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Abstract 

TRAJECTORY TRACKING CONTROL OF A QUADROTOR DURING COOPERATIVE 

OPERATION BETWEEN UAV AND UGV 

 
Ajibola Fowowe, MS  

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dr. Frank Lewis 

In recent times, there has been an increase in the use and application of unmanned aerial 

vehicles (UAVs). UAVs are used for various operations ranging from military applications to civilian 

purposes such as traffic monitoring, photography, surveillance and others. Within the UAV family, 

rotorcrafts take precedence over the fixed wing aircraft especially because of their unique features 

such as vertical takeoff and landing, increased payload, high maneuverability and more. They can 

be used to perform dangerous tasks and access environments that pose danger to man such as 

observatory wood and building fire, military purposes etc. 

This project focused on one of the various applications of the UAVs; cooperative operations 

between UAVs and ground vehicles. Scenarios may arise where we need the UAV to take on 

independent surveillance task in an unknown environment. I present a solution for the cooperative 

operation between UAVs and ground vehicles in unknown environment using visual navigation and 

onboard sensors of a small-scale, low-cost quadrotor in unknown environments. 

My approach relies on a monocular camera and onboard sensors as the main drivers and 

therefore does not need external tracking aids like GPS. Computations are carried out on an external 

laptop that communicates over wireless LAN with the quadrotor using Robot Operating System 

(ROS). This approach consists of two major components: a monocular SLAM system for pose 

estimation and an autonomous landing system using a PID controller to control the position and 

orientation of the drone. 

During the cooperative operation, the ground vehicle acts as the master, a mobile 

launch/landing pad for the UAV. Cooperative operation between mobile robots can be very critical 

in complex scenarios such as the UAV mapping out an area for obstacles and optimal navigation 

path for the UGV, also the UAV can be sent to areas inaccessible by the ground vehicle for 

observation and it returns back to the ground vehicle after this operation.  
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Chapter 1  

Introduction 

This project describes work that has been done in the context of the R & D research project 

of Advanced Controls and Sensors group (ACS), which is ongoing in the Autonomous Systems 

Laboratory (ASL) of the University of Texas at Arlington Research Institute (UTARI) at the University 

of Texas at Arlington, in USA. 

 

Figure 1-1 Cooperative Operation between UAV and UGV 

 In recent years, research interest in autonomous micro-aerial vehicles (MAVS) has rapidly 

grown. Significant progress has been made, recent examples include aggressive flight maneuvers 

[1, 2], ping-pong [3] and collaborative construction tasks [4]. However, all of these systems require 

some form of external motion capture systems. Flying in unknown, GPS-denied environments is still 

an open research problem. The key challenges here are to localize the robot purely from its own 

sensor data and to robustly navigate it even under potential sensor loss. This requires both a solution 

to the so-called simultaneous localization and mapping (SLAM) problem as well as robust state 

estimation and control methods. These challenges are even more expressed on low-cost hardware 

with inaccurate actuators, noisy sensors, significant delays and limited onboard computation 

resources. 

 For solving the SLAM problem on MAVs, different types of sensors such as laser range 

scanners [5], monocular cameras [6, 7], stereo cameras [8] and RGB-D sensors [9] have been 

explored in the past. In my point of view, monocular cameras provide two major advantages above 

other modalities: (1) the amount of information that can be acquired is immense compared to their 

low weight, power consumption, size and cost, which are unmatched by any other type of sensor 

and (2) in contrast to depth measuring devices, the range of a monocular camera is virtually 

unlimited –allowing a monocular SLAM system to operate both in small, confined and large open 
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environments. The drawback however is, that the scale of the environment cannot be determined 

from monocular vision alone, additional sensors such as an IMU are required. 

 In this project, I present a strategy where the quadcopter UAV can work cooperatively with 

the ground vehicle. During joint missions, the UAV can be sent on visual operations to areas 

inaccessible by the ground vehicle and can safely return to the ground vehicle after mission 

completion. In this case, the operator would need to only control the ground vehicle while the UAV 

performs aerial operations. After the completion of the aerial operation, a landing command is sent 

to the UAV and it autonomously locates the ground vehicle and lands on it. For this project, a visual 

marker is used in determining the location and bearing of the UAV relative to the ground vehicle.  

 

Figure 1-2 AR.Drone and Dr. Robot Jaguar Mobile Platform 

 Cooperative operations between UAVs and ground vehicles is a rapidly growing area of 

research with major breakthroughs in computer vision. The cooperation between flying vehicles and 

robotic ground platforms is rapidly spreading as performing tools to be used for data gathering, 

search and rescue operations, civil protection and safety issues [10]. Computer vision plays a very 

important role in this as some form of visual information is needed for all of these operations. 

Computer vision is much more than a technique to sense and recover environment information from 

an UAV, it should play a main role regarding UAVs’ functionality because of the big amount of 

information that can be extracted [11]. 

 During navigation, UAV onboard sensors can be used to feedback critical information about 

the state of the UAV. This however does not answer critical information about the position of the 

UAV. In GPS enabled areas, the position of the UAV can be easily determined using a GPS based 

navigation system. My project focuses on areas without GPS access, the development of a 

computer vision based navigation system that allows an UAV to navigate unknown environment and 
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towards targets of interest such as the landing pad. This project also investigates autonomous 

landing techniques for a stationary landing base. 

 Currently, some applications have been developed to help determine the location of an UAV 

relative to a stationary point. Radio direction finding (RDF) is the measurement of the direction from 

which a received signal was transmitted [12]. RDFs have evolved over time, following the creation 

of smarter electronics. The need for big antennas that measured signal strengths has been pushed 

aside. Using a custom-built Radio Direction Finder, readings from a known transmitter was used to 

compare various Bayesian reasoning-based filtering algorithms for tracking and locating Mini-UAVs 

[13].  

 A piece that inspired this project was the work done by Jakob Engel, using a monocular, 

keyframe-based simultaneous localization and mapping (SLAM) system for pose estimation [14]. 

This enabled him to produce accurate position estimates using only onboard sensors. Assuming the 

ground vehicle is mobile and has a series of tasks to perform that require it moving from point to 

point, we will need the UAV to be mobile as well, following the UGV to its different locations. It is 

therefore imminent we design a mobile landing pad for take-off and landing on the UGV. See figure 

1-2 for the structural modifications made to the UGV to accommodate a landing pad. Adding to 

Engel’s work [14], an autonomous landing system for cooperative operation has been incorporated. 

 In this project, a marker is placed on the ground vehicle to help the UAV identify the position 

and orientation of the landing pad. The onboard cameras on the low-cost AR.Drone are used for 

visual navigation as well as image collection. The images collected from the onboard cameras are 

processed and used to estimate the pose of the marker on the ground vehicle during landing.  

 The information derived from the marker detection system in conjunction with the onboard 

sensors is used to plan a landing profile for the UAV. Here, I used two possible approaches for 

guiding the UAV from an initial point to the landing pad on the UGV. The first, the UAV is guided 

from an initial point in space while maintaining its altitude to a predetermined point directly above 

the ground vehicle where the UAV is properly aligned with the landing pad in a straight line in the 

absence of any obstacle. The altitude is then reduced using a controller till the UAV ends up on the 

UGV. The bottom camera on the UAV is used to maintain visual contact with the marker on the 

UGV. 
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Figure 1-3 First Landing Approach  

 

 The second, in the absence of any obstacle, the UAV is guided through a perpendicular 

straight line from an initial point to the landing pad. This approach involves travelling through the 

shortest possible distance from the initial point to the landing pad on the UGV.   

 

 
Figure 1-4 Second Landing Approach 

 
 
 
Outline of Report 

This report consists of the following chapters. Below is a small description of these chapters. 

• Introduction: This chapter describes the overview of this master thesis. It all includes 

related work and the goal of the thesis. 
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• Quadrotor: This chapter discusses the general dynamics of a quadrotor. It introduces the 

AR.Drone and its specifications. It also introduces the software application ROS used for 

this thesis. 

• Simultaneous Localization and Mapping: This chapter introduces the monocular SLAM 

and the work done by [14]. 

• Autonomous Landing Approach: This chapter discusses the marker recognition 

algorithm and the landing approach used. 

• Control: This chapter introduces the control algorithm used in getting the AR.Drone from 

an initial point to the goal position during navigation and landing. 

• Implementation: This chapter explains how this thesis was executed and how the different 

algorithms were integrated together. 

• Results: This chapter describes the results of the work done at UTARI. 

• Conclusion: Describes a conclusion on the thesis work 

• Future Work: Discusses areas of improvement and possible future work. 
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Chapter 2  

Quadrotor 

 
For this project, I used the Parrot AR.Drone for implementation. The Parrot AR.Drone was 

revealed at the international CES 2010 in Las Vegas along with demonstration of the iOS 

applications used to control it [15]. The Parrot AR.Drone was designed to be controlled using a smart 

device. The Parrot AR.Drone is built using very light and robust materials. The main structure is 

made of carbon-fiber tubes and fiber-reinforced PA66 plastic parts. The hull is injected with 

expanded polypropylene EPP [16]. EPP is an engineered plastic foam material and this material 

allows the drone to survive crashes. It has two hulls, one designed for indoor application and the 

other for outdoor applications. It has dimensions of 52.5cm x 51.5cm with the hull and 45cm x 29cm 

without the hull. The drone itself weighs 360g without hull and 400g with the hull. 

The Parrot AR.Drone has high efficiency propellers powered by 4 brushless motors with 

28,500 RPM [31]. There is a Lithium polymer battery onboard the drone with a rated voltage of 

11.1V. The rotors safety system automatically locks the propellers in the event of any contact with 

them, making it safe for lab and indoor use.  

The drone is equipped with two cameras (one directed forward and one directed downward), 

an ultrasound altimeter, a 3-axis accelerometer, a 2-axis gyroscope (measuring pitch and roll angle) 

and a 1-axis yaw precision gyroscope [16]. The onboard controller is composed of a 32bits ARM 

processor with 128 Mb DDR Ram, on which a BusyBox composed GNU/Linux distribution is running.  

The Parrot AR.Drone is often used in research institutions because of its low cost and high 

maneuverability. The AR.Drone has six degrees of freedom, with a miniaturized inertial 

measurement unit tracking the pitch, roll and yaw for use in stabilization [16]. 

 
 

Figure 2-1 Schematics of the Parrot AR.Drone 
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2.1 Dynamics of a Quadrotor 

 
A quadrotor helicopter (quadcopter) is a helicopter which has four equally spaced rotors, 

usually arranged at the corners of a square body [17]. These four rotors are controlled independently 

using electronic assistance to provide the maneuverability desired. Brushless motors are usually 

used for quadcopter application. Quadcopters have six degrees of freedom (DOF) which includes 

three translational and three rotational DOFs. 

   (2.1) 

These six degrees of freedom are controlled by four independent inputs making the 

quadcopter under-actuated and a nonlinear system. Having defined the position and velocity of the 

quadrotor in the inertial frame as (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑇𝑇 and (𝑥̇𝑥, 𝑦̇𝑦, 𝑧̇𝑧)𝑇𝑇. Likewise, the rotational angles defined as 

(𝜙𝜙,𝜃𝜃,𝜑𝜑)𝑇𝑇 and the rotational velocities as (𝜙̇𝜙, 𝜃̇𝜃, 𝜓̇𝜓)𝑇𝑇. To convert these angular velocities into the 

angular velocity vector 𝑤𝑤 in the body frame, we use the following relation: 

𝑤𝑤 = �
1 0 −𝑠𝑠𝜃𝜃
0 𝑐𝑐𝜙𝜙 𝑐𝑐𝜃𝜃𝑠𝑠𝜙𝜙
0 −𝑠𝑠𝜙𝜙 𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙

� 𝜃̇𝜃     (2.2) 

Using Euler angle conventions, we can relate the rotation matrix R from the body frame to 

the inertial frame.  

