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ABSTRACT

THREE DIMENSIONAL IMAGE RECONSTRUCTION (3DIRECT) OF SPARSE

SIGNALS WITH MRI APPLICATION

MELINDA M AU, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Ren-Cang Li

Sparse signal reconstruction has been steadily gaining tremendous attention,

specifically in applications of compressed sensing as well as feature selection in signal

processing methods [IEEE Signal Processing, Vol. 25 (2008) pp.21-30]. Standard

techniques to solve these problems such as the nonlinear Conjugate Gradient method

have been used successfully on small and medium sized problems. However, as the

desire to collect more data becomes the trend, and the need to process information

more quickly and reliably becomes more prevalent than before, these standard meth-

ods become inadequate.

In this thesis, we present a new approach for sparse signal reconstruction called

the Three Dimensional Image Reconstruction (3DIRECT) method. This method

minimizes total variation using the interior point method via the log-barrier function

to recover an image sparsely sampled in the frequency domain. Furthermore, this

method is able to recover all of the slices of 3D images simultaneously, as oppose to

the current state-of-the-art methods which traditionally recover 3D images one slice

at a time.

v



We applied our method to MRI data and observed the following results. First,

our method improves upon the speed of existing interior point methods by leveraging

object oriented coding, as well as analyzing and improving the stopping criteria in

the Conjugate Gradient (CG) method. The 3DIRECT method also benefits from

speed improvements due to the structure of the optimization model. The 3D model

requires less calls to iterative methods compared to the 2D models. Thus, our method

achieves similar or better results than current state-of-the-art methods in less time,

e.g. for a 128×128×128 image using 17% sampling, 3DIRECT is 22% faster in mean

and 33% faster in minimum observed run times.

Finally, our method is able to achieve a cleaner recovered MRI image under

certain conditions, due to the ability to exploit physical information in the z-direction.

We provide an algorithm which is able to detect this superior region of performance,

and provide an indication of when to use the 3DIRECT method versus traditional

2D methods. In cases, where the image has homogeneity in the diameter of the cross-

section from slice to slice, the 3DIRECT method provides the best results.
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CHAPTER 1

INTRODUCTION

We are interested in solving a 3D sparse image reconstruction problem modeled

by

min
X

TV(X) subject to ‖A(X)−B‖2 ≤ ε, (1.1)

where A : Rn×n×n 7→ Rn×n×n is a sparsifying linear transform, B ∈ Rn×n×n are

the measured observations of sampled pixels of an image in the k-space, and TV :

Rn×n×n 7→ R represents the total variation of X and is the sum of the magnitudes of

the gradient in the x−, y− and z−directions [14]. How the total variation function,

TV, is computed will be discussed later.

We plan to solve minimization problem (1.1) using an extension of the 2D

reconstruction method proposed in [8], which we call the 3DIRECT method. The

3DIRECT method casts (1.1) into a Second Order Cone Problem (SCOP), and then

solves it using the interior point method via the log-barrier function based on tech-

niques from [4]. Our method is able to do this by minimizing over the 3D total

variation, and expressing our systems in such a way that the optimization method

can recover all the slices of the 3D image simultaneously [32, 53].

Furthermore, our method uses Object Oriented (OO) coding to improve the

efficiency of the finite difference operators used in the calculation of total variation

[39]. We were able to achieve the same functionality in half the time for one finite dif-

ference calculation. As these calculations are repeatedly called in several subroutines,

this improves the overall reconstruction time dramatically.
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In addition to the OO efficiencies, we analyzed the CG convergence properties,

and devise a better stopping criteria than the current state-of-the-art method in

[8]. This reduces the number of iterations of CG while maintaining recovered image

quality. Also, our method processes all the slices of the 3D image simultaneously;

therefore, there are also less iterations of each subroutine per recovered image. Thus,

further timing benefits are achieved by the 3DIRECT method.

In terms of performance, several different examples using various sample schemes

for the linear transform operator, A, were examined [9]. More about the specifics of

A and sample schemes will be discussed in later chapters. However, two important

results were achieved. One is the 3DIRECT method achieved similar performance

to the 2D method in [8] 22% faster in mean and 33% faster in minimum observed

run times, when using a 2D sample scheme. Also, our method was able to exploit

a 3D sample scheme and achieve superior image clarity in a certain range of slices

for a specific brain scan. This range can be predicted via an algorithm we devised

which uses the starting image as its input. Because of this, we are able to predict

applications where the 3DIRECT method will achieve better performance than 2D

methods such as those in [8] and [34], at low sampling percentages on the order of

17% as oppose to the observed 40% required to get quality image results in [34].

Thus, our method provides a means to recover sparsely sampled 3D images (signals)

simultaneously while providing speed improvement, and in certain conditions, better

recovered image quality.
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CHAPTER 2

THE PROBLEM

An important application of minimization problem (1.1) is MRI reconstruction.

Often collecting MRI data is limited by hardware constraints and the limitations

caused by patient discomfort [36, 46]. For instance, a signal sampled in the Fourier

space is band-limited by half the sample rate. Thus, if you wish to reconstruct a signal

without aliasing at a given frequency, your sampled rate must be at least twice the

said frequency, which can results in a large number of samples [50, 59]. This is where

compressed sensing can help speed up the process. Compressed sensing is a theory

that with high probability, ensures how a signal can be defined by a small number of

random samples than typically required by the traditional sampling schemes [18].

So, if we are given an image sparsely sampled in the frequency domain, how do

we recover it? In [9], it was proven that recovery can be done by solving a convex

optimization problem. Further, it develops a random sampling theorem that allows

the reconstruction problem to overcome the uncertainty principle, which states that it

is hard to localize a signal in time and frequency. Later on, [7] developed the restricted

isometry property which was used as the foundation for proving several properties for

compressed sensing. While we do not go into detail on these theoretically, they

are fundamental in the ability to reconstruct sparse signals using nearly orthogonal

operators in convex optimization problems such as (1.1).

It is important to understand how the formulation of (1.1) relates to the MRI

application. Often times when MRI data is collected, it represents random samplings

of Fourier coefficients referred to as k-space samples. Thus, for 2D problems, the
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operator A represents a random sampling of the 2D Fourier transform [28, 38]. This

random sampling will be referred to as the mask [42].

Current solution methods for the minimization problem process the 3D image

one slice at a time using a 2D transformation operator and a 2D mask. The drawback

to this is that the overall mask is independent from slice to slice. Therefore, this

approach cannot exploit shared similarities of the cross-sections of the MRI image.

Thus, each slice must be sampled at a minimum percentage to get desired recovered

results. Note the use of minimum here is dependent on the end user desired recovered

image quality.

In our method we propose using a 3D subsampled Fourier Transformation op-

erator, and exploit using a 3D mask. In doing so we can now select the mask to

exploit physical similarities between adjacent MRI slices. This results in being able

to reduce the sample percentage while maintaining good results.

It should be noted, how a mask is chosen is its own field of study in compressed

sensing, and is gaining lots of attention [9, 11]. For the purposes of this research we

will show the results of a few masks and discuss the implications of each. First, let’s

consider a single slice of a brain fully sampled, and then take a look at what happens

to the image if it is transformed into the k-space domain, sparsely sampled, and then

transformed back to the image domain [20].
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Figure 2.1. Artifacts of the 2D Subsample k-space Fourier Operator. Left: Fully
Sampled Brain Image; Center: 2D Mask (20%); Right: Image artifacts caused by the
defined sampling.

Figure 2.1 demonstrates the impacts of the mask embedded in the sparse trans-

formation operator A. The otherwise clear brain image now has aliased artifacts

causing distortion of the image, which is due to the nature of compressed sensing

[17]. In an ideal world all the samples would be collected, and there would be no need

to devise algorithms to clear up the sampled image. However real world constraints,

such as hardware limitations and patient discomfort, do not allow all samples to be

collected. This leads to a classic image reconstruction problem, and is where the TV

operator in Problem (1.1) comes into play. Given the observations measured in the

right hand side of Figure 2.1, denoted as our matrix B in (1.1), the minimization of

the total variation of the image leads to a clearer picture, and thus allows the doctors

to see the details currently obscured by aliased artifacts.

It should be noted the mask used in Figure 2.1 was a 20% random sampling

distributed around the center frequencies of the image. One can view a 2D Fourier

Transform as the 0 frequency component centered in the middle of the grid with

higher frequency components as you move towards the edges. The location of the
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frequency bin on the grid indicates how much vertical and horizontal components are

in the image [40]. For instance consider the following image provided by [5].

Figure 2.2. Top Left: Clear Image; Bottom Left: Fourier Transform of the Clear
Image; Top Right: Fuzzy Image; Bottom Right: Fourier Transform of the Fuzzy
Image.

Figure 2.2 demonstrates how different images appear in the k-space. The top

left image is a clear image of Goofy with its k-space domain directly below showing

frequencies centered in the middle and radiating out. The image on the right is a

blurred image of Goofy. Upon inspection of the corresponding k-space domain, we

see the horizontal frequencies have been attenuated. This is due to the fact that the

source in [5] is applied a smoothing filter to the image in the horizontal direction only.

Using this intuition about looking at images in the k-space we can now examine what

a typical MRI image looks like in the k-space. Observe Figure 2.3, where a single

slice of a brain scan is transformed into the k-space, subsampled, and transformed

back into the image domain.
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Figure 2.3. From Left to Right: Original Image; Fully Sampled k-space domain; 35%
mask; Recovered Image with Artifacts.

Notice in Figure 2.3 the 2D fully sampled k-space domain shows the MRI fre-

quency components are centered in the grid with some clear symmetries in the vertical

and horizontal direction. This would lead one to believe the best Fourier coefficients

to sample in our mask are those with a strong concentration around the middle fre-

quencies. Using a 35% mask with a wider center a new recovered image is displayed

on the right in Figure 2.3 . This image is much clearer than the recovered image

from Figure 2.1, and it will be easier to minimize the total variation in accordance

with (1.1). This is why the mask plays a critical role in the performance of the

minimization problem [13].

Taking a step back from the mask implications, we now briefly discuss the

ramifications of using a 3D Fourier Transform to process the 3D image all at once,

versus using a 2D Fourier Transform and processing slice by slice. In order to see this

we will process a 3D brain image that is 128 × 128 × 128 in size. We will do this in

two ways: first we will process each slice using a 2D Fourier Transform under the 21%

mask, and second we will process the same data using a 3D Fourier Transform under

the same mask as the 2D case. The results of this are displayed in Figure 2.4.
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Figure 2.4. An Example of 3D Fourier Transform Effects: Slice 65 shows the 2D
artifacts have more noise i.e. small blips on image and background, and also have
less defined edges of the brain cross section. The reverse of this is true for slice 20 as
the 3D artifacts distort early and end slices due to mixing of the brain image along
the z-direction.

Figure 2.4 shows the effects of taking a masked Fourier Transform of a 3D

brain image. For the purposes of this thesis, we choose to look at a middle slice 65,

and an early slice 20. The original data, on the left, provides a clear picture of the

slice. The center column represents the effects of taking a 2D Fourier Transform and

processing the image slice by slice. Notice there is typical aliasing effects that occurs

with subsampling in the k-space [43]. What is important to take away from Figure

2.4 are the 3D artifacts that appear in slice 20.
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The 3D image near the beginning and later slices suffers from higher background

noise levels. This is because, similar to our Goofy example [5], the 3D transform now

considers image frequencies occurring in the third dimension or as we call it the

tubal dimension. Thus, the background blips occurring in slice 20 in Figure 2.4, are

due to the fact slices 30 through 100 contain fuller images of the brain and those

frequencies are spilling over into the smaller cross-sections [19]. The implications for

this as it relates to (1.1) means the 3D method has more initial total variation to

remove from the early and later slices of our image. You will see the results of this

and a recommended course of action in later Chapter 6. Next we will provide some

background information on solution methods for solving (1.1).
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CHAPTER 3

REVIEW OF NUMERICAL OPTIMIZATION TECHNIQUES

Before beginning this chapter, we will make note that we are going to discuss

the background and derivation of the optimization methods used to solve

min
x
f(x) subject to ‖Ax− b‖2 ≤ ε,

where A ∈ Rn×n, b ∈ Rn and f(x) : Rn 7→ R is some convex objective function. We

will discuss how these methods can be extended for the 2D and 3D MRI reconstruction

applications in Chapters 4 and 5.

Included in this chapter is an explanation of standard convex optimization tech-

niques in order to solve a minimization problem with quadratic inequality constraints.

The techniques include the Conjugate Gradient (CG) method, the Newton method

and the interior point method using the log-barrier function.

3.1 The Linear Conjugate Gradient Method

When we discuss the interior point method in Section 3.3, it will become appar-

ent we have a large linear system, Ax = b, to solve, where A is symmetric positive-

definite. Typically this is a large system and we don’t know the exact solution.

Therefore, we wish to find an x such that the residual

r = Ax− b (3.1)
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is less than some specified tolerance. According to [45, pp.101-111, pp.120-125], this

is also equivalent to solving the following minimization problem

min
x
f(x) with f(x) :=

1

2
xTAx− bTx. (3.2)

Observe that r is the gradient of f in (3.2), which means the opposite direction

of r, the negative gradient direction, will be the fastest descent direction. When this

is done iteratively we call this method the steepest descent method.

The CG method improves upon this approach by iteratively constructing a set

of A-orthogonal search directions denoted by {p(0), p(1), ..., p(n)}. To say the set of

vectors, {p(0), p(1), ..., p(n)}, are A-orthogonal means

pTi Apj = 0, ∀i 6= j.

