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Abstract 

 

LEARNING PERCEPTION TO ACTION MAPPING 

 FOR FUNCTIONAL IMITATION 

 

Bhupender Singh, MS 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Manfred Huber 

 Imitation leaning is the learning of advanced behavior whereby an agent acquires 

a skill by observing another's behavior while performing the same skill. The main objective 

of imitation learning is to make robots usable for a variety of tasks without programming 

them but by simply demonstrating new tasks. The power of this approach arises since end 

users of such robots will frequently not know how to program the robot, might not 

understand the dynamics and behavioral capabilities of the system, and might not know 

how to program these robots to get different/new tasks done. Some challenges in achieving 

imitation capabilities exist, include the difference in state space where the robot observes 

demonstrations of task in terms of different features compared to the ones describing the 

space in which it acts. The proposed approach to imitation learning in this thesis allows a 

robot to learn new tasks just by observing someone doing that task. For achieving this, the 

robot system uses two models. The first is an Internal model which represents all 

behavioral capabilities of the robot and consists of all possible states, actions, and the 

effects of executing the actions. The second is a demonstration model which represents 



v 
 

the perception of the task demonstration and is a continuous time, discrete event model 

consisting of a stream of state behavior sequences. Examples of perceived behavior can 

include a rolling behavior or a falling behavior of objects, etc. The approach proposed here 

then learns the similarity between states of the internal model and the states of the 

demonstrated model using a neural network function approximator and reinforcement 

learning with a reward feedback signal provided by the demonstrator. Using this similarity 

function, a heuristic search algorithm is used to find the action sequence that leads to the 

state and action sequence that is most similar to the observed task demonstrations. In this 

way, a robot learns to map its internal states to the sequence of observed states, yielding 

a policy for performing the corresponding task. 
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Chapter 1  

Introduction 

 

Motivations 

 

Imitation is an advanced capability of an agent to replicate or learn behavior from the 

observation of the performance of a skill by another agent. Imitation bootstraps for an 

observer the process of learning behaviors and acquiring knowledge from a skilled 

individual. Over recent years, researchers have been getting more and more interest in 

applying imitation learning in the Artificial Intelligence (AI) and robotics fields. 

 

The basic need for imitation learning for robots is to enable them to perform new tasks by 

just observing demonstrations from an individual or another robot system in situations 

where explicit programming of the system by a trained, knowledgeable expert is not easily 

possible. This arises particularly in fields such as service robotics where systems mainly 

interact with end users who may or may not know programming or understand the 

capabilities and physics of the robotic platform. In these situations, these robots should be 

able to acquire new tasks given task demonstrations without the need to change the 

programming logic. 

 

By using imitation learning, the potential for the application of robots will dramatically 

increase in various fields. Generally, as robotic systems move into more complex and 

realistic environments, the need for learning capabilities increases as the potential for 

complete pre-programming of all situations becomes increasingly expensive and hard to 

achieve. With learning capabilities, the robot can more easily deal with a dynamic 
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environment that is tedious or even impossible to completely capture by a programmer. 

 

Several significant advantages attached to imitation are: 

Easy learning: The imitator (robot) can learn a new task by simply observing how 

a demonstrator (human or artificial agent) executes the task. 

Fast learning: Imitation speeds up the learning process by transferring knowledge 

from the demonstrator to the imitator as the demonstration represents a possible 

solution of the task.  

Easy training: The demonstrator can be an expert in a task domain without the 

additional need for an extensive technical background in robotics or programming.  

Low training overhead: The demonstrator can continue its own work without 

consideration of and/or the need to pay significant attention to the imitator. 

 

While the benefits of imitation learning are significant, we face many challenges, including 

when to imitate, what to imitate, how to imitate, and how to evaluate a successful imitation 

in particular in situations where the embodiment of agent and demonstrator are different.  

Challenges 

 

Learning by imitation in real-world domains poses a number of challenges that have to be 

overcome by the imitator to be able to be successful. Many of these arise as these agents 

will generally continuously observe their environment and act within it. It is thus essential 

for them to be able to determine when an observation is actually useful to imitate, what of 

all the things it observes actually forms a demonstration and how to achieve the same task. 
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When to imitate?  A robot should not only work on command but it should also learn 

whether it is appropriate to imitate observed behavior in the present social scenario. It 

should also learn whether it is having good models covering enough information for doing 

imitation, and purpose to imitate. In case the robot determines that it does not have a good 

observation model, it might be beneficial if it could indicate this and/or motivate the 

demonstrator to perform the task again. 

 

What to imitate?  The observed demonstration model of any task may have extra detail 

that is not essential for the task (such as, for example, the exact foot placement locations 

or the places fingers get put on an object). It is not necessary to imitate all these minute 

details of observation. The robot should be able to determine and extract the aspects of 

the demonstration that are important for performing the corresponding skill.  

 

How to imitate?  As soon as a robot understands what to imitate, it will try to perform the 

task. In order to do this correctly, however, it has to determine the correct way to do this 

from all the possible approximate replications of the observations. To do this it can, over 

the course of multiple imitations, attempt to determine which imitation strategy maximizes 

a task reward that might be provided either by the environment or by the demonstrator or 

robot owner. In this form, the system can infer what to imitate and improve its solution. This 

is related to the ‘’Correspondence Problem’’ [15], which requires to establish the correct 

relation between observed behaviors and internal actions, or states of the model in its 

environment to states of one's own body and environment, or both. 
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How to evaluate a successful imitation?  Once a robot is provided with a demonstration of 

some skill, it will try to imitate that. To compare its actions with respect to those of the 

demonstration model, the robot must be able to identify the desired outcome and to judge 

how successful its policy was in the achievement of that outcome. One way to evaluate 

this is through a separate reward signal received at end of policy execution that is directly 

proportional to the desirability of the outcome. In the presence of such a signal, the robot 

must be able to diagnose its own errors to incrementally improve performance using 

reinforcement learning. 

 

Are embodiment of agent and demonstrator different? (Physical equivalence) When the 

demonstrator and imitator have similar bodies and capabilities, internal states usually 

closely match observed states. But when the imitator is substantially different from the 

demonstrator, the imitator may not be able to easily establish this mapping and the imitation 

may fail. In these situations, the challenge of learning how to imitate becomes more difficult 

and state/behavior mapping becomes a complex problem. 

 

Approach 

 

In this thesis, the imitation learning framework we have developed uses a task 

demonstration model and its own internal model in order to imitate task(s). The 

demonstration is a sequence of observed states, representing the state of the demonstrator 

and the environment. Transitions happen whenever a significant change has been 

detected. The internal model is a Markov decision process model containing all possible 
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states and actions encountered by and available to the robot. The internal states represent 

the state of the imitator and the environment, which can be achieved using its own action 

capabilities. The imitation learning problem is then addressed through two solution 

approaches. 