𝑅𝑅 = �
𝑐𝑐𝜃𝜃𝑐𝑐𝜑𝜑 −𝑐𝑐∅𝑠𝑠𝜑𝜑 + 𝑠𝑠∅𝑠𝑠𝜃𝜃𝑐𝑐𝜑𝜑 𝑠𝑠∅𝑠𝑠𝜑𝜑 +  𝑐𝑐∅𝑠𝑠𝜃𝜃𝑐𝑐𝜑𝜑
𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑 𝑐𝑐∅𝑐𝑐𝜑𝜑 +  𝑠𝑠∅𝑠𝑠𝜃𝜃𝑠𝑠𝜑𝜑 −𝑠𝑠∅𝑐𝑐𝜑𝜑 +  𝑐𝑐∅𝑠𝑠𝜃𝜃𝑠𝑠𝜑𝜑
−𝑠𝑠𝜃𝜃 𝑠𝑠∅𝑐𝑐𝜃𝜃 𝑐𝑐∅𝑐𝑐𝜃𝜃

�                (2.3) 

Each rotor contributes some torque about the z axis, this torque keeps the propeller spinning 

and provides thrust. Torque is proportional to the thrust 𝜏𝜏 by a constant ratio determined by the 

blade configuration and parameters. The quadcopter is controlled by independently varying the 

speed of the four rotors [17]. The inputs 𝑢𝑢 to the quadcopter: 

• Vertical Acceleration: 𝑢𝑢1 = ↑ 𝜏𝜏1 ↑ 𝜏𝜏2 ↑ 𝜏𝜏3 ↑ 𝜏𝜏4 where two opposite ones rotate clockwise and 

the other two counter-clockwise. This cancels out their respective torques. 

• Rolling or Pitch Rotation: 𝑢𝑢2 = =↑ 𝜏𝜏1 𝑜𝑜𝑜𝑜 ↑ 𝜏𝜏2 𝑜𝑜𝑜𝑜 ↑ 𝜏𝜏3 𝑜𝑜𝑜𝑜 ↑ 𝜏𝜏4 while the thrust of the opposite 

rotor is decreased. 
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• Yawing Movement: 𝑢𝑢3 =↑ 𝜏𝜏1 ↑ 𝜏𝜏4+↓ 𝜏𝜏2 ↓ 𝜏𝜏3 or ↓ 𝜏𝜏1 ↓ 𝜏𝜏4+↑ 𝜏𝜏2 ↑ 𝜏𝜏3 depending on the direction 

of yaw. 

where 𝑢𝑢 is the input and 𝜏𝜏𝑖𝑖 are the thrust from the ith rotor.  

 

2.2 Parrot AR.Drone  

Cameras 

The AR.Drone has two on-board cameras, a front camera pointing forward and a vertical 

camera pointing downward. The front camera has a 93° wide-angle diagonal lens camera with a 

video frequency of 15 fps and a resolution of 640 x 480 pixels, covering a field of view of 73.5° x 

58.5°. This camera is equipped for 1D tag detection 

Due to the used fish eye lens, the image is subject to significant radial distortion. 

Furthermore rapid drone movements produce strong motion blur, as well as linear distortion due to 

the camera’s rolling shutter.  

Gyroscopes and Altimeter 

 For altitude measurement, an ultrasound based altimeter capable of measuring up to 6m is 

installed on the drone. A proprietary filter on board of the AR.Drone converts the angular velocities 

to an estimated attitude (orientation). The measured roll and pitch angles are, with a deviation of 

only up to 0.5°. The yaw measurements however drift significantly over time (with up to 60° per 

minute, differing from drone to drone – much lower values have also been reported). The AR.Drone 

also sends update on its body accelerations and body velocity. These estimates are based on the 

inertia measurements, aerodynamic model and visual odometry obtained from the relative motion 

between the camera frames. 

Software 

The Parrot AR.Drone comes with all software required to fly the quadrotor. Due to the drone being 

a commercial product which is primarily sold as high-tech toy and not as a tool for research.  

UDP – User Datagram Protocol 

Communication with the drone happens over the User Datagram Protocol UDP. This is one of the 

dominant transport-layer protocols in use. The UDP is a simple model protocol, it allows you send 

datagrams in other words packets from one machine to another.   These are received at the other 

end as the same packets. UDP binds a combination of an IP address and a service port on both 



16 

ends and as such establishes host-to-host communication. The AR.Drone communication interface 

is built of three UDP ports: 

• Navigation Data Port = 5554: This port is used to retrieve data back from the drone such as 

its position, speed, engine rotation speed etc. This navigation data port also include data 

detection information that can be used to create augmented reality. Data is sent 

approximately 30 times per second. 

• On-Board video Port = 5555: A video stream is sent by the AR.Drone to the client device 

via this port.  

• AT Command Port = 5556: This port is used in sending commands to the drone. 

Another communication channel called Control Port can be established on TCP port 5559 to transfer 

critical data, by opposition to the other data that can be lost with no dangerous effect. It is used to 

retrieve configuration data and to acknowledge important information such as the sending of 

configuration information [19].  

2.3 ROS  

 Robot Operating System ROS is the robot frame work application used for this project. ROS 

is an open-source, meta-operating system for your robot. It provides services you would expect from 

an operating system, including hardware abstraction, low-level device control, implementation of 

commonly-used functionality, message-passing between processes and package management 

[20]. The main ROS client libraries are C++, Python and LISP. These are geared toward a UNIX-

like system, primarily because of their dependence on large collections of open-source software 

dependencies. 

 The robotics research community has a collection of good algorithms for common tasks 

such as navigation, motion planning, mapping and many others. These existing algorithms are 

useful as they help avoid the need to re-implement each algorithm for new systems. ROS standard 

packages provide stable, debugged implementations of many important robotics algorithms. ROS 

is designed to allow small, mostly independent programs called Nodes that all run at the same time 

and can communicate with one another.   

 Communication between the nodes is done by sending Messages and these Messages are 

organized into named Topics. The logic here is that a node that wants to share information will 

publish messages on the appropriate topic or topics. A node that wants to receive information will 
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subscribe to the topic or topics that it’s interested in. [21] has detailed key points for ROS 

familiarization. 

The hardware in my project: 

• AR.Drone 2.0 

• Onground computation station (Laptop with Ubuntu 14.04 and ROS indigo). 

The Software Used: 

• ROS Indigo 

• Ubuntu 14.04 

Existing ROS packages used: 

• Ardrone_autonomy for AR.Drone 2.0  

• Tum_ardrone for PID controller, EKF and odometry estimation [14] 

• Ar_track_alvar for Marker Recognition [24] 
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Chapter 3  

Simultaneous Localization and Mapping 

Navigating in previously unknown areas is an ongoing area of research in the robotics 

community. In areas without GPS access, how do we determine the location of a robot? This is a 

fundamental question asked in robot navigation. For this project, how do we determine the exact 

location of the AR.Drone since it does not have GPS capabilities or how do we determine how far 

it has travelled from a reference point. Simultaneous Localization and Mapping (SLAM) is the 

ability to simultaneously localize a robot and accurately map its environment, this is considered as 

the prerequisite for autonomous robots. In this project, the AR.Drone’s sensor data is used to both 

recover its flight path and build a map of its environment.  

The solution to Localization can be divided into two areas of time constraint: online 

computing and offline computing. Online computing involves the ability to use the response as 

input for decision-making, this is used by autonomous robots. There is a time constraint involved 

and a limited amount of computations can be performed. Offline computing is more time 

accommodating, allowing more complex computations. The major setback of offline computing is 

decision-making. Decisions can be made on the go, the robot has to wait to make a decision. 

We have seen great advances in real-time 3D vision in recent years, enabled by 

continuous algorithmic improvements, the continuing increase in commodity processing power and 

better camera technology. This has given rise to visual navigation. High definition images can be 

extracted and processed to build SLAM systems. For this project, the images from the video 

stream along with the data from the onboard sensors are used to re-estimate the position of the 

robot at regular intervals. Monocular SLAM where a single agile camera moves through a mostly 

static scene was for a long time focused on mapping only, now, efforts is geared towards 

improving the quality of the scene reconstruction which can be achieved in real-time.  

The hardware needed to implement the monocular is very simple, giving it an advantage 

over other SLAM methods. The disadvantage however is that the algorithms involved is more 

complex and so the software is complicated. This is essentially because the depth of an image 

cannot be captured from the image but has to be recalculated through analyzing images in the 

chain of frames in the video. Monocular SLAM calculates depth through comparing images 

captured at different times and at overall positions of the robot system. 



19 

3.2 Other SLAM Techniques 

Recreating 3D from 2D images is a known problem in the area of computer vision that has 

attracted immense attention in mobile robotics. Several techniques have been developed to combat 

this problem, out of which I will be introducing the work of [14] used in this project for autonomous 

navigation. 

Several Augmented Reality (AR) systems operate on prior knowledge of the user’s 

environment but for our application, we will explore tracking and mapping using a calibrated camera 

in a previously unknown scene without any known objects or initialization target, while building a 

map of the environment.  

FastSLAM is a factored solution to the SLAM problem, it uses an algorithm that decomposes 

the SLAM problem into a robot localization problem and a collection of landmark estimation 

problems that are conditioned on the robot pose estimate [22]. It uses a modified particle filter similar 

to the Monte Carlo localization (MCL) algorithm for estimating the posterior over robots paths. The 

FastSLAM algorithm implements the update equation using Extended Kalman Filter (EKF). 

FastSLAM’s EKF is similar to the traditional EKF for SLAM in that it approximates the measurement 

model using a linear Gaussian function [22].  

A key limitation of EKF-based approaches is their computational complexity of incorporating 

an observation. Sensor updates require time quadratic in the number of landmarks to compute. This 

complexity stems from the fact that the covariance matrix maintained by the Kalman filters has 

elements which must be updated even if just a single landmark is observed. The quadratic 

complexity limits the number of landmarks that can be handled by this approach to only a few 

hundred. Parallel Tracking and Mapping (PTAM) is a Keyframe-based approach that differs from 

the filtering based approach used by the FastSLAM. 

Instead of marginalizing out previous poses and summarizing all information within a 

probability distribution (filtering), keyframe-based approaches retains selected subset of previous 

observations - called keyframes - explicitly representing past knowledge gained. Parallel Tracking 

and Mapping (PTAM) is a simple and low-entry-level solution to the SLAM problem. It uses a camera 

tracking system for augmented reality. It requires no markers, existing models of the environment 

or inertial sensors. PTAM uses FAST corners that are cheap to detect and process. Tracking and 

Mapping run in two parallel threads, making tracking no longer probabilistically-dependent on the 
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map creation procedure. With this, there are no limitations on the type or robustness of the tracking 

used. The limitation of PTAM is the need to perform stereo initialization in a unique way [32].  

3.3 Monocular, Keyframe-Based SLAM 

The Extended Kalman Filter Based Monocular SLAM was discussed by Gu Zhaopeng in 

[34]. His work involved both a vision only system and for systems where some kind of kinematic 

sensor capture such as an IMU (Inertial Measurement Unit) is used. For most vision based 

systems, the camera state is comprised of position, rotation quaternion, velocity and angular 

velocity of the camera, while the feature state is represented by 3D world coordinates. He showed 

that if some kind of kinematic sensor such as IMU, the accelerate motion model is always the best 

way. 

