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ABSTRACT

Exploratory Data Analysis over Online Community Networks

AZADE NAZI, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Gautam Das

An online community network links entities (e.g., users, products) with vari-

ous relationships (e.g., friendship, co-purchase) and make such information available

for access through a web interface. There are numerous such networks on the web,

ranging from Twitter, Instagram, which links users as “followers-followees”, to ama-

zon.com, ebay.com, which links products with relationships such as “also buy”.

Online community networks often feature a web interface that only allows local-

neighborhood queries - i.e., given a entity (e.g., users, products) of the community

network as input, the system only returns the immediate neighbors of the entity.

Further, the rate limit constraint restricts the number of queries/API calls that could

be issued per day over the online community networks. These restrictives makes it

extremely difficult for a third party to crawl all data from a community network, as

a complete crawl requires as many queries as the number of entities in the network.

Moreover, the web interfaces of these networks often support features such as keyword

search and “get-neighbors” - so a visitor can quickly find entities (e.g., users/products)

of interest. Nonetheless, the interface is usually too restrictive to answer complex

queries such as (1) find 100 Twitter users from California with at least 100 followers or
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(2) find 100 books with at least 200 5-star reviews at amazon.com. These restrictions

prevent scientists and third parties with limited resources from performing novel

analytics tasks over these data.

On the other hand, the available content in an online community network may

help users in decision making. For example, detailed reviews are critical for activities

such as buying an expensive digital SLR camera, reserving a vacation package, etc.

Since writing a detailed review for a product (or, a service) is usually time-consuming

and may not offer any incentive, the number of useful reviews available in the Web

is far from many. The corpus of reviews for making informed decisions also suffers

from spam and misleading content, typographical and grammatical errors, etc.

In this proposal, we present efficient techniques for exploratory data analysis

over online community networks. This is achieved by developing novel algorithms

that allows a user to overcome some of the restrictions enforced by web interfaces.

There are three main contributions.

First, we introduce a novel, general purpose, technique for faster sampling of

nodes over an online social network. Specifically, unlike traditional random walks

which wait for the convergence of sampling distribution to a predetermined target

distribution - a waiting process that incurs a high query cost - we develop WALK-

ESTIMATE, which starts with a much shorter random walk, and then proactively

estimate the sampling probability for the node taken before using acceptance-rejection

sampling to adjust the sampling probability to the predetermined target distribution.

Second, we introduce the novel problem of answering complex queries that

involve non-searchable attributes through the web interface of an online community

network. We propose a unified approach that (approximately) transforms the complex

query into a small number of supported queries based on a strategic query-selection

process.
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The third contribution of my dissertation is the development of new techniques

that engage the lurkers (i.e., people who read reviews but never take time and effort

to write one) to participate and write online reviews by systematically simplifying

the reviewing task. Given a user and an item that she wants to review, the task

is to identify the top-k meaningful phrases (i.e., tags) from the set of all tags (i.e.,

available user feedback for items) that, when advised, would help her review an item

easily. Enabling such automatic review system raise unexpected challenges that we

tackle through the design of exact and approximate algorithms.

For all the problems, we provide rigorous theoretical analysis and extensive

experiments over synthetic and real-world popular online community networks.
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CHAPTER 1

Introduction

1.1 Online Community Networks

An online community network links entities (e.g., users, products) with vari-

ous relationships (e.g., friendship, co-purchase) and make such information available

for access through a web interface. There are numerous such networks on the web,

ranging from Twitter, Instagram, which links users as “followers-followees”, to ama-

zon.com, ebay.com, which links products with relationships such as “also buy”. online

community networks contain very interesting information such as topology of the net-

work (how entities are connected in the network), and the granular data, e.g., posts

in Twitter, and user feedback over products in amazon.com. Analysis of this infor-

mation may enable scientists and third parties to build innovative services over these

data. However, online community networks enforce a number of constraints over the

web interfaces which make such analysis hard. In this proposal, we focus on three

most commonly enforced constraints.

Local-neighborhood-only Access: Online community networks often fea-

ture a web interface that only allows local-neighborhood queries - i.e., given an entity

(e.g., users, products) of the community network as input, the system only returns

the immediate neighbors of the entity. The restrictive local-neighborhood-only ac-

cess interface makes it extremely difficult for a third party to crawl all data from a

community network, as a complete crawl requires as many queries as the number of

entities in the network.
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Rate Limit Constraint: Most of the web interfaces enforce strict rate limit

constraints by imposing a per user/IP limit on number of queries one can issue over

a given time frame, e.g., Google Search API allows only 100 free queries per user per

day. Twitter allows only 180 queries per 15 minutes. amazon.com allows no more

than one request every two seconds and so on.

Query Constraint: The web interfaces of the online community networks

often support features such as keyword search and “get-neighbors” - so a visitor can

quickly find entities (e.g., users/products) of interest. Nonetheless, the interface is

usually too restrictive to answer complex queries such as (1) find 100 Twitter users

from California with at least 100 followers, or (2) find 100 books with at least 200

5-star reviews at amazon.com.

1.2 Dissertation Overview and Impact

In this dissertation, we present efficient techniques for exploratory analysis over

online community networks. This is achieved by developing novel algorithms that

allows a user to overcome some of the restrictions enforced by web interfaces. There

are three main contributions in this dissertation. First, we propose a novel sampling

approach over online social networks. Second, we leverage both the topology of the

network and the available context to answer complex queries in online community

networks. Third, we focus on the detailed user feedback in online websites we investi-

gate how to engage the users to participate and write online reviews by systematically

simplifying the web item reviewing task. We now provide a high level overview of our

contributions:

Faster Sampling over Online Social Networks: Online social networks

often feature a web interface that only allows local-neighborhood queries - i.e., given a

user of the online social network as input, the system returns the immediate neighbors
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of the user. As demonstrated by a wide range of existing services (e.g., Twitris,

Toretter, AIDR), third-party analytics applications benefit not only social network

users, social scientists, but the entire society at large (e.g., through epidemic control).

However, the restrictive local-neighborhood-only access interface makes it extremely

difficult for a third party to crawl all data from an online social network, as a complete

crawl requires as many queries as the number of users in the social network. To address

this challenge and enable analytics tasks such as aggregate estimation through the

restrictive access interface, many existing studies resort to the sampling of users from

the online social network. If we consider a social network as a graph, the idea here

is to first draw a sample of nodes from the graph, and then generate (statistically

accurate) aggregate estimations based on the sample nodes.

The nature of the interface limitation - i.e., allowing only local-neighborhood

queries - makes random walk based Monte Carlo Markov Chain (MCMC) methods an

ideal fit for the sampling of users from an online social network. A critical problem

with the existing random walk techniques, is the long burn-in period it requires and,

therefore, the significant query cost it incurs for drawing a sample. The rate limit

constraints over the social networks limits the sample size one can draw from the social

network and, consequently, the accuracy of analytics tasks. The existing techniques

set a conservatively large burn-in period [1, 2], or use one of the heuristic convergence

monitors and “wait” for the sampling distribution to converge to its stationary value.

In either case, the sampling process may require a large number of queries during

the burn-in period. Our objective is to significantly reduce the query cost of node

sampling over an online social network by (nearly) eliminating the costly waiting

process.

Answering Complex Queries in an Online Community Network: An

online community network, such as Twitter and amazon.com, offers information about
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entities (e.g., Twitter users, products sold at amazon.com) and various types of re-

lationships between them (e.g., follower/followee relationships between Twitter users

and co-purchase relationships between amazon.com products). Such information is

made available through a web interface which often provides various search and brows-

ing features for visitors to locate the entity/relationship information of interest - some

common examples here include form-like search, keyword search and graph based

browsing features:

The form-like search feature allows searches that specify the desired values for

one or a few attributes - such a specification is then translated to a conjunctive query.

The keyword search feature, on the other hand, allows queries formed by one or more

keywords. Finally, a graph based browsing feature allows the navigation from one

entity to others related to it - e.g., one can browse a Twitter user’s follower list and

then navigate to a follower’s page and access its information. Many online community

networks offer all three features. For example, amazon.com allows advanced search,

i.e., a form-like interface, a simple search box, i.e., a keyword search interface, and

browsing through products listed under “customer buys this product also buys” on

the product information page, i.e., a graph-browsing interface.

While simple and intuitive to use, these search/browsing features are often

insufficient to support complex queries desired by many users and third-party ap-

plications. For examples, a complex query may (a) involve attributes that are not

searchable through the web interface (e.g., user’s home location in Twitter or average

rating/reviews in amazon.com), and/or (b) require more expression power than the

simple conjunctive conditions allowed by the interface (e.g. a query may call upon a

classifier to determine whether a Twitter user is an expert in a topic - such a classifier

is clearly unspecifiable through the web interface). While a user may manually (and

repeatedly) reformulate queries till finding the desired entities, to the best of our
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knowledge, there has not been an automated solution to avoid the tedious manual

process and efficiently answer complex queries through the restrictive web interface

of an online community network.

Personalize Web Item Review System: The increasing popularity and

widespread use of online reviews in sites like Yelp, amazon.com, Angie’s List, Tri-

pAdvisor, etc. over the past decade has motivated businesses of all types to possess

an expansive arsenal of user feedback (preferably positive) in order to mark their

reputation and presence in the Web. User feedback is available in various forms such

as numeric or star ratings, number of visits, number of check-ins, number of Facebook

likes, tags, reviews, etc. Though a significant proportion of purchasing decisions today

are driven by aggregate user feedback in the form of average rating (e.g., a movie in

IMDB), number of Facebook check-in (e.g., a restaurant page in Facebook), number of

views (e.g., an article in Business Insider), etc., detailed reviews continue to influence

a wide variety of critical activities such as buying an expensive digital SLR camera,

choosing a car, reserving a vacation package, etc. However, since writing a detailed

review for a product (or, a service) is usually time-consuming and may not offer any

incentive, the number of useful reviews available is far from many. Though the 1%

rule (or, the 90-9-1 rule) of Internet is presumed to be dead, the proportion of lurkers

(i.e., people who read user-generated content in the Web without contributing) is still

high. According to survey conducted by Pew Internet in 2012, though 90% people

conduct online product research, only 37% people have ever rated a product, service,

etc. and only 32% have ever posted a review online about product they bought or

service they received. In addition, several sites like Hotels.com and IMDB allows

users to submit feedback as ratings without any review accompaniment. As a result,

the number of numerical ratings available for a product far exceeds the number of

detailed reviews. The corpus of reviews available at our disposal for making informed
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decisions suffers from redundancy, inaccurate and misleading content, typographical

and grammatical errors, etc. too. we investigate how to engage the users to partic-

ipate and write online reviews by systematically simplifying the web item reviewing

task.

1.3 Dissertation Organization

In Section 2, we introduce a novel, general purpose, technique for faster sam-

pling of nodes over an online social network. Specifically, unlike traditional random

walks which wait for the convergence of sampling distribution to a predetermined

target distribution - a waiting process that incurs a high query cost - we develop

WALK-ESTIMATE, which starts with a much shorter random walk, and then proac-

tively estimate the sampling probability for the node taken before using acceptance-

rejection sampling to adjust the sampling probability to the predetermined target

distribution. We present a novel backward random walk technique which provides

provably unbiased estimations for the sampling probability, and demonstrate the su-

periority of WALK-ESTIMATE over traditional random walks through theoretical

analysis and extensive experiments over real world online social networks.

Finally, in Section 3, we introduce the novel problem of answering complex

queries that involve non-searchable attributes through the web interface of an on-

line community network. We model such a network as a heterogeneous graph with

two access channels, Content Search and Local Search, corresponding to the keyword

search and “get-neighbors” features, respectively. Then, to enable the efficient pro-

cessing of complex queries not supported by either interface, we propose a unified

approach that (approximately) transforms the complex query into a small number

of supported ones based on a strategic query-selection process. We conduct com-

prehensive experiments on Twitter and amazon.com which demonstrate the efficacy
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of our proposed algorithms in answering complex queries efficiently over real-world

community networks.

In Section 4, we address the problem of how to engage the lurkers (i.e., people

who read reviews but never take time and effort to write one) to participate and

write online reviews by systematically simplifying the reviewing task. Given a user

and an item that she wants to review, the task is to identify the top-k meaningful

phrases (i.e., tags) from the set of all tags (i.e., available user feedback for items) that,

when advised, would help her review an item easily. We refer to it as the TagAdvisor

problem, and formulate it as a general-constrained optimization goal. Our framework

is centered around three measures - relevance (i.e., how well the result set of tags

describes an item to a user), coverage (i.e., how well the result set of tags covers

the different aspects of an item), and polarity (i.e., how well sentiment is attached

to the result set of tags) in order to help a user review an item satisfactorily. By

adopting different definitions of coverage, we identify two concrete problem instances

that enable a wide range of real-world scenarios. We show that these problems are

NP-hard and develop practical algorithms with theoretical bounds to solve them

efficiently. We conduct detailed experiments on synthetic and real data crawled from

the web to validate the utility of our problem and effectiveness of our solutions.
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CHAPTER 2

Faster Sampling over Online Social Networks

In this paper [3], we introduce a novel, general purpose, technique for faster sam-

pling of nodes over an online social network. Specifically, unlike traditional random

walks which wait for the convergence of sampling distribution to a predetermined

target distribution - a waiting process that incurs a high query cost - we develop

WALK-ESTIMATE, which starts with a much shorter random walk, and then proac-

tively estimate the sampling probability for the node taken before using acceptance-

rejection sampling to adjust the sampling probability to the predetermined target

distribution. We present a novel backward random walk technique which provides

provably unbiased estimations for the sampling probability, and demonstrate the su-

periority of WALK-ESTIMATE over traditional random walks through theoretical

analysis and extensive experiments over real world online social networks.

2.1 Introduction

Online social networks often feature a web interface that only allows local-

neighborhood queries - i.e., given a user of the online social network as input, the

system returns the immediate neighbors of the user. In this paper, we address the

problem of enabling third-party analytics over an online social network through its

restrictive web interface. As demonstrated by a wide range of existing services (e.g.,

Twitris, Toretter, AIDR), such third-party analytics applications benefit not only

social network users, social scientists, but the entire society at large (e.g., through

epidemic control).
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2.1.1 Problem of Existing Work

The restrictive local-neighborhood-only access interface makes it extremely dif-

ficult for a third party to crawl all data from an online social network, as a complete

crawl requires as many queries as the number of users in the social network. To ad-

dress this challenge and enable analytics tasks such as aggregate estimation through

the restrictive access interface, many existing studies resort to the sampling of users

from the online social network. If we consider a social network as a graph, the idea

here is to first draw a sample of nodes from the graph, and then generate (statistically

accurate) aggregate estimations based on the sample nodes.

The nature of the interface limitation - i.e., allowing only local-neighborhood

queries - makes random walk based Monte Carlo Markov Chain (MCMC) methods

an ideal fit for the sampling of users from an online social network. Intuitively, a

random walk starts from an arbitrary user, and then randomly moves to one of its

neighbors selected randomly according to a pre-determined probability distribution

(namely the transition probability). The movement continues for a number of steps,

namely the “burn-in period” before the node being selected is taken as a sample.

A critical problem with the existing random walk techniques, is the long burn-

in period it requires and, therefore, the significant query cost it incurs for drawing a

sample. Since many online social networks limit the number of queries one can issue

(e.g., from an IP address) within a period of time (e.g., Twitter allows , every 15

minutes, only 15 API requests to retrieve ids of a user’s followers) the high query cost

limits the sample size one can draw from the social network and, consequently, the

accuracy of analytics tasks.

To understand why the burn-in period is required, an important observation

is that, before a sample can be used for analytical purposes, we must know the

sampling distribution - i.e., the probability for each node in the graph to be sampled
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- because without such knowledge, one might “over-consider” certain parts of the

graph in the analytics tasks, leading to errors such as biased aggregate estimations.

However, since a third party has no knowledge of the global graph topology, it seems

infeasible to compute the sampling distribution for a random walk. Fortunately,

the property of MCMC methods ensures that, as a random walk grows longer, the

sampling distribution becomes asymptotically close to a stationary distribution that

can be computed from the design of transition probabilities alone. For example, with

a simple random walk (featuring a uniform transition distribution - see Section 2.2.2

for details), the stationary probability for a node to be sampled is always proportional

to its degree, no matter how the global graph topology looks like.

It is also the availability of such a stationary distribution that leads to the man-

date of a burn-in period. Note that, while the MCMC property ensures asymptotic

convergence to the stationary distribution, the actual convergence process can be slow

- and the length of burn-in required is essentially uncomputable without knowledge

of the entire graph topology [4, 2]. Facing this problem, what the existing techniques

can do is to either set a conservatively large burn-in period [1, 2], or use one of the

heuristic convergence monitors and “wait” for the sampling distribution to converge

to its stationary value. In either case, the sampling process may require a large

number of queries during the burn-in period.

2.1.2 Our Idea: WALK-ESTIMATE

In this paper, our objective is to significantly reduce the query cost of node

sampling over an online social network by (nearly) eliminating the costly waiting

process. Of course, as one can see from the above discussions, if we do not wait for

the convergence to stationary distribution, we must somehow estimate the probability

for our short walk to take a node as a sample (i.e., the node’s sampling probability)
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before we can use the node as a sample. This is exactly what we do - i.e., we introduce

a novel idea of having a (much) shorter, say t-step, walk, before taking a node v as

a sample candidate, but follow it up with a proactive process which estimates v’s

sampling probability pt(v) - i.e., the probability for our walk to reach node v at Step

t, so we can use acceptance-rejection sampling to “correct” the sampling probability to

the desired distribution. As we shall prove in the paper, even though the acceptance-

rejection step introduces additional query cost, the savings from having a shorter

walk in the first place far outweighs the additional cost, leading to a significantly

more efficient sampling process.

Based on this idea, we develop Algorithm WALK-ESTIMATE. The algorithm

takes as input a random walk based MCMC sampler, and produces samples according

to the exact same distribution as the input sampler - i.e., the stationary distribution of

the MCMC process. One can see that this design makes WALK-ESTIMATE transpar-

ent to the desired target distribution, making it a swap-in replacement for any random

walk sampler being used (e.g., simple random walk [5, 4], Metropolis-Hastings random

walk [5, 4]. As we shall demonstrate through theoretical analysis and experimental

evaluation over real-world social networks, while the proactive probability-estimation

process may consume a small number of queries, the significant savings from the

shorter walk more than offset the additional consumption, and lead to a much more

efficient sampling process over online social networks.

2.1.3 Outline of Technical Results

We now provide an overview of the main technical results in the design of

WALK-ESTIMATE. The algorithm is enabled by two main components: WALK and

ESTIMATE. The WALK component determines how many, say t, steps to (randomly)

transit before taking a node v as a candidate (for sampling), and then calls upon the
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ESTIMATE component for an estimation of the probability for the walk to reach v

after t steps. Based on the estimated probability, WALK then performs acceptance-

rejection sampling on v to determine if it should be included in the final (output)

sample.

For the WALK component, we start by developing IDEAL-WALK, an imprac-

tical sampler which makes two ideal-case assumptions: One is access to an oracle

that precisely computes the pt(v), i.e., the probability for the walk to reach a node

v at Step t. The other is access to certain global topological information about the

underlying graph - e.g., |E|, the total number of edges in the graph, D(G), the graph

diameter, λ, the spectral gap of the transition matrix, and dmax, the maximum degree

of a node in the graph - so that IDEAL-WALK can determine the optimal number

of steps t to walk. We rigidly prove that no matter what the target distribution is

(barring certain extreme cases, e.g., when the distribution is 1 on the starting node

and 0 on all others), IDEAL-WALK always outperforms its corresponding traditional

random walk algorithm. Further, it also produce samples with absolutely zero bias

(while random walks often cannot, depending on the graph topology). We also demon-

strate through analysis of multiple theoretical graph models the significance of such

efficiency enhancements for the sampling process.

Of course, IDEAL-WALK makes two unrealistic assumptions, which we remove

through the design of Algorithms WALK and ESTIMATE, respectively. Algorithm

WALK removes the assumption of access to global parameters by requiring access

to only one parameters (besides the local neighborhood of the current node): D̄(G),

i.e., an upper bound on the diameter of the graph - which is often easy to obtain

(e.g., it is commonly believed that 8 to 10 is a safe bet for real-world online social

networks [6, 1]). Algorithm ESTIMATE, on the other hand, estimates pt(v), i.e., the

probability for Algorithm WALK to sample node v at Step t. To illustrate our main
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idea here, we start by developing UNBIASED-ESTIMATE, a simple algorithm which

takes a backward random walk from Node v for estimating pt(v). We rigidly prove

the unbiasedness of the estimation produced by UNBIASED-ESTIMATE. Nonethe-

less, we also note its problem: a high estimation variance which grows rapidly with

the number of backward steps one has to take for producing the estimation. Since

the error of estimation is determined by both bias and variance, the high variance

produced by UNBIASED-ESTIMATE introduces significant error in the estimation

of pt(v).

To address the problem of UNBIASED-ESTIMATE, we introduce two main

ideas for variance reduction in developing Algorithm ESTIMATE, our final algorithm

for estimating pt(u): One is initial crawling, i.e., the crawl of the h-hop neighborhood

(where h is a small number like 2 or 3) of the starting node to reduce the number

of backward steps required by Algorithm ESTIMATE, and the second is weighted

sampling, i.e., to carefully design the transition matrix of the backward random walk

process to reduce the variance of estimation. We shall demonstrate through exper-

imental evaluation that Algorithm ESTIMATE significantly reduces the estimation

variance for pt(u). Finally, we combine Algorithms WALK and ESTIMATE to pro-

duce Algorithm WALK-ESTIMATE.

2.1.4 Summary of Contributions

We make the following main contributions in this paper:

• We propose a novel idea of WALK-ESTIMATE, a swap-in replacement for any

random walk sampler which forgoes the long burn-in period and instead uses a

proactive sampling probability estimation step to produce samples of a desired

target distribution.
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• To demonstrate the superiority of our WALK step - i.e., performing a short

random walk followed by acceptance-rejection sampling to reach the target dis-

tribution - we rigidly prove that, given a reasonable sample-bias requirement,

no matter what the graph topology or target distribution is (barring certain

extreme cases, e.g., when the distribution is 1 on the starting node and 0 on all

others), a short random walk followed by acceptance-rejection sampling always

outperforms its corresponding traditional random walk process.

• For the ESTIMATE step, we introduce a novel UNBIASED-ESTIMATE algo-

rithm which uses a small number of queries to produce a provably unbiased

estimation of the sampling probability of a given node. In addition, we also

propose two heuristics, initial crawling and weighted sampling, to reduce the

variance (and consequently error) of an estimation.

• Our contributions also include extensive experiments over real-world online so-

cial networks such as Google Plus, which confirm the significant improvement

offer by our WALK-ESTIMATE algorithm over traditional random walks such

as simple random walk and Metropolis-Hastings random walk.

2.1.5 Paper Organization

The rest of the paper is organized as follows. We discuss preliminaries in Section

2. Then, in Section 3, we present an overview of our WALK-ESTIMATE algorithm,

and outline the key technical challenges for this design. In Sections 4 and 5, we

develop the two main steps, WALK and ESTIMATE, respectively. We discuss the

limitation of our techniques in Section 6. We present the experimental results in

Section 7, followed by a discussion of related work in Section 8 and the final remarks

in Section 9.
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2.2 Preliminaries

2.2.1 Graph Model

In this paper, we consider online social networks with the underlying topology

of an undirected graphs G〈V,E〉, where V and E are the sets of vertices and edges,

respectively. Note that for online social networks which feature directed connections

(e.g., Twitter), a common practice in the literature (e.g., [7]) is to reduce it to an

undirected graph by defining two vertices v1, v2 ∈ V to be connected in the undirected

graph if and only if both v1 → v2 and v2 → v1 exist as directed connections. We use

|E| to denote the number of edges in the graph. For a given node v ∈ V , let N(v) be

the set of neighbors of v, and d(v) = |N(v)| be its degree.

