33	13.555
Valid N (listwise)	21				

2010BGFW White Female (mean education with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	24	0	33	5.75	8.269
Male 12th grade, no diploma	24	0	124	19.04	30.671
Male High School Graduate (Equivalency)	24	46	259	126.04	64.152
Male Some College, less than 1 year	24	0	116	22.25	24.204
Male Some College, 1 or more years, No degree	24	0	159	60.08	53.810
Male Associates	24	0	97	19.17	24.882
Male Bachelor's Degree	24	0	139	29.75	36.930
Male Master's Degree	24	0	82	15.71	22.534
Male Professional Degree	24	0	36	3.00	8.688
Male Doctorate's Degree	24	0	43	1.79	8.777
Valid N (listwise)	24				

2010BGFW Black Male (mean education with Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	24	0	58	10.17	16.279
Female 12th grade, no diploma	24	0	61	15.33	16.743
Female High School Graduate (Equivalency)	24	47	316	137.71	66.214
Female Some College, less than 1 year	24	0	70	29.42	20.705
Female Some College, 1 or more years, No degree	24	0	135	53.71	38.637
Female Associates	24	0	140	22.46	32.346
Female Bachelor's Degree	24	0	136	34.21	33.654
Female Master's Degree	24	0	68	14.21	21.980
Female Professional Degree	24	0	14	1.42	3.933
Female Doctorate's Degree	24	0	28	1.17	5.715
Valid N (listwise)	24				

2010BGFW Black Female (mean education with Grant)

Descriptive Statistics


## 2010BGFW Hispanic Male (mean education with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	15	0	65	14.20	18.831
Female 12th grade, no diploma	15	0	45	9.20	12.301
Female High School Graduate (Equivalency)	15	29	154	87.13	40.456
Female Some College, less than 1 year	15	0	49	15.07	16.011
Female Some College, 1 or more years, No degree	15	0	53	23.40	19.100
Female Associates	15	0	88	16.60	26.164
Female Bachelor's Degree	15	0	84	13.87	22.944
Female Master's Degree	15	0	12	. 80	3.098
Female Professional Degree	15	0	21	2.33	5.715
Female Doctorate's Degree	15	0	0	. 00	. 000
Valid N (listwise)	15				


Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	18	0	46	7.39	12.844
Male 12th grade, no diploma	18	0	46	11.61	15.240
Male High School Graduate (Equivalency)	18	19	215	88.44	52.953
Male Some College, less than 1 year	18	0	32	7.72	8.567
Male Some College, 1 or more years, No degree	18	0	139	33.06	34.004
Male Associates	18	0	30	7.67	10.732
Male Bachelor's Degree	18	0	32	8.00	10.917
Male Master's Degree	18	0	27	4.22	9.013
Male Professional Degree	18	0	10	. 56	2.357
Male Doctorate's Degree	18	0	8	. 44	1.886
Valid N (listwise)	18				

2010BGDA Black Male (mean education with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	18	0	45	5.39	12.325
Female 12th grade, no diploma	18	0	36	11.00	11.417
Female High School Graduate (Equivalency)	18	6	322	108.50	71.138
Female Some College, less than 1 year	18	0	54	15.67	18.330
Female Some College, 1 or more years, No degree	18	0	106	45.00	31.738
Female Associates	18	0	90	16.00	23.595
Female Bachelor's Degree	18	0	90	15.11	23.144
Female Master's Degree	18	0	29	5.50	9.569
Female Professional Degree	18	0	10	. 56	2.357
Female Doctorate's Degree	18	0	20	1.11	4.714
Valid N (listwise)	18				

2010BGDA Black Female (mean education with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	8	0	186	45.88	60.944
Male 12th grade, no diploma	8	0	46	13.25	17.564
Male High School Graduate (Equivalency)	8	25	210	85.50	60.830
Male Some College, less than 1 year	8	0	12	3.75	5.258
Male Some College, 1 or more years, No degree	8	0	32	13.75	14.607
Male Associates	8	0	45	13.63	16.962
Male Bachelor's Degree	8	0	31	11.50	14.353
Male Master's Degree	8	0	12	1.50	4.243
Male Professional Degree	8	0	7	. 87	2.475
Male Doctorate's Degree	8	0	8	1.00	2.828
Valid N (listwise)	8				

2010BGDA Hispanic Male (mean education with Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	8	0	39	18.13	13.892
Female 12th grade, no diploma	8	0	24	8.25	8.763
Female High School Graduate (Equivalency)	8	7	177	62.13	59.167
Female Some College, less than 1 year	8	0	34	11.13	14.035
Female Some College, 1 or more years, No degree	8	9	65	31.63	21.037
Female Associates	8	0	61	7.62	21.567
Female Bachelor's Degree	8	0	37	11.50	14.243
Female Master's Degree	8	0	0	. 00	. 000
Female Professional Degree	8	0	0	. 00	. 000
Female Doctorate's Degree	8	0	0	. 00	. 000
Valid N (listwise)	8				

2010BGDA Hispanic Female (mean education with Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	27	0	31	3.07	7.585
Male 12th grade, no diploma	27	0	17	3.37	5.924
Male High School Graduate (Equivalency)	27	0	225	59.81	56.919
Male Some College, less than 1 year	27	0	63	16.04	17.080
Male Some College, 1 or more years, No degree	27	0	96	47.56	29.028
Male Associates	27	0	56	19.67	16.574
Male Bachelor's Degree	27	0	237	93.00	66.462
Male Master's Degree	27	0	111	31.00	27.880
Male Professional Degree	27	0	76	21.93	25.602
Male Doctorate's Degree	27	0	24	4.11	7.057
Valid N (listwise)	27				

2010BGFW White Male (mean education without Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	27	0	45	3.96	9.594
Female 12th grade, no diploma	27	0	23	4.81	7.489
Female High School Graduate (Equivalency)	27	0	247	74.67	61.439
Female Some College, less than 1 year	27	0	105	26.22	23.225
Female Some College, 1 or more years, No					
degree	27	0	185	57.00	41.540
Female Associates	27	0	67	19.15	17.408
Female Bachelor's Degree	27	8	270	96.85	66.180
Female Master's Degree	27	0	112	23.70	25.693
Female Professional Degree	27	0	54	8.41	13.810
Female Doctorate's Degree	27	0	43	5.70	11.799
Valid N (listwise)	27				

2010BGFW White Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	11	0	22	2.00	6.633
Male 12th grade, no diploma	11	0	52	9.27	16.187
Male High School Graduate (Equivalency)	11	22	185	94.00	51.689
Male Some College, less than 1 year	11	0	19	7.00	7.057
Male Some College, 1 or more years, No					
degree	11	0	149	48.73	41.639
Male Associates	11	0	67	14.64	20.829
Male Bachelor's Degree	11	0	48	13.73	16.787
Male Master's Degree	11	0	41	7.00	12.442
Male Professional Degree	11	0	9	. 82	2.714
Male Doctorate's Degree	11	0	0	. 00	. 000
Valid N (listwise)	11				

2010BGFW Black Male (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	11	0	15	3.45	5.989
Female 12th grade, no diploma	11	0	72	14.73	22.690
Female High School Graduate (Equivalency)	11	36	254	128.18	65.132
Female Some College, less than 1 year	11	0	112	35.45	30.644
Female Some College, 1 or more years, No degree	11	8	120	56.73	35.978
Female Associates	11	0	49	14.36	19.133
Female Bachelor's Degree	11	0	102	38.18	31.874
Female Master's Degree	11	0	30	9.64	10.250
Female Professional Degree	11	0	10	1.82	4.045
Female Doctorate's Degree	11	0	8	. 73	2.412
Valid N (listwise)	11				

2010BGFW Black Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	14	0	68	19.00	23.498
Male 12th grade, no diploma	14	0	30	11.71	11.532
Male High School Graduate (Equivalency)	14	24	259	92.93	62.222
Male Some College, less than 1 year	14	0	46	14.79	14.061
Male Some College, 1 or more years, No degree	14	0	81	33.29	30.421
Male Associates	14	0	56	11.43	17.386
Male Bachelor's Degree	14	0	129	19.64	34.455
Male Master's Degree	14	0	53	9.71	18.878
Male Professional Degree	14	0	18	1.29	4.811
Male Doctorate's Degree	14	0	0	. 00	. 000
Valid N (listwise)	14				

2010BGFW Hispanic Male (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	14	0	49	16.71	16.050
Female 12th grade, no diploma	14	0	34	9.36	10.760
Female High School Graduate (Equivalency)	14	9	253	106.14	70.258
Female Some College, less than 1 year	14	0	55	15.71	19.894
Female Some College, 1 or more years, No degree	14	0	124	38.14	37.291
Female Associates	14	0	40	9.29	11.638
Female Bachelor's Degree	14	0	81	10.79	21.662
Female Master's Degree	14	0	12	1.50	3.858
Female Professional Degree	14	0	13	. 93	3.474
Female Doctorate's Degree	14	0	0	. 00	. 000
Valid N (listwise)	14				

2010BGFW Hispanic Female (mean education without Grant)