For this project, we used the Keyframe-Based SLAM for localization and mapping of the 

AR.Drone during navigation. This approach was introduced by Engel is [14]. This SLAM process 

has two independently running loop: tracking and mapping. An existing map is required as an 

initialization point from which these two independent loops are built. The Keyframe-Based SLAM 

for localization and mapping can therefore be divided into three main parts: Initialization, mapping 

and tracking. 

This approach involves the use of Keypoints which are small unique distinguishable points 

in the images captured by the AR.Drone camera. Processing all the images from the AR.Drone 

was computationally impossible, leading to the idea of using Keypoints. The Keypoints are 

identified by using the FAST corner detector. 

 
 

Figure 3-4 Locations of keypoints used by PTAM for tracking 
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Chapter 4  

Autonomous Landing Approach 

This chapter presents the autonomous landing approach and discusses the issues related 

to integrating it with the camera-based Monocular SLAM system. Recall, there are two main modes 

of operation for the AR.Drone in this thesis; first, the autonomous navigation and second, the 

autonomous landing. Autonomous navigation using monocular SLAM was introduced in chapter 3. 

The operator is fully in control of switching between these modes. The mode switching is done by 

entering a landing command. The goal here is to make sure that each task is completed before a 

mode switch is initiated. 

The algorithm for the autonomous landing can be divided into two main sequences; the 

marker recognition and then the Final Landing approach. To get the AR.Drone to its goal position, 

we first need to determine its exact position with respect to the goal position. This information is then 

fed into a controller that minimizes the position difference by controlling the drone’s actions.  

For this thesis, an Open CV computer vision library [24] is used to recognize the goal 

position which is the landing pad. There are two visual trackers used in this thesis: PTAM for 

autonomous navigation mode and ALVAR for autonomous landing mode. Due to this, there is a 

need to switch between both visual trackers when the operator switches between modes. This is 

done via dynamic reconfiguration support by the ROS application. Dynamic reconfiguration in ROS 

allows you to change the node parameters at any time without having to restart the node.  

ALVAR is an excellent, high-performance, robust and easy to use library for tracking. The 

image processing algorithm was not developed in this thesis work. ARTag is a marker system for 

supporting augmented reality. An ARTag is placed on the landing pad and acts as a marker used 

by the AR.Drone for identifying and tracking the pose of the landing spot. Here, we used a bundle 

consisting of multiple markers. This allows for more stable tracking and pose estimates with varying 

heights. The Open CV program automatically calculates spatial relationships between markers in a 

bundle. 

4.1  Marker Recognition 

 There are a variety of available Open CV implementations using square markers: 

ARToolKit, ARTag, BinARyID and ALVAR etc. The marker recognition used in this thesis provides 

adaptive thresholding to handle a variety of lighting conditions, optical flow based tracking for more 
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stable pose estimation and an improved marker identification method that does not significantly 

slow down as the number of markers increases. 

 

Figure 4-1 Bundle Marker 

The bundle marker consists of multiple markers, this helps to correctly identify the markers 

at different heights. The larger marker can be easily identified at greater height and can be used for 

identification and pose estimation at a further distance while the smaller marker can be used to 

correctly determine the pose estimates at closer distances. A threshold is used to determine when 

new markers can be detected under uncertainty. To detect the marker for landing, both onboard 

cameras on the AR.Drone are used. The square markers allow both position and orientation to be 

extracted from the pattern of the marker.  

For better marker detection, the image used for the marker should have a low level of detail 

and also should not be rotationally symmetric. Reflections are likely to impair marker detection so a 

non-reflective material should be used for producing the marker’s image [25]. The performance of 

the image processing algorithm is affected by the ambient lighting conditions, therefore for the best 

results, a room with consistent lighting condition all over is used. 

Marker Identification Process 

 Images captured by the onboard cameras are usually processed by mixing it to grayscale 

and thresholding it. For color images, each pixel is represented by three 8-bit channels for the colors 

red, green and blue which combined can represent (28)3 = 16777216 colors. A grayscale image can 

be calculated from the RGB values in different ways depending on the use-case (e.g. adaption to 

human perception or computer vision) and the properties of the camera. In many cases the simple 

average (R+B+G)/3 can be used. 

 Segmentation detects large areas of connected pixels with the same color and labels these 

sets of pixels. Different information are extracted from each set, such as area, center of mass and 
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color. A contour detection is executed to find the corners in the image. It identifies points where the 

difference in intensity is significant. Lines are fitted over the whole image to find any projective 

transformation of a square. Squares identified become the marker candidates [26].  

 The squares are then normalized to form patterns of squares. The thresholding operation is 

a function that generates binary images and compares to a library of feature vectors of known 

markers by correlation.   

 

Figure 4-2 The Coordinate System 

NOTE: The z-coordinate system was omitted from the figure above.  

Once a best possible marker is selected, the markers position 𝑝𝑝𝑥𝑥 , 𝑝𝑝𝑦𝑦 , 𝑝𝑝𝑧𝑧 , is determined along with its 

orientation described by a rotation matrix R.  

[𝑅𝑅| 𝑝𝑝] =  �
𝑟𝑟1,1 𝑟𝑟1,2 𝑟𝑟1,3 𝑝𝑝𝑥𝑥
𝑟𝑟2,1 𝑟𝑟2,2 𝑟𝑟2,3 𝑝𝑝𝑦𝑦
𝑟𝑟3,1 𝑟𝑟3,2 𝑟𝑟3,3 𝑝𝑝𝑧𝑧

�    (4.1) 

R is expressed in terms of angles around the camera base vectors. Introducing 𝜑𝜑 as the rotation of 

the marker around the cameras z-axis, ∅ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃  represent the marker in the x and y respectively. 

Simplifying further with notations such as 𝑠𝑠𝑥𝑥 = sin 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑥𝑥 = cos 𝑥𝑥 for all 𝑥𝑥 = ∈  𝜑𝜑,∅ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.The 

rotation matrix R then becomes: 
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𝑅𝑅 =  �
𝑐𝑐𝜃𝜃𝑐𝑐𝜑𝜑 −𝑐𝑐∅𝑠𝑠𝜑𝜑 +  𝑠𝑠∅𝑠𝑠𝜃𝜃𝑐𝑐𝜑𝜑 𝑠𝑠∅𝑠𝑠𝜑𝜑 + 𝑐𝑐∅𝑠𝑠𝜃𝜃𝑐𝑐𝜑𝜑
𝑐𝑐𝜃𝜃𝑠𝑠𝜑𝜑 𝑐𝑐∅𝑐𝑐𝜑𝜑 + 𝑠𝑠∅𝑠𝑠𝜃𝜃𝑠𝑠𝜑𝜑 −𝑠𝑠∅𝑐𝑐𝜑𝜑 +  𝑐𝑐∅𝑠𝑠𝜃𝜃𝑠𝑠𝜑𝜑
−𝑠𝑠𝜃𝜃 𝑠𝑠∅𝑐𝑐𝜃𝜃 𝑐𝑐∅𝑐𝑐𝜃𝜃

�    (4.2) 

We are interested in the position information 𝑝𝑝𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑦𝑦 as well as the yaw angle 𝜑𝜑. The pitch and 

roll angles can be derived and used to drive the AR.Drone to points in xmarker, ymarker and  zmarker 

With this, a new rotation matrix for the yaw angle which is not influenced by roll and pitch is 

derived.  

New rotation matrix 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 −𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 0
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 0

0 0 1
�    (4.3) 

The yaw is a counterclockwise rotation of 𝜑𝜑 about the z-axis. The yaw angle is derived by 

calculating  

𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑟𝑟21, 𝑟𝑟11)     (4.4) 

For this project, the UGV is always steady with respect to the world. Therefore, I have chosen the 

UGV as the main coordinate system. The UGV is our goal point as we are trying to get the 

AR.Drone back on the UGV. Taking this goal point as:  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧

�     (4.5) 

Where xmarker, ymarker and  zmarker are the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥 , 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 respectively. 

Pose Estimation using ALVAR 

 Using ALVAR, the ar_pose_marker topic publishes a pose object which contains the pose 

and orientation information. This pose information gives the point position in 3D coordinate of the 

marker while the orientation information is of quaternion type revealing four values x,y,z and w. 

The quaternion type is converted to roll, pitch and yaw using the function getRPY(). With this, the 

position and orientation of the marker is determined using the camera onboard the AR.Drone. 

 The AR.Drone coordinate system which is the center of the camera is taken as “Drone”. 

The marker is always steady with respect to the world, the coordinate system given by the marker 

is chosen as the main coordinate system. Assume the marker frame and the onboard camera 

frame are PA and PC, then 

PA = TCAPC     (4.6) 

= (TCA)−1PC     (4.7) 
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= TACPC      (4.8) 

Where TAC and TCA represent respectively the transform from AR tag to camera frame and from the 

camera frame to AR tag frame. With the ALVAR, this has been done so we easily derive the 

position of the AR.Drone with respect to the marker. 

 The z coordinate point position outputted by ALVAR is used to control the altitude without 

any transformation. Note that we are landing the AR.Drone on the marker placed on the UGV, so a 

direct transformation of the z coordinate point position outputted by ALVAR works fine for altitude 

control. This will be taken as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧.  

 

Figure 4-3 View Point of Coordinate Systems 

 Using figure 4-3 as an illustration, you would notice that both viewpoints share the same 

axis except in the y-axis coordinate. For ease of calculating the position error, I made the steady 

frame (marker frame) the reference frame. Initially, when the goal positions were established, they 

were established from the Camera's coordinate system. Since the UGV is always steady as 

compared to the moving UAV and we need to keep updating the UAV's position from the goal 

point. I rotated the error and changed the sign in the y-axis to express it in the drone’s coordinate 

system. The error in the coordinate system becomes 



26 

𝑒̂𝑒 =  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 −  �
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑧𝑧

� =  �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧

� − �
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑧𝑧

�    (4.9) 

After being rotated becomes: 

𝑒𝑒 =  𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 ∙  �
1 0 0
0 −1 0
0 0 1

� ∙ �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧

� − �
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑧𝑧

�                       (4.10) 

 

4.2  Finding the Marker 

 After the landing command has been entered by the operator, the AR.Drone will need to 

locate the marker on the UGV before a final landing trajectory is developed. A good approach 

would be to take the AR.Drone to its original take off point using the monocular SLAM but we must 

account for a possible change in the position of the UGV during the surveillance operation of the 

AR.Drone. We cannot assume the UGV would always remain at the same position throughout the 

AR.Drone flight. A search algorithm was developed to help the UAV locate the UGV.  

 Using specified spacing, a series of path corners are calculated based on a grid pattern 

within which way points are placed. Four corners and the center of the grid are identified and the 

AR.Drone flies to all five positions to execute a search operation. These positions are chosen to 

ensure the UAV can identify the marker from another position if an obstruction lies in the direct line 

of sight. At this specified positions, the AR.Drone completes a yaw rotation about the z-axis at a 

defined rotation rate to ensure a good image quality for marker detection is captured by the onboard 

cameras. The rotation operation at the initial corners is a 90° rotation while the rotation at the center 

and subsequent corners is a complete 360° rotation,see figure 4-4. 

 

Figure 4-4 Search Pattern 

 The search path is developed by first generating a grid of rectangles. The summation of 

these rectangles give the breadth and width of the area captured by the camera onboard the 
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AR.Drone at a certain height. A challenge encountered was defining the area for the grid of 

rectangles. I was faced with the question of “How Far Can the Camera See?”. The main elements 

considered were  

• Object size: The first question here is, what the size of the object to be detected is. Then, I 

need to determine what level of detail to resolve about the object. For this project, I used 

Johnson Criteria which defines DRI (Detection Recognition Identification) using the number 

of pixels required on the object to make an accurate assessment. 

• Camera field of view: The camera’s field of view FOV affects how far the camera can see. 