The web interface of the online social network exposes a restricted access in-

terface which only allows local neighborhood queries. That is, the interface takes as

input a node v ∈ V , and outputs N(v), the set of v’s neighbors. The objective of

sampling, as mentioned in the introduction, is to generate a sample of V (accord-

ing to a pre-determined sampling distribution) by issuing as few queries through the

restrictive access interface as possible.

2.2.2 Traditional Random Walks

2.2.2.1 Overview

A random walk is a Markov Chain Monte Carlo (MCMC) method on the above-

described graph G. Intuitively, all random walks share a common scheme: it starts

from a starting node v0 ∈ V . At each step, given the current node it resides on,

say vi for the i-th step, the random walk randomly chooses its next step from vi’s

immediate neighbors and vi itself (i.e., self-loops might be allowed) according to a

pre-determined distribution, and then transits to the chosen node (one can see that
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vi+1 ∈ {vi} ∪ N(vi)). We refer to this distribution over N(vi) as the transit design.

Existing random walk designs often choose either a fixed distribution (e.g., uniform

distribution), or a distribution determined by certain measurable attributes (e.g.,

degree) for nodes in N(vi). One can see that the transition design can be captured

by a |V | × |V | transition matrix T , in which Tij is the probability for the random

walk to transit to node vj if its current state is vi.

Let pt(u) be the sampling probability for a node u ∈ V to be taken at Step t of

the random walk (i.e., pt(u) = Pr{u = vt}). A special property of the random walk,

which makes it suitable for our purpose of node sampling, is that as long as the graph

G is irreducible [8], pt(u) always converges to a fixed distribution when t → ∞, no

matter what the starting node is.

2.2.2.2 Examples

There are many different types of random walks according to different designs

of the transition matrix T . We use Simple Random Walk (SRW) and Metropolis-

Hastings Random Walk (MHRW) because of their popularity in sampling online social

networks.
Definition 1. (Simple Random Walk (SRW)). Given graph G〈V,E〉, and a

current node u ∈ V , a random walk is called Simple Random Walk if it uniformly at

random chooses node v from u’s neighbors as the next step. The transition matrix T

is

T (u, v) =

 1/|N(u)| if v ∈ N(u),

0 otherwise.
(2.1)

Definition 2. (Metropolis-Hastings Random Walk (MHRW)). Given graph

G〈V,E〉, and a current node u ∈ V , a random walk is called Metropolis-Hastings

16



Random Walk if it chooses a neighboring node v according to the following transition

matrix T :

T (u, v) =



1
|N(u)| .min{1, |N(u)|

|N(v)|} if v ∈ N(u)

1−
∑

w∈N(u) T (u,w) if u = v

0 otherwise

(2.2)

We note that we set the target stationary distribution as uniform distribution for

MHRW.

2.2.2.3 Burn-In Period

With the traditional design of a random walk, its performance is determined

by how fast the random walk converges to its stationary distribution, because only

after so can the random walk algorithm take a node as a sample. To capture this

performance measure, burn-in period is defined as the number of steps it takes for

a random walk to converge to its stationary distribution, as shown in the following

definition.

Definition 3. (Relative Point-wise Distance). Given graph G〈V,E〉, and positive

number of steps t, Relative Point-wise Distance is defined as the distance between the

stationary distribution and the probability distribution for nodes to be taken at Step t:

4(t) = max
u,v∈V,v∈N(u)

{
|T tuv − π(v)|

π(v)

}
(2.3)

where T tuv is the element of T t (transition matrix T to the power of t) with indices

u and v, and π is the stationary distribution of the random walk [9]. The burn-in

period of a random walk is the minimum value of t such that 4(t) ≤ ε where ε is a

pre-determined threshold on relative point-wise distance.

In practice, a popular technique for checking (on-the-fly) whether a random

walk has reached its stationary distribution is called the convergence monitors (i.e.
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MCMC convergence diagnostics) [4]. For example, the Geweke method (summarized

in [10]) considers two “windows” of a random walk with length l: Window A is formed

by the first 10% steps, and Window B is formed by the last 50%. According to [11], if

the random walk indeed converges to the stationary distribution after burn-in, then

the two windows should be statistically indistinguishable. Let

Z =

∣∣∣∣∣∣ θ̄A − θ̄B√
ŜAθ + ŜBθ

∣∣∣∣∣∣ , (2.4)

where θ is the attribute that can be retrieved from nodes (a typical one is the degree

of a node), and θ̄A, θ̄B are means of θ for all nodes in Windows A and B, respectively,

and SAθ and SBθ are their corresponding variances. One can see that Z → 0 when the

random walk converges to the stationary distribution. We use Geweke method as the

convergence monitor in the experiments, and we set the threshold to be Z ≤ 0.1 by

default, while also performing tests with the threshold Z ≤ 0.01.

A property of the graph which has been proven to be strongly correlated with

the burn-in period length is the spectral gap of the transition matrix T . We denote

the spectral gap as λ = 1− s2 where s2 is the second largest eigenvalue of T .

2.2.3 Acceptance-Rejection Sampling

Acceptance-rejection sampling (hereafter referred to as rejection sampling) is a

technique we use to “correct” a sampling distribution to the desired target distribu-

tion. To understand how, consider the case where our algorithm samples a node with

probability p(u), while the desired distribution assigns probability q(u) to node u. In

order to make the correction, we take as input a node u sampled by our algorithm,

and “accept” it as a real sample with probability

β(u) =
q(u)

p(u)
·min
v∈V

p(v)

q(v)
, (2.5)
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because after such correction, the probability distribution of node u in the final sample

is

p(u) · β(u)∑
u∈V (p(u) · β(u))

= q(u), (2.6)

which conforms to the desired target distribution.

A practical challenge one often faces when applying rejection sampling is the

difficulty of computing minv p(v)/q(v), especially when the graph topology is not

known beforehand. Even when a theoretical lower bound on minv p(v)/q(v) can be

computed, its value is often too small to support the practical usage of rejection

sampling. A common practice to address this challenge is to replace minv p(v)/q(v)

with a manual threshold (e.g., [12, 13]). Note that a large threshold might introduce

bias to the sample - e.g., a threshold greater than minv p(v)/q(v) would make the

computed β(u) > 1 for certain nodes, essentially under-sampling them in the final

sample. Nonetheless, such a large threshold also improves the efficiency of sampling,

as the rejection probability will be lower. Of course, such an approximation can

be made more conservatively (i.e., lower) to reduce bias, or more aggressively (i.e.,

higher) to make the sampling process more efficient.

2.2.4 Performance Measures

There are two important performance measures for a sampling algorithm over

an online social network. One is its query cost - i.e., the number of nodes it has to

access in order to obtain a predetermined number of samples. Note that query cost

is the key efficiency measure here because many website enforce a query rate limit on

the number of nodes one can access from an IP address or API account for a given

time period (e.g., a day). As such, a random walk based sampling algorithm has to

minimize the number of steps it takes to generate samples.
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The other key performance measures here is the sample bias - i.e., the distance

between the actual sampling distribution (i.e., the probability distribution according

to which each node is drawn as a sample) and a predetermined target distribution.

Note that while the uniform distribution is often used as the target distribution to

ensure equal chance for all nodes, the target distribution can also have other values

- e.g., proportional to the node degree (when simple random walk is used).

Another important issue with the definition of sample bias is the distance mea-

sure being used. Traditionally (e.g., in the studies of burn-in period and convergence

monitoring for bounding the sampling bias), a popular measure is the vector norm

for the difference between the two probability distribution vectors. For example, the

variation distance measure the `∞-norm of the difference vector - i.e., the maximum

absolute difference for the sampling probability of a node. While this is a reasonable

measure for theoretical analysis, it can be difficult to use for experimental evalua-

tions, as obtaining the actual sampling probability for every node requires running

the sampling algorithm repeatedly for extremely large number of times, especially

when the underlying graph is large. To address the problem, in this paper, we use

the vector norm measure for theoretical analysis, while using a different measure for

experiments for the large graphs: specifically, we measure the error while using the

obtained sample to estimate AVG aggregates such as the average degree of all nodes

in the graph. We shall further elaborate the design of this experimental measure and

the various AVG aggregates we use in the experimental evaluation section.

2.3 Overview of WALK-ESTIMATE

In this section, we provide an overview of WALK-ESTIMATE, our main con-

tribution of the paper. Specifically, we first describe the input and output of the
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algorithm, followed by a brief description of our key ideas and an outline of the main

technical challenges for WALK and ESTIMATE, respectively.

Input & Output: The design objective of WALK-ESTIMATE is to achieve universal

speed-up for MCMC sampling (random walks) over online social networks regardless

of their target sampling distribution (and correspondingly, transition design). To

achieve this goal, WALK-ESTIMATE takes as input (1) the transition design of an

MCMC sampling algorithm, and (2) the desired sample size h. The output consists

of h samples taken according to the exact same target distribution as the input

MCMC algorithm (subject to minimal sampling bias, as we shall further elaborate

in latter sections). As discussed in Section 2, during this sampling process, WALK-

ESTIMATE aims to minimize the query cost.

Key Ideas: Recall from the introduction that our main novelty here is to forgo the

long “wait” (i.e., burn-in period) required by traditional random walks, and instead

WALK an optimal (much smaller) number of steps (often only a few steps longer than

the graph diameter - see below for details). Of course, having a drastically shorter

walk also makes our sampling distribution different from the target distribution. To

address this problem, our WALK calls upon the ESTIMATE component to estimate

the probability for a node to be sampled by a (now much shorter) walk. Note that

such estimated probability allows us to perform acceptance-rejection sampling [5] over

the nodes sampled in WALK, which leads to samples taken according to the target

distribution.

Technical Challenges for WALK: One can see from the above description that

the design of the two components face different challenges: For “WALK”, the main

challenge is how to properly determine the number of steps to walk. Clearly, the

walk length must be at least the diameter of the graph in order to ensure a positive
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sampling probability for each node. On the other hand, an overly long walk not

only diminishes the saving of queries, but might indeed cost even more queries than

traditional random walks when the cost of ESTIMATE is taken into account. We

shall address this challenge in Section 2.4 - and as we shall further elaborate there,

fortunately, for real-world social networks, there is usually a wide range of walk

lengths with which the WALK step can have a significant saving of query cost even

after rejection sampling.

Technical Challenges for ESTIMATE: For ESTIMATE, the key challenge is

how to enable an accurate estimation for the sampling probability of a node without

incurring a large query cost. Note that, after we repeatedly run WALK to generate

samples, there may be nodes sampled multiple times by WALK for which we can

directly estimate their sampling probability. Nonetheless, for the vast majority of

nodes which are sampled only once (almost always the case when the graph being

sampled is large), it is unclear how one can estimate their sampling probabilities. We

shall address this challenge in Section 2.5 and show that (1) there is a surprisingly

simple algorithm which enables a completely unbiased estimation of the sampling

probability and consumes only a few extra queries, and (2) there are two effective

heuristics which reduce the estimation variance even further, leading to more accurate

estimations.

In the next two sections, we shall develop or techniques for the two components,

WALK and ESTIMATE, respectively. The combination of them forms Algorithm

WALK-ESTIMATE which, as we demonstrate in the extensive experimental results

in Section 3.7, produces higher quality (i.e., lower bias) samples than the traditional

random walk algorithms while consuming fewer queries.
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2.4 WALK

We start with developing Algorithm WALK which significantly improves the

efficiency of sampling by having a much shorter random walk followed by a rejection

sampling process. Note that, for the ease of discussions, we separate out the dis-

cussion of sampling-probability estimation to the ESTIMATE component discussed

in the next section - i.e., Algorithm WALK calls upon Algorithm ESTIMATE as a

subroutine.

In this section, we first illustrate the key rationale behind our design with

an ideal-case algorithm, IDEAL-WALK, and then present theoretical analysis which

shows that a shorter walk followed by an acceptance-rejection procedure can almost

always outperform the traditional random walk, no matter what the starting point

is or the graph topology looks like. To study how much improvement a short walk

can offer, we describe case studies with the underlying graph generated from various

theoretical graph models. Finally, we conclude this section with the practical design

of Algorithm WALK.

2.4.1 IDEAL-WALK: Main Idea and Analysis

The key rationale behind our idea of performing a short walk followed by

acceptance-rejection sampling can be stated as follows. Recall from Section 2 that the

long walk is required by traditional random walks to reduce the “distance” between

its sampling distribution and the target distribution - a distance often measured by

the difference (e.g., `∞-norm) between the two probability vectors.

Consider how such a difference changes as the walk becomes longer. When

the walk first starts, the sampling distribution is extremely skewed - i.e., p1(v) = 1

on one node (the starting one) and 0 on all others - leading to an extremely large

distance. As the walk proceeds, the distance decreases quickly - for example, as long
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as the walk length exceeds the graph diameter, all values in the sampling probability

vector become positive1, while the maximum value in the vector tends to decrease

exponentially with the (initial few) steps taken - leading to a sharp decrease of the

distance.

Nonetheless, it is important to note that the speed of reduction on the distance

becomes much slower as the random walk grows longer. A simple evidence is the

asymptotic nature of burn-in as discussed in Section 2 - which shows that, for some

graphs, the ultimate reduction to zero distance never completes with a finite number

of steps. Figure 2.1 demonstrates a concrete example for a random scale free network

with 31 nodes generated by the Barabasi-Albert model [14], where number of edges

to attach from a new node to existing nodes is 3. One can see from the figure that

the speed of reduction declines sharply once the random walk grows longer than the

graph diameter. In summary, one can observe the following “behavior pattern” of

traditional random walks: to achieve a preset goal of shrinking the distance measure

below a threshold, the random walk makes significant progress in the first few steps.

Nonetheless, the “benefit-cost ratio” diminishes quickly as the random walk continues.

As a result, a random walk might require a very long burn-in period to achieve the

preset distance threshold.

Standing in sharp contrast to the above described behavior pattern is the per-

formance of using acceptance-rejection sampling to achieve the pre-determined target

distribution. Interestingly, applying rejection sampling at the beginning of a random

walk is often extremely costly - or even outright infeasible. For example, no rejection

sampling can correct to a uniform target distribution before the walk is at least as

1Note that here we assume each node has a nonzero (can be arbitrarily small) probability to

transit to itself, to eliminate trivial cases where the graph is not irreducible.
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Figure 2.1. Minimum and maximum probabilities vs walk length.

long as the graph diameter. On the other hand, as the walk becomes longer, the cost

of applying rejection sampling to reach the target distribution becomes much smaller.

Consider an example where the target distribution is uniform. Note from

acceptance-rejection sampling in Section 2.2.3 that, in this case, the cost of rejec-

tion sampling is simply determined by (to be exact, inversely proportional to) the

minimum value in the input sampling distribution - as the probability of accepting

a sample is exactly the minimum probability multiplied by the number of nodes in

the graph. As discussed above, this minimum probability grows from 0 at the very

beginning to a positive value when the walk reaches the diameter, and often increases

rapidly at the initial stage of random walk (see again Figure 2.1). Correspondingly,

the cost of rejection sampling drops significantly with a longer random walk.

One can observe from the above discussion an interesting distinction between

two (competing) methods, (a) wait for the sampling distribution to converge to the

stationary one, and (b) taking the current sampling distribution and directly “correct”

it through rejection sampling: These two methods are better applied at different

stages of a random walk process. Specifically, at the very beginning, method (b) is

extremely costly or outright infeasible - so we should follow method (a) and walk

longer for the sampling distribution to grow closer to the target vector. Nonetheless,

after a certain number of steps, the direct correction (method (b)) is the better
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option because of the slower and slower convergence speed. Therefore, we should

stop waiting for further convergence, and instead use rejection sampling to reach the

desired distribution.

Of course, the above discussions leaves an important question unanswered:

Given a reasonable threshold on the distance (between achieved sampling distribution

and the desired stationary one), is there always a tipping point where we switch for

waiting to correction? Note that the reason why the threshold value is important

here can be observed from the extreme cases: when the threshold is extremely large,

there is no need to switch because even the initial (one 1 and all other 0) distribution

already satisfies the threshold. On the other hand, when the threshold trends to 0,

as we discussed above, there are graphs for which the convergence length tends to

infinity - i.e., it is always better to switch to rejection sampling as long as it has a

finite cost. One can see from the extreme cases that whether switching to rejection

sampling is effective in practice depends on whether the switch is necessary for rea-

sonable thresholds that are just small enough to support real-world applications over

the samples taken from online social networks. To this end, we have the following

theorem.

Theorem 1. Given an input random walk which has a transition design with spectral

gap λ, to guarantee an `∞-variation distance of ∆ between the sampling and target

distributions, the expected query cost per sample of IDEAL-WALK which performs

the random walk for topt steps followed by rejection sampling, where

topt =
− log(− 1

Γ
·W (− Γ

edmax
) · dmax)

log(1− λ)
, (2.7)

where dmax is the maximum degree of all nodes in the graph and W is the Lambert

W -function, is always smaller than that of the the input random walk as long as
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0 < ∆ < Γ. Specifically, the ratio between the query cost per sample of IDEAL-

WALK and the input random walk is at most

Γ · topt − topt ·∆
Γ− (1− λ)topt · dmax

≤
− log(− 1

Γ
·W (− Γ

edmax
) · dmax)

log(∆/dmax)
· Γ−∆

Γ + Γ
W (− Γ

edmax
)

. (2.8)

Proof. According to the `∞-norm mixing time of a Markov chain, if the random walk

starts from v, we have a tight bound (tight in the worst-case scenario [15])

|pt(u)− p(u)| ≤ (1− λ)t · deg(v) (2.9)

As such, to guarantee an `∞ variation distance of ∆, the probability for rejection

sampling to accept a sample taken after a walk of t steps is at least

ω ≥ Γ− (1− λ)t · deg(v)

Γ−∆
(2.10)

=
Γ− (1− λ)t · dmax

Γ−∆
. (2.11)

Thus, in order to guarantee an `∞ variation distance of ∆ in the worst-case scenario,

the expected query cost per sample achieved by IDEAL-WALK is at most

c ≤ min
t:t>0

t · (Γ−∆)

Γ− (1− λ)t · dmax

; (2.12)

while the expected query cost per sample achieved by the input random walk is

cRW =
log(∆/dmax)

log(1− λ)
. (2.13)

Note that for any ∆, we always have c ≤ cRW because when t = cRW, we have

t · (Γ−∆)

Γ− (1− λ)t · dmax

= cRW. (2.14)

Intuitively, this simply means that by running IDEAL-WALK for as long as the input

random walk (and therefore being able to skip rejection sampling), IDEAL-WALK is
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essentially reduced to the input random walk. Our task now is to determine whether

c < cRW. We shall start with an intuitive discussion of why c tends to be much

smaller than cRW for almost all realistic requirements of ∆, and then present the

formal analysis. Intuitively, consider the case where ∆ is reduced by half, to ∆/2.

Note from (2.13) that the change of cRW is always constant no matter how large (or

small) ∆ is - i.e.,cRW will increase by − log 2/ log(1 − λ). On the other hand, note

from (2.12) that the change of c is not always constant. Instead, the increase of c is

at most t ·∆/(Γ− (1− λ)t · dmax) for t which minimizes (2.12) for the original value

of ∆. Note that as ∆ becomes smaller, t either stays the same or becomes larger.

As such, the smaller ∆ is, the smaller the increase of c will be. This is the intuitive

explanation of why c tends to be much smaller than cRW when ∆ is reasonably small.

Formally, we start with determining the optimal value of t that minimizes (2.12).

Let

f(t) =
t · (Γ−∆)

Γ− (1− λ)t · dmax

. (2.15)

To satisfy df(t)/dt = 0, we have

t =
(1− λ)t · dmax − Γ

log(1− λ) · (1− λ)t · dmax

(2.16)

=
1

log(1− λ)

(
1− Γ

(1− λ)t · dmax

)
(2.17)

Thus, the optimal t which minimizes f(t) is

topt =
− log(− 1

Γ
·W (− Γ

edmax
) · dmax)

log(1− λ)
, (2.18)

where W is the Lambert W -function.

An interesting observation from (2.18) is that topt is indeed irrelevant to ∆. In

other words, no matter how stringent (or loose) the requirement on ∆ is, as long as

∆ is smaller than Γ, IDEAL-WALK always outperforms the input random walk.
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Finally, note that

c ≤
− log(− 1

Γ
·W (− Γ

edmax
) · dmax)

log(1− λ)
· Γ−∆

Γ + Γ
W (− Γ

edmax
)

. (2.19)

Hence the query-cost ratio upper bound in the theorem.

One can make an interesting observation from the proof of the theorem on how

the performance of IDEAL-WALK changes when the walk length it takes grows larger.

Initially, a larger t leads to a smaller c, i.e., the expected query cost per sample for

IDEAL-WALK, until t reaches the optimal value topt. Afterwards, a larger t will lead

to a larger c, until c = cRW and IDEAL-WALK becomes equivalent with the input

random walk. To understand the concrete values of topt and c/cRW, we consider a

number of case studies in the following subsection.

2.4.2 Case Study

In this subsection, we compute numerically the values of topt and c/cRW over

a number of theoretical graph models, specifically Cycle, Hypercube, Barbell, Tree,

and Barbasi-Albert (scale free) models: A cycle graph consists of a single circle of n

nodes - i.e., the graph has a diameter of bn
2
c. A k-hypercube consists of 2k nodes and

2k−1k edges. If we represent each node as a (unique) k-bit binary sequence, and two
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nodes are connected if and only if their representations differ in exactly one bit. One

can see that the hypercube has a diameter of k. A barbell graph of n nodes is a graph

obtained by connecting two copies of a complete graph of size n−1
2

by a central node,

i.e, the diameter is 3. A tree of height h is a cycle free graph with at most 2h+1 − 1

nodes and diameter of 2h. We considered a balanced binary tree, where the leaves

are h hops away from the root. Finally, to simulate a scale-free network (with node

degrees following a power-law distribution), we use the Barabasi-Albert model [14],

where number of edges to attach from a new node to existing nodes is 3.

Figure 2.2 depicts how the expected query cost per sample changes when the

length of walk taken by IDEAL-WALK varies from 1 to 128. We considered graphs

with fix number of nodes 31. Since hypercube should have 2k nodes, we generate the

one with 32 nodes. In all cases, the target distribution is the uniform distribution.

Note that if the walk length is smaller than the corresponding graph diameter, then

we cost c to be infinity. One can see from the figure that, for all graph models, the

trend we observe from Theorem 1 holds - i.e., the query cost per sample c drops

dramatically at the beginning, reaches a minimal value, and then increases slowly.

Another observation from the figure is that, in general, the larger diameter a graph

has, the greater the optimal walk length for IDEAL-WALK will be. For example,

compared with a Barbell graph with diameter of 3, the cycle graph with diameter of

b31
2
c = 15 has a much longer optimal walk length - and consequently requires a larger

query cost per sample.

Next, we examine the degree of improvement offered by IDEAL-WALK over the

input random walk, again over the various graph models described above. Figure 2.3

depicts how the ratio of improvement - i.e., 1− c/cRW - changes when the graph size

varies from 4 to 128. There are two interesting observations from the figure: One is

that, while IDEAL-WALK offers over 50% savings in almost all cases, the amount of
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savings does depend on the underlying graph topology - e.g., the improvement ratio

is far smaller on cycle graphs than others, mainly caused by its large diameter and

small spectral gap of O(n−2) [4].