 

2010BGDA White Male (mean education without Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	2	0	10	5.00	7.071
Female 12th grade, no diploma	2	0	0	. 00	. 000
Female High School Graduate (Equivalency)	2	33	57	45.00	16.971
Female Some College, less than 1 year	2	0	0	. 00	. 000
Female Some College, 1 or more years, No degree	2	18	18	18.00	. 000
Female Associates	2	0	25	12.50	17.678
Female Bachelor's Degree	2	41	124	82.50	58.690
Female Master's Degree	2	12	69	40.50	40.305
Female Professional Degree	2	9	20	14.50	7.778
Female Doctorate's Degree	2	14	15	14.50	. 707
Valid N (listwise)	2				

2010BGDA White Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	58	0	80	10.45	19.093
Male 12th grade, no diploma	58	0	39	6.72	9.488
Male High School Graduate (Equivalency)	58	7	365	111.29	66.994
Male Some College, less than 1 year	58	0	64	11.98	15.046
Male Some College, 1 or more years, No degree	58	0	101	38.22	26.881
Male Associates	58	0	74	10.97	16.741
Male Bachelor's Degree	58	0	90	13.62	18.467
Male Master's Degree	58	0	41	5.78	11.365
Male Professional Degree	58	0	19	. 86	3.502
Male Doctorate's Degree	58	0	37	1.40	5.591
Valid N (listwise)	58				

2010BGDA Black Male (mean education without Grant)

Descriptive Statistics

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	58	0	75	9.03	16.417
Female 12th grade, no diploma	58	0	75	12.59	18.932
Female High School Graduate (Equivalency)	58	7	559	131.95	96.507
Female Some College, less than 1 year	58	0	84	22.47	20.986
Female Some College, 1 or more years, No degree	58	0	229	53.78	47.032
Female Associates	58	0	80	18.48	20.661
Female Bachelor's Degree	58	0	156	24.97	38.163
Female Master's Degree	58	0	108	10.95	20.840
Female Professional Degree	58	0	19	. 48	2.742
Female Doctorate's Degree	58	0	12	. 52	2.288
Valid N (listwise)	58				

2010BGDA Black Female (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Male No schooling completed	20	0	119	33.20	33.979
Male 12th grade, no diploma	20	0	66	11.25	20.321
Male High School Graduate (Equivalency)	20	0	235	71.50	65.901
Male Some College, less than 1 year	20	0	25	5.30	8.968
Male Some College, 1 or more years, No degree	20	0	65	23.80	20.434
Male Associates	20	0	107	10.15	24.731
Male Bachelor's Degree	20	0	28	8.70	10.702
Male Master's Degree	20	0	27	2.50	6.917
Male Professional Degree	20	0	0	. 00	. 000
Male Doctorate's Degree	20	0	0	. 00	. 000
Valid N (listwise)	20				

2010BGDA Hispanic Male (mean education without Grant)

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
Female No schooling completed	20	0	69	25.55	26.474
Female 12th grade, no diploma	20	0	57	6.65	15.149
Female High School Graduate (Equivalency)	20	0	285	82.55	76.988
Female Some College, less than 1 year	20	0	30	8.55	11.772
Female Some College, 1 or more years, No degree	20	0	77	20.05	20.977
Female Associates	20	0	44	8.80	13.586
Female Bachelor's Degree	20	0	60	10.45	15.816
Female Master's Degree	20	0	37	2.40	8.506
Female Professional Degree	20	0	22	1.10	4.919
Female Doctorate's Degree	20	0	0	. 00	. 000
Valid N (listwise)	20				

2010BGDA Hispanic Female (mean education without Grant)

Paired Samples Statistics					
Pair 1	Owner Occupied 10	Mean	N	Std. Deviation	Std. Error Mean
	Owner Occupied 00	310.18	206	252.133	17.567
Pair 2	Renter Occupied 10	113.90	206	165.755	11.549
	Renter Occupied 00	176.09	206	184.575	12.860
	113.06	206	263.681	18.372	

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Owner Occupied 10 \& Owner Occupied 00	206	. 172	. 013
Pair 2	Renter Occupied 10 \& Renter Occupied 00	206	094	179



2002010 Homeernerslhip with Grant

Paired Samples Statistics					
		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Owner Occupied 10	262.37	433	174.974	8.409
	Owner Occupied 00	167.87	433	159.164	7.649
Pair 2	Renter Occupied 10	183.75	433	187.479	9.010
	Renter Occupied 00	122.10	433	173.534	8.340


Paired Samples Correlations					
		N	Correlation	Sig.	
Pair 1	Owner Occupied 10 \& Owner Occupied 00	433	.093	.053	
Pair 2	Renter Occupied 10 \& Renter Occupied 00	433	.261	.000	


Paired Samples Test									
		Paired Differences					$t$	df	Siq. (2-tailed)
		Mean	Std. Deviation	Std. Error Mean	95\% Confidence Interval of the Difference				
					Lower	Upper			
Pair 1	Owner Occupied 10-Owner Occupied 00	94.506	225.335	10.829	73.222	115.790	8.727	432	. 000
Pair 2	Renter Occupied 10 - Renter Occupied 00	61.644	219.684	10.557	40.894	82.395	5.839	432	. 000

20002010 Homeownership without Grant

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Owner Occupied 00		433	167.87	159.164
7.649				



2000 One sample T Test Homeownership with/without Grant


2000 One sample T Test Homeownership without/with Grant



2010 One sample T Test Homeownership without/with Grant

	Paired Samples Statistics				
Pair 1	2010 Total Male Income < poverty	Mean	N	Std. Deviation	Std. Error Mean
	2000 Total Male Income < poverty	86.91	206	71.275	4.966
Pair 2	2010 Total Female Income < poverty	45.09	206	66.285	4.618
	2000 Total Female Income < poverty	106.94	206	78.397	5.462
		56.79	206	77.307	5.386


		N	Correlation	Sig.
Pair 1	2010 Total Male Income < poverty \& 2000   Total Male Income < poverty	206	. 138	. 048
Pair 2	2010 Total Female Income < poverty \& 2000   Total Female Income < poverty	206	. 007	. 920


Paired Samples Test								
	Paired Differences					t	df	Siq. (2-tailed)
	Mean	Std. Deviation	Std. Eror Mean	95\% Confidence interval of the Difference				
				Lower	Upper			
Pair 12010 Total Male Income < poverty - 2000 Total   Male income < poverty	41.820	90.382	6.297	29.405	54.236	6.641	205	. 000


$\begin{array}{ll}\text { Pair 2 } & \begin{array}{l}2010 \text { Total Female Income < poverty - } 2000 \text { Total } \\ \text { Female income < poverty }\end{array}\end{array}$	50.150	109.7	7.644	35.079	65.222	6.561	205	. 00

[^6]| Paired Samples Statistics |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | Mean | N | Std. Deviation | Std. Error Mean |
| Pair 1 | 2010 Total Male Income < poverty | 85.64 | 433 | 72.944 | 3.505 |
|  | 2000 Total Male Income < poverty | 58.32 | 433 | 55.647 | 2.674 |
| Pair 2 | 2010 Total Female Income < poverty | 102.55 | 433 | 79.246 | 3.808 |
|  | 2000 Total Female Income < poverty | 74.81 | 433 | 71.886 | 3.455 |


		N	Correlation	Siq.
Pair 1	2010 Total Male Income < poverty \& 2000   Total Male Income < poverty	433	. 173	. 000
Pair 2	2010 Total Female Income < poverty \& 2000   Total Female Income < poverty	433	. 154	. 001

Paired Samples Test


20002010 Paired Sample Income Male Female without Grant


20002010 One Sample Income Male with Grant to mean without Grant

One-Sample Statistics					
	N	Mean	Std. Deviation	Std. Error Mean	
2000 Total Female Income < poverty	256	70.50	104.907	6.557	
2010 Total Female Income < poverty	206	106.94	78.397	5.462	


	Test Value $=27.741$					
	t	df	Sig. (2-tailed)	Mean Difference	95\% Confidence Interval of the Difference	
					Lower	Upper
2000 Total Female Income < poverty	6.521	255	. 000	42.755	29.84	55.67
2010 Total Female Income < poverty	14.500	205	. 000	79.201	68.43	89.97

20002010 One Sample Income Female with Grant to mean without Grant


20002010 Paired Sample Male Education with Grant


20002010 Paired Sample Female Education with Grant


20002010 Paired Sample Male Education without Grant
Paired Samples Test

		Paired Differences					t	df	Sig. (2-tailed)
		Mean	Std. Deviation	Std. Eror Mean	95\% Confidence Interval of the Difference				
					Lower	Upper			
Pair 1	Female No schooling completed 10 - Female No schooling completed 00	1.771	18.425	885	. 031	3.512	2.000	432	. 046
Pair 2	Female High School Graduate (Equivalency) 10 -   Female High School Graduate (Equivalency) 00	36.397	98.595	4.738	27.085	45.710	7.682	432	. 000


Pair 3	Female Associates 10 - Female Associates 00	8.938	31.658	1.521	5.947	11.928	5.875	432	. 000
Pair 4	Female Bachelor's Degree 10 - Female Bachelor's Degree 00	19.917	79.482	3.820	12.409	27.424	5.214	432	. 000

20002010 Paired Sample Female Education without Grant

## Bibliography

Aaron, Henry J. (1990). "Discussion of "Why Is Infrastructure Important?"' In Munnell, Alicia H., ed., Is There a Shortfall in Public Capital Investment? Conference Series No. 34, Federal Reserve Bank of Boston, pp. 51-63.

