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ABSTRACT

A STOCHASTIC DISTRIBUTED CONTROL ALLOCATION METHOD USING

PROBABILITY COLLECTIVES

Christopher Michael Elliott, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Atilla Dogan

The configuration of the aerospace vehicle of tomorrow marches forward in

complexity in step with technological advances in computation, materials, propulsion,

and beyond. One of many attributes resulting from this evolution is the multiple

effector concept, replacing the traditional aircraft design approach of a dedicated

four channel mixer where pitch-roll-yaw-speed is controlled by elevator-aileron-rudder-

engine, respectively. Instead, for example on the propulsion front, a distributed suite

of smaller engines can substitute the larger power plant and can be used in concert

for multiple axis control with both simultaneous, collective thrust for force generation

and differential cyclic thrust for moment generation. The effector surface is also a

candidate for distribution. Rather than one large moving panel, the notion of a

smart wing with many small effectors has been explored due to potential benefits

from structural mode suppression, aerodynamic optimization via active flow control,

improved radar and observability signature, adaptive geometrical morphing to the

flight condition, and more. Beyond these gains, the distributed approach also offers

an element of resiliency in tomorrow’s platform by reducing the critical impact due to

ix



the loss of a single dedicated effector. Additionally, the science of multi-agent systems

is rapidly advancing and there is a growing interest in individual vehicles working

together as a collective to synergistically accomplish a mission. In this work, the

applicable collective mission is to jointly stabilize and control an aerospace platform,

specifically a generic hovercraft where the multi-agent system is a distributed effector

suite of small, electric engines.

The method of solving for the required individual effector positions in order

to achieve a set of required accelerations on a vehicle is referred to as the control

allocation problem (CAP) and increases in complexity as a function of the number

of effectors for allocation. With the trend towards a future generation of complex

distributed effector suites on the horizon, traditional centralized flight control ar-

chitectures of current day may become computationally intractable, and advanced

methodologies for solving the CAP are warranted. This research focuses specifically

on this problem and considers the underdetermined aerospace vehicle configuration

where the CAP needs to solve for a number of effectors greater than the number of

desired acceleration channels.

The main contribution of this dissertation is the formulation of a novel dis-

tributed control allocation method for an aerospace vehicle using a modified formu-

lation of Wolpert Probability Collectives stochastic optimization. The method is

presented in detail and applied as a distributed flight control architecture for solv-

ing the CAP, where the multi-agent system applied is a collective of local effector

controllers. Each individual agent is dedicated to a physical engine controller and is

responsible for modulating the local thrust required to maintain overall vehicle sta-

bility with respect to translational and angular axes. Communication between agents

shares the expected value of the current strategy in order to allow local objective eval-

uation and optimization. This work highlights the benefits of a distributed allocation

x



approach from the advantage of parallel processing; to failed effector robustness; and

the ability to evaluate nonlinear control effectivity for L2 optimization. A MATLAB

Simulink R© toolbox is constructed to enable future incorporation into aerospace mod-

eling and control environments. Finally, the method is applied to a hovercraft vehicle

demonstrating the viability of distributed control allocation approach for inner loop

stability augmentation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The advancing forefront of aerospace technology continues to expand the mis-

sion effectiveness of the air vehicle. Novel invention continuously presses the bounds

on size, weight, power, and cost (SWAP-C) opening the door for new mission capa-

bilities. These attributes of an air vehicle ultimately define capability and are often

linked directly to operational constraints for the flight envelope [7]. While improve-

ments in this evolution are due to a vast domain of cross-disciplinary contributions

from materials and structures, propulsion, aerodynamics, computer science, estima-

tion, and beyond, a recent key enabler has been the advancement of the small electric

engine for distributed propulsion [8].

The premise with the distributed propulsion application for air vehicles is a

heavy, primary power plant can be alleviated by a number of smaller engines which

can offer reduced noise levels; improved terminal phase aerodynamics for shorter

landing and take-off requirements; and better overall fuel consumption characteristics

[9]. Taking a step further, recently investigators at the NASA Langley Research

Center are compounding the benefits of distributed propulsion with the benefits of all-

electric propulsion, coining the phrase Distributed Electric Propulsion (DEP). Electric

propulsion offers extremely quiet thrust at much higher efficiencies with respect to

conventional mixed flow turbofans and combustion-driven rotary piston engines. Also,

electric motors can be scaled to small, compact sizes without a dramatic impact

on the power-to-weight ratio, effectively opening the door for distributing a large
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number of engines on an airframe [10]. In brief, becoming more apparent is the

need for a flight control system to manage many smaller effectors rather than a

few primary devices. This motivation can be described as a push from the larger

and more expensive components to the domain of smaller-simpler-cheaper. Cutting

edge actuation is also opening the door for a future aerospace vehicle generation of

distributed effector suites. The application domain is vast and, to name a few, ranges

from aeroelastic structural mode suppression; to miniature plasma jets for refined

control at hypersonic speeds; to morphing wing concepts to augment the operational

flight envelope [11, 12, 13, 14].

The common denominator with these potential distributed effector suites of to-

morrow is the need for advanced control allocation methods which accommodate a

non-traditional number of engines and surfaces. Especially important is the need to

decentralize the current day centralized flight control architecture. Clearly, computa-

tional burden will increase for a centralized flight control computer (FCC) managing

a large number of effector channels, and real-time solutions may even become in-

tractable. Communication bandwidth with a central FCC will also pose a potential

bottleneck as every input and output data stream across the vehicle is routed to a

single point. One single safety-critical hardware component managing a full suite

of distributed effectors also illuminates the issue of resiliency, where the loss of the

primary FCC results in the loss of the vehicle. On the other hand, the loss of a

single effector amongst a distribution of many would not be expected as critical. This

balance in robustness must be addressed where the future distribution of effectors

requires the future distribution of the controller to some degree.

In summary, advanced methodologies for control allocation may be required in

response to technological trends driving tomorrow’s complex effector suites. These

trends are enabled by the continuation of processor miniaturization; electric power
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and propulsion advancement; and the evolution of materials and structures technol-

ogy. Future generation platforms could involve a significant number of smaller ac-

tuators distributed at multiple locations on a rigid body, and reveal that traditional

centralized flight control architectures are intractable, if not risky solutions.

1.2 Research Objective

The ultimate goal of this research is to innovate a novel approach to control

allocation for future aerospace vehicles with distributed effector suites, where the

control allocation problem is generally stated as ”determine the required configuration

for each individual effector (engine or actuator) in order to achieve a set of desired

control or virtual commands, given the control effectiveness mapping” [15, 16, 17, 18].

These hypothetical aerospace platforms are forecast to exhibit a large number, m, of

distributed effectors, and therefore, the ”underdetermined” control allocation problem

is the focus objective of this study. Three research objectives are delineated in order

to achieve the primary goal. First, the novel approach should identify a decentralized

and distributed control methodology in order to (i) garner the advantage of parallel

processing to address computational and network burdens expected with a centralized

architecture; and (ii) promote balance in robustness with respect to a distributed

effector suite. Traditional approaches today to the control allocation problem (CAP)

employ a priori mixing; direct matrix inversion; linear programming and quadratic

optimization techniques such as weighted least squares with constraints. The second

objective of this research is to explore and leverage stochastic optimization techniques

to reduce the need for a priori design considerations for various reconfiguration control

modes with effector failures; and garner the advantage of covariance estimation in

solution. Rather than solely providing a solution, the quantification of uncertainty in

the solution is important. Finally, the third objective in this research is to explore a
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hypothetical hovercraft as an application to demonstrate this novel control allocation

technique. In brief, the following list enumerates the objectives for this research effort

to innovate a novel approach to the control allocation problem for future aerospace

vehicles with distributed effector suites:

1. Identify, design, and enable decentralized, distributed control allocation

2. Leverage the benefits of stochastic optimization techniques in the distributed

control allocation approach

3. Demonstrate the distributed control allocation approach with the simulation of

a hypothetical hovering platform

The expected significance for achieving the research objectives is to establish a build-

ing block for an infrastructure for next generation distributed inner loop stability

augmentation systems (SAS) for the flight control domain. While the objectives in

this research focus on the control allocation element of the SAS, continued progress

is expected with further distribution of closed loop functionality beyond this primary

element as discussed at the conclusion of this dissertation in Ch. 7. The feedback loop

closure consists of control laws and actions, allocation, sensors, signal conditioning,

and estimation and are all considered viable candidates for distribution to a local do-

main, residing closer to the vehicle effector. This research and the ultimate complete

decentralization of the aerospace flight control system will significantly impact future

vehicle designs and considerations.

1.3 Literature Survey

The uniqueness of this work was accomplished by performing a survey over

three subject fields: (i) Distributed Effectors for Aerospace Vehicles; (ii) Control

Allocation; and (iii) Distributed Optimization with Probability Collectives. Due to

the broad nature between these three immense topics, the body of this dissertation
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includes additional literature survey results throughout relevant discussions. This

section summarizes significant works with respect to each field as a entry point to the

original contribution of this research effort described in Section 1.4.

1.3.1 Distributed Effectors

Motivation for research in distributed control allocation is immediately wit-

nessed with the current storm of new flying robots, where centralized control mech-

anisms are becoming more and more intractable due to the sharp rise in number of

agents and effectors to control [8, 19, 20, 21, 22]. One key enabler for this wave is

the advancement of the electric engine and continued miniaturization of technology

opening the door for new complex aerospace concepts with non-traditional effector

suites [7, 10, 23]. Beyond the power of automation with new intelligent, small vehicles,

many benefits have been identified by employing smaller, more efficient effectors on

the aerospace vehicle from noise reduction, lower fuel emissions in [23] to aerodynamic

drag reduction and improved energy efficiency [6, 24, 25, 26]. The all electric aircraft

poses new challenges as described in [9], especially when the primary propulsive device

is replaced with a distribution of many, smaller thrusters.

Beyond small electric engines, advancement in structural materials is open-

ing the door for smarter wings, which may optimally morph to a flight condition

[11, 12, 27]. This capability will require an ability to control many independent vari-

ables accordingly and will most likely become quickly intractable with centralized

control architectures, especially with the emergence of nanotechnology and nanos-

tructures [28]. Aeroelastic suppression is a current interest, where structural rigidity

of a wing is reduced to improve endurance, at the expense of more control effectors to

actively attenuate the bending and torsional modes [29, 30, 31]. Modeling for these

type of vehicles will be a challenge [14] and on-line system identification may be an

5



important application beyond control allocation for future distributed effector suites

[32]. Additionally, distributed systems invite the requirement for the consideration of

communication topologies and consensus dynamics [33, 34, 35, 36, 37], especially as

the number of effectors increases as sizes decrease. Smaller, non-traditional actuators

are becoming more and more common and can be used to actively control the flow

over the wing [13].

1.3.2 Control Allocation

The control allocation problem (CAP) is the challenge of real time optimiza-

tion for actuator coordination as referred by [38] and hosts a wealth of literature as a

critical centerpiece in the field of air vehicle control. Due to the motivation aforemen-

tioned where the number of effectors continues to rise due to technological advance,

the primary focus of this work is on the over-actuated control allocation problem as

described in [39]. In this case, often the problem is formed as an optimization problem

in order to find the best solution to minimize a cost consisting of virtual commands

(e.g. desired accelerations) and desired effector positions [15, 16, 17, 40]. While some

authors consider the nonlinear control allocation problem (CAP) [41, 42, 43], the ma-

jority of available literature focuses on the linearized CAP [18, 44, 45]. In both linear

and nonlinear forms, control allocation must account for the limits of the effector

devices in that a solution which requires magnitudes beyond position or rate limits

will not be achievable.

Control allocation has a rich history in the field of robotics and manipulators,

and usually takes the name of the inverse kinematics problem for determining the

required joint angular positions in order to achieve the desired end effector position

[46]. In some approaches, the mathematical groundwork for solving such problems

makes use of a generalized Jacobian inverse matrix, that may be non-square in the case
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of highly redundant manipulators with a significant number of degrees of freedom.

In [47], the problem is partitioned into a macro and mini concept to improve the

understanding of the overall mechanism as a control design aid.

Bordignon describes a range of techniques for solving the CAP as (i) generalized

(Jacobian) inverse solutions; (ii) daisy chaining where effectors are sub-grouped by

establishing priority channels with respect to the task (e.g. thrust vectoring an engine

nozzle may be a last resort for pitch control and would only be used if the first group

of effectors fail to accomplish the pitching task); (iii) cascading generalized inverse

solutions, where if a solution saturates an effector, the solution is iterated with the

effector fixed at the saturation point (also commonly referred to as a redistributed

pseudo-inversion approach); and (iv) null-space intersection methods which deter-

mine a control policy to satisfy both the null-space of the control effectivity subspace

and a higher dimensional polytope of desired accelerations (often called direct control

allocation) [48]. Bodson also provides a helpful survey of the known control alloca-

tion techniques for the flight control application, and details the control allocation

optimization problem where an exact solution may not exist and an error or control

effort is minimized as the best choice [16].

The inclusion of position and rate limits on the effector solution creates the

constrained control allocation problem. A graphical geometrical depiction is pro-

vided in [49] where the valid solution space and constraints are presented on phase

portraits. The authors in [50] extend a further step beyond these nonlinearities and

include actuator dynamics in a direct control allocation approach where lower fre-

quency desired dynamics are allocated to the slower effector channels. In a tech-

nique described as Structured Adaptive Model Inversion (SAMI) in [51], the ability

to estimate the pseudo-inversion of a linearized control effectivity mapping online

is improved by avoiding the actuator saturation regime with a command reference
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hedging approach. In [52], a weighted pseudo-inversion control allocation method is

designed with weights that incorporate the effector constraints. The method is shown

to improve control of a hovering hexacopter with respect to classical pseudo-inversion

[52].

Nonlinear dynamic inversion is employed (with nonlinear control allocation) in

[53], and the nonlinear control effectivity mapping is approximated using a multivari-

ate simplex spline. The approach is shown to accomplish the control of an F-16 [53].

Approximating the nonlinear control effectivity mapping on-board an air vehicle is a

challenge in and of itself. In [54], a series of feedforward neural networks fits are used

to capture force and moment data for use in a dynamic inversion scheme. Addition-

ally, the work presents a novel dynamic control allocation synthesis method which

trades control redundancy for closed loop stability margin [54]. In [43], an approach

to nonlinear control allocation is presented where nonlinearities in multi-dimensional

force and moment lookup tables are treated as piecewise linear segments, and the

authors cast the entire problem as a mixed integer linear program enabling an exact

allocation solution.

Generalized inverse allocation techniques tend to offer speed advantage over

computationally expensive direct control allocation approaches [55], however even

generalized inversion can be costly especially in cases where effector saturation is

encountered and the cascading inversion approach requires iteration [56]. In [38], two

control allocation optimization algorithms are presented using an active set method

and an improved primal-dual interior point method for up to one hundred actuators.

The active set shows a linearly increasing relation between computational time and

number of effectors while the primal-dual interior point method exhibited a decreased

slope [38], although all of the approaches consist of a centralized architecture.
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1.3.3 Probability Collectives

The Wolpert Probability Collectives (PC) optimization method emerged from

the science of collective intelligence (COIN) in circa 1999 from Dr. David Wolpert

with Stanford University and the NASA Ames Research Center. Analogous to the

ingenuity of the Laplace transform to solve a differential equation algebraically in

a new domain, the PC framework transforms from the variable space to the proba-

bility space and accomplishes optimization with a distributed reinforcement learning

approach. The distributed nature of the algorithm is apparent with each variable

in the optimization problem acting as an agent (i.e. player) working to maximize

an individual reward, effectively driving the total system to an optimal equilibrium

[57, 58, 59, 60, 61].

One beauty of the transformation to the probability domain is the fundamental

idea that the agent works to maximize local knowledge or information of the optimiz-

ing argument to the cost. Initially, the lack of information for the agent is modeled

as a uniform probability distribution where only the search lower and upper bounds

are specified as the feasible search area1. As the PC algorithm recursively learns,

each agent refines a probability distribution governing the strategy of best possible

actions. The refinement occurs in a manner in which syntactic information contained

in an empirical probability distribution is maximized by using the concept of Shan-

non entropy [60]. Fig. 1.1 depicts this general notion in which the PC algorithm

works to maximize information at the agent level. Clearly the final distribution

with the lowest covariance is the most informative. Convergence of the PC algorithm

is declared when the agents detect that no additional reward is available with con-

1Here the probability functions are described as discrete distributions which are used primarily

throughout this work. The Wolpert PC method is also applicable to the continuous domain with

probability densities.
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Figure 1.1: The Probability Collectives Method Iteratively Minimizes Uncertainty by
Refining an Empirical Uniform Distribution with Information from Drawn Samples

tinued refinement (i.e. the expected value of the local cost reaches a steady state).

At this point, a stochastic inversion is performed by sampling the final distribution,

effectively transforming the solution back to the variable domain2. The key point is

with high probability, the final samples represent an approximation of the optimizing

argument to the total system. Fig. 1.2 illustrates the PC optimization method

where the original problem is to determine the minimizing value of x, denoted as x∗,

in the unconstrained, but not necessarily smooth, objective function G(x) [62]. The

Wolpert transformation,W , casts the problem into a smooth optimization landscape,

removes local extrema, and establishes a framework that is robust despite potential

poor structural properties in the original objective [62, 63]. In the probability do-

main, the problem becomes to determine the parameters θ governing the probability

distribution, qθ(x), which minimize the expected value of the objective, Eqθ(x)G(x),

2An alternative inversion method is to compute the expected value of the final probability dis-

tribution.
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Figure 1.2: The Probability Collectives Method Invokes a Wolpert Transformation
of the Objective Function from the Variable Domain to the Probability Domain,
Searches for the Best Distribution, and Samples the Optimizing Variable Argument
with a Stochastic Inversion

evaluated with respect to the distribution.3 Finally, at the conclusion of the PC

method, x∗, is sampled from qθ(x) as the minimizing argument.

PC has strong relations to parametric machine learning, information theory,

game theory, and distributed multi-agent systems, and is similar to other optimization

techniques such as Response Surface Models (RSM) [64, 65], simulated annealing [66,

67, 68, 69], cross-entropy method [70, 71, 72], estimation of distribution algorithms

(EDA) [73, 74, 75], genetic algorithms [76, 77], and particle swarm optimization

[78, 79, 80]. However, PC is unique with respect to many of these other approaches

3Typically the θ parameters of the probability distribution are more relevant in the method of

immediate sampling PC where a Gaussian shape is assumed for the solution, and θ represents the

optimal first and second moments of the distribution (mean µ and covariance Σ). In general for

delayed sampling PC, the search is for an arbitrary, empirical distribution q(x) and the θ subscript

is dropped.
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with optimization performed directly on the underlying probability distribution [60,

63]. PC promotes distributed architectures for optimization due to inspiration from

bounded rational agent game theory, where agents (i.e. players) compete or cooperate

by minimizing a local cost. The joint strategy the agents converge to resembles a Nash

equilibrium, with the exception of the case where full rationality is not available

due to bounded local information. The joint strategy of the multi-agent system is

coupled over time with individual strategies dependent on the prior actions of other

agents. PC captures this coupling aspect indirectly by evolving the distributions

accordingly [59]. However, at a specific instance in time, PC models the joint strategy

of agents as a product distribution, which paves the road for a distributed optimization

approach, offering additional advantage of a decentralized computational structure

with reduced latency between agents [61]. Extensive literature by Wolpert et al

has been published on this idea, described as the theory of probability Lagrangians

and product distribution theory, which constitutes a significant portion of the PC

mathematical framework [59, 81].

Advantages Disadvantages

Nonlinear, Discontinuous Objectives Many Objective Evaluations
Insight Into Estimation Covariance Bounded Rational Agents

Decentralized Optimization Complex Parameter Configurations
Reduced Network Topology

Failed Agent Robustness

Table 1.1: Positives and Negatives of PC

Table 1.1 summarizes the advantages and disadvantages of employing the PC

method to an optimization problem from the perspective of use in a real time flight
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controls environment. As previously outlined, the transformation to the probabil-

ity domain provides robustness to noisy and even discontinuous objective functions

as detailed in [62]. The final distribution for the minimizing argument, qθ(x), also

provides key insight into the uncertainty or covariance of the solution [58]. Addi-

tionally, many benefits could be potentially gained from the PC-enabling distributed

architecture where a centralized flight control computer is eliminated. Instead of a

primary hub of communication relaying information to all vehicle effectors, a dis-

tributed approach can simplify network topologies where agents pass information

amongst required neighbors. In this environment, the PC approach may provide in-

creased resiliency due to a failed agent (i.e. erroneous actuator or engine) as discussed

by Kulkarni, Tai, and Abraham in [61].

Numerous successful applications of PC have been published. A convenient

overview summarizing many of these examples is provided in [61, 82], as well as

a demonstration of multiple applications such as the Traveling Salesman Problem

(TSP), Vehicle Routing Problem (VRP), and various mechanical design problems

(10 to 45 bar structural trusses, concrete load bearing beams, and steel cantilever

beams among others). Bieniawski, Kroo, and Wolpert originally applied PC to the

structural truss problem with a 10 bar example in [60], and extensions have been

applied in [83, 84, 85]. An example of a Sensor Network Coverage Problem (SNCP)

was also demonstrated with PC in [61, 82]. Zhang et al in [86] applied PC in a

Coordinated Multiple Target Assignment Problem (CMTAP) for air-combat decision

making. Wireless network routing and resource allocation was optimized with PC by

Mehr and Khalaj in [87] and Ryder and Ross in [88]. An application of the airplane

fleet assignment problem was solved with PC by Wolpert et al in [89] demonstrating

the benefit of a decentralized, parallel optimization in the face of a complex combi-
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natorial optimization problem [61, 82]. In [90, 91, 92], Huang et al modify PC for

dynamic optimization where the objective is time variant.

Bieniawski in [57] implements PC in a flight control architecture to suppress

aeroelastic structural modes and improve gust alleviation on a flying wing planform

UAV with a distributed effector suite, referred to as MiTEs (Miniature Trailing Edge

Effectors), marking the original exploration of PC for control of an aerospace vehicle.