The importance of this property comes from the fact that f(x) can be minimized

successively along the individual search directions, and yet each approximation is the

optimal solution from the subspace spanned by all the search direction vectors up to

that point [48]. This is written as

x(i+1) = x(i) + α(i)p(i), (3.3)
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where α(i) is how far we wish to step along the direction p(i). This is equivalent to

finding the minimum of g(α(i)), where

g(α(i)) = f(x(i) + α(i)p(i))

=
1

2
(x(i) + α(i)p(i))

TA(x(i) + α(i)p(i))− bT (x(i) + α(i)p(i))

=
1

2
(xT(i) + α(i)p

T
(i))A(x(i) + α(i)p(i))− bTx(i) − α(i)b

Tp(i)

=
1

2
(xT(i)Ax(i) + α(i)x

T
(i)Ap(i) + α(i)p

T
(i)Ax(i) + α2

(i)p
T
(i)Ap(i))− bTx(i) − α(i)b

Tp(i)

=
1

2
α2

(i)p
T
(i)Ap(i) + α(i)p

T
(i)(Ax(i) − b) + (

1

2
xT(i)Ax(i) − bTx(i)).

The minimum occurs when g′(α(i)) = 0, i.e.

α(i)p
T
(i)Ap(i) + pT(i)(Ax(i) − b) = 0.

We can solve the above equation for α(i) to get

α(i) =
pT(i)r(i)

pT(i)Ap(i)

. (3.4)

We now have a way to iteratively compute our approximations x(i). Notice we also

now have an expression for the residuals given by

r(i) = Ax(i) − b

= A(x(i−1) + α(i−1)p(i−1))− b by (3.3)

= Ax(i−1) − b+ α(i−1)Ap(i−1)

= r(i−1) + α(i−1)Ap(i−1). (3.5)
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Observe (3.3), (3.4), and (3.5) are dependent on search directions p(i). As stated before

the opposite direction r will be the fastest descent direction. CG sets p(0) = −r(0)

and iteratively defines the next search direction as

p(i) = −r(i) + β(i)p(i−1). (3.6)

Thus α(i) can be simplified to

α(i) =
rT(i)r(i)

pT(i)Ap(i)

, (3.7)

and β(i) is given by [45, pp.101-111, pp.120-125] as

β(i) =
rT(i)r(i)

rT(i−1)r(i−1)

. (3.8)

Thus, the CG method does not need to store the previous search directions, and in

doing so reduces the complexity to O(km), where m is the number of nonzero entries

of A and k is the number of CG steps [48]. Combining formulas (3.3), (3.5), (3.6),

(3.7), and (3.8), we get the following CG iterations that continue until
‖r(i)‖
‖r(0)‖

is less

than some tolerance or the maximum number of iterations has been exceeded [25].

α(i) =
rT(i)r(i)

pT(i)Ap(i)

, (3.9)

x(i+1) = x(i) + α(i)p(i), (3.10)

r(i+1) = r(i) − α(i)Ap(i), (3.11)

β(i) =
rT(i+1)r(i+1)

rT(i)r(i)

, (3.12)

p(i+1) = r(i+1) + β(i)p(i), (3.13)

where x(0) = 0 and p(0) = −r(0) = b− Ax(0).
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The expressions in (3.9) through (3.13) outline the iterative CG method that

will be used within the Newton method to solve a system of the form Ax = b where

A is the Hessian matrix derived in the interior point method using the log-barrier

function [35].

3.2 The Newton Method for Unonstrained Minimization

The Newton method is a well-known method for finding roots or zeros of func-

tions. In this application it is used during each log-barrier iteration to iteratively

solve the log-barrier form of the minimization problem (1.1) by forming a series of

quadratic approximations. This form will be discussed in Section 3.3. So for now

consider a real-valued function f(x) : Rn 7→ Rn. We are all familiar with the Taylor

approximation of a single variable function, g(y) near y, as follows

g(y +∆y) ≈ g(y) + g′(y)∆y +
1

2
g
′′
(y)∆y2.

The analog of this for a multivariable function is

f(x+∆x) ≈ f(x) +∇f(x)T∆x+
1

2
∆xT∇2f(x)∆x, (3.14)

where ∇f represents the gradient and ∇2f represents the Hessian of our function [2].

Since we are seeking a ∆x to minimize f(x+∆x), we take the derivative of the right

hand side of (3.14) and set it equal to zero

0 =
d

d∆x

(
f(x) +∇f(x)T∆x+

1

2
∆xT∇2f(x)∆x

)
= ∇f(x)T +∆xT∇2f(x).

(3.15)
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Since the Hessian, ∇2f(x), is positive definite, Equation (3.15) implies

∆x = −∇2f(x)−1∇f(x). (3.16)

Equation (3.16) is called the Newton step. Thus we can iterate on x by xn+1 =

xn + ∆xn where ∆xn = −∇2f(xn)−1∇f(xn). However, this formulation assumes

we will step the full length of ∆xn. Often times in unconstrained minimization it

is beneficial to control how far to step along the descent direction. A common way

to control this is to decrease the step size until the objective function decreases in

accordance with the expected change from the local gradient. To do this we add a

parameter t and get the modified Newton iteration

xn+1 = xn + t ·∆xn. (3.17)

Equation (3.17) now begs the question: when do we stop iterating? A typically

stopping criterion involves the Newton decrement, denoted by λ(x) [4]. It is expressed

as

λ2(x) =
[
∇f(x)T∇2f(x)−1∇f(x)

] 1
2
. (3.18)

A typical stopping criterion is given by

λ2(x)

2
≤ ε, (3.19)

where ε is a specified tolerance. We outline the Newton method in Algorithm 3.1.
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Algorithm 3.1 The Newton method

Input: given x ∈ dom f , tolerance ε > 0.

Output: x that approximately minimizes the objective function.

1: ∆x = −∇2f(x)−1∇f(x)

2: λ2 = ∇f(x)T∇2f(x)−1∇f(x)

3: while λ2

2
> ε do

4: Line Search: Find appropriate t (see subsection 3.2.1)

5: x = x+ t∆x

6: Update ∆x and λ2

7: end while

3.2.1 Backtracking Line Search

There are many line search methods used in practice to determine an appro-

priate t in line 4 of Algorithm 3.1. A popular effective method is the Backtracking

Line Search (BLS). The idea behind the BLS is: initialize t to a unit step size, and

continually reduce by a given factor until a stopping criterion is met. It is typical to

specify a parameter α ∈ (0, 0.5) and β ∈ (0, 1), where α is a stopping criterion and β

is a reduction factor of t. Specifically, the BLS method is shown in Algorithm 3.2 [4].

Algorithm 3.2 Backtracking Line Search

Input: α ∈ (0, 0.5), β ∈ (0, 1), and descent direction ∆x

Output: t ∈ (0, 1].

1: t = 1

2: while f(x+ t∆x) > f(x) + αt∇f(x)T∆x do

3: t = βt

4: end while
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To understand where the stopping criterion f(x+ t∆x) > f(x) +αt∇f(x)T∆x

comes from in Algorithm 3.2, consider the following. Notice ∇f(x)T∆x < 0 and

α ∈ (0, 0.5) implies

∇f(x)T∆x < α∇f(x)T∆x < 0.

Further,

∇f(x)T∆x = lim
t→0

f(x+ t∆x)− f(x)

t
. (3.20)

Thus ∃ t̂ > 0 such that ∀ t ∈ (0, t̂)

f(x+ t∆x) ≈ f(x) + t∇f(x)T∆x

< f(x) + αt∇f(x)T∆x,

(3.21)

since α ∈ (0, 0.5) and ∆x is a descent direction. Since, t = βn for some n ∈ N,

and β ∈ (0, 1), we see the line search will terminate in a finite number of steps.

Algorithm 3.2 will be used along with the Newton method in Algorithm 3.1.

3.3 The Interior-Point Method using Log Barrier Function

We now return our attention to Problem (1.1). Recall we wish to solve a problem

of the form

min
x

f0(x) (3.22)

subject to fi(x) ≤ 0 for i = 1, ...,m.

However, in the Newton method, discussed in Section 3.2, there are no con-

straints. This is where the log-barrier function enables us to take the inequality

constraints in (3.22), and embedded them into the objective function, and then iter-

atively solve using the Newton method.
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Consider the following indicator function I : R 7→ R,

I (x) =


0, x ≤ 0,

∞, x > 0.

(3.23)

One can envision changing (3.22) into the following

min
x
f0(x) +

m∑
i=1

I (fi(x)) (3.24)

Notice if an inequality constraint goes greater than 0 the indicator function,

I (fi(x)), is infinity. Thus, the minimization problem is penalized for not meeting all

inequality constraints which are now cast as part of the objective function itself.

There is still one issue with problem (3.24), that is the objective function is not

differentiable which is required for the Newton method. Thus we need to approximate

this function with a smooth and differentiable function. Consider the function

Î (x) =
−1

τ
log (−x), (3.25)

where dom Î = {x ∈ R|x < 0}, and τ > 0 is an accuracy parameter [4]. Clearly this

is differentiable, but does it penalize the objective function similar to I (x)? Let’s

look at some plots below for various values of τ .
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Figure 3.1. The Log-Barrier Function (3.25) for Various τ Values.

Figure 3.1 shows that for large values of τ , we can get close approximations

of the indicator function I . Using the fact that function (3.25) can be used to

approximate the indicator function, we can now recast (3.22) as

min
x
f0(x) +

1

τ

m∑
i=1

− log (−fi(x)) (3.26)

Recall the Newton method wishes to find a change in descent direction that

minimizes the objective function around a point x. So we write
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f0(x+∆x) ≈ f(x) + 〈gx, ∆x〉+
1

2
〈Hx∆x,∆x〉, (3.27)

where gx and Hx represent the gradient and Hessian of the original objective function,

respectively. Specifically, we define

φ(x) = −
m∑
i=1

log (−fi(x)) (3.28)

to be the log-barrier function for (3.22). We also will note here for later reference,

that the gradient, ∇φ(x), and Hessian,∇2φ(x), for the log-barrier function are

∇φ(x) =
m∑
i=1

1

−fi(x)
∇fi(x) (3.29a)

and

∇2φ(x) =
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x). (3.29b)

Therefore, given our starting point x that is feasible, the direction ∆x along which a

new approximation to minimize (3.27) is the solution to the following linear system

Hx∆x = −gx. (3.30)

One might notice the objective function in (3.26) is only an approximation to

the objective function in (3.22), whose results depend on the parameter τ . Thus,

the larger τ gets, the more accurate the minimizer of (3.26) is as an approximation

to (3.22). However, for the Newton method, a large τ impacts the Hessian as x

approaches the boundary.
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Since τ is a parameter that can change, it is logical to iterate. Thus, we have

to solve

min
x
f0(x) +

1

τ
φ(x) (3.31)

for many τ > 0 via the Newton method. The solution of (3.31), denoted by x∗(τ), is

one point in a set of points defining the central path. Without going into too much

detail, we will note the central path satisfies the KKT conditions of (3.31), thus

guarantees our iterative solution will be optimal [4]. Often finding x∗(τ) is referred

to as the centering step.

The pseudo code for the interior point method using the log-barrier function is

shown in Algorithm 3.3.

Algorithm 3.3 Interior Point Method Using the Log-Barrier Function

Input: x strictly feasible, τ > 0, µ > 0, ε > 0.

Output: minimizer x∗(µmτ) for some m > 0.

1: while m/τ < ε do

2: Centering Step: x∗(τ) = arg minx f0 + 1
τ
φ

3: Increase τ : τ = µτ

4: m = m+ 1

5: end while

Line 2 in Algorithm 3.3 is solve by the Newton method with BLS given an

initial starting point x0.
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CHAPTER 4

CURRENT STATE-OF-THE ART: 2D IMAGE RECOVERY

Now that we have reviewed some fundamental optimization techniques, in this

chapter we discuss the current state-of-the-art in solving MRI reconstruction prob-

lems. Two popular approaches to solving the 2D minimization problem are proposed

in [8] and [34].

In [34], the authors recast the problem into a 2D `1-regularized least squares

problem, and solve the latter via the non-linear CG method [45, pp.101-111, pp.120-

125]. In [8], the authors solve the 2D formulation of the total variation problem with

quadratic constraints using the interior point method via the log-barrier function

reviewed in Chapter 3.

We will briefly outline each method and show some results. More in-depth

results and analysis of each method will be presented in Chapter 6 to compare per-

formance against our 3DIRECT method. Recall our operator A is the sparse Fourier

Transform discussed in Section 2.

4.1 SparseMRI: Minimizing the `1 norm

The method proposed in [34] is entitled SparseMRI, and it attempts to solve

the following

min
X∈Rn×n

‖AX −B‖2
2 + λ‖CX‖1, (4.1)

where A ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×n, and λ > 0 is a preselected penalty parameter.

Usually m and n are large but may not be necessarily the same. The formulation of

this `1-regularized least squares problem lends itself nicely to signal reconstruction in
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compressed sensing applications [29, pp.312-321]. The use of the ‖·‖2 in (4.1) ensures

the solution x is consistent with the measured data [3]. The use of the ‖ · ‖1 ensures

x is also sparse in a certain domain, for instance the k-space for MRI applications

using wavelet transformations [10, 15, 60].

The norm ‖ · ‖1 is similar to attempting to reduce the total variation of the

image [16]. Thus, solutions to problem (4.1) will appear similar to solutions of (1.1).