 

In the first approach, the robot learns to map similar states from its internal model to states 

of the demonstrated model. Similarity between states of these two models is defined by an 

Artificial Neural Network (ANN) that learns a distance function based on the states’ feature 

values. Treating the distance returned by the trained ANN as a cost metric, an optimal and 

efficient path finding algorithm is used to generate a cost-effective policy for imitating the 

given task(s). The learned policy consists of a sequence of internal states and actions 

which approximates the demonstration even if the imitator has a different body and different 

capabilities from the demonstrator 

 

In the second approach, the robot learns individual policies from its internal model directly 

for each of the observed behaviors. Each policy is learned using a reinforcement learning 

technique called SARSA [21]. Here, the first step is to learn an action-value function. For 

an on-policy method we must estimate  for the current behavior policy  and for 

all states  and actions . Then we consider transitions from state-action pair to state-

action pair, and learn the value of state-action pairs. The goal of learning these direct 

observed behaviors to policy mappings is to further improve the ability to obtain valid 

imitation strategies from a minimal set of observations through the accumulation of 

knowledge about the physics of the environment and the preferences of the demonstrator. 
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How to read this thesis 

 

 

The rest of this thesis is organized as follows:  

Chapter 2 reviews the related work involving the use of functional imitation learning by 

observing a task performed by some other person and provides a review of existing 

methods.  

Chapter 3 introduces the technical background of the proposed method of functional 

imitation and discusses its notable features. 

Chapter 4 introduces the methods for the construction of our internal and demonstration 

model. It provides a description of the parameters that are extractable and the possible 

interpretations. The background and the underlying characteristics of imitation learning,  

Chapter 5 describes how an imitation state action sequence is generated using a heuristic 

search algorithm and how subsequently an optimized distance function is learned with the 

help of feedback from the demonstrator.  

Chapter 6 provides the technical background of the proposed mapping of internal actions 

to observed behaviors and discusses the main benefits and features of this mapping.   

Chapter 7 introduces the experimental setup used for the demonstration of the methods 

and provides an analysis of the results.  

Finally, Chapter 8 concludes the work and discusses possible future work and expansions 

of this project. 
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Chapter 2 

Related work 

 

Robotics research has made significant progress in the past decades. One area where this 

has become apartment is the area of assistive and service robots which have entered the 

commercial market and are inching closer to their introduction into the end-user market in 

larger numbers. These assistive and service robots can be used in space exploration, 

recreational household activities, healthcare, military services etc. Therefore, a robust 

framework of these control algorithms is required. Over the years, several approaches 

have been proposed for imitation leaning in these robots. 

 

The work presented in this thesis can most directly be related to two approaches in the 

field of robotics. The first one is the area of learning from demonstration, a technique that 

develops policies from example state to action mappings [2]. Second is the field of 

functional imitation where this approach focuses on important aspects of demonstrated 

task. This is a powerful framework which is not dependent on embodiments of teacher or 

imitator [3]. 

 

Imitation is the replication of observed behavior and can be of two types, namely 

action/movement copying and goal based or functional imitation. Action-level imitation is 

the detailed and sequential specification and copying of individual actions whereas 

imitation at the goal or function level is a high-level mechanism used for complex tasks and 

neglects copying of each state detail in favor of only achieving the same outcome as the 

demonstration. Therefore action/movement level replication of observation has several 
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limitations. In this technique, few actions may be not important for imitation and thus this 

usually requires the imitator to have an embodiment that allows it to replicate all aspects 

and details of the observed behavior. If embodiments differ, then the imitation might or 

might not succeed. Therefore, it is frequently not an applicable way to address the imitation 

learning problem in situations where service robots have dramatically different forms and 

individual control capabilities compared to humans. In particular, there are certain problems 

associated with action-level imitation that make it difficult for real environments. These 

problems include: Actions taken by the individual/demonstrator may have varying 

importance to the achievement of the task. For example, throwing a ball to a goal state and 

walking to a goal state with the ball and depositing it there might lead to the same outcome 

and might thus have the same reward in many tasks. However, when the object to be 

transferred is a glass the outcome of the two actions differs and thus the importance of 

imitating the exact action becomes more important 

 

On the other hand, goal based or functional imitation focuses on the ability to infer the 

important aspects of a human teacher’s demonstration and only attempting to achieve the 

same (or similar) functional outcomes. The proposed research focuses on this version of 

this problem. In this approach, different embodiment of the demonstrator and imitator does 

not matter. The imitator tries to learn the correspondence between observed and internal 

states to produce a policy even if its structure, shape, and capabilities are different from 

those of the demonstrator. For example, if we have a human as a demonstrator that can 

pick up an object and move it to a specific location by walking, and a robot (without a 

gripper) as an imitator, then action-level imitation may fail due to correspondence problem 

but function-level imitation can lead to the robot performing the same task by pushing the 
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object to the target location. The following discusses the two approaches in more detail 

and introduces related work in these two areas.  

 

Learning from demonstration(LfD)/ programming by demonstration(PbD)  

 

In the last decades, robots have turned from simple preprogrammed machines into highly 

flexible and advanced systems. Along with this the programming of such a robot has 

become a tedious and highly time consuming task and some new solution approaches 

were required [2]. Learning from Demonstration (LfD) or Programming by Demonstration 

(PbD) is a technique for building automation into robots. The main principle of robot LfD–

PbD is that new tasks are learned without programming but just with the help of 

demonstration. Within LfD, a task is learned from a demonstration or multiple 

demonstrations of the same task, provided by a teacher. Robot Programming by 

Demonstration (PbD) aims at allowing even end users who lack programming skills and 

familiarity with robotics to program new capabilities for a general-purpose robot by 

demonstrating the desired behavior. Given a set of demonstrations, the robot builds a 

model of the demonstrated task, which is used in reproducing the action in a new situation. 

 

Here demonstrations can be of various types, such as teleoperation, shadowing, sensors 

mounted on the teacher, or external observation. Types of demonstration are categorized 

based on the form of teacher (the human or robot) and its available action capabilities. 

Teleoperation: a human will operate the robot and task demonstration 

information is collected by the robot’s own sensors. 
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Shadowing: the robot tries to replicate observed actions while collecting 

demonstration information using its sensors. 

External observation: information collection sensors are independent of the 

demonstrator and may or may not be located on the robot learner [2]. 

In the presented approach, data is collected by the robot’s own sensors in a global 

Cartesian space and the robot executes imitation in an egocentric space. A global 

Cartesian space is a coordinate system that specifies each point uniquely in the form of 

orthonormal, linear coordinates and are represented as the signed distances of the point’s 

projection onto fixed perpendicular directed axes, measured in identical units of length. On 

the other hand, egocentric space, specifies each point relative the robot or human.  

 

There are many ways in which a robot can be made to replicate the movement of a human. 

Animatronic devices (such as those used in amusement parks) continuously replay 

movements that have been recorded either by manually putting the machine into a 

sequence of postures or by using devices that record the joint angles of a human actor. 

Although these machines can perform very high fidelity playback, they are non-interactive; 

they neither respond to changes in their environment nor do they adapt to new situations. 