FOV is the amount of given screen captured by the camera. The FOV is defined by three 

elements: Lens, sensor format within the camera and the camera zoom position in relation 

to the scene. 

• Image resolution: The camera’s image resolution defines the detail an image holds. A higher 

resolution means more image detail. 

The only drawback with this approach is the time taken to turn about its yaw axis as turning is a 

time-consuming operation. 

4.3  Pose Estimation 

 Estimating the position and orientation of an object in real time poses a major problem for 

vision-based pose estimation. Many of this vision-based pose estimation rely on an extended 

Kalman Filter (EKF). The state estimation of the AR.Drone is based on the Extended Kalman Filter 

(EKF). The EKF is an extension of the Linear Kalman Filter to nonlinear systems [26]. The 

AR.Drone has a variety of sensors and each sensor has some uncertainty in the measurement, 

the Kalman Filter is therefore needed to filter out the data and make a better estimation of the 

vehicle’s state.  

 The EKF rely on known noise statistics, initial object pose and sufficiently high sampling 

rates for good approximation of measurement-function linearization.  

Model of a Kalman Filter [27] is expressed as  

𝑋𝑋𝑘𝑘 = 𝐴𝐴𝑘𝑘𝑋𝑋𝑘𝑘−1 + 𝐵𝐵𝑘𝑘𝑈𝑈𝑘𝑘 + 𝑤𝑤𝑘𝑘    (4.11) 

Where 

𝐴𝐴𝑘𝑘 is the state transition model which is applied to the previous state 𝑋𝑋𝑘𝑘−1 

𝐵𝐵𝑘𝑘 is the control-input model which is applied to the control vector 𝑈𝑈𝑘𝑘 
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𝑤𝑤𝑘𝑘 is the process noise which is assumed to be drawn from a zero mean multivariate normal 

distribution with covariance 𝑄𝑄𝑘𝑘 

𝑤𝑤𝑘𝑘~ 𝑁𝑁(0,𝑄𝑄𝑘𝑘) 

Then the measurement which can be used to derive the estimated state is made according to  

𝑍𝑍𝑘𝑘 =  𝐻𝐻𝑘𝑘𝑋𝑋𝑘𝑘 + 𝑣𝑣𝑘𝑘    (4.12) 

Where 

𝐻𝐻𝑘𝑘 is the observation model which translates the estimated state space into the observed space 

𝑣𝑣𝑘𝑘 is the observation noise which is assumed to be zero mean Gaussian white noise with 

covariance 𝑅𝑅𝑘𝑘 

𝑣𝑣𝑘𝑘~ 𝑁𝑁(0,𝑅𝑅𝑘𝑘)     (4.13) 

The Kalman filter predicts the process state from a previous state then the predicted state 

compensated by noise measurement will be fed back into the model to become the previous state 

for the next prediction.  

Extended Kalman Filter 

 The Extended Kalman Filter solves the problem of trying to estimate the state by a linear 

process, it has the de facto standard in the theory of nonlinear state estimation. Tracking a rigid 

body using an EKF enables the use of a priori information on the measurement noise and type of 

motion to tune the filter. The pose estimates from the ALVAR are fused with data sent from the 

onboard sensors using an EKF. The EKF computes an estimate of the AR.Drone’s pose, speed and 

a prediction of its future state. For a detailed breakdown, see [29]. 

The EKF process can be divided into two stages: 

1. Time Update (Prediction) at k=0: 

Project the state ahead 

𝑥𝑥�𝑘𝑘− = 𝐴𝐴𝑥𝑥�𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘    (4.14) 

 Project the error covariance ahead 

𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄    (4.15) 

2. Measurement Update (Correction): 

 Compute the Kalman Gain  

𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1   (4.16) 

 Update the estimate via 𝑧𝑧𝑘𝑘 
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𝑥𝑥�𝑘𝑘 =  𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑍𝑍𝑘𝑘 −  𝐻𝐻𝑥𝑥�𝑘𝑘−)   (4.17) 

 Update the error covariance 

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘−    (4.18) 

 The output at k will be the input at k+1 

4.4  Path Planning 

 After the marker has been detected and the position and orientation of the marker has 

been determine which is our landing pad, the next step is navigating the AR.Drone to that point. I 

have devised two different landing approaches: 

1. Navigating the AR.Drone through a fixed altitude to a point right above the UGV and then 

decreasing the altitude while maintaining its x and y position, see figure 1-3. 

2. Navigating the drone directly to the UGV by simultaneously decreasing the altitude and 

orientating the drone towards the landing pad. 

 For both navigation methods, my approach involves a multi waypoint navigation method 

along the desired flight path from the AR.Drone’s initial location and the landing pad. A waypoint 

is a set of coordinates that specify a specific point in physical space. For this flight path, we have 

determined it is obstacle free as the AR.Drone has direct line of sight with the marker, therefore 

making it a straight line path. No path finding or obstacle avoidance algorithm is needed for this. 

The waypoint navigation alongside the PID controller instructs the drone where to fly, at what 

height to fly at and what speed to fly at.  

 These waypoints lists the points for the AR.Drone to fly to in a defined order. The 

AR.Drone will hardly fly to its exact waypoint, therefore if it flies within the proximate circle, the 

program considers it as it meeting its goal. The waypoint navigation algorithm is shown below. 

The program continuously checks the distance between the current position of the AR.Drone and 

the next waypoint. If this distance is smaller than the radius of the proximate circle, then the 

AR.Drone flies to the next waypoint 
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Figure 4-5   Waypoint Algorithm Flowchart  

 

 This approach would reduce the error per waypoint rather than have the error accumulate 

throughout flight path. The disadvantage with this approach is determining how fast or slow the 

AR.Drone should travel. For short distance waypoints, a small derivative gain is needed to 

prevent excessive jerky movement. The new goal position is updated at the waypoints and since 

the new distance to goal is small, a high derivative gain will cause an overshoot of the goal 

position. 
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 For this thesis, we have used the same PID gain values irrespective of the distance 

between the waypoints. A future improvement will be selecting gain values based on the 

distances between the waypoints.  
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Chapter 5  

Control 

Control theory is an interdisciplinary branch of engineering and mathematics that deals with 

dynamic systems with inputs and how their behavior is modified using a feedback system. A dynamic 

system is a system whos behavior evolves with time. Typically these systems have input and output and 

our interest is to understand how the input affects the output or vice versa. In order to control the AR.Drone, 

which is a dynamic system, a feedback control is usually necessary. The dynamics for this AR.Drone is 

nonlinear and underactuated, making it a little difficult to design a controller for this kind of dynamic system. 

This thesis is based on the AR.Drone following a defined trajectory to a desired x, y and z position. 

The trajectory is a desired position and orientation which is a function of time. The AR.Drone has only four 

control inputs but six degrees of freedom, three translational movements and three rotational movement. 

The AR.Drone can only move in these degrees of movement, therefore the AR.Drone is an underactuated 

system. For this thesis, we are controlling four of its degrees of freedom, which are: the vector position 𝑝𝑝 

and the yaw angle 𝜓𝜓. Our trajectory control problem can then be defined as designing a control input 𝑢𝑢 

such that the quadrotor vector position 𝑝𝑝 and orientation 𝜓𝜓 can asymptotically follow a given reference 

trajectory. Both 𝑝𝑝 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 and 𝜓𝜓 −  𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟 converges to zero as 𝑡𝑡 → ∞. 

This chapter presents a proportional-integral-derivative controller (PID controller), the most 

common form of feedback control. The algorithm for a PID controller is described below 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0 +  𝐾𝐾𝑑𝑑𝑒̇𝑒(𝑡𝑡)    (5.1) 

where 𝑢𝑢 is the control input and 𝑒𝑒 is the control error. For this thesis, the control error is the difference 

between the desired trajectory and the real trajectory of the AR.Drone. The control signal is the weighted 

sum of three separate control mechanisms: 

• the proportional part which adjusts the output signal in direct proportion to the current value 

of the error e(t). The adjustable parameter is the proportional gain 𝐾𝐾𝑝𝑝. The error reduces 

with increasing gain but the possibility of oscillation will increase. 

• the integral part corrects the offset ∫ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝑑𝑑,𝑡𝑡
0  that may occur between the desired value 

and the system output automatically due to external disturbances over time [30]. The 
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steady state error disappears when the integral part is used for constant disturbances. The 

adjustable parameter is 𝑇𝑇𝑖𝑖 where 𝐾𝐾𝑖𝑖 =  𝐾𝐾𝑝𝑝
𝑇𝑇𝑖𝑖

 

• the derivative part depends on the predicted future error, based on the derivative error with 

respect to time e(t). The adjustable parameter is 𝑇𝑇𝑑𝑑 where 𝐾𝐾𝑑𝑑 =  𝐾𝐾𝑝𝑝 ∙ 𝑇𝑇𝑑𝑑 

Usually, 𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖  and 𝐾𝐾𝑑𝑑  are the tuned parameters and can be found by a variety of experimental or theoretical 

methods. In many cases it is sufficient to determine them experimentally by trial and error. 

 

Figure 5-1 Schematic representation of a general control loop 

 
 
The quality of a control system can be measured by the convergence time tconv, measuring how long it takes 

until e(t) stays within a specified, small interval around zero. The effect of these three parts of a PID-

controller is shown below [26]. 

 

Figure 5-2 The three distinct control terms working together 

It is more effective to break down full system models, reducing it such that control problems can be 

attacked specifically. For the AR.Drone, two major control problems are considered: altitude control and 

trajectory tracking. The objective here is to design a controller to track desired trajectories published by the 

Marker as its landing pad. This is achieved by designing four separate PID controllers controlling the altitude 
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position, pitch, yaw and roll angles. The outputs of these controllers determine the tilt, vertical speed and 

angular speed of the AR.Drone. For more information on PID controllers, review [32]. The speed estimates 

from the Kalman filter is used for this. Let the predicted states of the drone be (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑥̇𝑥, 𝑦̇𝑦, 𝑧̇𝑧, Ø,𝜃𝜃,𝜑𝜑, 𝜑̇𝜑)𝑇𝑇 and 

the coordinates of the landing pad as well as the orientation be (𝑥𝑥�,𝑦𝑦,� 𝑧𝑧,� 𝜑𝜑�). 

 For this thesis, I have used the drone controller from [14] used in the navigation operation. The 

gain values for the PID controller were determined experimentally to better suit the waypoints navigation 

during landing.  

Altitude Control 

 Altitude control is very important for the execution of this project, especially considering the different 

landing approaches discussed in chapter 4. The first landing approach method requires that the AR.Drone 

holds its altitude position while translating in the x-y plane. The ultrasound sensor on the AR.Drone is used 

to determine its altitude. Let the altitude measured by ultrasound be 𝑧𝑧𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. The 𝑧𝑧𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 at the time the 

landing command was entered would become our 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟. The error is then defined as  

𝑒𝑒𝑧𝑧 = 𝑧𝑧 − 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟     (5.2) 

A control input for the altitude is designed as 

𝑢𝑢𝑧𝑧 =  0.4 ∙ 𝑒𝑒𝑧𝑧 + 0.1 ∙ 𝑧̇𝑧 + 0.01 ∫𝑒𝑒𝑧𝑧    (5.3) 

 The second landing approach requires the AR.Drone to follow waypoints along the shortest 

possible path to the marker, see chapter 4. This requires a change in altitude as the AR.Drone descends 

toward the marker. The  𝑧𝑧𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is used to control the altitude of the AR.Drone along its landing 

trajectory. Refer to chapter 4 for more information on how the waypoints are generated and switched 

during landing. The error is defined as  

𝑒𝑒𝑧𝑧 = 𝑧𝑧 −  𝑧𝑧𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤    (5.4) 

where z is the altitude of the drone. 