In the aeroelastic suppression experiment, the PC method was compared to two

baseline control techniques, Linear Quadratic Gaussian (LQG) and a Direct Policy

Reinforcement Learning (DPRL) method. All three controllers were successful in

stabilizing the unstable open loop system and increased the maximum flutter airspeed

by approximately 25%. While the centralized LQG controller exhibited the best

overall performance, the more appropriate comparison was PC with respect to DPRL

due to the fact that the PC and DPRL implementations employed the equivalent

optimization objective as a finite time horizon quadratic reward function with a future

discount factor. The LQG synthesis employed a standard quadratic performance

index (PI) as a control case in the experiment. In summary, the PC method was shown

to successfully stabilize the experimental platform with distributed optimization and

even indicated a slight advantage in robustness with off design airspeeds tested after

gain calculation at a nominal condition [57].

While the first exploration of PC for control of an aerospace vehicle was accom-

plished by Bieniawski in [57], the implementation focused on control via a bang-bang

type solution with the MiTEs. PC was employed to discretely set the surface positions

to full trailing edge up or down based on the cost function, described as the DPRL

objective function [57]. Here in this work, PC is employed as a primary component in

an inner loop SAS controller, where distributed control allocation optimization deter-

mines the local effector position with respect to a range of possible values bound by
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position and rate limits, numbering to thousands of numerically discrete possibilities.

Additionally, this work addresses the nonlinear control allocation problem.

1.4 Original Contribution

As a result of accomplishing the objectives delineated for this study as described

in Section 1.2, the original contribution of this work is the formulation of a novel dis-

tributed control allocation method for an aerospace vehicle using a modified formu-

lation of Wolpert Probability Collectives stochastic optimization4. This distributed

approach works at the local agent scope, accounts for effector constraints, and works

to minimize a desired optimization objective consisting of anticipated acceleration

error and preferred solution error, based on knowledge of the control effectiveness

mapping from a set of virtual commands to each individual effector. Additionally,

the distributed architecture of the approach promotes futuristic decentralized flight

control architectures by migrating more computation to the local effector. This decen-

tralization also brings an inherent robustness to effector failure, where other remaining

effectors continue to operate individually despite the fault, alleviating the need for a

priori design of flight control reconfiguration modes. This research employs PC as dis-

tributed inner loop components in a closed loop flight control stability augmentation

system, where the distributed control allocation optimization determines the required

local effector position to minimize the mixed L2 objective consisting of acceleration

error and total effector position. A modified form of the delayed sampling method

of PC is built as a MATLAB Simulink R© toolbox and includes provisions for bound-

4Modifications to the method include an adaptive technique to refine the sampling domain; a

mechanism to iteratively latch the best local agent strategy for the L2 control allocation optimization

application; and the broadcasting of the expected value of the strategy over the distributed network.
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ing position and rate limits5. The method is employed to determine the numerical

solution between these position and rate bounds over a continuous range, by search-

ing through an admissible discretized space with a specified number of finite points.

Additionally, this work addresses the control allocation problem when the issue of

nonlinear and non-affine control effectivity mappings become a factor, and failure

scenarios are studied emphasizing the benefit of the distributed approach. Multiple

variants of PC are explored, dating beyond the original work in [57], and a modified

implementation is applied in this work and integrated into a hypothetical hovercraft

control system. In brief, the original contributions resulting from this research effort

are tabulated below in Table 1.2.

Original Contributions Resulting from Research Effort

First Implementation of Wolpert PC for the Nonlinear Control Allocation Problem
Modifications to the Wolpert PC Algorithm from Original Inception
Novel Distributed Control Allocation Technique with Benefits
of Parallel Processing and Failed Agent Resiliency
New Simulink toolbox implementation for deployment to applications
Hypothetical generic vehicle environment based on prior work [93, 94]

Table 1.2: Original Contributions Resulting from Research Effort

1.5 Overview of Dissertation Layout

The layout of this dissertation is as follows. First, as a motivation to investigate

a novel control method, Distributed Electric Propulsion (DEP) and other distributed

effector applications are discussed in detail in Ch. 2. Second in Ch. 3, the control

5The distributed control allocation MATLAB Simulink R© toolbox created as a result of this work

is conducive to future modeling, simulation, and control design efforts, and is employed at the

conclusion of this dissertation on a hypothetical hovercraft vehicle.

16



allocation problem (CAP) is defined and common solution methods are summarized

for the underdetermined system where m effectors is greater than k desired control

channels [16]. Next, in Ch. 4, a stochastic optimization technique is explored, referred

to by the authors as Wolpert Probability Collectives (PC) [57, 95]. Ch. 5 then applies

the PC approach to the CAP and presents simulation results for a simple example,

followed by a more complex hypothetical hovercraft in Ch. 6. Finally, Ch. 7 summa-

rizes research findings and outlines a road map for future work. Additional detailed

write ups are referenced within this dissertation and provided as appendices at the

conclusion of this document.
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CHAPTER 2

DISTRIBUTED CONTROL

This chapter introduces the concept of a distributed effector suite and further

explores electric propulsion as the example category of interest and application in

this dissertation. Following the introductory discussion, the equations of motion for

a distributed propulsion suite are presented.

2.1 Distributed Effectors

Since the dawn of flight, scientists have utilized the concept of altering the lift

distribution on the airfoil as a primary method of vehicle control. While the conven-

tional trailing edge moving surface was believed to be invented in 1870 by Richard

Harte, Wilbur and Orville Wright pioneered an early form of distributed control, in

a continuous sense, by warping the wing box for lateral steering. The asymmetric

contortion of the structure resulted in a change in the spanwise lift distribution, as

depicted in Fig. 2.1, effectively imparting a lateral-directional moment on the vehicle

[96].

Figure 2.1: The Wright Brothers Wing Warp Cable-Pulley System Augmented the
Spanwise Lift Distribution for Roll Control [96]
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Advanced wing morphing remains a research thrust today and is recognized as

a powerful technique for adapting to the current mission priority, with multiple ben-

efits ranging from reduced distance requirements for landing and takeoff, improved

endurance and cruise characteristics, greater maneuverability, and beyond. In essence,

next generation reconfigurable systems refine the lift profile to the optimal distribu-

tion for the specific task at the current flight condition. Lift profile refinement via

geometrical morphing, or variable wing geometry, has been operationally successful

to a limited degree historically in that only a small number of effectors are enabled

for the reconfiguration. A famous example is the U.S. Navy F-14 Tomcat with the

actuated sweep wing, scheduled as a function of Mach number in order to optimize

the lift to drag ratio [97]. This example is essentially employing a single effector, the

symmetric sweep angle, and represents a simplified form of adaptation. Another com-

monly encountered example in operation is the F-16 fighter, where two effectors, the

leading and trailing edge flaps, are used to optimize the chord-wise lift distribution

at the terminal takeoff and landing phase [27].

These examples, however, only employ conventional control surfaces and are

not considered by the current day research community as morphing technologies with

a smart wing created by a significant number of effectors [11]. The study of utilizing

a larger number of effectors to promote a more adaptive wing offers a wealth of liter-

ature. The authors in [12] present a smart wing using piezoelectric actuation on both

span and camber shape control in order to attenuate vibration and wake-induced buf-

fet. A critically coupled control system is presented for an unmanned air vehicle with

a total of 10 control surfaces in [29] and [30] by Holm-Hansen et al, in which rigid body

and flexible modes coincide in the frequency domain, a notable design challenge. The

wing of an F-18 fighter was modified in the AFRL and NASA Armstrong (formerly

Dryden) Active Aeroelastic Wing technology program, demonstrating improved per-

19



formance at transonic mate numbers. In this application, the number of effectors for

the base platform was increased by partitioning the leading edge flap surface into an

inboard and outboard element [31]. Bieniawski in [57] successfully demonstrates the

use of Miniature-Trailing Edge Effectors (MiTEs) for increasing the flutter speed and

for improved vehicle stability. Cattafesta and Sheplak in [13] survey the spectrum of

common actuator technologies for active flow control with a classification summary

of fluidic, piezoelectric and electroactive moving surfaces, and plasma discharging ef-

fectors. In brief, the pattern is clear. The advancement of actuation and the smart

wing will increase the number of effectors beyond the conventional approach of one

to two primary hinged surfaces per lifting body.

2.1.1 Challenges

Advancing the capability of the air vehicle with more actuation presents a num-

ber of opportunistic roads for engineering contribution. One challenge of modeling

and simulation for such a configuration is illustrated by Obradovic in [14], where

employing an increased number of effectors is required for a gull-wing aircraft that

can shape to three significantly different modes. Architecturally, centralized control

methods present a computational and network communication challenge as systems

expand in complexity. Bandwidth requirements, processor floating point operations

per second, transport lag, power demand, and the need for global synchronization are

a number of factors pointing engineers to the distributed approach, where job loads

can be shared across a team [35].

Figure 2.2a depicts a hypothetical vehicle with 17 effectors and a centralized

flight control computer. Other than being positioned optimally with respect to the

planform geometry (near the center of mass), the critical flight control computer ele-

ment is strategically located just aft of the pilot station to maximize protection from
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the environment. Alternatively, a hypothetical distributed architecture is depicted

in Fig. 2.2b. In this case, each effector is controlled by a local module effectively

increasing resiliency to failure as well as bringing the benefits of parallel processing

to the control allocation of the vehicle. In essence, each effector in this approach

operates a simultaneous real time process to compute the best local command.

(a) Centralized (b) Decentralized

Figure 2.2: Hypothetical Vehicle Flight Control Computer Architectures

2.2 Distributed Electric Propulsion

Recently the remote control hobbyist industry for small air vehicles has been

inundated with the advancement of the Quad-rotor UAV, and the more general term,

multi-rotor flying robot is now appearing in anticipation of the next wave of designs

with an increased number of effectors [19]. Octo-rotors and Mesicopters are also be-

ginning to appear in the press, and naturally, the expectation is the evolution of tech-

nology will continue to expand the envelope to the Centi-rotor or even the Milli-rotor

[20, 21, 98]. The implication of distributing smaller electric engines reaches beyond

toys. In a NASA Langley research program called Leading Edge Asynchronous Pro-

pellers Technology (LEAPTech) for a general aviation platform, Moore et al explore
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the concept for a blown wing with the strategic placement of many small, low weight

electric motors, effectively increasing the lift coefficient across the wing at low speeds

[24]. The benefit is a reduction in the takeoff and landing sizing requirement for the

wing, which typically drives the overall structure design. In [6], Zeune and Hooker et

al present a detailed parametric study of an integrated distributed propulsion system

for a next generation transport aircraft, and identify an 8% aerodynamic improve-

ment in transonic airspeed conditions compared to the conventional beneath-the-wing

large propulsive engines. Fig. 2.3 provides an illustration of the distributed propul-

sion concept where a number of smaller propulsive effectors are placed at the trailing

edge of the wing.

Figure 2.3: Distributed Propulsion Concepts Identified to Yield Substantial Aerody-
namic Benefits by Zeune and Hooker et al in [6]

Additionally, other benefits from distributing a propulsion system have been

researched from improvement to the powered lift short takeoff profile; better for-

eign object debris (FOD) robustness with decreased engine inlet surface area across

multiple fans; decreased acoustics and noise levels; reduced fuel emissions; and an

increased efficiency with in line replacement unit (LRU) maintenance costs due to

the modularity of the approach [6, 23].
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Significant research has been accomplished in the propulsion domain regarding

these benefits for developing and integrating distributed electric approach, however

there is a need for further study on the problem of controlling these distributed suites

[25]. In this work, the distributed propulsion application is considered, specifically

for a hovering aerospace platform. The next section presents the detailed equations

of motion for modeling this type of dynamical vehicle.

2.3 Equations of Motion for Distributed Effector Suites

The equations of motion for a distributed propulsion vehicle are derived from

first principles for a rigid body and presented in detail in App. A.1 with references

to [93, 99, 100]. Four groups of equations are formulated to describe the dynamics

and kinematics for both the translation and rotation of the vehicle and are given

by Dogan et al in [93]. In the dynamics equations, the external force and moment

(control input) vectors are expanded to accommodate a summation of individual

effector contributions. This expansion for a distributed effector suite is presented

below.

2.3.1 Translational Dynamics

The generalized Translational Dynamics equations are expressed in the vehicle

body frame as

V̇B = S(ωB)VB +
1

m
fB (2.1)

where VB = [u v w]T ∈ <3, ωB = [p q r]T ∈ <3, fB = [fxB fyB fzB ]T ∈ <3, and

S(ωB) ∈ <3×3 is the skew symmetric matrix of the angular velocity vector1. The

force vector, fB, describes the total external input onto the system. To isolate the

1The skew symmetric matrix enables expressing vector cross product operations in matrix mul-

tiplication format as a× b = −S(a)b and is discussed in App. A.1.

23



control input, the inertial gravity g = [0 0 g]T is extracted using the rotation matrix

from inertial frame to body frame to express with respect to the vehicle body frame

as

V̇B = Rg + S(ωB)VB +
1

m
FB (2.2)

where

R =


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


and φ, θ, and ψ represent the orientation of the vehicle as Euler angle roll, pitch,

and yaw, respectively. The FB term represents the total control input for N number

of effectors2. Writing the individual contribution of the jth effector as FjB, the

generalized Translational Dynamics expressed in the vehicle body frame are
u̇

v̇

ẇ

 = Rg +


0 r −q

−r 0 p

q −p 0



u

v

w

+
1

m

N∑
j=1

FjB (2.3)

2.3.2 Rotational Dynamics

The general form of the Rotational Dynamics equations expressed in the vehicle

body frame are given in [93] as

ω̇B = I−1
B [S(ωB)IBωB + τB] (2.4)

where IB ∈ <3×3 denotes the vehicle mass inertia matrix, and τB = [τxB τyB τzB ]T ∈

<3 is the total external moment on the body. Due to writing this equation with

2In this research, the focus application is for a hovercraft in calm atmospheric conditions where

the total external forces on the vehicle are gravity and thrust due to propulsive effectors. Therefore,

the FB expansion in this case does not include additional aerodynamics due to negligible dynamic

pressure.
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respect to the vehicle center of mass, the external moment due to inertial gravity

is not required to be expanded in the total external moment vector. Therefore, τB

consists of (i) the individual effector moments created by each thruster, calculated as

the lever arm dj with respect to the center of mass cross multiplied with the thruster

force vector, dj × FjB; and (ii) the inertial torque of each engine, τjB. Writing

dj × FjB = −S(dj)FjB and substituting,

ω̇B = I−1
B

{
S(ωB)IBωB +

N∑
j=1

[−S(dj)FjB + τjB]

}
(2.5)

and expanding, the hovercraft Rotational Dynamics are governed by
ṗ

q̇

ṙ

 = I−1
B




0 r −q

−r 0 p

q −p 0

 IB


p

q

r

+
N∑
j=1

[−S(dj)FjB + τjB]

 (2.6)

2.3.3 Translational Kinematics

The translational kinematics equations are written as the body frame repre-

sented velocity vector transformed by the Euler 321 rotation matrix transpose from

body frame to inertial frame as

V = RTVB (2.7)

where V = [ẋ ẏ ż]T ∈ <3 describes the velocity components of the hovercraft in the

inertial fixed frame.

2.3.4 Rotational Kinematics

The rotational kinematics of the hovercraft vehicle are defined with respect to

the inertial frame as

Ṙ = S(ωB)R (2.8)
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The left hand side of this equation is the derivative with respect to time of the Euler

321 Rotation matrix, Ṙ ∈ <3×3, and yields a set of nine scalar equations which can

be algebraically solved for the inertial angular velocity vector (Euler attitude rates).

φ̇ = p+ tan θ(q sin θ + r cosφ)

θ̇ = q cosφ− r sinφ

ψ̇ =
1

cosφ
(r cosφ+ q sinφ)

(2.9)

26



CHAPTER 3

CONTROL ALLOCATION PROBLEM

This chapter defines the control allocation problem and presents a simplified

example of a linear closed loop flight control architecture referred to as dynamic

inversion, where the control allocation problem is commonly encountered. Finally, the

chapter concludes with a description of the control allocation problem for a nonlinear

system.

3.1 Definition

The general form of a nth order dynamic system to be controlled can be written

as a set of n first order ordinary differential equations of the form,

ẋ(t) = f(x,u, t)

y(t) = h(x,u, t)

(3.1)

where the time variant nonlinear mapping f(x,u, t) : <n+m+1 7→ <n describes the

state rate dependency on both the states x(t) ∈ <n and inputs u(t) ∈ <m. The

outputs of interest y(t) ∈ <k of the system may also be a function of the states and

inputs and are described by the nonlinear mapping h(x,u, t) : <n+m+1 7→ <k. A

special case of this general system allows simplification where the state rate equation

is decomposed into a nonlinear mapping of the states and a nonlinear mapping of the

control effectivity as

ẋ(t) = f(x, t) + G(x,u, t)

y(t) = h(x,u, t)

(3.2)
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where the nonlinear mapping G(x,u, t) : <n+m+1 7→ <n is referred to as the control

effectiveness. In this class of systems, the control effectiveness is a function of the

vehicle dynamical states, x ∈ <n, however the pure open loop mapping f(x, t) :

<n+1 7→ <n is now decoupled from the control input [18].

For the purpose of introducing the control allocation problem, consider a further

simplified time invariant system with an output mapping without a feedforward u

dependency written as

ẋ(t) = f(x) + G(x,u)

y(t) = h(x)

(3.3)

with f(x) : <n 7→ <n, G(x,u) : <n+m 7→ <n, and h(x) : <n 7→ <k. Defining

g ≡ ∇xhG(x,u) : <n+m 7→ <k where ∇xh ≡ ∂h
∂x

(xo) ≡ C ∈ <k×n, the control

allocation problem (CAP) can be generally stated as given k desired virtual control

inputs vd(t) ∈ <k, determine the required vehicle effector position u(t) ∈ <m from

the equation

vd(t) = g[x(t),u(t)] (3.4)

In this work, the focus is on the case where the vehicle has a significant number of

effectors, yielding an underdetermined control allocation problem with significantly

more true effectors than virtual control inputs m >> k. This is a commonly encoun-

tered case where typically many surfaces are ganged together to create a combination

conducive to the desired overall effect on the vehicle. For example, in a conventional

air vehicle, the left elevator and right elevators are ganged identically to create a

virtual symmetric elevator input for pitching moment control. Likewise, the left and

right ailerons are mirrored with a −1 gain opposition between each to create a virtual

differential aileron for rolling moment control. In the conventional setting, ganging

surfaces together in a technique known as effector mixing is usually intuitive. How-

ever, the evolution of technology continues to introduce complex effector suites and
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air vehicle planforms, and identifying the appropriate mixing technique may not be

readily apparent. Additionally, the drive for adaptive systems that reallocate control

effectors after an in-flight emergency such as an actuator failure emphasizes the need

for advanced methods in control allocation [15, 16, 17, 18].

The linear case of the control allocation problem is typically the focus in prac-

tice, due to the computational challenge that solving Eq. (3.4) often involves con-

strained nonlinear programming. Härkeg̊ard in [18] provides a detailed derivation

of the linearized control allocation problem for a nonlinear system. The derivation

linearizes Eq. (3.4) at a given starting control position, u0, and allows the state x

to vary, creating a time variable approximation. Neglecting higher order terms, the

nonlinear control effectivity mapping is expanded about u0 via Taylor series as [18]

g(x,u) ≈ g(x,u0) +
∂g

∂u
(x,u0) · (u− u0)

≈ g(x,u0) + CB(x) · (u− u0)

(3.5)

where clearly CB(x) ≡ ∇xh
∂g
∂u

(x,u0). Expanding and equating to the desired virtual

control input,

g(x,u) ≈ g(x,u0) + CB(x) · u−CB(x) · u0

vd(t) ≈ g(x,u0) + CB(x) · u−CB(x) · u0

(3.6)

an approximated linear desired virtual control input with respect to a nominal control

position u0 is defined as v = vd − g(x,u0) + CB(x)u0. Substitution of vd(t) from

Eq. (3.6) into this definition for linear v yields,

v(t) = g(x,u0) + CB(x) · u−CB(x) · u0 − g(x,u0) + CB(x) · u0

v(t) = CB(x) · u
(3.7)

Härkeg̊ard in [18] defines u0 in a continuous time sense as the initial condition delayed

by a fixed time step window of duration T . Therefore, u0 = u(t − T ) in a discrete
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control allocation process with deterministic updates. Finally, Eq. (3.4) is rewritten

as the linear control allocation problem as [18]

CBu(t) = v(t) | umin ≤ u(t) ≤ umax

pmin ≤ u̇(t) ≤ pmax

(3.8)

with umin,umax and pmin,pmax are defined as effector position bounds and rate limits,

respectively. The rate of the effector is approximated with a finite difference as

u̇(t) ≈ [u(t)−u(t−T )]
T

to allow combining the constraints into a compact form as,

u = max [u(t− T ) + Tpmin,umin]

u = min [u(t− T ) + Tpmax,umax]

(3.9)

For example, Fig. 3.1 depicts when u would equal the rate limited response of the

effector while Fig. 3.2 depicts u equal to umax, the case where the position limit is

encountered.

Figure 3.1: Rate Limited Constraint when u = u(t− T ) + Tpmax

Figure 3.2: Position Limited Constraint when u = umax
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The final compact form of the linear control allocation problem is then written

as [18]

CBu(t) = v(t)

| u ≤ u(t) ≤ u

(3.10)

with CB ∈ <k×m with rank k. The control allocation problem is typically solved

using a centralized flight control architecture. In this work, the interest is on the

underdetermined setting where the number of effectors is much larger than the number

of virtual control variables (m >> k) as detailed by Oppenheimer, Doman, and

Bolender in [39] as an over-actuated system. In this case, explicit surface ganging, and

the definition of pseudo-surfaces is not readily intuitive, a challenge that is becoming

more apparent with complex next generation actuation.

Bodson in [16] provides a concise overview of common mathematical methods

for solving the control allocation problem and categorizes into four approaches: (i)

direct allocation where the goal is to determine the maximum gain1, ρ, on v(t) and

determine the vector u(t) such that CBu(t) = ρv(t) and u ≤ u(t) ≤ u; (ii) virtual

command error minimization where given CB, determine u(t) such that ||(CBu−v)||

is minimized subject to u ≤ u(t) ≤ u; (iii) control minimization where given CB and

a desired solution ud, determine u(t) such that ||u − ud|| is minimized subject to

CBu(t) = v(t) and u ≤ u(t) ≤ u; and finally, (iv) mixed minimization. In this

work, the focus is on category (iv) where a mixed optimization problem is formed

from both (ii) and (iii), in order to determine the best solution to minimize both the

error with respect to the requested virtual command, and the magnitude of effector

position required with respect to a desired position, ud.