                                 

Other research has focused on the development of robots that can learn to perform tasks 

by observing a person perform that action. This technique is often called ‘learning from 

demonstration’. Early explorations did not focus on perceiving the movement of the human 

demonstrator, but rather focused on observing the effects of those movements on objects 

in the environment. In other work, the robot observes the human’s performance as well, 
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using both object and human movement information to estimate a control policy for the 

desired task. Providing the robot with knowledge of the goal (in the form of an evaluation 

function) allows the robot to further improve its performance through trial and error, for 

instance, for a ‘ball-in-cup’ task [5]. Atkeson and Schaal [6] demonstrated that far fewer 

real-world practice trials were needed if the robot could simulate its experience using a 

predictive forward model for a pendulum-swing-up task.  

 

More general solutions to the problem of perceiving human movement through vision have 

yet to be realized [7,8], but many researchers are turning to techniques such as hidden 

Markov models [9], to provide basic information on how a human is moving in a visual 

scene. These techniques combine task-based knowledge with predictive models in an 

attempt to link expectations of what the scene should look like with sensory data. Although 

these techniques can provide information on how a person is moving, subsequent 

extensive tuning to the robot and environment are often necessary to produce usable data. 

 

Another important part of what to imitate is attention. The problems of perception are 

closely tied to models of attention. Some attention models selectively direct computational 

resources to areas containing task-related information. They do this either by using fixed 

criteria [10,11] (such as ‘always look at red objects when trying to pick apples’) or by using 

adaptive models that modify the attentional process based on the robot’s social context 

and internal state. For example, the humanoid robot Cog was biased to attend to objects 

with colors that matched skin tones when it was ‘lonely’, and to attend to objects that were 

brightly colored when ‘bored’ [12]. Another strategy is to use imitative behavior as an 

implicit attentional mechanism that allows the imitator to share a similar perceptual state 
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with the demonstrator [14,13]. This approach is used in the ‘learning-by-imitation’ 

paradigm, in which the ability to imitate is given a priori and acts as a mechanism for 

reinforcing further learning and understanding. 

 

Besides how to obtain observation data, there is another important question related to 

imitation learning, in particular how does a robot know how to imitate? Once a relevant 

action has been perceived, the robot must convert that perception into a sequence of its 

own motor responses to achieve the same result. Nehaniv and Dautenhahn have termed 

this the correspondence problem [15]. Although it is possible to specify the solution to the 

correspondence problem a priori, this is practical only in simple systems that use the 

learning-by-imitation paradigm described above. When the solution to the correspondence 

problem is acquired through experience, more complex perceptions and actions can be 

accommodated, and this is then referred to as ‘learning to imitate’. 

 

Goal-Based / Functional Imitation 

 

In [4], most sophisticated forms of imitation are those that require an ability to infer the 

underlying goals and intentions of a teacher. In this case, the imitating agent attributes not 

only visible behaviors to others, but also utilizes the idea that others have internal mental 

states that underlie, predict, and generate these visible behaviors. For example, infants 

that are about 18 months old can readily imitate actions on objects, e.g., pulling apart a 

dumbbell shaped object. More interestingly, they can imitate this action even when the 

adult actor accidentally under- or overshoots his target, or the hands slipped several times, 
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leaving the goal-state unachieved [16]. They were thus presumably able to infer the actor’s 

goal, which remained unfulfilled, and imitate not the observed action but the intended one. 

 

The authors in [4] proposed a new model for intent inference and goal-based imitation 

based on probabilistic inference in graphical models. The model assumes an initial learning 

phase where the agent explores the environment, and learns a graphical model capturing 

the sensory consequences of motor actions. The learned model is then used for planning 

action sequences to goal states and for learning policies. The resulting graphical model 

then serves as a platform for intent inference and goal-based imitation. It extends the 

approach of [17] from planning in a traditional state-action Markov model to a full-fledged 

graphical model involving states, actions, and goals with edges for capturing conditional 

distributions denoting policies. The authors of the referenced paper used maze examples 

that were learned using a relatively small number of trials due to the small size of the state 

space. On the other hand, the proposed approach of this thesis has used quite large 

continuous state space example to illustrate the approach in the experiments. 

  

In [18], the authors begin by showing how an agent can learn the mapping between goals, 

states, and actions in order to plan how to fixate on a specific goal location. The agent first 

learns a transition model, (e.g., through exploration or “body babbling”) which translates an 

initial position and an action to a final head position. The author used computational model, 

which makes it possible to infer the goal of a head movement given observations of the 

starting and ending head poses, initial position, and final position, respectively. To 

accomplish this, the agent must be able to recover the inputs to each goal of a head 

movement, given the outputs. Results from [22] allow [18], research to estimate a 
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distribution over the inputs given the outputs. As such, inferring a distribution over actions 

given initial position and final position can be used to estimate a distribution over goals. 

This paper is closely related to functional imitation and inverse planning models and makes 

similar assumptions than the ones in this thesis in terms of state and action space, but the 

size of the state space is significantly smaller than in this thesis. Another difference is that 

to evaluate the inverse models, the imitation in it performs an exact match between the 

predicted state and the actual state. Since the imitator has no way to know which aspects 

of the demonstration are more important than others, it may sometimes fail to recognize a 

match resulting in an unsuccessful imitation strategy.  

 

Proposed approach of thesis 

 

In this thesis, a framework is proposed to allow different variety of robots to perform 

assistive and supportive tasks by observing demonstrations performed by a human. It is 

extension to [24], where internal model and observed model had same state 

representations. In proposed thesis, internal model and observed model have different 

state space which is comparatively complex and large in size as well. This thesis adds on 

top of past work by addressing, mapping of observed behavior to given actions of robot 

[Chapter 6]. The proposed approach to imitation learning in this thesis allows a robot to 

learn new tasks just by observing someone doing that task. Robot learns to map its internal 

states to the sequence of observed states, yielding a policy for performing the 

corresponding task. Mapping of states is based on distance between two states of these 

models. Similarity between two states is inversely proportional to distance in between 

states of internal model and observed model, and it is learned using neural network 

function approximator. Less distance means more similarity, and vice-versa. Heuristic 
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search algorithm:  A* [20], is used by robot firstly, to find state-action sequence by 

examining smaller area of problem search space, called exploitation. Once this sequence 

is executed; a reward signal is provided to quantify the quality of imitation. Secondly, a 

larger area of problem search space is examined in virtue of getting to better solution which 

Provides better reward than what present state-action sequence already have. If 

exploration over policy space provides better reward, means new/explored state-action 

sequence is better match when compared to current state-action sequence for imitating 

the task. Therefore, new similarity metric is derived using resulted policy and this derived 

similarity metric is used to train neural network function approximator. Training of neural 

network takes place until reward reaches to its optimum value 

 

 

Algorithm 2.1 Robot Learning Distance Function as Well as An Optimal Policy. 

 

Given a demonstration, the robot uses a heuristic search algorithm [20], over problem 

space, and derives the policy that it best according to current distance function, executes 

the policy, and receives reward from the environment. Then it generates a new policy by 
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adding a normally distributed randomness into current distance function, and receives 

reward from the environment. If the new policy receives a better reward then, imitator 

derives a new distance function from the new policy and backpropagate it into the neural 

network. This completes a cycle of learning functional imitation in terms of distance 

function. 