However, this norm is not differentiable. So, [34] approximates ‖ · ‖1 before applying

the nonlinear CG method to solve (4.1) [45, pp.101-111, pp.120-125].

In order to compute the recursive formulas for the nonlinear CG method, we

need to calculate the gradient of ‖ · ‖1. Unfortunately this gradient does not always

exist, making any optimization method, e.g., those based on gradients, unusable. One

common way to overcome the difficult is to smoothen out the norm. Consider

γ(z) = ‖z‖1 =
m∑
i=1

|zi| for z = [zi] ∈ Cm,

where z may be complex such as in SparseMRI. The partial gradient of γ(z) with

respect to zi at zi = 0 does not exist [7, 22]. The simple idea of smoothening it is

as follows. Let µ be a tiny positive number (in the order of O(10−6) or smaller), and

approximate |zi| by

|zi| ≈
√
z̄izi + µ, (4.2a)

γ(z) ≈ g(z) :=
m∑
i=1

√
z̄izi + µ, (4.2b)
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where z̄i is its complex conjugate. Suppose now zi is perturbed to zi + p, where p is

an infinitesimal quantity. We have, up to the first order of p,

(z̄i + p̄)(zi + p) + µ = (z̄izi + µ)

[
1 +

z̄ip+ p̄zi
z̄izi + µ

]
,√

(z̄i + p̄)(zi + p) + µ =
√
z̄izi + µ

[
1 +

1

2

z̄ip+ p̄zi
z̄izi + µ

]
=
√
z̄izi + µ+

1

2

z̄ip+ p̄zi√
z̄izi + µ

,

yielding the partial gradient with respect to zi as zi√
z̄izi+µ

and consequently

∇g(z) = D−1z with D = diag(
√
z̄1z1 + µ, . . . ,

√
z̄mzm + µ ).

∇g(z) is the direction along which g(z) increases the fastest at z.

We now return our attention to ‖Cx‖1 in (4.1). Denote the ith component of

Cx by (Cx)i. Let µ be as before, and use

|(Cx)i| ≈
√

(Cx)Hi (Cx)i + µ, ‖Cx‖1 ≈ g(x) :=
∑
i

√
(Cx)Hi (Cx)i + µ.

Suppose now x is perturbed to x+ p, where p is an infinitesimal vector. We have, up

to the first order of p,

√
(C[x+ p])Hi (C[x+ p])i + µ ≈

√
(Cx)Hi (Cx)i + µ+

1

2

(Cx)Hi (Cp)i + (Cp)Hi (Cx)i√
(Cx)Hi (Cx)i + µ

.

Therefore

g(x+ p) ≈ g(x) +
∑
i

1

2

(Cx)Hi (Cp)i + (Cp)Hi (Cx)i√
(Cx)Hi (Cx)i + µ

.
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Use (Cp)i =
∑

j cijpj and let di =
√

(Cx)Hi (Cx)i + µ to get

g(x+ p) ≈ g(x) +
∑
j

1

2

∑
i

[(Cx)Hi d
−1
i cijpj + p̄j c̄ijd

−1
i (Cx)i],

giving the jth component of ∇g(x) as

∑
i

c̄ijd
−1
i (Cx)i = (CHD−1Cx)j.

Therefore

∇g(x) = CHD−1Cx, (4.3)

where D = diag(
√

(Cx)H1 (Cx)1 + µ, . . . ,
√

(Cx)Hm(Cx)m + µ ). This gives the follow-

ing,

∇f(x) ≈ 2AH(Ax− b) + λCHD−1Cx.

Similarly we evaluate f(x) using the approximation in (4.2a) as

f(x) ≈ (Ax− b)H(Ax− b) + λ|||Cx|||,

where |||a||| =
∑

i

√
āiai + µ. Putting it all together, Algorithm 4.1 solves the nonlin-

ear `1-regularized least squares problem (4.1).
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Algorithm 4.1 Nonlinear CG with Backtracking Line Search for (4.1)

Input: measured data b, consistency matrix A, sparsity matrix C, `1 penalty λ,

initial guess x.

Output: solution x to least squares problem (4.1)

1: Specify Parameters

2: k = 0, µ = 10−6, tol = 10−9, M = 100, α = 0.5, β = 0.6, t0 = 1

3: Compute Initial Gradient

4: g0 = 2AH(Ax− b) + λ · CHD−1Cx, dx = −g0

5: Iterations

6: while ‖g0‖2 > tol and k < M do

7: Backtracking Line Search

8: f0 = ‖Ax− b‖2
2 + λ|||Cx|||

9: t = t0, f1 = ‖A(x+ t · dx)− b‖2
2 + λ|||C(x+ t · dx)|||

10: lsIter = 0

11: while f1 > f0 + αt·real(gH0 dx) do

12: lsIter = lsIter + 1

13: t = β · t, f1 = ‖A(x+ t · dx)− b‖2
2 + λ|||C(x+ t · dx)|||

14: end while

15: Update nonlinear CG Recursive Formulas

16: x = x+ t · dx
17: g1 = 2AH(Ax− b) + λ · CHD−1Cx, γ = ‖g1‖2

‖g0‖2
18: dx = −g1 + γdx, g0 = g1, k = k + 1

19: end while

Note that k, µ, tol,M, α, β, and t0 are shown as fixed parameters, however these

can be passed in as inputs. In addition, the maximum iterations for the line search

and the CG method can be different. Algorithm 4.1 is just a simplified version.

To show how the method in [34] recovers images from sparsely sampled images

in the k-space, we will consider a 2D example of a 512 × 512 image [31, 52]. The

image is subsampled using a 2D Fourier Transform mask that keeps entire columns of
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Fourier data. The sparse domain is a Daubechies 4 Wavelet transform [6]. Figure 4.1

shows the ability of Algorithm 4.1 to clear up the artifacts from subsampling.

Figure 4.1. The Recovered Image is Sharpe. Left: Mask; Center: Input Image; Right:
Recovered Image .

On the left in Figure 4.1 is the 2D Fourier Mask where the white indicates the

data kept, and the black indicates the Fourier samples that are thrown away. As

a result of the subsampling scheme, the center image appears with noisy artifacts.

Finally, the image is cleaned up using the nonlinear CG method, and as a result the

noise is removed. This is just an example of how the algorithm works to denoise

an image by minimizing over the-`1 norm. The mask sampling precentage was 40%

which is rather a large amount of data to sample and store especially when capturing
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3D data. We will see further impacts of this when looking at the numerical results in

Chapter 6.

4.2 `1-Magic: Total Variation with Quadratic Constraints

We now turn our attention to the approach discussed in [8] which is called

`1-Magic: TV2. For the purposes of this thesis we will refer to the method simply as

`1-Magic. This approach considers the following 2D problem

min
X

TV(X) subject to ‖A(X)−B‖2 ≤ ε, (4.4)

where A : Rn×n 7→ Rn×n is the 2D Sparse Fourier Transform as describe in Chapter 2,

B ∈ Rn×n is the observed image pixel in the k-space, and TV is a function that

computes the total variation in the x− and y−direction.

In order to use the Newton method we must define the TV function in (4.4).

In [47], the Total Variation of a 2D discrete image is defined as the sum of the finite

differences of pixels with their vertical and horizontal neighboring pixels [37, 49].

To define this mathematically, we will consider a two-dimensional image X ∈

Rn×n, whose ijth pixel will be denoted as Xij, and define the following operators

Dh;ijX =

 Xi,j+1 −Xij, i < n,

0, i = n,
Dv;ijX =

 Xi+1,j −Xij, j < n,

0, j = n,

where Dh;ij and Dv;ij can be thought of as the horizontal and vertical finite difference

operators. We further define the vector DijX ∈ R2 as

DijX =

Dh;ijX

Dv;ijX

 . (4.5)
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This vector, DijX, serves as a discrete gradient of our image at the ijth pixel, and

thus the total variation in (4.4) is defined as follows

TV(X) =
∑
ij

√
(Dh;ijX)2 + (Dv;ijX)2 =

∑
ij

‖DijX‖2. (4.6)

4.2.1 The Interior Point Method for SOCPs

Before applying the log-barrier function to transform (4.4), we will first recast

it as a second-order cone problem [8, 33]. Using (4.6), (4.4) can be recast as

min
X,T

∑
ij

Tij

subject to ‖DijX‖2 ≤ Ti,j, i, j = 1, . . . , n,

‖A(X)−B‖2 ≤ ε.

(4.7)

It is important to notice the problem now has two parameters to optimize over,

T and X, where T = [Tij] is an n × n matrix. So, now we have two inequality

constraints which need to be embedded into the objective function via the log-barrier

function. In order to do this we will define

fTij =
1

2
(‖DijX‖2

2 − T 2
ij), i, j = 1, . . . , n, (4.8a)

fε =
1

2
(‖A(X)−B‖2

2 − ε2). (4.8b)

Note the factor 1
2

in (4.8a) and (4.8b) are there to cancel out constants that

appear later on when we calculate the gradient. We can now apply the log-barrier

function from (3.28), and make the inequality constraints implicit in the objective as

follows
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F (z) := 〈c0, z〉 −
1

τ

[∑
ij

log(−fTij(z)) + log(−fε(z))
]
, (4.9)

where τ > 0 is an accuracy parameter, c0 =

[
0n2

1n2

]
and z =

[
x

t

]
, and

x := X(:) =



X11

...

Xn1

...

X1n

...

Xnn



=



x1

x2

...

...

...

...

xn2



, and t := T (:) =



T11

...

Tn1

...

T1n

...

Tnn



=



t1

t2
...

...

...

...

tn2



. (4.10)

We use 0n2 and 1n2 to denote column vectors of 0’s and 1’s of length n2, respectively.

Next, we need to compute the gradient and Hessian of the function (4.9). Using

the gradient of the log-barrier function from (3.29a), the gradient of F (z) can be

expressed as

gz = c0 +
1

τ

[∑
ij

1

−fTij(z)
∇fTij(z) +

1

−fε(z)
∇fε(z)

]
, (4.11)

and the Hessian by

Hz =
1

τ

[∑
ij

1

fTij(z)2
∇fTij(z)[∇fTij(z)]T +

∑
ij

1

−fTij(z)
∇2fTij(z)

+
1

fε(z)2
∇fε(z)[∇fε(z)]T +

1

−fε(z)
∇2fε(z)

]
. (4.12)
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Again if we assume a feasible z, the direction ∆z along which F (z) is to be

approximately minimized, is the solution to the following system of linear equations

Hz∆z = −gz. (4.13)

This linear system is reduced and then solved by the linear CG method. Applying

this to a 512 × 512 brain image using a radial sampling scheme of 10% results in

Figure 4.2.

Figure 4.2. The Recovered Image is More Clear. Left: Mask; Center: Input Image;
Right: Recovered Image.

Figure 4.2 shows the artifacts from subsampling have been reduced by mini-

mizing over the total variation. Another observation is the sampling scheme used is
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radial lines as oppose to columns of the Fourier domain. As stated in Chapter 2, the

type of mask can improve or hurt results. The mask is dependent on the transfor-

mation used, A, and the data set being operated on. This will become clear in the

Chapter 6.
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CHAPTER 5

3D IMAGE RECOVERY

Now that we understand the current state-of-the-art in 2D imaging, we will

examine how to handle a 3D image all at once as oppose to running 2D methods over

each slice of the data one at a time. We call our method 3DIRECT. Consider the

following problem

min
X

TV(X) subject to ‖A(X)−B‖2 ≤ ε, (5.1)

where TV is a function that computes the 3D Total Variation of an image X ∈

Rn×n×n, and A : Rn×n×n 7→ Rn×n×n is again a linear map. For the purposes of

implementation it is more precisely the subsampled 3D Fourier Transformation [21,

54].

Similarly to the 2D `1-Magic method, we will explicitly define a function TV :

Rn×n×n 7→ R. Consider now a 3D n × n × n image X, whose ijkth pixel will be

denoted as Xijk, and define the following operators

Dh;ijkX =

 Xi(j+1)k −Xijk, i < n,

0, i = n,
Dv;ijkX =

 X(i+1)jk −Xijk, j < n,

0, j = n,

Dt;ijkX =

 Xij(k+1) −Xijk, k < n,

0, k = n,
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where now we have a third finite difference operator, Dt;ijk. This operator considers

the pixel variation from slice to slice down what we call a tube. Hence Dt;ijk is the

tubal operator. Further, we denote a vector DijkX ∈ R3×1 as

DijkX =


Dh;ijkX

Dv;ijkX

Dt;ijkX

 . (5.2)

This vector, DijkX, serves as a 3D discrete gradient of the image at the ijkth pixel,

and thus the total variation in (5.1) can be expressed as

TV(X) =
∑
ijk

√
(Dh;ijkX)2 + (Dv;ijkX)2 + (Dt;ijkX)2 =

∑
ijk

‖DijkX‖2. (5.3)

5.1 The Interior Point Method for SOCPs

We will first use (5.3) to recast problem (5.1) as a SOCP

min
X,T

∑
ijk

Tijk

subject to ‖DijkX‖2 ≤ Tijk, i, j, k = 1, . . . , n,

‖A(X)−B‖2 ≤ ε.

(5.4)

We now stretch X and T into vectors columwise within a slice, and then each stretched

slice is stacked in order from first to last slice, i.e., arrange their entires, Xijk and

Tijk, in the lexicographical order as follows
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x := X(:) =



X111

...

X11k

...

Xn1k

...

X1nk

...