1If the maximizing gain is determined to be ρ > 1, the direct control allocation method normalizes

the effector solution to u← 1
ρu as described in detail in [16].
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The mixed optimization problem can be defined using a variety of error norm

definitions, with the most common being the Euclidean L2 norm. Employing the L1

norm is an active field of research and enables the use of linear-programming tech-

niques such as the Simplex algorithm [16, 39, 45, 101]. In [44], the authors investigate

the L∞ or sup norm to improve robustness in the solution in the presence of effector

failures and nonlinearities. In this research, the focus is on the Euclidean L2 optimiza-

tion based control allocation method. L2 optimization control allocation appends to

Eq. (3.10) a penalty for deviating from a desired control effector solution, ud ∈ <m.

For example, ud may represent an a priori schedule of effector solutions with respect

to flight conditions, and the mixed optimization solution determines the closest an-

swer to the a priori schedule. Another case could be where a particular effector is

more expensive to change with respect to a trimmed position. For instance, ud could

be set accordingly to penalize deviation from the current engine or throttle setting

while favoring use of the surfaces on a vehicle. In this research, ud is simply treated

as a vector of zeros, essentially casting the optimization problem into a minimum

position search. i.e. Position the effectors the least in order to achieve the desired

accelerations2.

Defining a control penalty matrix Wu ∈ <m×m, acceleration penalty gain γ ∈

<1, and acceleration error penalty matrix Wv ∈ <k×k, Härkeg̊ard in [18] formally

states this mixed optimization or combination as a pseudoinverse class of CAP where

min
u
||Wu(u− ud)||2

| CBu = v

(3.11)

2In the hovercraft application in Ch. 6, ud = 0 ∈ <m equates to a minimum energy solution where

the engines are set to the lowest value of thrust possible to maintain the acceleration constraints.

The hovercraft application also explored employing ud to balance each engine to the average thrust

as ud =
(

1
m

∑m
j=1 uj

)
1 with 1 ∈ <m.
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yields an analytic solution when actuator constraints are not encountered. For the

unconstrained optimization problem, without consideration of effector limits, a global

cost is formed as the 2-norm of the desired (preferred) control effector solution and

the virtual control error as

L2 = ||Wu(u− ud)||2 + γ||Wv(CBu− v)||2 (3.12)

Finally, when effector constraints are accounted, an unconstrained optimization prob-

lem is formed by augmenting the L2 objective with an additional penalty, λ ∈ <1, on

position and rate limit violations,

L2C = ||Wu(u− ud)||2 + γ||Wv(CBu− v)||2 + λ||u− u||2 + λ||u− u||2 (3.13)

For cases where the control allocation solution is not bounded by effector limits (u ≤

u(t) ≤ u), the λ penalty terms are set to zero, and Eq. (3.13) and Eq. (3.12) yield

identical costs.

3.2 Example Closed Loop Application

The solution to Eq. (3.13) yields the optimal, achievable commanded values for

the vehicle effector position u(t) in order to accomplish the demands of the desired

virtual control inputs vd(t). This functionality is a primary element in an inner

loop control problem for an aerospace vehicle. For demonstration, a simplified input-

output feedback linearization system, depicted as a dynamic inversion controller in

Fig. 3.3 is provided.
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Figure 3.3: Illustration of Simplified Dynamic Inversion Control Scheme with Control
Allocation and On Board Reference Model

This example system has been vastly simplified for the purpose of brevity to

illustrate the placement of the CAP functionality into a closed loop system. Many

alternative closed loop control methodologies exist with the control allocation center-

piece providing the real time mixing to the individual effectors. Here, this architecture

is chosen simply to depict an example setting with the control allocator in the loop.

Consider a linear state space system described as

ẋ = Ax + Bu (3.14)

y = Cx (3.15)

with system state vector x ∈ <n, control input vector u ∈ <m, and output vector

y ∈ <k. The dynamic inversion methodology requires relating the control variable of

interest in the output y to the input vector u [15, 102]. To accomplish this relation,
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the output Eq. (3.15) is differentiated until the control input vector u appears in the

expression.

y = Cx (3.16)

ẏ = Cẋ (3.17)

ẏ = C(Ax + Bu) (3.18)

In this simple example, one differentiation is required before the input vector u ap-

pears in Eq. (3.18) and therefore the dynamic inversion approach is of the first relative

degree [15]. The next step is to solve for the control input vector u,

ẏ = CAx + CBu (3.19)

CBu = ẏ −CAx (3.20)

u = (CB)−1(ẏ −CAx) (3.21)

The ẏ term in Eq. (3.21) is the specified output dynamics or desired dynamics of the

system and provides a command hook for the inner loop controller, while the CAx

term is typically provided by an on-board model estimation (denoted as estimated

linear state space matrices Â, B̂, and Ĉ). Rewriting to reflect these descriptions as

the desired output of the system ẏd and the predicted response of the vehicle ĈÂxm

with xm as the measured states of the vehicle, the dynamic inversion control law is

u = (ĈB̂)−1(ẏd − ĈÂxm) (3.22)

Finally, substituting the control law back into the linear system in Eq. (3.18),

ẏ = CAx + CB
[
(ĈB̂)−1(ẏd − ĈÂxm)

]
(3.23)

Clearly, this equation illustrates the importance of accurate on board modeling in

the control law, or residual dynamics occur. This issue is beyond the scope of this
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research and the assumption is Â = A, B̂ = B, Ĉ = C, and x = xm. The closed

loop equation then simplifies to

ẏ = ẏd (3.24)

Therefore, the dynamics of the chosen output can be set as desired given this ap-

proach. Fig. 3.3 further simplifies this example with perfect state feedback, where

C = 1k×n and ones populate the state elements chosen as virtual control variables3.

The control allocation is depicted as the B−1 element mapping the linear commands

into the control vector u.

Many important details remain in successfully building the dynamic inversion

control scheme outside of the control allocation problem. In brief, the relative or-

der of the system must be considered in order to verify internal dynamics stability.

Residual dynamics due to error between the truth and the on board models are im-

portant factors as well as modeling errors that impact the control allocation problem

where a valid solution is not obtained. Additionally, open loop systems which exhibit

non-minimum phase (NMP) characteristics pose a challenge in the dynamic inversion

approach. Lee et al in [103] present decoupling strategies to improve the NMP dy-

namics. This issue becomes prevalent for highly flexible structures and for hypersonic

flight conditions [104, 105].

3.3 Nonlinear Control Allocation

While the linear control allocation problem is most commonly studied in liter-

ature, there have been notable efforts solving the full nonlinear form [16, 41, 42, 43].

A sequential quadratic programming technique was constructed in [41] by Johansen

to avoid effector constraints as well as inversion singularities for a marine vessel. Jo-

3In the special case of full and perfect state feedback, k = n and C = In×n
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hansen also in [42] develops a Lyapunov dynamic update law to solve the nonlinear

CAP for over-actuated mechanical systems. In [43], Bolender and Doman use piece-

wise linear functions to model the nonlinear control effector moment data and solve

the nonlinear CAP with a mixed integer linear program.

In general, the nonlinear control allocation problem can be solved again as a

mixed L2 optimization problem using the full nonlinear control effectivity matrix of

the system,

L2C = ||Wu(u− ud)||2 + γ||Wv[g(x,u)− vd]||2 + λ||u− u||2 + λ||u− u||2 (3.25)

where the governing nonlinear (possibly time variant) state equation is given in

Eq. (3.2). In nonlinear dynamic inversion, which typically employs nonlinear con-

trol allocation along with a nonlinear reference model, the control problem must be

cast as one affine in the inputs, as described by Subbarao et al in [106]. Wedershoven

in [107] presents a transformation procedure to accomplish this step, however this

work investigates solving the non-affine form in Eqs. (3.2, 3.3, 3.25) directly using

distributed optimization.
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CHAPTER 4

PROBABILITY COLLECTIVES

This chapter outlines the probability collectives optimization method in detail

and presents two forms: (i) delayed sampling PC and (ii) immediate sampling PC.

After the description of each form, a simplified two dimensional optimization ex-

ample is demonstrated. Finally, the chapter concludes with the presentation of the

distributed control allocation optimization algorithm based on delayed sampling PC

and implemented in a MATLAB Simulink R© toolbox.

4.1 The Distributed Optimization Method of Probability Collectives

Transformation of the optimization problem, argminxG(x) from the variable

domain to the probability domain, over a sample region D, requires use of the expec-

tation operation,

Ep(G) ≡
∫
D

p(x)G(x)dx (4.1)

casting the goal into searching for the optimal probability distribution, p(x), to min-

imize the expected value of the original objective, argminpEp[G(x)] [108]. The con-

tinuous domain Lebesgue integral is interchangeable with a discrete domain point

sum over the sample region D as described in [81]. Substitution of the expectation

operation from Eq. (4.1) yields the problem, argminp

∫
D

p(x)G(x)dx. Denote the

true joint strategy of a multi-agent system as p(x) with nagent as the total number

of agents and nmovesi as the number of potential actions or moves that each ith agent

can choose from a pure set, xi ∈ <nmovesi . In general, the agents are not independent

and the true strategy is coupled as p(x) = p(x1,x2, ...,xnagent). In PC, a product
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distribution, q(x) = q1(x1)q2(x2)...qnagent(xnagent) is used to approximate this true

strategy, q(x) ≈ p(x), but this assumption is not made crudely without considera-

tion. Provisions are implemented to effectively drive the approximation to the truth,

by using the Kullback-Leibler distance measure between two probability distributions,

to be described further in detail ahead. Substituting the approximating joint product

distribution for the true strategy into the expectation operation yields the following

constrained optimization problem,

min
q
Eq(G) =

∫
D

dxG(x)

nagent∏
i=1

qi(xi)

| S(q) = s∫
D

qi(xi)dxi = 1, ∀i

qi(xi) ≥ 0, ∀xi

(4.2)

where the constraint to maintain S(q) at a value of s is a key step in forming the

maximum-entropy (maxent) problem. S(q) is the Shannon entropy of the probability

distribution, essentially quantifying the amount of syntactic information provided by

the distribution. The remaining constraints in the maxent, Eq. (4.2), enforce the

solution q to remain in the valid probability domain with the area under the curve

always equal to 1 as a unit simplex with non-negative values [57, 60]. The Shannon

entropy of a probability distribution, q(x), is defined as

S(q) = −
∫
D

q(x)ln

[
q(x)

µ(x)

]
dx (4.3)

where µ(x) is typically designated as a uniform distribution of x, but as a constant

value in the integrand over a finite sample region D, is often omitted. Typically,

this omission is considered as the general form for differential entropy of a continuous

random variable [109]. Eq. (4.3) represents a scalar quantification of the amount of
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given uncertainty, or lack of syntactic information provided by the probability dis-

tribution, where the measure of syntactic content is proportional to negative S(q).1

The syntactic information content in this case is measured in natural units (nats) due

to the chosen form of the entropy equation with a logarithmic base e, as described by

Shannon in [111, 112]. Forming the unconstrained optimization problem, the Maxent

Lagrangian represents the adjoined objective function and entropy with T represent-

ing a temperature penalty term analogous to simulated annealing optimization and a

Lagrangian multiplier. The augmented entropy constraint with s represents a given

level of uncertainty [63, 66].

L(q, T ) = Eq(G)− T [S(q)− s] (4.4)

The Maxent Lagrangian optimization problem is to minimize the expected value of

the objective G(x) by determining the optimal joint mixed strategy, q(x), such that

the negative Shannon entropy, −S(q), is minimized (uncertainty is maximized). In-

tuitively, one would expect the Lagrangian to be formed with +S(q) to minimize

uncertainty, however this forms a biased assignment. Dating to the original work of

Bernoulli, Laplace, and Poincaré, maximizing entropy and the Wolpert mathemati-

cal framework extends the Principle of Insufficient Reason with the realization that

in order to form a valid statistical inference on partial information, the probability

distribution must represent only the known measurements while fully accounting for

uncertainty. Jaynes in [110] provides a detailed explanation for this theory as well

as insight into the deep connections behind PC with statistical mechanics and ex-

1Negative Shannon entropy as positive syntactic content promotes an insightful discussion on the

extremum optimization problem where considering the quantities as interchangeable leverages the

idea that maximizing a function is identical to minimizing −1 times the same function. e.g. Mini-

mizing negative Shannon entropy =⇒ maximizing Shannon entropy =⇒ minimizing information

beyond that which is already measured [110].
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perimental physics to explain macroscopic quantities2. In general, the solution to

Eq. (4.4) is non-trivial to determine and the true joint strategy, p, of the collective is

of a set of coupled Boltzmann equations in the canonical ensemble of the form,3,4

pβ(x) ∝ exp−βG(x) (4.5)

where β = 1/T . The PC method solves Eq. (4.4) in an iterative, distributed manner

where each individual agent optimizes a local Maxent Lagrangian. Let G[xi,x
−
(i)]

denote the ith agent’s view of the global objective, as the value of G that results from

a local action xi, given the prior actions (measured or estimated) of all other agents,

x−(i). The local Maxent Lagrangian for agent i is written as [57, 60]

Li(qi) = Eq{G[xi,x
−
(i)]} − T [S(qi)] (4.6)

Expanding to the discrete form to reflect the approaches constructed by Bieniawski

in [57, 60] and implemented in this work,

Li(qi) =

nmovesi∑
j=1

qi[xi(j)]Eq(i)

{
G[xi(j),x

−
(i)]|xi(j)

}
−

T

(
−

nmovesi∑
j=1

q[xi(j)]ln{q[xi(j)]}

) (4.7)

In the distributed optimization scheme, each agent in the total system optimizes the

local Maxent Lagrangian in Eq. (4.7) while enforcing a valid probability domain on

2Jaynes in [110] also reveals thermodynamic entropy is identical to the information Shannon

entropy discussed herein with the exception of a Boltzmann’s constant when describing units of

temperature.
3See discussion beneath Eq. (4.1) regarding true strategy p vice the approximated strategy q (a

product distribution) and in [57, 60, 62, 63]. Here, naturally, the true canonical ensemble solution

given in Eq. (4.5) is for the true Maxent Lagrangian with p substituted for q in Eq. (4.4).
4Jaynes also refers to the general solution to the Maxent Lagrangian in Eq. (4.5) as the quantum-

mechanical grand canonical ensemble [110].
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the updated mixed strategy, qi(xi). These constraints to maintain a unit simplex

and non-negative distribution are not augmented to the cost of the Lagrangian and

are performed as in-line updates in the algorithm. The local discrete optimization

problem for each agent is then written in final form as [57, 60]

min
qi

Li(qi) |
nmovesi∑
j=1

qi[xi(j)] = 1, qi[xi(j)] ≥ 0,∀j (4.8)

4.2 Delayed Sampling PC

The canonical ensemble solution to the true Maxent Lagrangian in Eq. (4.4)

is generally not a product distribution and is a full joint Boltzmann distribution as

described by Wolpert and Bieniawski in [59]. In Delayed Sampling PC (DSPC), the

Kullback-Leibler distance, KL(p||q), is employed to iteratively drive a product distri-

bution approximation q to the truth p in a second order simplex-constrained gradient

descent (SOSCGD) method described as Nearest Newton. The KL distance measure

is a combination of the Shannon cross-entropy between two probability distributions,

S(p||q), and the Shannon entropy of the target S(p), and is positive definite and min-

imum if and only if the two distributions are identical5. The scalar value resulting

from the measure describes the ”infinite limit log likelihood of data being generated

by one distribution but misattributed to have come from the other” and is given as

[59]

KL(p||q) =S(p||q)− S(p)

=−
nagent∑
i=1

∫
D

p(x)ln [qi(xi)] dx
(4.9)

5The Shannon cross-entropy is S(p||q) = −
∫
D
p(x)ln

[
q(x)
µ(x)

]
dx and is also the general form for

the Shannon entropy of a single PDF as S(q) = S(q||q). Typically the notation considering a single

PDF is abbreviated as shown in Eq. (4.3).
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The KL distance is not symmetrical in that KL(p||q) 6= KL(q||p) as demonstrated

below in Fig. 4.1 with two discrete Gaussian probability distributions.

-100 -50 0 50 100

x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

p
ro

b
a
b
ili

ty
(x

)

p(x), KL(p||q)=90.6368
q(x), KL(q||p)=26.08

-100 -50 0 50 100

x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

p
ro

b
a
b
ili

ty
(x

)

KL(p||q) and KL(q||p) for Example Discrete Gaussian Distributions

p(x), KL(p||q)=6.1368
q(x), KL(q||p)=4.955

-100 -50 0 50 100

x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

p
ro

b
a
b
ili

ty
(x

)

p(x), KL(p||q)=4.6368
q(x), KL(q||p)=4.6368

Figure 4.1: Example Kullback-Leibler Distance Measures of KL(p||q) and KL(q||p)
Between Probability Distributions p(x) and q(x)

A detailed discussion comparing both metrics, KL(p||q) and KL(q||p), for use

in two second order descent schemes to optimize the true Maxent Lagrangian is given

in [59]. In summary, one method considered is to approximate the canonical ensemble

solution in Eq. (4.5) by recursively minimizing the qp-distance, KL(q||p), which

effectively yields an approximating approach on both the distribution, q, and the

Lagrangian, L(q). The gradient descent update refining the approximate q traverses

an approximation to the true Lagrangian. Wolpert et al conclude a second method

is superior, and refer to the approach as Nearest Newton descent where, instead, an

analytic form of SOSCGD on a quadratic approximation to L(p) is found. Then, using
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Figure 4.2: Two Methods to Determining the Optimal Mixed Strategy, q∗, where
Method (2) is Denoted as the Nearest Newton Method in Delayed Sampling Proba-
bility Collectives as Derived by Wolpert et al

the pq-distance, KL(p||q) in Eq. (4.9), an approximation to the analytic solution is

enabled by substituting the minimizing solution to the pq-distance as qi = pi,∀i.

These two methods are depicted in Fig. 4.2. In detail, Nearest Newton (NN) makes

use of the analytic form of the SOSCGD scheme on L(p), defined as [59]

p∗(x) = p0(x)
{

1− S(p0)− ln[p0(x)]− β[G(x)− E(G)]
}

(4.10)

where p∗(x) denotes the updated probability distribution on a quadratic approxima-

tion to L(p). Next, in order to determine a product distribution, q, that is closest to

p∗, the minimizing solution, qi = pi,∀i, to the pq-distance in Eq. (4.9) is substituted

yielding the NN method as defined by Wolpert et al [59].

qi(xi)← qi(xi)− αqi(xi)×
{
S(qi) + ln[qi(xi)]+

E(G|xi)− E(G)

T

} (4.11)
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Eq. (4.11) is rewritten as an update law with a scalar gain, α, as a step size in order

to prevent the iteration to the probability distribution from occurring too rapidly.

Bieniawski in [57] discusses an important note in the NN method in that α should be

equivalent for all agents6. Additionally, after each update to q, the DSPC algorithm

renormalizes the PDF (probability distribution function) and ensures a valid empirical

distribution is maintained [60]. Given the scope of the local agent, the expected value

of the global objective is the next hurdle in the NN update law. In DSPC, these

expectations are approximated by Bieniawski et al in [60] with two ”private utilities”

as either Team Game (TG) or Wonderful Life Utility (WLU) functions. In this work,

the TG private utility has been elected where the global objective (i.e. world utility)

is estimated at the local scope as7

G[xi,x(i)] ≈ gTG[xi,x
−
(i)] (4.12)

The expected value of impact (cost) on the global objective for the ith agent’s new

action, xi, is estimated by evaluating the global objective given the sampled prior

actions of the other agents, x−(i). Also, at this stage of development, an assumption

is drawn that an analytic form of the optimization problem G is known and this

information is available at the local agent level, and therefore, gTG is evaluated by

each agent. Additionally, a network topology is in place in that each agent receives

a single sampled value of the other agents’ prior actions, x−(i). Future research on

6Additionally, Bieniawski concludes that method (1) and method (2) depicted in Fig. 4.2 result

in the equivalent update law for NN, however the method (2) derivation emphasizes the need for all

agents to employ an equivalent step size, α.
7The Wonderful Life Utility (WLU) was not investigated for distributed control allocation in

this work and uses the global objective minus the global objective with a fixed argument as the

lowest probability action for the local agent, gWLU [xi,x
−
(i)] ≈ G[xi,x(i)] − G[minxi

qi(xi),x(i)] and

is described to yield lower variance in [57].
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this assumption may relax this constraint further where only local measurements

are conducted on the system G (or on an estimate of the system), to create a truly

decentralized, distributed architecture. In this initial study, distributed optimization

is in place with DSPC, however a centralized network router, or bus is required for

minimal communication between all agents.

With the TG private utility in Eq. (4.10), the NN update law is performed on

the probability value for each jth action of the total nmovesi available in the mixed

strategy qi[xi(j)] using a data aging technique for m samples. A weighted average of

costs for the global objective is computed over the k of nstep total iterations of the

DSPC routine where γ is a data aging coefficient [57].

E[gi|xi(j)] =
N

(k)
ij

D
(k)
ij

=

∑
m gi[xi(j),x

−
(i)]1[xi(j)] + γN

(k−1)
ij∑

m 1[xi(j)] + γD
(k−1)
ij

(4.13)

where

1[xi(j)] =

 1 when xi = j,

0 otherwise

Combining the data aging technique and agent private utility, the final NN update

law for the jth probability bin, where the bin represents the probability of the ith

agent’s strategy selecting the jth action, is given as [57, 59, 60]

qi[xi(j)]← qi[xi(j)]−

αqi[xi(j)]×
(
S(qi) + ln{qi[xi(j)]}+

1

T
[E{gTG[xi,x

−
(i)]|xi} − E{gTG[xi

−,x−(i)]}]
) (4.14)

Note the E{gTG[xi
−,x−(i)]} term represents the expected value of the objective in the

case where agent i does not make a change in strategy and maintains the last action,

xi
−.
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DSPC also includes provisions for constraints in the optimization problem by

a traditional augmentation of the global objective with a Lagrange multiplier [59].