As previously mentioned, the same altitude control input is used for this. 
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Yaw Control 

The AR.Drone has an onboard control of the rotational velocity about the yaw-axis, based on information 

received from the onboard cameras and the inertial measurement unit. The rotation about the yaw axis is 

as previously mentioned (See chapter 4) is represented in the rotation matrix  

 

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 −𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 0
𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 0

0 0 1
�    (5.5) 

where −𝜋𝜋 < 𝜑𝜑 < 𝜋𝜋. 

The method for determining the yaw error is to assume the reference yaw angle 𝜑𝜑 = 0, therefore  

𝑒𝑒𝑦𝑦𝑦𝑦𝑦𝑦 =  𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟 −  𝜑𝜑 = 𝜑𝜑𝑟𝑟𝑟𝑟𝑟𝑟     (5.6) 

This way, the reference angle will always be half a rotation from the discontinuity and the risk of crossing 

it is minimal. The resulting control signal is  

𝑢𝑢𝑦𝑦𝑦𝑦𝑦𝑦 = 0.02 ∙ 𝑒𝑒𝑦𝑦𝑦𝑦𝑦𝑦     (5.7) 

x-y Tracking 

We have determined the yaw and altitude control. The next step will be determining a pitch and roll 

controller for getting the AR.Drone to the waypoints coordinate during the landing operation. Using the 

PID control input from [14]: 

𝑢𝑢Ø = (0.35(𝑥𝑥� − 𝑥𝑥) + 0.2𝑥̇𝑥) cos𝜑𝜑 − (0.35(𝑦𝑦� − 𝑦𝑦) + 0.2𝑦̇𝑦) sin𝜑𝜑  (5.8) 

𝑢𝑢𝜃𝜃 = −(0.35(𝑥𝑥� − 𝑥𝑥) + 0.2𝑥̇𝑥) sin𝜑𝜑 − (0.35(𝑦𝑦� − 𝑦𝑦) + 0.2𝑦̇𝑦) cos𝜑𝜑  (5.9) 
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Chapter 6  

Implementation 

This chapter describes the approach to the problem and the system developed and implemented 

in the course of this project. My approach consists of three major components: 

Monocular SLAM: a monocular SLAM algorithm as described in Chapter 3 is implemented to navigate the 

drone in a previously unknown area without GPS access. The video frames captured by the onboard 

camera is used to determine the pose of the AR.Drone. The scale of the map is determined by comparing 

sensor data with PTAM’s pose estimate. This is the implementation of an already completed work by [26]. 

Image Processing and Data Extraction: An Open CV implementation called ALVAR is used for the 

marker recognition. A marker is placed on the UGV and it is used by the AR.Drone in locating the ground 

vehicle and in determining the position and orientation of the ground vehicle. This information is used in 

determining the navigation goal point. 

Autonomous Landing: Two simple algorithms were developed for two different landing approaches. 

These algorithms are used to get the AR.Drone from any initial position to the goal position which is the 

landing pad on the UGV. A marker is placed on this landing pad and it is used to update the UAVs position 

during landing. A PID controller is used to fly the AR.Drone to the target position. 

 
 

6.1 Simulation Platform 

 Due to already existing physical damages on the AR.Drone and its sensors from other 

experiments carried out in the lab, I noticed that the roll, pitch and yaw of the AR.Drone are not exactly 

the right values. These errors are system errors from the AR.Drone sensors. Because of this, this project 

was implemented on two different platforms. The Monocular slam was implemented in the lab on a 

physical AR.Drone while the autonomous landing operation was implemented in ROS Gazebo. 

 ROS Gazebo is a ROS package that provides the necessary interfaces to simulate a robot in 

the Gazebo 3D rigid body simulator for robots. It integrates with ROS using ROS messages, services and 

dynamic reconfigure. In ROS Gazebo, an empty world file is used for this simulation. Models and objects 
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with their position can be added to the workspace. The laws of physics may be enabled to allow for a 

more real scenario. For this thesis, the AR.Drone model was added. Boxes were used to simulate 

obstacles preventing the AR.Drone from seeing the marker.  

 

Figure 6-1 Workspace Simulation in ROS Gazebo 

 
6.2 Software Architecture 

The major software challenge in this project was integrating all the different applications and their 

platforms on a single application to achieve the project’s aim. The sensory data from the AR.Drone was 

used to create a complete feedback system, providing information on the state of the AR.Drone. As a 

dynamic system, it is essential that we are able to maintain communication between the AR.Drone and the 

ground station. This is achieved by creating two parallel processes: one for running the software’s 

framework and AR.Drone downlink while the other is for running the major components of this project. 

These parallel processes communicate using named pipes for interchanging message, as well as 

shared memory regions, mutexes and events for asynchronously interchanging video, navigational and 

control data.  
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Figure 6-2 System Topic and Node Relationship 

The overall project is based on two different operations: Monocular SLAM operation and 

Autonomous Landing System operation. During the monocular slam, an open-source PTAM is used for 

localization and mapping, using the onboard camera for detecting keypoints. While during the autonomous 

landing operation, the camera is used for detecting the marker and estimating its pose. As observed, the 

two different operations entail different tasks for the onboard cameras and therefore the application of the 

onboard camera switches with a change in system operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                             

6.2.1. Scale Estimation 

Scale estimation is important for navigating a quadrotor. The absolute scale of a map cannot be 

obtained by only using the visual odometry from a monocular camera. An external or prior information 

related to the depth of the reconstructed points or measurements of the camera motion is required. An 

estimate of the baseline length between the two captures is used in determining the scale factor. For this 

project, the scale is estimated using the ultrasound height measurements and integrating over the 

measured vertical speeds. 
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6.3. State Estimation 

For an autonomous drone, it is important for it to have a perception. The world state cannot be 

observed directly, therefore the AR.Drone needs an estimate of its state. These estimates are derived from 

the sensors onboard the AR.Drone and are updated continuously. The extended Kalman filter is used to 

estimate the world and update it continuously. It combines the estimates provided by PTAM with sensor 

measurements provided by the IMU. 

 
6.3.1. The State Space 

The internal state of the Kalman filter is defined to be 

𝑥𝑥(𝑡𝑡) ≔ (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑥̇𝑥, 𝑦̇𝑦, 𝑧̇𝑧, Ø,𝜃𝜃,𝜑𝜑, 𝜑̇𝜑)𝑇𝑇 ∈ 𝑹𝑹10   (6.1) 

Where 

• x, y and z correspond to the world-coordinates of the AR.Drone center in metres, 

• 𝑥̇𝑥, 𝑦̇𝑦 and 𝑧̇𝑧 correspond to the velocity of the AR.Drone in meters per second, 

• Ø,𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑 correspond to roll angle, pitch angle and yaw angle in degree, representing the drone’s 

orientation.  

• 𝜑̇𝜑 corresponds to the yaw-rotational speed in degree per second. 

With the state now defined, we know exactly what parameters are needed to have a complete model of the 

platform. 
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Chapter 7  

Flight Tests 

This chapter shows that the performance of the developed system which is still a work in progress with 

several areas of improvement. First, I implemented the already completed work by [14] then evaluated 

the proposed autonomous landing approach experimentally by observing the precision of the controller to 

the landing pad. 

Search Algorithm 

First, I tested the search algorithm in the ROS Gazebo environment. For this test, the marker recognition 

was turned off to ensure the AR.Drone completes a full search algorithm without any interference from 

the marker. 

 

Figure 7-1 Screenshot of ROS Gazebo environment for search simulation 
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Figure 7-2 Trajectory Plot of Search Pattern in x-y coordinate 

First Approach 

For the first landing approach, I have considered two different scenarios.  

Scenario 1: The AR.Drone takes off and locates the marker without any obstruction in its FOV. The 

timeline for this is shown in fig 7-3.  

 

Figure 7-3 Gazebo Simulation using the first approach without any obstruction 
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Figure 7-4 Trajectory Plot of the first landing approach 

 

Figure 7-5 X-Y Plot of the first landing approach 



 

43 

Observe the behavior of the AR.Drone in the X-Y Plot of the first landing approach, the bottom camera 

corrects position of the AR.Drone when landing.  

Scenario 2: An obstruction is placed in the FOV of the AR.Drone and the search algorithm is used to 

locate the marker. The AR.Drone flies some distance using the search algorithm before locating the 

marker. 

 

Figure 7-6 Landing using the first approach with an obstruction in its FOV 
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Figure 7-7 Trajectory Plot of the first landing approach using the search algorithm 

 

Figure 7-8 X-Y Trajectory Plot of the first landing approach using the search algorithm 
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Second Approach 

Also just like the first approach, two scenarios were considered for this: one without an obstruction to the 

FOV and the other with. The logic behind inserting an obstruction is to allow the use of the search 

algorithm. 

Scenario 1: The AR.Drone takes off, locates the marker and lands on it without any obstruction in its 

FOV. The timeline for this is shown in fig 7-9.  

 

Figure 7-9 Landing using the first approach without an obstruction in its FOV 
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Figure 7-10 Trajectory Plot of the second landing approach 

 

Figure 7-11 X-Y Trajectory Plot of the second landing approach 
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Scenario 2: An obstruction is placed in the FOV of the AR.Drone and the search algorithm is used to 

locate the marker. 

 

Figure 7-12 Landing using the second approach with an obstruction in its FOV 
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Figure 7-13 Trajectory Plot of the second landing approach 
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Chapter 8  

Conclusion 

 Autonomous landing is a key operation during joint operations between UAVs and UGVs. It is 

especially important to use a mobile launching and landing pad. This adds flexibility to the operation as 

well as eradicates the need for an extensive ground equipment. In this thesis, I was able to extend the 

work already done by [14] while incorporating an autonomous landing system in it.  

 The AR.Drone was able to localize and navigate in a previously unknown environment without 

GPS access using a monocular camera onboard. Also, the AR.Drone was able to land autonomously on 

a mobile base. To achieve the landing operation, a marker recognition system was used in estimating the 

pose of the landing pad and a search algorithm was used in locating the marker. A PID controller was 

used for the control signals: roll, pitch, yaw and altitude to navigate the drone from an initial point to the 

landing pad.  

 The drawback experienced during this thesis was in the first landing approach. During the first 

landing approach, the position of the marker is determined once and never updated during the reminder 

of the flight. Without the AR.Drone updating its pose estimate from the landing pad, it drifts away from the 

landing pad. Once the marker’s position has been entered, the onboard camera  switches from the front 

camera to the bottom camera which corrects the AR.Drone’s position for landing when it hovers over the 

landing pad.  

Overall, the second landing system is a more precise system as the AR.Drone continuously 

updates its position using the feedback from the front camera. The front camera maintains line of sight on 

the landing pad and continuously updates its landing position. 
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Chapter 9  

Future Work 

This thesis emphasized on autonomous landing, there are still several areas of joint operations 

between UAVs and UGVs to be exploited. There were some limitations during the implementation of this 

project that can be addressed in future work, which will be discussed below: 

Joint SLAM for UAV and UGV 

 The AR.Drone runs its SLAM on a ground computation station. A camera can be installed on the UGV and 

the same ground computation station can be used to run a SLAM system for the UGV as well. PTAM can be 

extended to both the UGV and UAV to run a joint SLAM on the ground computation station within the same 

coordinate system. This will eliminate the need to search for the landing station as the location of the UGV can be 

easily determined within the SLAM system. 

Incorporating a Radio Finder 

 In this thesis, I was limited by how far away the AR.Drone could fly from the marker. Locating the 

marker posed a serious challenge as the onboard camera could not pick up the marker beyond a certain 

extent. It was easier to use the search algorithm when the search area is of considerable size. A 

preferred approach would be using a radio direction finder in large areas. With a radio finder, distance 

would not be a factor. Using two or more measurements from different locations, the location of an 

unknown transmitter can be determined. 