Xnnk

...

Xnnn



, and t := T (:) =



T111

...

T11k

...

Tn1k

...

T1nk

...

Tnnk
...

Tnnn



. (5.5)

Before embedding the inequality constraints via a log-barrier function, we will define

fTijk =
1

2
(‖DijkX‖2

2 − T 2
ijk), i, j, k = 1, . . . , n, (5.6a)

fε =
1

2
(‖A(X)−B‖2

2 − ε2). (5.6b)

We can now apply the log-barrier function from (3.28), and make the inequality

constraints implicit in the objective function using (5.6a) and (5.6b) as follows

F (z) := 〈c0, z〉 −
1

τ

[∑
ijk

log(−fTijk(z)) + log(−fε(z))
]
, (5.7)
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where again τ > 0 is an accuracy parameter and c0 =

[
0n3

1n3

]
, z =

[
x

t

]
. We use 0n3

and 1n3 to denote column vectors of 0’s and 1’s of length n3, respectively. Next, we

express the gradient, gz, and Hessian, Hz, for (5.7) as

gz = c0 +
1

τ

[∑
ijk

1

−fTijk(z)
∇fTijk(z) +

1

−fε(z)
∇fε(z)

]
, (5.8)

and

Hz =
1

τ

[∑
ijk

1

fTijk(z)2
∇fTijk(z)[∇fTijk(z)]T +

∑
ijk

1

−fTijk(z)
∇2fTijk(z)

+
1

fε(z)2
∇fε(z)[∇fε(z)]T +

1

−fε(z)
∇2fε(z)

]
. (5.9)

Thus, if we assume a feasible z, the direction ∆z along which F (z) is to be approxi-

mately minimized is the solution to the following system of linear equations

Hz∆z = −gz. (5.10)

The complete interior point method using the log-barrier function is outline in Algo-

rithm 5.1.
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Algorithm 5.1 Interior Point Method Using the Log-Barrier Function

Input: feasible starting point z0, τ0 > 0, µ > 0, ε > 0, nmax > 0.

Output: minimizer zk.

1: k = 0, τ = τ0

2: while m/τ < ε do

3: Find zk = minz F (z) by the Newton Method, where F (z) is defined in (5.7) as follows:

4: nstop = 0, k = 0

5: while nstop = 0 do

6: Compute gz and create operator Hz(z)

7: Find Newton Step ∆z by using CG to solve: Hz∆z = −gz
8: λ2 = gTz H

−1
z gz

9: BLS: Find appropriate t (see subsection 3.2.1)

10: zk = zk + t∆z

11: k = k + 1

12: nstop = (λ
2

2
< ε) or (k > nmax)

13: end while

14: τ = µτ

15: k = k + 1

16: end while

In Sections 5.2 and 5.3 we provide detail on how to express gz and Hz in order

to efficiently implement the 3DIRECT method.

5.2 gz

This section provides details on computing the gradient in (5.8). Recall our

optimization variable z is comprised of x and t. Thus we have two partial derivatives

to concern ourselves with when computing
∑

ijk
1

−fTijk (z)
∇fTijk(z) and 1

−fε(z)∇fε(z).
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First notice X is organized by slices X(:, :, k) for k = 1, · · · , n, and the Dh;ijk

and Dv;ijk operate within a slice. Therefore, it suffices to analyze the behavior of

these operators within a single 2D slice, and then extend it to three dimensions.

For a fixed slice k̂ ∈ [1, n], we first define the row vectors D
(k̂)
h;ij, D

(k̂)
v;ij ∈ R1×n2

such that

D
(k̂)
h;ijxk̂ := Dh;ijk̂X, (5.11a)

D
(k̂)
v;ijxk̂ := Dv;ijk̂X, (5.11b)

where xk̂ ∈ Rn2
represent the image vector for fixed slice k̂. We can now express f̂Tij

for a fixed slice k̂ as

f̂Tij =
1

2
(

∥∥∥∥∥
[
D

(k̂)
h;ij

D
(k̂)
v;ij

]
xk̂

∥∥∥∥∥
2

2

− T 2
ijk̂

),

=
1

2
(‖D̂ijxk̂‖

2
2 − T 2

ijk̂
), i, j = 1, . . . , n,

(5.12)

where

[
D

(k̂)
v;ij

D
(k̂)
v;ij

]
= D̂ij. Note, D̂ij has a dependence on k̂, but for readability will leave

off this distinction. Expanding (5.12) gives

fTijk̂ =
1

2
(‖D̂ijxk̂‖

2
2 − T 2

ijk̂
),

=
1

2
((D̂ijxk̂)

T (D̂ijxk̂)− T
2
ijk̂

),

=
1

2
(xT

k̂
D̂T
ijD̂ijxk̂ − T

2
ijk̂

), i, j = 1, . . . , n.

(5.13)
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Recall we wish to find
∑

ijk̂
1

f̂Tij (z)
∇f̂Tij(z) for fixed slice k̂. Before computing this we

will define a new function ψ(y) = yTMy for some square matrix M and vector y. We

can compute the gradient as follows

∂ψ

∂yk
=

n∑
i=1

n∑
j=1

mij
∂(yiyj)

yk

=
n∑
i=1

n∑
j=1

mij(δikyj + yiδjk)

=
n∑
i=1

n∑
j=1

mijδikyj +
n∑
i=1

n∑
j=1

mijyiδjk

=
n∑
j=1

mkjyj +
n∑
i=1

mikyi

= (My)k + (MTy)k

⇒ ∇ψ(y) = (M +MT )y, (5.14)

where δij is the Dirac δ-symbol, i.e. δij = 1 for i = j and 0 otherwise. Thus, using

(5.14) and M = D̂T
ijD̂ij we can write

∑
ij

1

f̂Tij(z)
∇f̂Tij(z) =

∑
ij

1

f̂Tij(z)

D̂T
ijD̂ijxk̂

−Tijk̂δ̂ij

 ,
=

D̂T
h F̂
−1
t D̂hxk̂ + D̂T

v F̂
−1
t D̂vxk̂

−F̂−1
t t

 ,
(5.15)

where δ̂ij ∈ Rn2
is a vector that is 1 in the ijth entry and zero elsewhere, and F̂−1

t =

diag(1� f̂T ), where f̂T ∈ Rn2
contains the fTijk̂ elements listed in the lexicographical

order according to their ijk̂ indices. The � notation is used to indicate that element-

wise division, i.e. given vectors x and y, (x� y)i = xi
yi

.
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Lastly, D̂h, D̂v ∈ Rn2×n2
are comprised of the row vectors D

(k̂)
v;ij and D

(k̂)
v;ij, for

i, j = 1, · · · , n, also listed in lexicographical order. Based on this ordering, and the

definition of the vectors in (5.18a) and (5.18b), we can express

D̂h = B̂ ⊗ In, (5.16a)

D̂v = In ⊗ B̂, (5.16b)

where

B̂ =



−1 1

. . . . . .

−1 1

0 0


∈ Rn×n, (5.17)

and ⊗ denotes the Kronecker product. We are now ready to expand our analysis to

the tubal direction. We define the row vectors Dh;ijk, Dv;ijk, Dt;ijk ∈ R1×n3
such that

Dh;ijkx := Dh;ijkX, (5.18a)

Dv;ijkx := Dv;ijkX, (5.18b)

Dt;ijkx := Dt;ijkX. (5.18c)

Using the results from (5.16a) and (5.16b), we define

Dh =



D̂h

D̂h

. . .

D̂h


= In ⊗ D̂h, Dv =



D̂v

D̂v

. . .

D̂v


= In ⊗ D̂v,

(5.19)
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where Dh, Dv ∈ Rn3×n3
. We are able to do this because the horizontal and vertical

finite differences do not interact between slices. Therefore, all we need now is to

define the n3 × n3 matrix Dt that computes the tubal finite differences. Since these

are the differences of the same Xijk pixel from slice to slice, we can write Dt as

Dt = B̂ ⊗ In2 , (5.20)

where B is defined in (5.17). By similar analysis for a fixed slice k̂, we can now write

∑
ijk

1

fTijk(z)
∇fTijk(z) =

DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+DT

t F
−1
t Dtx

−F−1
t t

 . (5.21)

where F−1
t = diag(1 � fT ), fT ∈ Rn3

contains the elements of fTijk , and we are

highlighting the impacts of the tubal difference operator in blue color. This is done

to contrast the differences from the 2D case, and will continue this convention in

subsequent chapters.

We now turn our attention to computing 1
fε(z)
∇fε(z) in (5.8). For ease of im-

plementation we will note that, A(X) is equivalent to a matrix-vector multiplication,

Ax, if we formally write Ax := (A(X))(:). Similarly we can compare this resulting

vector, Ax to the observations in vector b := B(:). Using this implementation and

the fact that fε only depends on x, we will first expand the equivalent fε expression

as

‖Ax− b‖2
2 − ε = (Ax− b)T (Ax− b)− ε

= xTATAx− xTAT b− bTAx+ bT b− ε

= bT b− 2AT bx+ xTATAx− ε. (5.22)
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Now applying (5.14) to (5.22) with M = ATA, we get

∇(‖Ax− b‖2
2 − ε) = −2AT b+ (ATA+ (ATA)T )x

= −2AT b+ 2ATAx

= 2AT (Ax− b)

= 2AT r, (5.23)

where r = Ax − b is the residual. We can now apply the factor 1
2

from (5.8), and

deduce

1

fε(z)
∇fε(z) =

1

fε(z)

AT r
0n3

 , (5.24)

where 0n3 ∈ Rn3
and AT is equivalent to applying the transpose operation of A. We

will denote this as

AT r := (AT (R))(:), (5.25)

where AT : Rn×n 7→ Rn×n and R = A(X)−B.

We are now ready to express gz for our MRI reconstruction problem. Substi-

tuting the results of (5.21) and (5.24) into (5.8), we find the gradient of the objective

function is
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gz = c0 +
1

τ

[∑
ijk

1

−fTijk(z)
∇fTijk(z) +

1

−fε(z)
∇fε(z)

]

=

[
0n3

1n3

]
+
−1

τ

([DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+DT

t F
−1
t Dtx

−F−1
t t

]
+

1

−fε

[
AT r

0n3

])
=
−1

τ

[
DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+DT

t F
−1
t Dtx+ 1

fε
AT r

−τ1n3 − F−1
t t

]
.

(5.26)

5.3 Hz

In order to compute the Hessian in (5.9), we need to express four quantities:

1.
∑

ijk
1

fTijk (z)2
∇fTijk(z)[∇fTijk(z)]T

2.
∑

ijk
1

−fTijk (z)
∇2fTijk(z)

3. 1
fε(z)2
∇fε(z)[∇fε(z)]T

4. 1
−fε(z)∇

2fε(z)

Since we already have an expression for
∑

ijk
1

−fTijk (z)
∇fTijk(z) and 1

−fε(z)∇fε(z)

we will begin finding quantities 1 and 3 from the list above. First let’s use expression

(5.21) to get

∑
ijk

1

fTijk(z)2
∇fTijk(z)[∇fTijk(z)]T =

 x̂

−F−1
t t

[x̂T −F−1
t tT

]
, (5.27)
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where x̂ = DT
hF
−1
t Dhx + DT

v F
−1
t Dvx + DT

t F
−1
t Dtx. Notice the top left block of the

resulting matrix in (5.27) is given by

x̂x̂T

= (DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+DT

t F
−1
t Dtx)(xTDT

hF
−1
t Dh + xTDT

v F
−1
t Dv + xTDT

t F
−1
t Dt)

= DT
hF
−1
t Dhxx

TDT
hF
−1
t Dh +DT

hF
−1
t Dhxx

TDT
v F
−1
t Dv +DT

hF
−1
t Dhxx

TDT
t F
−1
t Dt

+DT
v F
−1
t Dvxx

TDT
hF
−1
t Dh +DT

v F
−1
t Dvxx

TDT
v F
−1
t Dv +DT

v F
−1
t Dvxx

TDT
t F
−1
t Dt

+DT
t F
−1
t Dtxx

TDT
hF
−1
t Dh +DT

t F
−1
t Dtxx

TDT
v F
−1
t Dv +DT

t F
−1
t Dtxx

TDT
t F
−1
t Dt

= BF−2
t BT , (5.28)

where B = DT
hΣh + DT

v Σv + DT
t Σt and Σh = diag(Dhx), Σv = diag(Dvx) and

Σt = diag(Dtx). Similarly, we see the top right block of the matrix in (5.27) can be

written as

−x̂F−1
t tT = −(DT

hF
−1
t Dhx+DT

v F
−1
t Dvx+DT

t F
−1
t Dtx)F−1

t tT

= −BT̃F−2
t ,

(5.29)

where T̃ = diag(t) and F−2
t = diag(1 � f 2

T ). It is obvious we can now write the

remaining blocks of the matrices

∑
ijk

1

f 2
Tijk

∇fTijk(z)[∇fTijk(z)]T =

 BF−2
t BT −BT̃F−2

t

−F−2
t T̃BT F−2

t T̃ 2

 . (5.30)

Now we will examine how to express 1
fε(z)2
∇fε(z)[∇fε(z)]T . Recall 1

fε(z)
∇fε(z) from

(5.24), and plug it in to get
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1

f 2
ε (z)
∇fε(z)[∇fε(z)]T =

1

f 2
ε (z)

AT r
0

[rTA 0

]

=
1

f 2
ε (z)

AT rrTA 0

0 0

 .
(5.31)

All that remains to finish computing the Hessian, Hz, is
∑

ijk
1

−fTijk (z)
∇2fTijk(z) and

1
−fε(z)∇

2fε(z). Observe the Hessian is the Jacobian of the gradient. Thus, given

φ(y) = yTMy, we apply (5.14) to the gradient ∇φ = (M + MT )y, and see the

Hessian is ∇2φ = MT +M . Using this fact we get

∑
ijk

1

−fTijk(z)
∇2fTijk(z) =

DT
h (−F−1

t )Dh +DT
v (−F−1

t )Dv +DT
t (−F−1

t )Dt 0

0 F−1
t

 ,
(5.32)

and

1

−fε(z)
∇2fε =

1

−fε(z)

ATA 0

0 0

 . (5.33)

Recall ATAx = (AT (A(X)))(:), but for consistency of notation we will use ATA in

writing the Hessian. We now have all the information we need to find the Hessian.