Given a constraint function on the ith agent, ci(xi), and a Lagrange multiplier, λi, the

calculation in Eq. (4.12) is summed with λici(xi). In the case where constraints are

satisfied, which in this work represents when effectors are not saturating on position

or rate limits as detailed in Ch. 5 and Ch. 6, ci(xi) is simply zero and does not impact

the global cost. [59] also provides an update rule for λi with step size η for constrained

DSPC as

λi ← λi + ηE[ci(xi)] (4.15)

DSPC is summarized below in Alg. (1) with additional details available in [59] by

Bieniawski et al.
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Algorithm 1 Delayed Sampling Probability Collectives

procedure DSPC

init :

Initialize PC Parameters (T, α, γ, η)

Initialize Stopping Tolerances or Maximum Steps

Initialize Agent Strategy to Uniform Distributions

loop until stop tolerance or maximum steps reached :

Draw m Samples from each agent strategy

Evaluate private utility Eq. (4.12) + constraint costs

Perform data averaging in Eq. (4.13)

SOSCGD NN Update on PDF Strategy Eq. (4.14)

Update Lagrange Multipliers per Eq. (4.15)

Constrain PDF to Valid Domain

exit :

Draw Final Sample and Depict PDF

4.2.1 Optimization Example

Consider a simple two dimensional quadric optimization problem,

min
x,y

G(x,y) = (x− 50)2 + (y + 50)2 (4.16)

Clearly, the minimizing argument, x∗ and y∗ is equal to 50 and -50, respectively.

DSPC is employed with T = 0.1, α = 0.01, γ = 0.02, and with two agents, nagent = 2,

with x1 ≡ x ∈ <nmovesi ∈ [−100, 100], x2 ≡ y ∈ <nmovesi ∈ [−100, 100] where

nmovesi = 5000. The stopping condition is set to a maximum step size of 10 iterations

to optimize the agent mixed strategy, qi(xi) ∈ <nmovesi . 100 samples (m = 100) are

drawn from the current strategy per iteration. Starting with the initial condition in

Fig. 4.3, the DSPC iterations for k = 1, 3 are depicted below in Figs. 4.4,4.5 to illus-
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trate the update process. As each sample is drawn, the strategy is evolved by binning

the sample to the corresponding agent action xi(j) on the PDF independent axis.

Each bin height then updates with the Nearest Newton law in Eq. (4.14) essentially

refining the probability of the action as a function of the impact on the system cost.

Note the decreasing value of the Shannon Entropy (SE) at each update as given on

the vertical axis of the figure. The conclusion of this process at k = 10 is depicted

in Fig. 4.6 with the DSPC final converged solution, where the top row of subplots

from left to right are the final PDF and CDF (cumulative distribution function),

respectively. The CDF is computed after each PDF update to facilitate the inverse

transform method employed for drawing samples from the empirical agent strategy

[113]. The bottom row of subplots in Fig. 4.6 show on the left the decreasing value

of the objective G(x∗1, x
∗
2) as a function of DSPC iteration, k, and x∗1 and x∗2 on the

right as the most recent sampled values from the optimized strategy. Additionally,

the two dimensional trajectory of x∗1 and x∗2 as a function of k is provided on a truth

contour plot in Fig. 4.7. The contours are generated on the exact values of G(x,y)

over the specified domain of interest.

Due to the stochastic nature of PC with transformations to the probability do-

main and inversions via random drawn samples, multiple tests were then performed

to characterize performance on the simple two dimensional example. Fig. 4.8 presents

the summary of DSPC performance for 100 tests with the left and right subplots de-

picting the final x∗1 and x∗2 values, respectively, as a function of test number. While

the means of the converged solutions are nearly identical to the truth, the dispersion

presented here is regarded as the best observed after a series of trial and error param-

eter optimizations for the given values of T = 0.1, α = 0.01, m = 100, and γ = 0.02.

These variances are reflected by the 1σ bounds and were achieved in this multiple
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Figure 4.3: DSPC Initial Condition k = 0, Uniform Distribution Given Search Bounds
for T = 0.1, α = 0.01, m = 100, and γ = 0.02

test sweep with these identical parameter values with a deterministic 10 maximum

step stopping criteria enabled to promote comparison [60, 57]8,9.

8One method currently explored to improve the variance of the minimizing argument is for the

agent to compute and report the mean of the last round of drawn samples, rather than a single

sample from the current strategy.
9Alternatively, using the expected value of the final strategy, q(x), is in research for further

improvement.

50



−100 0 100
0

1

2

3

4
x 10

−4

x
1

q 1(x
1), 

S
E

=8
.4

98

DSPC iteration = 1: Agent 1 PDF, q
1
(x

1
)

−100 0 100
0

0.2

0.4

0.6

0.8

1

x
1

c 1(x
1)

Agent 1 CDF

−100 0 100
0

0.005

0.01

0.015

0.02

x
2

q 2(x
2), 

S
E

=6
.0

63
1

Agent 2 PDF, q
2
(x

2
)

−100 0 100
0

0.2

0.4

0.6

0.8

1

x
2

c 2(x
2)

Agent 2 CDF

Figure 4.4: DSPC Update at k = 1
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Figure 4.5: DSPC Update at k = 3
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4.3 Immediate Sampling PC

In [114], Rajnarayan, Kroo, and Wolpert in more recent work circa 2007 refer to

Immediate Sampling PC (ISPC) as a simplified form of DSPC, with strong ties to the

cross-entropy method, response surface methods, and parametric machine learning.

In essence ISPC no longer treats the strategy of the agent, qi, as an empirical, arbi-

trary probability distribution. Instead, a Gaussian normal form is assumed, yielding

analytic update laws for directly computing the first and second moments for the

mean µ and covariance Σ, respectively. These direct analytic update laws are derived

to minimize KL(p||qθ) where θ = [µ,Σ]. The benefits of PC are still preserved by

employing the transformation, however, the calculations are now streamlined. The

general form of a univariate Gaussian normal distribution is used for the probability

framework for each agent,

qµi,σi(xi) =
1

σi
√

2π
exp

[
−(xi − µi)2

2σ2
i

]
(4.17)

although a discrete distribution is formed due to the permitted set of xi actions with

qµi,σi(xi) ∈ <nmovesi . σ2
i denotes the variance of the ith agent’s corresponding diagonal

element in the full covariance matrix, Σ. The closed form equations for the optimal

mean and variance, resulting in KL(p||qθ) = 0, are the traditional definitions of

µ∗i =

∫ ∞
−∞

[xipi(xi)]dxi

σ∗i =

∫ ∞
−∞

[(xi − µi)2pi(xi)]dxi,∀i
(4.18)

and are problematic due to the need for full knowledge of the canonical ensemble

solution, p(x), in Eq. (4.5). Instead, ISPC uses importance sampling to minimize the

pq-distance by defining a sampling distribution, hi(x
m
i ), with xm

i ∈ <m as the most
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recent set of m samples drawn from Eq. (4.17) [115]. Next, a scaled likelihood ratio

is defined as [63, 114]

rmi =
exp{−βgTG[xm

i ,x
−
(i)]}

hi(xm
i )

(4.19)

The pq-distance optimization problem is then written as

min
θi

{
−
∑
m

rmi ln [qθi(x
m
i )]

}
(4.20)

which is equivalent to a cross-entropy method [63, 114]. Finally, the critical points

for Eq. (4.20) are provided to yield the optimal mean µ∗i and variance σ∗i as detailed

by Rajnarayan et al in [114].

µ∗i =

∑
m rmi xm

i∑
m rmi

(4.21)

σ∗i =

∑
m rmi (xm

i − µ∗i )(xm
i − µ∗i )T∑

m rmi
(4.22)

The likelihood ratio, rmi , in Eq. (4.19) is computed using a Boltzmann approximation

with parameter, β. In this work, β is held constant throughout the iterative process

updating the agent strategy while in [63], various update laws are explored, including

a simplified multiplicative recursion such as β(k + 1) = 1.1β(k). As ISPC converges,

the higher values of β drive the Boltzmann distribution to the minimizing value of the

global objective. A summary of the ISPC algorithm is outlined in Alg. (2) with details

provided by Rajnarayan et al in [114, 63]. The final step in ISPC to constrain the

numerical PDF to the valid probability domain is included for completeness, but is

less of a factor in this simplified approach, now that the agent strategy is no longer an

arbitrary, empirical distribution. Additionally, while the approach is simplified, the

method of combining multiple Gaussian distributions in a mixture model is a powerful

technique for capturing higher order problems with non-normal forms [63, 116].
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Algorithm 2 Immediate Sampling Probability Collectives

procedure ISPC

init :

Initialize PC Parameters (β, η)

Initialize Stopping Tolerances or Maximum Steps

Initialize Agent Strategy to Uniform Distributions

loop until stop tolerance or maximum steps reached :

Draw m Samples from each agent strategy

Evaluate private utility Eq. (4.12) + constraint costs

Compute Scaled Likelihood Ratios per Eq. (4.19)

Compute Optimal θ parameters per Eqs. (4.21,4.22)

Update Lagrange Multipliers per Eq. (4.15)

Constrain PDF to Valid Domain

exit :

Draw Final Sample and Depict PDF

4.3.1 Optimization Example

The ISPC algorithm is demonstrated on the equivalent simple two dimensional

optimization problem previously given in Eq. (4.16) with β = 1.0, again with two

agents, nagent = 2, with x1 ≡ x ∈ <nmovesi ∈ [−100, 100], x2 ≡ y ∈ <nmovesi ∈

[−100, 100]. Other parameters for the example were matched with respect to the

DSPC test with the same stopping condition at a maximum step size of 10 iterations,

and 5000 bins, nmovesi = 5000, defining the agent mixed strategy, qi(xi). Finally,

100 samples per iteration (m = 100) are drawn from the current strategy. The

initial condition is shown in Fig. 4.9, followed by the ISPC iterations for k = 1, 4
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in Figs. 4.10,4.1110. In ISPC, the strategy is evolved by evaluating the objective

with the set of samples, computing the likelihood ratio in Eq. (4.19), and solving for

the optimal Gaussian mean and variance in Eqs. (4.21, 4.22). The conclusion of this

process at k = 10 is depicted in Fig. 4.12 and a two dimensional trajectory is provided

in Fig. 4.13.

Figure 4.14 presents the summary of the ISPC algorithm on the simple two

dimensional optimization problem previously given in Eq. (4.16) for a sweep of 100

tests, with constant β = 1.0 (update factor of 1.0) over a fixed 50 maximum iterations

per test. The ISPC mean solution is nearly identical to the truth over 100 tests, and

the variance is similar in performance to DSPC for this simple example11,12.

10The initial condition for the ISPC optimization was set to x∗1 = −75 and x∗2 = 60 to enable

trajectory comparison to the DSPC optimization example. This initialization is not required in

general and both algorithms begin with a stochastic sample drawn from a uniform distribution.
11In this study, the ISPC algorithm required less parameter optimization for the indicated per-

formance on this simple example. Future work investigating methods to determine the optimal

parameters in the current implementation of the DSPC method is required. Intuitively, the DSPC

method is expected to yield superior results to ISPC, where the former is a more generalized ap-

proach to an arbitrarily structured optimal strategy as opposed to assuming a Gaussian normal

distribution, although ISPC removes the need for data aging as discussed in [63].
12Additionally, at the time of the sweep data for 100 tests, ISPC did not yet meet a design

criterion that the number of samples times the maximum number of steps must be much less than

the number of agent actions, mnstep << nmovesi , enforced to minimize the number of required

objective evaluations. DSPC met this goal and was further explored for control allocation.
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Figure 4.9: ISPC Initial Condition k = 0, Uniform Distribution Given Search Bounds
for β = 1.0 and m = 100
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Figure 4.10: ISPC Update at k = 1
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4.4 Distributed Control Allocation with DSPC

The DSPC algorithm was implemented in a MATLAB Simulink R© toolbox as

a distributed control allocation optimization algorithm with a modular approach for

each agent to allow flexibility for a range of aerospace applications with a different

number of effectors. Fig. 4.15 depicts a block diagram of major components of the

algorithm and expands the jth agent for insight into the employed form of DSPC.

Figure 4.15: Distributed Control Allocation with DSPC

Beginning with the entry and exit points of the algorithm, the primary interface

to the toolbox is the input of virtual control command v and the output of the

effector solution u. The first block labeled DSPC configuration reads in all parameters

required to define the L2 control allocation problem (see Eq. 3.25) and to define the

DSPC algorithm described earlier in Alg. (1). Table 4.1 lists both of these sets of

parameters in a combined setting here for convenient reference.
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Table 4.1: Distributed Control Allocation Parameters for L2 Optimization.

Parameter Variable
Number of Agents nagent
Maxent Lagrangian Temperature T
Probability Update Gain α
Data Aging Gain γ
Samples Drawn Per Iteration m
Iterations Per Frame nstep
Moves Per Agent nmovesi
Agent Effector Limit Constraint Gain η
Agent Effector Upper Limit u ∈ <nagent
Agent Effector Lower Limit u ∈ <nagent
Acceleration Error Penalty Wv ∈ <k×k
Effector Use Penalty Wu ∈ <nagent×nagent
Effector Desired Values ud ∈ <nagent
Effector Constraint Penalty λL2

L2 Acceleration Error Penalty γL2

The initialization block shown in Fig. 4.15 sets all probability distributions

(agent strategies) to uniform, given the specified number of moves per agent, nmovesi .

Next, the initialized distributions and parameter settings are sent to the network

blaster which emulates a high rate distributed bus on an air vehicle. The purpose of

the network blaster is to broadcast the expected value of each agent strategy for use

in the local optimizations. This process occurs in a high rate allocation loop that is

required to complete nstep iterations per execution frame from the parent caller (e.g.

the inner loop stability augmentation system (SAS))13.

At the agent scope, the first steps are to compute the Shannon entropy of the

local strategy and to evaluate the L2 objective given all expected values of the collec-

13For real time implementation, if the SAS inner loop system executes at 100 hz, the DSPC high

rate network bus must complete the maximum number of optimization iterations (or converge to

a stopping tolerance) within .01 seconds. This work did not implement the toolbox in a real time

application.
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tive strategy. This step is referred to in Fig. 4.15 as No Action Expectation. Next, the

Sampler & Private Utility subsystem generates m from the local strategy, and evalu-

ates the L2 cost given these samples and the expected values of the collective. Both

the No Action Expectation and the Private Utility subsystems employ a MATLAB

feature referred to as model referencing for the evaluation of the nonlinear control

effectivity mapping g. This feature allows the designer to create a single model in-

stance (Simulink diagram) of g in one location which is then loaded and evaluated

by all agents.

The SOSCGD PDF Update block sorts through these sampled actions and

cost pairs to apply the second order simplex constrained update on the probability

bin associated with the action as detailed in Eq. (4.14). The updated strategy is

renormalized to ensure the probability distribution is numerically valid and within

limits, and is passed to the Domain Refinement block for adaptation of the search

domain (see App. D.1).

The final step for the agent occurs in the Strategy Latcher block in Fig. 4.15

where the prior cost of the L2 objective is compared with respect to the updated

cost, given the expected value of the updated strategy. If the cost increases, the

strategy update is not applied, and the prior strategy is restored. This latching

mechanism improved performance for the L2 control allocation examples studied in

this work, however is not always effective for other optimization problems, especially

with multiple extrema (refer to App. E.1).

The conclusion of the iteration in the high rate allocation loop collects all up-

dated agent strategies into the Network Glove subsystem. The purpose of this block

is to return all strategies to the Network Blaster for subsequent iterations. After com-

pleting nstep iterations, the Network Glove down-samples the final expected values as

the effector solution, u.
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CHAPTER 5

CONTROL ALLOCATION EXAMPLES

This chapter applies the delayed sampling form of probability collectives (DSPC)

to both open loop and closed loop linear examples as a distributed control allocation

method, previously described at the conclusion of Ch.4. Effector saturation and ef-

fector failure examples are included. Finally, examples are presented with nonlinear

control effectivity mappings. Ch. 6 expands this simple example to a larger applica-

tion with higher dimensions and more effectors.

5.1 Open Loop Linear Example

A simplified L2 linear CAO problem with CB ∈ <k×m, u(t) ∈ <m, and v(t) ∈

<k in Eq. (5.1) for a five-dimensional case (with m = 5 effectors, k = 1 desired

virtual controls) is solved using (i) a weighted least squares (WLS) centralized method

provided by Härkeg̊ard in a Quadratic Control Allocation Toolbox (QCAT)1 detailed

in [18]; and (ii) the delayed sampling PC (DSPC) distributed method.

CBu(t) = v(t) | umin ≤ u(t) ≤ umax

pmin ≤ u̇(t) ≤ pmax

(5.1)

1The QCAT WLS toolbox by Härkeg̊ard employs an active set method to solve the linear control

allocation problem where multiple subproblems with a reduced set of constraints are optimized

sequentially. In an iterative manner, the method regards a subset of the inequality constraints as a

working set of equality constraints while disregarding the other inequality constraints, finds a feasible

solution, and continues to re-introduce constraints until all are satisfied. The algorithm concludes

when the working set has been optimized, referred to as an active set [18, 117, 118].
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This initial open loop example is considered simplified where the allocation solution is

intentionally simulated with arbitrarily large actuator limits to satisfy [u ≤ u(t) ≤ u]

as previously defined in Eq. (3.9). Subsequent examples introduce increased com-

plexity with a closed loop feedback system where control allocation is demonstrated

in the presence of effector limits. Additionally, in this chapter a single virtual control

variable is selected (k = 1) with a one to one mapping to the state and therefore

C = 1 is omitted for brevity. The objective of this open loop linear control allocation

optimization problem is to determine the minimizing argument, u(t) for

L2C = ||Wu(u− ud)||2 + γL2||Wv(Bu− v)||2 + λL2||u− u||2 + λL2 ||u− u||2 (5.2)

with a linearized control matrix of B =

[
1 .8 −.1 −1 2.8

]
with Wu = I ∈ <5x5,

Wv = 1, ud =

[
0 0 0 0 0

]′
, γL2 = 1, and λL2 = 0 nominally or 1e9 during

effector saturation2. The effector limits for this first case are set arbitrarily large to

avoid saturation at u =

[
5 5 5 5 5

]′
and u = −u. The DSPC configuration

employed for this example was T = 0.15, α = 0.3, γ = 0.3, nagent = 5, η = 0.1, with

a stopping condition at 15 maximum iterations. The ith agent mixed strategy qi(xi)

used nmovesi = 3000 bins with m = 100 samples drawn per iteration.

Figure 5.1 depicts the ui solutions for both the QCAT WLS and DSPC methods

which are in agreement for a sinusoidal driving v(t) = 15 sin(5t) command. The

control allocation error and total cost, L2(t) in Eq. (3.12), is depicted in Fig. 5.2. In

brief, DSPC nearly meets the performance of the QCAT WLS centralized allocator

but offers the benefit of the distributed setting as discussed in Ch. 4. In this data,

the sinusoidal driving virtual command is depicted in the first subplot, and the error

between the actual achieved value with respect to the command is shown in the

second subplot. The most significant deviations in virtual command tracking for

2λL2
= 0 when u ≤ u(t) ≤ u, otherwise λL2

= 1e9 in all control allocation examples in this work.
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DSPC occur at the largest magnitude v(t) commands per the second subplot. This

response may be indicative of the effector #5 strategy approaching the bounds of the

probability distribution. Finally, the third subplot of Fig. 5.2 shows the L2 cost time

history. In the cases where L2 ≈ 0, both control allocation routines achieve a near

perfect solution, where the virtual command error is small (and the v(t) command is

zero) and the control effector solution is near desired (at zero). As the v(t) command

oscillates, the L2(t) responds in kind due to the deviation in tracking error (second

subplot) and the effector positions (previously shown in Figure 5.1).
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5.2 Closed Loop Linear Examples

In this section, the control objective is to track one desired output (k = 1)

yd ∈ <k given the linear dynamical system in Eq. (5.3) with full state feedback,

C ∈ <k×n. In this case, n = k = 1, and the open loop dynamics matrix is a scalar as
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A ∈ <1. The linear control effectivity matrix is B ∈ <1×m for m = 5 control effectors

constituting the required input signal u ∈ <5.

ẋ = Ax+ Bu

y = Cx

(5.3)

5.2.1 Nominal Case

For a simplified closed loop linear example, an architecture was constructed to

mimic the dynamic inversion example previously presented in Fig. 3.3, with linearized

control matrix of B =

[
1 .8 −.1 −1 2.8

]
as used in the open loop example, A =[

0.2

]
, and C =

[
1.0

]
. Also, Wu = I ∈ <5x5, Wv = 1, ud =

[
0 0 0 0 0

]′
,

and γL2 = 1, however effector limits are now set to u =

[
3 3 3 3 3

]′
and

u = −u. The DSPC configuration employed for this example was T = 0.1, α = 0.1,

γ = 0.3, nagent = 5, η = 0.1, with a stopping condition at 10 maximum iterations.

The ith agent mixed strategy qi(xi) used nmovesi = 1000 bins with m = 90 samples

drawn per iteration.

Figure 5.3 depicts the closed loop system response using both QCAT WLS

and DSPC distributed control allocation. The desired state position tracks to the

command with the specified first order response, with a τ of 2.0 seconds, in general

for both methods. The QCAT WLS routine exhibits less tracking error in the steady

state step response which is indicated by the overall L2 peak costs for this nominal

case. The effector positions associated with this time history are presented below in

Fig. 5.4 and all values are within limits for this nominal case. Note effector #5 is

used most heavily by both control allocation routines as the minimizing L2 solution.

This solution is intuitive as the highest effectivity magnitude in the given B matrix

is 2.8 for this effector.
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Allocation Optimization for 5 Effectors
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5.2.2 Effector Saturation Case

In this example, the effector position limits were arbitrarily chosen to u =[
1 1 1 1 1

]′
and u = −u in order to demonstrate saturation for the two control

allocation methodologies. Fig. 5.5 depicts the L2 cost for both QCAT WLS and

DSPC. The same DSPC parameters employed in the previous nominal case were

used for this example. Both approaches stabilize the system and track the desired

state command fairly well, however in this case, the peak L2 cost has more than

doubled with respect to the nominal case. This response is due to the degraded

Bu(t)−v(t) tracking as well as an increased use of effector #3 during the saturation.