Acevedo-Garcia, Dolores, and Theresa L. Osypuk. (2008). "Impacts of Housing and Neighborhoods on Health: Pathways, Racial/Ethnic Disparities, and Policy Directions." In Segregation: The Rising Costs for America, edited by James H. Carr and Nandinee K. Kutty. New York: Routledge: 197-236.

Alba, Richard. (1990). Ethnic Identity: The Transformation of White America. Yale University Press.

Alba, R., \& Nee, V. (1997). Rethinking assimilation theory for a new era of immigration. International Migration Review, 31, 826-874. doi:10.2307/2547416

Allen, J. P., \& Turner, E. J. (1988). We the people: An atlas of America's ethnic diversity. New York, NY: Macmillan Publishing Company.

Allport, Gordon. 1954. The Nature of Prejudice. New York: Basic Books.
Altonji, Joseph, and Rebecca Blank. (1999). "Race and Gender in the Labor Market." Handbook of Labor Economics, vol. 3, no. 3, pp. 3143-213.

Alvarez, Louis and Andrew Kolker. (1999). People Like Us: Social Class in America (Video) Public Broadcasting Service

Anderson, Elijah. (1990). Streetwise: Race, Class and Change in an Urban Community. University of Chicago Press.

Aschauer, David A. (2000). "Public Capital and Economic Growth: Issues of Quantity, Finance, and Efficiency." Economic Development and Cultural Change, Vol. 48, No. 2, pp. 391-406.

Aschauer, David A. (1989). "Is Public Expenditure Productive?" Journal of Monetary Economics, Vol. 23, No. 2, pp. 177-200.

Aud, Susan, Mary Ann Fox, and Angelina Kewal Ramani. (2010). Status and Trends in the Education of Racial and Ethnic Groups. NCES 2010015. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2010015
Austin, Algernon. (2013) forthcoming. Infrastructure Investments and Latino and African American Job Creation [working title]. Economic Policy Institute Issue Brief No. 352.

Austin, Algernon. (2012a). No Relief in 2012 from High Unemployment for African Americans and Latinos. Economic Policy Institute, Issue Brief \#322. http://www.epi.org/publication/ib322-african-american-latino-unemployment/

Austin, Algernon. (2012b). "Transporting Black Men to Good Jobs." Working Economics (Economic Policy Institute blog), October 5. http://www.epi.org/blog/transporting-black-mengood-jobs/

Austin, Algernon. (2012c). "Infrastructure Investments and the Latino Jobs Recovery." Economic Policy Institute Commentary, July 24. http://www.epi.org/publication/infrastructureinvestments-latino-iobs-recovery/

Barringer, H. R., Takeuchi, D. T., \& Xenos, P. (1990). Education, occupational prestige, and income of Asian Americans. Sociology of Education, 63, 27-43. doi:10.2307/2112895.

Bashi, V. \& McDaniel, A. (1997). A Theory of Immigration and Racial Stratification. Journal of Black Studies 27: 668-82

Baum, Terry C. \& Kingston, Paul. W. (1984). "Homeownership and social Attachement" in Sociological Perspectives 27: 559-80

Becker, G. and N. Tomes. (1979). "An equilibrium theory of the distribution of income and intergenerational mobility," Journal of Political Economy

Becker, G. S., \& Murphy, K. M. (2007). Education and consumption: The effects of education in the household compared to the marketplace. Journal of Human Capital, 1, 9-35.
doi:10.1086/524715

Becker, G. and N. Tomes. (1979). "An equilibrium theory of the distribution of income and intergenerational mobility," Journal of Political Economy

Beeghley, Leonard. (2000 ). The Structure of Social Stratification in the United States. Allyn \& Bacon

Beeghley, Leonard. (1983 ). Living Poorly in America. Praeger Publishers.
Beeghley, Leonard. (1978 ). Social Stratification in America: a Critical Analysis of Theory \& Research. Goodyear Publishing Company.

Benabou, R. (1996). "Heterogeneity, stratification, and growth: macroeconomic implications of community structure and school finance," American Economic Review

Bendix, Reinhard and Seymour Martin Lipset, eds. (1966). Class Status, and Power; Social Stratification in Comparative Perspective. $2^{\text {nd }}$ ed. New York: Free Press.

Berliant, Marcus and Hideo Konishi. (1994). "The Endogenous Formation of a City: Population Agglomeration and Marketplaces in a Location-Specific Production Economy." Department of Economics, University of Rochester.

Berube, Alan, Elizabeth Kneebone and Jane Williams (2013) A Renewed Promise: How Promise Zones Can Help Reshape the Federal Place-Based Agenda. The Brookings Institution, August 2013.

Billy, J.O.G., K.L. Brewster, and W.R. Grady. (1994). "Contextual effects on the sexual behavior of adolescent women," Journal of Marriage and the Family)

Birdsall, N. and C. Graham, editors. (2000). New markets, new opportunities? Economic and social mobility in a changing world. Washington, DC: Brookings Institution

Bishaw, Alemayehu. (2011). Areas with Concentrated Poverty: 2006-2010. ACSBR/10-17. Washington, DC: U.S. Census Bureau. http://www.census.gov/prod/2011pubs/acsbr10-17.pdf.
Bivens, Josh. (2011). Failure by Design: The Story Behind America's Broken Economy. Washington, DC: Economic Policy Institute.

Bivens, Josh. (2012a). Public Investment: The Next 'New Thing’ for Powering Economic Growth. Economic Policy Institute, Briefing Paper No. 338. http://www.epi.org/files/2012/bp338-public-investments.pdf

Blackley, Paul R. (1990). "Spatial Mismatch in Urban Labor Markets: Evidence from Large U.S. Metropolitan Areas." Social Science Quarterly 71 (1):39-52.

Blalock, Hubert M. (1967). Toward a Theory of Minority-Group Relations. New York: John Wiley \& Sons.

Blank, R.M. (1997). It takes a Nation: A new agenda for fighting poverty. New York: Russell Sage Foundation

Blau, P. and O. Duncan. (1967). The American occupational structure. New York: Wiley
Blumer, Herbert. (1958). "Race Prejudice As a Sense of Group Position," Pacific Sociological Review 1: 3-7.

Brooks-Gunn, J., G.J. Duncan, P.K. Klebanow, and N. Sealand. (1993). "Do neighborhoods influence child and adolescent development?" American Journal of Sociology

Bobo, Lawrence D. (1999). "Prejudice As Group Position: Microfoundations of a Sociological Approach to Racism and Race Relations," Journal of Social Issues 55: 445-472.

Bogart, William Thomas. (1998). The Economics of Cities and Suburbs. New Jersey; Prentice Hall.

Booza, Jason C., Jackie Cutsinger, and George Galster. (2006). Where Did They Go? The Decline of Middle -Income Neighborhoods in Metropolitan America. Rookings Institution, June 2006.

Bom, Pedro and Jenny Ligthart, (2008). "How Productive is Public Capital? A Meta-Analysis." CESifo Working Paper Series No. 2206, CESifo Group Munich.

Bonacich, E., \& Modell, J. (1980). The economic basis of ethnic solidarity. Berkeley, CA: University of California Press.

Bonacich, E. (1973). A theory of middlemen minorities. American Sociological Review, 38, 583594. doi:10.2307/2094409

Borjas, G.J. (1995). Assimilation and Changes in Cohort Quality Revisited: What Happened to Immigrant Earnings in the 1980s? Journal of Labor Economics 13: 201-45

Borjas, G.J. (1985). Assimilation, Changes in Cohort Quality, and the Earnings of Immigrants. Journal of Labor Economics 3: 463-89

Bourrdieu, Pierre. (1984). Distinction: A Social Critique of the Judgment of Taste. Cambridge, MA: Harvard University

Bratsberg, B., \& Ragan, J. F. (2002). The impact of host-country schooling on earnings. Journal of Human Resources, 37, 63-105. doi:10.2307/3069604

Brewster, K.L., J.O.G. Billy, and W.R. Grady. (1993). "Social context and adolescent behavior: The impact of community on the transition to sexual activity." Social Forces

Briggs, X. de Souza. (1997). "Moving up versus moving out: Neighborhood effects in housing mobility programs," Housing Policy Debate

Briggs, Xavier de Souza. (2005). "More Pluribus, Less Unum? The Changing Geography of Race and Opportunity." In The Geography of Opportunity: Race and Housing Choice in Metropolitan America, edited by Xavier de Souza Briggs. Washington, DC: Brookings Institution Press: 17-44.