The other observation is on how the improvement ratio changes with graph

size: Interesting, when the graph becomes larger, the ratio increases for some models

(e.g., Barbell), remains virtually constant for some others (e.g., hypercube, Barabasi-

Albert), and declines for the ones left (e.g., cycle). An intuitive explanation here is

that how the improvement ratio changes, as predicted in Theorem 1, depends on a

joint function of the graph size (e.g., |E|) and the spectral gap (i.e., λ). Since the

spectral gap is difficult to directly observe, and there is a common understanding that

the spectral gap is negatively correlated with the graph diameter [16], we illustrate the

issue here by considering how the graph diameter changes with a linearly increasing

node count for the various graph models: For the cycle graph, the diameter increases

as fast as the node count - leading to a (generally) decreasing improvement ratio. For

hypercube, tree and Barabasi-Albert models, the diameter increases at the log scale2

of node count - correspondingly, the improvement ratio is almost unaffected by the

graph size. For Barbell graph, on the other hand, the diameter remains unchanged

(i.e., 3) no matter how large the graph is. As a result, we observe a rapidly increasing

improvement ratio from Figure 2.3. Note that this is indeed a promising sign for the

performance of IDEAL-WALK over real-world social networks, because it is widely

believed that the diameter of such a network remains virtually constant (e.g., [1] [19])

no matter how large the graph size is - in other words, the improvement ratio offered

by IDEAL-WALK is likely to increase as the graph becomes larger.

2To be exact, the diameter for Barabasi-Albert model is proportional to log n/ log log n [17] [18]
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2.4.3 Algorithm WALK

While the above theoretical analysis demonstrates the significant potential of

query-cost savings by our WALK-ESTIMATE scheme, there is one key issue remain-

ing before one can instantiate our idea into a practical WALK algorithm: in practice

when the graph topology is not known beforehand, how can we determine the number

of steps to walk before calling the ESTIMATE algorithm and performing the rejection

sampling process? As one can see from the above discussions, an overly small length

would lead to most samples being rejected, while an overly large one would incur

unnecessary query cost for the WALK step.

Fortunately, we found through studies over real-world data (more details in the

experimental evaluation section) that the setting of walk length is usually easy in

practice as long as we set the walk length conservatively rather than aggressively. To

understand why, note from the above case study, specifically the change of query cost

per sample with walk length, that the query cost drops sharply before reaching the

optimal walk length, the increase afterwards is much slower. As such, a reasonable

strategy for setting the walk length is to be conservative rather than aggressive - i.e.,

giving preference to a longer, more conservative walk length. As we shall further

elaborate in the experiments section, we use a default walk length of two times the

graph diameter, which is conservatively estimated to be 10 for real world online social

networks.

It is important to note that, while our experiments demonstrate that the above

described heuristic strategy for setting the walk length works well over real world

social networks, it is not a theoretically proven technique that works for all graphs.

A simple counterexample here is the above-discussed Barbell graph - i.e., two complete

graphs connected by one node, with one edge connected to each half. One can see

that, while the graph has a very short diameter (i.e., 3), a random walk of length 6 is
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highly unlikely to cross to the other half of the graph, unless it starts from one of the

three nodes that connect the two halves together. As such, the above heuristics for

setting the walk length would yield an extremely small sample-acceptance probability

and, therefore, a high query cost.

2.5 ESTIMATE

Algorithm WALK leaves as an open problem of the estimation of sampling

probability for a given node, so as rejection sampling can be applied to reach the

input target distribution. In this section, we address this problem with Algorithm

ESTIMATE. Specifically, we shall first describe a simple algorithm which, somewhat

surprisingly, provides a completely unbiased estimation for the sampling probability

with just a few queries. Unfortunately, we also point out a problem of this simple

method: its high estimation variance which, despite the unbiasedness, still leads to a

large error. To address this problem, we develop two heuristics, initial crawling and

weighted sampling, to significantly reduce the estimation variance while requiring

only a small number of additional queries.

2.5.1 UNBIASED-ESTIMATE

Unbiased Estimation of Sampling Probability: Recall that we use pt(u) to

denote the probability for a node u to be visited at Step t of a random walk conducted

by WALK, and N(u) is the set of neighbors of u. To illustrate the key idea of

UNBIASED-ESTIMATE, we start by considering the case where the input random

walk is the simple random walk. One can see that

pt(u) =
∑

u′∈N(u)

pt−1(u′)

|N(u′)|
. (2.20)
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Thus, given u, a straightforward method of estimating pt(u) is to select uni-

formly at random a neighbor of u (i.e., u′ ∈ N(u)), so as to reduce the problem of

estimating pt(u) to estimating pt−1(u′), because an unbiased estimation of pt(u) is

simply

p̃t(u) =
|N(u)|
|N(u′)|

· pt−1(u′). (2.21)

An important property of such an estimation is that as long as we can obtain

an unbiased estimation of pt−1(u′), say p̃t−1(u′), then the estimation for pt(u) will also

be unbiased. The reason for the unbiasedness can be stated as follows: Note that due

to the conditional independence of the estimation of p̃t−1(u′) with the selection of u′

from N(u), we have

E(p̃t(u)) =
∑

u′∈N(u)

1

|N(u)|
· |N(u)|
|N(u′)|

· E(p̃t−1(u′)) (2.22)

=
∑

u′∈N(u)

1

|N(u′)|
· E(p̃t−1(u′)) (2.23)

=
∑

u′∈N(u)

1

|N(u′)|
· pt−1(u′) = pt(u), (2.24)

where E(·) represents the expected value taken over the randomness of the estimation

process.

Given the unbiasedness property, we can run a recursive process for estimating

pt(u) (with a decreasing subscript t) until reaching p0(w). Now we have p0(w) = 1

if w is the starting node of the random walk and 0 otherwise. One can see that

this recursive process leads to an unbiased estimation of pt(u). We refer to this

estimation method as UNBIASED-ESTIMATOR. The generic design of UNBIASED-

ESTIMATOR (for any input MCMC random walk) is depicted in Algorithm 1, where

puu′ is the transition probability from node u′ to u and qu′u is the transition probability

from node u to u′ in the backward process.
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Algorithm 1 UNBIASED-ESTIMATE

1: Input: Node u, Starting node w, Length of walk t

2: If t = 0 and u == w then return 1

3: If t = 0 and u != w then return 0

4: return
puu′
qu′u
· UNBIASED-ESTIMATE(u′, w, t− 1)

Analysis of Estimation Variance: While the above UNBIASED-ESTIMATOR

produces an unbiased estimations of the sampling probability, it also has an important

problem: a high estimation variance which leads to a high estimation error (unless the

estimator is repeatedly executed to reduce variance - which would lead to a large query

cost nonetheless). Specifically, the estimation variance on the last few steps of the

recursive process (i.e., with the smallest subscript in pt(u)) are amplified significantly

in the final estimation. To see this, consider a simple example of a k-regular graph.

With UNBIASED-ESTIMATOR, the estimation of pt(u) is either p̃t(u) = 1 (when

the node w encountered at p0(w) is the staring node) or 0 otherwise. As a result,

the relative standard error for the estimation of pt(u) is exactly
√

(1− pt(u))/pt(u).

Since pt(u) is usually extremely small for a large graph, the relative standard error

can be very high for UNBIASED-ESTIMATOR.

Our main idea for reducing the estimation variance is two-fold: initial crawling

and weighted sampling - which we discuss in the next two subsections, respectively,

before combing UNBIASED-ESTIMATE and produce the practical ESTIMATE al-

gorithm.

2.5.2 Variance Reduction: Initial Crawling

Our first idea is to crawl the h-hop neighborhood of the starting point, so for

each node v in the neighborhood, we can precisely compute its sampling probability
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pt(v) for t ≤ h. For example, if simple random walk is used in WALK, then all nodes

v in the immediate 1-hop neighborhood of starting node s have p1(v) = 1
|N(s)| . In

practice, h should be set to a small number like 2 or 3 to minimize the query cost

caused by the crawling process - note that the query cost is likely small because many

nodes in the neighborhood may already be accessed by the WALK part, especially

when multiple walks are performed to obtain multiple samples. One can see that,

with this initial crawling step, we effectively reduce the number of backward steps

required by ESTIMATE because the backward estimation process can terminate as

soon as it hits a crawled node. This shortened process, in turn, leads to a lower

estimation variance and error.

2.5.3 Variance Reduction: Weighted Sampling

Our second idea for variance reduction is weighted sampling - i.e., instead of

picking u′ uniformly at random from N(u) as stated above (for estimating pt(u) from

pt−1(u′)), we design the probability distribution based on the knowledge we already

have about the underlying graph (e.g., through the random walks and backward

estimations already performed). The key motivation behind this idea is the follow-

ing observation on UNBIASED-ESTIMATE: When estimating pt(u), the values of

pt−1(u′) for all neighbors of u (i.e., u′ ∈ N(u)) tend to vary widely - i.e., some neigh-

bors might have much higher sampling probability than others. This phenomenon is

evident from the fact that, even after reaching the stationary distribution of say the

simple random walk, the sampling probability can vary by dmax/dmin times, where

dmax and dmin are the maximum and minimum degree of a node, respectively. On the

other hand, without the initial crawling process, when t = 1, all but one neighbors of

u have p0(u′) = 0, while the other one has p0(u′) = 1 - also a significant variation.
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Given this observation, one can see that we should allocate the queries we

spend according to the value of pt−1(u′) rather than simply at a uniform basis -

specifically, we should spend more queries estimating a larger pt−1(u′), simply because

its estimation accuracy bears more weight on the final estimation error of pt(u). To

this end, we adjust the random selection process of u′ from N(u) to the following

weighted sampling process: First, we assign a minimum sampling probability ε to all

nodes in N(u) - to maintain the unbiasedness of the estimation algorithm. For the

remaining 1 − ε probability, we assign them proportionally to the total number of

historic random walks which hit node u′ at Step t− 1. More specifically, during the

estimation process, all our random walks start from the same starting node. Suppose

we have performed nhw random walks and currently performing the next one. Also

suppose that we are at node u at step t. Let u′ be a neighbor of u (i.e u′ ∈ N(u)).

Among the nhw random walks, we compute the number of times u′ is reached at step

t − 1. Let it be nu′,t−1. i.e. 0 ≤ nu′,t−1 ≤ nhw. The ratio
nu′,t−1

nhw
has some impact

on how often node u′ is picked as part of the random walk. Algorithm 2 depicts the

pseudocode of this weighted sampling scheme.

Algorithm 2 WeightedSamplingBackward (WS-BW)

1: Input: Node u, starting node w, Length of walk t, ε

2: if t = 0 and u = w then return 1

3: if t = 0 and u 6= w then return 0

4: ∀u′ ∈ N(u), πu′ = ε/|N(u)|

5: ∀u′ ∈ N(u), πu′ = πu′ + (1− ε)(nu′,t−1/nhw)

6: Choose node v from N(u) according to distribution π

7: return 1
|N(v)|·πv · WS-BW(v, w, t− 1)

37



2.5.4 Algorithm ESTIMATE

We now combine UNBIASED-ESTIMATE with our two heuristics for variance

reduction, initial crawling and weighted sampling, to produce Algorithm ESTIMATE.

Note that there is one additional design in ESTIMATE which aims to further reduce

the estimation error: For each pt(u) we need to estimate, we can repeatedly execute

ESTIMATE (and take the average of estimations) to reduce the estimation error.

The number of executions we take, of course, depends on the overall query budget.

In addition, instead of running the same number of executions for all u, we next

allocate the budget, once again, according to the estimations we have obtained so

far for all nodes to be estimated. Specifically, we assign the number of executions

in proportion to the estimation variance for each node. Figure 3 depicts the pseudo

code of Algorithm ESTIMATE.

Algorithm 3 ESTIMATE

1: Input: Starting node w, length of walk t, number of crawling steps h, forward

random walks issued F

2: Crawl h-hop neighborhood of w and compute their exact sampling probability

3: Let VF be the set of nodes hit by random walks in F

4: for u ∈ VF do

5: pt(u) = WS-BW(u,w, t)

6: Compute estimation variance of estimations of pt(u)

7: end for

8: Use remaining budget to reduce variance by invoking Algorithm 2. Choose nodes

randomly proportional to their variance.
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2.6 Discussions

2.6.1 Many Short Runs v.s. One Long Run

Broadly speaking, there are two major ways in which random walk has been

used in existing literature for sampling purposes, i.e., “many short runs”, and “one

long run”. Figure 2.4 illustrates the difference between the two ways. In “many short

runs”, the random walk repeatedly starts from a specific node until burn-in occurs

and take a single sample from each walk. This is by far the most common way of

using random walk as it produces i.i.d samples which produce superior estimates. In

addition, many short runs can be easily embedded into parallel computing applica-

tions, and we can use multiple starting points in practice. According to [8], by taking

a number of parallel replications and actively monitoring samples generated from

multiple runs, we can guard against a single chain leaving a “significant proportion”

of the sample space unexplored. In this paper, we compare our algorithm against this

common variant. However, note that there is no chance of amortization here as we

perform a new walk for each sample.

The other way is to perform “one long run” where it first goes through the

burn-in period for convergence to stationary distribution. Once the burn-in period

is over, the long run continues the walk and collects every single node encountered

after the burn-in period into the sample pool. This approach does indeed amortize

the cost of burn-in as multiple samples are obtained after burn-in period. However,

this approach is not as commonly used as it produces dependent (correlated) samples.

When one uses the sample pool generated by one long run for purposes such as aggre-

gate estimations (e.g., for AVG degree), it may be significantly less effective (resp. less

accurate) than a much smaller sample set produced by many short runs, especially

when there is a strong correlation between the attribute values being aggregated on
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Figure 2.4. Illustration of “one long run” v.s. “many short runs”.

adjacent nodes (e.g., when nodes with larger degrees tend to be connected with each

other). Indeed, a key concept capturing such a difference is the effective sample size

[20] of one long run:

M =
h

1 + 2
∑∞

k=1 ρk
, (2.25)

where h is the original sample size, and ρk is the autocorrelation at lag k (i.e., between

the values of attribute being aggregated on nodes taken k hops apart).

One can see from the above discussions that one long run is not a silver bullet

solving the challenge of burn-in cost. Instead, it might be applied on cases when we

know the intended application - specifically, the attribute to be aggregated - and such

an attribute features a small autocorrelation. Indeed, our central contribution in the

paper is a novel mechanism to speed up the “many short runs” variant so that it

could obtain independent samples at a much lower query cost. While we do observe

the potential of applying our WALK-ESTIMATE idea to one long run - e.g., by

estimating the sampling probability for not only the last node (taken as a candidate)

but every node on the walk path, we leave the detailed investigation to further work.

2.6.2 Limitations of WALK-ESTIMATE - Graph Diameter

Before concluding the technical discussion of WALK-ESTIMATE, we would

like to point out its limitations - i.e., when it should not be applied for sampling a

graph with local neighborhood access limitations. Specifically, we note that WALK-

ESTIMATE should not be applied over graphs with long diameters. Note that while
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our results for IDEAL-WALK (Theorem 1) appear to demonstrate efficiency enhance-

ments regardless of the graph diameter, the performance of our ESTIMATE step is

significantly worse when the graph diameter is large. The reason behind this is

straightforward - in our backward walk for ESTIMATE, the probability of hitting

the starting node (or the starting neighborhood crawled by the initial crawling pro-

cess) decreases rapidly when the graph diameter becomes larger. This in turn leads

to more backward walks being required for the estimations of sampling probability

and, as a result, worst sampling efficiency. Figure 2.5 demonstrates an example of

how the average number of walk steps taken (for WALK-ESTIMATE, both forward

and backward) per sample changes on cycle graphs for simple random walk (SRW)

and our WALK-ESTIMATE algorithm (WE, with SRW as input) when the graph

diameter grows from 5 to 25. The cycle graphs’ sizes are 11, 21, . . . , 51. One can

see that unlike SRW which is barely affected by the growing diameter, the expected

cost of WALK-ESTIMATE increases dramatically as the diameter becomes longer.

Fortunately, it is important to understand that graphs with long diameters are not

the intended target of this paper, because it is well known that online social networks,

even the very large ones, have small diameters ranging from 3 to 8 [21].
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2.6.3 Practical WALK-ESTIMATOR Challenges

Indeed there are a number of practical issues that must be taken into account

before a practical WALK-ESTIMATOR could be built. The two core challenges are

1) access restrictions of the real world social networks such as rate limits, restricted

access to neighbors etc, and 2) estimate of the scaling factor, i.e., minv∈V (p(v)/q(v))

in the acceptance-rejection sampling step.

2.6.3.1 Restrictions in Real-world Social Networks

Real world social networks could place a number of access restrictions (such as

rate limits, restricted access to neighbors etc).

Impact of Rate Limits: However, most of those restrictions such as rate

limits do not have a major impact on the estimation accuracy. They could instead be

treated as engineering challenges in building a practical system which is a well studied

orthogonal issue. There has been extensive literature [22, 23, 24, 25, 1, 26, 27] that

provide number of guidelines for crawling/sampling online social networks. Since our

experiments were conducted on well known benchmark datasets, these issues did not

have any practical impact. However, we plan to discuss the practical issues as part

of future work on building a demonstration of our paper.

Impact of Access Restrictions to Neighbors: Access restrictions that limit

how the neighbors of a node are obtained have some limited impact over algorithm.

However, it must be pointed out that, under some mild but realistic assumptions that

hold for most real world social networks, they do not have any significant impact over

the accuracy of our algorithms. Broadly speaking, access restrictions over neighbors

take one of the following forms:

1. The social network returns k neighbors randomly during each invocation (i.e.

different invocation might see different k neighbors)
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2. The social network returns k fixed neighbors picked randomly (i.e. different

invocation returns same k neighbors)

3. The social network bounds the maximum number of neighbors (say l) returned.

Twitter is one of the few social networks that provides a maximum of 5000

neighbors for an user - access restriction of type (3). However, to the best of our

knowledge, we have not seen any major social network with access restrictions (1)

and (2). Before describing the impact on our algorithm, we would like to note that,

statistically, there is no distinction between access restrictions (2) and (3). By setting

the value of parameters k and l, we can see that they provide identical interface to

accessing the social network to a third party.

Impact of Restrictions of Type (1): Consider the scenario where, given a

node u in the graph, the API call N(u) provides a random list of k neighbors. At each

step, Simple Random Walk (SRW) seeks to choose one of u’s neighbor randomly. This

is typically achieved by obtaining all neighbors N(u) and choosing a node uniformly

at random. If the list of neighbors provided were already chosen uniformly at random,

we could instead choose, say the first neighbor to traverse next.

There is a subtle issue in this setup. For example, if our objective is to estimate

the average degree, we cannot directly use the number of neighbors returned as an

estimate. However, this issue can easily be circumvented using known techniques

(such as mark-and-recapture [28, 29]) to estimate the degree of a graph by repeated

invocation of neighbors API. No other changes to our algorithm is required.

Impact of Restrictions of Type (2) and (3): If the neighbors API returns a

fixed set of result, we cannot distinguish whether the API returns random or arbitrary

subset of neighbors. If the neighbors API returns a truncated list of neighbors, the

key implication is that it limits the “visible” graph - i.e. the partial subgraph that

our algorithm could construct locally. Consider the scenario where the neighbors
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API had returned all neighbors of u. If v was a neighbor of u, then we also know

that u is a neighbor of v (and hence will be returned by N(v)). However, under the

truncated list of neighbors, there is no guarantee that if v is returned via N(u), then

u is returned in N(v).

However, this issue could easily be handled by defining an alternate semantics

for graph connectivity. Specifically, when deciding if we can traverse an edge as

part of random walk, we first perform a bidirectional check. In other words, before

traversing an edge (u, v), we ensure that u ∈ N(v) ∧ v ∈ N(u). We do not use the

edge otherwise. While this might seem like a significant restriction, the actual impact

on graph connectivity is limited as long as the maximum size of neighbors returned

by N(·) is not too small. Even a value as small as 100 ensures graph connectivity

and have negligible impact on the algorithms. If the value is small, our algorithms

will still provide unbiased estimates - however, the graph may not be connected.

In summary, access restrictions such as rate limits are primarily an engineering

issue that has been extensively studied. Restrictions to neighbors do have some

impact on our algorithm. However, if the list of neighbors returned is not small, then

the impact is negligible. Finally, these restrictions affect both SRW and MHRW - and

hence all the efficiency improvements that we propose are still effective even under

this scenario.

2.6.3.2 Estimating the scaling factor

As we discussed in 2.2.3, the optimal scaling factor to maintain an unbiased sam-

ple is exactly minv∈V (p(v)/q(v)). However, in practice because of the lack of global

topological knowledge of the real-world social networks, one may not be able to pre-

cisely compute minv∈V (p(v)/q(v)). A common technique used by acceptance-rejection

sampling in statistics is to bootstrap an approximation of the minv∈V (p(v)/q(v)) based
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on the samples already observed, and then use such an approximation in acceptance-

rejection sampling. Of course, such an approximation can be made more conser-

vatively (i.e., lower) to reduce bias, or more aggressively (i.e., higher) to make the

sampling process more efficient. In our experiments we derive the sampling probabil-

ities of the visited nodes using the Algorithm 1 and we consider the 10th percentile

of the estimation of sampling probabilities as the minv∈V (p(v)/q(v)).

2.7 Experimental Evaluation

2.7.1 Experimental Setup
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Figure 2.6. Relative Error of the Average Estimations vs Query Cost in Google Plus..
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Figure 2.7. Relative Error of the Average Estimations vs Query Cost in Yelp..

Hardware and Platform: All our experiments were performed on a quad-core 2

GHz AMD Phenom machine running Ubuntu 14.04 with 8 GB of RAM. The algo-

rithms were implemented in Python.

Datasets: In this section, we test real-world data crawled from online social networks

and also those which are publicly available. Specifically, we use three different popular

social graphs, i.e. Google Plus, Yelp, and Twitter. The detail of each dataset is

described bellow. Moreover, we use small synthetic data to find the exact bias of the

obtained samples.

Google Plus Social Graph: Google Plus3 is the second largest social networking

site with more than 500 million active users. For our experiments, we crawled a subset

of the graph by starting from a number of popular users and recursively collecting

3http://plus.google.com
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Figure 2.8. Relative Error of the Average Estimations vs Query Cost in Twitter (from
SNAP repository)..

information about their followers. We model this dataset as an undirected graph

where the users correspond to nodes and an edge exist between two users if at least

one of them has the other in their circles. We collected 16,405 users with more than

4.5 million connections between them. The average degree of the graph is 560.44. We

also collected each user’s self description and used it in our tests.

Yelp Social Graph: Yelp is a crowd-sourced local business review and social net-

working site with 132 million monthly visitors and 57 million reviews. Yelp Academic

dataset4 provides all the data and reviews of the 250 local businesses. For our exper-

iments, we considered the largest connected component of the user-user graph where

nodes are the users and an edge exists between two users if they review atleast one

4www.yelp.com/academic_dataset
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Figure 2.9. Improvement Trend: Relative Error of the Average Estimations vs Query
Cost in Google Plus..

similar business. Moreover, for each user there exists different information such as,

review text, star rating, count of useful votes. This graph has approximately 120,000

nodes and more than 954,000 edges.