Refer to Fig. 5.6 which shows that during the peak commands, all effectors saturate

other than #3. Considering this response with respect to the nominal unlimited cases

previously shown, the saturation of effector #5 leads to a dramatic increase in the

use and saturation of all other effectors.
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5.2.3 Effector Failure Case

In this closed loop example, one effector is simulated to fail after the closed loop

system establishes steady state tracking to an initial step response at approximately

8.0 seconds simulation time. The failure scenario is modeled as a runaway effector

where the local actuator driving the position of the surface (or engine) erroneously

commands to an incorrect value as shown in Fig. 5.8. In this initial case A, ob-

servability is modeled with respect to the fail state, and the centralized architecture

accommodates the commands to the other effectors accordingly. This approach is

accomplished by solving the CAP with QCAT WLS with an additional constraint,

where the failed effector #5 is treated as a position limit using the measured value of

the runaway. At 8.0 seconds, the central Flight Control Computer (FCC) with QCAT

WLS receives an actuator failure report and is programmed to treat the effector as not

commandable and solves the allocation problem with u =

[
3 3 3 3 u−5

]′
where

u−5 represents the measured value of the failed effector. Here, the upper and lower

limit for effector #5 is set to the same value with u =

[
−3 −3 −3 −3 u−5

]′
. On

the other hand, no provisions are implemented in the distributed control allocation

approach with DSPC. Agent #5 simply ceases to optimize locally and the remaining

effector suite continues allocation despite the fixed surface. Fig. 5.7 presents the re-

sultant trajectory for this failure model, referred to as Failed Case A. At the onset of

the failure, there is a clear degradation in the desired state tracking, and the L2 cost

increases dramatically. The cost increase is also due to the response and magnitude

increase of the remaining healthy effectors at 8.0 seconds simulation time shown in

Fig. 5.8. In this Case A with failure observability at the central FCC, where an active

monitoring system reports the erroneous surface or disabled engine, the QCAT WLS

and DSPC approaches exhibit similar tracking errors, with the exception of a small
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bias in the DSPC system. This tracking bias sensitivity to DSPC parameter selection

is further discussed ahead in Section 5.3.1.
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Figure 5.7: Failed Case A: Error and L2 Cost Comparison for QCAT WLS and DSPC
(T = .1) with CAO for 5 Effectors
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Figure 5.8: Failed Case A: Solution for Closed Loop Dynamic Inversion Example with
L2 Control Allocation Optimization for 5 Effectors

Alternatively, in a case referred to as Failed Case B, the central FCC is modeled

to not have the benefit of observability for the failure mode. Specifically, the effector

response is not identified as erroneous and no provisions are employed in the control

allocation methods. A key assumption in this scenario is that the position of the

failed effector remains valid and available on a communications bus. This type of

failure highlights the benefit of DSPC. Even without a failure mode identification,

the distributed network of DSPC enables the remaining agents to adjust commands

accordingly to mitigate the runaway of effector #5. Fig. 5.9 depicts the virtual
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command response and error, L2 cost, and state tracking for both QCAT WLS and

DSPC. After the failure at 8.0 seconds, a sharp rise in the L2 cost is observed in QCAT

WLS due primarily to the onset of control allocation error shown as Bu(t) − v(t).

As a result, the QCAT WLS state response in the bottom right subplot deviates

significantly, well beyond the error magnitude of the DSPC method. DSPC is able to

maintain less virtual command error due to the distributed nature of the algorithm,

although only in this case where a distributed network continues to provide accurate

information about actual effector positions. The next Failure Case C demonstrates

this worst case scenario where there is no information available on the runaway. The

corresponding effector time histories for Failed Case B are shown in Fig. 5.10.
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Figure 5.10: Failed Case B: Solution for Closed Loop Dynamic Inversion Example
with L2 Control Allocation Optimization for 5 Effectors
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A final Failed Case C is simulated where the runaway effector #5 is completely

unobservable. In this scenario, both the central FCC and the distributed network

receive an erroneous feedback signal on the measured position of the faulty effector.

The control allocation routines continue to generate commands to all effectors without

any provisions for the runaway. As shown in Fig. 5.11, neither system responds well

to this scenario and, after the onset of the failure, virtual command and state tracking

diverge dramatically with a sharp rise in the L2 cost.
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Figure 5.11: Failed Case C: Error and L2 Cost Comparison for QCAT WLS and
DSPC (T = .1) with CAO for 5 Effectors
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Figure 5.12: Failed Case C: Solution for Closed Loop Dynamic Inversion Example
with L2 Control Allocation Optimization for 5 Effectors

5.3 Closed Loop Nonlinear Examples

In this section, the closed loop control objective is equivalent to the prior ex-

amples and one desired output yd ∈ <k with k = 1 is to be tracked. However, the

dynamical system is now nonlinear due solely to the control effectivity mapping and

takes the general form

ẋ(t) = Ax+ G(x,u)

y(t) = x

(5.4)
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The system consist of a single state, x ∈ <1 as the desired virtual command to track

yielding n = k = 1, and A ∈ <1×1. Additionally, due to perfect state feedback,

∇xh = 1 and therefore g(x,u) ≡ G(x,u) : <6 7→ <1 for m = 5 control effectors

constituting the required input signal u ∈ <5.

5.3.1 Nonlinear Control Allocation Example 1

A contrived nonlinear, non-affine control effectivity mapping is created in this

example as

g[x(t),u(t)] =.05x2u1 + .5signum(|x− 10|)u2
2 − .05u1 cos(x)eu3

− .5signum(|x− 10|)cos(u4)x+ u2u5

(5.5)

This configuration is tested using the identical parameters as previous for the linear

control allocation example with A =

[
0.2

]
, Wu = I ∈ <5x5, Wv = 1, ud =[

0 0 0 0 0

]′
, γL2 = 1, u =

[
3 3 3 3 3

]′
and u = −u, with DSPC at T =

0.35, α = 0.1, γ = 0.3, nagent = 5, η = 0.1, 10 maximum iterations, nmovesi = 1000

bins, and m = 90 samples. An initial state value, x0, is set to 20.0.

In this instance and the subsequent examples in this section, the DSPC dis-

tributed control allocation scheme is only updated with the ability to evaluate the

effectivity mapping at each agent3. For the QCAT WLS evaluation, however, a lin-

earized control effectivity mapping (B matrix) is required. Two methods are con-

sidered where the B linearized matrix is computed analytically and numerically as

3Future work will consider estimation of the global objective at the local agent scope as well as

reduced communication topologies between agents. This research employs a complete graph for the

agent adjacency matrix [33, 36].
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Nonlinear Case A and Nonlinear Case B, respectively. In Case A, the analytic ex-

pression for B is derived as ∂g
∂u

(x,u0) yielding

B(x) =[ .05x2 − .05eu3o cos(x), u5o + u2osignum(|x− 10|), −0.05u1oe
u3o cos(x),

0.5x sin(u4o)signum(|x− 10|), u2o
]

(5.6)

where uio represents the ith effector position at the point of the gradient evaluation.

Case B employs a midpoint numerical differencing scheme in order to compute the

linearized B matrix in real time as [119]

B(x) =
∆g

∆u

B(x) =
1

2δ
{g[x(t),u(t) + δ]− g[x(t),u(t)− δ]}

(5.7)

where δ is chosen as 0.2. Figs. 5.13-5.14 depict Case A for the QCAT WLS approach,

where the B matrix is computed analytically given the time varying effectivity map-

ping, and Figs. 5.15-5.16 depict Case B using the finite difference approach. In both of

these cases for this example, performance is nearly equivalent for both the centralized

QCAT WLS and DSPC distributed method, however there is consistently higher vir-

tual control tracking error with DSPC and a resulting slightly higher L2 on average.

This data resulted as the best case using a Monte-Carlo simulation technique with

varying DSPC parameters. Specifically, the T temperature parameter was found as a

key trade-off configuration for DSPC which directly impacted this tracking bias and

the quiescence of the effector response. Higher values of T resulted in less effector

activity and smoother overall tracking with the exception of an increased consistent

error. Lower values of T on the other hand, reduced the tracking bias but generated

more activity in the effectors. This trade-off is discussed additionally in Ch. 7 as one

challenge for employing DSPC, with the identification of best parameters for applica-

tion. Figs. 5.17-5.18 demonstrates this example for three T settings at 0.35, 0.2 and

1.0 where tracking bias is traded for effector activity.
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Employing an online finite difference scheme can be problematic in cases with

measurement noise and other sources of numerical fluctuation as discussed by Bodson

and Bolender in [16, 43], and hence a second nonlinear control effectivity mapping

example is demonstrated ahead.
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Figure 5.13: Nonlinear Example 1, Case A: Error and L2 Cost Comparison for QCAT
WLS and DSPC (T = .35) with CAO for 5 Effectors
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Figure 5.14: Nonlinear Example 1, Case A: Solution for Closed Loop Dynamic Inver-
sion Example with L2 Control Allocation Optimization for 5 Effectors

85



0 5 10 15 20 25 30

t [sec]

-40

-30

-20

-10

0

10

20

30

v
(t

)

Error and L
2
 Cost Comparison for QCAT WLS and DSPC with CAO for 5 Effectors

QCAT Requested Virtual Control v(t)
DSPC Requested Virtual Control v(t)
QCAT WLS g(x,u) Achieved
DSPC g(x,u) Achieved

0 5 10 15 20 25 30

t [sec]

-2

-1

0

1

2

3

4

5

6

7

8

g
(x

,u
)-

v
(t

)

QCAT WLS
DSPC

0 5 10 15 20 25 30

t [sec]

0

10

20

30

40

50

60

70

L
2
(t

)

QCAT WLS
DSPC

0 5 10 15 20 25 30

t [sec]

18

20

22

24

26

28

30

32

34

36

38

x
(t

)

x desired
x achieved QCAT WLS
x achieved DSPC

Figure 5.15: Nonlinear Example 1, Case B: Error and L2 Cost Comparison for QCAT
WLS and DSPC (T = .35) with CAO for 5 Effectors
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Figure 5.16: Nonlinear Example 1, Case B: Solution for Closed Loop Dynamic Inver-
sion Example with L2 Control Allocation Optimization for 5 Effectors
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Figure 5.17: Nonlinear Example 1: Error and L2 Cost Comparison with DSPC (T =
.35, 0.2, 1.0) with CAO for 5 Effectors

88



0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5
Closed Loop Dynamic Inversion Example with L2 Control Allocation Optimization for 5 Effectors

DSPC T=.35
DSPC T=0.2
DSPC T=1.0

0 5 10 15 20 25 30

t [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

E
ff
e
c
to

r 
#
2

0 5 10 15 20 25 30

t [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

E
ff
e
c
to

r 
#
3

0 5 10 15 20 25 30

t [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

E
ff
e
c
to

r 
#

4

0 5 10 15 20 25 30

t [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

E
ff
e
c
to

r 
#
5

Figure 5.18: Nonlinear Example 1: DSPC (T = .35, 0.2, 1.0) Sensitivity: Solution for
Closed Loop Dynamic Inversion Example with L2 Control Allocation Optimization
for 5 Effectors
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5.3.2 Nonlinear Control Allocation Example 2

A second contrived nonlinear, non-affine control effectivity mapping, g[x(t),u(t)]

as described in Eq. (3.4), is created in this example as

g[x(t),u(t)] = .05u1u2u3 + .5signum(|x− 10|)u4 + .15u4u5 − .5u5u2 (5.8)

For the Case A test, the analytic expression for B is derived as ∂g
∂u

(x,u0)

B(x) =
[
.05u2ou3o .05u1ou3o − .5u5o .05u1ou2o .5signum(|x− 10|) + .15u5o .15u4o − .5u2o

]
(5.9)

Clearly, this example involves highly nonlinear coupled control effectivity. This ana-

lytic expression for the linearized B matrix is evaluated in line in Case A with QCAT

WLS. For DSPC, only the nonlinear control effectivity mapping in Eq. (5.8) is mod-

eled at the agent scope. Parameters for this example matched the first nonlinear

example with the exception of u =

[
10 10 10 10 10

]′
, u = −u, and T = .5.

Figs. 5.19-5.20 present resulting responses for the closed loop test for both allocation

methods. QCAT WLS fails to stabilize the system due to the significant nonlineari-

ties in Eq. (5.8), information that is lost in the analytic form of the linearized control

matrix. On the other hand, the distributed DSPC approach evaluates g[x(t),u(t)]

locally at each agent using the Team Game world utility previously shown in Ch. 4

in Eq. (4.12) and successfully tracks the reference state command.
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Figure 5.19: Nonlinear Example 2, Case A: Error and L2 Cost Comparison for QCAT
WLS and DSPC (T = .5) with CAO for 5 Effectors
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Figure 5.20: Nonlinear Example 2, Case A: Solution for Closed Loop Dynamic Inver-
sion Example with L2 Control Allocation Optimization for 5 Effectors
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Often an analytic expression for the control effectivity or linearized mapping

matrix is unknown, and Case B represents one approach, albeit potentially noisy

and computationally expensive to formulate the full Jacobian matrix4. Figs. 5.21-

5.22 depict Case B for both control allocation approaches with the second example

in Eq. (5.8). Again, the centralized QCAT WLS allocation response exhibits sig-

nificant stop-to-stop chatter in the effector response and fails to track the reference

command. The distributed DSPC approach successfully determines the optimizing

control solution using the nonlinear effectivity mapping.

4For example, a model of control effectivity may consist of a number of aerodynamic and propul-

sive lookup tables and may be available for evaluation. However, an equation describing this amalga-

mation may not be known, creating a challenge for realizing an analytic expression for the Jacobian

per Case A. Case B assumes both DSPC and QCAT WLS have an equivalent ability to evaluate the

model of the nonlinear control effectivity at a specific state and control position. However, QCAT

WLS requires linearization via the finite difference equation for the first order derivative approxima-

tions. For evaluation fairness, a nonlinear optimization routine is used in the concluding example of

this chapter.

93



0 5 10 15 20 25 30

t [sec]

-50

0

50

100

150

200

v
(t

)

Error and L
2
 Cost Comparison for QCAT WLS and DSPC with CAO for 5 Effectors

QCAT Requested Virtual Control v(t)
DSPC Requested Virtual Control v(t)
QCAT WLS g(x,u) Achieved
DSPC g(x,u) Achieved

0 5 10 15 20 25 30

t [sec]

-250

-200

-150

-100

-50

0

50

g
(x

,u
)-

v
(t

)

QCAT WLS
DSPC

0 5 10 15 20 25 30

t [sec]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L
2
(t

)

×104

QCAT WLS
DSPC

0 5 10 15 20 25 30

t [sec]

-80

-60

-40

-20

0

20

40

x
(t

)

x desired
x achieved QCAT WLS
x achieved DSPC

Figure 5.21: Nonlinear Example 2, Case B: Error and L2 Cost Comparison for QCAT
WLS and DSPC (T = .5) with CAO for 5 Effectors
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Figure 5.22: Nonlinear Example 2, Case B: Solution for Closed Loop Dynamic Inver-
sion Example with L2 Control Allocation Optimization for 5 Effectors
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In all evaluation fairness, QCAT WLS is a linear control allocation toolbox and

is expected to exhibit inferior performance in cases where nonlinearities are significant.

Other optimization routines do exist beyond DSPC which can stabilize this system

with effectivity mapping in Eq. (5.8). For example, Figs. 5.23-5.24 repeat Nonlinear

Example 2 with the MATLAB nonlinear optimization toolset, fmincon, which uses

an active-set (line search) method [120]. However, the fmincon approach does not

promote a distributed architecture for control allocation, a clear benefit of the DSPC

method for joint strategy optimization with agent product distributions.
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Figure 5.23: Nonlinear Example 2 with Fmincon: Error and L2 Cost Comparison for
QCAT WLS and DSPC (T = .5) with CAO for 5 Effectors
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Figure 5.24: Nonlinear Example 2 with Fmincon: Solution for Closed Loop Dynamic
Inversion Example with L2 Control Allocation Optimization for 5 Effectors

A final simulation of Nonlinear Example 2 is provided in Figs. 5.25-5.26 with the

MATLAB nonlinear optimization fmincon toolset as a centralized control allocation

method versus DSPC. At simulation time 10 seconds, effector #4 fails to a locked

position with failure case B observability in place as previously described. Fig. 5.25

shows the failed effector occurs during the steady state tracking of the initial step

command, and both systems exhibit minor deviation. However, as the state tracking

command steps at t = 15 seconds, the impact of the locked effector #4 becomes
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apparent. After both systems respond to the new command, the effector solutions

diverge at approximately t = 20 seconds, and the fmincon L2 cost dramatically in-

creases due to the onset of virtual command error.
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Figure 5.25: Failure Case for Nonlinear Example 2: Error and L2 Cost Comparison
for QCAT WLS and DSPC (T = .5) with CAO for 5 Effectors
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Figure 5.26: Failure Case for Nonlinear Example 2: Solution for Closed Loop Dynamic
Inversion Example with L2 Control Allocation Optimization for 5 Effectors
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CHAPTER 6

DISTRIBUTED ALLOCATION FOR A HOVERCRAFT

This chapter presents a hypothetical hovercraft vehicle with 10 effectors (thrusters)

and a dynamic inversion architecture with distributed control allocation. After de-

scribing the model of the vehicle and details on the mechanization of the control

system, nominal and failure cases are presented, exhibiting the benefit of distributed

allocation.

6.1 Hypothetical Hovercraft and Control Architecture

A nonlinear dynamic inversion control scheme is implemented in this chapter

with a generic six degree of freedom hovercraft as an example application of dis-

tributed control allocation using DSPC. As provided in Ch. 2, the translational and

rotational dynamics of the vehicle are given as

V̇B = Rg + S(ωB)VB +
1

m

N∑
j=1

FjB (6.1)

ω̇B = IB
−1S(ωB)IBωB + IB

−1

[
N∑
j=1

S(−dj)FjB + τjB

]
(6.2)

Reference App. A.1 for additional detailed derivations of the expansion of these equa-

tions for a hovercraft vehicle with multiple effectors. Four primary stabilization chan-

nels are chosen as critical channels to be controlled in the inner loop via distributed

allocation, and consist of translational vertical acceleration and angular acceleration

with vd = [ẇ ṗ q̇ ṙ]T ∈ <4. The hovercraft vertical acceleration, expressed in the
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vehicle body frame, is given as the third component in the translational dynamics

Eq. (6.1) and is expanded as

ẇ = −g cosφ cos θ + qu− pv +
1

m

N∑
j=1

FjzB (6.3)

where g is the magnitude of gravity, φ and θ are Euler angles, and m is the mass of

the vehicle with N total effectors aligned with the body z-axis creating thrust FjzB

at each jth motor. The expansion of S(ωB)VB results in the translational velocity

and rotational velocity coupled components, qu− pv, where VB = [u v w]T ∈ <3 and

ωB = [p q r]T ∈ <3.

Clearly, after canceling the f(x) nonlinearities in Eq. (6.3) and Eq. (6.2) as

described in the dynamic inversion control design approach presented in Ch. 2, the

control effectivity mapping for the four chosen stabilization channels is

g(u, x, t) =

 1
m

∑N
j=1 FjzB

IB
−1
[∑N

j=1 S(−dj)FjB + τjB

]
 (6.4)

This linear mapping is chosen intentionally in order to initially compare the dis-

tributed allocation performance to QCAT WLS, a linear routine as discussed at the

conclusion of Ch. 5. Additional detail and derivation for this type of linear con-

trol effectivity mapping is available for a quadrotor in [121]. After comparison to

QCAT WLS, a nonlinear control effectivity mapping is incorporated for evaluation

with distributed allocation.

Figure 6.1 depicts the dynamic inversion architecture employed in this study

with a distributed control allocation inner loop. Each agent works at the local ac-

tuator scope to effectively invert the modeled control mapping, gi, to determine the

required local command to achieve the global desired dynamics, given the perceived

strategies of the other agents. These strategies are shared over a high rate bus as

expected values of each agent’s probably distribution. Multiple future research paths
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are of interest with extending this approach and are discussed in the conclusion of

this dissertation in Ch. 7. In brief, the local control effectivity mapping can include

variability with respect to airframe location as well as estimation techniques for relax-

ing a priori modeling. Also, the network of agents in this work uses a complete graph

of connectivity. Reducing this requirement may prove useful, especially in intuitive

cases where a geometric neighborhood of agents are the dominant terms in an axis

of interest and negligible for others. For example, in a fixed wing application, a dis-

tributed suite of outboard aileron surfaces dedicated to a roll channel may not require

complete connectivity to a set of engines at the aft of the fuselage. Reduction of the

agent connectivity requirement for distributed allocation must consider the network

topology (governing agent adjacency matrix) and the impact on time to consensus.

This item is discussed in further detail in App. F.1.

Figure 6.1: Hovercraft Nonlinear Dynamic Inversion Architecture with Distributed
Allocation for N Total Effectors
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The high rate iterative optimization in Fig. 6.1, captured in the distributed

allocation partition, occurs deterministically with a specified maximum number of

steps per execution. At the conclusion of the iterations, the command is sampled

from the final form of the probability distribution and actuated at the local effector.

After the DSPC and QCAT WLS control allocation methods were implemented

into the model environment, an initial validation exercise was conducted with a set

of singlet responses for each respective channel for the inner loop buildup. Each

singlet command was conducted with QCAT WLS and DSPC as the control allocation

routines for comparison. All responses exhibit similar ability to track and for brevity

have been reduced here to Fig. 6.2. Note the yaw channel single command was reduced

to 0.5 deg/sec in magnitude to prevent effector saturation.
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Figure 6.2: Singlet Responses for Hovercraft with Distributed Control Comparing
QCAT WLS Centralized Control Allocation and DSPC Distributed Control Alloca-
tion

The remainder of the architecture shown in Fig. 6.1 is a traditional approach

to establish command tracking loops on the velocity and position of the hovercraft.

These outer loops employ classical proportional-integral-derivative (PID) control laws

to establish the desired closed loop dynamical tracking behavior. The outermost loop

is the mission guidance system which provides waypoint sequencing and height z, roll

attitude φ, pitch attitude θ, and heading ψ reference commands to the position outer

loop. The roll and pitch attitude guidance laws are synthesized by additional PID
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controllers on forward and lateral velocity reference commands which are generated

as a function of distance to the active waypoint in sequence.

A hypothetical multi-rotor hovercraft is modeled by geometrically distributing

thrusters over a planar 2π rotation about the body zb axis as depicted in Fig. 6.3. For

the deca-rotor case with N = 10 total thrusters, engine 10 is placed at the positive xb

axis of the vehicle on the xb− yb plane at a distance of L = 1 m. Neighboring engines

are incrementally placed by sweeping with an angle of 2π
N

. Fig. 6.4 below presents a

conceptual view of the hovercraft in operation with an isometric perspective.
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Figure 6.3: Generic Deca-Rotor Hovercraft with N = 10 Effectors Distributed Radi-
ally by Angle 2π

N
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Figure 6.4: Isometric View of Deca-Rotor Hovercraft with N = 10 Effectors Dis-
tributed Radially by Angle 2π

N

The deca-rotor hovercraft is configured symmetrically with the center of mass

at the origin of Fig. 6.3. The selected mass and inertia properties for the vehicle

are presented in Table 6.1 below. The thrust response of each engine is modeled

as a first order transfer function of the form, 1
τEs+1

with a time constant τE = .025

seconds. Finally, a force-to-moment scaling factor, c, is modeled per the approach in

[121] to linearly map a specified thrust to the torque required to spin the propeller to

generate the specified thrust. The torque turning the propeller at the given speed is
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also exerted on the vehicle as an applied moment. Neighboring propellers are modeled

as counter-rotating to create an overall trim balance of torque. This linear torque

relation is modeled for each of the jth effectors providing a thrust magnitude aligned

with the hovercraft body zb axis, FjzB , as

τjB = c(−1)jFjzB (6.5)

Table 6.1: Hypothetical Deca-Rotor Parameters.