Briggs, Xavier de Souza. (1998). "Brown Kids in White Suburbs: Housing Mobility and the Many Faces of Social Capital," Housing Policy Debate 9: 177-221

Briggs, X. de Souza. (1997). "Moving up versus moving out: Neighborhood effects in housing mobility programs," Housing Policy Debate 8 (1): 195-234.

Brooks, David. (2000). Bobos in Paradise: The New Upper Class and How They Got There. New York: Simon and Schuster.

Brooks-Gunn, Jeanne, Greg J. Duncan, and J. Lawrence Aber. (1997). Neighborhood Poverty, Volume II: Policy Implications in Studying Neighborhoods. New York: Russell Sage

Brooks-Gunn, J., G.J. Duncan, P.K. Klebanow, and N. Sealand. (1993). "Do neighborhoods influence child and adolescent development?" American Journal of Sociology

Brophy, P.C. and R. N. Smith (1997). "Mixed-Income Housing: Factors for success," Cityscape: A Journal of Policy Development and Research

Bureau of the Census. Census 2011. "Poverty Thresholds for 2010 by Size of Family and Number of Related Children Under 18 Years."
http://www.census.gov/hhes/www/poverty/data/threshld/thresh10.xls

Bureau of Labor Statistics. BLS 2012. "Table 5. Employment by major occupational group, 2010 and projected 2020, and median annual wage, May 2010." Modified February 1, 2012. http://bls.gov/news.release/ecopro.t05.htm.

Bureau of Labor Statistics. BLS 2012b. "Table 9. Employment and total job openings by education, work experience, and on-the-job training category, 2010 and projected 2020."Modified February 1, 2012. http://bls.gov/news.release/ecopro.t09.htm

Bursik, Robert J. \& Grasmick, Harold G. (2001). Neighborhoods and Crime: the Dimensions of Effective Community Control. Lexington Books

Cabezas, A. \& Kawaguchi, G. (1988). Empirical evidence for continuing Asian American income inequality: The human capital model and labor market segmentation. In G. Y. Okihiro, J. M. Liu, A. A. Hansen, \& S. Hune (Eds.), Reflections on shattered windows: Promises and prospects for Asian American studies (pp. 144-164). Pullman, WA: Washington State University Press.

Calderón, César and Luis Servén. (2004). "The Effects of Infrastructure Development on Growth and Income Distribution." World Bank Policy Research Working Paper No. 3400.

Campbell, Karen E., and Barrett A. Lee. (1992). "Sources of Personal Neighbor Networks: Social Integration, Need, or Time?" Social Forces 70: 1077-1100.

Cancio, A.S., Evans, T.D., \& Maume, D.J. Jr. (1996). Reconsidering the Declining Significance of Race: Racial Differences in Early Career Wages. American Sociological Review 61: 541-56.

Card, D., \& DiNardo, J. E. (2002). Skill-biased technological change and rising wage inequality: Some problems and puzzles. Journal of Labor Economics, 20, 733-783. doi:10.1086/342055

Ceraso, K. (1995). "Is mixed-income housing the key?" Shelterforce
Charles, Camille Zubrinsky. (2005). "Can We Live Together? Racial Preferences and Neighborhood Outcomes." In The Geography of Opportunity: Race and Housing Choice in Metropolitan America, edited by Xavier de Souza Briggs. Washington, DC: Brookings Institution Press: 45-80.

Chapin, F.Stuart and Shirley F. Weiss. (1962). Urban Growth Dynamics in a Regional Cluster of Cities. New York. John Wiley and Sons.

Chapple, Karen, and Rick Jacobus. (2009). "Retail Trade As a Route to Neighborhood Revitalization." In Urban and Regional Policy and Its Effects, edited by Nancy Pindus, Howard Wial, and Harold Wolman. Washington, DC: The Brookings Institution; Urban Institute: 19-68.

Chaskin, Robert, Amy Khare, and Mark Joseph. (2012). "Participation, Deliberation, and Exclusion: The Dynamics of Inclusion and Exclusion in Mixed-Income Developments," Urban Affairs Review 48 (6): 1-44.

Chaskin, Robert J., and Mark L. Joseph. (2013). "'Positive' Gentrification, Social Control, and the 'Right to the City' in Mixed-Income Communities: Uses and Expectations of Space and Place," International Journal of Urban and Regional Research 37 (2): 480-502.
—_. (2011). "Social Interaction in Mixed-Income Developments: Relational Expectations and Emerging Reality," Journal of Urban Affairs 33 (2): 209-237.
—_. (2010). "Building Community in Mixed-Income Developments: Assumptions, Approaches, and Early Experiences," Urban Affairs Review 45 (3): 299-335.

Chiswick, B. R. (1983). An analysis of the earnings and employment of Asian-American Men. Journal of Labor Economy, 1, 197-214. doi:10.1086/298010

Clark, William. (1986). "Residential Segregation in American Cities," Population Research and Policy Review 5 (2): 95-127.
Chokie, Menghis and Mark D. Partridge. (2008). Poverty Dynamics in Canadian Communities: A Place-Based Approach. Growth and Change, 39 (June, 2): 313-340.

Cloward, Richard A \& Ohlin, Lloyd E. (1960) Delinquency and opportunity: a Theory of delinquent Gangs. The Free Press of Glencoe.

Cloward, Richard A \& Piven, Frances F. (1978) Poor People's Movements: Why They Succeed, How They Fail. Vintage Books.

Cohn, Samuel, and Mark Fossett. (1995). "Why Racial Employment Inequality Is Greater in Northern Labor Markets: Regional Differences in White-Black Employment Differentials." Social Forces 74 (2): 511-42.

Cooke, Stephen C. and Bharathkumar A. Kulandaisamy. (2010). Wage Divergence between the Rocky Mountain States and the U.S.: Idaho Measures and Sources, 2001 to 2009, The Review of Regional Studies Vol. 40, No. 1.

Cooke, T. J., Boyle, P., Couch, K., \& Feijten, P. (2009). A longitudinal analysis of family migration and the gender gap in earnings in the United States and Great Britain. Demography, 46, 147-168. doi:10.1353/dem.0.0036

Coulton, C.J. and S. Pandey. (1992). "Geographic concentration of poverty and risk to children in urban neighborhoods," American Behavioral Scientist

Crompton, Rosemary. (1998). Class and Stratification: An Introduction to Current Debates. $2^{\text {nd }}$ ed. Cambridge, MA: Polity.

Current Population Survey Annual Social and Economic Supplement. Historical Income Tables. Various years. http://www.census.gov/hhes/www/income/data/historical/index.html

Current Population Survey Annual Social and Economic Supplement microdata. Various years. Survey conducted by the Bureau of the Census for the Bureau of Labor Statistics [machinereadable microdata file]. Washington, D.C.: U.S. Census Bureau.http://www.bls.census.gov/cps_ftp.html\#cpsmarch

Current Population Survey Job Tenure Supplements microdata. Various years. Survey conducted by the Bureau of the Census for the Bureau of Labor Statistics [machine-readable microdata file]. Washington, D.C.: U.S. Census Bureau.

Danziger, Sheldon, and Peter Gottschalk. (1992). "Earnings Inequality, the Spatial Concentration of Poverty, and the Underclass," The American Economic Review 77 (2): 211215.

Davis, Theodore J. (1991). Social Mobility of African Americans in the 1980's A Controversy revisited. Unpublished paper, Department of Political Science, University of Delaware

Deller, Steven C. and Deller, Melissa. (2010). Rural Crime and Social Capital. Growth and Change. 41(2):221-275.

Dodoo, F. N-A. \& Takyi BK. (2002). Africans in the Diaspora: Black-White Earnings Differences among America's Africans. Ethnic and Racial Studies 25: 913-41.

Dreher, George F., and Taylor H. Cox. (2000). "Labor Market Mobility and Cash Compensation: The Moderating Effects of Race and Gender." Academy of Management Journal, vol. 43, no. 5, pp. 890-900.

Duggal, Vijaya G., Cynthia Saltzman, and Lawrence R. Klein.(1999). "Infrastructure and Productivity: A Nonlinear Approach." Journal of Econometrics, Vol. 92, pp. 47-74.

Ellen, I.G., and M.A. Turner. (1997). "Does neighborhood matter? Assessing recent evidence," American Journal of Sociology

Ellen, Ingrid Gould. (2000). Sharing America's Neighborhoods. Cambridge, MA: Harvard University Press.

Ellen, Ingrid Gould, Keren Horn, and Katherine O'Regan. (2012). "Pathways to Integration: Examining Changes in the Prevalence of Racially Integrated Neighborhoods," Cityscape 14 (3): 33-54.

Elliott, J.R. (1999). "Social isolation and labor market insulation: Network and neighborhood effects on less-educated urban workers," Sociological Quarterly

Espenshade, T. J., \& Fu, H. (1997). An analysis of English-language proficiency among US immigrants. American Sociological Review, 62, 288-305. doi:10.2307/2657305.

Evans, Michael and Barry Barovick. (1994). The Ernst \& Young Almanac and Guide to U.S. Business Cities. New York: John Wiley \& Sons, Inc.