Twitter Social Graph: Twitter is an online social network which is popular

among millions of users who generate huge numbers of tweets, posts, and reviews

every day. We used the Twitter dataset from Stanford’s SNAP dataset repository5

which is a directed graph crawled from public sources and has close to 80,000 nodes

and more than 1.7 million edges. In our experiments, we assume it is an undirected

graph where the in and out degrees are node attributes.

5snap.stanford.edu/data/egonets-Twitter.html
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Figure 2.10. Relative Error of the Average Estimations vs Number of Samples in
Google Plus..

Synthetic Graph: We generated scale-free network of size 1000 nodes and 6951

edges using the Barabasi-Albert model [14], where the number of edges to from a new

node to existing nodes sets to 7.

Algorithms Evaluated: We evaluated two traditional random walks - simple ran-

dom walk (SRW) and Metropolis Hastings random walk (MHRW) - and the appli-

cation of our WALK-ESTIMATE (WE) algorithm over each of them. Additionally,

in order to evaluate the effect of the variance reduction heuristics, initial crawling

and weighted sampling, proposed in Section2.5, we compared the performance of

our main algorithm (WE) with three variations WE-None, WE-Crawl, and WE-

Weighted. WE-None uses neither heuristics, WE-Crawl uses initial crawling only,

while WE-Weighted uses weighted sampling only.
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Parameter Settings: For SRW and MHRW, we used the Geweke convergence mon-

itor [10] with threshold Z ≤ 0.1. For our WALK component, we set the walk length

to 2d + 1 where d is the (estimated) graph diameter (set to d = 7 for Google Plus).

For initial crawling, we set h = 1 for Google Plus and h = 2 for the synthetic

graphs, Yelp, and Twitter. For weighted sampling, we set ε = 0.1. We also consid-

ered 10th percentile of the estimation of sampling probabilities as the scale factor,

minv∈V (p(v)/q(v)), for the acceptance rejection. In each graph, we run all the algo-

rithms from the same starting point. For each obtained data point in the results we

reported average value of the 100 runs. In WE, we varies number of walks from 100

to 2000 in every run.

Performance Measures: Given the large sizes of the graph being tested, it is

impractical to precisely measure the bias of obtained samples. Thus, for the large

graphs we indirectly measured the sample bias by the relative error of AVG aggre-

gate estimations generated from the samples (i.e., |x̃ − x|/x where x and x̃ are the

precise and estimated values of the aggregate, respectively). We used arithmetic

and harmonic mean for the uniform and non-uniform samples respectively. Node

and edge sampling has been used to measure variety of network metrics [30, 31, 32].

Among them we focus on the measures which can be computed from node sample.

Specifically, we evaluate AVG aggregate of the measures related to the topological

properties (such as degree, shortest path length, local clustering coefficient) as well as

measures associated with a node attribute (such as number of stars in Yelp, and user’s

self-description in Google Plus). Specifically, for Google Plus, we considered two ag-

gregates: the AVG degree and the AVG number of words in a user’s self-description.

For Yelp and Twitter we considered topological properties, i.e., degree, shortest path

length, local clustering coefficient. In Twitter we estimate number of followers and

followees using the in and out degrees of the node as its attributes. We also estimate
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average number of stars in Yelp. Moreover, we computed exact bias of our algorithms

over a small graph. Recall that sample bias is defined as the distance between actual

sampling distribution and a predetermined target distribution.

2.7.2 Experimental Results

Aggregate estimation: We started by testing how WE performs against the base-

line SRW and MHRW on the fundamental tradeoff in social network sampling - i.e.,

sample bias vs. query cost. The results over Google Plus are shown in Figure 2.6.

Specifically, subgraphs (a) and (b) depict SRW and WE with SRW as input random

walk, while (c) and (d) are corresponding to MHRW. The AVG aggregate used to

measure sample bias is AVG degree for (a) and (c) and AVG self-description length

for (b) and (d). As one can see from the figure, our algorithm significantly outper-

forms SRW and MHRW - i.e., offers substantially smaller relative error for the same

query cost - on both aggregates tested. Figure 2.7 shows the results over the Yelp

dataset. Specifically, subgraph (a) shows the AVG aggregate of the node attributes,

i.e. star rating while subgraphs (b), (c), and (d) is the results of AVG aggregate

of the topological properties, i.e, degree, shortest path length, and clustering coeffi-

cient. The results confirm the fact that WE provides smaller relative error with the

same query cost. We also test our algorithm in Twitter dataset and the results in

Figure 2.8 shows that AVG of the in-degree, out-degree, shortest path length, and

clustering coefficient of the samples retrieved by the WE has smaller relative error

than SRW for the same query cost.

We also study how our proposed variance reduction techniques improves the

efficiency of our algorithm by comparing the performance of WE, WE-None, WE-

Crawl and WE-Weighted, again according to how the relative error of aggregate

estimation changes with the query cost. Figure 2.9 depicts the result for Google Plus,
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according to the same subgraph setup (i.e., random-walk/aggregate combination) as

Figure 2.6. One can see that, as expected in all cases, WE outperforms the single-

heuristics variants, which in turn outperform the theoretical variant of the algorithm.

Finally, we tested the quality of samples obtained by WE, in order to verify

that the above-tested performance enhancements are not merely from walks being

shorter, but from an equal or higher quality sample as well. To this end, Figure 2.10

depicts how the relative errors on AVG estimations change with the number of sam-

ples produced by SRW, MHRW, and the corresponding WEs, respectively on Google

Plus - again according to the same subgraph setup as Figure 2.6. One can see that

in all cases, the samples produced by WE achieves smaller relative error than the

corresponding input random walks (with Geweke convergence monitor), indicating

the smaller sample bias achieved by WE. The results for the Yelp and Twitter are

similar to those of Google Plus and, due to space limitations, are not included in the

paper. More experimental results can be found in the technical report [33].

Exact bias: We used a synthetic graph to find the exact bias of the obtained samples.

We compared three different sampling distributions: (1) theoretical target distribu-

tion denoted as theo (2) WE sampling distribution and (3) SRW sampling distribution.

We run the sampling algorithm with a large query budget 1,000,000 for both WE and

SRW, we got 36600 samples from WE and 1101 samples from SRW. The Probability

density function (PDF) is then estimated based on these samples, see Figure 2.11.

One can see that WE produces more accurate PDF than SRW (i.e. closer to the

theoretical PDF curve).

2.8 Related Work

Random Walks: As discussed in Section 2, random walk is an MCMC based sam-

pling method extensively studied in statistics (e.g, [8]). Besides the traditional ran-
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dom walk designs described in Section 2, two key related concepts used in this paper

are burn-in period, which captures the number of steps a random walk takes before

converging to its stationary distribution [34]; and convergence monitors, heuristic

techniques for measuring on-the-fly how long the burn-in period should be (i.e., de-

termining when a random walk should be stopped and a sample taken). Examples

here include Geweke, Raftery and Lewis, Gelman and Rubin convergence monitors

(see [10] for a comprehensive review).

Random Walks on Social Networks: There have been extensive studies (e.g.,

[35, 36, 37]) on the sampling of online social networks which feature graph browsing

interfaces [38] that enforce the aforementioned local-neighborhood-only access limita-

tion. Authors of [35] introduce a taxonomy of sampling techniques - specifically, node

sampling, edge sampling and subgraph sampling. For the problem studied in this

paper - i.e., sampling nodes from online social networks - the usage of multiple par-

allel random walks is studied in [39], while several studies (e.g., [35]) demonstrates

the superiority of random walk techniques such as Simple Random Walk (SRW),

Metropolis-Hastings Random Walk (MHRW) over baseline solutions such as Breadth

First Search (BFS) and Depth First Search (DFS). An interesting issue studied in the

literature is the comparison between SRW and MHRW over real-world social networks

- the finding in [30] is that MHRW is less efficient than SRW because MHRW mixes

more slowly. While our technique discussed in the paper is transparent to the input

random walk, a similar comparison result can be observed from our experimental

results as well.

Improving the Efficiency of Random Walks: Most related to this paper are

the previous studies on improving the efficiency of random walks over online social

networks. To this end, [40] combines random jump and MHRW to efficiently retrieve

53



uniform random node samples from an online social networks. Nonetheless, in order

to enable random jumps, this study assumes access to an ID generator which can

sample a node uniformly at random with a high hit rate - an assumption that is not

satisfied by many online social networks and not assumed in this paper. Another

study [31] considers frontier sampling which converts input samples with uniform

distribution to output samples with arbitrary target distribution. Our study in the

paper is transparent to this work - as we address the problem of generating sample

nodes rather than assuming access to samples with pre-determined distributions.

Also related to efficiency enhancements are [41] which introduces a non-backtracking

random walk that converges faster with less asymptotic variance than SRW and

[11] which modifies the topology of the underlying graph on-the-fly in order to get

a faster random walk on the modified graph. A key difference between WALK-

ESTIMATE and all these existing studies is that while all existing techniques still

wait for convergence to the target distribution, we do not wait for convergence, but

rather proactively estimate the sampling distribution and then use rejection sampling

to achieve the target distribution.

In this paper, we developed WALK-ESTIMATE, a general purpose technique

for faster sampling of nodes over an online social network with any target (sampling)

distribution. Our key idea is to conduct a random walk for a small number of steps,

and follow it with a proactive estimation of the sampling distribution of the node

encountered before applying acceptance-rejection sampling to achieve the target dis-

tribution. Specifically, we presented two main components of WALK-ESTIMATE,

WALK which determines the number of steps to walk, and ESTIMATE which en-

ables an unbiased estimation of the sampling distribution. Theoretical analysis and

extensive experimental evaluations over synthetic graphs and real-world online so-
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Figure 2.11. Sampling Distribution in Synthetic Graph.

cial networks demonstrated the superiority of our technique over the existing random

walks.
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CHAPTER 3

Answering Complex Queries in an Online Community Network

An online community network links entities (e.g., users, products) with various

relationships (e.g., friendship, co-purchase) and make such information available for

access through a web interface. There are numerous such networks on the web, rang-

ing from Twitter, which links users as “followers-followees”, to amazon.com, which

links products with relationships such as “also buy”. The web interfaces of these

networks often support features such as keyword search and “get-neighbors” - so a

visitor can quickly find entities (e.g., users/products) of interest. Nonetheless, the

interface is usually too restrictive to answer complex queries such as (1) find 100

Twitter users from California with at least 100 followers who talked about ICWSM

last year or (2) find 100 books with at least 200 5-star reviews at amazon.com. In

this paper, we introduce the novel problem of answering complex queries that involve

non-searchable attributes through the web interface of an online community network.

We model such a network as a heterogeneous graph with two access channels, Content

Search and Local Search, corresponding to the keyword search and “get-neighbors”

features, respectively. Then, to enable the efficient processing of complex queries not

supported by either interface, we propose a unified approach that (approximately)

transforms the complex query into a small number of supported ones based on a

strategic query-selection process. We conduct comprehensive experiments on Twitter

and amazon.com which demonstrate the efficacy of our proposed algorithms in an-

swering complex queries efficiently over real-world community networks. The result

of this project is published in [42, 43, 44].
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3.1 Introduction

Motivation: An online community network, such as Twitter and amazon.com,

offers information about entities (e.g., Twitter users, products sold at amazon.com)

and various types of relationships between them (e.g., follower/followee relationships

between Twitter users and co-purchase relationships between amazon.com products).

Such information is made available through a web interface which often provides

various search and browsing features for visitors to locate the entity/relationship in-

formation of interest - some common examples here include form-like search, keyword

search and graph based browsing features:

The form-like search feature allows searches that specify the desired values for

one or a few attributes - such a specification is then translated to a conjunctive query.

The keyword search feature, on the other hand, allows queries formed by one or more

keywords. Finally, a graph based browsing feature allows the navigation from one

entity to others related to it - e.g., one can browse a Twitter user’s follower list and

then navigate to a follower’s page and access its information. Many online community

networks offer all three features. For example, amazon.com allows advanced search,

i.e., a form-like interface, a simple search box, i.e., a keyword search interface, and

browsing through products listed under “customer buys this product also buys” on

the product information page, i.e., a graph-browsing interface.

While simple and intuitive to use, these search/browsing features are often

insufficient to support complex queries desired by many users and third-party ap-

plications. For examples, a complex query may (a) involve attributes that are not

searchable through the web interface (e.g., user’s home location in Twitter or average

rating/reviews in amazon.com), and/or (b) require more expression power than the

simple conjunctive conditions allowed by the interface (e.g. a query may call upon a

classifier to determine whether a Twitter user is an expert in a topic - such a classifier
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is clearly unspecifiable through the web interface). While a user may manually (and

repeatedly) reformulate queries till finding the desired entities, to the best of our

knowledge, there has not been an automated solution to avoid the tedious manual

process and efficiently answer complex queries through the restrictive web interface

of an online community network.

Our Problem - Answering Complex Queries: In this paper, we focus on complex

queries that satisfy two conditions: (1) it returns a subset of entities in the online

community network, and (2) whether an entity satisfies the query can be determined

based on information about the entity that is publicly available from the network. One

can see that all above-mentioned examples of complex queries satisfy both conditions.

Given an online community network and a complex query specified by a user, our

objective is to design an efficient algorithm to retrieve N entities that satisfy the

query, where N is a pre-determined constant, using nothing but the public web search

interface provided by the network.

Challenges: There are two main technical challenges facing the processing of com-

plex queries over an online community network. First is the heterogeneous access

channels offered by the online community network - e.g., the aforementioned keyword

search, form-like search, and graph browsing features. To properly answer complex

queries, one has to identify ways to leverage and synthesize the various access mech-

anisms simultaneously. Second, most if not all online community networks impose

access rate limitations - in terms of query rate constraints (e.g., Twitter allows only

180 queries per 15 minutes per user) or limiting the query answer to at most k re-

sults, etc. Thus, a complex query processing technique must minimize the number of

queries issued through the web interface of the community network.
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Outline of Our Contributions: In order to capture the heterogeneous access

channels, we model an online community network as a heterogeneous network with

multiple types of nodes and edges. Consider Twitter as an example. We model it

as a heterogeneous network consisting of two types of nodes - entity nodes represent

Twitter users, while content nodes represent keywords, hashtags, etc. Entity nodes

are connected by follower-followee relationships, while content nodes are connected

to users (i.e., entity nodes) who posted them. One can see that such a heterogeneous

network naturally abstracts the various types of access channels offered by the online

community network. As such, the problem of answering complex queries through

various access channels can now be formulated as finding nodes that satisfy a complex

query by traversing multiple type of edges.

Specifically, we discuss two orthogonal approaches Local Search and Content

Search for answering complex queries. Local Search exploits the homophily and

assortativity property in the network for identifying relevant nodes in neighbor-

hood/community. In contrast, Content Search identifies a set of keywords that could

be used as a proxy for the original search query. We then improve these basic ap-

proaches by designing principled optimization strategies that leverage the mathemat-

ical properties of the network (e.g., degree distribution). Given a set of nodes and

knowledge about the network properties, we provide some optimization guidelines

to choose the next node to explore. We show the performance of these approaches

depends on the query, e.g., if most of the results belong to a community, Local Search

performs better, while Content Search outperforms when the query can be approxi-

mated using a set of precise keyword queries.

Nonetheless, in general, it is not easy to determine which of the two orthogonal

approaches is most suitable for the input query. For example, the results of some com-

plex queries could belong to multiple (possibly disjoint) communities. This motivates
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us to propose a strategy selection approach that adaptively learns while executing

the query and decides which approach or which combination of them answers the

query efficiently. Intuitively, Local Search can be used to find relevant nodes within

a community while the Content Search can be used jump across communities. We

design two novel algorithms that achieve better performance by judiciously interleav-

ing these two strategies. Comprehensive experiments on Twitter and amazon.com

demonstrate the effectiveness of our proposed algorithms on finding matching tuples

while minimizing query cost, as well as their superiority over the baseline local search

and content search approaches. The contributions of this paper can be summarized

as follows:

• We define the novel problem of answering complex queries over an online com-

munity network.

• We model an online community network as heterogeneous networks and identify

two orthogonal techniques, Local Search and Content Search.

• We improve the efficiency of these baseline approaches by mathematically mod-

eling and leveraging properties of the underlying heterogeneous network.

• We propose a multi-armed bandit based strategy selection algorithm that in-

terleaves the two strategies to achieve better results consistently.

• We conduct comprehensive experiments on Twitter and amazon.com that show

the efficacy of our algorithms.

3.2 Preliminaries

In this section, we introduce our abstract graph model for an online community

network followed by discussion of the search interfaces and a taxonomy of complex

queries. While there are numerous examples of online community networks (e.g.,
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microblogs such as Twitter, Weibo, Tumblr, etc., and collaborative content sites such

as amazon.com, Flickr, eBay, etc.), in the rest of the paper, we consider as running

examples Twitter and amazon.com. Nonetheless, our techniques directly extend to

any other websites that provide similar search/browsing features.

3.2.1 Graph Model

We model an online community network as a heterogeneous graph with multiple

types of nodes and edges. Specifically, we consider two types of nodes. VU is the

set of nodes associated with the entities U (e.g., users in Twitter or products in

amazon.com). VK is the set of nodes corresponding to content K (e.g., tweets in

Twitter or product details in amazon.com). There are two type of edges, i.e., intra-

edges Euu′ ⊆ (VU × VU) and inter-edges Euk ⊆ (VU × VK). Intra-edges (Euu′) are

locality-based edges connecting different entities, e.g., the friendship between users,

while inter-edges (Euk) are between entity nodes and content nodes, e.g., connecting a

user with the tweets he/she posted. While an intra-edge can be directed or undirected

in practice (e.g., Twitter has a directed user-user network while the amazon.com

product network is undirected), for the purpose of this paper, we consider all edges

to be undirected (such as by defining undirected edges to exist between users who are

followers or followees of each other). Formally, the heterogeneous graph is defined as

G = (V = {VU ∪ VK}, E = {Euu′ ∪ Euk}). See Figure 3.1 for a visual representation.

We assume that each entity u ∈ U has a well-defined schema A = {A1, A2, . . . }.

Let D(Ai) be the domain of attribute Ai. Given an entity u, let u[Ai] ∈ D(Ai) be

the value of attribute Ai for u. For example, in Twitter, we may have u = 〈Twitter

Name=David, location=Texas, followers={Amy, John}, #Tweets=800,. . . 〉 representing an

user David who self-describes to be from Texas, has Amy and John as followers, and

has posted 800 tweets in total. As mentioned in the introduction, the only constraint
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on the schema is that all attributes must be publicly accessible or derivable through

the web interface of the community network. To represent inter-edges between entities

and contents, we consider a 2-tuple 〈u, k〉 (or edge euk) where u ∈ U , and k ∈ K.

u1

u2

un

k1

k2

km

Entities:UContents:K

...

...

Figure 3.1. Online community network graph model G..

Running Examples for Twitter and amazon.com: We represent the hetero-

geneous graph models for Twitter and amazon.com as GT and GA, respectively. In

Twitter graph GT , VU corresponds to set of Twitter user accounts. The locality based

(intra) edges Euu′ represents the follower-followee relationship among the users. Con-

tent nodes VK correspond to keywords while the inter-edges represent keywords having

been tweeted by a user - i.e. edge 〈ui, kj〉 ∈ Euk exists if user ui tweets about kj.

In the amazon.com graph GA, VU correspondent to the products P = {p1, p2, . . . },

locality-based edges epi,pj connects products pi and pj if both products are considered

“similar” - e.g., appear in the list of “customer buys this product also buys” of each

other, belong to the same product category, etc. Content nodes VK correspond to

attributes such as product category, keywords in product description/reviews, etc. A

content based edge 〈pi, kj〉 ∈ Euk exists if product pi has attribute kj.
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3.2.2 Search Interfaces in Online Community Network

Most popular online community network provide one or more mechanisms to

search their content. Such interfaces could broadly be categorized into three cate-

gories.

1. Form based interface: In a form based interface, a form containing a (fixed) set

of fields is displayed to the user. The user specifies her query by filling one or

more of the fields. The interface converts it to a conjunctive search query that

is then answered by the backend. Both Twitter and amazon.com have advanced

search interfaces which belong to this category.

2. Keyword Search interface: These interfaces, popularized by search engines, often

consist of a single textbox. The user expresses a query through one or more

keywords and the interface returns results most relevant to the query. This is

the primary search interface for most online community networks due to its ease

of use.

3. Graph based interface: This interface (also called as get-neighbors interface)

allows users to navigate to other similar entities. For example, when visiting

a Twitter account, the list of followee-follower are displayed allowing one to

navigate to such accounts. Similarly, it is possible to navigate between products

in amazon.com by using links listed under “customer buys this product also

buys”.

Mapping Edge Navigation to API Calls: Despite the diverse search interfaces

(form, keyword, graph and API) offered by an online community network, it is possible

to abstract all these access mechanisms into three simple primitive operations over

the heterogeneous graph G. One can see that each primitive operation can be easily
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translated to calling one specific search feature provided by the online community

network. The operations are:

1. GET-NODE-DETAILS: Given an entity node u, this graph operation provides de-

tails about the node. For example, it might correspond to getting user profile

in Twitter (via users/show or users/lookup API) or product details in ama-

zon.com (via ItemLookup API).

2. GET-LOCAL-NEIGHBORS: Given an entity node u, this graph operation produces

a list of entities that are connected through intra-edges with u. For Twitter,

this might correspond to getting the list of followees or followers of a user (via

friends/list or followers/list APIs). For amazon.com, this corresponds

to getting list of similar products (via SimilarityLookup API).

3. GET-CONTENT-NEIGHBORS: Given an entity node u and a keyword k, this graph

operation retrieves a list of entities that are connected through content based

edges with u through keyword k. For Twitter this might correspond to search/tweets

or users/search APIs. For amazon.com, this corresponds to ItemSearch API.

Search Interface Limitations: Often, there are many practical limitations enforced

by online community networks on their search interfaces. For example, most sites

impose a rate limit constraint that bounds the number of queries could be issued

in a time period. Twitter, for example, allows at most 180 queries in 15 minutes

(from a user/IP address) while amazon.com allows at most 1 query per second. In

addition, most search interfaces limit the number of responses - e.g., amazon.com’s

SimilarityLookup API returns at most 10 similar products, while Twitter may limit

the search results to only the most recent tweets from the last few days.

Searchable and Non-Searchable Attributes: Recall that each entity in the graph

has a well defined schema (such as user profile/timeline in Twitter, product schema
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in amazon.com). However, there could be a discrepancy between the set of attributes

that are available in the schema and those that are searchable from the search in-

terfaces. Often, this is intentional. For example, Twitter only allows searching over

tweets, but not over user attributes. Similarly, amazon allows search over a handful

of popular attributes, rather than supporting search over the tens of attributes most

products have. As a result, there are many attributes that cannot be queried using

the search interfaces - e.g., the number of reviews of a product (in amazon.com), the

number of followers of a user (in Twitter), etc.

Hence, the set of entity attributes A = {A1, A2, . . . } can be partitioned into

two categories - “searchable attributes” and “non-searchable attributes”. Searchable

attributes can be searched via the search interface while non-Searchable attributes are

visible (publicly available) yet cannot be searched. In an online community network,

a user is able to issue a query on keywords and on searchable attributes but not on

the non-searchable attributes.

3.2.3 Problem Definition

Intuitively, a complex query could be formulated as an SQL-like query Q of the

form SELECT * FROM U WHERE CONDITION. Here is a non-exhaustive list of ways

to classify complex queries Q based on its CONDITION.

• Queries over Non-Searchable Attributes: As described in Section 3.2.2,

if the condition is specified over a non-searchable attribute, then it cannot be

expressed using the existing search interfaces. In Twitter, complex queries

include getting N Twitter user accounts with constraints such as (a) having at

least 500 followers (b) location in profile is California (c) posted at least k tweets

about ICWSM in 2014 etc. Queries for amazon.com could be to get N books

65



that were reviewed in NY Times or movies that got nominated to Academy

awards etc.