Parameter Variable Value
Mass m 0.1 kg
Roll Inertia Ixx 0.02 kg-m2

Pitch Inertia Iyy 0.03 kg-m2

Yaw Inertia Izz 0.05 kg-m2

Thrust Time Constant τE .025 sec
Lever Arm Distance from Center of Mass to Motor L 1 m
jth Propeller Torque Coefficient c .05(−1)j m

The full state vector of the hovercraft vehicle is x = [u v w p q r φ θ ψ x y z ]T ∈

<12. With the assumption that these states are observable and available as out-

puts to be controlled, the y desired vector of outputs for tracking are chosen as

[w p q r]T ∈ <4 yielding C = 14×12 as the output matrix with ones only populating

matrix elements in columns corresponding to the mapped state to yield y = Cx.

Evaluation of Eq. (6.4) with the vehicle properties in Table (6.1) and linearization

at a steady state hovering flight condition with x0 = 0 ∈ <12 generates the linear

control effectivity CB ∈ <4×10 matrix as

CB =


10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

−29.3893 −47.5528 −47.5528 −29.3893 −0.0000 29.3893 47.5528 47.5528 29.3893 0.0000

26.9672 10.3006 −10.3006 −26.9672 −33.3333 −26.9672 −10.3006 10.3006 26.9672 33.3333

1.0000 −1.0000 1.0000 −1.0000 1.0000 −1.0000 1.0000 −1.0000 1.0000 −1.0000


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Intuitively, the top row of the linear matrix indicates that symmetric thrust for all

engines leads to an increase in height rate. Row two reflects the differential thrust

between port and starboard engines, where the difference in thrust between engines

1 − 2 − 3 − 4 and 6 − 7 − 8 − 9 leads to a rolling moment and ṗ contribution with

respect to the body xb axis as shown in Fig. 6.3. Engine number 10 and 5 have zero

impact on roll due to alignment on the body xb axis. Likewise for pitch control, row

three of the B matrix shows the thrust differential between 1 − 2 − 8 − 9 − 10 and

3 − 4 − 5 − 6 − 7 contributes to q̇ due to the geometric placement and lever arm

distance with respect to the body yb axis. Finally, yaw control power is established

solely through the torque contribution due to each individual propeller spinning in

either the clockwise or counter-clockwise rotational direction, as indicated by the sign

in row four of the CB matrix.

With four acceleration channels now for the control allocation problem, the

acceleration penalty matrix Wv ∈ <4×4 as defined earlier in Ch. 3 in Eq. (3.11) is set

as the following diagonal matrix

Wv =



Wvẇ 0 0 0

0 Wvṗ 0 0

0 0 Wvq̇ 0

0 0 0 Wvṙ


where Wvẇ, Wvṗ, Wvq̇, and Wvṙ penalizes acceleration error on the vertical, roll,

pitch, and yaw channel, respectively. The thruster use penalty matrix, Wu ∈ <10×10,

is also diagonal with an identical weighting term per engine, Wuj as provided by

Table (6.2). Additionally, Table (6.2) lists the thruster desired values udj and the

total L2 acceleration error penalty, γL2 .
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Table 6.2: L2 Control Allocation Optimization Weights.

Parameter Variable Value
Vertical Acceleration Error Penalty Wvẇ 200
Roll Acceleration Error Penalty Wvṗ 100
Pitch Acceleration Error Penalty Wvq̇ 200
Yaw Acceleration Error Penalty Wvṙ 2000
Thruster Use Penalty Wuj 1.0
Thruster Desired Value udj 0.0
Effector Constraint Penalty λL2 0, 1e9
L2 Acceleration Error Penalty γL2 1.0

The L2 control allocation optimization problem is solved with both the Quadratic

Control Allocation Toolbox using Weighted Least Squares (QCAT WLS) provided by

Härkeg̊ard in [18] and distributed allocation with Delayed Sampling Probability Col-

lectives (DSPC). DSPC is configured for the deca-rotor with 10 distributed agents,

nagent = 10, and T = 0.5, α = 0.001, γ = 0.03, with a stopping condition at 15

maximum iterations as provided in Table (6.3). The jth agent mixed strategy qj(xj)

used nmovesj = 1000 bins with m = 20 samples drawn per iteration. A numerical

trim solution is used to initialize all engines to a thrust value to balance the weight

of the vehicle in level hovering flight at simulation time t = 0. Each agent in DSPC

is initialized with this trim solution, u0, and the effector limits for DSPC are set to

bound u0 with u =

[
0.5 · · · 0.5

]′
and u = −u as search domain limits for the

optimal thrust solution.
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Table 6.3: DSPC Parameter Settings.

Parameter Variable Value
Number of Agents nagent 10
Maxent Lagrangian Temperature T 0.5
Probability Update Gain α 0.001
Data Aging Gain γ .03
Samples Drawn Per Iteration m 20
Iterations Per Frame nstep 15
Moves Per Agent nmovesj 1e3
Agent Effector Limit Constraint Gain η 0.1
Agent Effector Upper Limit u 0.5
Agent Effector Lower Limit u −u

6.2 Linear Control Effectivity, Nominal Case

After takeoff and climb to 1 m of altitude, the deca-rotor is commanded to four

waypoints in a racetrack pattern beginning with a translate left to waypoint 2, to a

forward translation to waypoint 3, and a translate right leg to waypoint 4. Finally, a

backwards translation brings the hovercraft to the initial position at waypoint 5 prior

to translation. Waypoints are programmed with three dimensional desired positions

as well as desired heading and time of acquisition as shown below in Table (6.4).

Table 6.4: Deca-rotor Flight Profile #1.

Waypoint ID x [m] y [m] z [m] ψ [deg] ta [sec]
1 0.0 0.0 1.0 0.0 5.0
2 -5.0 0.0 1.0 0.0 1.0
3 -5.0 5.0 1.0 0.0 1.0
4 0.0 5.0 1.0 0.0 1.0
5 0.0 0.0 1.0 0.0 1.0

Figure 6.5 compares the achieved trajectories using QCAT WLS as a centralized

control allocation method and DSPC as a distributed control allocation method for

the inner loop stability augmentation system. In this case where all motors behave
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nominally throughout the hovering mission, the trajectories correspond closely. After

takeoff from the initial condition shown at (0, 0, 0) m for x, y, and z, both QCAT

WLS and DSPC control allocation approaches complete the profile. Fig. 6.6 depicts

the time history form of the inertial translational and rotational position with ref-

erence commands. Other than a subtle difference in the recorded heading response

of the vehicle (with magnitudes less than .01 deg), the responses are nearly identi-

cal, demonstrating the distributed allocation approach successfully mimics the QCAT

WLS method.

The translational and rotational velocity vectors, expressed in the body frame

of the hovercraft, are presented in Fig. 6.7. Similar to the position data, responses

between the two allocation methods are nearly identical with the exception of the

pitch rate and yaw rate channel, where DSPC exhibits some higher frequency con-

tent due to increased effector activity, potentially mitigated with additional DSPC

parameter optimization to reduce agent strategy variances at the conclusion of each

DSPC instance1. Magnitudes for this difference are subtle for the yaw channel at less

than 0.02 dps. The pitch channel however is slightly noisier with peak differences in

q at approximately 0.5 dps.

The virtual control command request and actual response is presented in Fig. 6.8

for both DSPC and QCAT WLS. Clearly the source of higher frequency noise resides

in this inner loop acceleration channel where DSPC searches through the optimization

landscape. This response is also evident in Fig. 6.9 with the effector data for all

10 motors. After the initial transient to establish altitude after takeoff, average

thrust remains at approximately 60% throughout the mission entirety. Still, with only

m = 20 samples per iteration for 15 steps, the DSPC distributed allocation method

successfully stabilizes the deca-rotor and completes the mission. In future work,

1Reference DSPC T sensitivity and parameter optimization discussion in Ch. 5
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DSPC parameters listed in Table (6.3) may be further optimized to quiet effector

response to the level of QCAT WLS.

Finally, Fig. 6.10 presents the L2 objective cost as a function of time over the

mission duration. For legibility, the left column provides the first two seconds of time

history data due to the initial climb transient after takeoff while the right column

zooms to the remainder of the mission profile. DSPC accomplishes a similar average

cost to QCAT WLS with the exception of the higher frequency behavior evident in

the effector responses. Overall, the DSPC distributed allocation method accomplishes

inner loop stability for the deca-rotor and performs sufficiently, enabling mission

waypoint completion via the velocity and position tracking loops shown previously in

Fig. 6.1.
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Figure 6.9: Nominal Case: Effector Thrust Levels Using Distributed Control for
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Figures 6.11, 6.12, 6.13 present the agent strategies for DSPC during the initial

takeoff segment of the mission at t = 0 seconds for k = 1, 2, 15, respectively. After

initialization as uniform distributions at k = 1, the optimization iterations rapidly

provide a substantial increase in the probability bin heights and reduction in vari-

ance2. Fig. 6.14 depicts a time history view of the evolution of the expected value

of each strategy over multiple optimizations. The red line indicates the reset point

in between optimizations with 15 steps per optimization. These steps are set to de-

terministically align with the base execution rate of the simulation at 25 hz, and

the final expected value of the strategy is sampled and down-rated as the actuator

command to the engine3. In this evolution, each expected value initializes at zero

due to the initial symmetric uniform distribution, and then evolves to the minimizing

L2 solution. Likewise, in Fig. 6.15, the standard deviation is shown for the multiple

optimizations over the equivalent time history during the takeoff segment. In this

data, the standard deviation initializes high at the red line, again indicative of the

initial uniform distribution, and then reduces throughout the optimization in some

cases. Cases exhibiting an increase in standard deviation indicate a need for addi-

tional DSPC parameter optimization or lack of sufficient convergence and should be

investigated in future work.

2While the rapid change in probability bin height from k = 1 to k = 2 indicates early convergence,

this response also may be indicative of too high of a DSPC update gain α and will be explored in

future work.
3The DSPC distributed control allocation toolbox constructed in this work employs a high rate

for loop with a deterministic 15 step iteration within the 6DOF (Six Degree of Freedom) hovercraft

simulation executing at 25 hz. For real time deployment, each agent must process the local 15 step

optimization within the time window corresponding to the allocation execution rate. Therefore, in

this hovercraft application, ∆Tmax = .04 secs.
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Figure 6.13: Nominal Case: DSPC Agent Strategy, q(x) at k = 15, During Initial
Hovercraft Takeoff Climb
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ing Initial Hovercraft Takeoff Climb
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Figure 6.15: Nominal Case: DSPC Strategy Standard Deviation Evolution σ[q(x)],
During Initial Hovercraft Takeoff Climb
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6.3 Linear Control Effectivity, Failure Case 1

In this section, the equivalent deca-rotor model with linear control effectivity

matrix previously evaluated is simulated, with the exception of failed engine controller

#5 at t = 10 seconds simulation time when the hovercraft is translating through the

first leg of the mission to the second waypoint. Here, as simulated in Ch. 5, global

failure observability is not assumed. The on board model of the control effectivity

matrix, B, is not updated for either QCAT WLS or DSPC. The failure is modeled

as a local digital engine controller latching to a zero command, yielding an abrupt

decrease in thrust to 0%4.

Fig. 6.16 compares the achieved trajectories for QCAT WLS and DSPC. Imme-

diately after the failed engine, the QCAT WLS system loses stability and the vehicle

is lost with altitude dropping to 0 m. The DSPC distributed allocation system how-

ever maintains stability and completes the mission, although tracking performance is

degraded with increased deviation in the trajectory paths. Figs. 6.17-6.18 present the

time history tracking of the position and velocity states for both methods throughout

the failure scenario. Subsequent to the engine out, the DSPC rotational position and

velocity tracking exhibits increased activity as the system compensates for the failure,

also apparent in Fig. 6.19 in the virtual control commands.

Additional gain limiting and optimization in future work may quiet the post-

failure response. For example, rather than solely effector position and rate limiting,

the effective gain of the total solution can be computed and limited per the method

4The failure is modeled as agent #5 freezing computation with a stagnant local strategy. The

high rate distributed network bus continues to sample and provide an expected value of u−5 = 0 to

the remaining collective subsequent to t = 10 seconds simulation time per the Failure Scenario B as

detailed in Ch. 5.
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discussed by Bordignon and Bessolo in [17] to preserve structural coupling gain mar-

gin. This item is further discussed in Ch. 7 as a consideration for future work.

The key takeaway from this failure case result is the increased resiliency offered

by the distributed control allocation approach, apparent in Fig. 6.20 where DSPC

simply perceives the agent #5 command level at 0% as the expected value of the local

strategy for #5 and compensates with the remaining effectors accordingly. Finally,

Fig. 6.21 depicts the L2 objective value for the initial takeoff segment and through

the failure transient. Initially through the takeoff mission segment, both control

allocation methods compare in magnitude of L2 cost. The bottom row of plots shows

the difference in cost with a sign convention of the DSPC L2 minus the QCAT WLS

L2 cost. The right column of plots zooms on the time axis of interest about the failure

at t = 10 seconds simulation time. DSPC, in this case, maintains the average L2 cost

throughout the transitory period while the QCAT WLS L2 cost triples in magnitude

as the hovercraft destabilizes.
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Figure 6.17: Failure Case 1: Inertial Position Time History for Deca-Rotor Hover-
craft Comparing QCAT WLS Centralized Control Allocation and DSPC Distributed
Control Allocation
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Figure 6.18: Failure Case 1: Body Frame Velocity for Deca-Rotor Hovercraft Com-
paring QCAT WLS Centralized Control Allocation and DSPC Distributed Control
Allocation
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Figure 6.19: Failure Case 1: Virtual Control Performance Using Distributed Control
for Deca-Rotor Hovercraft Comparing QCAT WLS Centralized Control Allocation
and DSPC Distributed Control Allocation
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Figure 6.20: Failure Case 1: Effector Thrust Levels Using Distributed Control for
Deca-Rotor Hovercraft Comparing QCAT WLS Centralized Control Allocation and
DSPC Distributed Control Allocation
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Figure 6.21: Failure Case 1: L2 Objective Values Using Distributed Control for Deca-
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6.4 Linear Control Effectivity, Failure Case 2

This section simulates a second failure case where multiple engines are lost

throughout the mission to further demonstrate the robustness gained with distributed

control allocation. Engine #5, engine #8, and engine #1 fail at t = 10, t = 15, and

t = 20 seconds simulation time, respectively. While the distributed control alloca-

tion method maintains stability, tracking performance degrades noticeably as shown

in Fig. 6.22 where the trajectory deviates after waypoint 2. Additionally, with the

increased trajectory deviation, the navigational control law governing the waypoint

auto-sequencing increases the overall time to complete the mission at approximately

75 seconds simulation time, as opposed to less than 60 seconds for the single failure

case. This later sequencing is apparent in Fig. 6.23 where the dashed command refer-

ence lines transition at delayed times due to the increased deviation in position. After

the second failure on engine #8, the y position deviates off course by approximately

1.5 m. The third failure on engine #1 then occurs as the system is recovering the y

error and this response couples into a deviation on the x position. Altitude is main-

tained throughout the failure scenario, however, and after the course overshooting,

the distributed allocation control routine successfully returns the vehicle to the ini-

tial position. Figs. 6.24-6.25 present the time history of the deca-rotor velocity states

and virtual control tracking for both methods throughout the failure scenario. The

engine failures are presented in Fig. 6.26 with the remaining effector time histories.

Finally, Fig. 6.27 presents the L2 control allocation objective value for the initial

takeoff segment and through all failure transients. Interestingly due to the increased

activity post single-fail, the additional failures at t = 15 and t = 20 seconds are nearly

indistinguishable in terms of total magnitude of L2 cost.
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Figure 6.23: Failure Case 2: Inertial Position Time History for Deca-Rotor Hover-
craft Comparing QCAT WLS Centralized Control Allocation and DSPC Distributed
Control Allocation
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Figure 6.24: Failure Case 2: Body Frame Velocity for Deca-Rotor Hovercraft Com-
paring QCAT WLS Centralized Control Allocation and DSPC Distributed Control
Allocation

136



0 10 20 30 40 50 60 70 80 90 100

t [sec]

0

5

10

15

20

25

30

35

w
d
o
t,
 v

(t
) 

[m
/s

2
]

Virtual Control Command and DSPC Achieved

Requested Virtual Control v(t)
DSPC g(u,x,t) Achieved

0 10 20 30 40 50 60 70 80 90 100

t [sec]

-6

-4

-2

0

2

4

6

p
d
o
t,
 v

(t
) 

[r
a
d
/s

2
]

0 10 20 30 40 50 60 70 80 90 100

t [sec]

-2

-1

0

1

2

3

4

q
d
o
t,
 v

(t
) 

[r
a
d
/s

2
]

0 10 20 30 40 50 60 70 80 90 100

t [sec]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

rd
o
t,
 v

(t
) 

[r
a
d
/s

2
]

Figure 6.25: Failure Case 2: Virtual Control Performance Using Distributed Control
for Deca-Rotor Hovercraft Comparing QCAT WLS Centralized Control Allocation
and DSPC Distributed Control Allocation
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Figure 6.26: Failure Case 2: Effector Thrust Levels Using Distributed Control for
Deca-Rotor Hovercraft Comparing QCAT WLS Centralized Control Allocation and
DSPC Distributed Control Allocation
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6.5 Nonlinear Control Effectivity

This section incorporates a nonlinear control effectivity mapping that is a func-

tion of the vehicle states. Specifically, as the local velocity at each propeller on the

deca-rotor increases or decreases, thrust efficiency fluctuates. The total local velocity,

ulocjB ∈ <
3, is determined by both the translational velocity of the center of mass of

the vehicle, VB = [u v w]T ∈ <3, and the angular velocity of the rigid body, ωB as

ulocjB = −S(ωB)dj + VB (6.6)

where dj represents the lever arm distance from center of mass to the center of thrust

of the jth motor. Referencing [94], nonlinear thrust efficiency for the jth motor, ηj

can be modeled as a quadratic decreasing function with increasing local velocity.

However, in this study, the interest in thrust efficiency pertains to both increasing

and decreasing local velocity. For example, an angular velocity maneuver during a

zero translational rate hovering position will expose the retracting rotors on the body

to negative local velocities. Likewise, advancing rotors are exposed to an increase in

local velocity. This phenomenon is modeled with a notional relation for mapping the

normal component of the local velocity vector ulocjBz to nonlinear thrust efficiency ηj

as [94, 122, 123, 124, 125, 126]

ηj = max[−.12(ulocjBz − 0.3)2 + 1, 0.8] (6.7)

which is used as a multiplicative factor on actual thrust achieved for the hovercraft.

Fig. 6.28 depicts ηj as a function of ulocjBz .
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Each agent depicted previously in Fig. 6.1 now evaluates the nonlinear control

effectivity mapping, g, with the inclusion of ηj efficiencies in Eq. (6.7),

g(u, x, t) =

 1
m

∑N
j=1 FjzBηj

IB
−1
[∑N

j=1−S(dj)FjBηj + τjB

]
 (6.8)

For this testing, the waypoints were modified to include coupled navigational segments

where the hovercraft translates and turns during altitude maneuvers. The updated

waypoints are provided below in Table (6.5). After initial takeoff and climb to 1 m, a

forward translation is commanded concurrent with a second climb to 5 m. A lateral

translation is then commanded to -5 m during a descent to 1 m with a simultaneous

heading change to 90 deg.
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Table 6.5: Deca-rotor Flight Profile #2.

Waypoint ID x [m] y [m] z [m] ψ [deg] t [sec]
1 0.0 0.0 1.0 0.0 5.0
2 5.0 0.0 5.0 0.0 1.0
3 5.0 -5.0 1.0 90.0 1.0

The roll acceleration penalty, Wvṗ, was set to 170 as shown below in Table (6.6).

Two cases for DSPC are simulated and described below in Table (6.7) to enable

comparison for the distributed allocation performance with an increased number of

samples drawn per optimization step. Case one uses the default m = 20 and case two

decreases to m = 10 samples drawn per optimization step.

Table 6.6: L2 Control Allocation Optimization Weights for Nonlinear Effectivity.

Parameter Variable Value
Vertical Acceleration Error Penalty Wvẇ 200
Roll Acceleration Error Penalty Wvṗ 170
Pitch Acceleration Error Penalty Wvq̇ 200
Yaw Acceleration Error Penalty Wvṙ 2000
Thruster Use Penalty Wuj 1.0
Thruster Desired Value udj 0.0
Effector Constraint Penalty λL2 0, 1e9
L2 Acceleration Error Penalty γL2 1.0
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Table 6.7: DSPC Parameter Settings for Nonlinear Effectivity.