Introducing a Learning Control 

 The development of a more stable controller will definitely improve the overall behavior of the 

system. Learning systems have been considered as high level intelligent systems. For this thesis, a PID 

controller was used for controlling the AR.Drone. A learning controller will be an improvement for the 

compensation of unknown periodic disturbances, allowing the AR.Drone react better to changing 

scenarios. A learning controller such as neural networks compensates the disturbance without 

redesigning existing control loops. 
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Onboard Computation 

The memory and computational limits of the control board which run onboard the AR.Drone had 

to be taken into consideration during the development of the application. For my thesis, all three channels 

mentioned in chapter 2 were used to acquire data as well as send commands via a wireless network. This 

caused sufficient delays. An improvement will be performing all computations required onboard as well as 

increasing the onboard memory capacity. In this case, one can access the drone cameras and onboard 

sensors directly without a delay caused by the wireless data transfer. Faster control loops are achievable 

and even when an application is running on the control board, the internal controllers which take care of 

the drone stability can be active.  

Running both Front and Bottom Cameras Simultaneous 

 A disadvantage of the camera system used on the AR.Drone is that a user cannot obtain live 

feeds from both cameras simultaneously. Instead, the user needs to select either the front and bottom 

camera. For this thesis, I switched between both cameras to maintain line of sight on the marker. 

Switching the modes is not instant, it takes about 270 ms and during the switching time, the provided 

image contains invalid data. The ability to use both onboard cameras simultaneously for the marker’s 

pose estimation will definitely yield better results during the landing operation as the onboard camera will 

be able to maintain visual contact on the marker throughout the landing operation. 
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Chapter 10  

Appendix 

This section includes some modifications to the original source code developed by Jakob Engel. Refer to 

[33] for the original code and instructions on how to execute the code using the ROS platform. 

Modifications were made to the ControlNode.cpp and ControlNode.h files to handle the marker callback. 

In the ControlNode.h file, add the line below beneath “//ROS message callbacks” 

• Marker_callback(const visualization_msgs::Marker& msg); 
 
Replace the content of the ControlNode.cpp with the source code below: 
 
#include "ros/ros.h" 
#include "ros/callback_queue.h" 
#include <ros/package.h> 
#include "ControlNode.h" 
 
#include "geometry_msgs/Twist.h" 
#include "../HelperFunctions.h" 
#include "tum_ardrone/filter_state.h" 
#include "std_msgs/String.h" 
#include <sys/stat.h> 
#include <string> 
#include <cmath> 
 
// include KI's 
#include "KI/KIAutoInit.h" 
#include "KI/KIFlyTo.h" 
#include "KI/KILand.h" 
#include "KI/KIProcedure.h" 
 
//These Gazebo libraries are needed only when using Gazebo for simulation 
#include "gazebo/gazebo.hh" 
#include "gazebo/transport/TransportTypes.hh" 
#include "gazebo/msgs/MessageTypes.hh" 
#include "gazebo/common/Time.hh" 
#include "gazebo/common/Plugin.hh" 
 
//ros package for marker  ar_tag 
//http://wiki.ros.org/rviz/Tutorials/Markers:%20Basic%20Shapes 
#include <visualization_msgs/Marker.h> 
#include <gazebo_msgs/ModelStates.h> 
 
//For image processing 
#include <opencv2/core/core.hpp> 
#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/imgproc/imgproc.hpp> 
 
#include <tf/transform_datatypes.h> 
#include <tf/transform_listener.h> 
 
using namespace std; 
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using namespace tum_ardrone; 
using namespace cv; 
using namespace gazebo; 
 
 
static const std::string OPENCV_WINDOW="Image window"; 
 
pthread_mutex_t ControlNode::logControl_CS = PTHREAD_MUTEX_INITIALIZER; 
 
 
ControlNode::ControlNode() 
{ 
    control_channel = nh_.resolveName("cmd_vel"); 
    dronepose_channel = nh_.resolveName("ardrone/predictedPose"); 
    command_channel = nh_.resolveName("tum_ardrone/com"); 
    takeoff_channel = nh_.resolveName("ardrone/takeoff"); 
    land_channel = nh_.resolveName("ardrone/land"); 
    toggleState_channel = nh_.resolveName("ardrone/reset"); 
 
    packagePath = ros::package::getPath("tum_ardrone"); 
 
    std::string val; 
    float valFloat; 
 
    ros::param::get("~minPublishFreq", val); 

     if(val.size()>0) 
  sscanf(val.c_str(), "%f", &valFloat); 
     else 
  valFloat = 110; 
     minPublishFreq = valFloat; 
     cout << "set minPublishFreq to " << valFloat << "ms"<< endl; 
 
 
    // other internal vars 
    logfileControl = 0; 
    hoverCommand.gaz = hoverCommand.pitch = hoverCommand.roll = hoverCommand.yaw = 0; 
    lastControlSentMS = 0; 
 
    // channels 
    dronepose_sub = nh_.subscribe(dronepose_channel, 10, &ControlNode::droneposeCb, this); 
    //ar_tag  marker topic 
    marker_sub = node.subscribe("/visualization_marker", 1, &ControlNode::Marker_callback,this); 
             vel_pub    = nh_.advertise<geometry_msgs::Twist>(control_channel,1); 
    tum_ardrone_pub    = nh_.advertise<std_msgs::String>(command_channel,50); 
    tum_ardrone_sub    = nh_.subscribe(command_channel,50, &ControlNode::comCb, this); 
    takeoff_pub    = nh_.advertise<std_msgs::Empty>(takeoff_channel,1); 
    land_pub    = nh_.advertise<std_msgs::Empty>(land_channel,1); 
    toggleState_pub    = nh_.advertise<std_msgs::Empty>(toggleState_channel,1); 
 
   // services handler 
  setReference_ = nh_.advertiseService("drone_autopilot/setReference", &ControlNode::setReference, 
this); 
 setMaxControl_ = nh_.advertiseService("drone_autopilot/setMaxControl", &ControlNode::setMaxControl, 
this); 
 setInitialReachDistance_ = nh_.advertiseService("drone_autopilot/setInitialReachDistance", 
&ControlNode::setInitialReachDistance, this); 
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 setStayWithinDistance_ = nh_.advertiseService("drone_autopilot/setStayWithinDistance", 
&ControlNode::setStayWithinDistance, this); 
 setStayTime_ = nh_.advertiseService("drone_autopilot/setStayTime", &ControlNode::setStayTime, this); 
 startControl_ = nh_.advertiseService("drone_autopilot/start", &ControlNode::start, this); 
 stopControl_ = nh_.advertiseService("drone_autopilot/stop", &ControlNode::stop, this); 
 clearCommands_ = nh_.advertiseService("drone_autopilot/clearCommands", &ControlNode::clear, this); 
 hover_ = nh_.advertiseService("drone_autopilot/hover", &ControlNode::hover, this); 
 lockScaleFP_ = nh_.advertiseService("drone_autopilot/lockScaleFP", &ControlNode::lockScaleFP, this); 
 
 // internals 
 parameter_referenceZero = DronePosition(TooN::makeVector(0,0,0),0); 
 parameter_MaxControl = 1; 
 parameter_InitialReachDist = 0.2; 
 parameter_StayWithinDist = 0.5; 
 parameter_StayTime = 2; 
 isControlling = false; 
 currentKI = NULL; 
 lastSentControl = ControlCommand(0,0,0,0); 

bool stamp_sync ; 
bool first_navdata ; 
bool first_marker ; 
bool Marker_back; 
ControlNode::MarkerTarget marker; 
 
//to deal with camera image 
cv::Mat img_raw; 
cv_bridge::CvImagePtr cv_ptr; 
CvFont font; 

 
 // create controller 
 controller = DroneController(); 
 controller.node = this; 

} 
 
ControlNode::~ControlNode() 
{ 
 
} 
 
pthread_mutex_t ControlNode::commandQueue_CS = PTHREAD_MUTEX_INITIALIZER; 
void ControlNode::droneposeCb(const tum_ardrone::filter_stateConstPtr statePtr) 
first_navdata(true), first_marker(true), Marker_back(false) 
{ 
 // do controlling 
 pthread_mutex_lock(&commandQueue_CS); 
 
 // as long as no KI present: 
 // pop next KI (if next KI present). 
 while(currentKI == NULL && commandQueue.size() > 0) 
  popNextCommand(statePtr); 
 
 // if there is no current KI now, we obviously have no current goal -> send drone hover 
 if(currentKI != NULL) 
 { 
  // let current KI control. 
  this->updateControl(statePtr); 
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 } 
 else if(isControlling) 
 { 
  sendControlToDrone(hoverCommand); 
  ROS_DEBUG("Autopilot is Controlling, but there is no KI -> sending HOVER"); 
 } 
 
 
 pthread_mutex_unlock(&commandQueue_CS); 
} 
 
// pops next command(s) from queue (until one is found thats not "done" yet). 
// assumes propery of command queue lock exists (!) 
void ControlNode::popNextCommand(const tum_ardrone::filter_stateConstPtr statePtr) 
{ 
 // should actually not happen., but to make shure: 
 // delete existing KI. 
 if(currentKI != NULL) 
 { 
  delete currentKI; 
  currentKI = NULL; 
 } 
 
 // read next command. 
 while(currentKI == NULL && commandQueue.size() > 0) 
 { 
  std::string command = commandQueue.front(); 
  commandQueue.pop_front(); 
  bool commandUnderstood = false; 
 
  // print me 
  ROS_INFO("executing command: %s",command.c_str()); 
 
  int p; 
  char buf[100]; 
  float parameters[10]; 
 
  // replace macros 
  if((p = command.find("$POSE$")) != std::string::npos) 
  { 
   snprintf(buf,100, 
"%.3f %.3f %.3f %.3f",statePtr->x,statePtr->y,statePtr->z,statePtr->yaw); 
   command.replace(p,6,buf); 
  } 
  if((p = command.find("$REFERENCE$")) != std::string::npos) 
  { 
   snprintf(buf,100, 
"%.3f %.3f %.3f %.3f",parameter_referenceZero.pos[0],parameter_referenceZero.pos[1],parameter_refer
enceZero.pos[2],parameter_referenceZero.yaw); 
   command.replace(p,11,buf); 
  } 
 
  // -------- commands ----------- 
  // autoInit 
  if(sscanf(command.c_str(),"autoInit %f %f %f %f",&parameters[0], &parameters[1], 
&parameters[2], &parameters[3]) == 4) 
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  { 
   currentKI = new 
KIAutoInit(true,parameters[0],parameters[1],parameters[2],parameters[3],true); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
  } 
 
  else if(sscanf(command.c_str(),"autoTakeover %f %f %f %f",&parameters[0], 
&parameters[1], &parameters[2], &parameters[3]) == 4) 
  { 
   currentKI = new 
KIAutoInit(true,parameters[0],parameters[1],parameters[2],parameters[3],false); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
  } 
 
  // takeoff 
  else if(command == "takeoff") 
  { 
   currentKI = new KIAutoInit(false); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
  } 
 
  // setOffset 
  else if(sscanf(command.c_str(),"setReference %f %f %f %f",&parameters[0], 
&parameters[1], &parameters[2], &parameters[3]) == 4) 
  { 
   parameter_referenceZero = 
DronePosition(TooN::makeVector(parameters[0],parameters[1],parameters[2]),parameters[3]); 
   commandUnderstood = true; 
  } 
 