• Queries involving Mathematical Operators: Most search interfaces per-

form a simple matching for values. If the condition involved operators such as

≥,≤, 6=, it might not be specifiable through the native interfaces. Examples

include movies with running time of more than 2 hours, movies from top-4 US

Studios etc.

• Queries with Blackbox Predicate Matching: It is possible that some

queries would require a black box to decide if CONDITION is satisfied. The

black box could take entire entity details (user profile+timeline in Twitter,

product details+review for amazon.com) and output a binary value to indicate

if the entity matched the predicate. The black box could be a simple classifier

such as decision tree or some complex function. Examples include black box

functions that determine the location of a user from their tweets/neighbors,

measuring user/product review sentiment, etc.

Given the taxonomy of complex queries, we are now ready to formally define

the problem. Given a complex query Q that cannot be directly specified through

the site’s existing search mechanisms, our objective is to retrieve entities satisfying

Q with minimal query cost - i.e., by issuing the minimum number of queries through

the existing search interface of the online community network. As Figure 3.2 shows,

we need to leverage and synthesize all possible search interfaces for answering the

queries.

Problem Definition: Given a complex query Q over an online community network

with entities U , and the desired number of results N , find N entities U ′ ⊆ U that

satisfy Q with minimal query cost.
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3.3 Baseline Approaches

3.3.1 Baseline Approaches

Recall from Section 3.2 that all native search mechanisms offered by an online

community network can be abstracted as various types of edges. Specifically, the

form-based/keyword search interfaces provide information about content based edges

Euk while graph based browsing interface provides knowledge about locality based

edges Euu′ . Hence, a simple method to answer user query q is to start from one or

multiple seed nodes S and to systematically traverse the heterogeneous graph G - i.e.,

for each node newly visited, verify if it satisfies the query. Abstractly, all algorithms

to answer complex queries could be construed as performing graph navigation using

certain edges. Specifically, we shall start by considering two simple yet orthogonal

baseline approaches - Local Search (LS) that traverses only locality based edges and

Content Search (CS) that traverses only content based edges.

Figure 3.2. Answering Complex Queries by Synthesizing Search Interfaces.

Local Search: This baseline approach traverses only locality based edges, i.e., intra-

edges Euu′ , in graph G in order to find entities that satisfies query q. Specifically,

it starts with a seed node s ∈ VU and does a depth-first search by first finding all

matching entities from the neighbors of the seed node, and then pick a matching

neighbor randomly to continue this process in a recursive fashion. If no matching

neighbor is found or if all matching neighbors have been visited before, this baseline

method will randomly pick an arbitrary neighbor (i.e., regardless of whether it is
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matching the query or not) and continue this process. One can see that, given an

undirected graph, this approach will always identify all matching entities from the

graph eventually as long as the locality based edges form a connected graph.

Algorithm 4 describes the pseudocode for LS. Given the query q, graph G, a

set of one or more seed nodes S ⊆ VU , it returns a set of entities U ′ ⊆ U of size N

that satisfies q. Note that, in lines 4 and 5, the query cost increases because of an

API calls to check if entity s satisfies query q and API call to find the locality based

edges associated with the entity node s and In Algorithm 4, the function PICK-NODE

returns a randomly chosen node from the set of candidates. Of course, depending on

the query the number of API calls to check whether a node satisfies it varies.

Algorithm 4 Local Search

1: Input: Graph G, Query q, Seed nodes S ⊆ VU , Number of results N

2: Output: Set of entities U ′ ⊆ U satisfies q

3: U ′ = {S}; Candidates = {S}

4: while |U ′| < N do

5: s = PICK-NODE(Candidates, U ′)

6: if s satisfies q then

7: Append s to U ′ and

8: GET-LOCAL-NEIGHBORS(s) to Candidates

9: end if

10: end while

Content Search: An alternate baseline approach is to identify keywords that

may be used as a proxy for the original search query. For example, for a query

on a non-searchable attribute “user location” (e.g., find 10,000 Twitter users from
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California), we might start by observing (e.g., through a few sample matching users)

that users from California tend to tweet keywords such as Silicon Valley, Palo Alto,

etc. Hence, searching for these keywords might help us identify users from California.

Of course, the right set of keywords must be discriminative - a reasonably broad

keyword that matches more Californians than non-Californians.

Leveraging this idea, Content Search (CS) is a baseline approach that traverses

content based edges or inter-edges, Euk in graph G. It starts with a set of seed nodes

S ⊂ VU of the entity nodes in graph G who satisfies q, and identifies l discriminative

keywords K ′ ⊂ K associated with the seed nodes. Using these keywords in the

keyword search interface, it finds other relevant entity nodes from the neighbors of

those content nodes. The list of discriminative keywords are updated periodically

(for example, once every h new entity nodes are obtained, or when all previously

identified keywords are issued). This process continues recursively until N matching

entities are found. Once again, one can see that eventually CS will always identify

all matching entities from the graph, so long as the heterogeneous graph is connected

and every entities has content information.

Algorithm 5 depicts the pseudocode for CS. One can see a few specific de-

sign choices from the pseudocode: Given the contents (e.g., tweets of users), the

sub-routine FindKywds returns the most discriminative keywords among the entities,

ranked according to tfidf (term frequency inverse document frequency) [45]. To enable

tfidf computation, we need to know the frequency of a term in the entire community

network (e.g., among all Twitter users no matter if one matches the complex query

or not). To do so, we use in the baseline a crude estimator which measures the term

frequency over a random sample of all tweets (as returned by Twitter’s streaming

API). Note that for online community networks that do not offer a random sample

of its contents, an efficient sampling process can be enabled with a small query cost
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over the restrictive search interface (as shown in previous studies [46, 47]). Finally,

we exclude stopwords [45] from consideration as they are unlikely to be discriminative

for any complex query.

Algorithm 5 Content Search

1: Input: Graph G, Query q, Seed nodes S ⊆ VU , Number of results N

2: Output: Set of entities U ′ ⊆ U satisfies q

3: U ′ = {S}; K ′ = FindKywds (U ′)

4: while |U ′| < N do

5: s = PICK-NODE(Candidates, U ′)

6: if s satisfies q then

7: Append s to U ′ and GET-CONTENT-

8: NEIGHBORS(s,K ′) to Candidates

9: Periodically update K ′ using FindKwds(U ′)

10: end if

11: end while

Although the baseline approaches retrieve N relevant results for a complex

query, the query cost can be very high, as we demonstrate later in the experimental

results. Next, we consider how to leverage certain graph properties to significantly

reduce the query cost for complex query processing.

3.4 Improvement: Leverage Graph Properties

The heterogeneous graph G has two properties, i.e., assortativity, and degree

distribution that can be used to improve the efficiency of the baseline algorithms.

We employ these properties to reorder the entity nodes to identify relevant nodes as
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soon as possible and reduce the query cost. The assortativity or homophily property

posits that similar entities are more likely to connect to each other. For example, it

is highly likely that Californians will have other Californians as their followers. Using

this insight we design variants of LS and CS that uses the best first heuristic. We refer

to these variants as LS-BFS and CS-BFS respectively.

Further, the degree of the entities in online community network follows the

power-law distribution. For example, in Twitter, there are few users who have high

number of followers and many users with low number of followers. In amazon.com,

there is a small number of popular items which are often recommended as similar item.

Thus, we model the degree distribution in the entity-entity subgraph, Gee ⊂ G, where

Gee = (VU , Euu′) as power-law distribution. Another important fact is that keyword

frequency of the content-based information follows the Poison distribution [48]. We

show how it can be used to find the degree of the content nodes in content-entity

subgraph, Gke ⊂ G, where Gke = (V = {VU ∪ VK}, Euu′). Using degree distribution

of Gee, and Gke, we propose two algorithms LS-BFS-U and CS-BFS-U that leverage

user specific information to reduce query cost.

3.4.1 Assortativity based Approaches

Based on the assortativity property, in both local search and content search

we prioritize the candidate entity nodes by the number of common neighbors with

the previous results. This is due to the fact that entities that have more common

neighbors with the previous results are highly likely to satisfy the query (which

we also verify empirically in Experiments). For example, a user with hundreds of

Californians followers is more likely to be from California than another user with

only few Californian followers. Using this observation, we could design a variant of

PICK-NODE. Given a set of nodes U ′ that satisfy the query and set of Candidates,
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the sub-routine now returns the node u ∈ Candidates that has most number of

neighbors with nodes in U ′. We refer the variant of LS with this heuristic as LS-BFS.

The variant CS-BFS also operates the same way. Note that the FindKywds function in

CS-BFS still uses tfidf technique to find list of discriminative keywords and PICK-NODE

employs the assortativity property to prioritize candidate entities who used those

keywords. The PICK-NODE function for both LS-BFS, and CS-BFS is as follows.

PICK-NODE(Candidates, U ′): Pick candidate node with most neighbors in

|U ′|

3.4.2 Degree Distribution based Approaches

Algorithm LS-BFS-U: Given an entity node u, Algorithms LS, and LS-BFS should

issue an API call to get the list of the neighbors. However, those neighbors might be

the ones that have been already visited. In a large well connected community, this

may lead to lots of API calls to get few new relevant entities. This motivates us to

estimate the expected number of new unseen entities in the neighborhood of a given

entity. Then, we can issue API call only on those entities with high estimated number.

We first show given an entity node, how to use the power-law degree distribution in

the entity-entity subgraph, Gee ⊂ G, in order to estimate the expected number of

new nodes that will be visited in its neighborhood. Then, We use this estimation to

design an efficient local search algorithm.

Theorem 2. Let us assume T is the set of visited nodes and C ⊂ T is the set of

candidate nodes. Given a candidate node u ∈ C, where number of its neighbors who

are visited are d′(u) and exact number of neighbors d(u), the expected number of new

nodes from u is

nu,T = d(u)− d′(u)−
∑
w∈C

d(w)∑
v∈T d

′(v)
(3.1)

Proof. Please refer to Appendix.
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Let us assume Figure 3.3 shows visited nodes from entities subgraph where

T = {a, b, c, u, v} is the set all visited nodes, C = {u, v} is the set of candidate nodes

to expand, and the number on top of a node is its degree in original graph e.g., v

should have 12 neighbors from which 3 have been already discovered (d(v) = 12, and

d′(v) = 3). Note that for a node w who is expanded (w ∈ T \ C), d(w) = d′(w). For

example in Figure 3.3 since node a is expanded d(a) = d′(a) = 3.

Using Equation 3.1, the expected number of new neighbors from node u is

nu,T = 10 − 1 − 3
12

= 8.75, where d(u) = 10, d′(u) = 1, and probability that u be

connected to v is 3
12

. Similarly, the expected number of new neighbors from node v

is nv,T = 12 − 3 − 1
12

= 8.9, where d(u) = 12, d′(u) = 3, and probability that v be

connected to u is 1
12

. The results show that the expected number of new neighbors

from node v is larger than those from node u, although from both node u and v there

are 9 edges left.

3 3

210 

12 

a b 

c u 
v 

Figure 3.3. Visited nodes from Entities subgraph..

Lemma 1. Given user query q, set of results that have already been retrieved U ′, and

a candidate node u, the expected number of new nodes visited from u who satisfy q is

|N ′(u)|
|T |

· nu,τ (3.2)

where nu,τ is given by Equation 2, N ′(u) ⊆ U ′ is the set of the neighbors of u

who have already been visited and satisfy q, and T is the set of visited nodes so far.
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Thus, LocalSearch-BFS-userlevel(LS-BFS-U) algorithm prioritizes the can-

didate nodes based on the expected number of visiting new nodes from u who satisfy

q in Equation 1.

PICK-NODE(Candidates, U ′): Pick candidate node with highest value for

Equation 3.2

Algorithm CS-BFS-U: In content search, we select a keyword k in order to access

entities that are connected to k. Similar to local search, if content search selects the

keywords that are connected to entities which have been already visited, it increases

the query cost. In order to reduce the query cost in content search we should target

those keywords by which we are able to visit new entities. We know that the term

frequency in a document follows the Poisson distribution [48]. Similarly, the frequency

of a keyword in (the content of) each entity also follows Poisson distribution. We

first show how to use the frequency of the keyword k to find the number of entities

connected to that. Then, we generalize it to find the number of new entities connected

to k given that the set of keywords that have been already used by content search is

κ. Finally we use this information to design an efficient content search algorithm.

Theorem 3. In graph G of an online community network, given a keyword or content

node k ∈ VK, the number of entities connected to k is

|VU |(1− e
− fk
|VU | ) (3.3)

where |VU | is the total number of entities, and fk is the keyword frequency. In on-

line community networks these two parameters can be easily estimated using random

streams (We discuss the details in Experiment section).

Proof. Please refer to Appendix.
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Theorem 4. Given set of keywords κ that have already been used by content search,

and new keyword k, the number of new entities connected to k but not to the keywords

in κ is

|VU |(1− e
− fk
|VU | )

∑
kj∈κ

log(e
−

fkj
|VU | ) (3.4)

Proof. Please refer to Appendix.

Algorithm CS-BFS-U prioritizes the keywords based on the number of new enti-

ties in Equation 3.4.
PICK-NODE(Candidates, U ′): Pick candidate node with highest value for

Equation 3.4

3.5 Strategy Selection Algorithm

In this section, we first discuss the potential pitfalls of using the Local Search

and Content Search individually and then propose a sophisticated strategy selection

approach that carefully interleaves these two approaches so that every complex queries

Q can be answered efficiently.

3.5.1 Pitfalls of Single Edge Navigation Approaches

The variants of Local (LS) and Content Search (CS) algorithms that we discussed

in Section 3.4 often work well in practice. However, for each technique, there are

complex queries which it cannot effectively handle. Recall that LS relies only on the

locality based edges Euu′ while CS relies on content based edges Euk. Local Search

is often very effective when the set of users U ′ who satisfy the query q form one or

more tight knit communities. For queries such as finding 100 users from California or

Physicians, LS outperforms CS. However, if the users in U ′ are dispersed across graph

G and they do not belong to large-enough tightly knitted community, then LS is a very

inefficient technique to collect them. Similarly, CS has complementary strengths and

weaknesses. It excels when the user query q can be reformulated as a small number

75



of keywords (such as when finding users from Texas by leveraging slangs such as

Howdy). It is also effective when users in U ′ form a disconnected graph with multiple

small connected components. For example, for a query like finding 100 Twitter users

who talk about Diabetes with at least 5000 followers CS is able to come up with a

set of distinct keywords (such as Diabetes, Insulin) that are highly correlated with

relevant users. This approach often fails when there is no discriminating keywords

for the complex query, e.g., for a query like finding Twitter users whose number of

followers is greater than 200 CS is not effective.

A key hurdle in using such techniques is that, given a query, it is not easy to de-

termine which of the two approaches will work best. This conundrum motivates us to

design a single algorithm that balances the complementary strengths and weaknesses

of the two approaches. We formulate the problem as a strategy selection problem. In

practice, LS works effectively within a community while CS could be used as a way to

transition between communities. Hence, given a query, we seek to use both strategies

to answer the query instead of choosing a single one.

However, we would like to note that this is a non-trivial problem. To give a

simple example, determining if and when an entity node u is part of a community is

challenging to determine without expending additional queries. This obviates some

intuitive heuristics such as using LS within a community and when it is fully consumed,

use CS to jump to another. We propose to adapt a popular sequential strategy selection

technique from Artificial Intelligence based on Multi-armed bandits.

3.5.2 Multi-Armed Bandits

Based on the previous discussion, our objective is to design an approach that

uses both algorithms to find the relevant entities with minimal query cost. We can

view it as a sequential strategy selection problem[49].
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Muti-Armed Bandits (MAB): MAB [49] abstracts following learning problem.

The algorithm is given a set of k different options each of which is associated with an

arbitrary reward distribution that is unknown to it. The algorithm selects a single

option among the k options and is rewarded based on the chosen option’s reward

distribution. The objective is to maximize the expected reward over a period of, say

L choices.

Mapping MAB to Strategy Selection Problem: There exists a simple

mapping between our problem of selecting the right strategy and MAB. Specifically,

we formulate our problem as a 2-armed bandit problem with LS (or some variant)

and CS (or some variant) as two arms. In other words, the two strategies correspond

to the two arms, one of which is chosen by the algorithm. The selected strategy

is then used to obtain the next entity node u ∈ U ′. Once node u is obtained, the

strategy chosen achieves a reward based on the efficacy of the choice and based on

all prior knowledge asked to make next strategy choice again. The objective of this

MAB problem is to come up with an optimal set of strategy choices that maximizes

the total reward.

In LS and CS, the reward ultimately depends not only on the current selection

but also its neighbors, which is never fully known due to the interface restriction.

Thus, the main challenge of designing this approach is that the expected rewards of

the LS and CS are unknown which makes the decision of switching between the algo-

rithms difficult. To address this problem, we use the general paradigm of exploration-

exploitation. An action is called exploitation, when the algorithm makes a greedy

decision based on the current information. An exploration occurs when the choice

is made at random. There exist multiple algorithms (see [49] for a discussion) to

determine how to make an exploration/exploitation decision. For the purposes of

our paper, we use ε-greedy technique, where we are given a constant 0 < ε ≤ 1.
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At decision time, the exploitation (greedy choice with highest reward so far) would

be selected with probability 1 − ε and with probability of ε a strategy is randomly

selected for exploration.

While ε-greedy is known to work well in practice, a slight modification is re-

quired for our problem. Notice that when a strategy is invoked, its reward will not

be updated until it finds a new entity node that satisfies the query. In other words,

a poorly chosen strategy might consume a large number of queries to identify the

next node that satisfies query. While a straightforward solution is to set a constant

threshold on query consumption per strategy, we note that such a threshold depends

on many factors such as the selectivity of the complex query, and may vary widely

for different queries/online community networks in practice. Thus, we propose an

adaptive method of limiting the maximum number of API calls that can be used

by a strategy to the number of API calls that were used by the previously utilized

strategy. Additionally, in practice, a simple variant that assigns multiple LS and CS

arms with different seed nodes works very well. The minimal query cost constraint

could be easily integrated into the problem through the design of reward function.

As an example, the reward function for choosing a strategy could be the reciprocal of

the number of queries issued till a new entity node is chosen. Often, discounting prior

rewards by a factor of δ works well. Suppose we have N ′ relevant tuples with tuple

ti was the i-th tuple retrieved with corresponding reward ri. Then the total reward

under this scheme is r =
∑N ′

i=1 ri×δN
′−i. Algorithm 6 outlines the pseudocode of MAB

algorithm.

3.6 Related Work

Third Party Crawling and Focused Crawling: There exist a number of prior

work to retrieve information from an online community network using only one of
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Algorithm 6 Multi-Armed Bandits (MAB)

1: Input: Graph G, Query q, Seed nodes S ⊆ VU , Number of results N , 0 < ε ≤ 1,

discount factor δ

2: Output: Set of entities U ′ ⊆ U satisfies q

3: U ′ = {S}; rls = rcs = 0 (reward for LS and CS)

4: while |U ′| < N do

5: With probability ε, pick a random arm and with

6: probability 1− ε, pick arm with highest reward

7: Use chosen strategy to retrieve next relevant node

8: Update reward of selected arm (discounted by δ)

9: end while

the access mechanisms. For example, [50] described optimal algorithms to crawl

form based interfaces while [51] introduced algorithms for crawling keyword based

interfaces such as in search engines. In contrast our work can leverage multiple search

interfaces. A query optimizer that compares the cost of searching and crawling using

both execution time and output completeness was designed in [52]. However, our

access model is more sophisticated since we work on a richer graph of entities and

their contents. [27] and [53] study the problem of crawling online graphs. Our work

differs from these work as it seeks to crawl only the nodes that satisfy the queries.

There exist some prior work such as [54] that study the problem of Focused crawling

for web pages that match a particular topic. However, no equivalent techniques

have been designed for other search interfaces. [44] tackled a problem of answering

queries over unsearchable attributes. However, their approach is quite rudimentary

as they only compared baseline versions of crawling using graph and keyword based
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interface. In contrast, this paper proposes more sophisticated algorithms that leverage

the topological properties of the graph and a unified approach using MAB.

Estimating Graph Properties: Degree of the nodes in the real world networks

follows power-law distribution [55], [56], and [57]. Growth and preferential attachment

of many real networks are the reason of the scale-free nature. Moreover, [48] shows

that the term frequency in a document follows the Poisson distribution. The authors

in, [56], and [58] proposed number of local search strategies that utilize high degree

nodes in power-law graphs, where search cost is defined as the number of steps until

approximately the whole graph is revealed. In contrast, in this paper the goal is to

leverage both power-low distribution and Poisson distribution in an online community

network to retrieve the results that satisfies complex queries with minimal query

cost. The authors in, [56], and [58] proposed a number of local search strategies that

utilize high degree nodes in power-law graphs to crawl a graph. However, our work

differs from these work as it seeks to crawl only the nodes that satisfy the queries by

leveraging the properties of the online community networks.

Figure 3.4. Comparing LS
Variants (Twitter).

Figure 3.5. Comparing CS
Variants (Twitter).

Figure 3.6. Comparing LS,
CS and MAB (Twitter).
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Figure 3.7. Comparing LS
Variants (amazon.com).

Figure 3.8. Comparing CS
Variants (amazon.com).

Figure 3.9. Comparing
LS,CS and MAB (ama-
zon.com).

Figure 3.10. Varying result
size, N .

Figure 3.11. Varying
Query Selectivity.

Figure 3.12. Varying #
MAB Arms.

3.7 Experiments

Dataset Description: We performed our experiments over two popular on-

line community networks - Twitter and amazon.com and a synthetic network. Our

experiments over Twitter was conducted in real-time by leveraging its REST API.

For amazon.com, we crawled more than 500K products from diverse domains such as

books, movies, digital cameras, health & personal care, home & kitchen etc. Each

domain consisted of at least 50K products. For each product, we crawled the prod-

uct details, reviews and related products (“Customers Who Bought This Item Also

Bought”).
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Parameter Estimation: We assume that the user provides us with at least

one seed node. More sophisticated variants of LS and CS need additional information

such as network size, word frequencies etc. Such information could be obtained either

from external knowledge or by using prior work like [47] to get a representative sample

and use the sample for estimating it.

Queries Evaluated: We evaluated our algorithms by using three types of

queries as described in Section 3.2.3. QT-I denotes queries specified over unsearch-

able attributes (such as retrieving 100 Twitter users who are Physicians or 100 books

that got 5 Star review from at least one top-1000 reviewers). QT-II refers to queries

involving mathematical operators (such as 100 Twitter users with 200 or more fol-

lowers, 100 movies that have a running time of 2 hours or more). Finally, QT-III

refers to queries that might need some external blackbox to verify if an entity satis-

fied the query (such as 100 Twitter users who are Physicians (expertise)/effervescent

(sentiment) or 100 movies that got universal acclaim in comments). Additional, we

also “hid” few visible attributes (such as location) and sought to retrieve entities

without using it. We evaluated our experiments with a total of 400 queries (200, 100,

100 queries respectively for QT-I, II and III). By default, all experiments sought to

retrieve N = 200 matching entities.