Parameter Variable Value
Number of Agents nagent 10
Maxent Lagrangian Temperature T 0.5
Probability Update Gain α 0.001
Data Aging Gain γ .03
Samples Drawn Per Iteration m 20, 10
Iterations Per Frame nstep 15
Moves Per Agent nmovesj 1e3
Agent Effector Limit Constraint Gain η 0.1
Agent Effector Upper Limit u 0.5
Agent Effector Lower Limit u −u

Fig. 6.29 presents the three dimensional inertial trajectory for DSPC distributed

control allocation with 20 versus 10 samples per optimization step with the nonlinear

control effectivity mapping. Both configurations accomplish the mission to takeoff

and capture the three waypoints in Table 6.6. The inertial position time history is

shown in Fig. 6.30. Translational state tracking nearly matches the DSPC-20 (20

samples per iteration) and DSPC-10 configurations, however the rotational position

data shows increased activity in φ and θ with the reduced samples. This difference

is also apparent in the body frame velocity time history comparisons in Fig. 6.31

with the p and q subplots. The corresponding inner loop virtual control commands

and effector data are presented for the two configurations in Fig. 6.32 and Fig. 6.33,

respectively. The local normal velocity at each effector and the effector efficiency is

given in Fig. 6.34 and Fig. 6.35. Here, the new mission profile with the climb and dive

segments is apparent as the efficiency gains for all propellers consistently drop below

1.0. Finally, the L2 costs are depicted in Fig. 6.36 for the two DSPC configurations

with 20 versus 10 samples per optimization step.
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Figure 6.30: Nonlinear Case: Inertial Position Time History for DSPC Distributed
Control Allocation with 20 versus 10 Samples per Frame
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Figure 6.31: Nonlinear Case: Body Frame Velocity for DSPC Distributed Control
Allocation with 20 versus 10 Samples per Frame
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Figure 6.32: Nonlinear Case: Virtual Control Performance Using Distributed Control
for DSPC Distributed Control Allocation with 20 versus 10 Samples per Frame
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Figure 6.33: Nonlinear Case: Effector Thrust Levels for DSPC Distributed Control
Allocation with 20 versus 10 Samples per Frame
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Figure 6.34: Nonlinear Case: Effector Local Normal Velocity for DSPC Distributed
Control Allocation with 20 versus 10 Samples per Frame
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Figure 6.35: Nonlinear Case: Effector Thrust Efficiencies for DSPC Distributed Con-
trol Allocation with 20 versus 10 Samples per Frame
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Figure 6.36: Nonlinear Case: L2 Objective Values Using Distributed Control for
DSPC Distributed Control Allocation with 20 versus 10 Samples per Frame
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter concludes with a summary of findings and notable results. Finally,

a future work road map is discussed in detail and enumerated at end of the section

for quick reference.

7.1 Conclusion

In this research, a novel approach to the control allocation problem for a dis-

tributed effector suite has been developed by leveraging Wolpert Probability Collec-

tives (PC). Both delayed and immediate sampling PC methods have been explored for

use as decentralized techniques for local agent optimization for an underdetermined

system, where centralized allocation may become intractable for a future generation

vehicle with a large number of effectors. Modifications have been integrated into

the delayed sampling PC (DSPC) approach with a technique to refine the sampling

domain; a mechanism to iteratively latch the best local agent strategy for the L2 con-

trol allocation optimization application; and a provision to use the expected value of

the agent strategy over the distributed network rather than a single sample. Results

from a recent construction of the tool set have been generated for a range of prob-

lems from simple unconstrained optimization to multi-dimensional control allocation

optimization with effector position and rate limits.

Both open loop and closed loop example applications have been evaluated with

the distributed control allocation method, with a range of off-nominal conditions ex-

plored from effector saturation to effector failures, with and without failure reporting.
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The distributed control allocation method designed in this work demonstrated a nat-

ural resiliency to failure, where local agents continue to optimize individual effector

position despite another engine failure, effector lockup, or the loss of a flight critical

centralized vehicle management system. The local agent simply continues nominal

optimization with the sampled strategy of other neighbors, regardless of their state

as failed or healthy, and uses this last reported value of the neighbors in local cost

evaluation.

Additionally, both linear and nonlinear control effectivity mappings have been

considered in this work. In cases with highly nonlinear or non-affine control effectivity

mappings, distributed control allocation with stochastic optimization via probability

collectives offers a clear benefit. Often, linearization may not be practical due to the

lack of availability of an analytic expression; processor expense for computing a finite

difference Jacobian for a large number of effectors; or even in cases where severe

nonlinearities preclude a valid linear approximation via finite differencing. In the

latter, traditional control allocation which typically requires linear control effectivity

mappings may fail to find a stabilizing solution, as demonstrated in this research.

Finally, a six degree of freedom simulation for a hypothetical hovering platform

with a distributed effector suite has been constructed in this work for evaluation with

a new toolbox for distributed control allocation. A 10 agent delayed sampling PC

approach was applied to a deca-rotor, with one agent per motor serving as a high

rate networked and distributed control allocation system. A traditional dynamic

inversion (input-output feedback linearization) approach was employed for the inner

loop closure, and classical proportional-integral-derivative control laws were used to

establish desired dynamics and tracking for the deca-rotor, including a navigational

outer loop for waypoint guidance and sequencing.
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Multiple challenges for using delayed sampling probability collectives as a dis-

tributed control allocation routine have been identified as a result of this research.

The most significant of these challenges is the (at times) difficult process of identifying

the best set of parameters for the optimizer. Exhaustive Monte-Carlo sweeps were

conducted with a matrix of varying parameters to search for the best performing set.

In some cases after optimization, agent strategies exhibit high variance leading to

excessive activity (on the contrary, the ability to observe the variance during control

allocation is also a useful feature for determining health of the system). Addition-

ally, the current implementation of DSPC on a single computer workstation requires

additional computational processing to handle the significant number of function eval-

uations required for the optimization. Without embedding the algorithm to multiple

processing cores, or multiple hardware targets, parallel processing benefits are ex-

pected, but have not been substantiated. Finally, the implementation of DSPC in

this work employs a high rate network bus to allow all iterations to complete for the

optimization in between discrete execution frames of a stability augmentation system

(SAS), a potential challenge for practical use. If the SAS inner loop system executes

at 100 hz, the DSPC high rate network bus must complete the maximum number of

optimization iterations (or converge to a stopping tolerance) within .01 seconds.

7.2 Notable Results

In summary, the following notable results have been accomplished in this re-

search

i. Distributed architecture for control allocation and inner loop stabilization: em-

ploying Wolpert probability collectives as a novel control allocation toolbox en-

ables a decentralization of the modern day flight control computer, effectively
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increasing resiliency by moving primary inner loop functionality to the local ef-

fector scope as an actuator or engine digital controller.

ii. DSPC Control Allocation enables online evaluation of nonlinear control effectiv-

ity: typical control allocation methodologies to date require linearization of the

control effectivity matrix or mapping, requiring online finite differencing or the

evaluation of a linearized analytic expression, introducing computational expense

or noise in Jacobian formulation and the loss of potentially critical nonlinearities

for the stabilizing effector solution. The distributed control allocation method

designed in this work, however, circumvents these issues by making use of the

nonlinear control effectivity mapping for agent cost evaluation throughout the L2

optimization process.

iii. MATLAB Simulink R© toolbox allows rapid integration into future studies: this

work has constructed a Simulink library that leverages model referencing and

embedded code to create a drag and drop control allocation block for the control

law designer. The nonlinear control allocation routine is loaded into the refer-

enced model for all agents to evaluate throughout the optimization process. The

distributed architecture of the algorithm is apparent by inspection of the model

diagram and is conducive to deployment to an implementation on hardware with

local processors per agent and a physical network. At the time of this work,

the physical network constitutes a complete graph where the expected value of

each strategy is shared for the collective, although future work may reduce this

requirement further as discussed ahead.

iv. Generic Hovercraft simulation with dynamic inversion scheme: a model environ-

ment has been constructed to allow rapid analysis and simulation for a hovering

platform with a specified number of effectors. The current implementation applies

a radial distribution of the engine locations over a 2π rotation with respect to the
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center of mass, although this can be modified to any geometry of interest. After

setting mass properties of the vehicle, the simulation tools linearize and extract

the control effectivity mapping for controllability checks and for implementation

into linear control allocation tools (e.g. the Quadratic Control Allocation Toolbox

by Härkeg̊ard using weighted least squares with constraints) for comparison to

the distributed approach. The inner and outer loop control system architecture

employing dynamic inversion can be used interchangeably with various hovercraft

concepts.

7.3 Future Work Road Map

As with many research endeavors, this investigation has addressed specific ques-

tions, and along the way, has identified a multitude of new questions, creating a rich

environment for future study and contribution. The purpose of this section is to pro-

vide an outlook on these potential items in a future work road map for consideration

with efforts ahead.

Future work involving higher dimensional examples with noisy and potentially

discontinuous objectives is warranted. For example, a mechanical hysteresis with an

actuator could be problematic for typical optimization routines requiring a smooth

landscape. This work has focused on the L2 norm for the control allocation opti-

mization problem and future work should include other types of norms, L1 and L∞.

Additionally, the objective function may have internal states in the high rate cost

forecasting for each agent. The potential for state inclusion could allow including

actuator dynamics and other predicted vehicle responses in order to improve agent

compensation for the actual achieved response with respect to the commanded action.

Methods for algorithm parameter optimization for various applications should

be investigated in order to quicken convergence, reduce variance, improve robustness,
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and facilitate the use of Probability Collectives methods for other applications. In

the two dimensional case (with two agents), the L2 and Maxent Lagrangian cost can

be viewed as a three dimensional surface or contour plot as a technique to facilitate

choosing the appropriate algorithm values for temperature and probability distribu-

tion update rate. However, for higher dimensional examples, these selections become

more complex, and additional insight into the approximate values or even bounds

for convergence will be helpful in future applications. One potential investigation

could be to bound algorithm parameter selections as a function of expected maxi-

mum change in the expected objective, barring computational limits for making this

determination. For example, the probability update law in DSPC includes a propor-

tional gain multiplied by the difference in the objective function. Considering these

maximum computable differences in the objective function may allow for an ana-

lytical selection of the required gain for convergence within an acceptable duration.

Another trade study could consider longer optimization cycles with reduced samples

drawn per iteration. Ultimately, a superior performing approach minimizes the total

number of objective evaluations throughout the optimization.

Advanced adaptive sampling techniques should be explored from more recent

literature on Probability Collectives to further improve convergence times. Rather

than a fixed domain search, prior work investigated an adaptation throughout the

agent optimization process by centering the domain about the expected value of the

strategy and shrinking the overall interval at a fixed rate. Rather than solely con-

sidering a deterministic shrink rate for the domain, this work explored modifying

the sampling domain as a function of the variance of the current probability distri-

bution. An alternative potential direction could be to initialize the search domain

with a coarse set of bins, where the domain bin represents a discretized axis of agent

actions for the effector commands. Performance may be increased by refining this
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discretization accordingly throughout optimization. For example, probability bins

that do not increase in height throughout iteration may remain wide, alleviating ad-

ditional computation with a reduction in required objective evaluations. However,

bins that exhibit higher probability may be split to allow additional resolution into

the specific action. Additional work on this front may further improve convergence

time and accuracy of the final solution.

Observability studies with additionally constrained network topologies should

be considered where inter-agent communication exists on non-complete graphs. In

this work, the expected value of the strategy for all agents is shared over a high rate

network bus, constituting a complete graph as the network topological adjacency

matrix. Every agent observes the strategy of the entire collective. Relaxing this re-

quirement will improve the practicality of this distributed control allocation method

and is intuitive for task dependent control allocation requirements. For instance,

often in parallel processing systems, a clustering approach is leveraged where sub-

groups are allocated rather than every computational node. In this case, the network

topology is governed by the boundary conditions between clusters. For example, a

span-wise distribution of engines for yaw control could warrant subgroup clustering

where perhaps a more efficient distributed allocation routine commands four groups of

engines rather than each individual agent. In this hypothetical case, perhaps only the

outboard starboard engine cluster communicates directly with the inboard starboard

engine cluster. Likewise, the port side of the aircraft would mirror this connectivity

with the outboard and inboard clusters. To achieve consensus over the collective,

naturally, the two inboard clusters would require a communication edge to formulate

a spanning tree topology. Finally, often designers choose between scheduling versus

allocating effectors in complex hybrid mixer schemes. Allocated groups communicat-
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ing with scheduled groups will involve varying communication topologies and should

be considered.

Also, in this work, a model of the vehicle control effectivity mapping is as-

sumed to be known a priori. This perfect model is evaluated by each agent during

the distributed optimization process1. Valuable future work would be to relax this

assumption and incorporate non-perfect models with estimation techniques to ac-

commodate error. Additionally, each individual effector currently employs a model

of the global mapping for the vehicle. A geometrical distribution of effectors over an

aerospace planform invites the research topic of local estimation at the agent scope,

as well as local variability. In the latter case, a localized sensor suite may further

improve the ability to refine the individual control effectivity mapping for deviations

that occur with respect to location on the vehicle body.

The distributed control allocation method in this work solves a new optimiza-

tion problem at every major time step in the simulation, which in the deca-rotor

hovercraft simulation here, executes at a 25 hz frequency. At each step, the DSPC

algorithm initializes all agent strategies to uniform probability distributions within

the specified search bounds, governed by the effector position limits. Each optimiza-

tion instance, therefore, is independent from the prior optimization2. Future research

on a smart initialization feature may offer a substantial improvement in performance

and algorithm convergence time. For example, rather than initializing all strategies

to uniform distributions, the agent probability distributions could be seeded with

a mean and variance to favor the unconstrained analytical weighted least squares

1The perfect control effectivity model at the agent scope represents the identical effectivity map-

ping used in the equations of motion for the hovercraft dynamical simulation.
2All parameters are independent in each DSPC instance other than the prior values of the effector

positions used for the computation of effector rate limits.
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(WLS) solution if a form of the linear B control effectivity matrix is available. The

WLS solution with effector position and rate limit constraints is the computational

bottleneck typically, and employing the initial unconstrained analytical solution may

offer a rapid method to seed DSPC and yield superior convergence. Alternatively, if

the B matrix is unknown, a smart initialization method could be explored with a hy-

brid use of the ISPC (Immediate Sampling Probability Collectives) method explored

in this work. In this latter case, ISPC essentially seeds the DSPC probability search

space with Gaussian distributions, which should offer a head start over a uniform

distribution initialization.

The constrained optimization problem solved in this work includes both effector

position and rate limits in the search for the minimizing solution to the L2 objective.

However, future work should also investigate the inclusion of an additional constraint

for limiting the effective gain of the solution. Real time control allocation is known

to include an effective gain, and may be dynamic and a function of failure condition,

flight condition, and other factors. Provisions should be investigated to limit excessive

gain amplification, especially in the case of failure, in order to prevent degradation of

closed loop stability margin.

Future research potential exists in the direction of distributed control allocation

as a means for run time assurance, an online method for guaranteeing safety and certi-

fication properties of a complex aerospace system. This topic is a commonly discussed

avenue today in the field of next generation aerospace control systems, specifically

with adaptive methodologies that involve nondeterministic behavior. Traditional soft-

ware validation and verification becomes nearly infeasible in these circumstances, and

a system that exhibits self-monitoring and the ability to detect and adapt to health

issues may be the key. In this regard, the distributed control allocation methods

developed in this work may not necessarily alleviate a centralized flight control ap-

160



proach, but instead, complement the system as a real time monitor and contingency

option.

Finally, the distribution of the flight control process requires increased commu-

nication, however this bus does not have to be a physical entity, opening the door for

a future research topic where multiple wireless agents reconfigure to achieve a team

objective. For instance, multiple agents can work collectively to accomplish a task of

moving a heavy object as the primary planform of a hovercraft. After attaching to

the heavy load and continually communicating via a wireless network, the collective

task is accomplished by distributed control allocation to lift, translate, and set down

the load.

This section has provided a detailed set of recommended future research paths.

For convenience, the following list provides a brief description of each of major topics

delineated:

i. Other optimization objectives including noise and discontinuities, L1 control al-

location optimization, projection of actuator dynamical response

ii. Automated parameter tuning methods

iii. Adaptive sampling intervals

iv. Reduced agent network topologies and hybrid mixer schemes with scheduled vs

allocated effectors

v. Objective estimation and variation at the local agent scope

vi. Smart initialization: analytical weighted least squares solution if available, or

Immediate Sampling Probability Collectives method as DSPC seed

vii. Inclusion of gain limiting provisions into distributed control allocation method

viii. Distributed control allocation as a run time assurance system
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APPENDIX A

Derivation of Equations of Motion for a Distributed Effector Suite
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A.1 Equations of Motion for Distributed Effector Suites

This section presents the equations of motion for a distributed propulsion ve-

hicle. Beginning with first principles for a rigid body, Newton’s 2nd law of motion

governs the motion of the vehicle with respect to a non-accelerating, inertial frame

of reference as depicted in Fig. A.1 below and illustrated in detail in [99, 100] by

Roskam and McRuer.

Figure A.1: External Action Vectors Defined with Respect to an Inertial Frame for
Newtonian Equations of Motion of a Rigid Body

The external action vectors, acting on the rigid body, are categorized as trans-

lational force, ~F , and angular torque or moment, ~M , and are often conveniently

represented (expressed) in the body frame of reference. By the 2nd law of Newton,

the time rate of change of the translational momentum, ~P = mVc, equals the sum

of the translational forces, ~F acting on the body, where m is the total mass of the

body and ~Vc is the inertial velocity vector of the center of mass. Likewise, the time
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rate of change of the rotational momentum, ~H = I~ω, equals the sum of the rotational

moments, ~M acting on the body, where I is the inertia matrix of the hovercraft.

~F =
d

dt
(~P ) =

d

dt
(m~Vc)

~M =
d

dt
( ~H) =

d

dt
(I~ω)

(A.1)

A.1.1 Translational Dynamics

Considering N total infinitesimal elements of the complete rigid body vehicle,

the jth mass, δmj, and resultant force on the element, δ ~Fj, is depicted in Fig. A.2.

The total force on the vehicle is the summation over the number of infinitesimal

elements as written below.

Figure A.2: Infinitesimal Mass Element of Rigid Body

~F =
N∑
j=1

δ ~Fj (A.2)

Typically, the time rate of change of mass (i.e. ṁ due to fuel burn for instance) of an

atmospheric vehicle is neglected in a maneuvering and agility design study, since the

more relevant stability and control dynamics occur at a significantly higher frequency

[99, 100]. Dogan and Blake in [93] provide detailed derivation on the equations

of motion for a vehicle with a time varying mass conglomerate, where fuel burn or
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addition is accounted with a complex body of multiple components, beyond the scope

of the present work. In the case of neglecting mass time variance, and considering

only a single rigid body, Eq. (A.1) is further simplified to the regularly encountered

Newton form with all vectors defined and expressed in the inertial frame as

~F = m~̇V (A.3)

where m represents the complete mass of the rigid body, and V with the dropped c

subscript for brevity represents the inertial velocity vector of the center of mass.

In order to facilitate modeling of the vehicle for simulation and study, the

equations are (i) transformed and expressed in the body frame of the vehicle; and (ii)

abbreviated into matrix form using skew symmetric operations [127, 128]. The skew

symmetric matrix definition S(a) enables writing a× b = −S(a)b and is defined as

S(a) =


0 a3 −a2

−a3 0 a1

a2 −a1 0

 (A.4)

where a = [a1 a2 a3]T ∈ <3 is an expression of vector ~a in a coordinate frame of

interest. Eq. (A.3) is now rewritten as

F = mV̇ (A.5)

with V = [ẋ ẏ ż]T ∈ <3 and F = [Fx Fy Fz]
T ∈ <3. The dynamics are transformed

to a body frame expression using the general Euler equation for relative motion [129]

V̇ = V̇B − S(ωB)VB (A.6)

where VB = [u v w]T ∈ <3, and ωB = [p q r]T ∈ <3. Substituting into Eq. (A.5),

fB = m
[
V̇B − S(ωB)VB

]
(A.7)
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fB represents the inertial force vector in Eq. (A.1) now expressed in the body frame

of the vehicle and includes all external forces on the rigid body from aerodynamics,

gravity, propulsion, and effectors. For the purpose of this research effort with an

application to a distributed propulsive hovercraft, external forces are described as the

summation of the inertial gravity vector g plus the FB contribution of the propulsive

effectors, Rmg +
∑N

j=1 FjB, where g = [0 0 g]T , and R is the 321 Euler Rotation

Matrix from the Inertial Frame to the Body Frame as 1

R =


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


Including this description as the summation of body forces to facilitate an equa-

tion for a distributed effector suite, and rearranging to yield acceleration on the left

hand side of the equation, the general vector form for the translational dynamics of

the rigid body is

V̇B = Rg + S(ωB)VB +
1

m
FB (A.8)


u̇

v̇

ẇ

 = Rg +


0 r −q

−r 0 p

q −p 0



u

v

w

+
1

m

N∑
j=1

FjB (A.9)

A.1.2 Rotational Dynamics

In a similar approach as depicted for the translational dynamics , the rotational

dynamics are expanded for an infinitesimal element mass over the complete rigid

body, enabling accommodation for multiple external forces and torques, as detailed

in [93, 99, 100]. The time rate of change of the angular momentum vector, ~̇H in

1Prior indices are redefined to represent the jth of N total effectors in a distributed effector suite.
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Eq. (A.1) is transformed to be expressed in the body frame of the vehicle, again using

the general Euler equation for relative motion [129]

MB = ḢB − S(ωB)HB (A.10)

Approximating the body frame hovercraft inertia matrix as time invariant and ex-

panding ḢB with the chain rule,

ḢB = İBωB + IBω̇B

= IBω̇B

(A.11)

Substitution into Eq. (A.10) yields

MB = IBω̇B − S(ωB)HB (A.12)

The external moments on the hovercraft are written as the summation of cross prod-

ucts of each engine geometrical lever arm, dj, with respect to the center of mass with

the thrust vector, yielding the inertial torque contribution from each engine, τ jB,

MB =
N∑
j=1

[−S(dj)FjB + τjB] (A.13)

Writing in skew symmetric matrix form, the angular acceleration of the vehicle ex-

pressed in the body frame is

ω̇B = I−1
B

{
S(ωB)IBωB +

N∑
j=1

[−S(dj)FjB + τjB]

}
(A.14)

Finally, the expanded equation describes the governing Rotational Dynamics equa-

tions of the hovercraft
ṗ

q̇

ṙ

 = I−1
B




0 r −q

−r 0 p

q −p 0

 IB


p

q

r

+
N∑
j=1

[−S(dj)FjB + τjB]

(A.15)
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A.1.3 Translational Kinematics

The translational kinematics are written as the body frame represented velocity

vector transformed by the Euler 321 rotation matrix transpose from body frame to

inertial frame as

V = RTVB (A.16)

A.1.4 Rotational Kinematics

The rotational kinematics of the hovercraft vehicle are defined with respect to

the inertial frame as

Ṙ = S(ωB)R (A.17)

The left hand side of this equation is the derivative with respect to time of the Euler

321 Rotation matrix Ṙ ∈ <3x3 and yields a set of nine scalar equations which can be

algebraically solved for the inertial angular velocity vector (Euler attitude rates).