  // setMaxControl 
  else if(sscanf(command.c_str(),"setMaxControl %f",&parameters[0]) == 1) 
  { 
   parameter_MaxControl = parameters[0]; 
   commandUnderstood = true; 
  } 
 
  // setInitialReachDist 
  else if(sscanf(command.c_str(),"setInitialReachDist %f",&parameters[0]) == 1) 
  { 
   parameter_InitialReachDist = parameters[0]; 
   commandUnderstood = true; 
  } 
 
  // setStayWithinDist 
  else if(sscanf(command.c_str(),"setStayWithinDist %f",&parameters[0]) == 1) 
  { 
   parameter_StayWithinDist = parameters[0]; 
   commandUnderstood = true; 
  } 
 
  // setStayTime 
  else if(sscanf(command.c_str(),"setStayTime %f",&parameters[0]) == 1) 
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  { 
   parameter_StayTime = 0; 
   commandUnderstood = true; 
  } 
 
  // goto 
  else if(sscanf(command.c_str(),"goto %f %f %f %f",&parameters[0], &parameters[1], 
&parameters[2], &parameters[3]) == 4) 
  { 
 
   currentKI = new KIFlyTo( 
    DronePosition( 
    TooN::makeVector(parameters[0],parameters[1],parameters[2]) + 
parameter_referenceZero.pos, 
     parameters[3] + parameter_referenceZero.yaw), 
    parameter_StayTime, 
    parameter_MaxControl, 
    parameter_InitialReachDist, 
    parameter_StayWithinDist 
    ); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
 
  } 
 
  //find marker 
  else if(sscanf(command.c_str(),"find marker") 
  { 
   
 
   currentKI = new KIFlyTo( 
    DronePosition( 
    TooN::makeVector(waypoints_x[1],waypoints_y[1],waypoints_z[1]) + 
parameter_referenceZero.pos, 
     marker.yaw + parameter_referenceZero.yaw), 
    parameter_StayTime, 
    parameter_MaxControl, 
    parameter_InitialReachDist, 
    parameter_StayWithinDist 
    ); 
  currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
   
 
  // moveBy 
  else if(sscanf(command.c_str(),"moveBy %f %f %f %f",&parameters[0], &parameters[1], 
&parameters[2], &parameters[3]) == 4) 
  { 
   currentKI = new KIFlyTo( 
    DronePosition( 
    TooN::makeVector(parameters[0],parameters[1],parameters[2]) + 
controller.getCurrentTarget().pos, 
     parameters[3] + controller.getCurrentTarget().yaw), 
    parameter_StayTime, 
    parameter_MaxControl, 
    parameter_InitialReachDist, 
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    parameter_StayWithinDist 
    ); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
 
  } 
 
  // moveByRel 
  else if(sscanf(command.c_str(),"moveByRel %f %f %f %f",&parameters[0], 
&parameters[1], &parameters[2], &parameters[3]) == 4) 
  { 
   currentKI = new KIFlyTo( 
    DronePosition( 
   
 TooN::makeVector(parameters[0]+statePtr->x,parameters[1]+statePtr->y,parameters[2]+statePtr-
>z), 
     parameters[3] + statePtr->yaw), 
    parameter_StayTime, 
    parameter_MaxControl, 
    parameter_InitialReachDist, 
    parameter_StayWithinDist 
    ); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
 
  } 
 
  // land 
  else if(command == "land") 
  { 
   currentKI = new KILand(); 
   currentKI->setPointers(this,&controller); 
   commandUnderstood = true; 
  } 
 
  // setScaleFP 
  else if(command == "lockScaleFP") 
  { 
   publishCommand("p lockScaleFP"); 
   commandUnderstood = true; 
  } 
 
  if(!commandUnderstood) 
   ROS_INFO("unknown command, skipping!"); 
 } 
 
} 
 
void ControlNode::comCb(const std_msgs::StringConstPtr str) 
{ 
 // only handle commands with prefix c 
 if(str->data.length() > 2 && str->data.substr(0,2) == "c ") 
 { 
  std::string cmd =str->data.substr(2,str->data.length()-2); 
 
  if(cmd.length() == 4 && cmd.substr(0,4) == "stop") 
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  { 
   stopControl(); 
  } 
  else if(cmd.length() == 5 && cmd.substr(0,5) == "start") 
  { 
   startControl(); 
  } 
  else if(cmd.length() == 13 && cmd.substr(0,13) == "clearCommands") 
  { 
   clearCommands(); 
  } 
  else 
  { 
   pthread_mutex_lock(&commandQueue_CS); 
   commandQueue.push_back(cmd); 
   pthread_mutex_unlock(&commandQueue_CS); 
  } 
 } 
 
 // global command: toggle log 
 if(str->data.length() == 9 && str->data.substr(0,9) == "toggleLog") 
 { 
  this->toogleLogging(); 
 } 
} 
 
void ControlNode::Loop() 
{ 
 ros::Time last = ros::Time::now(); 
 ros::Time lastStateUpdate = ros::Time::now(); 
 
 while (nh_.ok()) 
 { 
 
  // -------------- 1. spin for 50ms, do main controlling part here. --------------- 
  while((ros::Time::now() - last) < ros::Duration(minPublishFreq / 1000.0)) 
   ros::getGlobalCallbackQueue()->callAvailable(ros::WallDuration(minPublishFreq / 
1000.0 - (ros::Time::now() - last).toSec())); 
  last = ros::Time::now(); 
 
 
  // -------------- 2. send hover (maybe). --------------- 
  if(isControlling && getMS(ros::Time::now()) - lastControlSentMS > minPublishFreq) 
  { 
   sendControlToDrone(hoverCommand); 
   ROS_WARN("Autopilot enabled, but no estimated pose received - sending 
HOVER."); 
  } 
 
  // -------------- 2. update info. --------------- 
  if((ros::Time::now() - lastStateUpdate) > ros::Duration(0.4)) 
  { 
   reSendInfo(); 
   lastStateUpdate = ros::Time::now(); 
  } 
 } 
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} 
 
//Waypoint Generator from the drone's initial point to the landing pad. 
void ControlNode::waypoint(const target_x, const target_y, const target_z) 
{ 
  double ref_x=0; 
  double ref_y=0; 
  double ref_z=0; 
  double goal_x = target_x; //landing pad x 
  double goal_y = target_y //landing pad y 
  double goal_z = target_z //landing pad z 
  //state.yaw 
  int number_of_waypoints=4; 
  int i; 
  double stepsize_x = goal_x/number_of_waypoints; 
  double stepsize_y = goal_y/number_of_waypoints; 
  double stepsize_z = goal_z/number_of_waypoints; 
  double waypoints_x[number_of_waypoints], waypoints_y[number_of_waypoints], 
waypoints_z[number_of_waypoints]; 
   
  waypoints_x[3] = goal_x; 
  waypoints_y[3] = goal_y; 
  waypoints_z[3] = goal_z; 
   
  waypoints_x[0] = ref_x; 
  waypoints_y[0] = ref_y; 
  waypoints_z[0] = ref_z; 
   
  for (i=1; i < number_of_waypoints-1; i++) 
  { 
  waypoints_x[i]= waypoints_x[i-1] + stepsize_x; 
  waypoints_y[i]= waypoints_y[i-1] + stepsize_y; 
  waypoints_z[i]= waypoints_z[i-1] + stepsize_z; 
  } 
  
   
  return 0; 
} 
 
 
 void ControlNode::Marker_callback(const visualization_msgs::Marker& msg) 
 { 
  int waypoint_array; 
  Marker_back = true; 
  //Center of marker is (0,0,0) 
  cout<<"Marker in:"<<msg.header.stamp.toSec()<<endl; 
   
 
  tf::Pose marker_in_camera; 
  tf::Pose camera_in_marker; 
   
 
  tf::poseMsgToTF(msg.pose, marker_in_camera); 
  camera_in_marker = marker_in_camera.inverse(); 
   
  marker.x = camera_in_marker.getOrigin().x();//m,  position wrt. tag center 
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  marker.y = camera_in_marker.getOrigin().y();//m,  position wrt. tag center 
//For the first landing approach, make marker.z= 0 
  marker.z = camera_in_marker.getOrigin().z();//m 
  marker.yaw = tf::getYaw(camera_in_marker.getRotation() ); 
   
  tf::Matrix3x3 m(camera_in_marker.getRotation()); 
  double t_r, t_p, t_y; 
  m.getRPY(t_r, t_p, t_y); 
  state.roll  = t_r * 180 / M_PI; 
  state.pitch = t_p * 180 / M_PI; 
  state.yaw   = t_y * 180 / M_PI; 
  tf::poseTFToMsg(camera_in_marker, state.pose); 
   
 
//For second approach method 
//For the first waypoint navigation 
  if(first_marker){ 
    waypoint_array=1; 
   first_marker = false; 
   waypoint(marker.x, marker.y, marker.z); 
                                       currentKI = new KIFlyTo( 
                                       DronePosition( 
                                       TooN::makeVector(waypoints_x[waypoint_array], waypoints_y[waypoint_array], 
waypoints_z[waypoint_array]) + parameter_referenceZero.pos, parameters[3] + 
parameter_referenceZero.yaw), 
                                       parameter_StayTime, 
                                       parameter_MaxControl, 
  parameter_InitialReachDist, 
  parameter_StayWithinDist); 
                                       currentKI->setPointers(this,&controller); 
                                       commandUnderstood = true; 
  waypoint_array=2; 
  } 
//For the subsequent waypoint navigation. Once the error to the goal point is <0.3, a new KI is sent for the 
next waypoint. 
  if( (!first_marker ) && ( new_err[0] <=0.3) && ( new_err[1] <=0.3) && ( new_err[2] <=0.3) ) 
  { 
  currentKI = new KIFlyTo( 
                                       DronePosition( 
                                       TooN::makeVector(waypoints_x[waypoint_array], waypoints_y[waypoint_array], 
waypoints_z[waypoint_array]) + parameter_referenceZero.pos,    parameters[3] + 
parameter_referenceZero.yaw), 
                                       parameter_StayTime, 
                                       parameter_MaxControl, 
  parameter_InitialReachDist, 
  parameter_StayWithinDist); 
                                       currentKI->setPointers(this,&controller); 
                                       commandUnderstood = true; 
  waypoint_array=waypoint+1; 
  } 
  if( (!first_marker ) && ( new_err[0] <=0.3) && ( new_err[1] <=0.3) && ( new_err[2] <=0.3) 
&& commandQueue.size() == 0) 
{ 
sendLand() 
} 
} 
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void ControlNode::dynConfCb(tum_ardrone::AutopilotParamsConfig &config, uint32_t level) 
{ 
 controller.Ki_gaz = config.Ki_gaz; 
 controller.Kd_gaz = config.Kd_gaz; 
 controller.Kp_gaz = config.Kp_gaz; 
 
 controller.Ki_rp = config.Ki_rp; 
 controller.Kd_rp = config.Kd_rp; 
 controller.Kp_rp = config.Kp_rp; 
 
 controller.Ki_yaw = config.Ki_yaw; 
 controller.Kd_yaw = config.Kd_yaw; 
 controller.Kp_yaw = config.Kp_yaw; 
 
 controller.max_gaz_drop = config.max_gaz_drop; 
 controller.max_gaz_rise = config.max_gaz_rise; 
 controller.max_rp = config.max_rp; 
 controller.max_yaw = config.max_yaw; 
 controller.agressiveness = config.agressiveness; 
 controller.rise_fac = config.rise_fac; 
} 
 
pthread_mutex_t ControlNode::tum_ardrone_CS = PTHREAD_MUTEX_INITIALIZER; 
void ControlNode::publishCommand(std::string c) 
{ 
 std_msgs::String s; 
 s.data = c.c_str(); 
 pthread_mutex_lock(&tum_ardrone_CS); 
 tum_ardrone_pub.publish(s); 
 pthread_mutex_unlock(&tum_ardrone_CS); 
} 
 
 
void ControlNode::toogleLogging() 
{ 
 // logging has yet to be integrated. 
} 
 
void ControlNode::sendControlToDrone(ControlCommand cmd) 
{ 
 geometry_msgs::Twist cmdT; 
 cmdT.angular.z = -cmd.yaw; 
 cmdT.linear.z = cmd.gaz; 
 cmdT.linear.x = -cmd.pitch; 
 cmdT.linear.y = -cmd.roll; 
 