Comparing LS and CS Variants: We begin with a set of experiments to com-

pare the three algorithm variants of LS and CS respectively. In this experiment, we

evaluate the 400 queries for Twitter and amazon.com with N = 200. Figures 3.4 and

3.7 compare the LS variants for Twitter and amazon.com while Figures 3.5 and 3.8

show for CS. As expected, the variants that leverages the topological properties out-

perform the simple LS and CS. Additionally, the most sophisticated variants LS-BFS-U

and CS-BFS-U perform the best.
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Comparison with MAB: In the next set of experiments, we compared the best

performing variants (LS-BFS-U and CS-BFS-U) with our strategy selection algorithm

MAB. Figures 3.6 and 3.9 show the results on Twitter and amazon.com respectively.

We can see that MAB is competitive with both the algorithms. While the LS and CS

variants have multiple queries that trip them up, MAB performed well in all queries.

A key rationale for MAB is that it could be used for all queries without any prior

knowledge of the query type. If one of LS or CS is best suited for this query, then MAB

would soon find and exploit it resulting in a query cost comparable to just running

the best performing variant.

Miscellaneous Experiments: We performed additional experiments where

other the impact of other significant parameters were evaluated. All these experi-

ments were conducted over amazon.com dataset. Figure 3.10 shows the results of

experiments where the number of results N is systematically increased from 100 to

500. As expected, the query cost increases with N . Interestingly, we also observe

that the query cost of LS increases significantly with higher N while CS and MAB have

a moderate increase. When LS is used for a selective query, it wastes a lot of queries

to traverse from one community to another. However, CS does not have a similar

problem. In fact, it becomes more effective by discerning relevant keywords quickly.

In Figure 3.11, we vary the query selectivity (the fraction of tuples that satisfy

the query). As expected, the query cost decreases with higher selectivity as more rel-

evant tuples could be found using all strategies. Finally, we conducted an experiment

where we varied the number of arms in MAB. While most of our experiments used two

arms (one for LS and CS), it is possible to use higher number of arms especially when

we have multiple seed nodes by assigning one seed node per strategy. Figure 3.12

shows the results. We can see that while increasing arms is helpful in reducing the
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query cost, it has diminishing returns. In general, identifying the optimal number of

MAB arms is non-trivial.

3.8 Conclusion

In this paper, we introduce the novel problem of answering complex queries

in an online community network by leveraging and synthesizing search interfaces.

Our proposed solution, return the relevant results of a user query by considering

the limited budget for the number of API calls. We have identified two orthogonal

approaches Local Search, and Content Search to answer such queries and designed

more sophisticated variants by leveraging the structural properties of the graphs. We

also proposed a unified approach based on strategy selection. We conduct exhaustive

and comprehensive experiments on Twitter and amazon.com that show the proposed

algorithm based on strategy selection, provide relevant results for variety of the queries

with fewer cost.
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CHAPTER 4

The TagAdvisor: Luring the Lurkers to Review Web Items

The increasing popularity and widespread use of online review sites over the

past decade has motivated businesses of all types to possess an expansive arsenal of

user feedback (preferably positive) in order to mark their reputation and presence in

the Web. Though a significant proportion of purchasing decisions today are driven

by average numeric scores (e.g., movie rating in IMDB), detailed reviews are critical

for activities such as buying an expensive digital SLR camera, reserving a vacation

package, etc. Since writing a detailed review for a product (or, a service) is usually

time-consuming and may not offer any incentive, the number of useful reviews avail-

able in the Web is far from many. The corpus of reviews available at our disposal

for making informed decisions also suffers from spam and misleading content, typo-

graphical and grammatical errors, etc. In this paper, we address the problem of how

to engage the lurkers (i.e., people who read reviews but never take time and effort to

write one) to participate and write online reviews by systematically simplifying the

reviewing task. Given a user and an item that she wants to review, the task is to

identify the top-k meaningful phrases (i.e., tags) from the set of all tags (i.e., available

user feedback for items) that, when advised, would help her review an item easily.

We refer to it as the TagAdvisor problem, and formulate it as a general-constrained

optimization goal. Our framework is centered around three measures - relevance (i.e.,

how well the result set of tags describes an item to a user), coverage (i.e., how well

the result set of tags covers the different aspects of an item), and polarity (i.e., how

well sentiment is attached to the result set of tags) in order to help a user review
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an item satisfactorily. By adopting different definitions of coverage, we identify two

concrete problem instances that enable a wide range of real-world scenarios. We show

that these problems are NP-hard and develop practical algorithms with theoretical

bounds to solve them efficiently. We conduct detailed experiments on synthetic and

real data crawled from the web to validate the utility of our problem and effectiveness

of our solutions. The result of this project is published in [59, 60].

4.1 Introduction

Motivation: The increasing popularity and widespread use of online reviews in

sites like Yelp, Amazon, Angie’s List, TripAdvisor, etc. over the past decade has

motivated businesses of all types to possess an expansive arsenal of user feedback

(preferably positive) in order to mark their reputation and presence in the Web. User

feedback is available in various forms such as numeric or star ratings, number of

visits, number of check-ins, number of Facebook likes, tags, reviews, etc. Though

a significant proportion of purchasing decisions today are driven by aggregate user

feedback in the form of average rating (e.g., a movie in IMDB), number of Facebook

check-in (e.g., a restaurant page in Facebook), number of views (e.g., an article in

Business Insider), etc., detailed reviews continue to influence a wide variety of critical

activities such as buying an expensive digital SLR camera, choosing a car, reserving

a vacation package, etc. However, since writing a detailed review for a product (or,

a service) is usually time-consuming and may not offer any incentive, the number

of useful reviews available is far from many. Though the 1% rule (or, the 90-9-1

rule) of Internet is presumed to be dead, the proportion of lurkers (i.e., people who

read user-generated content in the Web without contributing) is still high. According

to survey conducted by Pew Internet in 2012, though 90% people conduct online

product research, only 37% people have ever rated a product, service, etc. and only
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32% have ever posted a review online about product they bought or service they

received. In addition, several sites like Hotels.com and IMDB allows users to submit

feedback as ratings without any review accompaniment. As a result, the number of

numerical ratings available for a product far exceeds the number of detailed reviews.

The corpus of reviews available at our disposal for making informed decisions suffers

from redundancy, inaccurate and misleading content, typographical and grammatical

errors, etc. too.

Our Problem: In this paper, we investigate how to engage the users to participate

and write online reviews by systematically simplifying the web item (e.g., electronic

products, apparel, restaurants, movies, music, travel itineraries, etc.) reviewing task.

Given user feedback for items by past users in the form of text, a user and an item

that she wants to review, our objective is to identify a set of meaningful phrases (i.e.,

tags) that we advise to the user in order to help her review the item. We refer to this

as the TagAdvisor problem. The user would quickly choose from among the set of

returned tags to articulate her feedback for the item without having to spend a lot

of time writing the review.

The top-k tags should not only meet the necessary requisites of a good online

review like conciseness, comprehensiveness, objectiveness, etc. but should also offer

adequate incentive in the form of simple usability, easy applicability, etc. As one of our

first step towards solution, we employ state-of-art text mining techniques (discussed

later in Section 4.5) and extract meaningful phrases or tags from user feedback in

the form of text, i.e., reviews. Since each tag is a user feedback for an item, the tags

are extracted with sentiment labels attached to it. T+ and T− are the set of positive

and negative tags respectively. For example, a review statement “It is a lightweight
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camera with some amazing features” is reduced to the tags {lightweight camera,

amazing features}, where both tags have positive sentiment.

We formulate the problem of identifying the top-k meaningful tags from the

set of all tags (i.e., available user feedback for items) for a user-item pair, as a novel

general-constrained optimization problem. A core challenge in this design is defining

the essential properties of the top-k tags to be returned that would serve to review the

item effectively. We consider relevance (i.e., how well the result set of tags describes

an item to a user), coverage (i.e., how well the result set of tags covers the diverse

aspects of an item), and polarity (i.e., how well sentiment is attached to the result set

of tags) in order to enable a user to satisfactorily review an item. Though relevance

and coverage have been studied in the past [61], our work is the first to consider

all three measures simultaneously in the context of tag mining, to the best of our

knowledge.

A user can review an item in different ways. A user can express her broad

opinion about the different aspects of an item which, in turn, can either be positive

or negative. Again, a user can express both positive and negative opinion for the

same attribute (or, set of attributes) of the item. For example, a user may write

a review for a camera as “The picture quality of this camera is great and so is the

sharpness and color accuracy of the pictures, but the battery life is short.”, while

another user of the same camera may write “Though the extra screen with touchscreen

and gesture-control features saps battery life, it’s perfect for fashion-conscious snap

shooters.”. The first review contains positive feedback for the camera’s image quality

and negative feedback for the camera’s battery life. The second review contains

both positive and negative feedback for the camera’s advanced features {dual-screen,

touchscreen and gesture-control}. Therefore, the item attributes that were covered by

the review is independent of the feedback sentiment in the former case, and dependent
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on the sentiment in the latter. This motivates us to propose two problem instances,

namely Independent Coverage TagAdvisor problem and Dependent Coverage

TagAdvisor problem that considers two different definitions of coverage respectively

in order to satisfy users’ real world needs.

Related Work: Though the output of our problem is recommending a set of tags

for a user-item pair, our objective is different from the literature of work dedicated to

tag recommendation [62, 63]. The top-k tags in our problem are more feedback than

descriptive relevant information for an item and hence calls for additional properties

like coverage of all aspects of the item in order to ensure diversity, as well as sentiment

polarity in opinion of the user for the different aspects of the item. While review

summarization, that helps users read the valuable content in the vast volumes of user

feedback for items, has been researched in the literature [64, 65, 66, 67], our objective

of simplifying a user’s review writing task has not been studied to the best of our

knowledge. Moreover, none of the existing work on review summarization, ranking,

and selection accommodate all three measures —relevance, coverage, and polarity

—that we consider in our framework. Even collaborative filtering based approaches for

tag recommendation consider only relevance measure to determine the top-k tags [68].

We discuss some of these related work in more details in Section 4.6.

Technical Challenges and Solutions: The TagAdvisor (TA) problem is techni-

cally challenging for several reasons. Our objective is to identify k tags that are

relevant, cover different aspects of an item, and have well-balanced positive and neg-

ative sentiment attached to it. While the first two concerns the relationship between

the item attributes and tags, the third is dependent on a user’s personal preference.

Some users tend to be lenient and provide mostly positive feedback; some tend to

be critical. In this paper, we choose to focus on modeling the complex dependencies
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that exist between item attributes and tags and leverage user personal preference

as a parameter, thereby letting the system deal with both new users and with new

items, alleviating cold-start problems. Classifiers and rule learning techniques in the

literature can be used to predict the relevance of tags for an item. In this paper,

we employ existing techniques to predict the rules modeling the relationship between

attributes and tags, where each rule has a probability of occurrence.

As discussed earlier, formalizing the users’ different ways of reviewing an item

relates to the coverage characteristic of the top-k tags to be returned. By adopting

different definitions of coverage, we propose problems that enable a wide range of real-

world scenarios. For a user reviewing an item, the Independent Coverage TagAdvisor

(IC-TA) problem identifies top-k tags that are relevant, satisfy the user’s criticalness

in reviewing, and maximizes the number of item attributes covered by them, inde-

pendent of their sentiment. On the other hand, the Dependent Coverage TagAdvisor

(DC-TA) problem returns tags that cover item attributes both positively and neg-

atively, in addition to being relevant and satisfying user’s criticalness in reviewing.

As one of our first results, we show that each of these problem is NP-Complete by

reduction from Max-Coverage problem with Group Budget Constraints problem and

MAX-SUM Facility Dispersion problem respectively. Given this intractability result,

designing efficient algorithmic solutions that work well in practice is challenging. In

addition, the objective function of the second problem is proved to be not sub-modular

thereby precluding the direct use of off-the-shelf greedy algorithms. For each prob-

lem, we first discuss an exact solution (E-IC-TA and E-DC-TA) and then develop

an advanced approximation algorithm (A-IC-TA and A-DC-TA) respectively. We

prove that each of our approximation algorithm produces solution with constant ap-

proximation factor. We conduct experiments on synthetic data and real data crawled

from Yahoo! Autos, Walmart and Google Product to evaluate the efficiency and qual-
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ity of our proposed algorithms. We also present an Amazon Mechanical Turk user

study and an interesting case study on real camera data to validate the effectiveness

of our solution over that by state-of-art.

In summary, we make the following main contributions:

• We introduce and motivate the novel TagAdvisor problem that leverages avail-

able user feedback for items in online review sites to simplify the review writing

task. Our objective is to identify the top-k meaningful tags that, when advised

to a user, would help her review an item easily.

• We formulate the problem as a general-constrained optimization goal. Our for-

mulation is centered around three measures —relevance, coverage, and polarity.

• We formalize the users’ different ways of reviewing an item by proposing two

coverage functions and thereby defining two concrete problem instances, namely

Independent Coverage TagAdvisor (IC-TA) and Dependent Coverage TagAd-

visor (DC-TA) problems, that enable a wide range of real-world scenarios.

• We show that each of the problems is NP-Complete and develop practical algo-

rithms with compelling theoretical properties to solve them efficiently.

• We perform detailed experiments on synthetic and real data crawled from the

web to demonstrate the utility of our problem and effectiveness of our algo-

rithms.

4.2 The TagAdvisor Framework

4.2.1 Preliminaries

We model the data D in an online review site as a triple < U, I, T >, repre-

senting the sets of users, items, and the tag vocabulary respectively. Let n be the

total number of tags in T . Each tagging action can be considered as a triple itself,
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represented as < u, i, T > where u ∈ U , i ∈ I, and T ∈ T . We assume that each

user u ∈ U has a well-defined schema UA = {c1, c2, ...}, where the attributes typically

are the demographic information such as name, age, gender, location, etc. A user u

is represented as a tuple {c.v1, c.v2, ...} conforming to UA, where c.vy is the value of

the user attribute cy; e.g., <name=Amy, age=23, gender=Female, location=California>

represents a 23 years old female from California. Similarly, every item i ∈ I is as-

sociated with a well-defined schema IA = {a1, a2, ..., am} and each item i is a tuple

{a.v1, a.v2, ..., a.vm} with IA as schema, where a.vy is the value of item attribute ay;

e.g., <brand=Samsung, model=TL225, type=point and shoot> describes a compact Sam-

sung camera. Note that, our work is not influenced by or biased towards any brand.

Since each tag is a user feedback for an item, it describes the item positively or neg-

atively. Therefore, we partition T into T+ and T−, where |T+| is n+ and |T−| is

n−.

Example: Suppose, we would like to help a user review a camera, say Samsung

TL225. Table 4.2.1 describes the data available in an online review site where users

Amy and David have left tag-based feedback for the camera. Table 4.2.1 also shows

the attribute values for the users and the camera. The set of all tags T = { T1, T2} for

item i (i.e., Samsung TL225) by users u1 (i.e., Amy) and u2 (i.e., David) is classified

into T+ = {super cool, stylish, lightweight} and T− = {blurry pictures,

gimmicky touchscreen, poor battery life} by domain experts.

Given an item i and set of tags T , probabilistic classifiers can be used to compute

the relevance of the tags for the item (i.e., Pr(tx|i)). In this paper, we use the rule

based classifiers [69, 70] to find the dependency of the item attributes to the tags and

generate rules with probability of occurrence p, i.e., the relevance score. However,

there exist a number of prior work that show popular classifiers like decision tree,
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random forest and SVM can also be used to generate rules [71, 72, 73, 74, 75, 76, 77].

We discuss the detail of the related work in Section 4.6.

Example [continued]: Table 4.2.1 presents a set of rules associated with the Samsung

TL225 camera and tags in Table 4.2.1. Illustrating one of the rules: {Front LCD=1.5”,

Touchscreen=true, Gesture Control=true} → short battery life with p = 0.13 indi-

cates that with probability of 0.13 the camera’s dual LCD feature along with its touch-

screen and gesture control interfaces are responsible for the camera receiving the tag

short battery life.

For an item i having attributes values {a.v1, a.v2, ...a.vm}, if there are several

rules for a tag tx, the one with highest probability p would be selected. For the rest

of the paper, we use the example in Tables 4.2.1 and 4.2.1 as the running example.

In this paper, our objective is to identify the top-k tags T ∗ = {t1, t2, ..., tk} for

a user u ∈ U and an item i ∈ I such that u can review i by choosing from T ∗. The
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result set T ∗ is selected from the tag vocabulary T if they are “meaningful”. Before

formalizing the problem, let us define the essential characteristics that tags in T ∗

must satisfy:

Relevance: Given item i and tag vocabulary T , the relevance of a tag tx ∈ T ∗ denotes

how well tx describes i. Mathematically, it is measured as the probability of obtaining

tx given i, i.e., rel(tx, i) = Pr(tx|i). As we have discussed earlier this score can be

computed by employing a classifier modeling the relationship between item attributes

and tags. Thus, rel(T ∗) = FUNCtx∈T∗

(
rel(tx, i)

)
=
∑

tx∈T ∗

(
rel(tx, i)

)
.

Given a list of tags T which is sorted by the relevance (i.e., rel(tx, i) = Pr(tx|i)),

the maximum relevance score is the total score for the top k tags in the sorted list.

We represent the maximum relevance score for a set of k tags from n tags in T as

relT,kmax.

Coverage: Given item i, tag vocabulary T , and a set of associated rules < =

{{a.v} → tx}, the coverage of a tag tx ∈ T ∗ for i is the set of distinct item attribute

values have been covered by it. We say tx covers the attribute value a.vy if a.vy ∈

{a.v}, i.e., cov(tx, i) = {a.v}. Therefore, cov(T ∗) = FUNCtx∈T∗

(
cov(tx, i)

)
. We

will discuss FUNC in details later in Section 4.2.4.

Polarity: Given item i, and tag vocabulary T , the polarity of T ∗ for a user reviewing

item i captures the distribution of sentiment in opinion. It is measured as the ratio

of the number of the positive tags to the number of the negative tags, i.e., pol(T ∗) =

|T ∗+|
|T ∗−| .

While maximization of the first two characteristics, i.e., relevance and coverage,

for determining the set T ∗ of top-k tags is obvious, the third characteristics, i.e.,

polarity is dependent on a user’s personal preference. Some users tend to be lenient

and provide mostly positive feedback; some tend to be harsh. Thus, there is not any
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obvious way of estimating a user’s criticalness in reviewing. One reasonable solution

is to aggregate sentiments of user demographic groups and consider the value of the

group to which the user belongs as her reviewing tendency. For example, if the

average rating for cameras by all young female users living in California is 8.0 (on

a scale of 10.0), then a user belonging to the sub-population will have a criticalness

factor of 0.8 (on a 0-1 scale); she is likely to assign 80% positive feedback and 20%

negative feedback to a camera. pol(T ∗) = |T ∗+|
|T ∗−| should be at least 0.8

0.2
, i.e., 4. In

other words, polarity is the “odds” of the positive tags which is the probability of

positive tags |T
∗+|
|T ∗| to the probability of negative tags |T

∗−|
|T ∗| . Since our TagAdvisor

problem focuses on modeling the relationship between item attributes and tags, we

leverage user personal preference as a parameter in our framework. We refer to this

parameter, denoted by α as User Factor, where the value of the α is normalized to

a [0,1] continuous sentiment scale.

4.2.2 The Problem

A user can review an item in different ways. A user can express her opinion

on multiple item attributes which in turn, can either be positive or negative. For ex-

ample, the set of tags {great picture quality, great sharpness, great color

accuracy, short battery life} contains positive feedback for the camera’s image

quality and negative feedback for the camera’s battery life. Again, a user can ex-

press both positive and negative opinion for the same attribute (or, set of attributes).

For example, the set of tags {short battery life, stylish} contains both positive

and negative feedback for the camera’s innovative/advanced aspects (i.e.,dual-screen,

touchscreen and gesture-controlled). From Table 4.2.1, short battery life and

stylish are tags related to camera attributes Front LCD, Touchscreen and Gesture

Control for Samsung TL225.
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We first propose a general TagAdvisor problem and then present two different

problem instances that enable a wide range of real-world scenarios. The instances

are distinct by the difference in formulation of the coverage of a set of tags T ∗, i.e.,

cov(T ∗).

Definition 1. TagAdvisor Problem (TA): Given a set of rules < = {{a.v} → tx}

for an item i = {a.v1, a.v2, ...} and tx ∈ T , non-negative integer budget k, relevance

parameter β (0 ≤ β ≤ 1), and user factor α (0 ≤ α ≤ 1), find a subset of T ∗ ⊆ T

such that:

• |T ∗| ≤ k;

• pol(T ∗) = α
1−α ;
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• rel(T ∗) ≥ β × relT,kmax;

• cov(T ∗) is maximized,

where pol(T ∗) is the sentiment in opinion by tags in T ∗, i.e., the number of positive

tags (k · α) to the number of negative tags(k − k · α), rel(T ∗) is the total relevance

of tags in T ∗, relT,kmax is the maximum relevance for k tags from T with the same

sentiment in opinion, and cov(T ∗) is the total number of item attributes covered by

tags in T ∗. The relevance parameter β ensures that the relevance score of tags in T ∗

is as close to the best possible relevance score relT,kmax. The user factor α denotes the

proportion of positive and negative tags preferred by a user.

4.2.3 General Model

We model the TagAdvisor Problem as bipartite graph GTA = (V = VT ∪VI , E)

as shown in Figure 4.1, where VT is the set of nodes associated with the tag vocabulary

T , VI is the set of nodes associated with the item attribute values, VT and VI are

disjoint and E ⊆ (VT × VI). The nodes in partite VT are further classified into

positive nodes VT+ (colored green) and negative nodes VT− (colored red), based on

the sentiment of the tags. If the same tag has positive sentiment for an attribute

value and negative sentiment for another attribute value, we consider the tag as two

different nodes in the set VT . An edge (t+x , a.vy) ∈ E if t+x covers attribute value a.vy,

i.e., the rule {{a.v} → t+x }, a.vy ∈ {a.v} exists; similarly (t−w , a.vy) ∈ E if t−w covers

attribute value a.vj. We use the graph model for the coverage purpose.

Example [continued]: Figure 4.2 shows the bipartite graph model of our running

example in Table 4.2.1, where GTA, has two parts VT = VT+ ∪ VT− in green and red

respectively and VI in yellow, where T+ = {t+1 , t+2 , t+3 }, T− = {t−4 , t−5 , t−6 }. The edges
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represents the rules in Table 4.2.1. For example, nodes t+1 and t−4 has three edges to

the same attribute value nodes a.v4, a.v7, and a.v8.

We next define two concrete problem instances of the TA Problem based on

cov(T ∗).

4.2.4 Concrete Problem Instances

In the first problem, cov(T ∗) is defined as the total number of item attribute

values covered by the tags in T ∗, indepedent of their sentiment. In this problem, an

attribute value a.vy for an attribute ay of an item i is covered by T ∗ if ∃ tx ∈ T ∗

such that a.vy ∈ cov(tx, i), i.e., there exists a tag tx covering a.vy, independent of its

sentiment.

Definition 2. Given a set of tags T ∗, Independent-Coverage of T ∗ is defined

as:

covIC(T ∗) = |
⋃
tx∈T ∗

cov(tx, i)| (4.1)

Example [continued]: In the running example in Table 4.2.1 and by Figure 4.2, if

T ∗ = {t+1 , t+2 , t−6 } = {t1, t2, t6} = {super cool, stylish, gimmicky touchscreen},

then covIC(T ∗) = |{a3, a4, a5, a7, a8}| = |{Color=Red, Front LCD=1.5”, Back LCD=

3.5”, Touchscreen=true, Gesture Control=true}| = 5.

Based on covIC(T ∗) in Equation 4.1 the first problem can now be defined as

follows.