 

Training cycles are repeated until imitator receives maximum reward for the task. When an 

optimal policy is found, it can be assumed that the imitator has learned the correspondence 

between states of internal and observation model and function approximator has inferred 

important aspects of the demonstrations.   
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Chapter 3 

Proposed Imitation Learning Approach 

 

Overview 

 

Imitation learning is a form of social learning which occurs through observing behaviors of 

others. It is commonly used by humans and animals. According to social cognitive learning 

theory [19], there are four stages involved in this type of learning. First, the observer must 

know its environment and identify its own capabilities in form of some model. Second, the 

observer should be able to correlate observed behavior in the past with similar or different 

situations. Third, the observer must be capable of imitating demonstrated behavior, and 

last, the observer should be able to incorporate/recognize the feedback/reward signal 

provided by the demonstrator. Feedback signals during learning can be provided by some 

external entity in the form of reinforcement. Artificial intelligence has always been motivated 

by biological and psychological systems. In similar fashion, social learning in natural 

systems has frequently guided us to apply imitation learning in artificial agents.  

 

A robot must also know its environment and identify its own capabilities in the form of some 

model, referred to as the internal model which represents all behavioral capabilities of the 

robot and consists of all possible states, actions, and the effects of executing the actions. 

The result of an observation of a task is referred to as the demonstration model which 

represents the perception of the task demonstration and is here a continuous time, discrete 

event model consisting of a stream of state behavior sequences. During the journey of 

imitation learning, the robot should be able to map/correlate its internal model with the 

demonstrated model. The degree of correctness of the correlation can be learned by using 
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some external reinforcement signal. This feedback signal represents then to what extent 

an imitation task has been accomplished. 

 

For example, assume that a robot should learn a task of gathering all trash items and 

putting them into a trash bin. In the demonstration model of this task, there is information 

related to the precise states of trash items, the trash bin and the demonstrator of the task. 

This model also has information about behaviors of objects during demonstration of task 

where the demonstrator can be another artificial agent or a human. In the internal model, 

in contrast, no location of the demonstrator is present and the locations of the items might 

be different. The task of imitation learning is then to learn to correlate the internal model 

information to demonstrator model parameters, realizing that only relative location of the 

trash items and the trash bin is important. 

 

Another example could be, where a robot needs to learn grouping similar items at one 

place.  Let’s say there are 9 items of 3 categories, i.e. spherical (3), cubical (3) and 

cylindrical (3). In a given environment, all items are scattered on to floor and a human 

demonstrator will pick up one spherical item and drop into a corner of the room.  Again, 

picking up another spherical item and dropping it into the same corner of room where the 

last spherical item was dropped. At last, all 3 kinds of item will be placed in three corners 

of the room. Therefore, the demonstration model comprises of all the states and behavior 

sequences of items and demonstrator. Figure 3.1 shows this scenario of problem.    
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Figure 3.1 Demonstration Task Scenario 

For imitating the task, robot will solve the state correspondence problem between these 

two models. In any of these task imitations, the object locations may not be the same as 

when the demonstrator is performing the task.  For behaving/acting appropriately in novel 

situations across multiple demonstration, the robot must train itself over all acquired 

demonstrations and learn important features of this task. Here, for example, only the 

locations related to the corners (object destinations) are important while for objects only 

relative locations with respect to the robot and the corners are relevant. 

 

Proposed approach 

 

Proposed approach to imitation learning in this thesis allows a robot to learn new tasks just 

by observing someone doing that task. Robot learns to map its internal states to the 

sequence of observed states, yielding a policy for performing the corresponding task. 

Mapping of states is based on distance between two states of these models. Similarity 

between two states is directly proportional to distance in between states of internal model 

and observed model, and it is learned using neural network function approximator. 

Heuristic search algorithm:  A* [20], is used by robot firstly, to find state-action sequence 

by examining smaller area of problem search space, called exploitation. Once this 
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sequence is executed; a reward signal is provided to quantify the quality of imitation. 

Secondly, a larger area of problem search space is examined in virtue of getting to better 

solution which Provides better reward than what present state-action sequence already 

have. If exploration over policy space provides better reward, means new/explored state-

action sequence is better match when compared to current state-action sequence for 

imitating the task. Therefore, new similarity metric is derived using resulted policy and this 

derived similarity metric is used to train neural network function approximator. Training of 

neural network takes place until reward reaches to its optimum value. Figure 3.2 gives an 

idea of proposed solution approach. 

  

Figure 3.2 Proposed Solution Approach 

 

 

 

Internal 
Model
(MDP)

Demo/Obs 
Model Streams
(Markov model)

Data generation and modelingStage:

Mapping & learningStage: Demonstrator

Task demonstration 
environment

Stage:

A* Star 
Algorithm

Neural Network
(Input: Internal 
state features & 
Observed state 

features)

Internal state features
Observed state features

features

distance

State behavior sequence

Feedback by demonstrator

Execution of policy in environment



21 
 

The problem search space consists of a tree like structure, where each node of tree is a 

pair of internal and observed states. A node’s actual cost is defined as the distance 

between paired states. An admissible heuristic for each node is considered as 0, therefore 

cost accumulation during search over policy space consists only of the actual cost provided 

by the neural network. To start this search process, the initial (i.e. current) state of the 

internal model is assumed to be associated with the initial state of demonstration model. 

 

The robot can take a set of possible actions from its initial internal state, these actions will 

lead to a set of next states, which may be similar to the initial observed state or to the next 

observed state. Similarly, the current internal state may also be similar to the next observed 

state, without moving to any other internal state. While expanding to the next internal state, 

the neural network provides the actual cost of the resulting state pair. Once cost for every 

successor of the current internal state is calculated, they are added to the open-set of the 

search algorithm. The open list is a set where nodes are placed which are currently 

discovered and not evaluated yet. Now the node is selected from the open-set which has 

smallest accumulated distance for expanding towards its successors. Those successors, 

which are not currently in the open-set are added. If the successors which need to be 

expanded are already in the open-set, then their cost is compared and a least cost and 

path to reach this state pair is finally updated in the open-set. This process is repeated until 

all internal model states are mapped to corresponding demonstration model states. The 

state mapping provided by the above algorithm is referred to as the current policy, which 

need to be executed to obtain a reward signal. 
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Chapter 4 

Data Generation and Modeling 

 

The imitator uses two models for doing functional imitation. One of the models it uses is 

referred to as internal model and another as demonstration model. 

 

Internal Model 

 

To obtain an internal model, the imitator is learning objects’ generic movements and 

behaviors by exploring and interacting with the environment. The imitator uses its primitive 

set of actions while learning about the environment. Example of a robot’s initial skillset 

include a path planner, a kinesthetic controller, a force controller, a visual controller, a 

grasp controller etc. The environment where the imitator is observing demonstrations has 

various states. All these states are defined based on some attributes such as, for example, 

the location of objects in some coordinate frame.  

 

In the experiments presented in this thesis, a simulator is designed to produce the internal 

model, which will consider environment information while generating the model. The 

environment in this case is defined in terms of an area which contains specific locations of 

interest where objects are located, where every location has a unique id. There are some 

objects included in the environment such as the demonstrator, trash-bin and, trash items. 