Using the expressions from (5.30), (5.31), (5.32), and (5.33) to put into (5.9) shows
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Hz =
1

τ

[∑
ijk

1

fTijk(z)2
∇fTijk(z)(∇fTijk(z))T +

∑
ijk

1

−fTijk(z)
∇2fTijk(z)

+
1

fε(z)2
∇fε(z)(∇fε(z))T +

1

−fε(z)
∇2fε(z)

]

=
1

τ

( BF−2
t BT −BT̃F−2

t

−F−2
t T̃BT F−2

t T̃ 2

+

DT
h (−F−1

t )Dh +DT
v (−F−1

t )Dv +DT
t (−F−1

t )Dt 0

0 F−1
t


+

f−2
ε AT rrTA 0

0 0

+

−f−1
ε ATA 0

0 0

)

=
1

τ

 H11 −BT̃F−2
t

−F−2
t T̃BT F−2

t T̃ 2 + F−1
t

 , (5.34)

where

H11 = BF−2
t BT +DT

h (−F−1
t )Dh +DT

v (−F−1
t )Dv +DT

t (−F−1
t )Dt

+ f−2
ε AT rrTA− f−1

ε ATA.

(5.35)

In order to simplify notation, we will define

Σ12 = −T̃F−2
t , (5.36a)

Σ22 = F−2
t T̃ 2 + F−1

t , (5.36b)

and thus

Hz =
1

τ

 H11 BΣ12

Σ12B
T Σ22

 . (5.37)
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5.4 Reduce the System

Now that we have the 3D expressions for gz and Hz stated in (5.26) and (5.37),

each step of the Newton method needs to solve a large scale system. Substituting

(5.26) and (5.37) in (5.10) yields

 H11 BΣ12

Σ12B
T Σ22


∆x
∆t

 =

DT
hF
−1
t Dhx+DT

v F
−1
t Dvx+DT

t F
−1
t Dtx+ f−1

ε AT r

−τ − F−1
t t


:=

w1

w2

 .
(5.38)

Here we have defined w1 and w2 to make the following computations more readable.

In order to reduce the system of equations, we eliminate ∆t in Equation (5.38). Notice

Σ12B
T∆x+Σ22∆t = w2 ⇒ ∆t = Σ−1

22 (w2 −Σ12B
T∆x). (5.39)

Using this, we reduce the system of equations as follows

H11∆x+BΣ12∆t = w1

=⇒ H11∆x+BΣ12[Σ−1
22 (w2 −Σ12B

T∆x)] = w1

=⇒ H11∆x+BΣ12Σ
−1
22 w2 −BΣ12Σ

−1
22 Σ12B

T∆x = w1

=⇒ (H11 −BΣ2
12Σ

−1
22 B

T )∆x = w1 −BΣ12Σ
−1
22 w2

=⇒ Ĥ11∆x = ŵ1, (5.40)

where ŵ1 = w1 − BΣ12Σ
−1
22 w2 and Ĥ11 = H11 − BΣ2

12Σ
−1
22 B

T . However, in order

to implement this, we can expand Ĥ11 and get a more simple expression in order to

coding of the problem easier. Notice the following expansion for Ĥ11:
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Ĥ11 = H11 −BΣ2
12Σ

−1
22 B

T

= BF−2
t BT +DT

h (−F−1
t )Dh +DT

v (−F−1
t )Dv + f−2

ε AT rrTA− f−1
ε ATA

−BΣ2
12Σ

−1
22 B

T

= (DT
hΣh +DT

v Σv +DT
t Σt)F

−2
t (DT

hΣh +DT
v Σv +DT

t Σt)
T

+DT
h (−F−1

t )Dh +DT
v (−F−1

t )Dv +DT
t (−F−1

t )Dt + f−2
ε AT rrTA− f−1

ε ATA

− (DT
hΣh +DT

v Σv +DT
t Σt)Σ

2
12Σ

−1
22 (DT

hΣh +DT
v Σv +DT

t Σt)
T

= (DT
hΣh +DT

v Σv +DT
t Σt)F

−2
t (ΣδhDh +ΣvDv +ΣtDt)

+DT
h (−F−1

t )Dh +DT
v (−F−1

t )Dv +DT
t (−F−1

t )Dt + f−2
ε AT rrTA− f−1

ε ATA

− (DT
hΣh +DT

v ΣvD
T
t +DT

t Σt)Σ
2
12Σ

−1
22 (ΣδhDh +ΣvDv +ΣtDt)

= DT
hΣδhF

−2
t ΣδhDh +DT

hΣδhF
−2
t ΣvDv +DT

hΣδhF
−2
t ΣtDt

+DT
v ΣvF

−2
t ΣδhDh +DT

v ΣvF
−2
t ΣvDv +DT

v ΣvF
−2
t ΣtDt

+DT
t ΣtF

−2
t ΣδhDh +DT

t ΣtF
−2
t ΣvDv +DT

t ΣtF
−2
t ΣtDt

+DT
h (−F−1

t )Dh +DT
v (−F−1

t )Dv +DT
t (−F−1

t )Dt + f−2
ε AT rrTA− f−1

ε ATA

−DT
hΣδhΣ

2
12Σ

−1
22 ΣδhDh −DT

hΣδhΣ
2
12Σ

−1
22 ΣvDv −DT

hΣδhΣ
2
12Σ

−1
22 ΣtDt

−DT
v ΣvΣ

2
12Σ

−1
22 ΣδhDh −DT

v ΣvΣ
2
12Σ

−1
22 ΣvDv −DT

v ΣvΣ
2
12Σ

−1
22 ΣtDt

−DT
t ΣtΣ

2
12Σ

−1
22 ΣδhDh −DT

t ΣtΣ
2
12Σ

−1
22 ΣvDv −DT

t ΣtΣ
2
12Σ

−1
22 ΣtDt

= DT
h (Σ2

δhΣb − F−1
t )Dh +DT

v (Σ2
vΣb − F−1

t )Dv +DT
t (Σ2

tΣb − F−1
t )Dt

+DT
h (ΣδhΣvΣb)Dv +DT

h (ΣδhΣtΣb)Dt +DT
v (ΣδhΣvΣb)Dh +DT

v (ΣvΣtΣb)Dt

+DT
t (ΣδhΣtΣb)Dh +DT

t (ΣvΣtΣb)Dv + f−2
ε AT rrTA− f−1

ε ATA,

(5.41)

where Σb = F−2
t −Σ2

12Σ
−1
22 .
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Notice the tubal finite difference operator added a total of six extra terms in

order to account for the interaction of the three gradient directions. Three dimensional

systems can now be solved in the same way as the 2D systems using this new Ĥ11

which is expressed as

Ĥ11∆x = ŵ1 (5.42)

Applying this method to a 128× 128× 128 image, we obtain the following results in

Figure 5.1.

Figure 5.1. Results of slice 87. Left: Mask; Center: Input Image; Right: Recovered
Image.
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In Figure 5.1, the 20% sample scheme was one of many tried on the 3D image

data. We will see how the SparseMRI, `1-Magic and the 3DIRECT methods compare

against each other when run under the same sample schemes.

5.5 Efficiency Improvements

In addition to processing a 3D image all at once vs. slice by slice, further

improvements were made to the code that was originally provided for the 2D case in

[8]. In this code there were two major things we attempted to improve upon. These

are the speed of the large matrix multiplications that occur when applying Dh and

Dv, and improving CG stopping criteria.

It was observed that the CG method in [8] used to solve Ĥ11x = ŵ1, always

achieved the preset maximum number of iterations, and often times had large residual

errors when it was stopped. This typically implies our linear operator has a large

condition number. For our specific problem we have condition numbers on the order

of 1017 which implies our systems are numerically singular. There were several ideas

we tried to improve convergence, including:

• Regularization,

• Preconditioning.

Regularization is a popular method for helping solve ill-conditioned least squares

problems. Instead of solving the system Ax = b, it attempts to solve the following

minimization problem

min
x
‖Ax− b‖2 + ρ‖x‖2,

where the constant ρ > 0 depends on the specific problem being solved [58]. This

formulation attempts to solve the least squares problem while penalizing solutions

with high norms. For our purposes, we selected various values for ρ ∈ [10−10, 10−2],

50



but saw no improvement in the image quality or resolution of detail in the image.

Next, we tried implementing a preconditioner. A preconditioner attempts to solve an

equivalent system whose condition number is usually made close to 1, as

M−1Ax = M−1b,

where the preconditioner M is symmetric positive definite [58]. There are several

predconitioner matrices one can choose from. The most simple is M = diag(A).

Recall for the MRI application, Ĥ11 depends on A which is a linear operator that is

dependent upon the mask chosen to subsample the k-space. Thus we need a way to

approximate diag(Ĥ11). To do this we first simplify (5.41) to

Ĥ11 = D + f−2
ε AT rrTA− f−1

ε ATA, (5.43)

where

D = DT
h (Σ2

δhΣb − F−1
t )Dh +DT

v (Σ2
vΣb − F−1

t )Dv

+DT
h (ΣδhΣvΣb)Dv +DT

v (ΣδhΣvΣb)Dh.

(5.44)

By its construction, finding diag(D) := Λ is straightforward. Also notice,

diag(f−2
ε AT rrTA) = f−2

ε (AT r) 2 ∈ Rn×1

is also easy to handle, where given a vector y, y 2 indicates to square the entires, i.e.

(y 2 )i = y2
i . Thus the approximation portion comes from the term f−1

ε ATA.

We know from the MRI application A is the matrix representation of A which

is a sparse Fourier Transform operator. It exists, but usually not explicitly written

down and stored. The fully sampled operator is orthogonal thus ATA = I. At the
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other extreme none of the samples are kept, and then the diagonal of ATA contributes

nothing to Ĥ11. So we take

diag(Ĥ11) ≈ Λ+ f−2
ε diag((AT r) 2 )− f−1

ε kI, (5.45)

is likely a decent approximation for the diagonal of Ĥ11, where k is an integer from

1 to n2 corresponding to the number of sampled pixels in the k-space. Again, we

found despite the value of k used in recovery process, the numerical solution did not

improve the recovered image quality or error relative to the fully sampled image.

This prompted us to another preconditioner expressed as

M = Λ+ f−2
ε AT rrTA− f−1

ε kI, (5.46)

where we kept the entire portion of the f−2
ε ∇fε(z)∇fTε (z) term as it is of rank 1. We

can find an explicit expression for M−1. First we claim given vectors x and y of same

length

(
I + xyT

)−1

= I − xyT

1 + yTx
, (5.47)

provided 1 + yTx 6= 0. To see this, we observe

(
I + xyT

)(
I − xyT

1 + yTx

)
= I − xyT

1 + yTx
+ xyT − xyTxyT

1 + yTx

= I − −xy
T + xyT + (yTx)xyT − (yTx)xyT

1 + yTx

= I.
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We rewrite M in (5.46) as

M = Λ̂+ αaaT

= Λ̂
(
I + αΛ̂−1aaT

)
,

(5.48)

where α = f−2
ε , a = AT r and Λ̂ = Λ− f−1

ε kI. Using (5.47) and (5.48), we see

(
Λ̂+ αaaT

)−1

=
(
Λ̂(I + αΛ̂−1aaT )

)−1

=
(
I + (αΛ̂−1a)aT

)
Λ̂−1

=
(
I − αΛ̂−1aaT

1 + αaT Λ̂−1a

)
Λ̂−1

= Λ̂−1 − α

1 + αaT Λ̂−1a
(Λ̂−1a)(aT Λ̂−1).

(5.49)

To implement this efficiently, we notice that Λ̂ is a diagonal matrix and it allows us

to write the ratio in (5.49) as

α

1 + αaT Λ̂−1a
=

f−2
ε

1 + f−2
ε

∑
i Λ̂
−1
ii a

2
i

=
1

f 2
ε +

∑
i Λ̂
−1
ii a

2
i

:= κ. (5.50)

Therefor M−1 applied to a vector z is given by

M−1z = Λ̂−1z − κ(Λ̂−1a)(aT Λ̂−1)z, (5.51)

which cost very little to implement. Incorporating the CG method outlined in Sec-

tion 3.1 with the precoditioner (5.51) did not result in significant improvements in

the residual error. This prompted us to check if our approximation for ATA used

in (5.45) was good enough. To do so we ran a problem using a much smaller value

of n, and attempted to solve the system directly by actually constructing the sparse
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Fourier Matrix. This was done by iterating over the n2 basis vectors as shown in

Algorithm 5.2.