Problem 1. [Independent-Coverage TA Problem (IC-TA)]: This

problem is an instance of TagAdvisor Problem (TA) in Definition 1. where

the input and constrains are the same but the objective is:

• covIC(T ∗) (given by Equation 4.1) is maximized

However, by considering the coverage of an item attribute value by a tag inde-

pendent of the tag’s sentiment, we may restrict a user from reviewing both positively
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and negatively about the different aspects of an item. By covIC(T ∗), if T ∗ includes

a tag that is positive and covers a subset of item attribute values, another tag that is

negative and covers the same subset would not be included in T ∗. In the running ex-

ample in Table 4.2.1, if at least one of the positive tags, say t+1 :stylish belongs to T ∗

with a higher relevance score, then a.v7: Touchscreen=true and a.v8: Gesture Contro=true

are considered covered because of rule ℘ : {a.v3, a.v4, a.v7, a.v8} → t+1 ; T ∗ would not

include either of the negative tags gimmicky touchscreen and poor battery life

related to a.v7, and a.v8. This motivates us to define the second problem instance

where an item attribute value is considered fully covered if it is covered by both

positive and negative tags.

Definition 3. Given a set of tags T ∗, Dependent-Coverage of T ∗ is defined as:

covDC(T ∗) = |(
⋃

t+x ∈T ∗

cov(t+x , i))
⋂

(
⋃

t−w∈T ∗

cov(t−w , i))|

+ |
⋃

t+x ∈T ∗

cov(t+x , i) \
⋃

t−w∈T−

cov(t−w , i)|

+ |
⋃

t−w∈T ∗

cov(t−w , i) \
⋃

t+x ∈T+

cov(t+x , i)|

(4.2)

In second problem, coverage of a.vy depends on the sentiment of its associated

tags. An attribute value a.vy for an attribute ay of an item i is covered if one of the

following holds:

• a.vy is covered by both positive and negative tags, and atleast one of its positive

and atleast one of its negative tags belong to T ∗. Formally, ∃t+x ∈ T ∗,∃t−w ∈

T−
∗

such that a.vy ∈ cov(t+x , i) ∩ a.vy ∈ cov(t−w , i)

• a.vy is covered only by positive tags and not negative tags, and atleast one

of its positive tags belongs to T ∗. Formally, ∃t+x ∈ T ∗,∀t−w ∈ T ∗ such that

a.vy ∈ cov(t+x , i) ∩ a.vy /∈ cov(t−w , i)
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• a.vy is covered only by negative tags and not positive tags, and atleast one of its

negative tags belongs to T ∗. Formally, ∀t+x ∈ T+∗ ,∃t−w ∈ T−
∗

such that a.vy /∈

cov(t+x , i) ∩ a.vy ∈ cov(t−w , i)

Thus the coverage function in this problem variant considers both positive and

negative tags for an attribute value if it exists; otherwise, it focuses on either the

positive tag or the negative tag (which ever exists) and ends up returning the same

T ∗ as Problem 1. In our running example in Table 4.2.1, we see that attribute

a.v4 : FrontLCD = 1.5′′ is in three rules corresponding to tags {super cool, stylish,

and poor battery life}. By this definition of coverage, a.v4 : FrontLCD = 1.5′′ is

covered by a tag in T ∗ if atleast one of the positive tags {super cool or stylish}

and the one negative tag poor battery life exists in T ∗. Again, a.v3 : Color = Red

is covered if the positive tag stylish belongs to T ∗ since there is no negative tag

related to a.v3 in the rules in Table 4.2.1 and a.v6 : ShutterSpeed = 8− 1/2000 is

covered if blurry pictures is in T ∗ since there is no positive tag related to a.v6 in

the rules in Table 4.2.1.

Example [continued]: In the running example in Table 4.2.1 and by Figure 4.2, if

T ∗={t+1 , t+2 , t−6 }={super cool, stylish, gimmicky touchscreen}, then covDC(T ∗)

= |{a.v7, a.v8}| + |{a.v3}|=|{Touchscreen=true, Gesture Control=true}|+|{Color= Red}|

= 3.

The second problem can now be defined as follows.

Problem 2. [Dependent-Coverage TA Problem (DC-TA)]: This

problem is an instance of TagAdvisor Problem (TA) in Definition 1. where

the input and constrains are the same but the objective is:

• covDC(T ∗) (given by Equation 4.2) is maximized
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4.3 Independent-Coverage TagAdvsior (IC-TA)

In this section, we first analyze the computational complexity of the Independent-

Coverage TagAdvsior (IC-TA) problem and show that it is NP-complete; then we

discuss an exact algorithm and an approximation algorithm for solving it.

4.3.1 Computational Complexity

The decision version of the IC-TA is defined as follows:

Given a set of rules < = {{a.v} → tx} for an item i, non-negative integer

budget k, relevance parameter β (0 ≤ β ≤ 1), user factor α (0 ≤ α ≤ 1), and integer

threshold γ ≥ 0, is there a set of T ∗ ⊆ T such that covIC(T ∗) ≥ γ subject to:

|T ∗| ≤ k, pol(T ∗) = α
1−α , and rel(T ∗) ≥ β · relT,kmax.

Theorem 5. The decision version of the Independent-Coverage TagAdvsior (IC-TA)

problem is NP-Complete.

Proof. The membership of decision version of IC-TA in NP is obvious. To verify

NP-Completeness, we reduce Max-Coverage problem with group budget constraints

(MCG) [78], to our problem and argue that a solution to (MCG) exists, if and only

if, a solution to our problem exists. In MCG problem, given S = {S1, S2, ...} as a

collection of sets where each set Si is a subset of a ground set X of l elements and S

is partitioned into groups G1, G2, ..., Gm, the goal is to pick k sets from S such that at

most ki sets be picked from each group Gi and cardinality of their union is maximum.

This problem was proved to be NP-Complete by reduction from Max-Coverage in [78]

if the number of groups is atleast one, i.e., m ≥ 1. We construct an instance of IC-TA

problem such that the solution for MCG with two groups m = 2 exists, if and only

if, the solution to our IC-TA instance exists.
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For every Si ∈ S, there exists a corresponding tx ∈ T . We create a set of rules

< = {{a.v} → tx} such that for every element in ground set X , there exist a tag such

that a.vi ∈ tx. Next, based on the sentiment of the tags, we partition < into two

groups, i.e., positive and negative groups where G1 corresponds to positive group and

G2 corresponds to negative group. We set the α = k1

k2
, where ki is number of sets

should be picked from each groupGi, and β = 0 i.e., the polarity constraint pol(T ∗) ≥
α

1−α is satisfied and relevance constraint will be relaxed because rel(T ∗) ≥ 0 is always

true. In Equation 4.1, covIC(T ∗) is the cardinality of the union of the coverage of

the tags. Thus, in this IC-TA instance, if T ∗ with k = k1 + k2 tags, where k1 tags are

selected from positive group and k2 tags are selected from negative group maximizes

the covIC(T ∗), then the corresponding sets in S maximizes the cardinality of their

union in MCG with two groups. Thus, IC-TA problem is NP-Complete.

4.3.2 Exact Algorithm (E-IC-TA)

A brute-force approach to solve the IC-TA problem enumerates all possible nCk

(n is the total number of tags in vocabulary, k is the size of T ∗) combinations of

tags in order to return the optimal set of tags maximizing coverage covIC(T ∗) and

satisfying the constraints. The number of possible candidate sets is exponential in

the number of the rules for an item. If there are m boolean attributes for an item,

there are potentially 2m rules for tags. Thus, evaluating the constraints on each

of the candidate sets and selecting the optimal result can be prohibitively expensive.

Although general purpose pruning-based optimization techniques (such as branch and

bound algorithms) can be used to solve the problem more efficiently, they are only

limited to finding the top-1, and it is not clear how to extend them for top-k, k > 1.

We refer to this naive exact algorithm of IC-TA as E-IC-TA and develop a practical

and efficient algorithm to solve it.
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4.3.3 Approximation Algorithm (A-IC-TA)

In order to solve IC-TA problem, we consider the Max-Coverage problem with

group budget constraints (MCG) problem variant in Chekuri et al.’s paper [78], where

given S = {S1, S2, ...} as a collection of sets where each set Si is a subset of a ground

set X and S is partitioned into groups G1, G2, ..., Gm, the goal is to pick k sets from

S such that at most ki be picked from each group Gi and cardinality of their union

is maximum. The authors in [78] proposed a greedy solution with a 2-approximation

algorithm.

In our problem, the set S is the set of rules < = {{a.v} → tx} which is

partitioned into two groups based on the tags sentiments. We use the similar greedy

approach in [78] and we check an extra constraint for the relevance. Intuitively, the

greedy approach will iteratively picks those relevant tags that cover the maximum

number of uncovered item attribute values.

Algorithm 7 is the pseudo code for our algorithm, denoted as A-IC-TA. The

A-IC-TA algorithm iteratively picks tags from T that cover the maximum number of

uncovered item attribute values such that the number of positive and negative tags

are k1 = dαke, k2 = k − k1 and rel(T ∗) ≥ β · relT,kmax. If we assume all tags in T+

and T− are sorted by their relevance, the relT,kmax is the summation of the first k1

positive tags and k2 negative tags in the sorted list . More specifically, let us assume

a positive tag ty is picked. At step x, where there are x− 1 tags in T ∗, Algorithm 7

iteratively adding one tag with highest coverage to T ∗, where its relevance score is

atleast β · relT,xmax.

Theorem 6. The A-IC-TA Algorithm provides near optimal solution with 2-approximation

factor.
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Proof. The proof follows from the 2-approximation factor proof of the algorithm for

solving the Max-Coverage with group budget constraints (MCG) problem in [78]

with additional constraint over the relevance. We are given an integer k, and an

integer bound k1 and k2 for two groups G1 and G2 i.e., positive and negative tags. A

solution is a subset T ∗ ⊆ T such that |T ∗| ≤ k and |T ∗ ∩ Gi| ≤ ki for i = 1, 2 and

rel(T ∗) ≥ β · relT,kmax. The objective is to find the solution such that the number

of item attribute values covered by T ∗ is maximized. Without loss of generality we

assume that ki is equal to one, otherwise we make a copies of each group Gi.

In jth iteration, let Cj be the tag that greedy Algorithm 7 (A-IC-TA ) picks

and let Oj be the tag that OPT picks. We let C ′j = Cj \∪j−1
h=1Ch denote the set of new

item attribute values that A-IC-TA adds in jth iteration. Let covIC(T ∗gr) = | ∪j Cj|

and covIC(T ∗op) = | ∪j Oj| denote the coverage of the A-IC-TA and optimal solution.

We first show that for 1 ≤ j ≤ k, |C ′j| ≥ |Oj \T ∗gr|. Obviously when Oj \T ∗gr = ∅,

it holds. When the greedy algorithm A-IC-TA picked tag Cj, the set Oj was also

available and the relevance constraint should have satisfied but greedy didn’t picked

it because |C ′j| was atleast |Oj−∪j−1
h=1Ch|. Since ∪j−1

h=1Ch ⊆ T∗gr, |C ′j| is atleast |Oj\T ∗gr|.

covIC(T ∗gr) =
∑
j

|C ′j|

≥
∑
j

|Oj \ T ∗gr|

≥ | ∪j Oj| − covIC(T ∗gr)

≥ covIC(T ∗opt)− covIC(T ∗gr)

Thus covIC(T ∗gr) ≥ 1
2
covIC(T ∗opt).

Example [continued]: In the running example, for k = 2, α = 0.5, and β =

0.5, Algorithm 7 returns T ∗ = {stylish, blurry pictures}. In first iteration, the
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highest relevance score of the positive tags relT,1max is 0.3. Among the positive tags

super cool and stylish has relevance larger than 0.15 = 0.5 · 0.3 and coverage

score 3 and 4. Thus stylish with highest coverage score of 4 will be selected. Next,

the highest relevance score of the negative tags is 0.15, among all the negative tags

whose relevance are larger than 0.075 = 0.5 · 0.15, blurry pictures with highest

coverage of 3 will be selected.

Algorithm 7 IC-TA Algorithm (A-IC-TA)

1: Input: Tag vocabulary T , set of rules < = {{a.v} → tx}, budget k > 0,

relevance parameter 0 < β ≤ 1, user factor 0 < α ≤ 1

2: Output: set of tags T ∗ ⊆ T of size k

3: k1 = dk · αe; k2 = k − k1

4: T ∗ = ∅

5: for x = 1 to k do

6: for ty ∈ T \ T ∗ do

7: if ty ∈ T+ and |T+∗ | < k1 then

8: if rel(T ∗ ∪ ty) ≥ β · relT,xmax then Compute covIC(T ∗ ∪ ty)

9: end if

10: if ty ∈ T− and |T−∗ | < k2 then

11: if rel(T ∗ ∪ ty) ≥ β · relT,xmax then Compute covIC(T ∗ ∪ ty)

12: end if

13: end for

14: ty = argmax
ty∈T\T ∗

covIC(T ∗ ∪ ty)

15: T ∗ = T ∗ ∪ ty

16: end for

17: return T ∗
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4.4 Dependent-Coverage TagAdvsior (DC-TA)

In this section, we focus on the Dependent-Coverage TagAdvsior (DC-TA) prob-

lem. We first propose a graph model for the problem, then analyze its computational

complexity and prove that it is NP-complete, and finally develop an exact algorithm

and an efficient constant factor approximation algorithm for solving it.

In order to solve the DC-TA problem, we transform the bipartite graph in

Figure 4.1 to a weighted graph GDC−TA = (VT , E), where VT is the set of nodes

associated with the tag vocabulary T , and E ⊆ (VT × VT ). Each edge e ∈ E has a

weight, w : E → R. Let us define the edge weight as the distance (or, dissimilarity)

between two tag nodes, i.e., w(vtx1
, vtx2

) where vtx1
, vtx2

∈ VT . We can consider

each tag as a boolean vector of size m (number of item attributes) where bit at

location y is 1 if a.vy ∈ cov(tx, i). Using such a vector representation of the tags,

we used Hamming metric to measure the distance w(vtx1
, vtx2

). In our framework, T

is partitioned into two disjoint sets: T+ and T− based on tag sentiment. Thus there

can be three kind of node-to-node connectivity: vt+x1
(t+x1
∈ T+) is connected to vt+x2

(t+x2
∈ T+), vt−w1

(t−w1
∈ T−) is connected to vt−w2

(t−w2
∈ T−), and vt+x1

(t+x1
∈ T+) is

connected to vt−w2
(t−w2

∈ T−). The first two connectivities are intra-edges and the

third belongs to the category of cross-edges.

Recall that the the coverage function covDC(T ∗) discussed in Equation 4.2

is based on three conditions that considers both positive and negative tags for an

attribute value if it exists; otherwise, it focuses on either the positive tag or the

negative tag. We argue that we can reduce the last two conditions to the first one by

introducing dummy nodes and edges. In other words, for attribute values with only

positive tags, selecting any negative tag would not influence their coverage; hence we

can add a dummy negative tag t−d and add dummy edges from those attribute value
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nodes to all the negative tags. Similarly for attribute values with only negative tags,

selecting any positive tag would not influence their coverage and we can add dummy

positive tag t+d and add dummy edges from those attribute value nodes to all the

positive tags.

Figure 4.3 shows the original bipartite graph in Figure4.1 with dummy edges

for the running example in Table 4.2.1. Since node Color=Red is not covered by

any of the negative tag nodes {poor battery life, blurry pictures, gimmicky

touchscreen}, we add a dummy negative tag t−d and dummy edges (red dotted lines)

from it to all the negative tags. Similarly, the dummy positive tag t+d and dummy

edges (green dotted lines) are added from Shutter Speed=8-1/2000 to all positive tag

nodes {super cool, stylish, lightweight}. Figure 4.4 shows the graph GDC−TA

of our running example in Table 4.2.1 having 8 nodes T= {t+1 , t+2 , t+3 ,t+d , t−4 , t−5 ,

t−6 ,t−d , } = {super cool, stylish, lightweight, dummy positive, poor battery

life, blurry pictures, gimmicky touchscreen, dummy negative}; the label of an

edge (ti, tj) shows the item attribute values which are not covered by ti and tj, i.e, in

vector representation of the tags, those bits which are different. For example, the edge

label between the t+1 :super cool and t−4 :poor battery life is w(t+1 , t
−
4 ) = {a3, a6}.

By Figure 4.3, t+1 :super cool is connected to a.v4:Front LCD=1.5”, a.v6:Shutter Speed=8-

1/2000, a.v7:Touchscreen=true, a.v8:Gesture Control=true. The vector representation of

t+1 is [0, 0, 0, 1, 0, 1, 1, 1]. Similarly, t−4 can be represented as [0, 0, 1, 1, 0, 0, 1, 1], i.e,

they are different in a3 and a6. Note that the size of the edge label show the dis-

similarity between two tags measured by Hamming metric. The Hamming distance

between t+1 and t−4 is |w(t+1 , t
−
4 )| = |{a3, a6}| = 2. We call the size of the edge label

as its weight.

Our objective in this problem is to maximize covDC(T ∗). Considering this

transformed weighted graph model, the goal is to minimize number of item attribute
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values which are not covered. We would select positive tags T+∗ and negative tags

T−
∗

from nodes in VT+ and VT− respectively such that the constraints are satisfied

and the size of the union of the labels of the cross-edges minus the union of the

labels of the intra-edges is minimum in the induced graph. Formally, the objective of

DC-TA in this graph model is to minimize:

ϑDC(T ∗) = |
⋃

tx∈{T+∗∪t+d }
tw∈{T−

∗∪t−d }

w(vtx , vtw) \
⋃

tx,tw∈T+∗

tx,tw∈T−
∗

w(vtx , vtw)| (4.3)

Where the first term is union of the labels of the cross-edges (edges between

positive-negative tags) and the second term is the union of the labels of the intra-

edges (edges between positive-positive and negative-negative tags). We can observe

that minimizing ϑDC(T ∗) is equivalent to maximizing the covDC(T ∗). covDC(T ∗)

is based on the three different conditions over the item attribute values. Due to the

inclusion of dummy edges, the problem reduces to one condition which is maximizing

the similarity of positive and negative tags. Clearly, minimizing the positive and

negative tags dissimilarity by Equation 4.3 is equivalent to maximizing the similarity

of those tags. Next we analyze the computational complexity of this problem.

4.4.1 Computational Complexity

The decision version of the DC-TA is defined as follows:

Given graph GDC−TA = (VT , E), non-negative integer budget k, relevance pa-

rameter β (0 ≤ β ≤ 1), user factor α (0 ≤ α ≤ 1), and integer threshold γ ≥ 0, is

there a set of T ∗ ⊆ T such that ϑDC ≤ γ subject to: |T ∗| ≤ k, pol(T ∗) = α
1−α and

rel(T ∗) ≥ β · relT,kmax.
Theorem 7. The decision version of the Dependent-Coverage TagAdvsior (DC-TA)

problem is NP-Complete.
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Proof. It is obvious that the decision version of the DC-TA is in NP. To verify NP-

Completeness, we reduce the MAX-SUM Facility Dispersion problem [79, 80, 81] to

our problem and argue that a solution to MAX-SUM Facility Dispersion exists, if and

only if, a solution to our problem exists. In MAX-SUM Facility Dispersion problem,

given a set of V = {v1, v2, ..., vn} of n nodes, a non-negative distance w(vi, vj) for

each pair of nodes vi, vj, and an integer p smaller than n, the goal is to find a subset

P = {vi1 , vi2 , ..., vip} of V , with |P | = p, such that sum of distances are maximized.

This problem was proved to be NP-Complete even when the edge weights satisfy the

triangle inequality [80, 81]. We construct an instance of DC-TA problem such that

the solution for MAX-SUM Facility Dispersion exists, if and only if, the solution to

our DC-TA instance exists.

We create a graph GDC−TA = (VT , E) such that for every vi ∈ V there is a

corresponding node vtxi ∈ VT and a distance w(vi, vj) corresponds to the Hamming

distance of two tags tx1 and tx2 , i.e, |w(vtx1
, vtx2

)|. Let in this DC-TA instance,

α = 1, i.e., k1 = p, and k2 = 0 (only p positive tags should be selected). Also by

setting β = 0 the relevance constraint will be relaxed because rel(T ∗) ≥ 0 is al-

ways true. Let in DC-TA instance, positive and negative tags cover exactly same

item attribute values, i.e., the label of all cross-edges is an empty set, i.e., distance

between positive and negative tags is 0. In DC-TA instance, assume pair positive

tags are disjoint, i.e —∪tx,tw∈T+∗w(vtx , vty)| is equal to the sum of the hamming dis-

tance. Thus, the DC-TA problem collapses to that of finding p positive tags such that

−
∑

tx,tw∈T+∗ |w(vtx , vty)| is minimum or sum of the hamming distances is maximum.

Thus, in this DC-TA instance, if T ∗ with p positive tags and zero negative

tags maximizes the covDC(T ∗), then the corresponding nodes in V maximizes the

sum of distances in MAX-SUM Facility Dispersion. Thus, DC-TA problem is NP-

Complete.
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4.4.2 Exact Algorithm (E-DC-TA)

Similar to Section 4.3.2, a brute-force approach to solve the DC-TA problem

enumerates all possible nCk combinations of tags in order to return the optimal set

maximizing coverage covDC(T ∗) (or, minimizing ϑDC(T ∗)) and satisfying the con-

straints. We refer to this computationally prohibitive exact algorithm of DC-TA as

E-DC-TA and develop an efficient algorithm for this problem.

4.4.3 Approximation Algorithm (A-DC-TA)

Given graph GDC−TA = (VT , E) as DC-TA model, relevance parameter β, and

user factor α, the goal is to select k1 = dαke positive tags and k2 = k − k1 negative

tags such that rel(T ∗) ≥ β and ϑDC(T ∗) is minimum.

First, we show that such ϑDC(T ∗) is not submodular. In submodular functions

the incremental gain of adding an element to a set decreases as the size of the set

increases, i.e., in the context of our paper, for all tags tx and S ⊆ T , F (S ∪ {tx}) −

F (S) ≥ F (T ∪ tx)− F (T ). The authors in [82] proved that if a function is monotone

and submodular, the greedy approach provides near optimal solution with (1− 1/e)-

approximation factor. We prove that ϑDC(T ∗) is not submodular, thus, there is not

any greedy approach provides near optimal solution with (1 − 1/e)-approximation

factor for DC-TA problem. Next we propose an approximation algorithm, denoted

by A-DC-TA and we prove its approximation factor.

Theorem 8. The function ϑDC(T ∗) is not submodular.

Proof. Let T1 = T+
1 ∪ T−1 be the set of positive and negative tags for item i covering

item attribute values {a.v} with IA1 ⊆ IA as schema. Let T2 ⊆ T1 covers attribute

values {a.v} with schema IA2 ⊆ IA1, such that T2 has the same positive tags T+
2 = T+

1

but T−1 has more negative tags than the T−2 , i.e., in T1 there are some values for

attributes {a} that are cover by negative tags, {a} ⊆ IA1, which those attribute
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values are not covered by T2, {a} * IA2. Now assume we want to add to both sets a

positive tag t+x that covers some values of attributes {a′} ⊆ {a}. In DC-TA problem

every attribute values associated with both positive and negative tags is covered if

atleast one from each negative and positive tags are selected. It is clear that adding t+x

to T1 is more beneficial than adding it to T2 because all values of attributes aj ∈ {a′}

are covered by T1 by both positive and negative tags but they are only covered by T2

by positive tag but not negative. Thus, the incremental gain of adding this tag to a

set increased as the size of the set increases, which contradicts with submodularity,

where the incremental gain of adding a tag to a set should decreases as the size of

the set increases.