Objects are also provided with unique ID’s and particular properties such as color and 

shape. Initially these objects are assigned to some of the locations. Figure 4.1 illustrates 

the described scenario. 
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Figure 4.1:  Explaining Environment 

 

Once the imitator has knowledge about the environment, it can take any of the actions from 

its primitive set of actions. Actions include going to some location, grasping, and dropping 

and are only successful in some states. For example, the imitator can only pick-up/grab 

trash if it is nearby and the imitator can only drop trash into a trash-bin if the imitator is 

carrying trash and standing next to a trash-bin. 

 

Every internal state in this model is described by some attributes like: number of 

probabilistic/deterministic action to take, which all next states it can go to, using allowed 

actions and feature values. A state’s feature value provides information about locations of 

all objects, whether the imitator is carrying trash, etc. These state attributes play an 

important role in transferring information and providing a similarity measure for the 

correspondence problem between two models. The internal model is comprised of and 

represents all behavioral capabilities of the robot.  
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Demonstration Model 

 

While the internal model of the robot can contain the internal state of the imitator, the 

demonstration model in this case can not contain internal variables of the demonstrator but 

only information that can be observed by the imitator. This effectively is the model where 

the robot has observed a demonstrator performing a skill. Humans and animals observe 

their environment using sight, sound, taste, smell, touch, pressure, and similar senses. 

Similarly, artificial systems do make use of various sensors (vision, sound sensor, tactile 

etc.) to obtain information about the environment. The proposed approach is aiming at 

using a Kinect one or similar as a vision sensor for observing demonstrations of task 

performed. The data stream coming from the Kinect and other sensors are pre-processed 

and the streams of pre-processed, object-centric data are referred to as fluents and needs 

to be processed to obtain useful information for model building from. The Kinect or any 

similar sensor outputs the stream of raw data when observing a demonstration of a task. 

Then a stream of fluents is extracted from that raw data. A fluent is defined as an abstracted 

property, such as the movement, of an object captured during observing all objects in the 

environment. One fluent may look like x_loc, y_loc, z_loc, their orientation in degrees, 

shape, color, and object id etc. Fluents play an important role in defining state features of 

all the objects. These state features will be used while performing the mapping between 

the robot’s internal model and the observed model of the demonstration. Figure 4.2 

describes this scenario.  This process of observing a task is being captured in from of 

algorithms and equations, which generates a demonstration model. In proposed thesis 

experiments, computer simulation is used instead of real system. 
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Figure 4.2 Observed Data 

 

While generating demonstration model, information about environment and type of 

behaviors used in demonstration of task is required. In our experiments, the environment 

is the same as explained above using Figure 4.1. To further abstract the fluent streams 

produced here to obtain a more compact description of the observations, the fluents are 

further processed to transform the time-driven fluents which produce a state observation 

every camera frame, into an event-driven fluent representation where states transmitted 

are at points where discrete behavior changes of the corresponding object are observed.  

 

A behavior is defined as a repeatable, reconstructable change in the time-driven fluent and 

occur between two states; for example: an object is stationary (behavior) in a particular 

location (state) and at some point, in time will move south with uniform velocity (behavior) 

for some time when it switches behavior again at some location (state). The event-driven 

fluent encodes these behaviors in the demonstration model. Demonstration of a task here 

provides some information about every object that is present. This information includes all 
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the states transited through by an object during that period. It also contains all behaviors 

which the same object has undergone during that period. States are described by using 

feature values like location, orientation, and time. Similarly, behaviors are described in 

terms of an ID associated with a time-driven model of the prototypical fluent sequence 

corresponding to this behavior. There is always a behavior between any two states. For 

example, if an object has gone through a sequence of 4 types of behavior during the 

demonstration of the task, this objects must have been through 5 states. To synchronize 

the states and behavior of all the objects, they are processed using dynamic time warping 

techniques [23]. This is shown in the Figure 4.3 and Table 4.1. 

 

 

Figure 4.3 Observed State Transitions 

 

The diagram in Figure 4.3 represents the fluents encoding the event-driven transitions 

made by different objects while observing a demonstration of a task by the demonstrator. 

Object 1 is in State 1 at time 2.1, then it made a transition to State 2 at time 5.2; finally, 
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Object 1 ended up in State 6 at the end of the demonstration at time 9.2. The fluents provide 

this information for all objects in the demonstration environment. To construct a single 

model of all objects from these fluents, all transition points have to be extracted. In this 

example, it can be seen that state transitions for at least one object occurred at times 2.1, 

5.2, 6.7, 7.8, and 9.2. 

 

Therefore, 5 states for the final observation model are extracted from this data. Table 4.1 

shows how the 5 states are extracted. One thing to notice here is that, Object 1 has no 

state transition at time 6.7 so it is treated as the same state at time 5.2. Therefore state 3 

for Object 1 is State 2 but its referred to as State 3 because Object 2 made a state transition 

from State 2 to State 3 at time 6.7. 

 

Objects Time 

(2.1) 

Time 

(5.2) 

Time 

(6.7) 

Time 

(7.8) 

Time 

(9.2) 

Object1 S1 S2 S2 S4 S6 

Object2 S2 S2 S3 S3 S4 

Object3 S1 S2 S2 S8 S9 

Table 4.1 Extracted States Using Time Slicing 
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Chapter 5 

Learning Cost metric  

 

To learn the correspondence between states of the two models, the imitator uses a 

heuristic search algorithm for traversing through problem search space. This algorithm 

derives tree traversal cost through a state similarity/distance function provided by a function 

approximator. We elaborate on the traversal of the search algorithm in the given problem 

space using Figure 5.2. Every node in this tree is a combination of internal state and 

corresponding observed state from two models. Every state in internal model has some 

fixed set of actions. Using these action, imitator can go to next/successor states. All the 

successor states of a node, inherit correspondence of current observed and next observed 

state.  

 

Mapping process 

 

The mapping process defines how states from two models are matched to each other. In 

all cases of a successful mapping, the first state of the internal model must be mapped to 

the first state of the observed state behavior sequence and the last state of the state action 

sequence must match to the last state of the observed state behavior sequence. 

Intermediate states have the flexibility to match to a corresponding state of the other model 

with the limitation that time can not move backwards and no state can be skipped in the 

mapping sequence. As a result there can be one to many and many to one mappings, i.e. 

two or more than two states from the internal model can be mapped to the same state in 
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the observed model and similarly, two or more than two states of the observed model can 

be mapped to the same state of the internal model. 

 

Figure 5.1 Mapping Process 

Using the example shown in Figure 5.2, imitator has two actions in any internal state. In 

this case, the current node has five successors. Two successors correspond to the same 

observed state as the current internal state and two successors correspond to next internal 

state, with the last corresponding to the next internal and the next observed state (i.e. the 

situation where both sequences advanced one time step). There can be a condition when 

there is no state transition from the internal model side but the current observed state 

changed to the next observed state. 