Algorithm 5.2 Construct Sparse Fourier Matrix

Output: K ∈ Rn2×n2

1: v = zeros(n2, 1)

2: for i = 1 : n2 do

3: if i = 1 then

4: vi = 1

5: else

6: vi−1 = 0; vi = 1

7: end if

8: K(:,i) = AT (A(v)) note: AT and A are subroutines

9: end for

Using this we then directly constructed Ĥ11 as

Ĥ11 = D + f−2
ε AT rrTA− f−1

ε K, (5.52)

where K is the output of Algorithm 5.2. Then, using MATLAB’s backslash solver

found ∆x by ∆x = Ĥ11\ŵ1. While this method is not practical for implementing on

real world applications, it did reveal that the final results achieved by the interior point

method with the log-barrier function were similar to that of the normal, regularized,

and preconditioning methods. Thus, for the MRI application and images tested, it was

observed that running a standard CG method was the best for ease of implementation

and quality reconstruction of the recovered image. Thus, we analyzed the stopping

criterion of the CG method.
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Running various masks and observing the error tolerance returned from the

CG method showed, the lower bound for the error was of the order of O(10−3). Thus

we changed to stopping tolerance from O(10−8) as used by `1-Magic, to something

more in line with the observed error for MRI image recovery. Also `1-Magic checks

CG resolution expressed as
‖r(i)‖
‖r(0)‖

, and if its greater than 1
2
, it returns to the previous

CG iterate and continues the Newton iterations. However, we noticed this did not

improve the recovered image quality. Thus we implemented a flag to check when this

condition happens, and then stop the remaining Newton iterations based on the CG

resolution being larger then the 1
2

threshold. Both these changes resulted in fewer CG

and Newton iterations with similar recovered image quality as seen when allowing

maximum iterations to be obtained using more stringent stopping but unrealistic

criteria. Hence we obtained similar results quicker then `1-Magic.

Next, we spent time focusing on how to speed up the calculations themselves.

The slowest lines of code are the application of the finite difference matrices used to

find gz and Hz. The code in [8] chose to implement the discrete gradient matrices as

sparse matrices using MATLAB’s spdiags. This command uses the fact the matrices

Dh and Dv can be more compactly stored in memory as sparse diagonal matrices.

Further, MATLAB can perform matrix multiplication very efficiently using the sparse

matrix array structure it has built in. However, we improved the speed on these

calculations by noticing MATLAB had more efficient built-in functions such as the

diff operator, that, if used intelligently, can improve the speed of these matrix

multiplications dramatically.

An example of implementing a change in the 2D operator given in [8] is

Dv = spdiags([reshape([−ones(n− 1, n); zeros(1, n)], N, 1)...

reshape([zeros(1, n); ones(n− 1, n)], N, 1)], [01], N,N);
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versus our improved implementation

v = [diff(X, 1, 1); zeros(1, n)]; Dv = v(:);

where for a single iteration we see a 98% increase in speed. Similarly for Dh we see

Dh = spdiags([reshape([−ones(n, n− 1); zeros(n, 1)], N, 1)...

reshape([zeros(n, 1); ones(n, n− 1)], N, 1)], [0n], N,N);

in [8] versus

h = [diff(X, 1, 2); zeros(n, 1)]; Dh = h(:);

This benefit is further enlarged by the fact each finite difference matrix is in-

voked multiple times during the iterations. Assuming we run one iteration of the

2D interior point method with log-barrier function, we have to perform 12 matrix

multiplications per one complete call.

To see the timing benefits from intelligent use of built-in MATLAB function

calls, we collected statistics for a 512 × 512 MRI reconstruction application. The

averages are reported in Table 5.1 and 5.2.

Method
Total Number of Average Iterations for

Total Mult.
Appl. of Dv and Dh 2D MRI Method

Log Barrier 4 16 64
Newton 6 60 360
CG 2 20 40
Total 12 96 464

Table 5.1. Average Number of Observed Iterations for 512×512 2D MRI Application
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Method Total Mult.
Original Times (s) Improved Times (s)
Dh Dv Dh Dv

1.3× 10−1 1.3× 10−1 1.0× 10−3 1.9× 10−3

Log Barrier 64 8.32 8.32 0.064 0.122
Newton 360 46.8 46.8 0.36 0.684
CG 40 5.2 5.2 0.04 0.076
Total 464 60.32 60.32 0.464 0.882

Table 5.2. Timing Benefits for 512× 512 2D MRI Application. Note the times under
the finite difference operators in the header row, indicate the time to run one instance
of said operator.

Based on these results, we reduced the overall computation time by almost 2

mins for the 2D MRI application which typically can run 4.5 minutes using a 17%

sample scheme on a 512 × 512 image; that’s nearly twice as fast. Obviously the

amount of speed improvement is application dependent, but it is clear our efficiencies

in implementation of the finite difference matrices is a vast improvement over sparse

matrix multiplication.

It should be noted that although we included timing for the 2D case, these

benefits are further magnified when we move to the 3D case. We implemented all three

finite difference matrices via function calls using MATLAB’s diff command. The

function calls are much more efficient and therefore used in collecting the numerical

results later in Chapter 6.
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CHAPTER 6

NUMERICAL RESULTS

In this chapter we focus on the results of recovering a 3D brain image from

subsampled data in the k-space. We will discuss how the simulation is initialized,

metrics used for image comparison, and provide simulation results for different sample

schemes:

• Symmetric Low Frequency Sample Scheme,

• 2D Favorable Sample Scheme Using 15% 2D Peak FFT Bins,

• 3D Favorable Sample Scheme Using 15% 3D Peak FFT Bins,

• 2D vs. 3D Favorable Peaks for Varying Sampling Percentages,

• A Practical 2D Sample Scheme Implementation,

• A Practical 3D Sample Scheme Implementation, and

• A Comparison of 2D and 3D Practical Schemes.

6.1 Initialization

The image data that will be presented here was provide by University of Texas

Southwestern Medical Center1. It is a 3D brain image that was collected in 2010. The

image contains 128 × 128 × 128 complex data that was fully sampled in the k-space.

While this is not normally collected in practice, it allows for us to subsample the

data under different schemes, and observe the impact on image recovery. Figure 6.1

demonstrates how this initialization of data is done.

1A special thank you to Dr. Jian-xiong Wang of UT Southwestern Medical Center for providing
the image data.

58



Figure 6.1. A demonstration of how fully sampled simulation data is subsampled to
provide the starting image, or `2 image, for testing reconstruction methods.
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The observed image and its subsampled k-space measurements are the initial

data for each of the methods. We will now briefly discuss the structure of our simu-

lation.

Our simulation was developed in MATLAB. It initializes images to be tested,

provides a selection of various sample schemes, and then invokes each of the three

methods: SparseMRI, `1-Magic, and 3DIRECT. It then provides various plots of

different image metrics, and displays the recovered images. The image metrics will

be discussed in Section 6.2. Both SparseMRI and `1-Magic were downloaded and

installed from their respective sources, and then modified to iterate over a 3D image.

SparseMRI was developed by Michael Lustig and his collaborators. The code

was developed and implemented in MATLAB based on the algorithms described in

[34]. This code can be downloaded from:

people.eecs.berkeley.edu/~mlustig/Software.html.

The main script that was modified to handle the 3D brain image to run slice

by slice is demo_2D.m. This script uses the complex k-space data as its initial data.

This is because demo_2D.m was written to solve (4.1) in the form

min
z∈Rn
‖A(C−1z)− b‖2

2 + λ‖z‖1, (6.1)

where z = Cx. Contrastingly, `1-Magic uses the image data, which is purely real,

as its input. Similarly, this method was also modified to run slice by slice. It was

developed by Candes, Tao, Romberg and their collaborators, and is also implemented

in MATLAB. It contains several convex optimization routines including the standard

interior point method. This code can be downloaded from:

statweb.stanford.edu/~candes/software.html.
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The main function modified here to handle the 3D image slice by slice is

tvqc_2Dexample.m. Again it was setup to run each slice of the 3D data and re-

port out the results.

The 3DIRECT method was based on extending and improving the following

functions and subfunctions from `1-Magic:

• tvqc_2Dexample.m: main function,

• A_fhp.m: performs inverse transformation of A,

• A_f.m: performs transformation of A,

• tvqc_logbarrier.m: sets up log-barrier iterations,

• tvqc_newton.m: runs Newton Iterations,

• cgsolve.m: runs CG iterations,

• TVdiff.m: calculates total variation, and

• H11.m: calculates Ĥ11z.

By modifying the above functions to implement the 3DIRECT method, a new

suite of MATLAB functions were created. 3DIRECT also uses the real image data as

its input. We will next discuss the image metrics used for comparing the recovered

images of each of the methods.

6.2 Image Comparison Metrics

Comparing two images is rather subjective. However, recent researchers have

proposed some metrics to try and help quantify how similar two images are. One

such metric is peak signal-to-noise ratio (PSNR). It measures the difference between

a signal’s maximum power and its noise floor. It is typically expressed in units of

decibels where a higher PSNR typically indicates a better image reconstruction. We

say typically, because ultimately human perception is the deciding factor on how two

images compare [30].
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Given an m× n 2D image X and Y , we first compute the mean squared error

(MSE) as

MSE =
1

n ·m

m∑
i=1

n∑
j=1

(X(i, j)− Y (i, j))2. (6.2)

PSNR is defined as

PSNR = 10 · log10

( I2
max

MSE

)
, (6.3)

where I2
max is maximum possible pixel value of the image on Y . Another popular

metric is the structural similarity index (SSIM). SSIM was developed to improve

upon the deficiencies of PSNR [56, 57]. The SSIM measure between two images, , X

and Y , of the same size is given by

SSIM(X, Y ) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (6.4)

where

• µx is the average of window size l of X which moves pixel-by-pixel over the

entire image,

• µy is the average of window size l of Y which moves pixel-by-pixel over the

entire image,

• σ2
x is the variance of X,

• σ2
y is the variance of Y ,

• σxy is the covariance of X and Y , and

• c1 = (k1L)2, c2 = (k2L)2 are stabilization variables for weak denominator, where

L is the dynamic range of pixel values and k1 = 0.01, k2 = 0.03.

The code for SSIM can be downloaded from

www.mathworks.com/matlabcentral/answers/9217-need-ssim-m-code
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The last metric used to compare images is human perception. Despite what

PSNR or SSIM indicates, the user gets the final say in how well a reconstructed

image appears. This will become clear when looking at a few recovered images, and

their metrics.

6.3 Sample Scheme: Symmetric Low Frequency Bins

The symmetric low frequency sample scheme allows us to reasonably assure the

methods recover the images as expected. This scheme grabs the low frequency bins

symmetrically about the zero frequency bin or direct current (DC) bin. It is called

the DC bin because it represents the DC voltage offset when looking at a 1D signal in

signal processing. It allows a comparison of the three methods performances under the

similar starting starting images. This is because the symmetry of the sample scheme

allows similar frequency components to be sampled, and these sampled frequencies

correspond to the main image structure and don’t include noise or fine details which

can make recovery more challenging.

The subsampled image shown in this section is for a 10.26% mask, which is a

square centered in each slice, whose sides measure 41 bins long (i.e. 41/128 = .1026).

In Figure 6.2, the PSNR results of the starting image and the recovered image for

each method are shown.

When examining the results, we note that the legend indicating the solid line

with square markers, labeled `2 for each of the methods, is the PSNR of the input

image. The dotted lines with the triangle markers are the PSNR values of the recov-

ered image. Ideally the dotted line should be above the solid line if the algorithm

improved upon the image. Based on this, SparseMRI did not improve the PSNR,

despite all three methods starting out with similar PSNR for the starting or `2 image.

63



This is due to the fact that SparseMRI has been observed to require about 40% or

higher sampling rates to get good quality in its recovered image.
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Figure 6.2. PSNR of Initial `2 Image vs. PSNR of Reconstructed Image using Sym-
metric Low Frequency Bins. Large PSNR should correspond to better image quality.
Thus, based on these results, the SparseMRI method did not do a good job recovering
the image `1-Magic and 3DIRECT have similar performance.

In addition SparseMRI and `1-Magic slightly differ in PSNR for the `2 image.

This is because of the way the methods instantiate their sparse 2D Fourier Trans-

form operator. Since SparseMRI tries to minimize the ‖ · ‖1-norm under a wavelet
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transformation in the k-space, it retains complex data. Contrastingly, `1-Magic tries

to minimize over total variation in the image domain, thus it uses the real part of the

k-space spectrum. Because the test data set we have was collected in the complex k-

space, there is some energy contained in the complex data, hence the slight difference

in the PSNR of the starting images for the 2D methods.

Figure 6.2 verifies that the 2D methods and 3DIRECT returned similar PSNR

for the recovered image. This was the goal: to verify the new 3DIRECT method

agrees with the well-accepted `1-Magic method under a symmetric low frequency

sample scheme. This agreement is also reenforced by the fact that the SSIM values

for the two methods are very similar, as seen in Figure 6.3.

We also observed in Figure 6.3, that Sparse MRI has the highest SSIM of

its `2 starting image. This is due to how this method implements its 2D Fourier

Operator. Unlike, `1-Magic and 3DIRECT, who subsample the complex k-space and

then return the real portion of the inverse Fourier operator for the image domain,

SparseMRI returns the absolute value of the complex subsampled k-space inverse

Fourier Transform. Because of this, it retains some additional information stored in

the k-space. However, the recovery results of SparseMRI suffer from low sampling

percentage, making the SSIM of the recovered image worse than its starting image.
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Figure 6.3. SSIM using DC Bins. Higher SSIM should mean the image is closer in
structure to the original image. Again, by selecting symmetric bins around the DC
bin, we have verified the implementation and similar performance of the methods.