In DC-TA, the goal is to select k1 = dkαe and k2 = k − k1 tags from the T+

and T− such that the induced subgraphs of intra-edges with k1 and k2 tags in T+ and

T− are actually the maximum cliques where the induced biclique of the cross edges

between k1 and k2 tags has minimum biclique. To the best of our knowledge this is

the first time that the problem with the combination of the maximum cliques and

minimum biclique is defined. We propose a greedy algorithm and theoretically prove

that it produces a solution with constant factor approximation of the optimal.

The A-DC-TA Algorithm 8 uses the user factor α to find the number of positive

and negative tags need to be selected from each partition, i.e. k1 and k2. Let tx ∈

T+ \ T ∗ and ty ∈ T− \ T ∗ be the tags with highest relevance score in positive and

negative tags which have not been selected yet. The relT,xmax in line 4, is the summation

of the relevance score of tx and ty. Lines 3− 5 of the algorithm iteratively picks the

minimum weight cross-edges (vtx , vty), tx ∈ T+, ty ∈ T− with the relevance score of

atleast β ·relT,xmax and adds those tags to the T ∗ until the number of selected positive

or negative tags be k1 or k2. If the number of selected positive and negative tags is

k1 and k2, the algorithm returns T ∗ as the top-k tags, otherwise there are still more

112



tags that should be selected from either positive or negative tags (not both). Let us

assume k1 positive tags are selected. The algorithm (line 9 − 10) finds the new tag

ty ∈ T−\T ∗ with the maximum intra-edge (vtx , vty), tx ∈ T ∗
−

with the relevance score

of atleast β · relT,xmax.

Example [continued]: In the running example, for k = 2, α = 0.5, and β = 0.5,

solving the problem with practical heuristic Algorithm 8 returns T ∗ = {stylish, poor

battery life}. It first finds t+1 = super cool and t−6 = gimmicky touchscreen as

the positive and negative tags with highest relevance scores 0.3 and 0.15 (relT,2max =

0.45). Then it selects t+2 = stylish and t−4 = poor battery life because among the

cross-edges it has the lowest weight 1. Then it checks the relevance constraint, i.e.

rel({tx, ty}) ≥ β · relT,2max. Since their relevance 0.33 = 0.2 + 0.13 is greater that

0.225 = 0.5 · 0.45, they added to T ∗.

Theorem 9. The proposed heuristic DC-TA algorithm 8 produce a solution with 2-

approximation of the optimal, i.e. ϑDC(T ∗gr) ≤ 2 · ϑDC(T ∗opt).

Proof. Algorithm 8 picks an edge in each iteration. let us assume in jth iteration, ej

and e′j be an edge selected by greedy and optimal respectively. C ′ej denotes the set of

item attribute values that are not covered in first jth iterations, i.e. C ′ej = ∪jh=1C
′
eh

.

Thus, the number of item attribute values which are not covered by the A-DC-TA

would be ϑDC(T ∗grk) = | ∪j C ′ej |. Similarly ϑDC(T ∗optk) = | ∪j C ′e′j | shows the number of

item attribute values which are not covered by the optimal algorithm.

Let us assume at step j optimal algorithm picks e′j but the greedy algorithm

picks ej. The reason that greedy algorithm didn’t pick the e′j is that the number

of item attribute values that are not covered in j iterations by selecting ej is less

than the the number of item attribute values that are not covered by selecting e′j, i.e:
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|C ′ej | ≤ |C
′
e′j

⋃
∪j−1
h=1C

′
eh
|. Thus, |C ′ej | ≤ |C

′
e′j
|+ | ∪j−1

h=1C
′
eh
| . Since | ∪j−1

h=1C
′
eh
| is at least

| ∪kh=1 C
′
e′h
|, we have |C ′ej | ≤ |C

′
e′j
|+ | ∪kh=1 C

′
e′h
|. Using this inequality we have:

ϑDC(T ∗grk) = | ∪j C ′ej |

≤ | ∪j C ′e′j |+ | ∪
k
h=1 C

′
eh
|

≤ ϑDC(T ∗optk) + ϑDC(T ∗optk)

≤ 2ϑDC(T ∗optk)

Thus the A-DC-TA produces a solution with 2-approximation of the optimal.

4.5 Experiments

4.5.1 Experimental setup

System configuration: Our prototype system is implemented in Java with JDK 5.0.

All experiments were conducted on an Ubuntu machine with 2.0Ghz Intel processor

and 8GB RAM. All numbers are obtained as the average over 10000 runs.

Datasets: We conduct a comprehensive set of experiments using both synthetic

and real data crawled from the web to evaluate efficiency and quality of our proposed

algorithms. For synthetic data, we generated a large boolean matrix of item attributes

with positive and negative tags. For real data, we crawled Yahoo! Autos, Walmart

and Google Product for building a car dataset and a camera dataset. We use the

synthetic dataset for quantitative experiments, and the real dataset for qualitative

study. The details of each dataset is described below:

Synthetic Dataset: We generate a large boolean matrix of dimension 10, 000 (items)×

100 (50 attributes + 25 positive tags + 25 negative tags). We split the 50 independent

and identically distributed attributes into four groups, where the value is set to 1
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with probabilities of 0.75, 0.15, 0.10 and 0.05 respectively. For each of the 50 tags,

we randomly picked a set of attributes that are correlated to it. A tag is set to 1 if

majority of the attributes in its correlated set of attributes have boolean value 1.

Real Camera Dataset: We crawl a real dataset of over hundred cameras listed at Wal-

mart 1. The Walmart camera data consists of 12,600 reviews from 11,500 users on

140 cameras. Since the camera information crawled from Walmart lacked well-defined

item attribute values for all the cameras, we look up Google Products2 and parse a

total of 120 attributes such as self-timer, red-eye fix, auto focus, built-in flash, etc. We pro-

cess the reviews to identify a set of positive and negative tags such as stunning photo

quality, great pocket camera, short battery life, expensive, etc. using the

keyword extraction toolkit AlchemyAPI3 which, in turn, uses natural language pro-

cessing technology and machine learning algorithms to extract semantic meta-data

from content. We employ RIPPER [69] to predict the set of rules that shows the

dependency between item attributes and tags.

Real Car Dataset: We crawl a real dataset of 100 used cars listed at Yahoo! Autos4

for the year 2010. The products contain technical specifications as well as ratings

and reviews, which include pros and cons. We parse a total of 47 attributes: 15

numeric, and 32 boolean and categorical (the latter is generalized to boolean). The

total number of reviews, i.e., pros and cons by users for the 100 cars is 2350. Since a

feedback is labelled ‘pro’ or ‘con’, we do not need to employ any external text mining

toolkit for getting the sentiments. The feedbacks are short phrases and keywords.

These phrases are processed by domain experts to identify 20 representative positive

and 20 representative negative tags that cover all the keywords crawled. For example,

1www.walmart.com
2www.google.com/about/products
3www.alchemyapi.com
4autos.yahoo.com
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Figure 4.5. Execution time of TA algo-
rithms with k = 10, α = 0.5, β = 0.5.

Figure 4.6. Execution time of A-IC-TA vs
E-IC-TA by varying k, α = 0.5, β = 0.5.

the ‘pro’ keywords driver seat comfort, cockpit comfort including ability to reach all

controls easily, comfort is truly exceptional, super comfy and roomy for 4 people and

dog correspond to the representative positive tag comfortable.

Performance Measures: Our quantitative performance indicators are (i) efficiency

of the algorithms, (ii) approximation factor of results produced by the approximation

algorithms, and (iii) quality of the results produced. The efficiency of our algorithms is

measured by the overall execution time, whereas approximation factor is determined

by the ratio of the approximate result score to the actual optimal result score. The

quality of result is measured by the ratio of features covered by our algorithms to

the total number of features. We show that our algorithms are scalable and achieve

much better response time than the exact algorithm while maintaining similar result

quality. In order to demonstrate that the top-k tags returned by our approaches are

useful to the end users, we conduct a user study through Amazon Mechanical Turk

as well as write interesting case study.

116



Figure 4.7. Execution time of A-DC-TA vs
E-DC-TA by varying k, α = 0.5, β = 0.5.

Figure 4.8. Approximation ratio of A-DC-
TA and E-DC-TA k, α = 0.5, β = 0.5.

4.5.2 Experimental Results

4.5.2.1 Quantitative Evaluation

We first compare the execution time of our approximation algorithms against

the brute-force counterparts. Figure 4.5 shows that the execution time of the pro-

posed algorithms A-IC-TA and A-DC-TA are several orders of magnitude faster than

the corresponding exact algorithms E-IC-TA, and E-DC-TA for k=10, user factor

α=0.5, and relevance parameter β=0.5 on entire synthetic data. Figures 4.6 and 4.7

compare execution time of A-IC-TA with E-IC-TA and that of A-DC-TA with E-DC-

TA respectively by varying parameter k, with α=0.5, and β=0.5. We observe that

by increasing k, execution time of the exact algorithm grows exponentially, while

A-IC-TA and A-DC-TA scales well.

Next, we investigate the ratio of the approximate result score to the actual

optimal result score. In A-IC-TA and A-DC-TA the approximation ratio is the value

of the covIC(T ∗) and ϑDC(T ∗) in Equation 4.2 to the optimal solutions. We proved in

theorems 6 and 9, A-IC-TA, and A-DC-TA produce solutions with 2-approximation
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of the optimal. Figure 4.8 shows that by varying k ,the approximation ratios are less

than 2.

Finally, we evaluate the quality of results returned by our approximation al-

gorithms by measuring the proportion of tags covered by the result set of k tags

in T ∗. We compare the proposed algorithms A-IC-TA and A-DC-TA with the ex-

act algorithms E-IC-TA and E-DC-TA by using the Independent-Coverage function,

covIC(T ∗), in Equation 4.1 and Dependent-Coverage function, covDC(T ∗), in Equa-

tion 4.2 respectively. We conduct our experiments with different set of constraint

conditions, i.e., user factor (α), relevance parameter (β), and k. First, we set α = 0.5,

β = 1.0, and vary k from 2 to 10 in Figure 4.9. The results show that by increasing

number of tags k, the proportion of covered item attribute values are increased. More-

over, the quality of our A-IC-TA and A-DC-TA algorithms are almost same as exact

algorithms E-IC-TA and E-DC-TA. Second, we set k = 10, α = 0.5, and relevance

parameter β varies from 0.1 to 0.9 in step of 0.2. Th results in Figure 4.10 shows that

although the relevance is increasing, proposed A-IC-TA and A-DC-TA algorithms

are able to find 10 tags with as high quality as the exact algorithms. Third, we set

k = 10, β = 0.5, and user factor α varies from 0.1 to 0.9 in step of 0.2. Results are

shown in Figure 4.11. As one can see from the figure, by increasing the user factor

parameter the proportion of covered item attribute values is decreasing. In other

words, there are some item attribute values that will be covered by negative tags and

since the user factor is high, the lower negative tags are appeared which lead to lower

quality. However, the results show that the quality of our algorithm is still as good

as the exact algorithms. In summery, all the results from different set of constraint

conditions confirm the fact that despite the significant reduction in execution time,

our A-IC-TA and A-DC-TA algorithms do not compromise much in terms of analysis

quality.
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Figure 4.9. Quality of all algorithms by varying k, α = 0.5, β = 0.5.

Figure 4.10. Quality of all algorithms by varying relevance parameter (β), k = 10,
α = 0.5.

Figure 4.11. Quality of all algorithms by varying user factor (α), k = 10, β = 0.5.
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4.5.2.2 Qualitative Evaluation

We now validate how users prefer tags returned by TagAdvisor over writing

reviews from scratch in a user study conducted on Amazon Mechanical Turk5 on the

real camera dataset. We also present an interesting anecdotal result returned by our

algorithm for an entry in the real car dataset.

User Study: We conduct a user study through Amazon Mechanical Turk (AMT)

to investigate if users prefer and benefit from our TagAdvisor system. We generate

the top-k tags for six cameras spanning different bands (Nikon, Canon, and Sony),

and different types (digital SLR and compact point-and-shoot). The key objectives

are: (i) to elicit the users’ responses to the tags returned by our system —if they find

the tags meaningful and adequate to review the product or if they prefer articulating

their own review; (ii) to elicit the users’ response to the products —if the feedback

left by the users match the tags returned by our system.

We have 30 independent single-user tasks for each of the objectives. Each

task is conducted in two phases: User Knowledge Phase and User Judgment Phase.

During the first phase, we estimate the user’s familiarity about camera and digital

photography in general, and the six cameras that are being reviewed. During the

second phase, we collect responses to our questions in the study from the users who are

estimated to have a reasonable background in the first phase. For the study involving

the second objective, we consult domain experts to validate if the tags submitted by

the users for the cameras are similar to the tags returned by our system. Here are

our observations.

• As many as 80% users confirmed that they have ever reviewed a product (or

service) online, which is a high but understandable percentage since they are

5www.mturk.com
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AMT workers – 75% of these users admitted that they do not write online

reviews frequently.

• 67% of the users voted that they are knowledgeable about the six cameras (or,

other similar cameras) that they have been asked to review in this study.

• An overwhelming 83% of the users voted that they would submit online reviews

more often if they are provided a set of meaningful keywords to choose from to

express their feedback – 80% of these users clarified that their ‘Yes to TagAd-

visor’ response is also dependent on what tags are provided to them for this

purpose.

• 71% of the users reviewed the six cameras choosing tags returned by TagAdvisor

instead of writing the review from scratch.

• Finally, 77% of the users submitted feedback that matches tags returned by

TagAdvisor – 43% of those users submitted tags that are similar to the ones

returned by the Independent Coverage problem while the rest 57% wrote tags

that are similar to the ones returned by the Dependent Coverage problem,

thereby endorsing that both Independent Coverage and Dependent Coverage

problem are equally important.

• An interesting observation is that over 81% of users, who submitted their own

tags wrote primarily about the more external aspects of the camera such as

price, weight, physical look, lens, zoom, etc. instead of providing detailed com-

ments about the quality of image, video capability, ease of use, etc. This is

understandable since they are AMT workers and may not have used the exact

same camera(s) in their recent past to provide in-depth feedback.

This validates the utility and usefulness of our system.
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Case Study: We use the real car dataset to validate that our algorithms return

meaningful tags - which meet user’s criticalness in reviewing, have sentiment attached

to them, and also cover different aspects of the item - as opposed to the tags returned

by existing tag recommendation systems [61, 62, 63]. Since [61] is the only tag

recommender engine that returns tags that are relevant and diverse, we compare our

result against it.

Suppose a user wants to submit her feedback for a 2010 Audi Q56 by choosing

from a set of tags advised to her. If k = 6, the tags suggested by the tag recommender

in [61] are:

amazing power, comfortable, convertible top with sunroof, nice style, good

gas mileage, great auto transmission

Although this approach returns tags that cover diverse aspect of car, i.e, Standard

Engine, Seats, Sunroof, Fuel Capacity, and Standard Transmission, it does not consider

sentiment. All the 6 tags are positive.

Considering user factor parameter α = 0.5, relevance parameter β = 0.5, our

IC-TA algorithm returns the tags:

great auto transmission, good gas mileage, nice style, odd engine sound,

wind noise at high speeds, uncomfortable rear seat

These tags not only covers same aspects of the car as above, i.e, Standard Trans-

mission, Fuel Capacity, Standard Engine, Sunroof, and Seats, but it also satisfies the user’s

criticalness in reviewing (α = 0.5), by returning three positive and three negative

tags - the first three in the set above being positive and the last three being negative.

Under the same parameter specifications as above, our DC-TA algorithm re-

turns the tags:

6Note that, our results are not influenced by, or biased towards, any brand in particular.
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amazing power, convertible top with sunroof, comfortable, odd engine sound,

wind noise at high speeds, uncomfortable rear seat

These tags not only cover different aspects of the car such as Standard Engine,

Sunroof, and Seats but also allows the user to provide both positive and negative

feedback for the same feature. Specifically, amazing power, odd engine sound are

positive and negative tags respectively for the car feature Standard Engine. Two

t ags convertible top with sunroof, wind noise at high speeds are positive

and negative tags for the car feature Sunroof. The last pair of tags comfortable, and

uncomfortable rear seat are positive and negative tags for the car feature Seats.

Thus, the user has the option to select positive and/or negative feedback about this

feature when she submits her feedback.

4.6 Related Work

Tag Recommendation: Tag recommendation has been extensively studied in lit-

erature [61, 62, 63, 83, 84]. The authors in [83] focused on user perspective and they

proposed a probabilistic framework for solving the personalized tag recommendation,

but without considering diversity. Result diversification has been studied in tag rec-

ommendation domain by [84, 61]; however, they take into account the possible topics

and their goal is to provide high coverage and low redundancy with respect to those

topics. The authors in [61] used the general probabilistic framework in [85] to address

relevance and coverage. However, they assumes topics are independent, upon which a

tag can not be dependent to the combination of the topics. The authors in [63] deals

with the automated process to suggest useful and informative tags based on historical

information. In our problem, the tags are more feedback than information about the

resource and hence calls for additional properties like coverage of all item attributes as
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well as sentiment polarity in opinion of the user for the different attributes of the item.

A recent work [62] proposes an optimization-based graph method for personalized tag

recommendation. Though it considers both user features and item features for tag

recommendation, the ranking-based solution recommends popular tags related to one

or few specific aspects of the product and may evoke the rich-get-richer phenomenon,

which in-turn is orthogonal to our objective of coverage. For example, if the popular

tags for a point and shoot digital camera are lightweight, thin, and portable, the

method would return them as the top tags even though they are all related to the

weight of the product. We intend to return tags covering the different aspects of the

product such as weight, price, etc. as well as the different sentiments in opinion such

as light weight, heavy weight, low price, high price, etc. so that the user can sub-

mit her review objectively. The authors in [83] focused on user perspective and they

proposed a probabilistic framework for solving the personalized tag recommendation,

but without considering diversity.

Review Mining: There has been a considerable amount of work in review sum-

marization, ranking and selection [64, 65, 66, 67]; yet, none of them can be readily

extended to handle our problem. Review summarization creates statistical descrip-

tions (i.e., a short snippet of text by extracting few existing sentences) of the review

corpus in order to extract the proportion of positive and negative opinions about dif-

ferent aspects of a product. However, none of the current work directly caters to our

objective of identifying personalized (i.e., user and item specific) tags. We leverage

item descriptions, user demographics, as well as user sentiment. Review ranking aims

to produce a score for each review and then display the top-k highest-scoring reviews

to the user [64]. More specifically, [64] proposed two ranking mechanisms for ranking

product reviews: consumer-oriented ranking mechanism ranks the reviews according
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to their expected helpfulness, and a manufacturer oriented ranking mechanism ranks

the reviews according to their expected effect on sales. However, they do not seek

coverage over the range of features that are important to users and hence may return

redundant information. For example, the top reviews for a point and shoot digi-

tal camera may just mention how ultrathin and portable it is, and not mention

anything about how it has poor battery life. Review summarization identifies a

subset of helpful reviews that collectively provide both the negative and the positive

aspects of each commented feature [67]. While these methods do manage to expand

the coverage of features and hence, diversify, they fail to capture the statistical prop-

erties of the actual review corpus. For example, if majority of the reviews for a SLR

digital camera mention how excellent video quality it produces, that should be

given higher weight than returning one positive and one negative opinion about the

camera feature video quality. While [66] returns a characteristic set of reviews that

respects the proportion of opinions on each feature (both positive and negative), as

observed in the underlying corpus, neither does it leverage user preferences (demo-

graphics, sentiment, etc.), nor does it leverage user feedback for other similar items -

both of which are necessary considerations of the set of tags returned by our problem.

Rule Learning: In this paper, we used existing techniques to find the rules of the

complex dependencies among item attributes and the tags. Rule learning has been

extensively studied and there are different techniques such as: rule based classifiers

techniques like RIPPER [69, 70, 86], learning-based techniques like Re-RX [77] [87].

In rule base classifiers, rules can be extracted directly from data [70, 69] or it can

be extracted from other classification models [86]. In [70], association rule mining

is used to extract the rules while in [69] rules are extracted sequentially and for one

class at a time. The authors in [71] describe a technique for transforming decision
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trees to succinct collection of if-then rules. Authors in [72] studied how to reduce the

number of final rules in decision tree; [73] proposed a new method that can integrate

rules from multiple trees in a random forest to improve the comprehensiveness of

the extracted rules. There has been many prior work on extracting classification

rules from Support Vector Machines (SVM) [74], [75], [76], and [77]. In [74] rules are

extracted from ellipsoids and hyper-rectangles formed using clustering algorithms.

The fuzzy rule extraction method [75] utilizes trained SVs to generate rule from each

SV for each class.

4.7 Conclusion

In this paper, we introduce the novel TagAdvisor problem that leverages avail-

able user feedback for items in online review sites to simplify the review writing task.

Our framework returns top-k tags relevant to the product a user is reviewing, have

sentiment attached to them, and cover the diverse attributes of the product. To the

best of our knowledge, our framework is the first to consider all three measures si-

multaneously in the context of tag mining. Our work is also the first to address the

popular problem in the web - how to motivate users to review a product online - in

a principled way. We formulate the problem as a general-constrained optimization

goal. By adopting different definitions of coverage, we identify two concrete problem

instances that enable a wide range of real-world scenarios. We show that these prob-

lems are NP-hard and develop practical algorithms with theoretical bounds to solve

them efficiently. Our experiments validate the utility of our problem and demonstrate

that our proposed solutions generate equally good quality results as exact brute-force

algorithms with much less execution time. In the future, we plan to handle updates

and insertions of new users, items and feedback. We also intend to evaluate the ap-

plicability of this framework to other applications, e.g., how to recommend hashtags
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to users in Twitter such that they can share their opinions, interests and comments

for their topics of interest.
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Algorithm 8 DC-TA Algorithm (A-DC-TA)

1: Input: GDC−TA = (VT , E), budget k > 0, user factor 0 < α ≤ 1, relevance

importance 0 < β ≤ 1

2: Output: set of tags T ∗ ⊆ T of size k

3: k1 = dk · αe; k2 = k − k1

4: T ∗ = ∅

5: while (k1 > 0 and k2 > 0) do

6: for e = (tx, ty), (tx ∈ T+ \ T ∗, ty ∈ T− \ T ∗) do

7: if rel(T ∗ ∪ {tx, ty}) ≥ β · relT,xmax then Compute ϑDC(T ∗ ∪ {tx, ty})

8: end for

9: k1 = k1 − 1; k2 = k2 − 1

10: end while

11: while (|T ∗| < k) do

12: if (k1 > 0) then

13: for e = (tx, ty), (tx ∈ T ∗
+
, ty ∈ T+ \ T ∗) do

14: if rel(T ∗ ∪ {tx, ty}) ≥ β · relT,xmax then ϑDC(T ∗ ∪ {tx, ty})

15: end for

16: T ∗ = T ∗ ∪ argmin
tx∈T ∗+ ,ty∈T+\T ∗

ϑDC(T ∗ ∪ {tx, ty})

17: end if

18: if (k2 > 0) then

19: x = |T ∗|+ 1

20: for e = (tx, ty), (tx ∈ T ∗
−
, ty ∈ T− \ T ∗) do

21: if rel(T ∗ ∪ {tx, ty}) ≥ β · relT,xmax then ϑDC(T ∗ ∪ {tx, ty})

22: end for

23: T ∗ = T ∗ ∪ argmin
tx∈T ∗− ,ty∈T−\T ∗

ϑDC(T ∗ ∪ {tx, ty})

24: end if

25: end while

26: return T ∗
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