 

Action cost and heuristic cost are treated as zero in the experiments performed here but 

could be replaced by any fixed cost function and admissible heuristic, respectively. Using 

the function in our experiments, the cost of transitions in states is fully determined by the 

distance between internal and its corresponding observed state. 
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Figure 5.2: Problem Space Traversal 

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)      (5.1) 

𝑔(𝑛) =  ∑ D (SIi | SOj)𝑛
𝑖=1     (5.2) 

where 𝑔(𝑛)) is the cost of the path from the start node to node n and is given by the sum 

of distance function values.  ℎ(𝑛) is the heuristic cost that estimates the cost of the 

cheapest path from n to the goal (which in the experiments performed here is set to 0).  SIi 

is the imitator’s internal model state i, and Oj is the corresponding demonstration model 

state in the search tree. D (SIi | SOj)    refers as distance between Internal state i, and 

observation state j.  𝑔(𝑛) represents the distance between the sequence of internal and 

observed states and at each step increases by the distance value for states i and j, 

respectively. 
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This distance is a treated as the inverse of a similarity metric between these two state. A 

lower distance represents a higher similarity and vice-versa. This function encapsulates 

which aspects of the state are relevant to the task and how they map between the feature 

representations of the two state spaces (internal and observed). As such it is usually not 

known beforehand and instead has to be learned. Initially the function approximator used 

to calculate this value provides some distance which is not accurate because it is randomly 

initialized. In later stages, the function approximator will learn to provide optimized 

distances using a reward signal.  

 

During the search, as soon as all these successors are added into the open set (the set of 

nodes which need to be explored), the current node is moved to the closed set (the set of 

already explored nodes), and the lowest cost node is picked as the current node in the 

search. Now the successors of this new current node are added into the open set and 

again the lowest cost node is picked from the entire open set and the current node is moved 

to the closed set. This process will continue until a node is expanded that corresponds to 

an internal state and last sate of observation model.  

 

Once this final state goal node is reached, the imitator fond the lowest cost state action 

sequence which maps to all observed states, the imitator executes this policy described by 

these actions in the environment. As soon as the selected policy is executed, it is assumed 

that the demonstrator of the task (or some other entity) provides a numeric reward to the 

imitator indicating the appropriateness/quality of the performed policy for the task to be 

imitated. A positive feedback signal is treated as reward and a negative as a penalty. The 
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policy found using the actual distance function is referred to as the current policy. The 

process of finding the current policy is referred to as EXPLOITATION since the imitator has 

used the current, learned distance function (and thus all previous knowledge) for finding 

the solution. 

 

To be able to determine whether the current policy, and with it the current distance function, 

can be improved upon, the system also tests policies that are not optimal with respect to 

the current state of knowledge. For this, the problem space is again traversed to find a 

required sate action sequence which completes the demonstrated task. However, this time, 

every node’s cost is calculated by adding a normally distributed random number to the 

current distance function, thus perturbing it. The perturbed distance function is thus a value 

drawn from a normal distribution with the mean equal to the current distance function and 

some small variance which allows the imitator to explore the problem space. Note that the 

distance function used in this case is slightly different from the current distance function, 

thus potentially resulting in a different best match in the search. Once the imitator has found 

a new solution (state action sequence) for performing the perceived task, it is again 

executed in the environment and a new reward is received from the demonstrator. The 

newly found policy and reward are referred to as new policy and new reward. The process 

used for finding the new policy is called EXPLORATRION as the imitator has tried to search 

the problem space in the vicinity of the current knowledge. 

Figure 5.3 represents these two policies found by the imitator for performing a 

demonstrated task. 
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Figure 5.3 Exploitation and Exploration Policies 

 

Learning Distance Function Approximator 

 

As indicated, the result of the imitator utilized its current knowledge to get a policy using A* 

is said to be current policy. If the imitator, exploring and searching using the same distance 

function perturbed with uniform noise, found a higher or lower reward receiving policy, this 

new policy guides a learning process to derive a distance function that yields a better result. 

For this, the distance function has to be modified such as to increase the likelihood of 

obtaining the search tree of the better policy and to reduce the likelihood for the search 

tree of the worse policy.  
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Figure 5.4 Learning Optimized Distance Function Using Function Approximator (NN) 

 

For learning this new distance function to produce a higher reward policies in case the 

explored policy has a higher reward, the imitator increases the cost of those nodes in the 

current A* tree which have maximum cost in their corresponding branches such that they 

have a higher value than the maximum cost of the new policy. It also increases the cost of 
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the new policy’s siblings cost and sets them to be higher than the policy node itself and all 

the successors of that policy node. This way the imitator would ensure that before picking 

any siblings of the new policy, the imitator must pick the nodes of the new policy. Lastly, 

the imitator decreases the cost of the new policy node such as to set it to be higher than 

the maximum cost of the current policy and the new policy’s siblings and its predecessors’ 

siblings. 

 

In general, these above changes make sure of not picking the policy which has received 

lower reward but a policy which has received higher reward.  However, since rewards can 

be noisy, implying that the same task execution might result in different rewards at different 

times, it might be misleading to adjust the distance function all the way to these values and 

instead only part of the updates required to achieve these changes is performed at each 

step. To also address the amount of improvement and deal with the case where the 

explored policy is worse, the computed changes are multiplied by the difference of the 

explored and the current policy rewards, leading effectively pulling the distance function 

towards the better of the two policies and pushing it away from generating the lower reward 

one. In particular, the distance function update is calculated as  

 

 

In this equation, 𝛥𝑘𝑖 is the change required for node i of A* tree in the demonstrated task k 

to achieve the abovementioned criteria where 𝜀 is the margin by which the value should be 

raised above the other tree’s value. 𝛥𝑖  𝑖𝑠 𝑡ℎ𝑒 amount of change to suggested node that 

should ultimately be applied. 𝑅𝑘 is the reward of the explored policy and �̃�𝑘 is the expected 

 
∆𝑖=

∑ (Δ𝑖 +  𝜀) ∗ (𝑅𝑘 −  𝑅𝑘 )̃
𝜅𝑖

max (|max 𝑅𝑘 − min 𝑅�̃�  |,  |𝑚𝑎𝑥𝑅�̃�  − min 𝑅𝑘 |)
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reward of the current policy. This whole amount is divided by a normalizing factor made by 

comparing the reward ranges from these two policies. 

 

This provides the gradient of the distance function used in the search tree which is used 

while training the neural network.  This delta calculation also tells the function how 

important this update is by its magnitude. For multiple task or multiple demonstrations of 

the same task, a batch update method is used for training as indicated in this equation. In 

this way, training the distance function in the form of a function approximator towards a 

better reward receiving policy will make the imitator achieving increasingly better imitation 

of the demonstrated tasks. 
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Chapter 6 

Learning Action Behavior Mapping  

 

Sometimes it is not only important, what the goal of a task is, for which the start and end 

states are most important. In some cases, it is also important to know how a task should 

be done. In this case, intermediate sates become more important. Given that the imitator 

has observed a behavior in the middle of some task demonstration, to imitate that behavior, 

it is now important to know what is the starting state of the behavior and where it has ended. 

For example, to diffuse a bomb, it is important to achieve a successful diffusion of the 

bomb. But to enable this, it is important to cut/disconnect wires in a specific order. Action 

to behavior mapping helps to manage all these situations and make imitation faster in 

collaboration with the learned distance function as it provides additional information to 

guide the search process towards the most effective action choices. 