Falaris, E. M. (1988). Migration and wages of young men. Journal of Human Resources, 23, 514-534. doi:10.2307/145811

Farley, Reynolds. (1984). Blacks and Whites: Narrowing the Gap? Cambridge, MA: Harvard University Press.

Friedhoff, Alec, Howard Wial, and Harold Wolman. (2010). The Consequences of Metropolitan Manufacturing Decline: Testing Conventional Wisdom. The Brookings Institution, December 2010.

Freeman, L. (2002). Does Spatial Assimilation Work for Black Immigrants in the US? Urban Studies 39: 1983-2003

Fry, Richard and Paul Taylor. (2012). The Rise of Residential Segregation by Income. Pew Research Center, August 2012.

Frieden, Jeffery A. (2006). Global Capitalism: Its Fall and Rise in the Twentieth Century. New York: Norton.

Gabe, Todd M. (2010). Beyond Educational Attainment: Knowledge-Based Investments to Enhance a Region s Human Capital and Resident Earnings. Lincoln Institute of Land Policy, Working Paper WP10TG1, February

Gabe, Todd M. (2009). Knowledge and Earnings. Journal of Regional Science, Vol. 49, No. 3,

Galster, G. C., and R.G. Quercia. (2000). "Identifying neighborhood thresholds: An empirical exploration," Housing Policy Debate

Gamoran, A., \& Mare, R. D. (1989). Secondary school tracking and educational inequality: Compensation, reinforcement or neutrality? American Journal of Sociology, 94, 1146-1183. doi:10.1086/229114.

Gans, H. (1992). Second Generation Decline: Scenarios for the Economic and Ethnic Futures of post-1965 American Immigrants. Ethnic and Racial Studies 2: 1-20.

Gardner, Jennifer M. and Dianne E. Herz. (1992). "Working and Poor in 1990." Monthly Labor Review 115 (12): 20-35.

Gebhardt, Matthew F. (2014). Spatial Analysis of Choice Neighborhoods Initiative Planning Grant Applicant Neighborhoods. Washington, DC: U.S. Department of Housing and Urban Development.

Goering, J. and J. Feins. (2003). Choosing a better life? Evaluating the moving to opportunity social experiment. Washington, DC: Urban Institute Press

Goetz, Edward G. (2013). New Deal Ruins: Race, Economic Justice, and Public Housing Policy. Ithaca, NY: Cornell University Press.
—_. (2011). "Gentrification in Black and White: The Racial Impact of Public Housing Demolition in American Cities," Urban Studies 48 (8): 1581-1604.
—_(2010). "Desegregation in 3D: Displacement, Dispersal and Development in American Public Housing," Housing Studies 25 (2): 137-158.

Goetz, S., M. Partridge, D. Rickman and S. Majumdar. (2009). Sharing the Gains of Local Economic Growth: Race to the Top vs. Race to the Bottom Economic Development. Paper presented at the Lincoln Land Institute Race to the Top Workshop, Sept. 10-11, 2009, 52pp. Available: http://www.lincolninst.edu/docs/635/1008 Rickman.pdf

Gordon, Milton M. (1964). Assimilation in American Life: The Role of Race, religion, and National Origins. New haven, CT: Yale University Press.

Goyette, K., \& Xie, Y. (1999). Educational expectations of Asian American youths: Determinants and ethnic differences. Sociology of Education, 72, 22-36. doi:10.2307/2673184

Granovetter, M.S. (1995). Getting a job: A study of contacts and careers. Chicago: University of Chicago Press.

Grusky, David, ed. (2001). Social Stratification: Class, Race, and Gender in Sociological Perspective. $2^{\text {nd }}$ ed. Boulder, CO: Westview.

Gyourko, J. \& Linneman, P. (1993). "Affordability of the American Dream" in Journal of Housing Research 4: 39-72

Hall, Doug. (2012). "Poor Policy Choices Could Derail 'Middling' Recovery." Economic Policy Institute Economic Indicators, December 21. http://www.epi.org/publication/december-2012-state-jobs-picture/

Hirschman, C. (1994). Problems and Prospects of Studying Immigrant Adaptation from the 1990 Population Census: From Generational Comparisons to the Process of "Becoming American". International Migration Review 28: 690-713.

Hirschman, C. \& Snipp, C. M. (2001). The state of the American dream: Race and ethnic socioeconomic inequality in the United States, 1970-1990. In D. B. Grusky (Ed.), Social stratification: Class, race and gender in sociological perspective (2nd ed.; pp. 623-636). Boulder, CO: Westview Press.

Hogan, D.P. and E.M. Kitagawa. (1985). "The impact of social status, family structure, and neighborhood on the fertility of Black adolescents," American Journal of Sociology.

Holzer, Harry J. (1991). "The Spatial Mismatch Hypothesis: What Has the Evidence Shown?" Urban Studies 28 (1): 105-22.

Hurh, W. M., \& Kim, K. C. (1989). The "success" image of Asian Americans: Its validity, and its practical and theoretical implications. Ethnic and Racial Studies, 12, 512-536. doi:10.1080/01419870.1989.9993650

Hughes, James W. (1991). "Clashing Demographics: Homeownership and Affordable Dilemmas" in Housing Policy Debate 2: 1217-50

Iceland, J. (1999). Earnings returns to occupational status: Are Asian Americans disadvantaged? Social Science Research, 28, 45-65. doi:10.1006/ssre.1998.0634

Ihlanfeldt, Keith R., and David L. Sjoquist. (1990). "Job Accessibility and Racial Differences in Youth Employment Rates." The American Economic Review 80 (1) 267-76.
$\qquad$ . (1991). "The Effect of Job Access on Black and White Youth Employment: A Crosssectional Analysis." Urban Studies 28 (2): 255-65.

Irons, John. (2009). Economic Scarring: The Long-Term Impacts of the Recession. Economic Policy Institute, Briefing Paper No. 243. http://www.epi.org/page/-/img/110209scarring.pdf

Jargowsky, Paul. (1997). Poverty and Place: Ghettos, Barrios, and the American City. New York: Russell Sage Foundation.

Jargowsky, Paul, and Mary Jo Bane. (1991). "Ghetto Poverty in the United States: 1970-1980." In The Urban Underclass, edited by Christopher Jencks and Paul E. Peterson. Washington, DC: The Brookings Institution: 235-273

Jeanty, P. Wilner, Mark D. Partridge, and Elena Irwin. (2010). Estimation of a Spatial Simultaneous Equation Model of Population Migration and Housing Price Dynamics. Regional Science and Urban Economics. 40: 343-352.

Jenson, Arthur. (1969) "How Much Can We Boost IQ and Scholastic Achievement?" Harvard Educational Review, Feb.

Jencks, C., and S. Mayer. (1990). "The social consequences of growing up in a poor neighborhood." In Inner city poverty in the United States, edited by L.E. Lynn, Jr., and G.H. McGeary. Washington, DC: National Academy Press.

Jencks, Christopher, et. al.. (1979). Who Gets Ahead? Determinants of Economic Success in America. New York: Basic Books.

Johnson, Thomas G. (2011). "Comprehensive Wealth Accounting: Bridging Place-Based and People-Based Measures of Wealth," North American meetings of the Regional Science Association International, Miami, FL. November 11.

Kain, John F. (1968). "Housing Segregation, Negro Employment, and Metropolitan Decentralization." The Quarterly Journal of Economics 82 (2): 175-91.

Kao, G. (1995). Asian-Americans as model minorities? A look at their academic performance. American Journal of Education, 103, 121-159. doi:10.1086/444094

Kazeem, A., L. Jensen, C. S. Stokes. (2010). School Attendance in Nigeria: Understanding the Impact and Intersection of Gender, Urban-Rural Residence and Socioeconomic Status. Comparative Education Review, 54(2): 295-319.

Khadduri, J. J. Turnham, A. Chase, and H. Schwartz. (2003). "Case studies exploring the potential relationship between schools and neighborhood revitalization." Prepared for the Office of Public Housing Investments, U.S. Department of Housing and urban Development.

Kim, C., \& Sakamoto, A. (2008). Have Asian American men achieved labor market parity with white men? American Sociological Review, 75, 934-957. doi:10.1177/0003122410388501

Kim, M. \& Mar, D. (2007). The economic status of Asian Americans. In M. Kim (Ed.), Race and Economic Opportunity in the Twenty- First Century (pp. 148-184). New York: Routledge.

Kingsley, G. , T. Pettit and K.L.S. Pettit. (2002). "Population growth and decline in city neighborhoods," Neighborhood Change in Urban America Policy Brief No. 1 Washington, DC: The Urban Institute.

Kingston, Paul W. (2006). How Meritocratic is the United States. Research in Social Stratification and Mobility, Vol. 24, Issue 2, $2^{\text {nd }}$ Quarter 2006, pg. 111-130.