 // assume that while actively controlling, the above for will never be equal to zero, so i will never 
hover. 
 cmdT.angular.x = cmdT.angular.y = 0; 
 
 if(isControlling) 
 { 
  vel_pub.publish(cmdT); 
  lastSentControl = cmd; 
 } 
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 lastControlSentMS = getMS(ros::Time::now()); 
} 
 
void ControlNode::sendLand() 
{ 
 if(isControlling) 
  land_pub.publish(std_msgs::Empty()); 
} 
void ControlNode::sendTakeoff() 
{ 
 if(isControlling) 
  takeoff_pub.publish(std_msgs::Empty()); 
} 
void ControlNode::sendToggleState() 
{ 
 if(isControlling) 
  toggleState_pub.publish(std_msgs::Empty()); 
} 
void ControlNode::reSendInfo() 
{ 
 /* 
 Idle / Controlling (Queue: X) 
 Current: 
 Next: 
 Target: X,X,X,X 
 Error: X,X,X,X 
 */ 
 
 DronePosition p = controller.getCurrentTarget(); 
 TooN::Vector<4> e = controller.getLastErr(); 
 double ea = sqrt(e[0]*e[0] + e[1]*e[1] + e[2]*e[2]); 
 snprintf(buf,500,"u c %s (Queue: %d)\nCurrent: %s\nNext: %s\nTarget: 
(%.2f,  %.2f,  %.2f), %.1f\nError: (%.2f,  %.2f,  %.2f), %.1f (|.| %.2f)\nCont.: r %.2f, p %.2f, g %.2f, y %.2f", 
   isControlling ? "Controlling" : "Idle", 
   (int)commandQueue.size(), 
   currentKI == NULL ? "NULL" : currentKI->command.c_str(), 
   commandQueue.size() > 0 ? commandQueue.front().c_str() : "NULL", 
   p.pos[0],p.pos[1],p.pos[2],p.yaw, 
   e[0],e[1],e[2],e[3], ea, 
   lastSentControl.roll, lastSentControl.pitch, lastSentControl.gaz, 
lastSentControl.yaw); 
 
 publishCommand(buf); 
} 
 
void ControlNode::startControl() { 
 isControlling = true; 
 publishCommand("u l Autopilot: Start Controlling"); 
 ROS_INFO("START CONTROLLING!"); 
} 
 
void ControlNode::stopControl() { 
 isControlling = false; 
 publishCommand("u l Autopilot: Stop Controlling"); 
 ROS_INFO("STOP CONTROLLING!"); 
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} 
 
void ControlNode::updateControl(const tum_ardrone::filter_stateConstPtr statePtr) { 
 if (currentKI->update(statePtr) && commandQueue.size() > 0) { 
  delete currentKI; 
  currentKI = NULL; 
 } 
} 
 
void ControlNode::clearCommands() { 
 pthread_mutex_lock(&commandQueue_CS); 
 commandQueue.clear();      // clear command queue. 
 controller.clearTarget();     // clear current controller target 
 if(currentKI != NULL) delete currentKI; // destroy & delete KI. 
 currentKI = NULL; 
 pthread_mutex_unlock(&commandQueue_CS); 
 publishCommand("u l Autopilot: Cleared Command Queue"); 
 ROS_INFO("Cleared Command Queue!"); 
} 
 
bool ControlNode::setReference(SetReference::Request& req, SetReference::Response& res) 
{ 
 ROS_INFO("calling service setReference"); 
 parameter_referenceZero = DronePosition(TooN::makeVector(req.x, req.y, req.z), req.heading);  
 res.status = true; 
 return true; 
} 
 
bool ControlNode::setMaxControl(SetMaxControl::Request& req, SetMaxControl::Response& res) 
{ 
 ROS_INFO("calling service setMaxControl"); 
 parameter_MaxControl = req.speed; 
 res.status = true; 
 return true; 
} 
 
bool ControlNode::setInitialReachDistance(SetInitialReachDistance::Request& req, 
SetInitialReachDistance::Response& res) 
{ 
 ROS_INFO("calling service setInitialReachDistance"); 
 parameter_InitialReachDist = req.distance; 
 res.status = true; 
 return true; 
} 
 
bool ControlNode::setStayWithinDistance(SetStayWithinDistance::Request& req, 
SetStayWithinDistance::Response& res) { 
 ROS_INFO("calling service setStayWithinDistance"); 
 parameter_StayWithinDist = req.distance; 
 res.status = true; 
 return true; 
} 
 
bool ControlNode::setStayTime(SetStayTime::Request& req, SetStayTime::Response& res) { 
 ROS_INFO("calling service setStayTime"); 
 parameter_StayTime = req.duration; 
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 res.status = true; 
 return true; 
} 
 
bool ControlNode::start(std_srvs::Empty::Request& req, std_srvs::Empty::Response& res) { 
 ROS_INFO("calling service start"); 
 this->startControl(); 
 return true; 
} 
 
bool ControlNode::stop(std_srvs::Empty::Request&, std_srvs::Empty::Response&) { 
 ROS_INFO("calling service stop"); 
 this->stopControl(); 
 return true; 
} 
 
bool ControlNode::clear(std_srvs::Empty::Request&, std_srvs::Empty::Response&) { 
 ROS_INFO("calling service clearCommands"); 
 this->clearCommands(); 
 return true; 
} 
 
bool ControlNode::hover(std_srvs::Empty::Request&, std_srvs::Empty::Response&) { 
 ROS_INFO("calling service hover"); 
 this->sendControlToDrone(hoverCommand); 
 return true; 
} 
 
bool ControlNode::lockScaleFP(std_srvs::Empty::Request&, std_srvs::Empty::Response&) { 
 ROS_INFO("calling service lockScaleFP"); 
 this->publishCommand("p lockScaleFP"); 
 return true; 
} 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



 

66 

Bibliography 

[1] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart. Onboard IMU and monocular vision based control 

for MAVs in unknown in- and outdoor environments. In Proc. of the International Conference on 

Robotics and Automation (ICRA), 2011. 

[2] ARDrone Flyers. AR.Drone — ARDrone-Flyers.com, 2011. [http://www. ardrone-flyers.com/]. 

[3] H. Bay, T. Tuytelaars, and L.V. Gool. SURF: Speeded-up robust features. In Proc. of the European 

Conference on Computer Vision (ECCV), 2008. 

[4] C. Bills, J. Chen, and A. Saxena. Autonomous MAV flight in indoor environments using single image 

perspective cues. In Proc. of the International Conference on Robotics and Automation (ICRA), 2011. 

[5] J. Canny. A computational approach to edge detection. Conference on Pattern Analysis and Machine 

Intelligence, PAMI-8(6):679 – 698, 1986. 

[6] H. Deng, W. Zhang, E. Mortensen, T. Dietterich, and L. Shapiro. Principal curvature-based region 

detector for object recognition. In Proc. of the Conference on Computer Vision and Pattern 

Recognition (CVPR), 2007. 

[7] H. Durrant-Whyte and T. Bailey.  Simultaneous localization and mapping:  Part I. 

Robotics & Automation Magazine, 13(2):99 – 110, 2006. 

[8] E. Eade and T. Drummond. Edge landmarks in monocular SLAM. Image and Vision Computing, 

27(5):588 – 596, 2009. 

[9] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. of the Alvey Vision 

Conference, 1988. 

[10] G. Muscato, F. Bonaccorso, L. Cantelli, D. Longo and C.D. Melita: “Volcanic environments: Robots 

for Exploration and Measurement”, IEEE Robotics & Automation Magazine, Vol.19, 2012.  

[11] Pascual Campoy, Juan F. Correa, Ivan Mondragon, Carol Martinez, Miguel Olivares, Luis Mejias, 

Jorge Artieda: Computer Vision Onboard UAVs for civilian tasks. Computer Vision Group, 

Universidad Politecnica Madrid. 

 

 

http://www.ardrone-flyers.com/
http://www.ardrone-flyers.com/


 

67 

[12]  “Direction Finding" Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 22 July 2004. 

Web. 10 Aug. 2004. 

[13] Braden R.Huber: “Radio Determination on Mini-UAV Platforms: Tracking and Locating Radio 

Transmitters”, All Theses and Dissertations. BYU Scholars Archive (2009). 

[14] Jakob J. Engel: “Autonomous Camera-Based Navigation of a Quadcopter”. Technical University of 

Munich, 2011. 

[15] “The iPhone: “Now There’s a Helicopter for that”. Associated Press in the New York Times, 2010. 

[16] Chris Anderson: “Parrot AR.Drones specs: ARM9, Linux, 6DoF IMU, Ultrasonic sensor, 

WiFi…WOW!”, 2010. 

[17] Andrew Gibiansky: “Quadcopter Dynamics, Simulation and Control”, Andrew.gibiansky.com, 2012. 

[http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/]. 

[18] C Balas: “Modelling and Linear Control of a Quadrotor”, Cranfield University, 2007. 

[19] Stephane Piskorski and Nicolas Brulez: “AR.Drone Developer Guide”, University of Washington 

Computer Science and Engineering Community, 2011. 

[20] http://wiki.ros.org/ROS/Introduction 

[21] Jason M.O’Kane: “A Gentle Introduction to ROS”, https://cse.sc.edu/~jokane/agitr/ 

[22] Michael Montemerlo, Sebastian Thrun, Daphne Koller and Ben Wegbreit: “FastSLAM: A Factored 

Solution to the Simultaneous Localization and Mapping Problem”, Stanford, 2004. 

[23] G. Klein and D. Murray: “ Parallel tracking and mapping for small AR packages”, In Proc. Of the 

International Symposium on Mixed and Augmented Reality (ISMAR), 2007. 

[24] http://www.ros.org/wiki/ar_track_alvar 

[25]  https://github.com/artoolkit/artoolkit-docs/blob/master/3_Marker_Training/marker_about.md 

[26]  Martin Hirzer: “Marker Detection For Augmented Reality Applications”, Institute for Computer 

Graphics and Vision, 2008. 

[27]  Alonzo Kelly: “Mobile Robotics: Mathematics, Models and Models”, Cambridge University Press, 

2014. 

[28]  Extended Kalman Filter, http://en.wikipedia.org/wiki/Extended_Kalman_Filter 

http://wiki.ros.org/ROS/Introduction
https://cse.sc.edu/%7Ejokane/agitr/
http://www.ros.org/wiki/ar_track_alvar
https://github.com/artoolkit/artoolkit-docs/blob/master/3_Marker_Training/marker_about.md
http://en.wikipedia.org/wiki/Extended_Kalman_Filter


 

68 

[29]  Engel, J., Sturm, J., Cremers, D., “Scale-aware navigationof a low-cost quadrocopter with a 

monocular camera, Department of Computer Science”, Technical University of Munich, Germany, 

Robotics and Autonomous Systems 62, pp. 1646–1656, 2014. 

[30]  Karl Johan Astrom: “Control System Design”, 2002. 

[31]  Sean Nicholls: “ARDroneDocs”, https://github.com/seannicholls/ARDroneDocs/wiki/Technical-

Specifications. 
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