 

Once the distance function has been learned, an optimal state mappings of the internal 

model to the observed model across various demonstrations of a task, or across various 

tasks itself, can be used to derive an action to behavior mapping by providing training 

examples to infer this mapping. 

 Figure 6.1 shows a block diagram for this strategy. 
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Figure 6.1 Action Behavior Mapping 

Overview 

 

This process has three main components. First, the observation model which consists of 

a state behavior sequence needs to be mapped onto given internal model. This provides 

starting and end states of the contained behaviors. Secondly there is an internal model, 

which is defined in the form of a Markov decision process.  The MDP contains the state 

space where the imitator explores and finds an optimal policy for the assigned task. The 

MDP also has a set of given actions which an imitator can take to achieve state 

transitions while exploring the state space and a special STOP action. Once the imitator 

considers the current internal state as goal state, it executes the STOP action and reports 

its goal state to a reward function. The reward function also takes the last state of the 
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behavior as input and provides a feedback to the imitator. Using this, the imitator learns a 

policy to represent a behavior that optimizes the reward. In the following we will discuss 

this process in details by detailing all components of it. 

Behavior 

 

As discussed earlier, fluents capture all the movements of objects during the demonstration 

of task. Common subparts of these movements across all objects define a behavior.  

Examples of behaviors include rolling of an object, staying stationary at a location, 

bouncing, and moving to another location, etc... 

Figure 6.2 shows two example behaviors of objects. 

 

Figure 6.2 Bouncing and Falling Behavior Example 

The fluent stream captured Behavior 1 as an object that is changing its x, y, and z locations 

over a period of time. This is identified as a bouncing behavior. Another example shown in 

Behavior 2 is represented as a z location change of the object representing a falling 

behavior. The same behaviors can be seen across different demonstrations of the same 

task or of different tasks as well. Figure 6.3 shows an example of falling behavior across 

three different tasks. The imitator can learn a policy to create this behavior using its internal 

MDP. The behavior is being observed between any two states and therefore it always has 
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a start and an end state. Figure 6.3 takes data from 3 tasks to show a single falling 

behavior. By looking onto start and end states, change is detected only in the z coordinate 

of object. 

 

Figure 6.3 Start and End States of a Behavior 

These start and end states will be used to map/learn this individual behavior by the imitator, 

as the imitator will report a goal state for mapping this behavior to the learned distance 

function. After achieving the goal state in the internal model of the robot, the learned 

distance function matches it to end states of behavior from the observed side and 

generates a reward. Using a reinforcement learning algorithm, the robot learns to achieve 

this behavior by optimizing its reward in terms of a policy over the MDP’s state space. The 

policy learned by the robot has to be generic enough that it can identify a particular behavior 

being in its start state and then executes that behavior, irrespective of the environment (i.e. 

it has to match all observed demonstrations, thus promising to extend beyond this to new 

task environments). The following section discuss the generic policy in more detail.  
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Generic Policy 

 

A policy (corresponding to a particular Markov chain) is a function that tells a robot to pick 

a fixed action (or action distribution) in a given state of the MDP. The optimal solution found 

in terms of a policy is the one which will try to maximize some cumulative function of the 

rewards. A specific policy is defined in one environment, whereas a generic policy is 

defined as a best general solution for the combination of more than one environment. 

Figure 6.4 shows the concept of a generic policy using individual and a combination of 

environments. 

 

 

Figure 6.4 Generic Policy Learning 

 

In this figure, red blocks represent obstacles, green circles represent start states, red 

circles represent goal states and blue lines represent policy paths from start to goal state 

in the given world/environment. This example considers 3 worlds where obstacles are at 

different locations and where there are individual policies learned by the robot to reach 

each goal state. When considering a combination of all these worlds in one environment, 

these optimal policies corresponding to each world may not be the optimal policy for the 
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environment where all these 3 worlds are combined. The robot must learn a new policy 

which is generic and optimal in that environment which is a mixture of all other worlds. This 

optimal generic policy learned may not be optimal in these given individual worlds. 

However, when dealing with imitation in new environments and trying to address mapping 

observed object’s behavior to the given set of actions of the robot, the robot needs to learn 

a policy which is generic for all the environments in order to obtain successful imitation of 

that behavior in the new world. 

 

As discussed earlier, the action behavior mapping stage of Figure 6.1, contains an MDP 

which will learn this policy for mapping to observed behavior. Here the imitator has to find 

a goal state (a state corresponding to the last state of observed behavior) in the MDP 

defined over the given demonstration environment. The MDP has some states and a given 

set of action for the robot to take and to achieve state transitions. Whenever the imitator 

finds a corresponding current internal state to the end state(s) of a behavior, the stop action 

is called where the imitator’s policy treats the current internal state as a goal state. Then it 

receives a reward from the neural network. If the current internal state is the best match 

with the end state of the observed behavior, it returns the best reward for the imitator, 

otherwise it returns some reward which is not the optimal value of reward. Using these 

rewards, the imitator learns to represent the observed behavior as an optimal policy by 

updating its Q table values. A reinforcement learning algorithm, SARSA [21], is used for 

learning this policy from the MDP. 
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Algorithm 6.1 SARSA Algorithm [21] 

 

Initially, a Q table (MDP_states x Actions) is initialized with random values. Then the robot 

starts to interact with the environment by taking actions from the given set of actions, 

starting in the  initial state (S0) and make state transitions to the next state (S1). Exploration 

and exploitation guides the process of choosing actions being in some state S. In the 

proposed approach, epsilon-greedy exploration is used for choosing actions. As soon as 

the imitator makes a state transition to the next state from the current state, a reward is 

provided by a reward function for choosing that chosen action. Again, an action for the next 

state is chosen using the same epsilon greedy algorithm. In the end, the current state is 

updated to the next state and the current action is updated to the next action. The Q value 

for a state-action is updated by an error, adjusted by the learning rate alpha. Q values 

represent the possible reward received in the next time step for taking action (A) in state 

(S), plus the discounted future reward received from the next state-action observation. 

These episodes will continue until a terminal state has been reached. This completes an 

episode of this policy learning algorithm called SARSA. Once robot has done enough 

exploration and exploitation over the entire problem space, it has learned a policy for 

mapping a behavior to its given set of actions in MDP space. 
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Chapter 7 

Experimental Evaluation  

 

This chapter presents the experimental setup which includes the environment description  

from Figure 4.1. There are two trash objects and a trash basket. A demonstrator who is  

demonstrating the skill has used 10 predefined locations. 