Kleit, R.G. (2001a). "The role of neighborhood social networks in scattered-site public housing residents' search for jobs," Housing Policy Debate

Kleit, R.G. (2001b). "Neighborhood relations in suburban scatter-site and clustered public housing," Journal of Urban Affairs

Kneebone, Elizabeth, Carey Nadeau and Alan Berube. (2011). The Re-Emergence of Concentrated Poverty: Metropolitan Trends in the 2000s. The Brookings Institution, November 2011.

Ko, G. K., \& Clogg, C. C. (1989). Earnings differentials between Chinese and Whites in 1980: Subgroup variability and evidence for convergence. Social Science Research, 18, 249-270. doi:10.1016/0049-089X(89)90007-0

Kohn, M. (1969). Class and Conformity: A study in values. Chicago: University of Chicago Press
Kotlowitz, Alex. (1991). There Are No Children Here. Doubleday.
Krivo, L. J., \& Kaufman, R. L. (2004). Housing and wealth inequality: Racial-ethnic differences in home equity in the United States. Demography, 41, 585-605. doi:10.1353/dem.2004.0023

Krugman, Paul. (2011). "The Lesser Depression." New York Times, July 22. http://www.nytimes.com/2011/07/22/opinion/22krugman.html

Ku, L., F.L. Sonenstein, and J.H. Pleck. (1993). "Neighborhood, family, and work: Influences on the premarital behaviors of adolescent males," Social Forces

LaFree, Gary. (1998) Losing Legitimacy: Street Crime and the Decline of Social institutions in America. Westview

Lazonick, William. (2009). Sustainable Prosperity in the New Economy? Business Organization and High-Tech Employment in the United States. Kalamazoo, Mich.:Upjohn Institute of Employment Research.

Lenski, Gerhard. (1966). Power and Privilege: A Theory of Social Stratification. New York: McGraw-Hill.

Lieberson, S. (1980). A piece of the pie: Black and White Immigrants since 1880. Berkeley, CA: University of California Press.

Lemann, Nicholas. (1991). The Promised Land. Knophf.
Lerman, Robert I. and Sisi Zhang (2013). Coping with the Great Recession: Disparate Impacts on Economic Well-Being in Poor Neighborhoods. Urban Institute. Jan 2013.

Lewis, Valerie A., Michael O. Emerson, and Stephen L. Klineberg. (2011). "Who We'll Live With: Neighborhood Racial Composition Preferences of Whites, Blacks and Latinos," Social Forces 89 (4): 1385-1408.

Levin, Melvin R. (1982). Ending Unemployment: Alternatives for Public Policy. University of Maryland Press; Baltimore/College Park

Levine, Rhonda P. (ed.) (1998). Social Class and Stratification: Classic Statements and Theoretical Debates. Rowman \& Littlefield Publishers, New York

Levine, G., \& Montero, D. (1973). Socio-economic mobility among three generations of Japanese Americans. Journal of Social Issues, 29, 33-48. doi:10.1111/j.15404560.1973.tb00071

Logan, John R. (2013). "The Persistence of Segregation in the 21st Century Metropolis," City \& Community 12 (2): 160-168.

Logan, John R. (2011). Separate and Unequal: The Neighborhood Gap for Blacks, Hispanics, and Asians in Metropolitan America. Providence, RI: Project US2010.
http://www.s4.brown.edu/us2010/Data/Report/report0727.pdf
Logan, John R., and Brian Stults. (2011). The Persistence of Segregation in the Metropolis: New Findings from the 2010 Census. Providence, RI: Project US2010. http://www.s4.brown.edu/us2010/Data/Report/report2.pdf.

Logan, John R., and Brian J. Stults. (2011). The Persistence of Segregation in the Metropolis: New Findings From the 2010 Census. Providence, RI: Brown University.

Lukas, J. Anthony. (1985) Common Ground. Knopf
Lukes, Steven. (1997). Power: a Radical View. Palgrave MacMillian
Lynn, Leonard, and Hal Salzman. (2010). "The Globalization of Technology Development: Implications for U.S. Skills Policy." In David Finegold, Mary Gatta, Hal Salzman, Susan Schurman, eds., Transforming the U.S. Workforce Development System: Lessons From Research and Practice, Ithaca, N.Y.: Cornell University/ILR Press.

Massey, Douglas \& Denton, Nancy. (1998). "American Apartheid: Segregation and the Making of the Underclass". Harvard University Press.

McCall, Leslie. (2001). Complex Inequality: Gender, Class, and Race in the New Economy. New York: Routledge.

McCall, L. (2001). Sources of racial wage inequality in metropolitan labor markets: Racial, ethnic, and gender differences. American Sociological Review, 66, 520-541.
doi:10.2307/3088921
McDonald, John F. (1997). Fundamentals of Urban Economics. New Jersey, Prentice Hall.
Mc Donald, John F. and Daniel P. McMillen. (2007). Urban Economics and Real Estate: Theory and Policy. Maine, Blackwell Plublishing.

McKinnish, T. (2008). Spousal mobility and earnings. Demography, 45, 829-849. doi:10.1353/dem.0.0028

McLemore, S. D. (1994). Racial and ethnic relations in America. Boston, MA: Allyn and Bacon.
McManus W. S. (1985). Labor Market Assimilation of Immigrants: The importance of Language Skills. Contemporary Policy Issues 3: 77-89.

McManus W., Gould W., \& Welch F. (1983). Earnings of Hispanic Men: The Role of English Language Proficiency. Journal of Labor Economics 1: 101-30.

Messner, Steven F. \& Rosenfeld, Richard. (1996). Crime and the American Dream. Wadsworth Publishing Company

Messerschmidt, James W. (1993). Masculinities and Crime: Critique and Reconceptualization of Theory. Rowman \& Littlefield Publishers
Mills, Edwin and Bruce Hamilton. (1989). Urban Economics $4^{\text {th }}$ ed. New York, Harper Collins Publishers.

Min, P. G. (1995). Asian Americans: Contemporary trends and issues. Thousand Oaks, CA: Sage.

Mishel, Lawrence, Josh Bivens, Elise Gould, and Heidi Shierholz. (2012) (forthcoming). The State of Working America, 12th Edition. An Economic Policy Institute book. Ithaca, N.Y.: Cornell University Press.

Mishel, Lawrence, Jared Bernstein, and Heidi Shierholz. (2009). State of Working America: 2008-2009. An Economic Policy Institute book. Ithaca, N.Y.: Cornell University Press.

Mishel, Lawrence, Jared Berstein, and Sylvia Allegretto. (2007). The State of Working America, 2006/2007. Ithaca, NY: Cornell University Press

Mishel, Lawrence, and Heidi Shierholz. (2011b). The Sad But True Story of Wages in America. Economic Policy Institute IssueBrief No. 297. http://epi.3cdn.net/3b7a1c34747d141327_4dm6bx8ni.pdf

Myers, Samuel J., Jr., Lisa Saunders, and Chanjin Chung. (1996). "Transportation, Efficiency, and Equity." November

Murray, Charles. (2012). Coming Apart: The State of White America, 1960-2010. New York: Crown Publishing Group.

Myrdal, G. (1944). An American Dilemma: The negro problem and modern democracy. New York: Harper

Nardone, Thomas. (1995). "Part-Time Employment: Reasons, Demographics, and Trends." Journal of Labor Research 14 (3): 275-91.

National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. (2007). Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future. Washington, D.C.: National Academies Press.

National Center for Education Statistics. (2001). From Bachelor's Degree to Work: Major Field of Study and Employment Outcomes of 1992-93 Bachelor's Degree Recipients Who Did Not Enroll in Graduate Education by 1997. NCES 2001-165. Washington, D.C.: U.S. Department of Education, Institute of Education Sciences.

National Center for Education Statistics. (2009a). National Assessment of Educational Progress (NAEP). U.S. Department of Education, Institute of Education Sciences.

National Center for Education Statistics. (2009b). "2003/04 Beginning Postsecondary Students Longitudinal Studies, Second Follow-ups" (April 2009). U.S. Department of Education, Institute of Education Sciences.

National Research Council. (2011). Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, D.C.: National Academies Press.

Nelson, Joel I. (1994). "Work and Benefits: The Multiple Problems of Service Sector Employment." Social Problems 41 (2): 240-55.

Newman, O., (1996). "Creating defensible space," Washington, DC: U.S. Department of housing and Urban Development, office of Policy Development and Research.

Oliver, M. L. \& Shapiro, T. M. (1995). Black wealth/White Wealth: A New Perspective on racial Inequality.
Orfield, Gary and Monfort, Franklin (1992) "Status of School Desegregation". National School Boards Association.

Orr, L., J. Feins, R. Jacob, E. Beecroft, L. Sanbonmatsu, L. Katz, J. Liebman, and J. Kling. (2003). Moving to Opportunity: Interim impacts evaluation. Washington, DC: U.S. Department of Housing and Urban Development, Office of Policy development and Research

Orshansky, Mollie. (1965a). "Counting the Poor: Another Look at the Poverty Profile," Social Security Bulletin 28(1) (January):3-29,1965.

Orshansky, Mollie. (1965b) "Who's Who Among the Poor: A Demographic View of Poverty," Social Security Bulletin 28(7) (July):3-32, 1965.