We note that again SparseMRI did not do a good job in recovering the image

based on its lower SSIM of the recovered image, and suffered at the end slices. Lastly,

we use the human perception metric to indeed verify the indications of PSNR and

SSIM. For reference, slices 10 and 87 are picked as arbitrary slices for plotting.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.4. Recovered image using DC Bins (slice 20). With PSNR and SSIM in
agreement, the last metric we use to validate performance is human perception. `1-
Magic and 3DIRECT most closely resemble the original image, where SPARSE MRI
loses structural detail and background information, which confirms the SSIM results.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.5. Recovered image using DC Bins (slice 87). With PSNR and SSIM in
agreement, the last metric we use to validate performance is human perception. As
shown here, all the methods have similar recovered images which is in agreement with
the SSIM results.

The results in Figures ??, 6.4 and 6.5 do confirm `1-Magic and 3DIRECT per-

form on par with one another when attempting to recover the images main structure

without noise and fine image details contained in the higher frequencies. It also shows

SparseMRI’s weakness to low sampling rates, and that SSIM is a sensitive measure

used to indicate performance. Lastly, it indicates that just grabbing 10% of the fre-
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quency bins around the DC bin is a poor sampling scheme. This begs the question:

what’s the best sampling scheme? While there is a lot of research in this area, we

will briefly touch on it in the next two subsections.

6.4 Sample Scheme: 15% of 2D Peaks

The importance of the peak FFT bin cases is that they give an idea of how

good the methods can perform if dominant information is kept by the mask. These

sample schemes are not practical to implement as it would require knowing all the

data in the k-space in order to determine which bins to keep. However, it gives the

reader an idea for how many samples must be kept in order to get good results.

The purpose of the 15% of 2D Peaks sample scheme is to examine how well each

algorithm performs under a scheme that retains the maximum amount of information

under a specified percentage for the 2D slice by slice approach used by the `1-Magic

and SparseMRI. The mask for this scenario was generated by performing a 2D FFT

of each slice of the fully sampled data, and then grabbing the top 15%, in magnitude,

of all the n2 Fourier samples per slice, giving an overall sampling rate of 15% for

the 3D image. While this is not possible in practice, our simulation has access to a

fully sampled data set which allowed us to a priori determine how the FFT energy is

spread when no subsampling is done.

Selecting the top magnitude bins of each slice represents where most of the

images data is stored. For the slice by slice approach, this meant the samples were

concentrated in the middle of each slice unless the slice contained little to no brain

cross-section, and then the samples got distributed across the slice as one would

expect with background noise. This result is observed in Figure 6.6.
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Figure 6.6. 15% of 2D FFT Peak Bins. By selecting the top 15% of the n2 2D FFT
bins per each slice, we are keeping the maximum amount of information in the k-space
given a specified sampling rate using a 2D sample scheme. It is expected that this
bin selection will allow this sample scheme to favor the 2D methods.

With the sample scheme in hand, each method was then run using their 2D and

3D FFT methods accordingly, keeping the bins as indicated from Figure 6.6. This

means for 3DIRECT, that bins in the mask correspond to 2D frequencies for each

slice, however, when selecting those equivalent bin locations after performing a 3D

FFT, there is now tubal frequency information as well. While this is unfavorable to

3DIRECT, we perform this case to see how well the 2D methods can perform at a

15% sample scheme. It was observed that SparseMRI suffered from using the absolute

value of the subsampled k-space, and thus had poor initial images. Using this sample

scheme each method’s `2 result for slice 87 and 25 are captured in Figure 6.7 and 6.8.

These slices were picked arbitrarily for comparison purposes.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.7. Initial `2 image using 15% of 2D FFT Peak Bins (slice 87). As expected
the starting image for `1-Magic has the clearest picture. This is because the 15%
of the bins selected, were based on its linear operator. 3DIRECT suffers from some
blurring of the image, and SparseMRI has poor results.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.8. Initial `2 image using 15% of 2D FFT Peak Bins (slice 25). 3DIRECT
still captures some of the image and the end slices, but suffers from noise.

These results are used as the initial guesses for each method respectively. Notice,

SparseMRI has several noisy samples. `1-Magic has the best results as expected since

this peak sample scheme was designed around its method. Lastly, the 3DIRECT

method suffers from smearing of the image and noise at the end slices. This is

because the 2D peaks partially coincide with the 3D peaks but miss key parts of the

data. This will be obvious later when we see how the peak energy of the 3D FFT

spreads.
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Another way to view the `2 results is to analyze the PSNR of the image. Recall

PSNR gives a measure of how well the image compares to the original data. Figure 6.9

shows how each of the slices of the image above compare to the fully sampled data.
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Figure 6.9. Comparison of PSNR of the `2 starting image using 15% of 2D FFT Peak
Bins. Large PSNR should correspond to better image quality. The importance of
these results is that it confirms PSNR is not always a good metric. For instance,
we just saw a picture of slice 87 where `1-Magic had the clearest image; however the
PSNR at slice 87 would indicate the `2 images should be similar. It is important to
always rely on human perception.
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The results above would indicate that `1-Magic and SparseMRI has the clearest

results near the end slices, and has comparable results with the 3DIRECT method

for the middle slices. However, when we look back to Figure 6.7, it is clear `1-Magic

is clearly the superior image despite the fact at slice 87 they appear to have similar

PSNR. This is important to understand that PSNR can be a measure for how well

two images compare, but ultimately it is up to human perception. Keeping this in

mind, Figure 6.10 and 6.11 display the reconstructed images.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.10. Reconstructed Image using 15% of 2D FFT Peak Bins (slice 87).
These results show `1-Magic has a noise free image, but suffers from some graini-
ness. SparseMRI was able to improve its image, but not enough to be useful. Finally
3DIRECT was able to minimize the smearing of the image when compared to Fig-
ure 6.7.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.11. Reconstructed Image using 15% of 2D FFT Peak Bins (slice 25). For
the end slices `1-Magic had the best results, while SparseMRI and 3DIRECT suffer
from artifacts in the image.

It is clear that the SparseMRI method did not do a good job recovering the

image at this low sampling percentage. The `1-Magic method obviously did the best

as it had the best starting point. The 3DIRECT method, while able to reduce some

of the noise, is still not a clear image near the end slices, but has comparable results

to `1-Magic in the middles slices. In addition, 3DIRECT has consistent PSNR of
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the recovered images. This is reflected in observing the PSNR of the reconstructed

images in Figure 6.12.
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Figure 6.12. Comparison of Reconstructed PSNR using 15% of 2D FFT Peak Bins.
Large PSNR should correspond to better image quality. Lastly, comparing the recov-
ered image’s PSNRs shows the 2D peak scheme benefited `1-Magic, specifically at the
end slices. Meanwhile, the 3DIRECT method had comparable results in the middle
slices.
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In addition to PSNR and human perception, we can also use SSIM to compare

our image results. Using the method outlined earlier, Figure 6.13 shows the SSIM for

this simulation.

20 40 60 80 100 120

0.3

0.4

0.5

0.6

0.7

0.8

ℓ2 SSIM

S
S

IM
 [

−
1
,1

]

Slice

 

 
SparseMRI

ℓ 1-M agic

3DIRECT

20 40 60 80 100 120

0.2

0.4

0.6

0.8

Reconstructed SSIM

S
S

IM
 [

−
1
,1

]

Slice

 

 

SparseMRI

ℓ 1-M agic

3DIRECT

Figure 6.13. Comparison of Reconstructed SSIM using 15% of 2D FFT Peak Bins.
Higher SSIM should mean the image is closer in structure to the original image. Again,
`1-Magic consistently has the best results under this scheme, while the 3DIRECT
method has comparable recovered images in the middle slices.

The SSIM result further confirms that the 2D peak sample scheme allows the

`1-Magic to have the best performance.
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Overall Observations: Using the 2D peaks as a sample scheme resulted in

`1-Magic consistently providing the clearest image as we expected. The 3DIRECT

method however was able to provide comparable results near the middles slices.

6.5 Sample Scheme: 15% of 3D Peaks

Similarly, to the previous 2D Peak FFT sample scheme, this scheme is in-

tended to show how well the 3DIRECT method can perform. Using MATLAB’s

n-dimensional FFT, a 3D FFT was performed on the fully sampled data set, and

then the top 15% in magnitude of the n3 samples were kept. The results of this is

the mask depicted in Figure 6.14 below.

Figure 6.14. 15% of 3D FFT Peak Bins. The first row shows the location of the
bins and how it varies over the slices. The second row shows what the image in the
corresponding slice above looks like in the image domain. We now select a sample
scheme that should benefit the 3DIRECT method. This scheme performs a 3D FFT
on the data, and keeps the top 15% of the n3 bins.
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Similarly, to the 2D case, the peak 15% samples are concentrated in the middle

of each slice. However, now the majority of the peak bins are located in the center

slices, and more wildly spread apart. This is because the FFT in the tubal dimension

compresses and mixes slices of the image data to the DC bin centered at the middle

of the 128× 128× 128 cube. One might expect, since the data is further compressed,

that more information can be captured within the 15% peak bins. To see this, let’s

examine the `2 results in Figures 6.15 and 6.16. Note, `1-Magic and SparseMRI still

used a 2D FFT, whose subsampling coincides with the results from selecting the top

15% in magnitude of the 3D FFT samples. While, we recognize this is unfair to sample

2D frequency bins based on 3D FFT information, the purpose of this scheme is to

examine how well 3DIRECT can perform using maximal information, and observe the

effects on the 2D methods, where again SparseMRI suffers from using the absolute

value of the complex observations.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.15. Initial `2 image using 15% of 3D FFT Peak Bins (slice 87). As expected
the 3DIRECT method has the clearest starting image.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.16. Initial `2 image using 15% of 3D FFT Peak Bins (slice 10). However, an
interesting observation is that the 3DIRECT method suffers from some noise in the
earlier and later slices.

Figure 6.15 makes it obvious that the 3D peak sample scheme is non-ideal

for the 2D methods during the middle slices, and Figure 6.16 shows the 3D sample

scheme captures the end slices with good image quality. PSNR results are shown in

Figure 6.17. Notice, this is a case where PSNR is a poor metric of how clear an image

appears. It shows SparseMRI has the highest PSNR, however it’s image is illegible.
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Figure 6.17. Comparison of PSNR of the Initial `2 Image using 15% of 3D FFT Peak
Bins. Large PSNR should correspond to better image quality. The results here, show
PSNR is a poor metric for how clear the starting images appear. Thus, we must rely
on human perception.

Thus, we will ignore PSNR as a useful metric for this case and instead examine

the recovered image for an early and middle slice.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.18. Reconstructed Image using 15% of 3D FFT Peak Bins (slice 10). Even
after reconstruction, 3DIRECT still suffers from some noise, while `1-Magic seems to
have clearer results. This is due to mixing of frequencies down the tubal direction.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.19. Reconstructed Image using 15% of 3D FFT Peak Bins (slice 87). In the
middle slices 3DIRECT is clearly the best method to use given the 3D peak scheme.

As expected, the 3DIRECT image is the best in the middle slices and had some

distortion for the end slices. This is due to the fact that the FFT in the tubal direction

mixes the large cross-sections of the brain with the smaller ones. Meanwhile `1-Magic

looks good at the early slices because it benefits from the way the 3D FFT samples

are shifted about zero frequency. When looking at the SSIM metric we get the results

in Figure 6.20.
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Figure 6.20. Comparison of Reconstructed SSIM using 15% of 3D FFT Peak Bins.
Higher SSIM should mean the image is closer in structure to the original image. The
SSIM of the image confirms what we observed earlier. That is, 3DIRECT outperforms
the other 2D methods in the middle slices, and has challenges with mixing of the tubal
frequencies for the end slices.

The recovered SSIM indicates that the 3DIRECT method is clearly all around

better, but slightly trails `1-Magic at the end slices. This is due to the fact that the

3D peak sample scheme using 2D FFT operators samples the end slices at high rates,

resulting in better image recovery.
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Overall Observations: The 3D peak scheme allows the 3DIRECT method

to have superior results. Both the SparseMRI and `1-Magic only benefit at the end

slice due to how the 3D peak FFT frequencies coincide with the 2D frequency bin

locations. It is also clear that the 3DIRECT method is the most resilient when it

comes to selecting 15% peaks as the sample scheme.

6.6 Sample Scheme: 2D vs. 3D Favorable Peaks for Varying Sampling Percentages

Now that we’ve observed the impacts of sampling 2D and 3D peaks, one might

ask: how does a 2D method using a 2D favorable sampling scheme compare to a 3D

method using a 3D favorable sampling scheme? That is what this section aims to do.

Presented here are the results for `1-Magic using the peaks based on the 2D

FFT for a specified percentage. This same percentage is also used to grab the 3D

peaks based on the 3D FFT to be used in 3DIRECT. We used various sampling

percentages, and observed how the SSIM of the recovered image changed.

In Figure 6.21, we display the SSIM of the recovered image for `1-Magic under

different sampling percentages against one another. The same was done for 3DI-

RECT. Both methods saw improvement in SSIM as sampling percentage of the re-

spective peak bins increased. Specifically `1-Magic had consistent SSIM at the slices

near the end of the 3D image despite the sampling percentage. It also had a clear

dip in SSIM and image quality near the middle slices. This is expected as the middle

slices require higher a sampling percentage to capture the image. Further, `1-Magic

had lots of variation in its SSIM.