 

State Space  

 

The internal state space and robot capabilities are represented as an MDP model 

containing thirteen thousand states, where objects are placed in various locations. The 

demonstrator of the task can also be in any of these ten predefined locations. In the 

demonstrations, the demonstrator moves to a location where a trash object is placed and 

then it picks it up. After picking up the trash item, it moves towards the trash basket. Once 

the trash item is dropped into the trash basket, the item disappears from the environment 

and can not be involved in the state representation anymore. While working in this state 

space, the imitator has knowledge whether it is carrying any object right now or not. This 

is defined in term of state features. Features of states here include the current location of 

the imitator and of the objects, what the type of the object is, what’s the pose/orientation of 

the object is or whether the imitator is carrying any object or not. While doing state to state 

mapping of both models, the imitator makes use of these state features to relate them 

between internal and observation model and find a corresponding state pair. 
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Action Space 

 

The robot/imitator has a given set of actions (14 actions) which represent moving to a 

location, picking up an object (trash) or dropping an object. The robot makes use of these 

actions to interact with the world/environment. One thing to note here is that the robot may 

not have the same actions as those performed by the demonstrator during demonstration 

of task. For example, a ball might be thrown by the demonstrator and it went to a corner of 

the room by bouncing. However, the robot does not have any capability to make that ball 

bounce using its given capabilities. But robot can always push or grab the ball and take it 

to the corner of the room. Therefore, the robot must infer important aspects of the observed 

task where there is no guarantee that the objects will be in the same place where they were 

during the observation of the task. 

 

Reward Function 

 

When the robot acts in the environment to perform the observed task, it receives a 

feedback signal from the demonstrator after completion of execution The feedback signal 

enables a robot to understand how good it was while doing a task and in these experiments 

corresponds to the distance between the trash and the trash bin at the end of the execution 

of the imitation policy. 

 

Results 

 

The following shows the result of imitating a household trash cleaning task. Throughout 

the robot explores the policy space and learns an increasingly beneficial distance function 

using its function approximator. The graph in Figure 7.1 shows two policies, namely a new 
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policy (achieved by exploring the problem space) and a current policy (achieved by 

exploiting the problem space). 

 

Figure 7.1 Results of Single Demonstration for A Cleaning Task 

In this result, a single demonstration of the task has been given to the robot for learning to 

imitate the demonstrated task. Reward 0 is the maximum possible reward generated by 

the reward function. The reward is calculated by calculating the Euclidean distance 

between trash items and the trash basket at the end of policy execution. Zero reward 

represents that all trash items have been placed into the trash basket while executing a 

policy by the imitator. Figure 7.1, shows that the function approximator has learned an 

optimum distance representation between states of the internal model and the observed 

model. As a result, the current policy has achieved a reward equal to the maximum i.e. 

zero. 
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Multi-Task Experiments 

 

The Robot/imitator has also been tested to imitate a task to learn from multiple 

demonstration of task. In this experiment, the same task is demonstrated in different 

environments. Initial results in these experiments show improvements but also point at 

weaknesses in the exploration strategy where the system encounters long plateaus in 

which the explored policy produces the same reward as the current policy and thus no 

learning improvement is possible. Figure 7.2 represents intermediate results of imitating 

the same task of household cleaning in a wide range of environments. Important fact about 

this experiment is that the demonstration of task is from ten different environments. Here 

the imitator is trying to learn a generalized policy by learning a generic distance function 

across multiple environment. It is observable from Figure 7.2 that the imitator is learning a 

better policy as its moving towards a better reward. Reward is referred as average reward 

over these multiple demonstration 

 

Figure 7.2 Intermediate Results for Imitating a Task in Different Environment. 
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Behavior to Action Mapping Experiments 

 

Once the distance function is learned by the imitator for successfully imitating a task, the 

imitator will now try to learn to represent the observed behaviors in terms of MDP policies 

to map it to actions taken by the imitator.  

 

Figure 7.3 Results of Learning Observed Behavior Mapping to Robot’s Internal Actions 

for Functional Imitation 

 

The behavior’s starting state is given as input to the internal model and then the robot 

comes up with a policy to map the desired behavior. As discussed earlier, the robot will 

report its goal internal state to a reward function which in return will provide a reward to the 

robot. Preliminary experiments as shown in Figure 7.3 show that the robot is successfully 

learning some of the behaviors while it is still exploring a number of other behaviors. These 

intermediate results show the learning of a behavior from multiple demonstration of a task. 

There are twenty-nine unique states found from one hundred demonstrations of the task. 
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This, together with the internal state space with 13,000 states makes a total problem space 

of nearly five hundred thousand states and fifteen actions to be take in each of these states. 

After successful completion of the preliminary experiments, the expectation is that the 

imitator will learn a generalized policy for representing a behavior across different tasks. 
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Chapter 8 
Conclusions and Future Work 

 

Robots as complex and intelligent machines have attracted significant interest from 

research and industry in past decades. They are getting used more and more in daily life 

and are applied in increasingly complex contexts. The purpose of this research is to 

develop methods towards the goal of making robots smart enough and sufficiently easy to 

use to assist people in various upcoming requirements from household assistance to 

military services. To make them smart for assisting mankind, they need to be trained based 

on their own capabilities and the environment they are working on. Until now, such robots 

are already assisting in very predefined structured environments where objects locations 

don’t change and robots are preprogrammed to do their jobs in that environment. Progress 

should be made towards making these robots smart enough such that even if there is no 

fixed, robust environment, they can do their intended jobs. 

 

In couple of past years, there has been a significant amount of progress to make these 

complex systems work in flexible environment. As a result, the need for approaches that 

allow to operate these systems without the need for complete pre-programming is 

increasing in order to allow these systems to enter real environments with end users. 

Imitation learning is one way to address this problem with a solution of making these robots 

useful by just demonstrating the task and having the robot learn to perform the task by 

observation only, without preprogramming for any task. 
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Conclusion 

 

In the approach proposed in this thesis, the imitator learns an optimal correspondence 

between its internal model and an observed model of the demonstration. Correspondence 

learning is enabled by learning a distance function using a neural network based function 

approximator. This makes a robot capable of imitating an observed task even if its 

embodiment is different from the one of the demonstrator. A reinforcement learning 

algorithm then allows the robot to learn an optimized policy with the help of reward signals 

provided as feedback by the demonstrator in response to the execution of the imitator’s 

found policy. Using the policy resulting from the current learned distance function and a 

policy obtained through exploration in policy space, the current distance function can be 

updated to improve the quality of the learned imitation policies with the help of a neural 

network. To test this learning of imitating demonstrated tasks, the robot has been tested to 

imitate tasks based on demonstrations, showing that the robot can successfully learn 

correspondences between internal model states and observed model states.  

 

 

Future Work 

 

The present approach needs to be extended by learning functional imitation on abstracted 

internal and observed model. An abstracted internal model will have complex actions like 

pick object and drop it in some location which will be made up of primitive actions like 

grasping an object, moving to a location, and releasing the object. It will dramatically 

decrease the state space. On the other side, hierarchical Markov task models should be 

developed using learned models of observation to obtain abstracted observed models. 

Abstracted observed model will have more abstract and complex behaviors such as a ball 
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is moving straight then it started bouncing and later it stopped at some location.  This 

complex behavior is a combination of multiple simple behaviors like the ball moving in 

straight direction (first behavior), bouncing ball (second behavior), and ball becoming 

stationary (third behavior). For the sake of functional imitation, now the imitator should 

perform state mappings at different levels of abstraction between these internal and 

observed models. A similar approach can be used for state to state mapping but at 

corresponding hierarchies. This extension to the present work can speed up the process 

of search through problem space as the problem space size will be dramatically smaller 

than now. 
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