Ossowski, Stanislaw. (1963). Class Structure in the Social Consciousness. New York: Free Press.

O'Sullivan, Arthur. (2007). Urban Economics sixth ed. New York; McGraw-Hill Irwin.

Owen, John D. (1978). "Why Part-Time Workers Tend to Be in Low-Wage Jobs." Monthly LaborReview 101 (6):11-14.

Owens, Ann and Robert J. Sampson. (2013). Community Well-Being and the Great Recession. Russell Sage Foundation and the Stanford Center on Poverty and Inequality. (May 2013).

Pager, Devah, Bart Bonikowski, and Bruce Western. (2009). "Discrimination in a Low-Wage Labor Market: A Field Experiment." American Sociological Review, Vol. 74, No. 5, pp. 777-99.

Partridge, Mark D., Dan S. Rickman, and Hui Li. (2009) Who Wins From Local Economic Development? A Supply Decomposition of U.S. County Employment Growth. Economic Development Quarterly. 23: 13-27. 31.

Partridge, Mark D., Dan S. Rickman, Kamar Ali and M. Rose Olfert. (2008). Employment Growth in the American Urban Hierarchy: Long Live Distance. Berkeley Journal of Macroeconomics Contributions. 8 (Issue 1). Available at:
http://www.bepress.com/bejm/vol8/iss1/art10.
Pattillo, Mary. (2007). Black on the Block: The Politics of Race and Class in the City. Chicago: University of Chicago Press.

Pendall, Rolf, Elizabeth Davies, Lesley Freiman and Rob Pitingolo. (2011). A Lost Decade: Neighborhood Poverty and the Urban Crisis of the 2000s. Joint Center for Political and Economic Studies, September 2011.

Pierce, Brooks. (1999). Compensation Inequality. Office of Compensation and Working Conditions, BLS Working Paper No. 323. U.S. Department of Labor. http://www.bls.gov/ore/pdf/ec990040.pdf

Pindus, Nancy M., Brett Theodos, G. Thomas Kingsley. (2007). Place Matters: Employers, Low-Income Workers, and Regional Economic Development. Urban Institute, September 2007.

Portes, A. \& Rumbaut, R. G. (2001). Legacies: The Story of the Immigrant Second Generation. The Russell Sage Foundation.

Portes, A. \& Rumbaut, R. G. (2001). Ethnicitiesegacies: The Story of the Immigrant Second Generation. The Russell Sage Foundation.

Portes, A. and Zhou, M. (1993). The New Second Generation: Segmented Assimilation and Its Variants Among Post-1965 Youths. The Annals of American Academy of Political and Social Sciences 530: 74-96

Poston, D.L. Jr. (1994). Patterns of Economic Attainment of Foreign-Born Male Workers in the United States. International Migration Review 28: 478-500

Presser, Harriet B. (1995). "Job, Family, and Gender: Determinants of Nonstandard Work Schedules Among Employed Americans in 1991." Demography 32 (4): 577-89.

Quinterno, John. (2010). The South's Difficult Decade: Jobs, Employment, Income, \& Economic Hardships, 2000-2009. South by North Strategies, Ltd and Mary Babcock Reynolds Foundation, August 2010.

Reardon, Sean F. and Kendra Bischoff (2011). Growth in the Residential segregation of Families by Income, 1970-2000. US2010 and Stanford University. November 2011.

Renwick, Trudi and Kathleen Short. (2013). "Comparing Supplemental Poverty Measure Thresholds and Family Budgets: Understanding Income to Poverty Ratios," paper presented at the Annual Meeting of the Population Association of America, May 2013.

Rohe, W.M. \& Stegman, M. A. (1994). "The Effects of Homeownership on the Self-Esteem, perceived Control, and Life Satisfaction of Low-Income People" in Journal of American Planning Association 60: 173-84.

Rohe, W.M. \& Stegman, M. A. (1994). "The Impact of Homeownership on the Social and political Involvement of Low-Income People" in Urban Affairs Quarterly 30: 28-50.

Rohe, W.M. \& Stewart, L. (1995). "Homeownership and Neighborhood Stability". Housing Policy Debate, Vol 7 No. 1: 37-81

Romp, Ward and Jakob de Haan. (2005). "Public Capital and Economic Growth: A Critical Survey." EIB Papers, Vol. 10, No.1, pp. 41-70.

Ross, Tracey and Erik Stegman. (2014) Suburban Poverty Traverses the Red/Blue Divide. Center for American Progress. May 2014.

Rothman, Robert A. (1999). Inequality and Stratification: Race, Class, and Gender. Pretice Hall, New Jersey.

Rothwell, Jonathan and Alan Berube. (2011). Education, Demand, and Unemployment in Metropolitan America. The Brookings Institution, September 2011.

Ruiz, Neil G., Jill H. Wilson, and Shyamali Choudhury. (2012). The Search for Skills: Demand for H-1B Immigrant Workers in U.S. Metropolitan Areas. Brookings Institution.
http://www.brookings.edu/research/reports/2012/07/18-h1b-visas-laborimmigration\#overview
Rumbaut, R. G. \& Portes, A. (2001). Ethnicities: Children of Immigrants in America. The Russell Sage Foundation.

Saegert, Susan Thompson, J. Phillip, and Warren, Mark R. (ed.) (2001). Social Capital and Poor Communities. Russell Sage Foundation, New York

Sakamoto, A., \& Furuichi, S. (2002). The wages of native-born Asian Americans of the end of the twentieth century. Asian American Policy Review, 10, 17-30.

Sakamoto, A., \& Furuichi, S. (1997). Wages among white and Japanese American male workers. Research in Social Stratification and Mobility, 15, 177-206.

Sakamoto, A., \& Kim, C. (2003). The increasing significance of class, the declining significance of race, and Wilson's hypothesis. Asian American Policy Review, 12, 19-41.

Sakamoto, A., Takei, I., \& Woo, H. (2011). Socioeconomic differentials among single-racial and multi-racial Japanese Americans: Further evidence on assimilation in the post-civil rights era. Ethnic and Racial Studies, 34, 1445-1465. doi:10.1080/01419870.2011.539241

Sakamoto, A., \& Woo, H. (2007). The socioeconomic attainments of second-generation Cambodian, Hmong, Laotian, and Vietnamese Americans. Sociological Inquiry, 77, 44-75. doi:10.1111/j.1475-682X.2007.00177.x

Sakamoto, A., \& Xie, Y. (2006). The socioeconomic attainments of Asian Americans. In P. G. Min (Ed.), Asian Americans: Contemporary trends and issues (pp. 54-77). Thousand Oaks, CA: Pine Forge Press.

Sakamoto, A., Kim, C., \& Takei, I. (2008). Moving out of the margins and into the mainstream: The demographics of Asian Americans in the new South. The Southern Demographic Association Annual Meeting, Greenville, SC.

Sakamoto, A., Liu, J., \& Jessie M. Tzeng, J. M. (1998). The declining significance of race among Chinese and Japanese American men. Research in Social Stratification and Mobility, 16, 225-246.

Sakamoto, A., Wu, H., \& Tzeng, J. M. (2000). The declining significance of race among American men during the latter half of the twentieth century. Demography, 37, 41-51. doi:10.2307/2648095.

Sampson, Robert J. \& Laub, John H. (1995). Crime in the making: pathways and Turning Points Through Life. Harvard University Press.

Sewell, W., \& Hauser, R. (1975). Education, Occupation, and Earnings: Achievement in the Early Career. New York: Academic Press.

Schlesinger, Arthur M. (1991). The Disuniting of America: Reflections on a Multicultural Society. Whittle

Schmitt, John and Janelle Jones. (2012a). "Where Have All the Good Jobs Gone?" Washington, DC: Center for Economic and Policy Research.
http://www.cepr.net/documents/publications/good-jobs-2012-07.pdf

Sharkey, Patrick. (2013). Stuck in Place: Urban Neighborhoods and the End of Progress toward Racal Equality. Chicago, IL: University of Chicago Press.

Shideler, David W. and David S. Kraybill. (2009). Social Capital: An Analysis of Factors Affecting Investment. Journal of Socio-economics. Vol. 38: 443-455.

Shierholz, Heidi, and Josh Bivens. (2012). "Three Years into Recovery, Just How Much Has State and Local Austerity Hurt Job Growth?" Working Economics (Economic Policy Institute blog), July 6. http://www.epi.org/blog/years-recovery-statelocal-austerity-hurt/

Shobo, Yetty. (2005). African Immigrants: Patterns of Assimilation-Past Research and New Findings. paa2005.princeton.edu/papers/50390

Short, Kathleen. (2013). The Research Supplemental poverty Measure: 2012. Current Population Reports, Issue November 2013.

Schneider, Anne L. \& Ingram, Helen M. (2005). "Deserving and entitled: Social Constructions and Public Policy". New York; State University of New York Press.