In contrast, 3DIRECT saw improvement in SSIM for all the slices as sampling

percentage increased. It also did not suffer from the dips in SSIM in the middle

slices as we saw in `1-Magic. This is because the 3D peaks of the FFT contain tubal
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frequency information which provides information on multiple slices, and not just the

slice its kth indices indicates. This also contributes to the smoothness of the SSIM.
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Figure 6.21. 2D vs. 3D Favorable Peaks for Varying Sampling Percentages. SSIM
improves as sampling percentage increases. 3DIRECT has smooth SSIM and benefits
from the multi-slice frequency information encoded in the 3D peak bins. Contrast-
ingly, `1-Magic SSIM suffers in the middle slices due to the fact its 2D peaks require
larger sampling percentages as the image cross-section increases.

We now examine how each of the methods did relative to one another for the

specified sampling percentages in Figure 6.22. It was observed that `1-Magic per-
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formed better at the end slices. This will become obvious later in section 6.8 when we

display the impacts of using the tubal frequencies in the 3DIRECT method. However,

we note here that 3DIRECT outperformed `1-Magic in over 65% of the slices regard-

less of sampling percentage. Further, 3DIRECT also had more consistent SSIM over

the slices making the recovered image quality consistent for the end user. It also had

higher minimum SSIM over `1-Magic minimum SSIM for the recovered image for all

the sampling percentages.
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Figure 6.22. 2D vs. 3D Favorable Peaks for Varying Sampling Percentages. The
SSIM of the recovered image for 3DIRECT is more robust to changing sampling
percentages.

6.7 Sample Scheme: A Practical 2D Implementation

Now that we have examined two sample schemes, although impractical, to un-

derstand the effects of the mask on image recovery, next we will look at one practical

implementation of a 2D sample scheme [24, 26, 51]. The sampling scheme was pro-

posed in [34] and it uses a radial sample scheme which concentrates on collecting 2D
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center frequencies and some other adjacent frequencies [12]. This can be viewed in

Figure 6.23.

Figure 6.23. A Practical 2D Sample Scheme. The white pixels correspond to the
sampled k-space pixels.

The sample scheme in Figure 6.23 was then replicated for each slice, and the

location of the bins to be sampled were stored in the 3D mask. For SparseMRI and

`1-Magic, each method performed 2D FFTs and used the information from the cor-

responding slice in the mask. The 3DIRECT method performed a 3D FFT, and kept

the same samples as specified by mask all at one time. The following reconstructed

images were achieved in Figure 6.24 for slice 87.
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Original SparseMRI

ℓ 1-M agic 3DIRECT

Figure 6.24. Reconstructed Image using 2D Radial Scheme at 17% (slice 87). Both
`1-Magic and 3DIRECT appear to have similar recovered images for this slice.

Clearly SparseMRI did not perform well under this scheme, meanwhile `1-Magic

and 3DIRECT have similar performance. This is because the 2D Radial scheme is

symmetric when doing 2D and 3D FFTs [23]. Thus, both methods start out with the

similar initial `2 images. SSIM for all recovered slices is shown in Figure 6.25.
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Figure 6.25. Comparison of Reconstructed SSIM using 2D Radial Scheme. Higher
SSIM should mean the image is closer in structure to the original image. The SSIM
of the recovered image indicates that `1-Magic and 3DIRECT have similar results for
all slices, which indeed was confirmed in simulation via human perception.

Notice both `1-Magic and 3DIRECT have very comparable results in SSIM and

human perception for every slice. The next logical question is then: which algorithm

achieved the results fastest? To see the answer we examine Figure 6.26.
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Figure 6.26. Timing Comparison of `1-Magic and 3DIRECT using 2D Radial Scheme.
Under this scheme, `1-Magic and 3DIRECT achieved similar results, but 3DIRECT
was 22% faster.

To achieve the results in the Figure 6.26, each optimization method was run

with the same starting conditions 10 times in order to see on average how long each

method took. It is clear that the 3DIRECT method achieved the same results under

the 2D Radial scheme as `1-Magic but was 22% faster in mean and 33% faster in

minimum times for this specific example. As the images get larger, this speed increase

becomes more prominent.
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Overall Observations: `1-Magic and 3DIRECT had comparable results under

a practical 2D sampling scheme. However, 3DIRECT was 22% faster than `1-Magic,

making it a more ideal choice for image recovery.

6.8 Sample Scheme: A Practical 3D Implementation

We will now examine a practical 3D sampling scheme. It’s been observed that

collecting frequencies near DC is important. For the 3D FFT this means concen-

trating our samples near the center of the cube [55]. However, we also know that

the information isn’t completely contained in the DC bins, as the images in the DC

sample scheme lacks some detail. Thus, other frequencies must be included as well.

Unfortunately we don’t know which frequencies those are, so we attempt to imple-

ment a scheme that grabs a majority of the low 3D frequencies as well as some other

frequencies [1, 27, 41]. To do this we use a 3D radial burst whose center starts in the

center of the cube. An example of such a burst is depicted in Figure 6.27.
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Figure 6.27. A Practical 3D Sample Scheme that Concentrates its Samples Near the
3D Lower Frequencies.

During the simulation it was observed that PSNR was not always a good metric

to compare images. Thus, we include here some pictures of the recovered image and

the SSIM results for a 3D radial burst at 17% sampling. Note, SparseMRI and `1-

Magic still performed 2D FFTs per slice, but sampled the bins as indicated by the

corresponding slice of the 3D mask. Again we note this is an unfair mask to apply to

the 2D methods, as it was designed to highlight the 3DIRECT method.
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Figure 6.28. 3D Radial Recovered Image (slice 10). Similar to the 3D peak sample
scheme, the practical 3D scheme causes 3DIRECT to have some mixing in earlier
slices for this particular image.

Note, `1-Magic has a cleaner image than the 3DIRECT, whose tubal frequencies are

causing smearing at the end slices.
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Figure 6.29. 3D Radial Recovered Image (slice 25). By slice 25, 3DIRECT is begin-
ning to outperform the 2D methods.

Notice by slice 25 the `1-Magic and 3DIRECT method have comparable results. `1-

Magic has less background noise but more smearing, and 3DIRECT has more back-

ground noise with more defined edges.
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Figure 6.30. 3D Radial Recovered Image (slice 30). By slice 30, 3DIRECT is clearly
the best image.

By slice 30 it is clear the 3DIRECT method has the best results and the 2D methods

provide poor recovered images.
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Figure 6.31. 3D Radial Recovered Image (slice 87). By the middle slices, 3DIRECT
is able to exploit physical similarities between slices and recover the image with good
quality.

Finally, by the middle slices, the 3DIRECT method has the best recovered image.
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Figure 6.32. 3D Radial Recovered SSIM. Higher SSIM should mean the image is
closer in structure to the original image. The results of SSIM confirm what was seen
in recovered images; that 3DIRECT has superior image quality from slices 24-109.

The observations from Figures 6.28, 6.29, 6.30, and 6.31 are confirmed in Figure 6.32,

as we see the 3DIRECT method outperforms both 2D methods from slice 24 to 109,

which makes up 67% of the slices.
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6.9 A Comparison of 2D and 3D Practical Schemes

As noted in the previous two sections, it is unfair to compare 2D and 3D

methods using the same sample schemes. Therefore, we include in this section a

more fair comparison of `1-Magic and 3DIRECT. To do this, we sample `1-Magic

using a 2D radial pattern at 17% for each slice. We then sample 3DIRECT using a

3D star burst pattern at 17%. Lastly, we run a modified 3DIRECT method which

minimizes over 3D total variation whose linear operator, A, loops over each slice of

the 3D image and performs a 2D FFT using the 2D start radial pattern at 17% for

each slice. The idea behind the modified 3DIRECT method is that it tests how well

the 3D total variation minimization does without the impacts of the tubal FFT effects

seen in the regular 3DIRECT method.

The idea is that each method is sampled favorably according to its linear trans-

formation operator, A, and at similar rates. The results of this test show similar

results that we have seen before, that is 3DIRECT has superior performance in the

middle slices and `1-Magic has superior performance at the end slices. Meanwhile

the modified 3DIRECT method, had poor recovery results in the middle slices. This

is reflected in the comparison of the starting SSIM of the `2 image and the SSIM of

the recovered image depicted in Figure 6.33. We also note that 3DIRECT as more

consistent SSIM of the recovered image across all the slices.
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Figure 6.33. 2D Radial vs. 3D Star SSIM Comparison. 3DIRECT has superior
performance in the middles slices, and suffers at the ends slices due to tubal frequency
components mixing. The modified 3DIRECT had poor image quality in the middle
slices. We also note that 3DIRECT as more consistent SSIM of the recovered image
across all the slices.

Viewing a few of the recovered images for slices 10 and 87 confirm the results of the

SSIM comparison.
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Figure 6.34. 2D Radial vs. 3D Star Recovered Image Comparison (slice 10). Tubal
frequency mixing causes higher background noise for the end slices in the 3DIRECT
method.
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Figure 6.35. 2D Radial vs. 3D Star Recovered Image Comparison (slice 87). Tubal
frequency mixing causes more details and a sharper image for the middles slices in
the 3DIRECT method.

It is clear that 3DIRECT has superior performance in the middle slices for this 3D

image over the `-Magic and the modified 3DIRECT method. Thus it begs the ques-

tion: can we detect where this performance region will occur prior to image recovery

and without knowing the perfectly sampled image?
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6.10 Detecting Edge Effects

It is clear the 3DIRECT method has superior results over the 2D methods

when the image cross-sections occupy similar pixels in the image. When the smaller

cross-sections are processed, they suffer from smearing from the large cross-sections

in different slices due to the tubal dimension of the FFT. Thus the 3DIRECT method

is ideal for applications where the image has more homogenous diameter in the z-

direction or when the area of interest is in the middle of a scan [44]. So how can we

detect where the 3DIRECT method will have superior results? That is the topic of

this section.

If we go back and examine the SSIM in Figures 6.13, 6.20, 6.25, and 6.32

there is a clear correlation between how well the 3DIRECT image is recovered and

its corresponding SSIM to the original image. However, in practice we won’t have

access to the perfectly sampled image. Thus, given a image X sparsely sampled

in the k-space, one can examine its SSIM from slice to slice, and use a threshold

to determine where optimal 3DIRECT performance will occur. This approach is

depicted in Algorithm 6.1, which uses the SSIM software described in Section 6.2.

Algorithm 6.1 3DIRECT Performance Detections

Input: `2 Starting 3D Image X with n slices, threshold µ ∈ [0, 1]

Output: starting 3DIRECT index i, ending 3DIRECT index j

1: K = [0.010.03],myWin = fspecial(‘gausssian′, 11, 1.5), L = 1

2: for i = 1 : n− 1 do

3: SSIM(i) = ssim(X(:, :, i), X(:, :, i+ 1), k,myWin, L)

4: end for

5: indices = find(SSIM > µ)

6: i = indices(1), j = indices(end)
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Using Algorithm 6.1 on the 3D radial burst sampled image as our starting reference

and µ = .7 we get the results in Figure 6.36.
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Figure 6.36. 3DIRECT Edge Detection on 3D Radial Sampled Image.

As indicated in Figure 6.36, Algorithm 6.1 determined slices 25 to 110 would

have good recovery results using 3DIRECT. This is consistent with what we observed

in the reconstruction images. Further, this also indicates slice 1-25 and 110-128 would

recover well if processed together as two separate image recovery problems. Thus,

in practice, Algorithm 6.1 can be used to decide how to parse large data sets in the
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third dimension to run parallel image recoveries using the 3DIRECT method.

Overall Observations: The results indicate that the 3DIRECT method will outper-

form the 2D methods from slice 25 to 109 which is consistent with what we observed

earlier when looking at the recovered images. Further, Algorithm 6.1 provides a way

to a priori determine how to parse 3D images to run parallel image recovery that

promotes optimal results by running independent 3D image recovery on segments of

the larger 3D image.
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CHAPTER 7

CONCLUSION

We’ve presented a new 3D image reconstruction method, and compared it to

current state-of-the-art image recovery methods. Unlike its 2D counterparts, the

3DIRECT method can process and recover an entire 3D image at once as oppose

to processing the image slice by slice. This comes with two advantages: speed and

performance.

When using a 2D radial scheme which is symmetric about the 3D FFT shifts,

the 3DIRECT and `1-Magic methods produce similar results. However, the 3DIRECT

was 22% faster in mean and 33% faster in minimum observed run times. This is due to

improvements we made to the 2D methods’ inefficiencies, including: objected oriented

coding of the finite difference matrices, and improved stopping tolerance for the CG

method for MRI applications. In addition, our method also reduces the number of

calls to the Newton and CG methods, due to its ability to treat the 3D image as a

single system. These speed improvements will only continue to improve as the size of

the image increases.

Secondly, the 3DIRECT algorithm can take advantage of similarities of the

cross-sections of the image to be processed. This is due to the fact that it uses tubal

frequency information in its minimization process. In doing so, intelligent 3D sample

schemes can be exploited to achieve quality results with less sampling percentage

in the k-space. This is especially beneficial for applications whose image has some

homogeneity in the z-direction.
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For applications where there is variation in the z-direction, and tubal frequencies

can cause undesirable effects in slices with smaller image cross-sections, we presented

a method to detect where the 3DIRECT algorithm performance would be best. Thus,

for situations where the desirable area of interest coincides with the 3DIRECT high

performance region, our method is the best choice.
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