φ̇ = p+ tan θ(q sin θ + r cosφ)

θ̇ = q cosφ− r sinφ

ψ̇ =
1

cosφ
(r cosφ+ q sinφ)

(A.18)
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B.1 Weighted Least Squares Analytic Solution to L2 Linear Control Allocation

This section presents the derivation of the analytic solution to the L2 linear

control allocation problem where the mixed optimization objective describes the error

with respect to the requested virtual command, and the magnitude of effector position

required with respect to a desired position, ud. This solution is valid for cases that

do not exceed actuator constraints. The mixed optimization objective and Euclidean

L2 norm as described in Ch. 3 as [108]

L2 = ||Wu(u− ud)||2 + γ||Wv(Bu− v)||2 (B.1)

can be written in vector and matrix operation format,

L2 =
1

2

[
(u− ud)

TWu(u− ud) + γ(Bu− v)TWv(Bu− v)
]

(B.2)

Expanding,

L2 =
1

2

(
uTWuu− uTWuud − ud

TWuu + ud
TWuud

)
+

1

2
γ
(
uTBTWvBu− uTBTWvv − vTWvBu + vTWvv

)
=

1

2

[
uTWuu− uTWuud −

(
ud

TWuu
)T

+ ud
TWuud

]
+

1

2
γ
[
uTBTWvBu− uTBTWvv −

(
vTWvBu

)T
+ vTWvv

]
(B.3)

Due to the symmetric property of the effector and acceleration penalty matrices,

Wu = Wu
T and Wv = Wv

T ,

L2 =
1

2

(
uTWuu− 2uTWuud + ud

TWuud
)

+
1

2
γ
(
uTBTWvBu− 2uTBTWvv + vTWvv

) (B.4)

As a necessary condition for optimality, ∇uL2 = 0. From Eq. (B.4),

∇uL2 = 0 =Wuu−Wuud + γBTWvBu− γBTWvv

=Wu(u− ud) + γBTWv(Bu− v)

(B.5)
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Solving for the L2 minimizing control effector solution, u,

Wuud + γBTWvBv =
[
Wu + γBTWvB

]
u (B.6)

Therefore,

u =
[
Wu + γBTWvB

]−1 (
Wuud + γBTWvv

)
(B.7)

assuming
[
Wu + γBTWvB

]
is invertible. Finally, as a sufficient condition for opti-

mality, ∇u
2L2 should be positive definite.

∇u
2L2 = Wu + γBTWvB (B.8)

Given positive definiteness of Wu, γ, B, and Wv, clearly ∇u
2L2 > 0.

A notional L2 objective surface is depicted for a two-effector example in Fig. B.1

with B =

[
0.6892 0.7482

]
, Wu = I ∈ <2×2, and Wv = γ = 1. Fig. B.2 presents a

contour plot of the L2 cost with numerical isolines. Given a desired virtual command,

v = 1, the satisfying solution u2 = 1
B12

(v − B11u1) can be computed exhaustively

for the effector domain of interest, u1 ∈ [−10, 10]. Finally, the analytic solution in

Eq. (B.7) depicts the required u1 and u2 effector positions to satisfy the desired virtual

command request while minimizing the L2 objective cost.
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Figure B.1: Notional Two-Effector Example of L2 Control Allocation Objective
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Figure B.2: Notional Two-Effector Example L2 Contour Plot with Analytic Solution
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C.1 Nearest Newton Second Order Simplex Constrained Gradient Descent

This section presents the derivation of the Nearest Newton Second Order Sim-

plex Constrained Gradient Descent (NN SOSCGD) update law for the agent proba-

bility distribution.

Given the Maxent Lagrangian defined as

L(p, T ) = Ep(G)− T [S(p)] (C.1)

where

Ep(G) ≡
∫
D

p(x)G(x)dx (C.2)

denotes the expected value of the objective function G, evaluated over the joint prob-

ability distribution p over a continuous domain Lebesgue integral, D. Writing in

discrete form, to facilitate implementation into an embedded software system, the

expected value is written as

Ep(G) ≡
nmoves∑
j=1

p(xj)G(xj) (C.3)

The Shannon relative entropy in Eq. (C.1) is written as

S(p) = −
∫
D

p(x) ln p(x)dx (C.4)

with discrete form,

S(p) = −
nmoves∑
j=1

p(xj) ln p(xj) (C.5)

For illustration of the gradient with a simple scalar form, for the interim, consider a

discrete point sum with nmoves = 2. The expected value of the probability distribution

can then be written as

Ep(G) = p(x1)G(x2) + p(x2)G(x2) (C.6)
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and the Shannon relative entropy is

S(p) = −p(x1) ln p(x1)− p(x2) ln p(x2) (C.7)

Substituting Eqs. (C.6-C.7) into Eq. (C.2), the Maxent Lagrangian is written in

expanded form as

L(p, T ) = p(x1)G(x1) + p(x2)G(x2)− T [−p(x1) ln p(x1)− p(x2) ln p(x2)] (C.8)

Defining ∇p(xj)L(p, T ) ≡ ∂L(p,T )
∂p(xj)

, and writing the gradient

∇p(x1)L(p, T ) = G(x1)− T
[
− ln p(x1)− p(x1)

1

p(x1)

]
= G(x1) + T [ln p(x1) + 1]

(C.9)

Likewise, the Hessian is defined as ∇2
p(xj)

L(p, T ) ≡ ∂2L(p,T )
∂p(xj)2

∇2
p(x1)L(p, T ) = T

1

p(x1)
(C.10)

Crassidis and Junkins describe the second order Gauss-Newton parameter optimiza-

tion method employed here in [108] where the Lagrangian L(p, T ) is approximated

about p(xo) with a second order Taylor series as

L(p, T ) ≈ L[p(xo), T ] + ∆p∇p(xo)L(p, T ) +
1

2
∆p2∇2

p(xo)L(p, T ) (C.11)

where ∆p ≡ p∗(xo)− p(xo). As a necessary condition of optimality, ∇∆pL(p, T ) = 0,

∇∆pL(p, T ) = 0 = ∇p(xo)L(p, T ) + ∆p∇2
p(xo)L(p, T ) (C.12)

and a sufficient condition for a global minimum is a positive definite Hessian

∇2
p(xj)

L(p, T ) > 0, which has already been shown in Eq. (C.10) with a positive T and

valid probability distribution, p. From Eq. (C.12), the Gauss-Newton update law is

derived as

∆p = −
[
∇2
p(xo)L(p, T )

]−1∇p(xo)L(p, T ) (C.13)
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Substituting the gradient and Hessian and expanding ∆p about x = x1,

p∗(x1)− p(x1) = −
[

T

p(x1)

]−1

{G(x1) + T [ln p(x1) + 1]} (C.14)

Therefore,

p∗(x1) = p(x1)−
[
p(x1)

T

]
{G(x1) + T [ln p(x1) + 1]}

= p(x1)− p(x1)

[
G(x1)

T
+ ln p(x1) + 1

] (C.15)

Wolpert and Bieniawski in [57, 58, 59, 60] include a proportional step size, α in

the update law to throttle the agent from updating the strategy too fast. Also a

normalization constraining factor λ = S(p) − 1 − 1
T
Ep(G) is included to constrain

the strategy to simplex as

p∗(x1) = p(x1)− αp(x1)

[
G(x1)

T
+ ln p(x1) + 1 + λ

]
= p(x1)− αp(x1)

[
G(x1)

T
+ ln p(x1) + 1 + S(p)− 1− 1

T
Ep(G)

]
= p(x1)− αp(x1)

[
1

T
{G(x1)− Ep(G)}+ ln p(x1) + S(p)

] (C.16)

Finally, the update law is written with the minimizing solution to the KL(p||q)

distance in

KL(p||q) =S(p||q)− S(p)

=−
nagent∑
i=1

∫
D

p(x) ln [qi(xi)] dx
(C.17)

with qi = pi,∀i. Therefore, the final second order simplex constrained gradient

descent (SOSCGD) probability distribution update law can now be written in general

for the ith action of the jth agent,

q∗j (xi) = qj(xi)− αqj(xi)
[

1

T
{G(xi)− Eq(G)}+ ln qj(xi) + S(qj)

]
(C.18)
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D.1 Agent Sampling Interval Refinement

Kulkarni et al in [61, 82, 83, 84, 85] present a domain shrinking method for

refining the sampling interval in a modified DSPC optimization process for improved

algorithm performance. Throughout iteration, the ith agent sampling interval is re-

duced and centered with respect to the best action, x∗i . Kulkarni defines the sampling

domain of the agent as ψi ∈ [ψloweri , ψupperi ] and introduces a new evaluation step in

the baseline DSPC process to update ψi as a function of x∗i as the following [61]

ψloweri = x∗i − λdown||ψ
upper
i − ψloweri ||2

ψupperi = x∗i + λdown||ψupperi − ψloweri ||2

ψi ← [ψloweri , ψupperi ]

(D.1)

where 0.0 < λdown ≤ 1.0. In this work, the predetermined number of iterations set

for DSPC combined with this refinement method essentially locks the final sampling

domain ψi to a fixed interval given a specified λdown, regardless of convergence or

algorithm performance1. As an alternative, a sampling interval refinement scheme

accounts for the variance in the strategy as a recursive update. Additionally, the

sampling domain is prevented from increasing beyond the original specified search

bounds. A proportional gain Kσ is used to refine the level of refinement throughout

the optimization as follows

ψloweri ← max

[
x∗i −Kσ

∫
D

[(xi − µi)2pi(xi)]dxi, ψ
lower
i

]
ψupperi ← min

[
x∗i +Kσ

∫
D

[(xi − µi)2pi(xi)]dxi, ψ
upper
i

]
ψi ← [ψloweri , ψupperi ]

(D.2)

1This work employs a deterministic number of iterations for DSPC in order to ensure the dis-

tributed control allocation method meets an allotted computational processing time for a stability

augmentation system loop closure.
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For comparison of the two refinement methods, the two dimensional quadric example

from Ch. 4 is repeated here with minx,yG(x,y) = (x − 50)2 + (y + 50)2. DSPC is

employed with T = 0.1, α = 0.01, γ = 0.02, and with two agents, nagent = 2, with

x1 ≡ x, x2 ≡ y. The stopping condition is set to a maximum step size of 15 iterations,

with 5000 bins, nmovesi = 5000, defining the agent mixed strategy, qi(xi). 100 samples

per iteration (m = 100) are drawn from the current strategy. Fig. D.1 depicts the

Kσ refinement approach in Eq. (D.2) exhibits an improved sampling domain in this

example, given the parameter set and number of allowed iterations.
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Figure D.1: DSPC Agent Sampling Interval Refinement Comparison for λdown = 0.6
Method and Kσ = 2.5 Method
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E.1 Multiple Extrema

This section demonstrates the delayed sampling probability collectives method

on a one dimensional example with two global minima. Consider the one dimensional

optimization problem,

min
x
G(x) = (x− 10) sin[.65(x− 10)] (E.1)

defined over the domain of x ∈ [0, 20]. DSPC is employed with T = 1.0, α = 0.2,

γ = 0.3, and with one agent, nagent = 1, with x1 ≡ x. The stopping condition is set

to a maximum step size of 50 iterations, with 3000 bins, nmovesi = 3000, defining the

agent mixed strategy, qi(xi). 100 samples per iteration (m = 100) are drawn from

the current strategy1. Fig. E.1 depicts the final results of the optimized strategy with

the correctly identified extrema x∗ equal to 2.47 and 17.5.
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Figure E.1: DSPC for Objectives with Multiple Extrema

1In this example, the agent is configured to return samples from the final optimized strategy

qi(xi) rather than solely the expected value of the strategy E[qi(xi)]. Clearly, returning E[qi(xi)]

is an insufficient approach for objectives with multiple extrema.
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F.1 Agent Network Connectivity

In discrete time consensus theory, the state of the ith networked agent updates

as a difference equation which is a function of the prior state and the states of the

surrounding neighbors,

xi(k + 1) = xi(k) + ui(k) (F.1)

ui(k) is described as the normalized local voting protocol controlling the consensus of

the collective, as given by Lewis et al in [130]. Expanding the local voting protocol,

ui(k) =
1

1 + di

∑
j∈Ni

aij[xj(k)− xi(k)] (F.2)

di is the in-degree of node i (i.e. the number of input connections from other agents)

with a neighborhood of dependencies Ni. The element of the adjacency matrix, aij,

represents the connection between agent i and agent j, and finally, the xi(k) and

xj(k) represent the state of agent i and j at discrete time k, respectively. Factoring

xi(k) and rewriting Eq. (F.2),

ui(k) =
1

1 + di

[
−xi(k)

∑
j∈Ni

aij +
∑
j∈Ni

aijxj(k)

]
(F.3)

Given the in-degree matrix, D ∈ <nagent×nagent of the collective system as

D =
∑
j∈Ni

aij (F.4)

the normalized local voting protocol is written in matrix form for the collective with

adjacency matrix A ∈ <nagent×nagent as

u(k) = (I + D)−1 [−Dx + Ax]

= −(I + D)−1 [D−A] x

= −(I + D)−1Lx

(F.5)

where u,x ∈ <nagent and L = D − A is described as the Laplacian matrix of the

network, with eigenvalues describing the consensus stability of the continuous system.
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Considering Eq. (F.5) in matrix form with these definitions, and substituting the

normalized local voting protocol yields

x(k + 1) = x(k) +−(I + D)−1 [L] x(k)

=
[
I− (I + D)−1L

]
x(k)

= (I + D)−1 [(I + D)− L] x(k)

= (I + D)−1 [(I + D)− (D−A)] x(k)

= (I + D)−1 [I + A] x(k)

(F.6)

Denoting F = (I + D)−1 [I + A] ∈ <nagent×nagent as the discrete time synchronization

matrix, the global dynamics for the collective are then described by the closed loop

equation

x(k + 1) = Fx(k) (F.7)

Given solely the network topology with adjacency matrix, A, the consensus dynamics

and settling time of a network can be considered by computing the in-degree matrix D,

Laplacian matrix L, and discrete time synchronization matrix F. Time to consensus

for a network topology is described by the inverse real component of the Fiedler or

algebraic connectivity eigenvalue, τ = <[λ−1
2 ], where λ2 is computed as the second

smallest eigenvalue in the normalized Laplacian matrix, L̄ = I−D−1A [130]1.

Fig. F.1 presents the complete graph network topology used in this study with

10 distributed agents, nagent = 10. The adjacency matrix for this system is given by

1The smallest eigenvalue must be at 0.0 in order for the collective to reach steady state consensus,

while the Fiedler eigenvalue governs the lowest frequency dynamical response of the system [130].
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Acomplete =



0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0



Ones represent connectivity between agents where information is shared. For

example, row one indicates that the first agent sends the expected value of the local

strategy to all other agents. Column one indicates the first agent receives expectations

of strategies for all other agents. The zero diagonal terms indicate the agent does not

self disagree, also reflected in Eq. (F.3) which equals zero for j = i.

For simulation with a notional DSPC implementation, an agent probability

update gain is assumed as a multiplicative term on all edges of the adjacency, αA.

The adjacency matrix governs the distributed control allocation method in terms of

the information flow over the collective, where the information in this case represents

the optimal action for all agents to perform in order to minimize the L2 objective.

Consensus results are depicted in Fig. F.2 for the complete graph topology with

α = 0.5, yielding τ = 0.9 secs. In this example, the system converges to consensus

rapidly in less than three iterations, bounding the best case response for distributed

control allocation2.

2The consensus analysis techniques in this appendix can be used to explore if the network con-

nectivity of the collective is a limiting factor for the consideration of nsteps, α strategy proportional

update gain, and other DSPC parameters.
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Figure F.1: Network Topology of Complete Graph (10 Agents)
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Figure F.2: Discrete Time Consensus Simulation for 10 Agent Complete Graph Sys-
tem
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Two additional example topologies are included below to illustrate the potential

impact on consensus of a distributed system and the importance of sufficient iteration:

(i) spanning tree with adjacency Atree and τ = 5.5 secs as presented in Figs. F.3-F.4;

and (ii) directed gossip ring with adjacency Agossip and τ = 5.3 secs in Figs. F.5-F.6.

Atree =



0 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

1 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0



Agossip =



0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0


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Figure F.3: Network Topology of Spanning Tree Graph (10 Agents)
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Figure F.4: Discrete Time Consensus Simulation for 10 Agent Spanning Tree Graph
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Figure F.5: Network Topology of Directed Gossip Ring Graph (10 Agents)

0 2 4 6 8 10 12 14 16 18 20

k [-]

0

1

2

3

4

5

6

7

8

9

x i [-
]

Discrete Time Consensus for 10 Agent System, x
k+1

=F x
k
, α=0.5

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

Figure F.6: Discrete Time Consensus Simulation for 10 Agent Directed Gossip Ring
Graph System

190



REFERENCES

[1] P. Likins, “Robert e. roberson: A personal tribute,” Mechanics Based Design

of Structures and Machines, vol. 17, no. 2, pp. 131–133, 1989.

[2] R. W. Longman, “Generalized approach to gravity-gradient stabilization of gy-

rostat satellites.” 1969.

[3] P. T. Kabamba, “Contributions to reduced order control theory,” Ph.D. disser-

tation, Columbia University, 1981.

[4] A. Dogan, “Guidance strategies for microburst escape,” Ph.D. dissertation, The

University of Michigan, Ann Arbor, MI, 2000.

[5] N. D. S. University. (2015) Mathematics genealogy project. [Online]. Available:

http://genealogy.math.ndsu.nodak.edu/mission.php

[6] A. T. Wick, J. R. Hooker, C. J. Hardin, and C. H. Zeune, “Integrated aerody-

namic benefits of distributed propulsion,” 2015.

[7] R. E. Everly and D. C. Limmer, “Cost-effectiveness analysis of aerial platforms

and suitable communication payloads,” Ph.D. dissertation, Monterey, Califor-

nia: Naval Postgraduate School, 2014.

[8] J. Rosero, J. Ortega, E. Aldabas, and L. Romeral, “Moving towards a more

electric aircraft,” Aerospace and Electronic Systems Magazine, IEEE, vol. 22,

no. 3, pp. 3–9, 2007.

[9] A. S. Gohardani, G. Doulgeris, and R. Singh, “Challenges of future aircraft

propulsion: A review of distributed propulsion technology and its potential

application for the all electric commercial aircraft,” Progress in Aerospace Sci-

ences, vol. 47, no. 5, pp. 369–391, 2011.

191



[10] M. Moore, “Nasa distributed electric propulsion research,” Public Presentation,

February 2015.

[11] M. Friswell, “The prospects for morphing aircraft,” in Smart Structures and

Materials (SMART09), IV ECCOMAS Thematic Conference, 2009, pp. 175–

188.

[12] A. Suleman, A. Costa, P. Moniz, and C. Crawford, “An adaptive aeroelastic

wing,” in Smart Structures. Springer, 2001, pp. 44–54.

[13] L. N. Cattafesta III and M. Sheplak, “Actuators for active flow control,” Annual

Review of Fluid Mechanics, vol. 43, pp. 247–272, 2011.

[14] B. Obradovic, “Modeling and simulation of the flight dynamics of morphing

wing aircraft,” 2010.

[15] B. L. Stevens and F. L. Lewis, Aircraft control and simulation. John Wiley &

Sons, 2003.

[16] M. Bodson, “Evaluation of optimization methods for control allocation,” in

AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal,

2001, pp. 6–9.

[17] K. Bordignon and J. Bessolo, “Control allocation for the x-35b,” in 2002 Bien-

nial International Powered Lift Conference and Exhibit, 2002, pp. 5–7.

[18] O. Härkeg̊ard, “Backstepping and control allocation with applications to flight

control,” 2003.

[19] H. Kim, H. S. Jeong, K. T. Chong, and D. J. Lee, “Dynamic modeling and

control techniques for multi-rotor flying robots,” Transactions of the Korean

Society of Mechanical Engineers A, vol. 38, no. 2, pp. 137–148, 2014.

[20] V. Hrishikeshavan, “Experimental investigation of shrouded rotor micro air ve-

hicle in hover and in edgewise gusts,” 2011.

192



[21] I. Kroo, F. Prinz, M. Shantz, P. Kunz, G. Fay, S. Cheng, T. Fabian, and

C. Partridge, “The mesicopter: A miniature rotorcraft concept–phase ii interim

report,” Stanford University, USA, 2000.

[22] R. Oung and R. DAndrea, “The distributed flight array,” Mechatronics, vol. 21,

no. 6, pp. 908–917, 2011.

[23] M. Hepperle, “Electric flight–potential and limitations,” NATO-OTAN MP-

AVT-209-09, 2012.

[24] A. Stall, J. Bevirt, M. D. Moore, J. Fredericks, and N. K. Borer, “Drag reduction

through distributed electric propulsion,” in 14th AIAA Aviation Technology,

Integration and Operations Conference, 2014, pp. 16–20.

[25] J. R. Hooker, A. Wick, C. Zeune, and A. Agelastos, “Over wing nacelle in-

stallations for improved energy efficiency,” in 31st AIAA Applied Aerodynamics

Conference, 2013, p. 2920.

[26] W. G. Barnwell, “Distributed actuation and sensing on an uninhabited aerial

vehicle,” 2003.

[27] A. K. Jha and J. N. Kudva, “Morphing aircraft concepts, classifications, and

challenges,” in Smart structures and materials. International Society for Optics

and Photonics, 2004, pp. 213–224.

[28] A. Adnan, Molecular simulations of deformation, failure and fracture of nanos-

tructured materials. ProQuest, 2008.

[29] B. Holm-Hansen, C. Atkinson, J. Benarek, E. Burnett, L. Nicolai, and

H. Youssef, “Envelope expansion of a flexible flying wing by active flutter sup-

pression,” Proceedings of AUVSIs Unmanned Systems North America, 2010.

[30] J. Beranek, L. Nicolai, M. Buonanno, E. Burnett, C. Atkinson, B. Holm-Hansen,

and P. Flick, “Conceptual design of a multi-utility aeroelastic demonstrator,” in

193



13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort

Worth, TX, 2010, pp. 2194–2208.

[31] E. Pendleton, K. E. Griffin, M. W. Kehoe, and B. Perry, “A flight research

program for active aeroelastic wing technology,” AIAA Paper, no. 96-1574, pp.

2263–2273, 1996.

[32] J. Buffington, P. Chandler, and M. Pachter, “On-line system identification for

aircraft with distributed control effectors,” International Journal of Robust and

Nonlinear Control, vol. 9, no. 14, pp. 1033–1049, 1999.

[33] A. Das and F. L. Lewis, “Distributed adaptive control for synchronization of

unknown nonlinear networked systems,” Automatica, vol. 46, no. 12, pp. 2014–

2021, 2010.

[34] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative

control. Springer, 2008.
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