Schmid, C. L. (2001). Educational Achievement, Language-Minority Students, and the New Second Generation. Sociology of Education 74: 71-87

Schmitt, John and Janelle Jones. (2012). Low-wage Workers Are Older and Better Educated than Ever. Center for Economic and Policy Research.
http://www.cepr.net/documents/publications/min-wage3-2012-04.pdf
Simpson, J. (2001). Segregated by subject: Racial differences in the factors influencing academic major between European Americans, Asian Americans, and African, Hispanic, and Native Americans. The Journal of Higher Education, 72, 63-100. doi:10.2307/2649134

Snipp, C. M., \& Hirschman, C. (2004). Assimilation in American society: Occupational achievement and earnings for ethnic minorities in the United States, 1970 to 1990. Research in Social Stratification and Mobility, 22, 93-117. doi:10.1016/S0276-5624(04)22004-2.

Sewell, W., \& Hauser, R. (1975). Education, Occupation, and Earnings: Achievement in the Early Career. New York: Academic Press

State of Working America. (2011c). "Income for Working-age Households Drops More than 10\% in the 2000s." An Economic Policy Institute chart. Updated December 1,2011. http://stateofworkingamerica.org/charts/real-medianhousehold-income/

Sun, Y. (1998). The academic success of East-Asian-American students: An investment model. Social Science Research, 27, 432-456. doi:10.1006/ssre.1998.0629
Terkel, Studs. (1974). Working: People Talk About What They Do All Day and How They Feel About It. New York: Avon

The White House Archives. (1931). 149 - Message to the Committee on Negro Housing of the White House Conference on Home Building and home Ownership. President Hoover, Washington D.C. April 24, 1931.
$\qquad$ . (1964). Civil Rights Act. President Johnson, Washington D.C. July 2, 1964
$\qquad$ . (1968). Civil Rights Act. President Johnson, Washington D.C. April 11, 1968

## $\qquad$ . (1999). Bringing Homeownership Rates to Historic Levels. President Clinton, Pine

 Ridge Indian Reservation. July 7, 1999$\qquad$ . (2002). President Hosts Conference on Minority Homeownership, President George W. Bush. George Washington University. October 15, 2002.

Tienda, M. (1991). Poor people and poor places: Deciphering neighborhood effects on poverty outcomes. In macro-micro linkages in sociology, edited by J. Huber. Newbury Park, CA: Sage Publications

Tienda, M., \& Neidert, L. (1984). Language, education, and the socioeconomic achievement of Hispanic origin men. Social Science Quarterly 65: 519-36.

Von Wachter, T. and D. Sullivan. (2009). "Job displacement and mortality: An analysis using administrative data," The Quarterly Journal of Economics

Waldinger, Roger. 2006. "The Bounded Community: Turning Foreigners into Americans in 21st Century L.A."

Waldinger, Roger \& Feliciano, Cynthia. (2004). Will the New Second Generation Experience 'Downward Assimilation'? Segmented Assimilation Re-Assessed. Ethnic and Racial Studies. Vol. 27 No. 3 May 2004 pgs. 376-402.

Warren, Keith, Ciriyam Jayaprakash and Elena G. Irwin (2009). The interaction of segregation and suburbanization in an agent-based model of residential location. Environment and Planning B, 36:6, 989, 1007.

Waters, M. C., \& Eschbach, K. (1995). Immigration and ethnic and racial inequality in the United States. Annual Review of Sociology, 21, 419-446. doi:10.1146/annurev.so.21.080195.002223

Weber, Max. (1946). From Max Weber; Essays in Sociology, edited by H. H. Gerth and C. Wright Mills. New York: Oxford University Press

Welch, F. (1999). "In defense of inequality," American Economic Review
Williams, J. Allen \& Ortega, Suzanne T. (1990). Dimensions of Ethnic Assimilation: An Empirical Appraisal of Gordon's Typology. Social Science Quarterly, Vol. 71, Number 4, December 1990.

Wilson, William J. (2012). The Truly Disadvantaged - the Inner City, the Underclass and Public Policy". $2^{\text {nd }}$ ed. Chicago: Chicago: University of Chicago Press.

Wilson, William J. (2010). More Than Just Race: Being Black and Poor in the Inner City (Issues of Our Time". $2^{\text {nd }}$ ed. Chicago: W. W. Norton \& Company

Wilson, William Julius. (1996). "When Work Disappears: the World of the New Urban Poor." Knopf.

Wilson, William Julius. (1992). "The Plight of the Inner-City Black Male." Proceedings of the American Philosophical Society 136 (3): 320-25.

Wilson, William J. (1980). The Declining Significance of Race. Blacks and Changing American Institutions" $2^{\text {nd }}$ ed. Chicago: University of Chicago Press

Wong, Janelle. 2000. "The Effects of Age and Political Exposure on the Development of Party Identification among Asian Americans and Latino Immigrants in the United States," Political Behavior 22:4 December pp. 341-371.

Wong, P., Lai, C. F., Nagasawa, R., \& Lin, T. (1998). Asian Americans as a model minority: Self-perceptions and perceptions by other racial groups. Sociological Perspectives, 41, 95-118.

Woo, H., Sakamoto, A., \& Takei, I. (2012). Beyond the shadow of white privilege? The socioeconomic attainments of second-generation South Asian Americans. Sociology Mind, 2, 23-33. doi:10.4236/sm.2012.21003

Xie, Y., \& Greenman, Emily. (2005). Segmented Assimilation Theory: A Reformulation and Empirical Test. Presented at the 2005 Population Association of America Annual Meeting (April, Philadelphia).

Xie, Y., \& Goyette, K. (2004). Asian Americans: A demographic portrait. New York: Russell Sage Foundation. doi:10.1016/S0049-089X(03)00018-8

Xie, Y., \& Goyette, K. (2003). Social mobility and the educational choices of Asian Americans. Social Science Research, 32, 467-498.

Zhou, M. (1999). Segmented assimilation: Issues, controversies, and recent research on the new second generation. In C. Hirschman, J. DeWind, \& P. Kasinitz (Eds.), The handbook of international migration (pp. 196-211). New York: Russell Sage

Zhou, M. (1997). Segmented Assimilation: Issues, Controversies, and Recent Research on the New Second Generation. International Migration Review 31: 975-1008

Zhou, M., \& Kamo, Y. (1994). An analysis of earnings patterns for Chinese, Japanese, and nonHispanic white males in the United States. Sociological Quarterly, 35, 581-602. doi:10.1111/j.1533-8525.1994.tb00418.x

Zeng, Z., \& Xie, Y. (2004). Asian Americans' earnings disadvantage reexamined: The role of place of education. American Journal of Sociology, 109, 1075-1108. doi:10.1086/381914

## Biographical Statement

John V. Dawson is a native Texan, born and raised in Fort Worth, and remained a resident of Fort Worth until he entered the United States Air Force. He had lived in North Fort Worth until 1969, and then subsequently moved to the West Fort Worth.

John is currently employed as a Program Manager and Civil Engineer with the Federal Aviation Administration (FAA), Airports Division, Headquarters Southwestern Region. He is responsible for the long range planning, programming, and construction of airports throughout the State of Louisiana. Prior to that position, he was the Supervisor, Leasing Construction, Support Services, Leasing Division with the Headquarters Greater Southwest Region, General Services Administration (GSA). He has also served as the Director for Planning and Development with the University of North Texas System; the Director of Planning with the Tarrant County College District; Architectural Service Manager with the City of Fort Worth; and Director of Facilities Acquisition with the Texas Department of Criminal Justice.

John is a retired United States Air Force Field Grade Officer with assignments at various Headquarters and field units throughout the United States and overseas. He has had the fortunate opportunity to serve in Georgia, Florida, and Colorado within the United States. He has served in Italy and the Federated States of Micronesia abroad.

John has a Bachelor of Science in Architecture from the University of Texas at Arlington; Master in Business Administration from the Florida Institute of Technology; post graduate studies in architecture and planning from the Air Force Institute of Technology; and doctoral studies in criminology at Sam Houston State University.

John is a registered architect in the State of Texas; Certified Planner with The American Institute of Certified Planners, American Planning Association; and certified with the U.S. Green Building Council as a Leadership in Energy and Environmental Design Accredited Professional.

John is married to the former Dianne Bailey Scruggs and has two children, Travis and Traci along with three wonderful grandchildren, Rachel, Sarah, and Dawson.


[^0]:    Table 2.4.1: Selected Demographic Characteristics of First Time Homebuyers by Race-Ethnicity: 1989 to 2003
    Courtesy of the U. S. Census and HUD Office of Policy Development and Research

[^1]:    a. Dependent Variable: Housing Homeownership Diff.

    Table 4.3.4 Change in Total Male Homeownership Multiple Regression with Bachelor's Degree

[^2]:    Figure F.8: Percent Asian Alone Or in Combination Population by County: 2000 Courtesy of the U. S. Census

[^3]:    a. Dependent Variable: Owner Occupied
    b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

[^4]:    a. Dependent Variable: Owner Occupied
    b. Predictors: (Constant), Total Female (Hispanic) population in labor force (employed) 16+

[^5]:    a. Dependent Variable: Owner Occupied

[^6]:    20002010 Paired Samnle Income Male Female with Grant

